1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <trace/events/block.h> 41 #include "md.h" 42 #include "raid1.h" 43 #include "bitmap.h" 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 /* when we get a read error on a read-only array, we redirect to another 51 * device without failing the first device, or trying to over-write to 52 * correct the read error. To keep track of bad blocks on a per-bio 53 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 54 */ 55 #define IO_BLOCKED ((struct bio *)1) 56 /* When we successfully write to a known bad-block, we need to remove the 57 * bad-block marking which must be done from process context. So we record 58 * the success by setting devs[n].bio to IO_MADE_GOOD 59 */ 60 #define IO_MADE_GOOD ((struct bio *)2) 61 62 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 63 64 /* When there are this many requests queue to be written by 65 * the raid1 thread, we become 'congested' to provide back-pressure 66 * for writeback. 67 */ 68 static int max_queued_requests = 1024; 69 70 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 71 sector_t bi_sector); 72 static void lower_barrier(struct r1conf *conf); 73 74 #define raid1_log(md, fmt, args...) \ 75 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 76 77 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 78 { 79 struct pool_info *pi = data; 80 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 81 82 /* allocate a r1bio with room for raid_disks entries in the bios array */ 83 return kzalloc(size, gfp_flags); 84 } 85 86 static void r1bio_pool_free(void *r1_bio, void *data) 87 { 88 kfree(r1_bio); 89 } 90 91 #define RESYNC_BLOCK_SIZE (64*1024) 92 #define RESYNC_DEPTH 32 93 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 94 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 95 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 96 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 97 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 98 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 99 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 100 101 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 102 { 103 struct pool_info *pi = data; 104 struct r1bio *r1_bio; 105 struct bio *bio; 106 int need_pages; 107 int i, j; 108 109 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 110 if (!r1_bio) 111 return NULL; 112 113 /* 114 * Allocate bios : 1 for reading, n-1 for writing 115 */ 116 for (j = pi->raid_disks ; j-- ; ) { 117 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 118 if (!bio) 119 goto out_free_bio; 120 r1_bio->bios[j] = bio; 121 } 122 /* 123 * Allocate RESYNC_PAGES data pages and attach them to 124 * the first bio. 125 * If this is a user-requested check/repair, allocate 126 * RESYNC_PAGES for each bio. 127 */ 128 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 129 need_pages = pi->raid_disks; 130 else 131 need_pages = 1; 132 for (j = 0; j < need_pages; j++) { 133 bio = r1_bio->bios[j]; 134 bio->bi_vcnt = RESYNC_PAGES; 135 136 if (bio_alloc_pages(bio, gfp_flags)) 137 goto out_free_pages; 138 } 139 /* If not user-requests, copy the page pointers to all bios */ 140 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 141 for (i=0; i<RESYNC_PAGES ; i++) 142 for (j=1; j<pi->raid_disks; j++) 143 r1_bio->bios[j]->bi_io_vec[i].bv_page = 144 r1_bio->bios[0]->bi_io_vec[i].bv_page; 145 } 146 147 r1_bio->master_bio = NULL; 148 149 return r1_bio; 150 151 out_free_pages: 152 while (--j >= 0) 153 bio_free_pages(r1_bio->bios[j]); 154 155 out_free_bio: 156 while (++j < pi->raid_disks) 157 bio_put(r1_bio->bios[j]); 158 r1bio_pool_free(r1_bio, data); 159 return NULL; 160 } 161 162 static void r1buf_pool_free(void *__r1_bio, void *data) 163 { 164 struct pool_info *pi = data; 165 int i,j; 166 struct r1bio *r1bio = __r1_bio; 167 168 for (i = 0; i < RESYNC_PAGES; i++) 169 for (j = pi->raid_disks; j-- ;) { 170 if (j == 0 || 171 r1bio->bios[j]->bi_io_vec[i].bv_page != 172 r1bio->bios[0]->bi_io_vec[i].bv_page) 173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 174 } 175 for (i=0 ; i < pi->raid_disks; i++) 176 bio_put(r1bio->bios[i]); 177 178 r1bio_pool_free(r1bio, data); 179 } 180 