1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf); 70 static void lower_barrier(struct r1conf *conf); 71 72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct pool_info *pi = data; 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 76 77 /* allocate a r1bio with room for raid_disks entries in the bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r1bio_pool_free(void *r1_bio, void *data) 82 { 83 kfree(r1_bio); 84 } 85 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 #define RESYNC_WINDOW (2048*1024) 91 92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct pool_info *pi = data; 95 struct page *page; 96 struct r1bio *r1_bio; 97 struct bio *bio; 98 int i, j; 99 100 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 101 if (!r1_bio) 102 return NULL; 103 104 /* 105 * Allocate bios : 1 for reading, n-1 for writing 106 */ 107 for (j = pi->raid_disks ; j-- ; ) { 108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r1_bio->bios[j] = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them to 115 * the first bio. 116 * If this is a user-requested check/repair, allocate 117 * RESYNC_PAGES for each bio. 118 */ 119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 120 j = pi->raid_disks; 121 else 122 j = 1; 123 while(j--) { 124 bio = r1_bio->bios[j]; 125 for (i = 0; i < RESYNC_PAGES; i++) { 126 page = alloc_page(gfp_flags); 127 if (unlikely(!page)) 128 goto out_free_pages; 129 130 bio->bi_io_vec[i].bv_page = page; 131 bio->bi_vcnt = i+1; 132 } 133 } 134 /* If not user-requests, copy the page pointers to all bios */ 135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 136 for (i=0; i<RESYNC_PAGES ; i++) 137 for (j=1; j<pi->raid_disks; j++) 138 r1_bio->bios[j]->bi_io_vec[i].bv_page = 139 r1_bio->bios[0]->bi_io_vec[i].bv_page; 140 } 141 142 r1_bio->master_bio = NULL; 143 144 return r1_bio; 145 146 out_free_pages: 147 for (j=0 ; j < pi->raid_disks; j++) 148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 150 j = -1; 151 out_free_bio: 152 while (++j < pi->raid_disks) 153 bio_put(r1_bio->bios[j]); 154 r1bio_pool_free(r1_bio, data); 155 return NULL; 156 } 157 158 static void r1buf_pool_free(void *__r1_bio, void *data) 159 { 160 struct pool_info *pi = data; 161 int i,j; 162 struct r1bio *r1bio = __r1_bio; 163 164 for (i = 0; i < RESYNC_PAGES; i++) 165 for (j = pi->raid_disks; j-- ;) { 166 if (j == 0 || 167 r1bio->bios[j]->bi_io_vec[i].bv_page != 168 r1bio->bios[0]->bi_io_vec[i].bv_page) 169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 170 } 171 for (i=0 ; i < pi->raid_disks; i++) 172 bio_put(r1bio->bios[i]); 173 174 r1bio_pool_free(r1bio, data); 175 } 176 177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 178 { 179 int i; 180 181 for (i = 0; i < conf->raid_disks * 2; i++) { 182 struct bio **bio = r1_bio->bios + i; 183 if (!BIO_SPECIAL(*bio)) 184 bio_put(*bio); 185 *bio = NULL; 186 } 187 } 188 189 static void free_r1bio(struct r1bio *r1_bio) 190 { 191 struct r1conf *conf = r1_bio->mddev->private; 192 193 put_all_bios(conf, r1_bio); 194 mempool_free(r1_bio, conf->r1bio_pool); 195 } 196 197 static void put_buf(struct r1bio *r1_bio) 198 { 199 struct r1conf *conf = r1_bio->mddev->private; 200 int i; 201 202 for (i = 0; i < conf->raid_disks * 2; i++) { 203 struct bio *bio = r1_bio->bios[i]; 204 if (bio->bi_end_io) 205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 206 } 207 208 mempool_free(r1_bio, conf->r1buf_pool); 209 210 lower_barrier(conf); 211 } 212 213 static void reschedule_retry(struct r1bio *r1_bio) 214 { 215 unsigned long flags; 216 struct mddev *mddev = r1_bio->mddev; 217 struct r1conf *conf = mddev->private; 218 219 spin_lock_irqsave(&conf->device_lock, flags); 220 list_add(&r1_bio->retry_list, &conf->retry_list); 221 conf->nr_queued ++; 222 spin_unlock_irqrestore(&conf->device_lock, flags); 223 224 wake_up(&conf->wait_barrier); 225 md_wakeup_thread(mddev->thread); 226 } 227 228 /* 229 * raid_end_bio_io() is called when we have finished servicing a mirrored 230 * operation and are ready to return a success/failure code to the buffer 231 * cache layer. 232 */ 233 static void call_bio_endio(struct r1bio *r1_bio) 234 { 235 struct bio *bio = r1_bio->master_bio; 236 int done; 237 struct r1conf *conf = r1_bio->mddev->private; 238 239 if (bio->bi_phys_segments) { 240 unsigned long flags; 241 spin_lock_irqsave(&conf->device_lock, flags); 242 bio->bi_phys_segments--; 243 done = (bio->bi_phys_segments == 0); 244 spin_unlock_irqrestore(&conf->device_lock, flags); 245 } else 246 done = 1; 247 248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 249 clear_bit(BIO_UPTODATE, &bio->bi_flags); 250 if (done) { 251 bio_endio(bio, 0); 252 /* 253 * Wake up any possible resync thread that waits for the device 254 * to go idle. 255 */ 256 allow_barrier(conf); 257 } 258 } 259 260 static void raid_end_bio_io(struct r1bio *r1_bio) 261 { 262 struct bio *bio = r1_bio->master_bio; 263 264 /* if nobody has done the final endio yet, do it now */ 265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 267 (bio_data_dir(bio) == WRITE) ? "write" : "read", 268 (unsigned long long) bio->bi_sector, 269 (unsigned long long) bio->bi_sector + 270 (bio->bi_size >> 9) - 1); 271 272 call_bio_endio(r1_bio); 273 } 274 free_r1bio(r1_bio); 275 } 276 277 /* 278 * Update disk head position estimator based on IRQ completion info. 279 */ 280 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 281 { 282 struct r1conf *conf = r1_bio->mddev->private; 283 284 conf->mirrors[disk].head_position = 285 r1_bio->sector + (r1_bio->sectors); 286 } 287 288 /* 289 * Find the disk number which triggered given bio 290 */ 291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 292 { 293 int mirror; 294 struct r1conf *conf = r1_bio->mddev->private; 295 int raid_disks = conf->raid_disks; 296 297 for (mirror = 0; mirror < raid_disks * 2; mirror++) 298 if (r1_bio->bios[mirror] == bio) 299 break; 300 301 BUG_ON(mirror == raid_disks * 2); 302 update_head_pos(mirror, r1_bio); 303 304 return mirror; 305 } 306 307 static void raid1_end_read_request(struct bio *bio, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 struct r1bio *r1_bio = bio->bi_private; 311 int mirror; 312 struct r1conf *conf = r1_bio->mddev->private; 313 314 mirror = r1_bio->read_disk; 315 /* 316 * this branch is our 'one mirror IO has finished' event handler: 317 */ 318 update_head_pos(mirror, r1_bio); 319 320 if (uptodate) 321 set_bit(R1BIO_Uptodate, &r1_bio->state); 322 else { 323 /* If all other devices have failed, we want to return 324 * the error upwards rather than fail the last device. 325 * Here we redefine "uptodate" to mean "Don't want to retry" 326 */ 327 unsigned long flags; 328 spin_lock_irqsave(&conf->device_lock, flags); 329 if (r1_bio->mddev->degraded == conf->raid_disks || 330 (r1_bio->mddev->degraded == conf->raid_disks-1 && 331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 332 uptodate = 1; 333 spin_unlock_irqrestore(&conf->device_lock, flags); 334 } 335 336 if (uptodate) { 337 raid_end_bio_io(r1_bio); 338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 339 } else { 340 /* 341 * oops, read error: 342 */ 343 char b[BDEVNAME_SIZE]; 344 printk_ratelimited( 345 KERN_ERR "md/raid1:%s: %s: " 346 "rescheduling sector %llu\n", 347 mdname(conf->mddev), 348 bdevname(conf->mirrors[mirror].rdev->bdev, 349 b), 350 (unsigned long long)r1_bio->sector); 351 set_bit(R1BIO_ReadError, &r1_bio->state); 352 reschedule_retry(r1_bio); 353 /* don't drop the reference on read_disk yet */ 354 } 355 } 356 357 static void close_write(struct r1bio *r1_bio) 358 { 359 /* it really is the end of this request */ 360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 361 /* free extra copy of the data pages */ 362 int i = r1_bio->behind_page_count; 363 while (i--) 364 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 365 kfree(r1_bio->behind_bvecs); 366 r1_bio->behind_bvecs = NULL; 367 } 368 /* clear the bitmap if all writes complete successfully */ 369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 370 r1_bio->sectors, 371 !test_bit(R1BIO_Degraded, &r1_bio->state), 372 test_bit(R1BIO_BehindIO, &r1_bio->state)); 373 md_write_end(r1_bio->mddev); 374 } 375 376 static void r1_bio_write_done(struct r1bio *r1_bio) 377 { 378 if (!atomic_dec_and_test(&r1_bio->remaining)) 379 return; 380 381 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 382 reschedule_retry(r1_bio); 383 else { 384 close_write(r1_bio); 385 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 386 reschedule_retry(r1_bio); 387 else 388 raid_end_bio_io(r1_bio); 389 } 390 } 391 392 static void raid1_end_write_request(struct bio *bio, int error) 393 { 394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 395 struct r1bio *r1_bio = bio->bi_private; 396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 397 struct r1conf *conf = r1_bio->mddev->private; 398 struct bio *to_put = NULL; 399 400 mirror = find_bio_disk(r1_bio, bio); 401 402 /* 403 * 'one mirror IO has finished' event handler: 404 */ 405 if (!uptodate) { 406 set_bit(WriteErrorSeen, 407 &conf->mirrors[mirror].rdev->flags); 408 if (!test_and_set_bit(WantReplacement, 409 &conf->mirrors[mirror].rdev->flags)) 410 set_bit(MD_RECOVERY_NEEDED, & 411 conf->mddev->recovery); 412 413 set_bit(R1BIO_WriteError, &r1_bio->state); 414 } else { 415 /* 416 * Set R1BIO_Uptodate in our master bio, so that we 417 * will return a good error code for to the higher 418 * levels even if IO on some other mirrored buffer 419 * fails. 420 * 421 * The 'master' represents the composite IO operation 422 * to user-side. So if something waits for IO, then it 423 * will wait for the 'master' bio. 424 */ 425 sector_t first_bad; 426 int bad_sectors; 427 428 r1_bio->bios[mirror] = NULL; 429 to_put = bio; 430 set_bit(R1BIO_Uptodate, &r1_bio->state); 431 432 /* Maybe we can clear some bad blocks. */ 433 if (is_badblock(conf->mirrors[mirror].rdev, 434 r1_bio->sector, r1_bio->sectors, 435 &first_bad, &bad_sectors)) { 436 r1_bio->bios[mirror] = IO_MADE_GOOD; 437 set_bit(R1BIO_MadeGood, &r1_bio->state); 438 } 439 } 440 441 if (behind) { 442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 443 atomic_dec(&r1_bio->behind_remaining); 444 445 /* 446 * In behind mode, we ACK the master bio once the I/O 447 * has safely reached all non-writemostly 448 * disks. Setting the Returned bit ensures that this 449 * gets done only once -- we don't ever want to return 450 * -EIO here, instead we'll wait 451 */ 452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 453 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 454 /* Maybe we can return now */ 455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 456 struct bio *mbio = r1_bio->master_bio; 457 pr_debug("raid1: behind end write sectors" 458 " %llu-%llu\n", 459 (unsigned long long) mbio->bi_sector, 460 (unsigned long long) mbio->bi_sector + 461 (mbio->bi_size >> 9) - 1); 462 call_bio_endio(r1_bio); 463 } 464 } 465 } 466 if (r1_bio->bios[mirror] == NULL) 467 rdev_dec_pending(conf->mirrors[mirror].rdev, 468 conf->mddev); 469 470 /* 471 * Let's see if all mirrored write operations have finished 472 * already. 