1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71 static void lower_barrier(struct r1conf *conf); 72 73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74 { 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r1bio_pool_free(void *r1_bio, void *data) 83 { 84 kfree(r1_bio); 85 } 86 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_DEPTH 32 89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 94 95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 struct r1bio *r1_bio; 99 struct bio *bio; 100 int need_pages; 101 int i, j; 102 103 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 104 if (!r1_bio) 105 return NULL; 106 107 /* 108 * Allocate bios : 1 for reading, n-1 for writing 109 */ 110 for (j = pi->raid_disks ; j-- ; ) { 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r1_bio->bios[j] = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them to 118 * the first bio. 119 * If this is a user-requested check/repair, allocate 120 * RESYNC_PAGES for each bio. 121 */ 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 123 need_pages = pi->raid_disks; 124 else 125 need_pages = 1; 126 for (j = 0; j < need_pages; j++) { 127 bio = r1_bio->bios[j]; 128 bio->bi_vcnt = RESYNC_PAGES; 129 130 if (bio_alloc_pages(bio, gfp_flags)) 131 goto out_free_pages; 132 } 133 /* If not user-requests, copy the page pointers to all bios */ 134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 135 for (i=0; i<RESYNC_PAGES ; i++) 136 for (j=1; j<pi->raid_disks; j++) 137 r1_bio->bios[j]->bi_io_vec[i].bv_page = 138 r1_bio->bios[0]->bi_io_vec[i].bv_page; 139 } 140 141 r1_bio->master_bio = NULL; 142 143 return r1_bio; 144 145 out_free_pages: 146 while (--j >= 0) { 147 struct bio_vec *bv; 148 149 bio_for_each_segment_all(bv, r1_bio->bios[j], i) 150 __free_page(bv->bv_page); 151 } 152 153 out_free_bio: 154 while (++j < pi->raid_disks) 155 bio_put(r1_bio->bios[j]); 156 r1bio_pool_free(r1_bio, data); 157 return NULL; 158 } 159 160 static void r1buf_pool_free(void *__r1_bio, void *data) 161 { 162 struct pool_info *pi = data; 163 int i,j; 164 struct r1bio *r1bio = __r1_bio; 165 166 for (i = 0; i < RESYNC_PAGES; i++) 167 for (j = pi->raid_disks; j-- ;) { 168 if (j == 0 || 169 r1bio->bios[j]->bi_io_vec[i].bv_page != 170 r1bio->bios[0]->bi_io_vec[i].bv_page) 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 172 } 173 for (i=0 ; i < pi->raid_disks; i++) 174 bio_put(r1bio->bios[i]); 175 176 r1bio_pool_free(r1bio, data); 177 } 178 179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->raid_disks * 2; i++) { 184 struct bio **bio = r1_bio->bios + i; 185 if (!BIO_SPECIAL(*bio)) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r1bio(struct r1bio *r1_bio) 192 { 193 struct r1conf *conf = r1_bio->mddev->private; 194 195 put_all_bios(conf, r1_bio); 196 mempool_free(r1_bio, conf->r1bio_pool); 197 } 198 199 static void put_buf(struct r1bio *r1_bio) 200 { 201 struct r1conf *conf = r1_bio->mddev->private; 202 int i; 203 204 for (i = 0; i < conf->raid_disks * 2; i++) { 205 struct bio *bio = r1_bio->bios[i]; 206 if (bio->bi_end_io) 207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 208 } 209 210 mempool_free(r1_bio, conf->r1buf_pool); 211 212 lower_barrier(conf); 213 } 214 215 static void reschedule_retry(struct r1bio *r1_bio) 216 { 217 unsigned long flags; 218 struct mddev *mddev = r1_bio->mddev; 219 struct r1conf *conf = mddev->private; 220 221 spin_lock_irqsave(&conf->device_lock, flags); 222 list_add(&r1_bio->retry_list, &conf->retry_list); 223 conf->nr_queued ++; 224 spin_unlock_irqrestore(&conf->device_lock, flags); 225 226 wake_up(&conf->wait_barrier); 227 md_wakeup_thread(mddev->thread); 228 } 229 230 /* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235 static void call_bio_endio(struct r1bio *r1_bio) 236 { 237 struct bio *bio = r1_bio->master_bio; 238 int done; 239 struct r1conf *conf = r1_bio->mddev->private; 240 sector_t start_next_window = r1_bio->start_next_window; 241 sector_t bi_sector = bio->bi_iter.bi_sector; 242 243 if (bio->bi_phys_segments) { 244 unsigned long flags; 245 spin_lock_irqsave(&conf->device_lock, flags); 246 bio->bi_phys_segments--; 247 done = (bio->bi_phys_segments == 0); 248 spin_unlock_irqrestore(&conf->device_lock, flags); 249 /* 250 * make_request() might be waiting for 251 * bi_phys_segments to decrease 252 */ 253 wake_up(&conf->wait_barrier); 254 } else 255 done = 1; 256 257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 258 clear_bit(BIO_UPTODATE, &bio->bi_flags); 259 if (done) { 260 bio_endio(bio, 0); 261 /* 262 * Wake up any possible resync thread that waits for the device 263 * to go idle. 264 */ 265 allow_barrier(conf, start_next_window, bi_sector); 266 } 267 } 268 269 static void raid_end_bio_io(struct r1bio *r1_bio) 270 { 271 struct bio *bio = r1_bio->master_bio; 272 273 /* if nobody has done the final endio yet, do it now */ 274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 276 (bio_data_dir(bio) == WRITE) ? "write" : "read", 277 (unsigned long long) bio->bi_iter.bi_sector, 278 (unsigned long long) bio_end_sector(bio) - 1); 279 280 call_bio_endio(r1_bio); 281 } 282 free_r1bio(r1_bio); 283 } 284 285 /* 286 * Update disk head position estimator based on IRQ completion info. 287 */ 288 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 289 { 290 struct r1conf *conf = r1_bio->mddev->private; 291 292 conf->mirrors[disk].head_position = 293 r1_bio->sector + (r1_bio->sectors); 294 } 295 296 /* 297 * Find the disk number which triggered given bio 298 */ 299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 300 { 301 int mirror; 302 struct r1conf *conf = r1_bio->mddev->private; 303 int raid_disks = conf->raid_disks; 304 305 for (mirror = 0; mirror < raid_disks * 2; mirror++) 306 if (r1_bio->bios[mirror] == bio) 307 break; 308 309 BUG_ON(mirror == raid_disks * 2); 310 update_head_pos(mirror, r1_bio); 311 312 return mirror; 313 } 314 315 static void raid1_end_read_request(struct bio *bio, int error) 316 { 317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 318 struct r1bio *r1_bio = bio->bi_private; 319 int mirror; 320 struct r1conf *conf = r1_bio->mddev->private; 321 322 mirror = r1_bio->read_disk; 323 /* 324 * this branch is our 'one mirror IO has finished' event handler: 325 */ 326 update_head_pos(mirror, r1_bio); 327 328 if (uptodate) 329 set_bit(R1BIO_Uptodate, &r1_bio->state); 330 else { 331 /* If all other devices have failed, we want to return 332 * the error upwards rather than fail the last device. 333 * Here we redefine "uptodate" to mean "Don't want to retry" 334 */ 335 unsigned long flags; 336 spin_lock_irqsave(&conf->device_lock, flags); 337 if (r1_bio->mddev->degraded == conf->raid_disks || 338 (r1_bio->mddev->degraded == conf->raid_disks-1 && 339 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags))) 340 uptodate = 1; 341 spin_unlock_irqrestore(&conf->device_lock, flags); 342 } 343 344 if (uptodate) { 345 raid_end_bio_io(r1_bio); 346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 347 } else { 348 /* 349 * oops, read error: 350 */ 351 char b[BDEVNAME_SIZE]; 352 printk_ratelimited( 353 KERN_ERR "md/raid1:%s: %s: " 354 "rescheduling sector %llu\n", 355 mdname(conf->mddev), 356 bdevname(conf->mirrors[mirror].rdev->bdev, 357 b), 358 (unsigned long long)r1_bio->sector); 359 set_bit(R1BIO_ReadError, &r1_bio->state); 360 reschedule_retry(r1_bio); 361 /* don't drop the reference on read_disk yet */ 362 } 363 } 364 365 static void close_write(struct r1bio *r1_bio) 366 { 367 /* it really is the end of this request */ 368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 369 /* free extra copy of the data pages */ 370 int i = r1_bio->behind_page_count; 371 while (i--) 372 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 373 kfree(r1_bio->behind_bvecs); 374 r1_bio->behind_bvecs = NULL; 375 } 376 /* clear the bitmap if all writes complete successfully */ 377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 378 r1_bio->sectors, 379 !test_bit(R1BIO_Degraded, &r1_bio->state), 380 test_bit(R1BIO_BehindIO, &r1_bio->state)); 381 md_write_end(r1_bio->mddev); 382 } 383 384 static void r1_bio_write_done(struct r1bio *r1_bio) 385 { 386 if (!atomic_dec_and_test(&r1_bio->remaining)) 387 return; 388 389 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 390 reschedule_retry(r1_bio); 391 else { 392 close_write(r1_bio); 393 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 394 reschedule_retry(r1_bio); 395 else 396 raid_end_bio_io(r1_bio); 397 } 398 } 399 400 static void raid1_end_write_request(struct bio *bio, int error) 401 { 402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 403 struct r1bio *r1_bio = bio->bi_private; 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 405 struct r1conf *conf = r1_bio->mddev->private; 406 struct bio *to_put = NULL; 407 408 mirror = find_bio_disk(r1_bio, bio); 409 410 /* 411 * 'one mirror IO has finished' event handler: 412 */ 413 if (!uptodate) { 414 set_bit(WriteErrorSeen, 415 &conf->mirrors[mirror].rdev->flags); 416 if (!test_and_set_bit(WantReplacement, 417 &conf->mirrors[mirror].rdev->flags)) 418 set_bit(MD_RECOVERY_NEEDED, & 419 conf->mddev->recovery); 420 421 set_bit(R1BIO_WriteError, &r1_bio->state); 422 } else { 423 /* 424 * Set R1BIO_Uptodate in our master bio, so that we 425 * will return a good error code for to the higher 426 * levels even if IO on some other mirrored buffer 427 * fails. 428 * 429 * The 'master' represents the composite IO operation 430 * to user-side. So if something waits for IO, then it 431 * will wait for the 'master' bio. 432 */ 433 sector_t first_bad; 434 int bad_sectors; 435 436 r1_bio->bios[mirror] = NULL; 437 to_put = bio; 438 /* 439 * Do not set R1BIO_Uptodate if the current device is 440 * rebuilding or Faulty. This is because we cannot use 441 * such device for properly reading the data back (we could 442 * potentially use it, if the current write would have felt 443 * before rdev->recovery_offset, but for simplicity we don't 444 * check this here. 445 */ 446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 448 set_bit(R1BIO_Uptodate, &r1_bio->state); 449 450 /* Maybe we can clear some bad blocks. */ 451 if (is_badblock(conf->mirrors[mirror].rdev, 452 r1_bio->sector, r1_bio->sectors, 453 &first_bad, &bad_sectors)) { 454 r1_bio->bios[mirror] = IO_MADE_GOOD; 455 set_bit(R1BIO_MadeGood, &r1_bio->state); 456 } 457 } 458 459 if (behind) { 460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 461 atomic_dec(&r1_bio->behind_remaining); 462 463 /* 464 * In behind mode, we ACK the master bio once the I/O 465 * has safely reached all non-writemostly 466 * disks. Setting the Returned bit ensures that this 467 * gets done only once -- we don't ever want to return 468 * -EIO here, instead we'll wait 469 */ 470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 471 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 472 /* Maybe we can return now */ 473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 474 struct bio *mbio = r1_bio->master_bio; 475 pr_debug("raid1: behind end write sectors" 476 " %llu-%llu\n", 477 (unsigned long long) mbio->bi_iter.bi_sector, 478 (unsigned long long) bio_end_sector(mbio) - 1); 479 call_bio_endio(r1_bio); 480 } 481 } 482 } 483 if (r1_bio->bios[mirror] == NULL) 484 rdev_dec_pending(conf->mirrors[mirror].rdev, 485 conf->mddev); 486 487 /* 488 * Let's see if all mirrored write operations have finished 489 * already. 