181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 182 { 183 int i; 184 185 for (i = 0; i < conf->raid_disks * 2; i++) { 186 struct bio **bio = r1_bio->bios + i; 187 if (!BIO_SPECIAL(*bio)) 188 bio_put(*bio); 189 *bio = NULL; 190 } 191 } 192 193 static void free_r1bio(struct r1bio *r1_bio) 194 { 195 struct r1conf *conf = r1_bio->mddev->private; 196 197 put_all_bios(conf, r1_bio); 198 mempool_free(r1_bio, conf->r1bio_pool); 199 } 200 201 static void put_buf(struct r1bio *r1_bio) 202 { 203 struct r1conf *conf = r1_bio->mddev->private; 204 int i; 205 206 for (i = 0; i < conf->raid_disks * 2; i++) { 207 struct bio *bio = r1_bio->bios[i]; 208 if (bio->bi_end_io) 209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 210 } 211 212 mempool_free(r1_bio, conf->r1buf_pool); 213 214 lower_barrier(conf); 215 } 216 217 static void reschedule_retry(struct r1bio *r1_bio) 218 { 219 unsigned long flags; 220 struct mddev *mddev = r1_bio->mddev; 221 struct r1conf *conf = mddev->private; 222 223 spin_lock_irqsave(&conf->device_lock, flags); 224 list_add(&r1_bio->retry_list, &conf->retry_list); 225 conf->nr_queued ++; 226 spin_unlock_irqrestore(&conf->device_lock, flags); 227 228 wake_up(&conf->wait_barrier); 229 md_wakeup_thread(mddev->thread); 230 } 231 232 /* 233 * raid_end_bio_io() is called when we have finished servicing a mirrored 234 * operation and are ready to return a success/failure code to the buffer 235 * cache layer. 236 */ 237 static void call_bio_endio(struct r1bio *r1_bio) 238 { 239 struct bio *bio = r1_bio->master_bio; 240 int done; 241 struct r1conf *conf = r1_bio->mddev->private; 242 sector_t start_next_window = r1_bio->start_next_window; 243 sector_t bi_sector = bio->bi_iter.bi_sector; 244 245 if (bio->bi_phys_segments) { 246 unsigned long flags; 247 spin_lock_irqsave(&conf->device_lock, flags); 248 bio->bi_phys_segments--; 249 done = (bio->bi_phys_segments == 0); 250 spin_unlock_irqrestore(&conf->device_lock, flags); 251 /* 252 * make_request() might be waiting for 253 * bi_phys_segments to decrease 254 */ 255 wake_up(&conf->wait_barrier); 256 } else 257 done = 1; 258 259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 260 bio->bi_error = -EIO; 261 262 if (done) { 263 bio_endio(bio); 264 /* 265 * Wake up any possible resync thread that waits for the device 266 * to go idle. 267 */ 268 allow_barrier(conf, start_next_window, bi_sector); 269 } 270 } 271 272 static void raid_end_bio_io(struct r1bio *r1_bio) 273 { 274 struct bio *bio = r1_bio->master_bio; 275 276 /* if nobody has done the final endio yet, do it now */ 277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 279 (bio_data_dir(bio) == WRITE) ? "write" : "read", 280 (unsigned long long) bio->bi_iter.bi_sector, 281 (unsigned long long) bio_end_sector(bio) - 1); 282 283 call_bio_endio(r1_bio); 284 } 285 free_r1bio(r1_bio); 286 } 287 288 /* 289 * Update disk head position estimator based on IRQ completion info. 290 */ 291 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 292 { 293 struct r1conf *conf = r1_bio->mddev->private; 294 295 conf->mirrors[disk].head_position = 296 r1_bio->sector + (r1_bio->sectors); 297 } 298 299 /* 300 * Find the disk number which triggered given bio 301 */ 302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 303 { 304 int mirror; 305 struct r1conf *conf = r1_bio->mddev->private; 306 int raid_disks = conf->raid_disks; 307 308 for (mirror = 0; mirror < raid_disks * 2; mirror++) 309 if (r1_bio->bios[mirror] == bio) 310 break; 311 312 BUG_ON(mirror == raid_disks * 2); 313 update_head_pos(mirror, r1_bio); 314 315 return mirror; 316 } 317 318 static void raid1_end_read_request(struct bio *bio) 319 { 320 int uptodate = !bio->bi_error; 321 struct r1bio *r1_bio = bio->bi_private; 322 struct r1conf *conf = r1_bio->mddev->private; 323 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 324 325 /* 326 * this branch is our 'one mirror IO has finished' event handler: 327 */ 328 update_head_pos(r1_bio->read_disk, r1_bio); 329 330 if (uptodate) 331 set_bit(R1BIO_Uptodate, &r1_bio->state); 332 else if (test_bit(FailFast, &rdev->flags) && 333 test_bit(R1BIO_FailFast, &r1_bio->state)) 334 /* This was a fail-fast read so we definitely 335 * want to retry */ 336 ; 337 else { 338 /* If all other devices have failed, we want to return 339 * the error upwards rather than fail the last device. 