473 */ 474 r1_bio_write_done(r1_bio); 475 476 if (to_put) 477 bio_put(to_put); 478 } 479 480 481 /* 482 * This routine returns the disk from which the requested read should 483 * be done. There is a per-array 'next expected sequential IO' sector 484 * number - if this matches on the next IO then we use the last disk. 485 * There is also a per-disk 'last know head position' sector that is 486 * maintained from IRQ contexts, both the normal and the resync IO 487 * completion handlers update this position correctly. If there is no 488 * perfect sequential match then we pick the disk whose head is closest. 489 * 490 * If there are 2 mirrors in the same 2 devices, performance degrades 491 * because position is mirror, not device based. 492 * 493 * The rdev for the device selected will have nr_pending incremented. 494 */ 495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 496 { 497 const sector_t this_sector = r1_bio->sector; 498 int sectors; 499 int best_good_sectors; 500 int best_disk, best_dist_disk, best_pending_disk; 501 int has_nonrot_disk; 502 int disk; 503 sector_t best_dist; 504 unsigned int min_pending; 505 struct md_rdev *rdev; 506 int choose_first; 507 int choose_next_idle; 508 509 rcu_read_lock(); 510 /* 511 * Check if we can balance. We can balance on the whole 512 * device if no resync is going on, or below the resync window. 513 * We take the first readable disk when above the resync window. 514 */ 515 retry: 516 sectors = r1_bio->sectors; 517 best_disk = -1; 518 best_dist_disk = -1; 519 best_dist = MaxSector; 520 best_pending_disk = -1; 521 min_pending = UINT_MAX; 522 best_good_sectors = 0; 523 has_nonrot_disk = 0; 524 choose_next_idle = 0; 525 526 if (conf->mddev->recovery_cp < MaxSector && 527 (this_sector + sectors >= conf->next_resync)) 528 choose_first = 1; 529 else 530 choose_first = 0; 531 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 533 sector_t dist; 534 sector_t first_bad; 535 int bad_sectors; 536 unsigned int pending; 537 bool nonrot; 538 539 rdev = rcu_dereference(conf->mirrors[disk].rdev); 540 if (r1_bio->bios[disk] == IO_BLOCKED 541 || rdev == NULL 542 || test_bit(Unmerged, &rdev->flags) 543 || test_bit(Faulty, &rdev->flags)) 544 continue; 545 if (!test_bit(In_sync, &rdev->flags) && 546 rdev->recovery_offset < this_sector + sectors) 547 continue; 548 if (test_bit(WriteMostly, &rdev->flags)) { 549 /* Don't balance among write-mostly, just 550 * use the first as a last resort */ 551 if (best_disk < 0) { 552 if (is_badblock(rdev, this_sector, sectors, 553 &first_bad, &bad_sectors)) { 554 if (first_bad < this_sector) 555 /* Cannot use this */ 556 continue; 557 best_good_sectors = first_bad - this_sector; 558 } else 559 best_good_sectors = sectors; 560 best_disk = disk; 561 } 562 continue; 563 } 564 /* This is a reasonable device to use. It might 565 * even be best. 566 */ 567 if (is_badblock(rdev, this_sector, sectors, 568 &first_bad, &bad_sectors)) { 569 if (best_dist < MaxSector) 570 /* already have a better device */ 571 continue; 572 if (first_bad <= this_sector) { 573 /* cannot read here. If this is the 'primary' 574 * device, then we must not read beyond 575 * bad_sectors from another device.. 576 */ 577 bad_sectors -= (this_sector - first_bad); 578 if (choose_first && sectors > bad_sectors) 579 sectors = bad_sectors; 580 if (best_good_sectors > sectors) 581 best_good_sectors = sectors; 582 583 } else { 584 sector_t good_sectors = first_bad - this_sector; 585 if (good_sectors > best_good_sectors) { 586 best_good_sectors = good_sectors; 587 best_disk = disk; 588 } 589 if (choose_first) 590 break; 591 } 592 continue; 593 } else 594 best_good_sectors = sectors; 595 596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 597 has_nonrot_disk |= nonrot; 598 pending = atomic_read(&rdev->nr_pending); 599 dist = abs(this_sector - conf->mirrors[disk].head_position); 600 if (choose_first) { 601 best_disk = disk; 602 break; 603 } 604 /* Don't change to another disk for sequential reads */ 605 if (conf->mirrors[disk].next_seq_sect == this_sector 606 || dist == 0) { 607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 608 struct raid1_info *mirror = &conf->mirrors[disk]; 609 610 best_disk = disk; 611 /* 612 * If buffered sequential IO size exceeds optimal 613 * iosize, check if there is idle disk. If yes, choose 614 * the idle disk. read_balance could already choose an 615 * idle disk before noticing it's a sequential IO in 616 * this disk. This doesn't matter because this disk 617 * will idle, next time it will be utilized after the 618 * first disk has IO size exceeds optimal iosize. In 619 * this way, iosize of the first disk will be optimal 620 * iosize at least. iosize of the second disk might be 621 * small, but not a big deal since when the second disk 622 * starts IO, the first disk is likely still busy. 623 */ 624 if (nonrot && opt_iosize > 0 && 625 mirror->seq_start != MaxSector && 626 mirror->next_seq_sect > opt_iosize && 627 mirror->next_seq_sect - opt_iosize >= 628 mirror->seq_start) { 629 choose_next_idle = 1; 630 continue; 631 } 632 break; 633 } 634 /* If device is idle, use it */ 635 if (pending == 0) { 636 best_disk = disk; 637 break; 638 } 639 640 if (choose_next_idle) 641 continue; 642 643 if (min_pending > pending) { 644 min_pending = pending; 645 best_pending_disk = disk; 646 } 647 648 if (dist < best_dist) { 649 best_dist = dist; 650 best_dist_disk = disk; 651 } 652 } 653 654 /* 655 * If all disks are rotational, choose the closest disk. If any disk is 656 * non-rotational, choose the disk with less pending request even the 657 * disk is rotational, which might/might not be optimal for raids with 658 * mixed ratation/non-rotational disks depending on workload. 659 */ 660 if (best_disk == -1) { 661 if (has_nonrot_disk) 662 best_disk = best_pending_disk; 663 else 664 best_disk = best_dist_disk; 665 } 666 667 if (best_disk >= 0) { 668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 669 if (!rdev) 670 goto retry; 671 atomic_inc(&rdev->nr_pending); 672 if (test_bit(Faulty, &rdev->flags)) { 673 /* cannot risk returning a device that failed 674 * before we inc'ed nr_pending 675 */ 676 rdev_dec_pending(rdev, conf->mddev); 677 goto retry; 678 } 679 sectors = best_good_sectors; 680 681 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 682 conf->mirrors[best_disk].seq_start = this_sector; 683 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 685 } 686 rcu_read_unlock(); 687 *max_sectors = sectors; 688 689 return best_disk; 690 } 691 692 static int raid1_mergeable_bvec(struct request_queue *q, 693 struct bvec_merge_data *bvm, 694 struct bio_vec *biovec) 695 { 696 struct mddev *mddev = q->queuedata; 697 struct r1conf *conf = mddev->private; 698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 699 int max = biovec->bv_len; 700 701 if (mddev->merge_check_needed) { 702 int disk; 703 rcu_read_lock(); 704 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 705 struct md_rdev *rdev = rcu_dereference( 706 conf->mirrors[disk].rdev); 707 if (rdev && !test_bit(Faulty, &rdev->flags)) { 708 struct request_queue *q = 709 bdev_get_queue(rdev->bdev); 710 if (q->merge_bvec_fn) { 711 bvm->bi_sector = sector + 712 rdev->data_offset; 713 bvm->bi_bdev = rdev->bdev; 714 max = min(max, q->merge_bvec_fn( 715 q, bvm, biovec)); 716 } 717 } 718 } 719 rcu_read_unlock(); 720 } 721 return max; 722 723 } 724 725 int md_raid1_congested(struct mddev *mddev, int bits) 726 { 727 struct r1conf *conf = mddev->private; 728 int i, ret = 0; 729 730 if ((bits & (1 << BDI_async_congested)) && 731 conf->pending_count >= max_queued_requests) 732 return 1; 733 734 rcu_read_lock(); 735 for (i = 0; i < conf->raid_disks * 2; i++) { 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 737 if (rdev && !test_bit(Faulty, &rdev->flags)) { 738 struct request_queue *q = bdev_get_queue(rdev->bdev); 739 740 BUG_ON(!q); 741 742 /* Note the '|| 1' - when read_balance prefers 743 * non-congested targets, it can be removed 744 */ 745 if ((bits & (1<<BDI_async_congested)) || 1) 746 ret |= bdi_congested(&q->backing_dev_info, bits); 747 else 748 ret &= bdi_congested(&q->backing_dev_info, bits); 749 } 750 } 751 rcu_read_unlock(); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(md_raid1_congested); 755 756 static int raid1_congested(void *data, int bits) 757 { 758 struct mddev *mddev = data; 759 760 return mddev_congested(mddev, bits) || 761 md_raid1_congested(mddev, bits); 762 } 763 764 static void flush_pending_writes(struct r1conf *conf) 765 { 766 /* Any writes that have been queued but are awaiting 767 * bitmap updates get flushed here. 768 */ 769 spin_lock_irq(&conf->device_lock); 770 771 if (conf->pending_bio_list.head) { 772 struct bio *bio; 773 bio = bio_list_get(&conf->pending_bio_list); 774 conf->pending_count = 0; 775 spin_unlock_irq(&conf->device_lock); 776 /* flush any pending bitmap writes to 777 * disk before proceeding w/ I/O */ 778 bitmap_unplug(conf->mddev->bitmap); 779 wake_up(&conf->wait_barrier); 780 781 while (bio) { /* submit pending writes */ 782 struct bio *next = bio->bi_next; 783 bio->bi_next = NULL; 784 if (unlikely((bio->bi_rw & REQ_DISCARD) && 785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 786 /* Just ignore it */ 787 bio_endio(bio, 0); 788 else 789 generic_make_request(bio); 790 bio = next; 791 } 792 } else 793 spin_unlock_irq(&conf->device_lock); 794 } 795 796 /* Barriers.... 797 * Sometimes we need to suspend IO while we do something else, 798 * either some resync/recovery, or reconfigure the array. 799 * To do this we raise a 'barrier'. 800 * The 'barrier' is a counter that can be raised multiple times 801 * to count how many activities are happening which preclude 802 * normal IO. 803 * We can only raise the barrier if there is no pending IO. 804 * i.e. if nr_pending == 0. 805 * We choose only to raise the barrier if no-one is waiting for the 806 * barrier to go down. This means that as soon as an IO request 807 * is ready, no other operations which require a barrier will start 808 * until the IO request has had a chance. 809 * 810 * So: regular IO calls 'wait_barrier'. When that returns there 811 * is no backgroup IO happening, It must arrange to call 812 * allow_barrier when it has finished its IO. 813 * backgroup IO calls must call raise_barrier. Once that returns 814 * there is no normal IO happeing. It must arrange to call 815 * lower_barrier when the particular background IO completes. 