490 */ 491 r1_bio_write_done(r1_bio); 492 493 if (to_put) 494 bio_put(to_put); 495 } 496 497 /* 498 * This routine returns the disk from which the requested read should 499 * be done. There is a per-array 'next expected sequential IO' sector 500 * number - if this matches on the next IO then we use the last disk. 501 * There is also a per-disk 'last know head position' sector that is 502 * maintained from IRQ contexts, both the normal and the resync IO 503 * completion handlers update this position correctly. If there is no 504 * perfect sequential match then we pick the disk whose head is closest. 505 * 506 * If there are 2 mirrors in the same 2 devices, performance degrades 507 * because position is mirror, not device based. 508 * 509 * The rdev for the device selected will have nr_pending incremented. 510 */ 511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 512 { 513 const sector_t this_sector = r1_bio->sector; 514 int sectors; 515 int best_good_sectors; 516 int best_disk, best_dist_disk, best_pending_disk; 517 int has_nonrot_disk; 518 int disk; 519 sector_t best_dist; 520 unsigned int min_pending; 521 struct md_rdev *rdev; 522 int choose_first; 523 int choose_next_idle; 524 525 rcu_read_lock(); 526 /* 527 * Check if we can balance. We can balance on the whole 528 * device if no resync is going on, or below the resync window. 529 * We take the first readable disk when above the resync window. 530 */ 531 retry: 532 sectors = r1_bio->sectors; 533 best_disk = -1; 534 best_dist_disk = -1; 535 best_dist = MaxSector; 536 best_pending_disk = -1; 537 min_pending = UINT_MAX; 538 best_good_sectors = 0; 539 has_nonrot_disk = 0; 540 choose_next_idle = 0; 541 542 if ((conf->mddev->recovery_cp < this_sector + sectors) || 543 (mddev_is_clustered(conf->mddev) && 544 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 545 this_sector + sectors))) 546 choose_first = 1; 547 else 548 choose_first = 0; 549 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 551 sector_t dist; 552 sector_t first_bad; 553 int bad_sectors; 554 unsigned int pending; 555 bool nonrot; 556 557 rdev = rcu_dereference(conf->mirrors[disk].rdev); 558 if (r1_bio->bios[disk] == IO_BLOCKED 559 || rdev == NULL 560 || test_bit(Unmerged, &rdev->flags) 561 || test_bit(Faulty, &rdev->flags)) 562 continue; 563 if (!test_bit(In_sync, &rdev->flags) && 564 rdev->recovery_offset < this_sector + sectors) 565 continue; 566 if (test_bit(WriteMostly, &rdev->flags)) { 567 /* Don't balance among write-mostly, just 568 * use the first as a last resort */ 569 if (best_dist_disk < 0) { 570 if (is_badblock(rdev, this_sector, sectors, 571 &first_bad, &bad_sectors)) { 572 if (first_bad < this_sector) 573 /* Cannot use this */ 574 continue; 575 best_good_sectors = first_bad - this_sector; 576 } else 577 best_good_sectors = sectors; 578 best_dist_disk = disk; 579 best_pending_disk = disk; 580 } 581 continue; 582 } 583 /* This is a reasonable device to use. It might 584 * even be best. 585 */ 586 if (is_badblock(rdev, this_sector, sectors, 587 &first_bad, &bad_sectors)) { 588 if (best_dist < MaxSector) 589 /* already have a better device */ 590 continue; 591 if (first_bad <= this_sector) { 592 /* cannot read here. If this is the 'primary' 593 * device, then we must not read beyond 594 * bad_sectors from another device.. 595 */ 596 bad_sectors -= (this_sector - first_bad); 597 if (choose_first && sectors > bad_sectors) 598 sectors = bad_sectors; 599 if (best_good_sectors > sectors) 600 best_good_sectors = sectors; 601 602 } else { 603 sector_t good_sectors = first_bad - this_sector; 604 if (good_sectors > best_good_sectors) { 605 best_good_sectors = good_sectors; 606 best_disk = disk; 607 } 608 if (choose_first) 609 break; 610 } 611 continue; 612 } else 613 best_good_sectors = sectors; 614 615 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 616 has_nonrot_disk |= nonrot; 617 pending = atomic_read(&rdev->nr_pending); 618 dist = abs(this_sector - conf->mirrors[disk].head_position); 619 if (choose_first) { 620 best_disk = disk; 621 break; 622 } 623 /* Don't change to another disk for sequential reads */ 624 if (conf->mirrors[disk].next_seq_sect == this_sector 625 || dist == 0) { 626 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 627 struct raid1_info *mirror = &conf->mirrors[disk]; 628 629 best_disk = disk; 630 /* 631 * If buffered sequential IO size exceeds optimal 632 * iosize, check if there is idle disk. If yes, choose 633 * the idle disk. read_balance could already choose an 634 * idle disk before noticing it's a sequential IO in 635 * this disk. This doesn't matter because this disk 636 * will idle, next time it will be utilized after the 637 * first disk has IO size exceeds optimal iosize. In 638 * this way, iosize of the first disk will be optimal 639 * iosize at least. iosize of the second disk might be 640 * small, but not a big deal since when the second disk 641 * starts IO, the first disk is likely still busy. 642 */ 643 if (nonrot && opt_iosize > 0 && 644 mirror->seq_start != MaxSector && 645 mirror->next_seq_sect > opt_iosize && 646 mirror->next_seq_sect - opt_iosize >= 647 mirror->seq_start) { 648 choose_next_idle = 1; 649 continue; 650 } 651 break; 652 } 653 /* If device is idle, use it */ 654 if (pending == 0) { 655 best_disk = disk; 656 break; 657 } 658 659 if (choose_next_idle) 660 continue; 661 662 if (min_pending > pending) { 663 min_pending = pending; 664 best_pending_disk = disk; 665 } 666 667 if (dist < best_dist) { 668 best_dist = dist; 669 best_dist_disk = disk; 670 } 671 } 672 673 /* 674 * If all disks are rotational, choose the closest disk. If any disk is 675 * non-rotational, choose the disk with less pending request even the 676 * disk is rotational, which might/might not be optimal for raids with 677 * mixed ratation/non-rotational disks depending on workload. 678 */ 679 if (best_disk == -1) { 680 if (has_nonrot_disk) 681 best_disk = best_pending_disk; 682 else 683 best_disk = best_dist_disk; 684 } 685 686 if (best_disk >= 0) { 687 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 688 if (!rdev) 689 goto retry; 690 atomic_inc(&rdev->nr_pending); 691 if (test_bit(Faulty, &rdev->flags)) { 692 /* cannot risk returning a device that failed 693 * before we inc'ed nr_pending 694 */ 695 rdev_dec_pending(rdev, conf->mddev); 696 goto retry; 697 } 698 sectors = best_good_sectors; 699 700 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 701 conf->mirrors[best_disk].seq_start = this_sector; 702 703 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 704 } 705 rcu_read_unlock(); 706 *max_sectors = sectors; 707 708 return best_disk; 709 } 710 711 static int raid1_mergeable_bvec(struct mddev *mddev, 712 struct bvec_merge_data *bvm, 713 struct bio_vec *biovec) 714 { 715 struct r1conf *conf = mddev->private; 716 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 717 int max = biovec->bv_len; 718 719 if (mddev->merge_check_needed) { 720 int disk; 721 rcu_read_lock(); 722 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 723 struct md_rdev *rdev = rcu_dereference( 724 conf->mirrors[disk].rdev); 725 if (rdev && !test_bit(Faulty, &rdev->flags)) { 726 struct request_queue *q = 727 bdev_get_queue(rdev->bdev); 728 if (q->merge_bvec_fn) { 729 bvm->bi_sector = sector + 730 rdev->data_offset; 731 bvm->bi_bdev = rdev->bdev; 732 max = min(max, q->merge_bvec_fn( 733 q, bvm, biovec)); 734 } 735 } 736 } 737 rcu_read_unlock(); 738 } 739 return max; 740 741 } 742 743 static int raid1_congested(struct mddev *mddev, int bits) 744 { 745 struct r1conf *conf = mddev->private; 746 int i, ret = 0; 747 748 if ((bits & (1 << WB_async_congested)) && 749 conf->pending_count >= max_queued_requests) 750 return 1; 751 752 rcu_read_lock(); 753 for (i = 0; i < conf->raid_disks * 2; i++) { 754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 755 if (rdev && !test_bit(Faulty, &rdev->flags)) { 756 struct request_queue *q = bdev_get_queue(rdev->bdev); 757 758 BUG_ON(!q); 759 760 /* Note the '|| 1' - when read_balance prefers 761 * non-congested targets, it can be removed 762 */ 763 if ((bits & (1 << WB_async_congested)) || 1) 764 ret |= bdi_congested(&q->backing_dev_info, bits); 765 else 766 ret &= bdi_congested(&q->backing_dev_info, bits); 767 } 768 } 769 rcu_read_unlock(); 770 return ret; 771 } 772 773 static void flush_pending_writes(struct r1conf *conf) 774 { 775 /* Any writes that have been queued but are awaiting 776 * bitmap updates get flushed here. 777 */ 778 spin_lock_irq(&conf->device_lock); 779 780 if (conf->pending_bio_list.head) { 781 struct bio *bio; 782 bio = bio_list_get(&conf->pending_bio_list); 783 conf->pending_count = 0; 784 spin_unlock_irq(&conf->device_lock); 785 /* flush any pending bitmap writes to 786 * disk before proceeding w/ I/O */ 787 bitmap_unplug(conf->mddev->bitmap); 788 wake_up(&conf->wait_barrier); 789 790 while (bio) { /* submit pending writes */ 791 struct bio *next = bio->bi_next; 792 bio->bi_next = NULL; 793 if (unlikely((bio->bi_rw & REQ_DISCARD) && 794 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 795 /* Just ignore it */ 796 bio_endio(bio, 0); 797 else 798 generic_make_request(bio); 799 bio = next; 800 } 801 } else 802 spin_unlock_irq(&conf->device_lock); 803 } 804 805 /* Barriers.... 806 * Sometimes we need to suspend IO while we do something else, 807 * either some resync/recovery, or reconfigure the array. 808 * To do this we raise a 'barrier'. 809 * The 'barrier' is a counter that can be raised multiple times 810 * to count how many activities are happening which preclude 811 * normal IO. 812 * We can only raise the barrier if there is no pending IO. 813 * i.e. if nr_pending == 0. 814 * We choose only to raise the barrier if no-one is waiting for the 815 * barrier to go down. This means that as soon as an IO request 816 * is ready, no other operations which require a barrier will start 817 * until the IO request has had a chance. 818 * 819 * So: regular IO calls 'wait_barrier'. When that returns there 820 * is no backgroup IO happening, It must arrange to call 821 * allow_barrier when it has finished its IO. 822 * backgroup IO calls must call raise_barrier. Once that returns 823 * there is no normal IO happeing. It must arrange to call 824 * lower_barrier when the particular background IO completes. 825 */ 826 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 827 { 828 spin_lock_irq(&conf->resync_lock); 829 830 /* Wait until no block IO is waiting */ 831 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 832 conf->resync_lock); 833 834 /* block any new IO from starting */ 835 conf->barrier++; 836 conf->next_resync = sector_nr; 837 838 /* For these conditions we must wait: 839 * A: while the array is in frozen state 840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 841 * the max count which allowed. 842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 843 * next resync will reach to the window which normal bios are 844 * handling. 845 * D: while there are any active requests in the current window. 846 */ 847 wait_event_lock_irq(conf->wait_barrier, 848 !conf->array_frozen && 849 conf->barrier < RESYNC_DEPTH && 850 conf->current_window_requests == 0 && 851 (conf->start_next_window >= 852 conf->next_resync + RESYNC_SECTORS), 853 conf->resync_lock); 854 855 conf->nr_pending++; 856 spin_unlock_irq(&conf->resync_lock); 857 } 858 859 static void lower_barrier(struct r1conf *conf) 860 { 861 unsigned long flags; 862 BUG_ON(conf->barrier <= 0); 863 spin_lock_irqsave(&conf->resync_lock, flags); 864 conf->barrier--; 865 conf->nr_pending--; 866 spin_unlock_irqrestore(&conf->resync_lock, flags); 867 wake_up(&conf->wait_barrier); 868 } 869 870 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 871 { 872 bool wait = false; 873 874 if (conf->array_frozen || !bio) 875 wait = true; 876 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 877 if ((conf->mddev->curr_resync_completed 878 >= bio_end_sector(bio)) || 879 (conf->next_resync + NEXT_NORMALIO_DISTANCE 880 <= bio->bi_iter.bi_sector)) 881 wait = false; 882 else 883 wait = true; 884 } 885 886 return wait; 887 } 888 889 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 890 { 891 sector_t sector = 0; 892 893 spin_lock_irq(&conf->resync_lock); 894 if (need_to_wait_for_sync(conf, bio)) { 895 conf->nr_waiting++; 896 /* Wait for the barrier to drop. 897 * However if there are already pending 898 * requests (preventing the barrier from 899 * rising completely), and the 900 * per-process bio queue isn't empty, 901 * then don't wait, as we need to empty 902 * that queue to allow conf->start_next_window 903 * to increase. 904 */ 905 wait_event_lock_irq(conf->wait_barrier, 906 !conf->array_frozen && 907 (!conf->barrier || 908 ((conf->start_next_window < 909 conf->next_resync + RESYNC_SECTORS) && 910 current->bio_list && 911 !bio_list_empty(current->bio_list))), 912 conf->resync_lock); 913 conf->nr_waiting--; 914 } 915 916 if (bio && bio_data_dir(bio) == WRITE) { 917 if (bio->bi_iter.bi_sector >= 918 conf->mddev->curr_resync_completed) { 919 if (conf->start_next_window == MaxSector) 920 conf->start_next_window = 921 conf->next_resync + 922 NEXT_NORMALIO_DISTANCE; 923 924 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 925 <= bio->bi_iter.bi_sector) 926 conf->next_window_requests++; 927 else 928 conf->current_window_requests++; 929 sector = conf->start_next_window; 930 } 931 } 932 933 conf->nr_pending++; 934 spin_unlock_irq(&conf->resync_lock); 935 return sector; 936 } 937 938 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 939 sector_t bi_sector) 940 { 941 unsigned long flags; 942 943 spin_lock_irqsave(&conf->resync_lock, flags); 944 conf->nr_pending--; 945 if (start_next_window) { 946 if (start_next_window == conf->start_next_window) { 947 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 948 <= bi_sector) 949 conf->next_window_requests--; 950 else 951 conf->current_window_requests--; 952 } else 953 conf->current_window_requests--; 954 955 if (!conf->current_window_requests) { 956 if (conf->next_window_requests) { 957 conf->current_window_requests = 958 conf->next_window_requests; 959 conf->next_window_requests = 0; 960 conf->start_next_window += 961 NEXT_NORMALIO_DISTANCE; 962 } else 963 conf->start_next_window = MaxSector; 964 } 965 } 966 spin_unlock_irqrestore(&conf->resync_lock, flags); 967 wake_up(&conf->wait_barrier); 968 } 969 970 static void freeze_array(struct r1conf *conf, int extra) 971 { 972 /* stop syncio and normal IO and wait for everything to 973 * go quite. 974 * We wait until nr_pending match nr_queued+extra 975 * This is called in the context of one normal IO request 976 * that has failed. Thus any sync request that might be pending 977 * will be blocked by nr_pending, and we need to wait for 978 * pending IO requests to complete or be queued for re-try. 979 * Thus the number queued (nr_queued) plus this request (extra) 980 * must match the number of pending IOs (nr_pending) before 981 * we continue. 982 */ 983 spin_lock_irq(&conf->resync_lock); 984 conf->array_frozen = 1; 985 wait_event_lock_irq_cmd(conf->wait_barrier, 986 conf->nr_pending == conf->nr_queued+extra, 987 conf->resync_lock, 988 flush_pending_writes(conf)); 989 spin_unlock_irq(&conf->resync_lock); 990 } 991 static void unfreeze_array(struct r1conf *conf) 992 { 993 /* reverse the effect of the freeze */ 994 spin_lock_irq(&conf->resync_lock); 995 conf->array_frozen = 0; 996 wake_up(&conf->wait_barrier); 997 spin_unlock_irq(&conf->resync_lock); 998 } 999 1000 /* duplicate the data pages for behind I/O 1001 */ 1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 1003 { 1004 int i; 1005 struct bio_vec *bvec; 1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 1007 GFP_NOIO); 1008 if (unlikely(!bvecs)) 1009 return; 1010 1011 bio_for_each_segment_all(bvec, bio, i) { 1012 bvecs[i] = *bvec; 1013 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1014 if (unlikely(!bvecs[i].bv_page)) 1015 goto do_sync_io; 1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1018 kunmap(bvecs[i].bv_page); 1019 kunmap(bvec->bv_page); 1020 } 1021 r1_bio->behind_bvecs = bvecs; 1022 r1_bio->behind_page_count = bio->bi_vcnt; 1023 set_bit(R1BIO_BehindIO, &r1_bio->state); 1024 return; 1025 1026 do_sync_io: 1027 for (i = 0; i < bio->bi_vcnt; i++) 1028 if (bvecs[i].bv_page) 1029 put_page(bvecs[i].bv_page); 1030 kfree(bvecs); 1031 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1032 bio->bi_iter.bi_size); 1033 } 1034 1035 struct raid1_plug_cb { 1036 struct blk_plug_cb cb; 1037 struct bio_list pending; 1038 int pending_cnt; 1039 }; 1040 1041 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1042 { 1043 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1044 cb); 1045 struct mddev *mddev = plug->cb.data; 1046 struct r1conf *conf = mddev->private; 1047 struct bio *bio; 1048 1049 if (from_schedule || current->bio_list) { 1050 spin_lock_irq(&conf->device_lock); 1051 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1052 conf->pending_count += plug->pending_cnt; 1053 spin_unlock_irq(&conf->device_lock); 1054 wake_up(&conf->wait_barrier); 1055 md_wakeup_thread(mddev->thread); 1056 kfree(plug); 1057 return; 1058 } 1059 1060 /* we aren't scheduling, so we can do the write-out directly. */ 1061 bio = bio_list_get(&plug->pending); 1062 bitmap_unplug(mddev->bitmap); 1063 wake_up(&conf->wait_barrier); 1064 1065 while (bio) { /* submit pending writes */ 1066 struct bio *next = bio->bi_next; 1067 bio->bi_next = NULL; 1068 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1069 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1070 /* Just ignore it */ 1071 bio_endio(bio, 0); 1072 else 1073 generic_make_request(bio); 1074 bio = next; 1075 } 1076 kfree(plug); 1077 } 1078 1079 static void make_request(struct mddev *mddev, struct bio * bio) 1080 { 1081 struct r1conf *conf = mddev->private; 1082 struct raid1_info *mirror; 1083 struct r1bio *r1_bio; 1084 struct bio *read_bio; 1085 int i, disks; 1086 struct bitmap *bitmap; 1087 unsigned long flags; 1088 const int rw = bio_data_dir(bio); 1089 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1090 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1091 const unsigned long do_discard = (bio->bi_rw 1092 & (REQ_DISCARD | REQ_SECURE)); 1093 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1094 struct md_rdev *blocked_rdev; 1095 struct blk_plug_cb *cb; 1096 struct raid1_plug_cb *plug = NULL; 1097 int first_clone; 1098 int sectors_handled; 1099 int max_sectors; 1100 sector_t start_next_window; 1101 1102 /* 1103 * Register the new request and wait if the reconstruction 1104 * thread has put up a bar for new requests. 1105 * Continue immediately if no resync is active currently. 1106 */ 1107 1108 md_write_start(mddev, bio); /* wait on superblock update early */ 1109 1110 if (bio_data_dir(bio) == WRITE && 1111 ((bio_end_sector(bio) > mddev->suspend_lo && 1112 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1113 (mddev_is_clustered(mddev) && 1114 md_cluster_ops->area_resyncing(mddev, WRITE, 1115 bio->bi_iter.bi_sector, bio_end_sector(bio))))) { 1116 /* As the suspend_* range is controlled by 1117 * userspace, we want an interruptible 1118 * wait. 1119 */ 1120 DEFINE_WAIT(w); 1121 for (;;) { 1122 flush_signals(current); 1123 prepare_to_wait(&conf->wait_barrier, 1124 &w, TASK_INTERRUPTIBLE); 1125 if (bio_end_sector(bio) <= mddev->suspend_lo || 1126 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1127 (mddev_is_clustered(mddev) && 1128 !md_cluster_ops->area_resyncing(mddev, WRITE, 1129 bio->bi_iter.bi_sector, bio_end_sector(bio)))) 1130 break; 1131 schedule(); 1132 } 1133 finish_wait(&conf->wait_barrier, &w); 1134 } 1135 1136 start_next_window = wait_barrier(conf, bio); 1137 1138 bitmap = mddev->bitmap; 1139 1140 /* 1141 * make_request() can abort the operation when READA is being 1142 * used and no empty request is available. 1143 * 1144 */ 1145 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1146 1147 r1_bio->master_bio = bio; 1148 r1_bio->sectors = bio_sectors(bio); 1149 r1_bio->state = 0; 1150 r1_bio->mddev = mddev; 1151 r1_bio->sector = bio->bi_iter.bi_sector; 1152 1153 /* We might need to issue multiple reads to different 1154 * devices if there are bad blocks around, so we keep 1155 * track of the number of reads in bio->bi_phys_segments. 1156 * If this is 0, there is only one r1_bio and no locking 1157 * will be needed when requests complete. If it is 1158 * non-zero, then it is the number of not-completed requests. 1159 */ 1160 bio->bi_phys_segments = 0; 1161 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1162 1163 if (rw == READ) { 1164 /* 1165 * read balancing logic: 1166 */ 1167 int rdisk; 1168 1169 read_again: 1170 rdisk = read_balance(conf, r1_bio, &max_sectors); 1171 1172 if (rdisk < 0) { 1173 /* couldn't find anywhere to read from */ 1174 raid_end_bio_io(r1_bio); 1175 return; 1176 } 1177 mirror = conf->mirrors + rdisk; 1178 1179 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1180 bitmap) { 1181 /* Reading from a write-mostly device must 1182 * take care not to over-take any writes 1183 * that are 'behind' 1184 */ 1185 wait_event(bitmap->behind_wait, 1186 atomic_read(&bitmap->behind_writes) == 0); 1187 } 1188 r1_bio->read_disk = rdisk; 1189 r1_bio->start_next_window = 0; 1190 1191 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1192 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1193 max_sectors); 1194 1195 r1_bio->bios[rdisk] = read_bio; 1196 1197 read_bio->bi_iter.bi_sector = r1_bio->sector + 1198 mirror->rdev->data_offset; 1199 read_bio->bi_bdev = mirror->rdev->bdev; 1200 read_bio->bi_end_io = raid1_end_read_request; 1201 read_bio->bi_rw = READ | do_sync; 1202 read_bio->bi_private = r1_bio; 1203 1204 if (max_sectors < r1_bio->sectors) { 1205 /* could not read all from this device, so we will 1206 * need another r1_bio. 1207 */ 1208 1209 sectors_handled = (r1_bio->sector + max_sectors 1210 - bio->bi_iter.bi_sector); 1211 r1_bio->sectors = max_sectors; 1212 spin_lock_irq(&conf->device_lock); 1213 if (bio->bi_phys_segments == 0) 1214 bio->bi_phys_segments = 2; 1215 else 1216 bio->bi_phys_segments++; 1217 spin_unlock_irq(&conf->device_lock); 1218 /* Cannot call generic_make_request directly 1219 * as that will be queued in __make_request 1220 * and subsequent mempool_alloc might block waiting 1221 * for it. So hand bio over to raid1d. 1222 */ 1223 reschedule_retry(r1_bio); 1224 1225 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1226 1227 r1_bio->master_bio = bio; 1228 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1229 r1_bio->state = 0; 1230 r1_bio->mddev = mddev; 1231 r1_bio->sector = bio->bi_iter.bi_sector + 1232 sectors_handled; 1233 goto read_again; 1234 } else 1235 generic_make_request(read_bio); 1236 return; 1237 } 1238 1239 /* 1240 * WRITE: 1241 */ 1242 if (conf->pending_count >= max_queued_requests) { 1243 md_wakeup_thread(mddev->thread); 1244 wait_event(conf->wait_barrier, 1245 conf->pending_count < max_queued_requests); 1246 } 1247 /* first select target devices under rcu_lock and 1248 * inc refcount on their rdev. Record them by setting 1249 * bios[x] to bio 1250 * If there are known/acknowledged bad blocks on any device on 1251 * which we have seen a write error, we want to avoid writing those 1252 * blocks. 