816 */ 817 #define RESYNC_DEPTH 32 818 819 static void raise_barrier(struct r1conf *conf) 820 { 821 spin_lock_irq(&conf->resync_lock); 822 823 /* Wait until no block IO is waiting */ 824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 825 conf->resync_lock); 826 827 /* block any new IO from starting */ 828 conf->barrier++; 829 830 /* Now wait for all pending IO to complete */ 831 wait_event_lock_irq(conf->wait_barrier, 832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 833 conf->resync_lock); 834 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 static void lower_barrier(struct r1conf *conf) 839 { 840 unsigned long flags; 841 BUG_ON(conf->barrier <= 0); 842 spin_lock_irqsave(&conf->resync_lock, flags); 843 conf->barrier--; 844 spin_unlock_irqrestore(&conf->resync_lock, flags); 845 wake_up(&conf->wait_barrier); 846 } 847 848 static void wait_barrier(struct r1conf *conf) 849 { 850 spin_lock_irq(&conf->resync_lock); 851 if (conf->barrier) { 852 conf->nr_waiting++; 853 /* Wait for the barrier to drop. 854 * However if there are already pending 855 * requests (preventing the barrier from 856 * rising completely), and the 857 * pre-process bio queue isn't empty, 858 * then don't wait, as we need to empty 859 * that queue to get the nr_pending 860 * count down. 861 */ 862 wait_event_lock_irq(conf->wait_barrier, 863 !conf->barrier || 864 (conf->nr_pending && 865 current->bio_list && 866 !bio_list_empty(current->bio_list)), 867 conf->resync_lock); 868 conf->nr_waiting--; 869 } 870 conf->nr_pending++; 871 spin_unlock_irq(&conf->resync_lock); 872 } 873 874 static void allow_barrier(struct r1conf *conf) 875 { 876 unsigned long flags; 877 spin_lock_irqsave(&conf->resync_lock, flags); 878 conf->nr_pending--; 879 spin_unlock_irqrestore(&conf->resync_lock, flags); 880 wake_up(&conf->wait_barrier); 881 } 882 883 static void freeze_array(struct r1conf *conf) 884 { 885 /* stop syncio and normal IO and wait for everything to 886 * go quite. 887 * We increment barrier and nr_waiting, and then 888 * wait until nr_pending match nr_queued+1 889 * This is called in the context of one normal IO request 890 * that has failed. Thus any sync request that might be pending 891 * will be blocked by nr_pending, and we need to wait for 892 * pending IO requests to complete or be queued for re-try. 893 * Thus the number queued (nr_queued) plus this request (1) 894 * must match the number of pending IOs (nr_pending) before 895 * we continue. 896 */ 897 spin_lock_irq(&conf->resync_lock); 898 conf->barrier++; 899 conf->nr_waiting++; 900 wait_event_lock_irq_cmd(conf->wait_barrier, 901 conf->nr_pending == conf->nr_queued+1, 902 conf->resync_lock, 903 flush_pending_writes(conf)); 904 spin_unlock_irq(&conf->resync_lock); 905 } 906 static void unfreeze_array(struct r1conf *conf) 907 { 908 /* reverse the effect of the freeze */ 909 spin_lock_irq(&conf->resync_lock); 910 conf->barrier--; 911 conf->nr_waiting--; 912 wake_up(&conf->wait_barrier); 913 spin_unlock_irq(&conf->resync_lock); 914 } 915 916 917 /* duplicate the data pages for behind I/O 918 */ 919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 920 { 921 int i; 922 struct bio_vec *bvec; 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 924 GFP_NOIO); 925 if (unlikely(!bvecs)) 926 return; 927 928 bio_for_each_segment(bvec, bio, i) { 929 bvecs[i] = *bvec; 930 bvecs[i].bv_page = alloc_page(GFP_NOIO); 931 if (unlikely(!bvecs[i].bv_page)) 932 goto do_sync_io; 933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 935 kunmap(bvecs[i].bv_page); 936 kunmap(bvec->bv_page); 937 } 938 r1_bio->behind_bvecs = bvecs; 939 r1_bio->behind_page_count = bio->bi_vcnt; 940 set_bit(R1BIO_BehindIO, &r1_bio->state); 941 return; 942 943 do_sync_io: 944 for (i = 0; i < bio->bi_vcnt; i++) 945 if (bvecs[i].bv_page) 946 put_page(bvecs[i].bv_page); 947 kfree(bvecs); 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 949 } 950 951 struct raid1_plug_cb { 952 struct blk_plug_cb cb; 953 struct bio_list pending; 954 int pending_cnt; 955 }; 956 957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 958 { 959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 960 cb); 961 struct mddev *mddev = plug->cb.data; 962 struct r1conf *conf = mddev->private; 963 struct bio *bio; 964 965 if (from_schedule || current->bio_list) { 966 spin_lock_irq(&conf->device_lock); 967 bio_list_merge(&conf->pending_bio_list, &plug->pending); 968 conf->pending_count += plug->pending_cnt; 969 spin_unlock_irq(&conf->device_lock); 970 wake_up(&conf->wait_barrier); 971 md_wakeup_thread(mddev->thread); 972 kfree(plug); 973 return; 974 } 975 976 /* we aren't scheduling, so we can do the write-out directly. */ 977 bio = bio_list_get(&plug->pending); 978 bitmap_unplug(mddev->bitmap); 979 wake_up(&conf->wait_barrier); 980 981 while (bio) { /* submit pending writes */ 982 struct bio *next = bio->bi_next; 983 bio->bi_next = NULL; 984 if (unlikely((bio->bi_rw & REQ_DISCARD) && 985 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 986 /* Just ignore it */ 987 bio_endio(bio, 0); 988 else 989 generic_make_request(bio); 990 bio = next; 991 } 992 kfree(plug); 993 } 994 995 static void make_request(struct mddev *mddev, struct bio * bio) 996 { 997 struct r1conf *conf = mddev->private; 998 struct raid1_info *mirror; 999 struct r1bio *r1_bio; 1000 struct bio *read_bio; 1001 int i, disks; 1002 struct bitmap *bitmap; 1003 unsigned long flags; 1004 const int rw = bio_data_dir(bio); 1005 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1006 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1007 const unsigned long do_discard = (bio->bi_rw 1008 & (REQ_DISCARD | REQ_SECURE)); 1009 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1010 struct md_rdev *blocked_rdev; 1011 struct blk_plug_cb *cb; 1012 struct raid1_plug_cb *plug = NULL; 1013 int first_clone; 1014 int sectors_handled; 1015 int max_sectors; 1016 1017 /* 1018 * Register the new request and wait if the reconstruction 1019 * thread has put up a bar for new requests. 1020 * Continue immediately if no resync is active currently. 1021 */ 1022 1023 md_write_start(mddev, bio); /* wait on superblock update early */ 1024 1025 if (bio_data_dir(bio) == WRITE && 1026 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 1027 bio->bi_sector < mddev->suspend_hi) { 1028 /* As the suspend_* range is controlled by 1029 * userspace, we want an interruptible 1030 * wait. 1031 */ 1032 DEFINE_WAIT(w); 1033 for (;;) { 1034 flush_signals(current); 1035 prepare_to_wait(&conf->wait_barrier, 1036 &w, TASK_INTERRUPTIBLE); 1037 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 1038 bio->bi_sector >= mddev->suspend_hi) 1039 break; 1040 schedule(); 1041 } 1042 finish_wait(&conf->wait_barrier, &w); 1043 } 1044 1045 wait_barrier(conf); 1046 1047 bitmap = mddev->bitmap; 1048 1049 /* 1050 * make_request() can abort the operation when READA is being 1051 * used and no empty request is available. 1052 * 1053 */ 1054 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1055 1056 r1_bio->master_bio = bio; 1057 r1_bio->sectors = bio->bi_size >> 9; 1058 r1_bio->state = 0; 1059 r1_bio->mddev = mddev; 1060 r1_bio->sector = bio->bi_sector; 1061 1062 /* We might need to issue multiple reads to different 1063 * devices if there are bad blocks around, so we keep 1064 * track of the number of reads in bio->bi_phys_segments. 1065 * If this is 0, there is only one r1_bio and no locking 1066 * will be needed when requests complete. If it is 1067 * non-zero, then it is the number of not-completed requests. 1068 */ 1069 bio->bi_phys_segments = 0; 1070 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1071 1072 if (rw == READ) { 1073 /* 1074 * read balancing logic: 1075 */ 1076 int rdisk; 1077 1078 read_again: 1079 rdisk = read_balance(conf, r1_bio, &max_sectors); 1080 1081 if (rdisk < 0) { 1082 /* couldn't find anywhere to read from */ 1083 raid_end_bio_io(r1_bio); 1084 return; 1085 } 1086 mirror = conf->mirrors + rdisk; 1087 1088 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1089 bitmap) { 1090 /* Reading from a write-mostly device must 1091 * take care not to over-take any writes 1092 * that are 'behind' 1093 */ 1094 wait_event(bitmap->behind_wait, 1095 atomic_read(&bitmap->behind_writes) == 0); 1096 } 1097 r1_bio->read_disk = rdisk; 1098 1099 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1100 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 1101 max_sectors); 1102 1103 r1_bio->bios[rdisk] = read_bio; 1104 1105 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 1106 read_bio->bi_bdev = mirror->rdev->bdev; 1107 read_bio->bi_end_io = raid1_end_read_request; 1108 read_bio->bi_rw = READ | do_sync; 1109 read_bio->bi_private = r1_bio; 1110 1111 if (max_sectors < r1_bio->sectors) { 1112 /* could not read all from this device, so we will 1113 * need another r1_bio. 1114 */ 1115 1116 sectors_handled = (r1_bio->sector + max_sectors 1117 - bio->bi_sector); 1118 r1_bio->sectors = max_sectors; 1119 spin_lock_irq(&conf->device_lock); 1120 if (bio->bi_phys_segments == 0) 1121 bio->bi_phys_segments = 2; 1122 else 1123 bio->bi_phys_segments++; 1124 spin_unlock_irq(&conf->device_lock); 1125 /* Cannot call generic_make_request directly 1126 * as that will be queued in __make_request 1127 * and subsequent mempool_alloc might block waiting 1128 * for it. So hand bio over to raid1d. 1129 */ 1130 reschedule_retry(r1_bio); 1131 1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1133 1134 r1_bio->master_bio = bio; 1135 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1136 r1_bio->state = 0; 1137 r1_bio->mddev = mddev; 1138 r1_bio->sector = bio->bi_sector + sectors_handled; 1139 goto read_again; 1140 } else 1141 generic_make_request(read_bio); 1142 return; 1143 } 1144 1145 /* 1146 * WRITE: 1147 */ 1148 if (conf->pending_count >= max_queued_requests) { 1149 md_wakeup_thread(mddev->thread); 1150 wait_event(conf->wait_barrier, 1151 conf->pending_count < max_queued_requests); 1152 } 1153 /* first select target devices under rcu_lock and 1154 * inc refcount on their rdev. Record them by setting 1155 * bios[x] to bio 1156 * If there are known/acknowledged bad blocks on any device on 1157 * which we have seen a write error, we want to avoid writing those 1158 * blocks. 1159 * This potentially requires several writes to write around 1160 * the bad blocks. Each set of writes gets it's own r1bio 1161 * with a set of bios attached. 1162 */ 1163 1164 disks = conf->raid_disks * 2; 1165 retry_write: 1166 blocked_rdev = NULL; 1167 rcu_read_lock(); 1168 max_sectors = r1_bio->sectors; 1169 for (i = 0; i < disks; i++) { 1170 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1172 atomic_inc(&rdev->nr_pending); 1173 blocked_rdev = rdev; 1174 break; 1175 } 1176 r1_bio->bios[i] = NULL; 1177 if (!rdev || test_bit(Faulty, &rdev->flags) 1178 || test_bit(Unmerged, &rdev->flags)) { 1179 if (i < conf->raid_disks) 1180 set_bit(R1BIO_Degraded, &r1_bio->state); 1181 continue; 1182 } 1183 1184 atomic_inc(&rdev->nr_pending); 1185 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1186 sector_t first_bad; 1187 int bad_sectors; 1188 int is_bad; 1189 1190 is_bad = is_badblock(rdev, r1_bio->sector, 1191 max_sectors, 1192 &first_bad, &bad_sectors); 1193 if (is_bad < 0) { 1194 /* mustn't write here until the bad block is 1195 * acknowledged*/ 1196 set_bit(BlockedBadBlocks, &rdev->flags); 1197 blocked_rdev = rdev; 1198 break; 1199 } 1200 if (is_bad && first_bad <= r1_bio->sector) { 1201 /* Cannot write here at all */ 1202 bad_sectors -= (r1_bio->sector - first_bad); 1203 if (bad_sectors < max_sectors) 1204 /* mustn't write more than bad_sectors 1205 * to other devices yet 1206 */ 1207 max_sectors = bad_sectors; 1208 rdev_dec_pending(rdev, mddev); 1209 /* We don't set R1BIO_Degraded as that 1210 * only applies if the disk is 1211 * missing, so it might be re-added, 1212 * and we want to know to recover this 1213 * chunk. 