1253 * This potentially requires several writes to write around 1254 * the bad blocks. Each set of writes gets it's own r1bio 1255 * with a set of bios attached. 1256 */ 1257 1258 disks = conf->raid_disks * 2; 1259 retry_write: 1260 r1_bio->start_next_window = start_next_window; 1261 blocked_rdev = NULL; 1262 rcu_read_lock(); 1263 max_sectors = r1_bio->sectors; 1264 for (i = 0; i < disks; i++) { 1265 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1266 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1267 atomic_inc(&rdev->nr_pending); 1268 blocked_rdev = rdev; 1269 break; 1270 } 1271 r1_bio->bios[i] = NULL; 1272 if (!rdev || test_bit(Faulty, &rdev->flags) 1273 || test_bit(Unmerged, &rdev->flags)) { 1274 if (i < conf->raid_disks) 1275 set_bit(R1BIO_Degraded, &r1_bio->state); 1276 continue; 1277 } 1278 1279 atomic_inc(&rdev->nr_pending); 1280 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1281 sector_t first_bad; 1282 int bad_sectors; 1283 int is_bad; 1284 1285 is_bad = is_badblock(rdev, r1_bio->sector, 1286 max_sectors, 1287 &first_bad, &bad_sectors); 1288 if (is_bad < 0) { 1289 /* mustn't write here until the bad block is 1290 * acknowledged*/ 1291 set_bit(BlockedBadBlocks, &rdev->flags); 1292 blocked_rdev = rdev; 1293 break; 1294 } 1295 if (is_bad && first_bad <= r1_bio->sector) { 1296 /* Cannot write here at all */ 1297 bad_sectors -= (r1_bio->sector - first_bad); 1298 if (bad_sectors < max_sectors) 1299 /* mustn't write more than bad_sectors 1300 * to other devices yet 1301 */ 1302 max_sectors = bad_sectors; 1303 rdev_dec_pending(rdev, mddev); 1304 /* We don't set R1BIO_Degraded as that 1305 * only applies if the disk is 1306 * missing, so it might be re-added, 1307 * and we want to know to recover this 1308 * chunk. 1309 * In this case the device is here, 1310 * and the fact that this chunk is not 1311 * in-sync is recorded in the bad 1312 * block log 1313 */ 1314 continue; 1315 } 1316 if (is_bad) { 1317 int good_sectors = first_bad - r1_bio->sector; 1318 if (good_sectors < max_sectors) 1319 max_sectors = good_sectors; 1320 } 1321 } 1322 r1_bio->bios[i] = bio; 1323 } 1324 rcu_read_unlock(); 1325 1326 if (unlikely(blocked_rdev)) { 1327 /* Wait for this device to become unblocked */ 1328 int j; 1329 sector_t old = start_next_window; 1330 1331 for (j = 0; j < i; j++) 1332 if (r1_bio->bios[j]) 1333 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1334 r1_bio->state = 0; 1335 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1336 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1337 start_next_window = wait_barrier(conf, bio); 1338 /* 1339 * We must make sure the multi r1bios of bio have 1340 * the same value of bi_phys_segments 1341 */ 1342 if (bio->bi_phys_segments && old && 1343 old != start_next_window) 1344 /* Wait for the former r1bio(s) to complete */ 1345 wait_event(conf->wait_barrier, 1346 bio->bi_phys_segments == 1); 1347 goto retry_write; 1348 } 1349 1350 if (max_sectors < r1_bio->sectors) { 1351 /* We are splitting this write into multiple parts, so 1352 * we need to prepare for allocating another r1_bio. 1353 */ 1354 r1_bio->sectors = max_sectors; 1355 spin_lock_irq(&conf->device_lock); 1356 if (bio->bi_phys_segments == 0) 1357 bio->bi_phys_segments = 2; 1358 else 1359 bio->bi_phys_segments++; 1360 spin_unlock_irq(&conf->device_lock); 1361 } 1362 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1363 1364 atomic_set(&r1_bio->remaining, 1); 1365 atomic_set(&r1_bio->behind_remaining, 0); 1366 1367 first_clone = 1; 1368 for (i = 0; i < disks; i++) { 1369 struct bio *mbio; 1370 if (!r1_bio->bios[i]) 1371 continue; 1372 1373 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1374 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1375 1376 if (first_clone) { 1377 /* do behind I/O ? 1378 * Not if there are too many, or cannot 1379 * allocate memory, or a reader on WriteMostly 1380 * is waiting for behind writes to flush */ 1381 if (bitmap && 1382 (atomic_read(&bitmap->behind_writes) 1383 < mddev->bitmap_info.max_write_behind) && 1384 !waitqueue_active(&bitmap->behind_wait)) 1385 alloc_behind_pages(mbio, r1_bio); 1386 1387 bitmap_startwrite(bitmap, r1_bio->sector, 1388 r1_bio->sectors, 1389 test_bit(R1BIO_BehindIO, 1390 &r1_bio->state)); 1391 first_clone = 0; 1392 } 1393 if (r1_bio->behind_bvecs) { 1394 struct bio_vec *bvec; 1395 int j; 1396 1397 /* 1398 * We trimmed the bio, so _all is legit 1399 */ 1400 bio_for_each_segment_all(bvec, mbio, j) 1401 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1402 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1403 atomic_inc(&r1_bio->behind_remaining); 1404 } 1405 1406 r1_bio->bios[i] = mbio; 1407 1408 mbio->bi_iter.bi_sector = (r1_bio->sector + 1409 conf->mirrors[i].rdev->data_offset); 1410 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1411 mbio->bi_end_io = raid1_end_write_request; 1412 mbio->bi_rw = 1413 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1414 mbio->bi_private = r1_bio; 1415 1416 atomic_inc(&r1_bio->remaining); 1417 1418 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1419 if (cb) 1420 plug = container_of(cb, struct raid1_plug_cb, cb); 1421 else 1422 plug = NULL; 1423 spin_lock_irqsave(&conf->device_lock, flags); 1424 if (plug) { 1425 bio_list_add(&plug->pending, mbio); 1426 plug->pending_cnt++; 1427 } else { 1428 bio_list_add(&conf->pending_bio_list, mbio); 1429 conf->pending_count++; 1430 } 1431 spin_unlock_irqrestore(&conf->device_lock, flags); 1432 if (!plug) 1433 md_wakeup_thread(mddev->thread); 1434 } 1435 /* Mustn't call r1_bio_write_done before this next test, 1436 * as it could result in the bio being freed. 1437 */ 1438 if (sectors_handled < bio_sectors(bio)) { 1439 r1_bio_write_done(r1_bio); 1440 /* We need another r1_bio. It has already been counted 1441 * in bio->bi_phys_segments 1442 */ 1443 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1444 r1_bio->master_bio = bio; 1445 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1446 r1_bio->state = 0; 1447 r1_bio->mddev = mddev; 1448 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1449 goto retry_write; 1450 } 1451 1452 r1_bio_write_done(r1_bio); 1453 1454 /* In case raid1d snuck in to freeze_array */ 1455 wake_up(&conf->wait_barrier); 1456 } 1457 1458 static void status(struct seq_file *seq, struct mddev *mddev) 1459 { 1460 struct r1conf *conf = mddev->private; 1461 int i; 1462 1463 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1464 conf->raid_disks - mddev->degraded); 1465 rcu_read_lock(); 1466 for (i = 0; i < conf->raid_disks; i++) { 1467 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1468 seq_printf(seq, "%s", 1469 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1470 } 1471 rcu_read_unlock(); 1472 seq_printf(seq, "]"); 1473 } 1474 1475 static void error(struct mddev *mddev, struct md_rdev *rdev) 1476 { 1477 char b[BDEVNAME_SIZE]; 1478 struct r1conf *conf = mddev->private; 1479 unsigned long flags; 1480 1481 /* 1482 * If it is not operational, then we have already marked it as dead 1483 * else if it is the last working disks, ignore the error, let the 1484 * next level up know. 1485 * else mark the drive as failed 1486 */ 1487 if (test_bit(In_sync, &rdev->flags) 1488 && (conf->raid_disks - mddev->degraded) == 1) { 1489 /* 1490 * Don't fail the drive, act as though we were just a 1491 * normal single drive. 1492 * However don't try a recovery from this drive as 1493 * it is very likely to fail. 1494 */ 1495 conf->recovery_disabled = mddev->recovery_disabled; 1496 return; 1497 } 1498 set_bit(Blocked, &rdev->flags); 1499 spin_lock_irqsave(&conf->device_lock, flags); 1500 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1501 mddev->degraded++; 1502 set_bit(Faulty, &rdev->flags); 1503 } else 1504 set_bit(Faulty, &rdev->flags); 1505 spin_unlock_irqrestore(&conf->device_lock, flags); 1506 /* 1507 * if recovery is running, make sure it aborts. 1508 */ 1509 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1510 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1511 printk(KERN_ALERT 1512 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1513 "md/raid1:%s: Operation continuing on %d devices.\n", 1514 mdname(mddev), bdevname(rdev->bdev, b), 1515 mdname(mddev), conf->raid_disks - mddev->degraded); 1516 } 1517 1518 static void print_conf(struct r1conf *conf) 1519 { 1520 int i; 1521 1522 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1523 if (!conf) { 1524 printk(KERN_DEBUG "(!conf)\n"); 1525 return; 1526 } 1527 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1528 conf->raid_disks); 1529 1530 rcu_read_lock(); 1531 for (i = 0; i < conf->raid_disks; i++) { 1532 char b[BDEVNAME_SIZE]; 1533 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1534 if (rdev) 1535 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1536 i, !test_bit(In_sync, &rdev->flags), 1537 !test_bit(Faulty, &rdev->flags), 1538 bdevname(rdev->bdev,b)); 1539 } 1540 rcu_read_unlock(); 1541 } 1542 1543 static void close_sync(struct r1conf *conf) 1544 { 1545 wait_barrier(conf, NULL); 1546 allow_barrier(conf, 0, 0); 1547 1548 mempool_destroy(conf->r1buf_pool); 1549 conf->r1buf_pool = NULL; 1550 1551 spin_lock_irq(&conf->resync_lock); 1552 conf->next_resync = 0; 1553 conf->start_next_window = MaxSector; 1554 conf->current_window_requests += 1555 conf->next_window_requests; 1556 conf->next_window_requests = 0; 1557 spin_unlock_irq(&conf->resync_lock); 1558 } 1559 1560 static int raid1_spare_active(struct mddev *mddev) 1561 { 1562 int i; 1563 struct r1conf *conf = mddev->private; 1564 int count = 0; 1565 unsigned long flags; 1566 1567 /* 1568 * Find all failed disks within the RAID1 configuration 1569 * and mark them readable. 1570 * Called under mddev lock, so rcu protection not needed. 1571 * device_lock used to avoid races with raid1_end_read_request 1572 * which expects 'In_sync' flags and ->degraded to be consistent. 1573 */ 1574 spin_lock_irqsave(&conf->device_lock, flags); 1575 for (i = 0; i < conf->raid_disks; i++) { 1576 struct md_rdev *rdev = conf->mirrors[i].rdev; 1577 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1578 if (repl 1579 && !test_bit(Candidate, &repl->flags) 1580 && repl->recovery_offset == MaxSector 1581 && !test_bit(Faulty, &repl->flags) 1582 && !test_and_set_bit(In_sync, &repl->flags)) { 1583 /* replacement has just become active */ 1584 if (!rdev || 1585 !test_and_clear_bit(In_sync, &rdev->flags)) 1586 count++; 1587 if (rdev) { 1588 /* Replaced device not technically 1589 * faulty, but we need to be sure 1590 * it gets removed and never re-added 1591 */ 1592 set_bit(Faulty, &rdev->flags); 1593 sysfs_notify_dirent_safe( 1594 rdev->sysfs_state); 1595 } 1596 } 1597 if (rdev 1598 && rdev->recovery_offset == MaxSector 1599 && !test_bit(Faulty, &rdev->flags) 1600 && !test_and_set_bit(In_sync, &rdev->flags)) { 1601 count++; 1602 sysfs_notify_dirent_safe(rdev->sysfs_state); 1603 } 1604 } 1605 mddev->degraded -= count; 1606 spin_unlock_irqrestore(&conf->device_lock, flags); 1607 1608 print_conf(conf); 1609 return count; 1610 } 1611 1612 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1613 { 1614 struct r1conf *conf = mddev->private; 1615 int err = -EEXIST; 1616 int mirror = 0; 1617 struct raid1_info *p; 1618 int first = 0; 1619 int last = conf->raid_disks - 1; 1620 struct request_queue *q = bdev_get_queue(rdev->bdev); 1621 1622 if (mddev->recovery_disabled == conf->recovery_disabled) 1623 return -EBUSY; 1624 1625 if (rdev->raid_disk >= 0) 1626 first = last = rdev->raid_disk; 1627 1628 if (q->merge_bvec_fn) { 1629 set_bit(Unmerged, &rdev->flags); 1630 mddev->merge_check_needed = 1; 1631 } 1632 1633 for (mirror = first; mirror <= last; mirror++) { 1634 p = conf->mirrors+mirror; 1635 if (!p->rdev) { 1636 1637 if (mddev->gendisk) 1638 disk_stack_limits(mddev->gendisk, rdev->bdev, 1639 rdev->data_offset << 9); 1640 1641 p->head_position = 0; 1642 rdev->raid_disk = mirror; 1643 err = 0; 1644 /* As all devices are equivalent, we don't need a full recovery 1645 * if this was recently any drive of the array 1646 */ 1647 if (rdev->saved_raid_disk < 0) 1648 conf->fullsync = 1; 1649 rcu_assign_pointer(p->rdev, rdev); 1650 break; 1651 } 1652 if (test_bit(WantReplacement, &p->rdev->flags) && 1653 p[conf->raid_disks].rdev == NULL) { 1654 /* Add this device as a replacement */ 1655 clear_bit(In_sync, &rdev->flags); 1656 set_bit(Replacement, &rdev->flags); 1657 rdev->raid_disk = mirror; 1658 err = 0; 1659 conf->fullsync = 1; 1660 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1661 break; 1662 } 1663 } 1664 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1665 /* Some requests might not have seen this new 1666 * merge_bvec_fn. We must wait for them to complete 1667 * before merging the device fully. 1668 * First we make sure any code which has tested 1669 * our function has submitted the request, then 1670 * we wait for all outstanding requests to complete. 1671 */ 1672 synchronize_sched(); 1673 freeze_array(conf, 0); 1674 unfreeze_array(conf); 1675 clear_bit(Unmerged, &rdev->flags); 1676 } 1677 md_integrity_add_rdev(rdev, mddev); 1678 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1679 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1680 print_conf(conf); 1681 return err; 1682 } 1683 1684 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1685 { 1686 struct r1conf *conf = mddev->private; 1687 int err = 0; 1688 int number = rdev->raid_disk; 1689 struct raid1_info *p = conf->mirrors + number; 1690 1691 if (rdev != p->rdev) 1692 p = conf->mirrors + conf->raid_disks + number; 1693 1694 print_conf(conf); 1695 if (rdev == p->rdev) { 1696 if (test_bit(In_sync, &rdev->flags) || 1697 atomic_read(&rdev->nr_pending)) { 1698 err = -EBUSY; 1699 goto abort; 1700 } 1701 /* Only remove non-faulty devices if recovery 1702 * is not possible. 1703 */ 1704 if (!test_bit(Faulty, &rdev->flags) && 1705 mddev->recovery_disabled != conf->recovery_disabled && 1706 mddev->degraded < conf->raid_disks) { 1707 err = -EBUSY; 1708 goto abort; 1709 } 1710 p->rdev = NULL; 1711 synchronize_rcu(); 1712 if (atomic_read(&rdev->nr_pending)) { 1713 /* lost the race, try later */ 1714 err = -EBUSY; 1715 p->rdev = rdev; 1716 goto abort; 1717 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1718 /* We just removed a device that is being replaced. 1719 * Move down the replacement. We drain all IO before 1720 * doing this to avoid confusion. 1721 */ 1722 struct md_rdev *repl = 1723 conf->mirrors[conf->raid_disks + number].rdev; 1724 freeze_array(conf, 0); 1725 clear_bit(Replacement, &repl->flags); 1726 p->rdev = repl; 1727 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1728 unfreeze_array(conf); 1729 clear_bit(WantReplacement, &rdev->flags); 1730 } else 1731 clear_bit(WantReplacement, &rdev->flags); 1732 err = md_integrity_register(mddev); 1733 } 1734 abort: 1735 1736 print_conf(conf); 1737 return err; 1738 } 1739 1740 static void end_sync_read(struct bio *bio, int error) 1741 { 1742 struct r1bio *r1_bio = bio->bi_private; 1743 1744 update_head_pos(r1_bio->read_disk, r1_bio); 1745 1746 /* 1747 * we have read a block, now it needs to be re-written, 1748 * or re-read if the read failed. 1749 * We don't do much here, just schedule handling by raid1d 1750 */ 1751 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1752 set_bit(R1BIO_Uptodate, &r1_bio->state); 1753 1754 if (atomic_dec_and_test(&r1_bio->remaining)) 1755 reschedule_retry(r1_bio); 1756 } 1757 1758 static void end_sync_write(struct bio *bio, int error) 1759 { 1760 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1761 struct r1bio *r1_bio = bio->bi_private; 1762 struct mddev *mddev = r1_bio->mddev; 1763 struct r1conf *conf = mddev->private; 1764 int mirror=0; 1765 sector_t first_bad; 1766 int bad_sectors; 1767 1768 mirror = find_bio_disk(r1_bio, bio); 1769 1770 if (!uptodate) { 1771 sector_t sync_blocks = 0; 1772 sector_t s = r1_bio->sector; 1773 long sectors_to_go = r1_bio->sectors; 1774 /* make sure these bits doesn't get cleared. */ 1775 do { 1776 bitmap_end_sync(mddev->bitmap, s, 1777 &sync_blocks, 1); 1778 s += sync_blocks; 1779 sectors_to_go -= sync_blocks; 1780 } while (sectors_to_go > 0); 1781 set_bit(WriteErrorSeen, 1782 &conf->mirrors[mirror].rdev->flags); 1783 if (!test_and_set_bit(WantReplacement, 1784 &conf->mirrors[mirror].rdev->flags)) 1785 set_bit(MD_RECOVERY_NEEDED, & 1786 mddev->recovery); 1787 set_bit(R1BIO_WriteError, &r1_bio->state); 1788 } else if (is_badblock(conf->mirrors[mirror].rdev, 1789 r1_bio->sector, 1790 r1_bio->sectors, 1791 &first_bad, &bad_sectors) && 1792 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1793 r1_bio->sector, 1794 r1_bio->sectors, 1795 &first_bad, &bad_sectors) 1796 ) 1797 set_bit(R1BIO_MadeGood, &r1_bio->state); 1798 1799 if (atomic_dec_and_test(&r1_bio->remaining)) { 1800 int s = r1_bio->sectors; 1801 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1802 test_bit(R1BIO_WriteError, &r1_bio->state)) 1803 reschedule_retry(r1_bio); 1804 else { 1805 put_buf(r1_bio); 1806 md_done_sync(mddev, s, uptodate); 1807 } 1808 } 1809 } 1810 1811 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1812 int sectors, struct page *page, int rw) 1813 { 1814 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1815 /* success */ 1816 return 1; 1817 if (rw == WRITE) { 1818 set_bit(WriteErrorSeen, &rdev->flags); 1819 if (!test_and_set_bit(WantReplacement, 1820 &rdev->flags)) 1821 set_bit(MD_RECOVERY_NEEDED, & 1822 rdev->mddev->recovery); 1823 } 1824 /* need to record an error - either for the block or the device */ 1825 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1826 md_error(rdev->mddev, rdev); 1827 return 0; 1828 } 1829 1830 static int fix_sync_read_error(struct r1bio *r1_bio) 1831 { 1832 /* Try some synchronous reads of other devices to get 1833 * good data, much like with normal read errors. Only 1834 * read into the pages we already have so we don't 1835 * need to re-issue the read request. 1836 * We don't need to freeze the array, because being in an 1837 * active sync request, there is no normal IO, and 1838 * no overlapping syncs. 1839 * We don't need to check is_badblock() again as we 1840 * made sure that anything with a bad block in range 1841 * will have bi_end_io clear. 1842 */ 1843 struct mddev *mddev = r1_bio->mddev; 1844 struct r1conf *conf = mddev->private; 1845 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1846 sector_t sect = r1_bio->sector; 1847 int sectors = r1_bio->sectors; 1848 int idx = 0; 1849 1850 while(sectors) { 1851 int s = sectors; 1852 int d = r1_bio->read_disk; 1853 int success = 0; 1854 struct md_rdev *rdev; 1855 int start; 1856 1857 if (s > (PAGE_SIZE>>9)) 1858 s = PAGE_SIZE >> 9; 1859 do { 1860 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1861 /* No rcu protection needed here devices 1862 * can only be removed when no resync is 1863 * active, and resync is currently active 1864 */ 1865 rdev = conf->mirrors[d].rdev; 1866 if (sync_page_io(rdev, sect, s<<9, 1867 bio->bi_io_vec[idx].bv_page, 1868 READ, false)) { 1869 success = 1; 1870 break; 1871 } 1872 } 1873 d++; 1874 if (d == conf->raid_disks * 2) 1875 d = 0; 1876 } while (!success && d != r1_bio->read_disk); 1877 1878 if (!success) { 1879 char b[BDEVNAME_SIZE]; 1880 int abort = 0; 1881 /* Cannot read from anywhere, this block is lost. 1882 * Record a bad block on each device. If that doesn't 1883 * work just disable and interrupt the recovery. 1884 * Don't fail devices as that won't really help. 1885 */ 1886 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1887 " for block %llu\n", 1888 mdname(mddev), 1889 bdevname(bio->bi_bdev, b), 1890 (unsigned long long)r1_bio->sector); 1891 for (d = 0; d < conf->raid_disks * 2; d++) { 1892 rdev = conf->mirrors[d].rdev; 1893 if (!rdev || test_bit(Faulty, &rdev->flags)) 1894 continue; 1895 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1896 abort = 1; 1897 } 1898 if (abort) { 1899 conf->recovery_disabled = 1900 mddev->recovery_disabled; 1901 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1902 md_done_sync(mddev, r1_bio->sectors, 0); 1903 put_buf(r1_bio); 1904 return 0; 1905 } 1906 /* Try next page */ 1907 sectors -= s; 1908 sect += s; 1909 idx++; 1910 continue; 1911 } 1912 1913 start = d; 1914 /* write it back and re-read */ 1915 while (d != r1_bio->read_disk) { 1916 if (d == 0) 1917 d = conf->raid_disks * 2; 1918 d--; 1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1920 continue; 1921 rdev = conf->mirrors[d].rdev; 1922 if (r1_sync_page_io(rdev, sect, s, 1923 bio->bi_io_vec[idx].bv_page, 1924 WRITE) == 0) { 1925 r1_bio->bios[d]->bi_end_io = NULL; 1926 rdev_dec_pending(rdev, mddev); 1927 } 1928 } 1929 d = start; 1930 while (d != r1_bio->read_disk) { 1931 if (d == 0) 1932 d = conf->raid_disks * 2; 1933 d--; 1934 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1935 continue; 1936 rdev = conf->mirrors[d].rdev; 1937 if (r1_sync_page_io(rdev, sect, s, 1938 bio->bi_io_vec[idx].bv_page, 1939 READ) != 0) 1940 atomic_add(s, &rdev->corrected_errors); 1941 } 1942 sectors -= s; 1943 sect += s; 1944 idx ++; 1945 } 1946 set_bit(R1BIO_Uptodate, &r1_bio->state); 1947 set_bit(BIO_UPTODATE, &bio->bi_flags); 1948 return 1; 1949 } 1950 1951 static void process_checks(struct r1bio *r1_bio) 1952 { 1953 /* We have read all readable devices. If we haven't 1954 * got the block, then there is no hope left. 1955 * If we have, then we want to do a comparison 1956 * and skip the write if everything is the same. 1957 * If any blocks failed to read, then we need to 1958 * attempt an over-write 1959 */ 1960 struct mddev *mddev = r1_bio->mddev; 1961 struct r1conf *conf = mddev->private; 1962 int primary; 1963 int i; 1964 int vcnt; 1965 1966 /* Fix variable parts of all bios */ 1967 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1968 for (i = 0; i < conf->raid_disks * 2; i++) { 1969 int j; 1970 int size; 1971 int uptodate; 1972 struct bio *b = r1_bio->bios[i]; 1973 if (b->bi_end_io != end_sync_read) 1974 continue; 1975 /* fixup the bio for reuse, but preserve BIO_UPTODATE */ 1976 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags); 1977 bio_reset(b); 1978 if (!uptodate) 1979 clear_bit(BIO_UPTODATE, &b->bi_flags); 1980 b->bi_vcnt = vcnt; 1981 b->bi_iter.bi_size = r1_bio->sectors << 9; 1982 b->bi_iter.bi_sector = r1_bio->sector + 1983 conf->mirrors[i].rdev->data_offset; 1984 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1985 b->bi_end_io = end_sync_read; 1986 b->bi_private = r1_bio; 1987 1988 size = b->bi_iter.bi_size; 1989 for (j = 0; j < vcnt ; j++) { 1990 struct bio_vec *bi; 1991 bi = &b->bi_io_vec[j]; 1992 bi->bv_offset = 0; 1993 if (size > PAGE_SIZE) 1994 bi->bv_len = PAGE_SIZE; 1995 else 1996 bi->bv_len = size; 1997 size -= PAGE_SIZE; 1998 } 1999 } 2000 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2001 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2002 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 2003 r1_bio->bios[primary]->bi_end_io = NULL; 2004 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2005 break; 2006 } 2007 r1_bio->read_disk = primary; 2008 for (i = 0; i < conf->raid_disks * 