1214 * In this case the device is here, 1215 * and the fact that this chunk is not 1216 * in-sync is recorded in the bad 1217 * block log 1218 */ 1219 continue; 1220 } 1221 if (is_bad) { 1222 int good_sectors = first_bad - r1_bio->sector; 1223 if (good_sectors < max_sectors) 1224 max_sectors = good_sectors; 1225 } 1226 } 1227 r1_bio->bios[i] = bio; 1228 } 1229 rcu_read_unlock(); 1230 1231 if (unlikely(blocked_rdev)) { 1232 /* Wait for this device to become unblocked */ 1233 int j; 1234 1235 for (j = 0; j < i; j++) 1236 if (r1_bio->bios[j]) 1237 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1238 r1_bio->state = 0; 1239 allow_barrier(conf); 1240 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1241 wait_barrier(conf); 1242 goto retry_write; 1243 } 1244 1245 if (max_sectors < r1_bio->sectors) { 1246 /* We are splitting this write into multiple parts, so 1247 * we need to prepare for allocating another r1_bio. 1248 */ 1249 r1_bio->sectors = max_sectors; 1250 spin_lock_irq(&conf->device_lock); 1251 if (bio->bi_phys_segments == 0) 1252 bio->bi_phys_segments = 2; 1253 else 1254 bio->bi_phys_segments++; 1255 spin_unlock_irq(&conf->device_lock); 1256 } 1257 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1258 1259 atomic_set(&r1_bio->remaining, 1); 1260 atomic_set(&r1_bio->behind_remaining, 0); 1261 1262 first_clone = 1; 1263 for (i = 0; i < disks; i++) { 1264 struct bio *mbio; 1265 if (!r1_bio->bios[i]) 1266 continue; 1267 1268 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1269 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1270 1271 if (first_clone) { 1272 /* do behind I/O ? 1273 * Not if there are too many, or cannot 1274 * allocate memory, or a reader on WriteMostly 1275 * is waiting for behind writes to flush */ 1276 if (bitmap && 1277 (atomic_read(&bitmap->behind_writes) 1278 < mddev->bitmap_info.max_write_behind) && 1279 !waitqueue_active(&bitmap->behind_wait)) 1280 alloc_behind_pages(mbio, r1_bio); 1281 1282 bitmap_startwrite(bitmap, r1_bio->sector, 1283 r1_bio->sectors, 1284 test_bit(R1BIO_BehindIO, 1285 &r1_bio->state)); 1286 first_clone = 0; 1287 } 1288 if (r1_bio->behind_bvecs) { 1289 struct bio_vec *bvec; 1290 int j; 1291 1292 /* Yes, I really want the '__' version so that 1293 * we clear any unused pointer in the io_vec, rather 1294 * than leave them unchanged. This is important 1295 * because when we come to free the pages, we won't 1296 * know the original bi_idx, so we just free 1297 * them all 1298 */ 1299 __bio_for_each_segment(bvec, mbio, j, 0) 1300 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1301 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1302 atomic_inc(&r1_bio->behind_remaining); 1303 } 1304 1305 r1_bio->bios[i] = mbio; 1306 1307 mbio->bi_sector = (r1_bio->sector + 1308 conf->mirrors[i].rdev->data_offset); 1309 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1310 mbio->bi_end_io = raid1_end_write_request; 1311 mbio->bi_rw = 1312 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1313 mbio->bi_private = r1_bio; 1314 1315 atomic_inc(&r1_bio->remaining); 1316 1317 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1318 if (cb) 1319 plug = container_of(cb, struct raid1_plug_cb, cb); 1320 else 1321 plug = NULL; 1322 spin_lock_irqsave(&conf->device_lock, flags); 1323 if (plug) { 1324 bio_list_add(&plug->pending, mbio); 1325 plug->pending_cnt++; 1326 } else { 1327 bio_list_add(&conf->pending_bio_list, mbio); 1328 conf->pending_count++; 1329 } 1330 spin_unlock_irqrestore(&conf->device_lock, flags); 1331 if (!plug) 1332 md_wakeup_thread(mddev->thread); 1333 } 1334 /* Mustn't call r1_bio_write_done before this next test, 1335 * as it could result in the bio being freed. 1336 */ 1337 if (sectors_handled < (bio->bi_size >> 9)) { 1338 r1_bio_write_done(r1_bio); 1339 /* We need another r1_bio. It has already been counted 1340 * in bio->bi_phys_segments 1341 */ 1342 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1343 r1_bio->master_bio = bio; 1344 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1345 r1_bio->state = 0; 1346 r1_bio->mddev = mddev; 1347 r1_bio->sector = bio->bi_sector + sectors_handled; 1348 goto retry_write; 1349 } 1350 1351 r1_bio_write_done(r1_bio); 1352 1353 /* In case raid1d snuck in to freeze_array */ 1354 wake_up(&conf->wait_barrier); 1355 } 1356 1357 static void status(struct seq_file *seq, struct mddev *mddev) 1358 { 1359 struct r1conf *conf = mddev->private; 1360 int i; 1361 1362 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1363 conf->raid_disks - mddev->degraded); 1364 rcu_read_lock(); 1365 for (i = 0; i < conf->raid_disks; i++) { 1366 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1367 seq_printf(seq, "%s", 1368 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1369 } 1370 rcu_read_unlock(); 1371 seq_printf(seq, "]"); 1372 } 1373 1374 1375 static void error(struct mddev *mddev, struct md_rdev *rdev) 1376 { 1377 char b[BDEVNAME_SIZE]; 1378 struct r1conf *conf = mddev->private; 1379 1380 /* 1381 * If it is not operational, then we have already marked it as dead 1382 * else if it is the last working disks, ignore the error, let the 1383 * next level up know. 1384 * else mark the drive as failed 1385 */ 1386 if (test_bit(In_sync, &rdev->flags) 1387 && (conf->raid_disks - mddev->degraded) == 1) { 1388 /* 1389 * Don't fail the drive, act as though we were just a 1390 * normal single drive. 1391 * However don't try a recovery from this drive as 1392 * it is very likely to fail. 1393 */ 1394 conf->recovery_disabled = mddev->recovery_disabled; 1395 return; 1396 } 1397 set_bit(Blocked, &rdev->flags); 1398 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1399 unsigned long flags; 1400 spin_lock_irqsave(&conf->device_lock, flags); 1401 mddev->degraded++; 1402 set_bit(Faulty, &rdev->flags); 1403 spin_unlock_irqrestore(&conf->device_lock, flags); 1404 /* 1405 * if recovery is running, make sure it aborts. 1406 */ 1407 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1408 } else 1409 set_bit(Faulty, &rdev->flags); 1410 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1411 printk(KERN_ALERT 1412 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1413 "md/raid1:%s: Operation continuing on %d devices.\n", 1414 mdname(mddev), bdevname(rdev->bdev, b), 1415 mdname(mddev), conf->raid_disks - mddev->degraded); 1416 } 1417 1418 static void print_conf(struct r1conf *conf) 1419 { 1420 int i; 1421 1422 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1423 if (!conf) { 1424 printk(KERN_DEBUG "(!conf)\n"); 1425 return; 1426 } 1427 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1428 conf->raid_disks); 1429 1430 rcu_read_lock(); 1431 for (i = 0; i < conf->raid_disks; i++) { 1432 char b[BDEVNAME_SIZE]; 1433 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1434 if (rdev) 1435 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1436 i, !test_bit(In_sync, &rdev->flags), 1437 !test_bit(Faulty, &rdev->flags), 1438 bdevname(rdev->bdev,b)); 1439 } 1440 rcu_read_unlock(); 1441 } 1442 1443 static void close_sync(struct r1conf *conf) 1444 { 1445 wait_barrier(conf); 1446 allow_barrier(conf); 1447 1448 mempool_destroy(conf->r1buf_pool); 1449 conf->r1buf_pool = NULL; 1450 } 1451 1452 static int raid1_spare_active(struct mddev *mddev) 1453 { 1454 int i; 1455 struct r1conf *conf = mddev->private; 1456 int count = 0; 1457 unsigned long flags; 1458 1459 /* 1460 * Find all failed disks within the RAID1 configuration 1461 * and mark them readable. 1462 * Called under mddev lock, so rcu protection not needed. 1463 */ 1464 for (i = 0; i < conf->raid_disks; i++) { 1465 struct md_rdev *rdev = conf->mirrors[i].rdev; 1466 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1467 if (repl 1468 && repl->recovery_offset == MaxSector 1469 && !test_bit(Faulty, &repl->flags) 1470 && !test_and_set_bit(In_sync, &repl->flags)) { 1471 /* replacement has just become active */ 1472 if (!rdev || 1473 !test_and_clear_bit(In_sync, &rdev->flags)) 1474 count++; 1475 if (rdev) { 1476 /* Replaced device not technically 1477 * faulty, but we need to be sure 1478 * it gets removed and never re-added 1479 */ 1480 set_bit(Faulty, &rdev->flags); 1481 sysfs_notify_dirent_safe( 1482 rdev->sysfs_state); 1483 } 1484 } 1485 if (rdev 1486 && !test_bit(Faulty, &rdev->flags) 1487 && !test_and_set_bit(In_sync, &rdev->flags)) { 1488 count++; 1489 sysfs_notify_dirent_safe(rdev->sysfs_state); 1490 } 1491 } 1492 spin_lock_irqsave(&conf->device_lock, flags); 1493 mddev->degraded -= count; 1494 spin_unlock_irqrestore(&conf->device_lock, flags); 1495 1496 print_conf(conf); 1497 return count; 1498 } 1499 1500 1501 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1502 { 1503 struct r1conf *conf = mddev->private; 1504 int err = -EEXIST; 1505 int mirror = 0; 1506 struct raid1_info *p; 1507 int first = 0; 1508 int last = conf->raid_disks - 1; 1509 struct request_queue *q = bdev_get_queue(rdev->bdev); 1510 1511 if (mddev->recovery_disabled == conf->recovery_disabled) 1512 return -EBUSY; 1513 1514 if (rdev->raid_disk >= 0) 1515 first = last = rdev->raid_disk; 1516 1517 if (q->merge_bvec_fn) { 1518 set_bit(Unmerged, &rdev->flags); 1519 mddev->merge_check_needed = 1; 1520 } 1521 1522 for (mirror = first; mirror <= last; mirror++) { 1523 p = conf->mirrors+mirror; 1524 if (!p->rdev) { 1525 1526 disk_stack_limits(mddev->gendisk, rdev->bdev, 1527 rdev->data_offset << 9); 1528 1529 p->head_position = 0; 1530 rdev->raid_disk = mirror; 1531 err = 0; 1532 /* As all devices are equivalent, we don't need a full recovery 1533 * if this was recently any drive of the array 1534 */ 1535 if (rdev->saved_raid_disk < 0) 1536 conf->fullsync = 1; 1537 rcu_assign_pointer(p->rdev, rdev); 1538 break; 1539 } 1540 if (test_bit(WantReplacement, &p->rdev->flags) && 1541 p[conf->raid_disks].rdev == NULL) { 1542 /* Add this device as a replacement */ 1543 clear_bit(In_sync, &rdev->flags); 1544 set_bit(Replacement, &rdev->flags); 1545 rdev->raid_disk = mirror; 1546 err = 0; 1547 conf->fullsync = 1; 1548 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1549 break; 1550 } 1551 } 1552 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1553 /* Some requests might not have seen this new 1554 * merge_bvec_fn. We must wait for them to complete 1555 * before merging the device fully. 1556 * First we make sure any code which has tested 1557 * our function has submitted the request, then 1558 * we wait for all outstanding requests to complete. 1559 */ 1560 synchronize_sched(); 1561 raise_barrier(conf); 1562 lower_barrier(conf); 1563 clear_bit(Unmerged, &rdev->flags); 1564 } 1565 md_integrity_add_rdev(rdev, mddev); 1566 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 1567 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1568 print_conf(conf); 1569 return err; 1570 } 1571 1572 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1573 { 1574 struct r1conf *conf = mddev->private; 1575 int err = 0; 1576 int number = rdev->raid_disk; 1577 struct raid1_info *p = conf->mirrors + number; 1578 1579 if (rdev != p->rdev) 1580 p = conf->mirrors + conf->raid_disks + number; 1581 1582 print_conf(conf); 1583 if (rdev == p->rdev) { 1584 if (test_bit(In_sync, &rdev->flags) || 1585 atomic_read(&rdev->nr_pending)) { 1586 err = -EBUSY; 1587 goto abort; 1588 } 1589 /* Only remove non-faulty devices if recovery 1590 * is not possible. 