2; i++) { 2009 int j; 2010 struct bio *pbio = r1_bio->bios[primary]; 2011 struct bio *sbio = r1_bio->bios[i]; 2012 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags); 2013 2014 if (sbio->bi_end_io != end_sync_read) 2015 continue; 2016 /* Now we can 'fixup' the BIO_UPTODATE flag */ 2017 set_bit(BIO_UPTODATE, &sbio->bi_flags); 2018 2019 if (uptodate) { 2020 for (j = vcnt; j-- ; ) { 2021 struct page *p, *s; 2022 p = pbio->bi_io_vec[j].bv_page; 2023 s = sbio->bi_io_vec[j].bv_page; 2024 if (memcmp(page_address(p), 2025 page_address(s), 2026 sbio->bi_io_vec[j].bv_len)) 2027 break; 2028 } 2029 } else 2030 j = 0; 2031 if (j >= 0) 2032 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2033 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2034 && uptodate)) { 2035 /* No need to write to this device. */ 2036 sbio->bi_end_io = NULL; 2037 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2038 continue; 2039 } 2040 2041 bio_copy_data(sbio, pbio); 2042 } 2043 } 2044 2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2046 { 2047 struct r1conf *conf = mddev->private; 2048 int i; 2049 int disks = conf->raid_disks * 2; 2050 struct bio *bio, *wbio; 2051 2052 bio = r1_bio->bios[r1_bio->read_disk]; 2053 2054 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2055 /* ouch - failed to read all of that. */ 2056 if (!fix_sync_read_error(r1_bio)) 2057 return; 2058 2059 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2060 process_checks(r1_bio); 2061 2062 /* 2063 * schedule writes 2064 */ 2065 atomic_set(&r1_bio->remaining, 1); 2066 for (i = 0; i < disks ; i++) { 2067 wbio = r1_bio->bios[i]; 2068 if (wbio->bi_end_io == NULL || 2069 (wbio->bi_end_io == end_sync_read && 2070 (i == r1_bio->read_disk || 2071 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2072 continue; 2073 2074 wbio->bi_rw = WRITE; 2075 wbio->bi_end_io = end_sync_write; 2076 atomic_inc(&r1_bio->remaining); 2077 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2078 2079 generic_make_request(wbio); 2080 } 2081 2082 if (atomic_dec_and_test(&r1_bio->remaining)) { 2083 /* if we're here, all write(s) have completed, so clean up */ 2084 int s = r1_bio->sectors; 2085 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2086 test_bit(R1BIO_WriteError, &r1_bio->state)) 2087 reschedule_retry(r1_bio); 2088 else { 2089 put_buf(r1_bio); 2090 md_done_sync(mddev, s, 1); 2091 } 2092 } 2093 } 2094 2095 /* 2096 * This is a kernel thread which: 2097 * 2098 * 1. Retries failed read operations on working mirrors. 2099 * 2. Updates the raid superblock when problems encounter. 2100 * 3. Performs writes following reads for array synchronising. 2101 */ 2102 2103 static void fix_read_error(struct r1conf *conf, int read_disk, 2104 sector_t sect, int sectors) 2105 { 2106 struct mddev *mddev = conf->mddev; 2107 while(sectors) { 2108 int s = sectors; 2109 int d = read_disk; 2110 int success = 0; 2111 int start; 2112 struct md_rdev *rdev; 2113 2114 if (s > (PAGE_SIZE>>9)) 2115 s = PAGE_SIZE >> 9; 2116 2117 do { 2118 /* Note: no rcu protection needed here 2119 * as this is synchronous in the raid1d thread 2120 * which is the thread that might remove 2121 * a device. If raid1d ever becomes multi-threaded.... 2122 */ 2123 sector_t first_bad; 2124 int bad_sectors; 2125 2126 rdev = conf->mirrors[d].rdev; 2127 if (rdev && 2128 (test_bit(In_sync, &rdev->flags) || 2129 (!test_bit(Faulty, &rdev->flags) && 2130 rdev->recovery_offset >= sect + s)) && 2131 is_badblock(rdev, sect, s, 2132 &first_bad, &bad_sectors) == 0 && 2133 sync_page_io(rdev, sect, s<<9, 2134 conf->tmppage, READ, false)) 2135 success = 1; 2136 else { 2137 d++; 2138 if (d == conf->raid_disks * 2) 2139 d = 0; 2140 } 2141 } while (!success && d != read_disk); 2142 2143 if (!success) { 2144 /* Cannot read from anywhere - mark it bad */ 2145 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2146 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2147 md_error(mddev, rdev); 2148 break; 2149 } 2150 /* write it back and re-read */ 2151 start = d; 2152 while (d != read_disk) { 2153 if (d==0) 2154 d = conf->raid_disks * 2; 2155 d--; 2156 rdev = conf->mirrors[d].rdev; 2157 if (rdev && 2158 !test_bit(Faulty, &rdev->flags)) 2159 r1_sync_page_io(rdev, sect, s, 2160 conf->tmppage, WRITE); 2161 } 2162 d = start; 2163 while (d != read_disk) { 2164 char b[BDEVNAME_SIZE]; 2165 if (d==0) 2166 d = conf->raid_disks * 2; 2167 d--; 2168 rdev = conf->mirrors[d].rdev; 2169 if (rdev && 2170 !test_bit(Faulty, &rdev->flags)) { 2171 if (r1_sync_page_io(rdev, sect, s, 2172 conf->tmppage, READ)) { 2173 atomic_add(s, &rdev->corrected_errors); 2174 printk(KERN_INFO 2175 "md/raid1:%s: read error corrected " 2176 "(%d sectors at %llu on %s)\n", 2177 mdname(mddev), s, 2178 (unsigned long long)(sect + 2179 rdev->data_offset), 2180 bdevname(rdev->bdev, b)); 2181 } 2182 } 2183 } 2184 sectors -= s; 2185 sect += s; 2186 } 2187 } 2188 2189 static int narrow_write_error(struct r1bio *r1_bio, int i) 2190 { 2191 struct mddev *mddev = r1_bio->mddev; 2192 struct r1conf *conf = mddev->private; 2193 struct md_rdev *rdev = conf->mirrors[i].rdev; 2194 2195 /* bio has the data to be written to device 'i' where 2196 * we just recently had a write error. 2197 * We repeatedly clone the bio and trim down to one block, 2198 * then try the write. Where the write fails we record 2199 * a bad block. 2200 * It is conceivable that the bio doesn't exactly align with 2201 * blocks. We must handle this somehow. 2202 * 2203 * We currently own a reference on the rdev. 2204 */ 2205 2206 int block_sectors; 2207 sector_t sector; 2208 int sectors; 2209 int sect_to_write = r1_bio->sectors; 2210 int ok = 1; 2211 2212 if (rdev->badblocks.shift < 0) 2213 return 0; 2214 2215 block_sectors = roundup(1 << rdev->badblocks.shift, 2216 bdev_logical_block_size(rdev->bdev) >> 9); 2217 sector = r1_bio->sector; 2218 sectors = ((sector + block_sectors) 2219 & ~(sector_t)(block_sectors - 1)) 2220 - sector; 2221 2222 while (sect_to_write) { 2223 struct bio *wbio; 2224 if (sectors > sect_to_write) 2225 sectors = sect_to_write; 2226 /* Write at 'sector' for 'sectors'*/ 2227 2228 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2229 unsigned vcnt = r1_bio->behind_page_count; 2230 struct bio_vec *vec = r1_bio->behind_bvecs; 2231 2232 while (!vec->bv_page) { 2233 vec++; 2234 vcnt--; 2235 } 2236 2237 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2238 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2239 2240 wbio->bi_vcnt = vcnt; 2241 } else { 2242 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2243 } 2244 2245 wbio->bi_rw = WRITE; 2246 wbio->bi_iter.bi_sector = r1_bio->sector; 2247 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2248 2249 bio_trim(wbio, sector - r1_bio->sector, sectors); 2250 wbio->bi_iter.bi_sector += rdev->data_offset; 2251 wbio->bi_bdev = rdev->bdev; 2252 if (submit_bio_wait(WRITE, wbio) == 0) 2253 /* failure! */ 2254 ok = rdev_set_badblocks(rdev, sector, 2255 sectors, 0) 2256 && ok; 2257 2258 bio_put(wbio); 2259 sect_to_write -= sectors; 2260 sector += sectors; 2261 sectors = block_sectors; 2262 } 2263 return ok; 2264 } 2265 2266 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2267 { 2268 int m; 2269 int s = r1_bio->sectors; 2270 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2271 struct md_rdev *rdev = conf->mirrors[m].rdev; 2272 struct bio *bio = r1_bio->bios[m]; 2273 if (bio->bi_end_io == NULL) 2274 continue; 2275 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2276 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2277 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2278 } 2279 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2280 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2281 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2282 md_error(conf->mddev, rdev); 2283 } 2284 } 2285 put_buf(r1_bio); 2286 md_done_sync(conf->mddev, s, 1); 2287 } 2288 2289 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2290 { 2291 int m; 2292 for (m = 0; m < conf->raid_disks * 2 ; m++) 2293 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2294 struct md_rdev *rdev = conf->mirrors[m].rdev; 2295 rdev_clear_badblocks(rdev, 2296 r1_bio->sector, 2297 r1_bio->sectors, 0); 2298 rdev_dec_pending(rdev, conf->mddev); 2299 } else if (r1_bio->bios[m] != NULL) { 2300 /* This drive got a write error. We need to 2301 * narrow down and record precise write 2302 * errors. 2303 */ 2304 if (!narrow_write_error(r1_bio, m)) { 2305 md_error(conf->mddev, 2306 conf->mirrors[m].rdev); 2307 /* an I/O failed, we can't clear the bitmap */ 2308 set_bit(R1BIO_Degraded, &r1_bio->state); 2309 } 2310 rdev_dec_pending(conf->mirrors[m].rdev, 2311 conf->mddev); 2312 } 2313 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2314 close_write(r1_bio); 2315 raid_end_bio_io(r1_bio); 2316 } 2317 2318 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2319 { 2320 int disk; 2321 int max_sectors; 2322 struct mddev *mddev = conf->mddev; 2323 struct bio *bio; 2324 char b[BDEVNAME_SIZE]; 2325 struct md_rdev *rdev; 2326 2327 clear_bit(R1BIO_ReadError, &r1_bio->state); 2328 /* we got a read error. Maybe the drive is bad. Maybe just 2329 * the block and we can fix it. 2330 * We freeze all other IO, and try reading the block from 2331 * other devices. When we find one, we re-write 2332 * and check it that fixes the read error. 2333 * This is all done synchronously while the array is 2334 * frozen 2335 */ 2336 if (mddev->ro == 0) { 2337 freeze_array(conf, 1); 2338 fix_read_error(conf, r1_bio->read_disk, 2339 r1_bio->sector, r1_bio->sectors); 2340 unfreeze_array(conf); 2341 } else 2342 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2343 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2344 2345 bio = r1_bio->bios[r1_bio->read_disk]; 2346 bdevname(bio->bi_bdev, b); 2347 read_more: 2348 disk = read_balance(conf, r1_bio, &max_sectors); 2349 if (disk == -1) { 2350 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2351 " read error for block %llu\n", 2352 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2353 raid_end_bio_io(r1_bio); 2354 } else { 2355 const unsigned long do_sync 2356 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2357 if (bio) { 2358 r1_bio->bios[r1_bio->read_disk] = 2359 mddev->ro ? IO_BLOCKED : NULL; 2360 bio_put(bio); 2361 } 2362 r1_bio->read_disk = disk; 2363 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2364 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2365 max_sectors); 2366 r1_bio->bios[r1_bio->read_disk] = bio; 2367 rdev = conf->mirrors[disk].rdev; 2368 printk_ratelimited(KERN_ERR 2369 "md/raid1:%s: redirecting sector %llu" 2370 " to other mirror: %s\n", 2371 mdname(mddev), 2372 (unsigned long long)r1_bio->sector, 2373 bdevname(rdev->bdev, b)); 2374 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2375 bio->bi_bdev = rdev->bdev; 2376 bio->bi_end_io = raid1_end_read_request; 2377 bio->bi_rw = READ | do_sync; 2378 bio->bi_private = r1_bio; 2379 if (max_sectors < r1_bio->sectors) { 2380 /* Drat - have to split this up more */ 2381 struct bio *mbio = r1_bio->master_bio; 2382 int sectors_handled = (r1_bio->sector + max_sectors 2383 - mbio->bi_iter.bi_sector); 2384 r1_bio->sectors = max_sectors; 2385 spin_lock_irq(&conf->device_lock); 2386 if (mbio->bi_phys_segments == 0) 2387 mbio->bi_phys_segments = 2; 2388 else 2389 mbio->bi_phys_segments++; 2390 spin_unlock_irq(&conf->device_lock); 2391 generic_make_request(bio); 2392 bio = NULL; 2393 2394 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2395 2396 r1_bio->master_bio = mbio; 2397 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2398 r1_bio->state = 0; 2399 set_bit(R1BIO_ReadError, &r1_bio->state); 2400 r1_bio->mddev = mddev; 2401 r1_bio->sector = mbio->bi_iter.bi_sector + 2402 sectors_handled; 2403 2404 goto read_more; 2405 } else 2406 generic_make_request(bio); 2407 } 2408 } 2409 2410 static void raid1d(struct md_thread *thread) 2411 { 2412 struct mddev *mddev = thread->mddev; 2413 struct r1bio *r1_bio; 2414 unsigned long flags; 2415 struct r1conf *conf = mddev->private; 2416 struct list_head *head = &conf->retry_list; 2417 struct blk_plug plug; 2418 2419 md_check_recovery(mddev); 2420 2421 blk_start_plug(&plug); 2422 for (;;) { 2423 2424 flush_pending_writes(conf); 2425 2426 spin_lock_irqsave(&conf->device_lock, flags); 2427 if (list_empty(head)) { 2428 spin_unlock_irqrestore(&conf->device_lock, flags); 2429 break; 2430 } 2431 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2432 list_del(head->prev); 2433 conf->nr_queued--; 2434 spin_unlock_irqrestore(&conf->device_lock, flags); 2435 2436 mddev = r1_bio->mddev; 2437 conf = mddev->private; 2438 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2439 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2440 test_bit(R1BIO_WriteError, &r1_bio->state)) 2441 handle_sync_write_finished(conf, r1_bio); 2442 else 2443 sync_request_write(mddev, r1_bio); 2444 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2445 test_bit(R1BIO_WriteError, &r1_bio->state)) 2446 handle_write_finished(conf, r1_bio); 2447 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2448 handle_read_error(conf, r1_bio); 2449 else 2450 /* just a partial read to be scheduled from separate 2451 * context 2452 */ 2453 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2454 2455 cond_resched(); 2456 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2457 md_check_recovery(mddev); 2458 } 2459 blk_finish_plug(&plug); 2460 } 2461 2462 static int init_resync(struct r1conf *conf) 2463 { 2464 int buffs; 2465 2466 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2467 BUG_ON(conf->r1buf_pool); 2468 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2469 conf->poolinfo); 2470 if (!conf->r1buf_pool) 2471 return -ENOMEM; 2472 conf->next_resync = 0; 2473 return 0; 2474 } 2475 2476 /* 2477 * perform a "sync" on one "block" 2478 * 2479 * We need to make sure that no normal I/O request - particularly write 2480 * requests - conflict with active sync requests. 2481 * 2482 * This is achieved by tracking pending requests and a 'barrier' concept 2483 * that can be installed to exclude normal IO requests. 2484 */ 2485 2486 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 2487 { 2488 struct r1conf *conf = mddev->private; 2489 struct r1bio *r1_bio; 2490 struct bio *bio; 2491 sector_t max_sector, nr_sectors; 2492 int disk = -1; 2493 int i; 2494 int wonly = -1; 2495 int write_targets = 0, read_targets = 0; 2496 sector_t sync_blocks; 2497 int still_degraded = 0; 2498 int good_sectors = RESYNC_SECTORS; 2499 int min_bad = 0; /* number of sectors that are bad in all devices */ 2500 2501 if (!conf->r1buf_pool) 2502 if (init_resync(conf)) 2503 return 0; 2504 2505 max_sector = mddev->dev_sectors; 2506 if (sector_nr >= max_sector) { 2507 /* If we aborted, we need to abort the 2508 * sync on the 'current' bitmap chunk (there will 2509 * only be one in raid1 resync. 2510 * We can find the current addess in mddev->curr_resync 2511 */ 2512 if (mddev->curr_resync < max_sector) /* aborted */ 2513 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2514 &sync_blocks, 1); 2515 else /* completed sync */ 2516 conf->fullsync = 0; 2517 2518 bitmap_close_sync(mddev->bitmap); 2519 close_sync(conf); 2520 return 0; 2521 } 2522 2523 if (mddev->bitmap == NULL && 2524 mddev->recovery_cp == MaxSector && 2525 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2526 conf->fullsync == 0) { 2527 *skipped = 1; 2528 return max_sector - sector_nr; 2529 } 2530 /* before building a request, check if we can skip these blocks.. 2531 * This call the bitmap_start_sync doesn't actually record anything 2532 */ 2533 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2534 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2535 /* We can skip this block, and probably several more */ 2536 *skipped = 1; 2537 return sync_blocks; 2538 } 2539 2540 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2541 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2542 2543 raise_barrier(conf, sector_nr); 2544 2545 rcu_read_lock(); 2546 /* 2547 * If we get a correctably read error during resync or recovery, 2548 * we might want to read from a different device. So we 2549 * flag all drives that could conceivably be read from for READ, 2550 * and any others (which will be non-In_sync devices) for WRITE. 2551 * If a read fails, we try reading from something else for which READ 2552 * is OK. 2553 */ 2554 2555 r1_bio->mddev = mddev; 2556 r1_bio->sector = sector_nr; 2557 r1_bio->state = 0; 2558 set_bit(R1BIO_IsSync, &r1_bio->state); 2559 2560 for (i = 0; i < conf->raid_disks * 2; i++) { 2561 struct md_rdev *rdev; 2562 bio = r1_bio->bios[i]; 2563 bio_reset(bio); 2564 2565 rdev = rcu_dereference(conf->mirrors[i].rdev); 2566 if (rdev == NULL || 2567 test_bit(Faulty, &rdev->flags)) { 2568 if (i < conf->raid_disks) 2569 still_degraded = 1; 2570 } else if (!test_bit(In_sync, &rdev->flags)) { 2571 bio->bi_rw = WRITE; 2572 bio->bi_end_io = end_sync_write; 2573 write_targets ++; 2574 } else { 2575 /* may need to read from here */ 2576 sector_t first_bad = MaxSector; 2577 int bad_sectors; 2578 2579 if (is_badblock(rdev, sector_nr, good_sectors, 2580 &first_bad, &bad_sectors)) { 2581 if (first_bad > sector_nr) 2582 good_sectors = first_bad - sector_nr; 2583 else { 2584 bad_sectors -= (sector_nr - first_bad); 2585 if (min_bad == 0 || 2586 min_bad > bad_sectors) 2587 min_bad = bad_sectors; 2588 } 2589 } 2590 if (sector_nr < first_bad) { 2591 if (test_bit(WriteMostly, &rdev->flags)) { 2592 if (wonly < 0) 2593 wonly = i; 2594 } else { 2595 if (disk < 0) 2596 disk = i; 2597 } 2598 bio->bi_rw = READ; 2599 bio->bi_end_io = end_sync_read; 2600 read_targets++; 2601 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2602 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2603 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2604 /* 2605 * The device is suitable for reading (InSync), 2606 * but has bad block(s) here. Let's try to correct them, 2607 * if we are doing resync or repair. Otherwise, leave 2608 * this device alone for this sync request. 2609 */ 2610 bio->bi_rw = WRITE; 2611 bio->bi_end_io = end_sync_write; 2612 write_targets++; 2613 } 2614 } 2615 if (bio->bi_end_io) { 2616 atomic_inc(&rdev->nr_pending); 2617 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2618 bio->bi_bdev = rdev->bdev; 2619 bio->bi_private = r1_bio; 2620 } 2621 } 2622 rcu_read_unlock(); 2623 if (disk < 0) 2624 disk = wonly; 2625 r1_bio->read_disk = disk; 2626 2627 if (read_targets == 0 && min_bad > 0) { 2628 /* These sectors are bad on all InSync devices, so we 2629 * need to mark them bad on all write targets 2630 */ 2631 int ok = 1; 2632 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2633 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2634 struct md_rdev *rdev = conf->mirrors[i].rdev; 2635 ok = rdev_set_badblocks(rdev, sector_nr, 2636 min_bad, 0 2637 ) && ok; 2638 } 2639 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2640 *skipped = 1; 2641 put_buf(r1_bio); 2642 2643 if (!ok) { 2644 /* Cannot record the badblocks, so need to 2645 * abort the resync. 2646 * If there are multiple read targets, could just 2647 * fail the really bad ones ??? 2648 */ 2649 conf->recovery_disabled = mddev->recovery_disabled; 2650 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2651 return 0; 2652 } else 2653 return min_bad; 2654 2655 } 2656 if (min_bad > 0 && min_bad < good_sectors) { 2657 /* only resync enough to reach the next bad->good 2658 * transition */ 2659 good_sectors = min_bad; 2660 } 2661 2662 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2663 /* extra read targets are also write targets */ 2664 write_targets += read_targets-1; 2665 2666 if (write_targets == 0 || read_targets == 0) { 2667 /* There is nowhere to write, so all non-sync 2668 * drives must be failed - so we are finished 2669 */ 2670 sector_t rv; 2671 if (min_bad > 0) 2672 max_sector = sector_nr + min_bad; 2673 rv = max_sector - sector_nr; 2674 *skipped = 1; 2675 put_buf(r1_bio); 2676 return rv; 2677 } 2678 2679 if (max_sector > mddev->resync_max) 2680 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2681 if (max_sector > sector_nr + good_sectors) 2682 max_sector = sector_nr + good_sectors; 2683 nr_sectors = 0; 2684 sync_blocks = 0; 2685 do { 2686 struct page *page; 2687 int len = PAGE_SIZE; 2688 if (sector_nr + (len>>9) > max_sector) 2689 len = (max_sector - sector_nr) << 9; 2690 if (len == 0) 2691 break; 2692 if (sync_blocks == 0) { 2693 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2694 &sync_blocks, still_degraded) && 2695 !conf->fullsync && 2696 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2697 break; 2698 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2699 if ((len >> 9) > sync_blocks) 2700 len = sync_blocks<<9; 2701 } 2702 2703 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2704 bio = r1_bio->bios[i]; 2705 if (bio->bi_end_io) { 2706 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2707 if (bio_add_page(bio, page, len, 0) == 0) { 2708 /* stop here */ 2709 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2710 while (i > 0) { 2711 i--; 2712 bio = r1_bio->bios[i]; 2713 if (bio->bi_end_io==NULL) 2714 continue; 2715 /* remove last page from this bio */ 2716 bio->bi_vcnt--; 2717 bio->bi_iter.bi_size -= len; 2718 __clear_bit(BIO_SEG_VALID, &bio->bi_flags); 2719 } 2720 goto bio_full; 2721 } 2722 } 2723 } 2724 nr_sectors += len>>9; 2725 sector_nr += len>>9; 2726 sync_blocks -= (len>>9); 2727 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2728 bio_full: 2729 r1_bio->sectors = nr_sectors; 2730 2731 /* For a user-requested sync, we read all readable devices and do a 2732 * compare 2733 */ 2734 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2735 atomic_set(&r1_bio->remaining, read_targets); 2736 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2737 bio = r1_bio->bios[i]; 2738 if (bio->bi_end_io == end_sync_read) { 2739 read_targets--; 2740 md_sync_acct(bio->bi_bdev, nr_sectors); 2741 generic_make_request(bio); 2742 } 2743 } 2744 } else { 2745 atomic_set(&r1_bio->remaining, 1); 2746 bio = r1_bio->bios[r1_bio->read_disk]; 2747 md_sync_acct(bio->bi_bdev, nr_sectors); 2748 generic_make_request(bio); 2749 2750 } 2751 return nr_sectors; 2752 } 2753 2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2755 { 2756 if (sectors) 2757 return sectors; 2758 2759 return mddev->dev_sectors; 2760 } 2761 2762 static struct r1conf *setup_conf(struct mddev *mddev) 2763 { 2764 struct r1conf *conf; 2765 int i; 2766 struct raid1_info *disk; 2767 struct md_rdev *rdev; 2768 int err = -ENOMEM; 2769 2770 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2771 if (!conf) 2772 goto abort; 2773 2774 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2775 * mddev->raid_disks * 2, 2776 GFP_KERNEL); 2777 if (!conf->mirrors) 2778 goto abort; 2779 2780 conf->tmppage = alloc_page(GFP_KERNEL); 2781 if (!conf->tmppage) 2782 goto abort; 2783 2784 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2785 if (!conf->poolinfo) 2786 goto abort; 2787 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2788 