1591 */ 1592 if (!test_bit(Faulty, &rdev->flags) && 1593 mddev->recovery_disabled != conf->recovery_disabled && 1594 mddev->degraded < conf->raid_disks) { 1595 err = -EBUSY; 1596 goto abort; 1597 } 1598 p->rdev = NULL; 1599 synchronize_rcu(); 1600 if (atomic_read(&rdev->nr_pending)) { 1601 /* lost the race, try later */ 1602 err = -EBUSY; 1603 p->rdev = rdev; 1604 goto abort; 1605 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1606 /* We just removed a device that is being replaced. 1607 * Move down the replacement. We drain all IO before 1608 * doing this to avoid confusion. 1609 */ 1610 struct md_rdev *repl = 1611 conf->mirrors[conf->raid_disks + number].rdev; 1612 raise_barrier(conf); 1613 clear_bit(Replacement, &repl->flags); 1614 p->rdev = repl; 1615 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1616 lower_barrier(conf); 1617 clear_bit(WantReplacement, &rdev->flags); 1618 } else 1619 clear_bit(WantReplacement, &rdev->flags); 1620 err = md_integrity_register(mddev); 1621 } 1622 abort: 1623 1624 print_conf(conf); 1625 return err; 1626 } 1627 1628 1629 static void end_sync_read(struct bio *bio, int error) 1630 { 1631 struct r1bio *r1_bio = bio->bi_private; 1632 1633 update_head_pos(r1_bio->read_disk, r1_bio); 1634 1635 /* 1636 * we have read a block, now it needs to be re-written, 1637 * or re-read if the read failed. 1638 * We don't do much here, just schedule handling by raid1d 1639 */ 1640 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1641 set_bit(R1BIO_Uptodate, &r1_bio->state); 1642 1643 if (atomic_dec_and_test(&r1_bio->remaining)) 1644 reschedule_retry(r1_bio); 1645 } 1646 1647 static void end_sync_write(struct bio *bio, int error) 1648 { 1649 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1650 struct r1bio *r1_bio = bio->bi_private; 1651 struct mddev *mddev = r1_bio->mddev; 1652 struct r1conf *conf = mddev->private; 1653 int mirror=0; 1654 sector_t first_bad; 1655 int bad_sectors; 1656 1657 mirror = find_bio_disk(r1_bio, bio); 1658 1659 if (!uptodate) { 1660 sector_t sync_blocks = 0; 1661 sector_t s = r1_bio->sector; 1662 long sectors_to_go = r1_bio->sectors; 1663 /* make sure these bits doesn't get cleared. */ 1664 do { 1665 bitmap_end_sync(mddev->bitmap, s, 1666 &sync_blocks, 1); 1667 s += sync_blocks; 1668 sectors_to_go -= sync_blocks; 1669 } while (sectors_to_go > 0); 1670 set_bit(WriteErrorSeen, 1671 &conf->mirrors[mirror].rdev->flags); 1672 if (!test_and_set_bit(WantReplacement, 1673 &conf->mirrors[mirror].rdev->flags)) 1674 set_bit(MD_RECOVERY_NEEDED, & 1675 mddev->recovery); 1676 set_bit(R1BIO_WriteError, &r1_bio->state); 1677 } else if (is_badblock(conf->mirrors[mirror].rdev, 1678 r1_bio->sector, 1679 r1_bio->sectors, 1680 &first_bad, &bad_sectors) && 1681 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1682 r1_bio->sector, 1683 r1_bio->sectors, 1684 &first_bad, &bad_sectors) 1685 ) 1686 set_bit(R1BIO_MadeGood, &r1_bio->state); 1687 1688 if (atomic_dec_and_test(&r1_bio->remaining)) { 1689 int s = r1_bio->sectors; 1690 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1691 test_bit(R1BIO_WriteError, &r1_bio->state)) 1692 reschedule_retry(r1_bio); 1693 else { 1694 put_buf(r1_bio); 1695 md_done_sync(mddev, s, uptodate); 1696 } 1697 } 1698 } 1699 1700 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1701 int sectors, struct page *page, int rw) 1702 { 1703 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1704 /* success */ 1705 return 1; 1706 if (rw == WRITE) { 1707 set_bit(WriteErrorSeen, &rdev->flags); 1708 if (!test_and_set_bit(WantReplacement, 1709 &rdev->flags)) 1710 set_bit(MD_RECOVERY_NEEDED, & 1711 rdev->mddev->recovery); 1712 } 1713 /* need to record an error - either for the block or the device */ 1714 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1715 md_error(rdev->mddev, rdev); 1716 return 0; 1717 } 1718 1719 static int fix_sync_read_error(struct r1bio *r1_bio) 1720 { 1721 /* Try some synchronous reads of other devices to get 1722 * good data, much like with normal read errors. Only 1723 * read into the pages we already have so we don't 1724 * need to re-issue the read request. 1725 * We don't need to freeze the array, because being in an 1726 * active sync request, there is no normal IO, and 1727 * no overlapping syncs. 1728 * We don't need to check is_badblock() again as we 1729 * made sure that anything with a bad block in range 1730 * will have bi_end_io clear. 1731 */ 1732 struct mddev *mddev = r1_bio->mddev; 1733 struct r1conf *conf = mddev->private; 1734 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1735 sector_t sect = r1_bio->sector; 1736 int sectors = r1_bio->sectors; 1737 int idx = 0; 1738 1739 while(sectors) { 1740 int s = sectors; 1741 int d = r1_bio->read_disk; 1742 int success = 0; 1743 struct md_rdev *rdev; 1744 int start; 1745 1746 if (s > (PAGE_SIZE>>9)) 1747 s = PAGE_SIZE >> 9; 1748 do { 1749 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1750 /* No rcu protection needed here devices 1751 * can only be removed when no resync is 1752 * active, and resync is currently active 1753 */ 1754 rdev = conf->mirrors[d].rdev; 1755 if (sync_page_io(rdev, sect, s<<9, 1756 bio->bi_io_vec[idx].bv_page, 1757 READ, false)) { 1758 success = 1; 1759 break; 1760 } 1761 } 1762 d++; 1763 if (d == conf->raid_disks * 2) 1764 d = 0; 1765 } while (!success && d != r1_bio->read_disk); 1766 1767 if (!success) { 1768 char b[BDEVNAME_SIZE]; 1769 int abort = 0; 1770 /* Cannot read from anywhere, this block is lost. 1771 * Record a bad block on each device. If that doesn't 1772 * work just disable and interrupt the recovery. 1773 * Don't fail devices as that won't really help. 1774 */ 1775 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1776 " for block %llu\n", 1777 mdname(mddev), 1778 bdevname(bio->bi_bdev, b), 1779 (unsigned long long)r1_bio->sector); 1780 for (d = 0; d < conf->raid_disks * 2; d++) { 1781 rdev = conf->mirrors[d].rdev; 1782 if (!rdev || test_bit(Faulty, &rdev->flags)) 1783 continue; 1784 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1785 abort = 1; 1786 } 1787 if (abort) { 1788 conf->recovery_disabled = 1789 mddev->recovery_disabled; 1790 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1791 md_done_sync(mddev, r1_bio->sectors, 0); 1792 put_buf(r1_bio); 1793 return 0; 1794 } 1795 /* Try next page */ 1796 sectors -= s; 1797 sect += s; 1798 idx++; 1799 continue; 1800 } 1801 1802 start = d; 1803 /* write it back and re-read */ 1804 while (d != r1_bio->read_disk) { 1805 if (d == 0) 1806 d = conf->raid_disks * 2; 1807 d--; 1808 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1809 continue; 1810 rdev = conf->mirrors[d].rdev; 1811 if (r1_sync_page_io(rdev, sect, s, 1812 bio->bi_io_vec[idx].bv_page, 1813 WRITE) == 0) { 1814 r1_bio->bios[d]->bi_end_io = NULL; 1815 rdev_dec_pending(rdev, mddev); 1816 } 1817 } 1818 d = start; 1819 while (d != r1_bio->read_disk) { 1820 if (d == 0) 1821 d = conf->raid_disks * 2; 1822 d--; 1823 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1824 continue; 1825 rdev = conf->mirrors[d].rdev; 1826 if (r1_sync_page_io(rdev, sect, s, 1827 bio->bi_io_vec[idx].bv_page, 1828 READ) != 0) 1829 atomic_add(s, &rdev->corrected_errors); 1830 } 1831 sectors -= s; 1832 sect += s; 1833 idx ++; 1834 } 1835 set_bit(R1BIO_Uptodate, &r1_bio->state); 1836 set_bit(BIO_UPTODATE, &bio->bi_flags); 1837 return 1; 1838 } 1839 1840 static int process_checks(struct r1bio *r1_bio) 1841 { 1842 /* We have read all readable devices. If we haven't 1843 * got the block, then there is no hope left. 1844 * If we have, then we want to do a comparison 1845 * and skip the write if everything is the same. 1846 * If any blocks failed to read, then we need to 1847 * attempt an over-write 1848 */ 1849 struct mddev *mddev = r1_bio->mddev; 1850 struct r1conf *conf = mddev->private; 1851 int primary; 1852 int i; 1853 int vcnt; 1854 1855 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1856 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1857 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1858 r1_bio->bios[primary]->bi_end_io = NULL; 1859 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1860 break; 1861 } 1862 r1_bio->read_disk = primary; 1863 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1864 for (i = 0; i < conf->raid_disks * 2; i++) { 1865 int j; 1866 struct bio *pbio = r1_bio->bios[primary]; 1867 struct bio *sbio = r1_bio->bios[i]; 1868 int size; 1869 1870 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1871 continue; 1872 1873 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1874 for (j = vcnt; j-- ; ) { 1875 struct page *p, *s; 1876 p = pbio->bi_io_vec[j].bv_page; 1877 s = sbio->bi_io_vec[j].bv_page; 1878 if (memcmp(page_address(p), 1879 page_address(s), 1880 sbio->bi_io_vec[j].bv_len)) 1881 break; 1882 } 1883 } else 1884 j = 0; 1885 if (j >= 0) 1886 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1887 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1888 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1889 /* No need to write to this device. */ 1890 sbio->bi_end_io = NULL; 1891 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1892 continue; 1893 } 1894 /* fixup the bio for reuse */ 1895 sbio->bi_vcnt = vcnt; 1896 sbio->bi_size = r1_bio->sectors << 9; 1897 sbio->bi_idx = 0; 1898 sbio->bi_phys_segments = 0; 1899 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1900 sbio->bi_flags |= 1 << BIO_UPTODATE; 1901 sbio->bi_next = NULL; 1902 sbio->bi_sector = r1_bio->sector + 1903 conf->mirrors[i].rdev->data_offset; 1904 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1905 size = sbio->bi_size; 1906 for (j = 0; j < vcnt ; j++) { 1907 struct bio_vec *bi; 1908 bi = &sbio->bi_io_vec[j]; 1909 bi->bv_offset = 0; 1910 if (size > PAGE_SIZE) 1911 bi->bv_len = PAGE_SIZE; 1912 else 1913 bi->bv_len = size; 1914 size -= PAGE_SIZE; 1915 memcpy(page_address(bi->bv_page), 1916 page_address(pbio->bi_io_vec[j].bv_page), 1917 PAGE_SIZE); 1918 } 1919 } 1920 return 0; 1921 } 1922 1923 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1924 { 1925 struct r1conf *conf = mddev->private; 1926 int i; 1927 int disks = conf->raid_disks * 2; 1928 struct bio *bio, *wbio; 1929 1930 bio = r1_bio->bios[r1_bio->read_disk]; 1931 1932 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1933 /* ouch - failed to read all of that. */ 1934 if (!fix_sync_read_error(r1_bio)) 1935 return; 1936 1937 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1938 if (process_checks(r1_bio) < 0) 1939 return; 1940 /* 1941 * schedule writes 1942 */ 1943 atomic_set(&r1_bio->remaining, 1); 1944 for (i = 0; i < disks ; i++) { 1945 wbio = r1_bio->bios[i]; 1946 if (wbio->bi_end_io == NULL || 1947 (wbio->bi_end_io == end_sync_read && 1948 (i == r1_bio->read_disk || 1949 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1950 continue; 1951 1952 wbio->bi_rw = WRITE; 1953 wbio->bi_end_io = end_sync_write; 1954 atomic_inc(&r1_bio->remaining); 1955 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1956 1957 generic_make_request(wbio); 1958 } 1959 1960 if (atomic_dec_and_test(&r1_bio->remaining)) { 1961 /* if we're here, all write(s) have completed, so clean up */ 1962 int s = r1_bio->sectors; 1963 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1964 test_bit(R1BIO_WriteError, &r1_bio->state)) 1965 reschedule_retry(r1_bio); 1966 else { 1967 put_buf(r1_bio); 1968 md_done_sync(mddev, s, 1); 1969 } 1970 } 1971 } 1972 1973 /* 1974 * This is a kernel thread which: 1975 * 1976 * 1. Retries failed read operations on working mirrors. 