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2789 r1bio_pool_free, 2790 conf->poolinfo); 2791 if (!conf->r1bio_pool) 2792 goto abort; 2793 2794 conf->poolinfo->mddev = mddev; 2795 2796 err = -EINVAL; 2797 spin_lock_init(&conf->device_lock); 2798 rdev_for_each(rdev, mddev) { 2799 struct request_queue *q; 2800 int disk_idx = rdev->raid_disk; 2801 if (disk_idx >= mddev->raid_disks 2802 || disk_idx < 0) 2803 continue; 2804 if (test_bit(Replacement, &rdev->flags)) 2805 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2806 else 2807 disk = conf->mirrors + disk_idx; 2808 2809 if (disk->rdev) 2810 goto abort; 2811 disk->rdev = rdev; 2812 q = bdev_get_queue(rdev->bdev); 2813 if (q->merge_bvec_fn) 2814 mddev->merge_check_needed = 1; 2815 2816 disk->head_position = 0; 2817 disk->seq_start = MaxSector; 2818 } 2819 conf->raid_disks = mddev->raid_disks; 2820 conf->mddev = mddev; 2821 INIT_LIST_HEAD(&conf->retry_list); 2822 2823 spin_lock_init(&conf->resync_lock); 2824 init_waitqueue_head(&conf->wait_barrier); 2825 2826 bio_list_init(&conf->pending_bio_list); 2827 conf->pending_count = 0; 2828 conf->recovery_disabled = mddev->recovery_disabled - 1; 2829 2830 conf->start_next_window = MaxSector; 2831 conf->current_window_requests = conf->next_window_requests = 0; 2832 2833 err = -EIO; 2834 for (i = 0; i < conf->raid_disks * 2; i++) { 2835 2836 disk = conf->mirrors + i; 2837 2838 if (i < conf->raid_disks && 2839 disk[conf->raid_disks].rdev) { 2840 /* This slot has a replacement. */ 2841 if (!disk->rdev) { 2842 /* No original, just make the replacement 2843 * a recovering spare 2844 */ 2845 disk->rdev = 2846 disk[conf->raid_disks].rdev; 2847 disk[conf->raid_disks].rdev = NULL; 2848 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2849 /* Original is not in_sync - bad */ 2850 goto abort; 2851 } 2852 2853 if (!disk->rdev || 2854 !test_bit(In_sync, &disk->rdev->flags)) { 2855 disk->head_position = 0; 2856 if (disk->rdev && 2857 (disk->rdev->saved_raid_disk < 0)) 2858 conf->fullsync = 1; 2859 } 2860 } 2861 2862 err = -ENOMEM; 2863 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2864 if (!conf->thread) { 2865 printk(KERN_ERR 2866 "md/raid1:%s: couldn't allocate thread\n", 2867 mdname(mddev)); 2868 goto abort; 2869 } 2870 2871 return conf; 2872 2873 abort: 2874 if (conf) { 2875 if (conf->r1bio_pool) 2876 mempool_destroy(conf->r1bio_pool); 2877 kfree(conf->mirrors); 2878 safe_put_page(conf->tmppage); 2879 kfree(conf->poolinfo); 2880 kfree(conf); 2881 } 2882 return ERR_PTR(err); 2883 } 2884 2885 static void raid1_free(struct mddev *mddev, void *priv); 2886 static int run(struct mddev *mddev) 2887 { 2888 struct r1conf *conf; 2889 int i; 2890 struct md_rdev *rdev; 2891 int ret; 2892 bool discard_supported = false; 2893 2894 if (mddev->level != 1) { 2895 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2896 mdname(mddev), mddev->level); 2897 return -EIO; 2898 } 2899 if (mddev->reshape_position != MaxSector) { 2900 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2901 mdname(mddev)); 2902 return -EIO; 2903 } 2904 /* 2905 * copy the already verified devices into our private RAID1 2906 * bookkeeping area. [whatever we allocate in run(), 2907 * should be freed in raid1_free()] 2908 */ 2909 if (mddev->private == NULL) 2910 conf = setup_conf(mddev); 2911 else 2912 conf = mddev->private; 2913 2914 if (IS_ERR(conf)) 2915 return PTR_ERR(conf); 2916 2917 if (mddev->queue) 2918 blk_queue_max_write_same_sectors(mddev->queue, 0); 2919 2920 rdev_for_each(rdev, mddev) { 2921 if (!mddev->gendisk) 2922 continue; 2923 disk_stack_limits(mddev->gendisk, rdev->bdev, 2924 rdev->data_offset << 9); 2925 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2926 discard_supported = true; 2927 } 2928 2929 mddev->degraded = 0; 2930 for (i=0; i < conf->raid_disks; i++) 2931 if (conf->mirrors[i].rdev == NULL || 2932 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2933 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2934 mddev->degraded++; 2935 2936 if (conf->raid_disks - mddev->degraded == 1) 2937 mddev->recovery_cp = MaxSector; 2938 2939 if (mddev->recovery_cp != MaxSector) 2940 printk(KERN_NOTICE "md/raid1:%s: not clean" 2941 " -- starting background reconstruction\n", 2942 mdname(mddev)); 2943 printk(KERN_INFO 2944 "md/raid1:%s: active with %d out of %d mirrors\n", 2945 mdname(mddev), mddev->raid_disks - mddev->degraded, 2946 mddev->raid_disks); 2947 2948 /* 2949 * Ok, everything is just fine now 2950 */ 2951 mddev->thread = conf->thread; 2952 conf->thread = NULL; 2953 mddev->private = conf; 2954 2955 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2956 2957 if (mddev->queue) { 2958 if (discard_supported) 2959 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2960 mddev->queue); 2961 else 2962 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2963 mddev->queue); 2964 } 2965 2966 ret = md_integrity_register(mddev); 2967 if (ret) { 2968 md_unregister_thread(&mddev->thread); 2969 raid1_free(mddev, conf); 2970 } 2971 return ret; 2972 } 2973 2974 static void raid1_free(struct mddev *mddev, void *priv) 2975 { 2976 struct r1conf *conf = priv; 2977 2978 if (conf->r1bio_pool) 2979 mempool_destroy(conf->r1bio_pool); 2980 kfree(conf->mirrors); 2981 safe_put_page(conf->tmppage); 2982 kfree(conf->poolinfo); 2983 kfree(conf); 2984 } 2985 2986 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2987 { 2988 /* no resync is happening, and there is enough space 2989 * on all devices, so we can resize. 2990 * We need to make sure resync covers any new space. 2991 * If the array is shrinking we should possibly wait until 2992 * any io in the removed space completes, but it hardly seems 2993 * worth it. 2994 */ 2995 sector_t newsize = raid1_size(mddev, sectors, 0); 2996 if (mddev->external_size && 2997 mddev->array_sectors > newsize) 2998 return -EINVAL; 2999 if (mddev->bitmap) { 3000 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3001 if (ret) 3002 return ret; 3003 } 3004 md_set_array_sectors(mddev, newsize); 3005 set_capacity(mddev->gendisk, mddev->array_sectors); 3006 revalidate_disk(mddev->gendisk); 3007 if (sectors > mddev->dev_sectors && 3008 mddev->recovery_cp > mddev->dev_sectors) { 3009 mddev->recovery_cp = mddev->dev_sectors; 3010 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3011 } 3012 mddev->dev_sectors = sectors; 3013 mddev->resync_max_sectors = sectors; 3014 return 0; 3015 } 3016 3017 static int raid1_reshape(struct mddev *mddev) 3018 { 3019 /* We need to: 3020 * 1/ resize the r1bio_pool 3021 * 2/ resize conf->mirrors 3022 * 3023 * We allocate a new r1bio_pool if we can. 3024 * Then raise a device barrier and wait until all IO stops. 3025 * Then resize conf->mirrors and swap in the new r1bio pool. 3026 * 3027 * At the same time, we "pack" the devices so that all the missing 3028 * devices have the higher raid_disk numbers. 3029 */ 3030 mempool_t *newpool, *oldpool; 3031 struct pool_info *newpoolinfo; 3032 struct raid1_info *newmirrors; 3033 struct r1conf *conf = mddev->private; 3034 int cnt, raid_disks; 3035 unsigned long flags; 3036 int d, d2, err; 3037 3038 /* Cannot change chunk_size, layout, or level */ 3039 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3040 mddev->layout != mddev->new_layout || 3041 mddev->level != mddev->new_level) { 3042 mddev->new_chunk_sectors = mddev->chunk_sectors; 3043 mddev->new_layout = mddev->layout; 3044 mddev->new_level = mddev->level; 3045 return -EINVAL; 3046 } 3047 3048 err = md_allow_write(mddev); 3049 if (err) 3050 return err; 3051 3052 raid_disks = mddev->raid_disks + mddev->delta_disks; 3053 3054 if (raid_disks < conf->raid_disks) { 3055 cnt=0; 3056 for (d= 0; d < conf->raid_disks; d++) 3057 if (conf->mirrors[d].rdev) 3058 cnt++; 3059 if (cnt > raid_disks) 3060 return -EBUSY; 3061 } 3062 3063 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3064 if (!newpoolinfo) 3065 return -ENOMEM; 3066 newpoolinfo->mddev = mddev; 3067 newpoolinfo->raid_disks = raid_disks * 2; 3068 3069 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3070 r1bio_pool_free, newpoolinfo); 3071 if (!newpool) { 3072 kfree(newpoolinfo); 3073 return -ENOMEM; 3074 } 3075 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3076 GFP_KERNEL); 3077 if (!newmirrors) { 3078 kfree(newpoolinfo); 3079 mempool_destroy(newpool); 3080 return -ENOMEM; 3081 } 3082 3083 freeze_array(conf, 0); 3084 3085 /* ok, everything is stopped */ 3086 oldpool = conf->r1bio_pool; 3087 conf->r1bio_pool = newpool; 3088 3089 for (d = d2 = 0; d < conf->raid_disks; d++) { 3090 struct md_rdev *rdev = conf->mirrors[d].rdev; 3091 if (rdev && rdev->raid_disk != d2) { 3092 sysfs_unlink_rdev(mddev, rdev); 3093 rdev->raid_disk = d2; 3094 sysfs_unlink_rdev(mddev, rdev); 3095 if (sysfs_link_rdev(mddev, rdev)) 3096 printk(KERN_WARNING 3097 "md/raid1:%s: cannot register rd%d\n", 3098 mdname(mddev), rdev->raid_disk); 3099 } 3100 if (rdev) 3101 newmirrors[d2++].rdev = rdev; 3102 } 3103 kfree(conf->mirrors); 3104 conf->mirrors = newmirrors; 3105 kfree(conf->poolinfo); 3106 conf->poolinfo = newpoolinfo; 3107 3108 spin_lock_irqsave(&conf->device_lock, flags); 3109 mddev->degraded += (raid_disks - conf->raid_disks); 3110 spin_unlock_irqrestore(&conf->device_lock, flags); 3111 conf->raid_disks = mddev->raid_disks = raid_disks; 3112 mddev->delta_disks = 0; 3113 3114 unfreeze_array(conf); 3115 3116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3117 md_wakeup_thread(mddev->thread); 3118 3119 mempool_destroy(oldpool); 3120 return 0; 3121 } 3122 3123 static void raid1_quiesce(struct mddev *mddev, int state) 3124 { 3125 struct r1conf *conf = mddev->private; 3126 3127 switch(state) { 3128 case 2: /* wake for suspend */ 3129 wake_up(&conf->wait_barrier); 3130 break; 3131 case 1: 3132 freeze_array(conf, 0); 3133 break; 3134 case 0: 3135 unfreeze_array(conf); 3136 break; 3137 } 3138 } 3139 3140 static void *raid1_takeover(struct mddev *mddev) 3141 { 3142 /* raid1 can take over: 3143 * raid5 with 2 devices, any layout or chunk size 3144 */ 3145 if (mddev->level == 5 && mddev->raid_disks == 2) { 3146 struct r1conf *conf; 3147 mddev->new_level = 1; 3148 mddev->new_layout = 0; 3149 mddev->new_chunk_sectors = 0; 3150 conf = setup_conf(mddev); 3151 if (!IS_ERR(conf)) 3152 /* Array must appear to be quiesced */ 3153 conf->array_frozen = 1; 3154 return conf; 3155 } 3156 return ERR_PTR(-EINVAL); 3157 } 3158 3159 static struct md_personality raid1_personality = 3160 { 3161 .name = "raid1", 3162 .level = 1, 3163 .owner = THIS_MODULE, 3164 .make_request = make_request, 3165 .run = run, 3166 .free = raid1_free, 3167 .status = status, 3168 .error_handler = error, 3169 .hot_add_disk = raid1_add_disk, 3170 .hot_remove_disk= raid1_remove_disk, 3171 .spare_active = raid1_spare_active, 3172 .sync_request = sync_request, 3173 .resize = raid1_resize, 3174 .size = raid1_size, 3175 .check_reshape = raid1_reshape, 3176 .quiesce = raid1_quiesce, 3177 .takeover = raid1_takeover, 3178 .congested = raid1_congested, 3179 .mergeable_bvec = raid1_mergeable_bvec, 3180 }; 3181 3182 static int __init raid_init(void) 3183 { 3184 return register_md_personality(&raid1_personality); 3185 } 3186 3187 static void raid_exit(void) 3188 { 3189 unregister_md_personality(&raid1_personality); 3190 } 3191 3192 module_init(raid_init); 3193 module_exit(raid_exit); 3194 MODULE_LICENSE("GPL"); 3195 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3196 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3197 MODULE_ALIAS("md-raid1"); 3198 MODULE_ALIAS("md-level-1"); 3199 3200 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3201