1977 * 2. Updates the raid superblock when problems encounter. 1978 * 3. Performs writes following reads for array synchronising. 1979 */ 1980 1981 static void fix_read_error(struct r1conf *conf, int read_disk, 1982 sector_t sect, int sectors) 1983 { 1984 struct mddev *mddev = conf->mddev; 1985 while(sectors) { 1986 int s = sectors; 1987 int d = read_disk; 1988 int success = 0; 1989 int start; 1990 struct md_rdev *rdev; 1991 1992 if (s > (PAGE_SIZE>>9)) 1993 s = PAGE_SIZE >> 9; 1994 1995 do { 1996 /* Note: no rcu protection needed here 1997 * as this is synchronous in the raid1d thread 1998 * which is the thread that might remove 1999 * a device. If raid1d ever becomes multi-threaded.... 2000 */ 2001 sector_t first_bad; 2002 int bad_sectors; 2003 2004 rdev = conf->mirrors[d].rdev; 2005 if (rdev && 2006 (test_bit(In_sync, &rdev->flags) || 2007 (!test_bit(Faulty, &rdev->flags) && 2008 rdev->recovery_offset >= sect + s)) && 2009 is_badblock(rdev, sect, s, 2010 &first_bad, &bad_sectors) == 0 && 2011 sync_page_io(rdev, sect, s<<9, 2012 conf->tmppage, READ, false)) 2013 success = 1; 2014 else { 2015 d++; 2016 if (d == conf->raid_disks * 2) 2017 d = 0; 2018 } 2019 } while (!success && d != read_disk); 2020 2021 if (!success) { 2022 /* Cannot read from anywhere - mark it bad */ 2023 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2024 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2025 md_error(mddev, rdev); 2026 break; 2027 } 2028 /* write it back and re-read */ 2029 start = d; 2030 while (d != read_disk) { 2031 if (d==0) 2032 d = conf->raid_disks * 2; 2033 d--; 2034 rdev = conf->mirrors[d].rdev; 2035 if (rdev && 2036 test_bit(In_sync, &rdev->flags)) 2037 r1_sync_page_io(rdev, sect, s, 2038 conf->tmppage, WRITE); 2039 } 2040 d = start; 2041 while (d != read_disk) { 2042 char b[BDEVNAME_SIZE]; 2043 if (d==0) 2044 d = conf->raid_disks * 2; 2045 d--; 2046 rdev = conf->mirrors[d].rdev; 2047 if (rdev && 2048 test_bit(In_sync, &rdev->flags)) { 2049 if (r1_sync_page_io(rdev, sect, s, 2050 conf->tmppage, READ)) { 2051 atomic_add(s, &rdev->corrected_errors); 2052 printk(KERN_INFO 2053 "md/raid1:%s: read error corrected " 2054 "(%d sectors at %llu on %s)\n", 2055 mdname(mddev), s, 2056 (unsigned long long)(sect + 2057 rdev->data_offset), 2058 bdevname(rdev->bdev, b)); 2059 } 2060 } 2061 } 2062 sectors -= s; 2063 sect += s; 2064 } 2065 } 2066 2067 static void bi_complete(struct bio *bio, int error) 2068 { 2069 complete((struct completion *)bio->bi_private); 2070 } 2071 2072 static int submit_bio_wait(int rw, struct bio *bio) 2073 { 2074 struct completion event; 2075 rw |= REQ_SYNC; 2076 2077 init_completion(&event); 2078 bio->bi_private = &event; 2079 bio->bi_end_io = bi_complete; 2080 submit_bio(rw, bio); 2081 wait_for_completion(&event); 2082 2083 return test_bit(BIO_UPTODATE, &bio->bi_flags); 2084 } 2085 2086 static int narrow_write_error(struct r1bio *r1_bio, int i) 2087 { 2088 struct mddev *mddev = r1_bio->mddev; 2089 struct r1conf *conf = mddev->private; 2090 struct md_rdev *rdev = conf->mirrors[i].rdev; 2091 int vcnt, idx; 2092 struct bio_vec *vec; 2093 2094 /* bio has the data to be written to device 'i' where 2095 * we just recently had a write error. 2096 * We repeatedly clone the bio and trim down to one block, 2097 * then try the write. Where the write fails we record 2098 * a bad block. 2099 * It is conceivable that the bio doesn't exactly align with 2100 * blocks. We must handle this somehow. 2101 * 2102 * We currently own a reference on the rdev. 2103 */ 2104 2105 int block_sectors; 2106 sector_t sector; 2107 int sectors; 2108 int sect_to_write = r1_bio->sectors; 2109 int ok = 1; 2110 2111 if (rdev->badblocks.shift < 0) 2112 return 0; 2113 2114 block_sectors = 1 << rdev->badblocks.shift; 2115 sector = r1_bio->sector; 2116 sectors = ((sector + block_sectors) 2117 & ~(sector_t)(block_sectors - 1)) 2118 - sector; 2119 2120 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2121 vcnt = r1_bio->behind_page_count; 2122 vec = r1_bio->behind_bvecs; 2123 idx = 0; 2124 while (vec[idx].bv_page == NULL) 2125 idx++; 2126 } else { 2127 vcnt = r1_bio->master_bio->bi_vcnt; 2128 vec = r1_bio->master_bio->bi_io_vec; 2129 idx = r1_bio->master_bio->bi_idx; 2130 } 2131 while (sect_to_write) { 2132 struct bio *wbio; 2133 if (sectors > sect_to_write) 2134 sectors = sect_to_write; 2135 /* Write at 'sector' for 'sectors'*/ 2136 2137 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2138 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2139 wbio->bi_sector = r1_bio->sector; 2140 wbio->bi_rw = WRITE; 2141 wbio->bi_vcnt = vcnt; 2142 wbio->bi_size = r1_bio->sectors << 9; 2143 wbio->bi_idx = idx; 2144 2145 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2146 wbio->bi_sector += rdev->data_offset; 2147 wbio->bi_bdev = rdev->bdev; 2148 if (submit_bio_wait(WRITE, wbio) == 0) 2149 /* failure! */ 2150 ok = rdev_set_badblocks(rdev, sector, 2151 sectors, 0) 2152 && ok; 2153 2154 bio_put(wbio); 2155 sect_to_write -= sectors; 2156 sector += sectors; 2157 sectors = block_sectors; 2158 } 2159 return ok; 2160 } 2161 2162 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2163 { 2164 int m; 2165 int s = r1_bio->sectors; 2166 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2167 struct md_rdev *rdev = conf->mirrors[m].rdev; 2168 struct bio *bio = r1_bio->bios[m]; 2169 if (bio->bi_end_io == NULL) 2170 continue; 2171 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2172 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2173 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2174 } 2175 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2176 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2177 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2178 md_error(conf->mddev, rdev); 2179 } 2180 } 2181 put_buf(r1_bio); 2182 md_done_sync(conf->mddev, s, 1); 2183 } 2184 2185 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2186 { 2187 int m; 2188 for (m = 0; m < conf->raid_disks * 2 ; m++) 2189 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2190 struct md_rdev *rdev = conf->mirrors[m].rdev; 2191 rdev_clear_badblocks(rdev, 2192 r1_bio->sector, 2193 r1_bio->sectors, 0); 2194 rdev_dec_pending(rdev, conf->mddev); 2195 } else if (r1_bio->bios[m] != NULL) { 2196 /* This drive got a write error. We need to 2197 * narrow down and record precise write 2198 * errors. 2199 */ 2200 if (!narrow_write_error(r1_bio, m)) { 2201 md_error(conf->mddev, 2202 conf->mirrors[m].rdev); 2203 /* an I/O failed, we can't clear the bitmap */ 2204 set_bit(R1BIO_Degraded, &r1_bio->state); 2205 } 2206 rdev_dec_pending(conf->mirrors[m].rdev, 2207 conf->mddev); 2208 } 2209 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2210 close_write(r1_bio); 2211 raid_end_bio_io(r1_bio); 2212 } 2213 2214 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2215 { 2216 int disk; 2217 int max_sectors; 2218 struct mddev *mddev = conf->mddev; 2219 struct bio *bio; 2220 char b[BDEVNAME_SIZE]; 2221 struct md_rdev *rdev; 2222 2223 clear_bit(R1BIO_ReadError, &r1_bio->state); 2224 /* we got a read error. Maybe the drive is bad. Maybe just 2225 * the block and we can fix it. 2226 * We freeze all other IO, and try reading the block from 2227 * other devices. When we find one, we re-write 2228 * and check it that fixes the read error. 2229 * This is all done synchronously while the array is 2230 * frozen 2231 */ 2232 if (mddev->ro == 0) { 2233 freeze_array(conf); 2234 fix_read_error(conf, r1_bio->read_disk, 2235 r1_bio->sector, r1_bio->sectors); 2236 unfreeze_array(conf); 2237 } else 2238 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2239 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2240 2241 bio = r1_bio->bios[r1_bio->read_disk]; 2242 bdevname(bio->bi_bdev, b); 2243 read_more: 2244 disk = read_balance(conf, r1_bio, &max_sectors); 2245 if (disk == -1) { 2246 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2247 " read error for block %llu\n", 2248 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2249 raid_end_bio_io(r1_bio); 2250 } else { 2251 const unsigned long do_sync 2252 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2253 if (bio) { 2254 r1_bio->bios[r1_bio->read_disk] = 2255 mddev->ro ? IO_BLOCKED : NULL; 2256 bio_put(bio); 2257 } 2258 r1_bio->read_disk = disk; 2259 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2260 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2261 r1_bio->bios[r1_bio->read_disk] = bio; 2262 rdev = conf->mirrors[disk].rdev; 2263 printk_ratelimited(KERN_ERR 2264 "md/raid1:%s: redirecting sector %llu" 2265 " to other mirror: %s\n", 2266 mdname(mddev), 2267 (unsigned long long)r1_bio->sector, 2268 bdevname(rdev->bdev, b)); 2269 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2270 bio->bi_bdev = rdev->bdev; 2271 bio->bi_end_io = raid1_end_read_request; 2272 bio->bi_rw = READ | do_sync; 2273 bio->bi_private = r1_bio; 2274 if (max_sectors < r1_bio->sectors) { 2275 /* Drat - have to split this up more */ 2276 struct bio *mbio = r1_bio->master_bio; 2277 int sectors_handled = (r1_bio->sector + max_sectors 2278 - mbio->bi_sector); 2279 r1_bio->sectors = max_sectors; 2280 spin_lock_irq(&conf->device_lock); 2281 if (mbio->bi_phys_segments == 0) 2282 mbio->bi_phys_segments = 2; 2283 else 2284 mbio->bi_phys_segments++; 2285 spin_unlock_irq(&conf->device_lock); 2286 generic_make_request(bio); 2287 bio = NULL; 2288 2289 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2290 2291 r1_bio->master_bio = mbio; 2292 r1_bio->sectors = (mbio->bi_size >> 9) 2293 - sectors_handled; 2294 r1_bio->state = 0; 2295 set_bit(R1BIO_ReadError, &r1_bio->state); 2296 r1_bio->mddev = mddev; 2297 r1_bio->sector = mbio->bi_sector + sectors_handled; 2298 2299 goto read_more; 2300 } else 2301 generic_make_request(bio); 2302 } 2303 } 2304 2305 static void raid1d(struct md_thread *thread) 2306 { 2307 struct mddev *mddev = thread->mddev; 2308 struct r1bio *r1_bio; 2309 unsigned long flags; 2310 struct r1conf *conf = mddev->private; 2311 struct list_head *head = &conf->retry_list; 2312 struct blk_plug plug; 2313 2314 md_check_recovery(mddev); 2315 2316 blk_start_plug(&plug); 2317 for (;;) { 2318 2319 flush_pending_writes(conf); 2320 2321 spin_lock_irqsave(&conf->device_lock, flags); 2322 if (list_empty(head)) { 2323 spin_unlock_irqrestore(&conf->device_lock, flags); 2324 break; 2325 } 2326 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2327 list_del(head->prev); 2328 conf->nr_queued--; 2329 spin_unlock_irqrestore(&conf->device_lock, flags); 2330 2331 mddev = r1_bio->mddev; 2332 conf = mddev->private; 2333 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2334 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2335 test_bit(R1BIO_WriteError, &r1_bio->state)) 2336 handle_sync_write_finished(conf, r1_bio); 2337 else 2338 sync_request_write(mddev, r1_bio); 2339 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2340 test_bit(R1BIO_WriteError, &r1_bio->state)) 2341 handle_write_finished(conf, r1_bio); 2342 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2343 handle_read_error(conf, r1_bio); 2344 else 2345 /* just a partial read to be scheduled from separate 2346 * context 2347 */ 2348 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2349 2350 cond_resched(); 2351 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2352 md_check_recovery(mddev); 2353 } 2354 blk_finish_plug(&plug); 2355 } 2356 2357 2358 static int init_resync(struct r1conf *conf) 2359 { 2360 int buffs; 2361 2362 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2363 BUG_ON(conf->r1buf_pool); 2364 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2365 conf->poolinfo); 2366 if (!conf->r1buf_pool) 2367 return -ENOMEM; 2368 conf->next_resync = 0; 2369 return 0; 2370 } 2371 2372 /* 2373 * perform a "sync" on one "block" 2374 * 2375 * We need to make sure that no normal I/O request - particularly write 2376 * requests - conflict with active sync requests. 2377 * 2378 * This is achieved by tracking pending requests and a 'barrier' concept 2379 * that can be installed to exclude normal IO requests. 2380 */ 2381 2382 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2383 { 2384 struct r1conf *conf = mddev->private; 2385 struct r1bio *r1_bio; 2386 struct bio *bio; 2387 sector_t max_sector, nr_sectors; 2388 int disk = -1; 2389 int i; 2390 int wonly = -1; 2391 int write_targets = 0, read_targets = 0; 2392 sector_t sync_blocks; 2393 int still_degraded = 0; 2394 int good_sectors = RESYNC_SECTORS; 2395 int min_bad = 0; /* number of sectors that are bad in all devices */ 2396 2397 if (!conf->r1buf_pool) 2398 if (init_resync(conf)) 2399 return 0; 2400 2401 max_sector = mddev->dev_sectors; 2402 if (sector_nr >= max_sector) { 2403 /* If we aborted, we need to abort the 2404 * sync on the 'current' bitmap chunk (there will 2405 * only be one in raid1 resync. 2406 * We can find the current addess in mddev->curr_resync 2407 */ 2408 if (mddev->curr_resync < max_sector) /* aborted */ 2409 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2410 &sync_blocks, 1); 2411 else /* completed sync */ 2412 conf->fullsync = 0; 2413 2414 bitmap_close_sync(mddev->bitmap); 2415 close_sync(conf); 2416 return 0; 2417 } 2418 2419 if (mddev->bitmap == NULL && 2420 mddev->recovery_cp == MaxSector && 2421 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2422 conf->fullsync == 0) { 2423 *skipped = 1; 2424 return max_sector - sector_nr; 2425 } 2426 /* before building a request, check if we can skip these blocks.. 2427 * This call the bitmap_start_sync doesn't actually record anything 2428 */ 2429 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2430 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2431 /* We can skip this block, and probably several more */ 2432 *skipped = 1; 2433 return sync_blocks; 2434 } 2435 /* 2436 * If there is non-resync activity waiting for a turn, 2437 * and resync is going fast enough, 2438 * then let it though before starting on this new sync request. 2439 */ 2440 if (!go_faster && conf->nr_waiting) 2441 msleep_interruptible(1000); 2442 2443 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2444 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2445 raise_barrier(conf); 2446 2447 conf->next_resync = sector_nr; 2448 2449 rcu_read_lock(); 2450 /* 2451 * If we get a correctably read error during resync or recovery, 2452 * we might want to read from a different device. So we 2453 * flag all drives that could conceivably be read from for READ, 2454 * and any others (which will be non-In_sync devices) for WRITE. 2455 * If a read fails, we try reading from something else for which READ 2456 * is OK. 2457 */ 2458 2459 r1_bio->mddev = mddev; 2460 r1_bio->sector = sector_nr; 2461 r1_bio->state = 0; 2462 set_bit(R1BIO_IsSync, &r1_bio->state); 2463 2464 for (i = 0; i < conf->raid_disks * 2; i++) { 2465 struct md_rdev *rdev; 2466 bio = r1_bio->bios[i]; 2467 2468 /* take from bio_init */ 2469 bio->bi_next = NULL; 2470 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2471 bio->bi_flags |= 1 << BIO_UPTODATE; 2472 bio->bi_rw = READ; 2473 bio->bi_vcnt = 0; 2474 bio->bi_idx = 0; 2475 bio->bi_phys_segments = 0; 2476 bio->bi_size = 0; 2477 bio->bi_end_io = NULL; 2478 bio->bi_private = NULL; 2479 2480 rdev = rcu_dereference(conf->mirrors[i].rdev); 2481 if (rdev == NULL || 2482 test_bit(Faulty, &rdev->flags)) { 2483 if (i < conf->raid_disks) 2484 still_degraded = 1; 2485 } else if (!test_bit(In_sync, &rdev->flags)) { 2486 bio->bi_rw = WRITE; 2487 bio->bi_end_io = end_sync_write; 2488 write_targets ++; 2489 } else { 2490 /* may need to read from here */ 2491 sector_t first_bad = MaxSector; 2492 int bad_sectors; 2493 2494 if (is_badblock(rdev, sector_nr, good_sectors, 2495 &first_bad, &bad_sectors)) { 2496 if (first_bad > sector_nr) 2497 good_sectors = first_bad - sector_nr; 2498 else { 2499 bad_sectors -= (sector_nr - first_bad); 2500 if (min_bad == 0 || 2501 min_bad > bad_sectors) 2502 min_bad = bad_sectors; 2503 } 2504 } 2505 if (sector_nr < first_bad) { 2506 if (test_bit(WriteMostly, &rdev->flags)) { 2507 if (wonly < 0) 2508 wonly = i; 2509 } else { 2510 if (disk < 0) 2511 disk = i; 2512 } 2513 bio->bi_rw = READ; 2514 bio->bi_end_io = end_sync_read; 2515 read_targets++; 2516 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2517 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2518 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2519 /* 2520 * The device is suitable for reading (InSync), 2521 * but has bad block(s) here. Let's try to correct them, 2522 * if we are doing resync or repair. Otherwise, leave 2523 * this device alone for this sync request. 2524 */ 2525 bio->bi_rw = WRITE; 2526 bio->bi_end_io = end_sync_write; 2527 write_targets++; 2528 } 2529 } 2530 if (bio->bi_end_io) { 2531 atomic_inc(&rdev->nr_pending); 2532 bio->bi_sector = sector_nr + rdev->data_offset; 2533 bio->bi_bdev = rdev->bdev; 2534 bio->bi_private = r1_bio; 2535 } 2536 } 2537 rcu_read_unlock(); 2538 if (disk < 0) 2539 disk = wonly; 2540 r1_bio->read_disk = disk; 2541 2542 if (read_targets == 0 && min_bad > 0) { 2543 /* These sectors are bad on all InSync devices, so we 2544 * need to mark them bad on all write targets 2545 */ 2546 int ok = 1; 2547 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2548 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2549 struct md_rdev *rdev = conf->mirrors[i].rdev; 2550 ok = rdev_set_badblocks(rdev, sector_nr, 2551 min_bad, 0 2552 ) && ok; 2553 } 2554 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2555 *skipped = 1; 2556 put_buf(r1_bio); 2557 2558 if (!ok) { 2559 /* Cannot record the badblocks, so need to 2560 * abort the resync. 2561 * If there are multiple read targets, could just 2562 * fail the really bad ones ??? 2563 */ 2564 conf->recovery_disabled = mddev->recovery_disabled; 2565 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2566 return 0; 2567 } else 2568 return min_bad; 2569 2570 } 2571 if (min_bad > 0 && min_bad < good_sectors) { 2572 /* only resync enough to reach the next bad->good 2573 * transition */ 2574 good_sectors = min_bad; 2575 } 2576 2577 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2578 /* extra read targets are also write targets */ 2579 write_targets += read_targets-1; 2580 2581 if (write_targets == 0 || read_targets == 0) { 2582 /* There is nowhere to write, so all non-sync 2583 * drives must be failed - so we are finished 2584 */ 2585 sector_t rv; 2586 if (min_bad > 0) 2587 max_sector = sector_nr + min_bad; 2588 rv = max_sector - sector_nr; 2589 *skipped = 1; 2590 put_buf(r1_bio); 2591 return rv; 2592 } 2593 2594 if (max_sector > mddev->resync_max) 2595 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2596 if (max_sector > sector_nr + good_sectors) 2597 max_sector = sector_nr + good_sectors; 2598 nr_sectors = 0; 2599 sync_blocks = 0; 2600 do { 2601 struct page *page; 2602 int len = PAGE_SIZE; 2603 if (sector_nr + (len>>9) > max_sector) 2604 len = (max_sector - sector_nr) << 9; 2605 if (len == 0) 2606 break; 2607 if (sync_blocks == 0) { 2608 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2609 &sync_blocks, still_degraded) && 2610 !conf->fullsync && 2611 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2612 break; 2613 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2614 if ((len >> 9) > sync_blocks) 2615 len = sync_blocks<<9; 2616 } 2617 2618 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2619 bio = r1_bio->bios[i]; 2620 if (bio->bi_end_io) { 2621 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2622 if (bio_add_page(bio, page, len, 0) == 0) { 2623 /* stop here */ 2624 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2625 while (i > 0) { 2626 i--; 2627 bio = r1_bio->bios[i]; 2628 if (bio->bi_end_io==NULL) 2629 continue; 2630 /* remove last page from this bio */ 2631 bio->bi_vcnt--; 2632 bio->bi_size -= len; 2633 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2634 } 2635 goto bio_full; 2636 } 2637 } 2638 } 2639 nr_sectors += len>>9; 2640 sector_nr += len>>9; 2641 sync_blocks -= (len>>9); 2642 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2643 bio_full: 2644 r1_bio->sectors = nr_sectors; 2645 2646 /* For a user-requested sync, we read all readable devices and do a 2647 * compare 2648 */ 2649 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2650 atomic_set(&r1_bio->remaining, read_targets); 2651 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2652 bio = r1_bio->bios[i]; 2653 if (bio->bi_end_io == end_sync_read) { 2654 read_targets--; 2655 md_sync_acct(bio->bi_bdev, nr_sectors); 2656 generic_make_request(bio); 2657 } 2658 } 2659 } else { 2660 atomic_set(&r1_bio->remaining, 1); 2661 bio = r1_bio->bios[r1_bio->read_disk]; 2662 md_sync_acct(bio->bi_bdev, nr_sectors); 2663 generic_make_request(bio); 2664 2665 } 2666 return nr_sectors; 2667 } 2668 2669 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2670 { 2671 if (sectors) 2672 return sectors; 2673 2674 return mddev->dev_sectors; 2675 } 2676 2677 static struct r1conf *setup_conf(struct mddev *mddev) 2678 { 2679 struct r1conf *conf; 2680 int i; 2681 struct raid1_info *disk; 2682 struct md_rdev *rdev; 2683 int err = -ENOMEM; 2684 2685 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2686 if (!conf) 2687 goto abort; 2688 2689 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2690 * mddev->raid_disks * 2, 2691 GFP_KERNEL); 2692 if (!conf->mirrors) 2693 goto abort; 2694 2695 conf->tmppage = alloc_page(GFP_KERNEL); 2696 if (!conf->tmppage) 2697 goto abort; 2698 2699 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2700 if (!conf->poolinfo) 2701 goto abort; 2702 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2703 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2704 r1bio_pool_free, 2705 conf->poolinfo); 2706 if (!conf->r1bio_pool) 2707 goto abort; 2708 2709 conf->poolinfo->mddev = mddev; 2710 2711 err = -EINVAL; 2712 spin_lock_init(&conf->device_lock); 2713 rdev_for_each(rdev, mddev) { 2714 struct request_queue *q; 2715 int disk_idx = rdev->raid_disk; 2716 if (disk_idx >= mddev->raid_disks 2717 || disk_idx < 0) 2718 continue; 2719 if (test_bit(Replacement, &rdev->flags)) 2720 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2721 else 2722 disk = conf->mirrors + disk_idx; 2723 2724 if (disk->rdev) 2725 goto abort; 2726 disk->rdev = rdev; 2727 q = bdev_get_queue(rdev->bdev); 2728 if (q->merge_bvec_fn) 2729 mddev->merge_check_needed = 1; 2730 2731 disk->head_position = 0; 2732 disk->seq_start = MaxSector; 2733 } 2734 conf->raid_disks = mddev->raid_disks; 2735 conf->mddev = mddev; 2736 INIT_LIST_HEAD(&conf->retry_list); 2737 2738 spin_lock_init(&conf->resync_lock); 2739 init_waitqueue_head(&conf->wait_barrier); 2740 2741 bio_list_init(&conf->pending_bio_list); 2742 conf->pending_count = 0; 2743 conf->recovery_disabled = mddev->recovery_disabled - 1; 2744 2745 err = -EIO; 2746 for (i = 0; i < conf->raid_disks * 2; i++) { 2747 2748 disk = conf->mirrors + i; 2749 2750 if (i < conf->raid_disks && 2751 disk[conf->raid_disks].rdev) { 2752 /* This slot has a replacement. */ 2753 if (!disk->rdev) { 2754 /* No original, just make the replacement 2755 * a recovering spare 2756 */ 2757 disk->rdev = 2758 disk[conf->raid_disks].rdev; 2759 disk[conf->raid_disks].rdev = NULL; 2760 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2761 /* Original is not in_sync - bad */ 2762 goto abort; 2763 } 2764 2765 if (!disk->rdev || 2766 !test_bit(In_sync, &disk->rdev->flags)) { 2767 disk->head_position = 0; 2768 if (disk->rdev && 2769 (disk->rdev->saved_raid_disk < 0)) 2770 conf->fullsync = 1; 2771 } 2772 } 2773 2774 err = -ENOMEM; 2775 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2776 if (!conf->thread) { 2777 printk(KERN_ERR 2778 "md/raid1:%s: couldn't allocate thread\n", 2779 mdname(mddev)); 2780 goto abort; 2781 } 2782 2783 return conf; 2784 2785 abort: 2786 if (conf) { 2787 if (conf->r1bio_pool) 2788 mempool_destroy(conf->r1bio_pool); 2789 kfree(conf->mirrors); 2790 safe_put_page(conf->tmppage); 2791 kfree(conf->poolinfo); 2792 kfree(conf); 2793 } 2794 return ERR_PTR(err); 2795 } 2796 2797 static int stop(struct mddev *mddev); 2798 static int run(struct mddev *mddev) 2799 { 2800 struct r1conf *conf; 2801 int i; 2802 struct md_rdev *rdev; 2803 int ret; 2804 bool discard_supported = false; 2805 2806 if (mddev->level != 1) { 2807 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2808 mdname(mddev), mddev->level); 2809 return -EIO; 2810 } 2811 if (mddev->reshape_position != MaxSector) { 2812 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2813 mdname(mddev)); 2814 return -EIO; 2815 } 2816 /* 2817 * copy the already verified devices into our private RAID1 2818 * bookkeeping area. [whatever we allocate in run(), 2819 * should be freed in stop()] 2820 */ 2821 if (mddev->private == NULL) 2822 conf = setup_conf(mddev); 2823 else 2824 conf = mddev->private; 2825 2826 if (IS_ERR(conf)) 2827 return PTR_ERR(conf); 2828 2829 if (mddev->queue) 2830 blk_queue_max_write_same_sectors(mddev->queue, 2831 mddev->chunk_sectors); 2832 rdev_for_each(rdev, mddev) { 2833 if (!mddev->gendisk) 2834 continue; 2835 disk_stack_limits(mddev->gendisk, rdev->bdev, 2836 rdev->data_offset << 9); 2837 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2838 discard_supported = true; 2839 } 2840 2841 mddev->degraded = 0; 2842 for (i=0; i < conf->raid_disks; i++) 2843 if (conf->mirrors[i].rdev == NULL || 2844 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2845 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2846 mddev->degraded++; 2847 2848 if (conf->raid_disks - mddev->degraded == 1) 2849 mddev->recovery_cp = MaxSector; 2850 2851 if (mddev->recovery_cp != MaxSector) 2852 printk(KERN_NOTICE "md/raid1:%s: not clean" 2853 " -- starting background reconstruction\n", 2854 mdname(mddev)); 2855 printk(KERN_INFO 2856 "md/raid1:%s: active with %d out of %d mirrors\n", 2857 mdname(mddev), mddev->raid_disks - mddev->degraded, 2858 mddev->raid_disks); 2859 2860 /* 2861 * Ok, everything is just fine now 2862 */ 2863 mddev->thread = conf->thread; 2864 conf->thread = NULL; 2865 mddev->private = conf; 2866 2867 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2868 2869 if (mddev->queue) { 2870 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2871 mddev->queue->backing_dev_info.congested_data = mddev; 2872 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2873 2874 if (discard_supported) 2875 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2876 mddev->queue); 2877 else 2878 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2879 mddev->queue); 2880 } 2881 2882 ret = md_integrity_register(mddev); 2883 if (ret) 2884 stop(mddev); 2885 return ret; 2886 } 2887 2888 static int stop(struct mddev *mddev) 2889 { 2890 struct r1conf *conf = mddev->private; 2891 struct bitmap *bitmap = mddev->bitmap; 2892 2893 /* wait for behind writes to complete */ 2894 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2895 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2896 mdname(mddev)); 2897 /* need to kick something here to make sure I/O goes? */ 2898 wait_event(bitmap->behind_wait, 2899 atomic_read(&bitmap->behind_writes) == 0); 2900 } 2901 2902 raise_barrier(conf); 2903 lower_barrier(conf); 2904 2905 md_unregister_thread(&mddev->thread); 2906 if (conf->r1bio_pool) 2907 mempool_destroy(conf->r1bio_pool); 2908 kfree(conf->mirrors); 2909 safe_put_page(conf->tmppage); 2910 kfree(conf->poolinfo); 2911 kfree(conf); 2912 mddev->private = NULL; 2913 return 0; 2914 } 2915 2916 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2917 { 2918 /* no resync is happening, and there is enough space 2919 * on all devices, so we can resize. 2920 * We need to make sure resync covers any new space. 2921 * If the array is shrinking we should possibly wait until 2922 * any io in the removed space completes, but it hardly seems 2923 * worth it. 2924 */ 2925 sector_t newsize = raid1_size(mddev, sectors, 0); 2926 if (mddev->external_size && 2927 mddev->array_sectors > newsize) 2928 return -EINVAL; 2929 if (mddev->bitmap) { 2930 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2931 if (ret) 2932 return ret; 2933 } 2934 md_set_array_sectors(mddev, newsize); 2935 set_capacity(mddev->gendisk, mddev->array_sectors); 2936 revalidate_disk(mddev->gendisk); 2937 if (sectors > mddev->dev_sectors && 2938 mddev->recovery_cp > mddev->dev_sectors) { 2939 mddev->recovery_cp = mddev->dev_sectors; 2940 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2941 } 2942 mddev->dev_sectors = sectors; 2943 mddev->resync_max_sectors = sectors; 2944 return 0; 2945 } 2946 2947 static int raid1_reshape(struct mddev *mddev) 2948 { 2949 /* We need to: 2950 * 1/ resize the r1bio_pool 2951 * 2/ resize conf->mirrors 2952 * 2953 * We allocate a new r1bio_pool if we can. 2954 * Then raise a device barrier and wait until all IO stops. 2955 * Then resize conf->mirrors and swap in the new r1bio pool. 2956 * 2957 * At the same time, we "pack" the devices so that all the missing 2958 * devices have the higher raid_disk numbers. 2959 */ 2960 mempool_t *newpool, *oldpool; 2961 struct pool_info *newpoolinfo; 2962 struct raid1_info *newmirrors; 2963 struct r1conf *conf = mddev->private; 2964 int cnt, raid_disks; 2965 unsigned long flags; 2966 int d, d2, err; 2967 2968 /* Cannot change chunk_size, layout, or level */ 2969 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2970 mddev->layout != mddev->new_layout || 2971 mddev->level != mddev->new_level) { 2972 mddev->new_chunk_sectors = mddev->chunk_sectors; 2973 mddev->new_layout = mddev->layout; 2974 mddev->new_level = mddev->level; 2975 return -EINVAL; 2976 } 2977 2978 err = md_allow_write(mddev); 2979 if (err) 2980 return err; 2981 2982 raid_disks = mddev->raid_disks + mddev->delta_disks; 2983 2984 if (raid_disks < conf->raid_disks) { 2985 cnt=0; 2986 for (d= 0; d < conf->raid_disks; d++) 2987 if (conf->mirrors[d].rdev) 2988 cnt++; 2989 if (cnt > raid_disks) 2990 return -EBUSY; 2991 } 2992 2993 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2994 if (!newpoolinfo) 2995 return -ENOMEM; 2996 newpoolinfo->mddev = mddev; 2997 newpoolinfo->raid_disks = raid_disks * 2; 2998 2999 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3000 r1bio_pool_free, newpoolinfo); 3001 if (!newpool) { 3002 kfree(newpoolinfo); 3003 return -ENOMEM; 3004 } 3005 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3006 GFP_KERNEL); 3007 if (!newmirrors) { 3008 kfree(newpoolinfo); 3009 mempool_destroy(newpool); 3010 return -ENOMEM; 3011 } 3012 3013 raise_barrier(conf); 3014 3015 /* ok, everything is stopped */ 3016 oldpool = conf->r1bio_pool; 3017 conf->r1bio_pool = newpool; 3018 3019 for (d = d2 = 0; d < conf->raid_disks; d++) { 3020 struct md_rdev *rdev = conf->mirrors[d].rdev; 3021 if (rdev && rdev->raid_disk != d2) { 3022 sysfs_unlink_rdev(mddev, rdev); 3023 rdev->raid_disk = d2; 3024 sysfs_unlink_rdev(mddev, rdev); 3025 if (sysfs_link_rdev(mddev, rdev)) 3026 printk(KERN_WARNING 3027 "md/raid1:%s: cannot register rd%d\n", 3028 mdname(mddev), rdev->raid_disk); 3029 } 3030 if (rdev) 3031 newmirrors[d2++].rdev = rdev; 3032 } 3033 kfree(conf->mirrors); 3034 conf->mirrors = newmirrors; 3035 kfree(conf->poolinfo); 3036 conf->poolinfo = newpoolinfo; 3037 3038 spin_lock_irqsave(&conf->device_lock, flags); 3039 mddev->degraded += (raid_disks - conf->raid_disks); 3040 spin_unlock_irqrestore(&conf->device_lock, flags); 3041 conf->raid_disks = mddev->raid_disks = raid_disks; 3042 mddev->delta_disks = 0; 3043 3044 lower_barrier(conf); 3045 3046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3047 md_wakeup_thread(mddev->thread); 3048 3049 mempool_destroy(oldpool); 3050 return 0; 3051 } 3052 3053 static void raid1_quiesce(struct mddev *mddev, int state) 3054 { 3055 struct r1conf *conf = mddev->private; 3056 3057 switch(state) { 3058 case 2: /* wake for suspend */ 3059 wake_up(&conf->wait_barrier); 3060 break; 3061 case 1: 3062 raise_barrier(conf); 3063 break; 3064 case 0: 3065 lower_barrier(conf); 3066 break; 3067 } 3068 } 3069 3070 static void *raid1_takeover(struct mddev *mddev) 3071 { 3072 /* raid1 can take over: 3073 * raid5 with 2 devices, any layout or chunk size 3074 */ 3075 if (mddev->level == 5 && mddev->raid_disks == 2) { 3076 struct r1conf *conf; 3077 mddev->new_level = 1; 3078 mddev->new_layout = 0; 3079 mddev->new_chunk_sectors = 0; 3080 conf = setup_conf(mddev); 3081 if (!IS_ERR(conf)) 3082 conf->barrier = 1; 3083 return conf; 3084 } 3085 return ERR_PTR(-EINVAL); 3086 } 3087 3088 static struct md_personality raid1_personality = 3089 { 3090 .name = "raid1", 3091 .level = 1, 3092 .owner = THIS_MODULE, 3093 .make_request = make_request, 3094 .run = run, 3095 .stop = stop, 3096 .status = status, 3097 .error_handler = error, 3098 .hot_add_disk = raid1_add_disk, 3099 .hot_remove_disk= raid1_remove_disk, 3100 .spare_active = raid1_spare_active, 3101 .sync_request = sync_request, 3102 .resize = raid1_resize, 3103 .size = raid1_size, 3104 .check_reshape = raid1_reshape, 3105 .quiesce = raid1_quiesce, 3106 .takeover = raid1_takeover, 3107 }; 3108 3109 static int __init raid_init(void) 3110 { 3111 return register_md_personality(&raid1_personality); 3112 } 3113 3114 static void raid_exit(void) 3115 { 3116 unregister_md_personality(&raid1_personality); 3117 } 3118 3119 module_init(raid_init); 3120 module_exit(raid_exit); 3121 MODULE_LICENSE("GPL"); 3122 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3123 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3124 MODULE_ALIAS("md-raid1"); 3125 MODULE_ALIAS("md-level-1"); 3126 3127 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3128