340 * Here we redefine "uptodate" to mean "Don't want to retry" 341 */ 342 unsigned long flags; 343 spin_lock_irqsave(&conf->device_lock, flags); 344 if (r1_bio->mddev->degraded == conf->raid_disks || 345 (r1_bio->mddev->degraded == conf->raid_disks-1 && 346 test_bit(In_sync, &rdev->flags))) 347 uptodate = 1; 348 spin_unlock_irqrestore(&conf->device_lock, flags); 349 } 350 351 if (uptodate) { 352 raid_end_bio_io(r1_bio); 353 rdev_dec_pending(rdev, conf->mddev); 354 } else { 355 /* 356 * oops, read error: 357 */ 358 char b[BDEVNAME_SIZE]; 359 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 360 mdname(conf->mddev), 361 bdevname(rdev->bdev, b), 362 (unsigned long long)r1_bio->sector); 363 set_bit(R1BIO_ReadError, &r1_bio->state); 364 reschedule_retry(r1_bio); 365 /* don't drop the reference on read_disk yet */ 366 } 367 } 368 369 static void close_write(struct r1bio *r1_bio) 370 { 371 /* it really is the end of this request */ 372 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 373 /* free extra copy of the data pages */ 374 int i = r1_bio->behind_page_count; 375 while (i--) 376 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 377 kfree(r1_bio->behind_bvecs); 378 r1_bio->behind_bvecs = NULL; 379 } 380 /* clear the bitmap if all writes complete successfully */ 381 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 382 r1_bio->sectors, 383 !test_bit(R1BIO_Degraded, &r1_bio->state), 384 test_bit(R1BIO_BehindIO, &r1_bio->state)); 385 md_write_end(r1_bio->mddev); 386 } 387 388 static void r1_bio_write_done(struct r1bio *r1_bio) 389 { 390 if (!atomic_dec_and_test(&r1_bio->remaining)) 391 return; 392 393 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 394 reschedule_retry(r1_bio); 395 else { 396 close_write(r1_bio); 397 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 398 reschedule_retry(r1_bio); 399 else 400 raid_end_bio_io(r1_bio); 401 } 402 } 403 404 static void raid1_end_write_request(struct bio *bio) 405 { 406 struct r1bio *r1_bio = bio->bi_private; 407 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 408 struct r1conf *conf = r1_bio->mddev->private; 409 struct bio *to_put = NULL; 410 int mirror = find_bio_disk(r1_bio, bio); 411 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 412 bool discard_error; 413 414 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD; 415 416 /* 417 * 'one mirror IO has finished' event handler: 418 */ 419 if (bio->bi_error && !discard_error) { 420 set_bit(WriteErrorSeen, &rdev->flags); 421 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 422 set_bit(MD_RECOVERY_NEEDED, & 423 conf->mddev->recovery); 424 425 if (test_bit(FailFast, &rdev->flags) && 426 (bio->bi_opf & MD_FAILFAST) && 427 /* We never try FailFast to WriteMostly devices */ 428 !test_bit(WriteMostly, &rdev->flags)) { 429 md_error(r1_bio->mddev, rdev); 430 if (!test_bit(Faulty, &rdev->flags)) 431 /* This is the only remaining device, 432 * We need to retry the write without 433 * FailFast 434 */ 435 set_bit(R1BIO_WriteError, &r1_bio->state); 436 else { 437 /* Finished with this branch */ 438 r1_bio->bios[mirror] = NULL; 439 to_put = bio; 440 } 441 } else 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 } else { 444 /* 445 * Set R1BIO_Uptodate in our master bio, so that we 446 * will return a good error code for to the higher 447 * levels even if IO on some other mirrored buffer 448 * fails. 449 * 450 * The 'master' represents the composite IO operation 451 * to user-side. So if something waits for IO, then it 452 * will wait for the 'master' bio. 453 */ 454 sector_t first_bad; 455 int bad_sectors; 456 457 r1_bio->bios[mirror] = NULL; 458 to_put = bio; 459 /* 460 * Do not set R1BIO_Uptodate if the current device is 461 * rebuilding or Faulty. This is because we cannot use 462 * such device for properly reading the data back (we could 463 * potentially use it, if the current write would have felt 464 * before rdev->recovery_offset, but for simplicity we don't 465 * check this here. 466 */ 467 if (test_bit(In_sync, &rdev->flags) && 468 !test_bit(Faulty, &rdev->flags)) 469 set_bit(R1BIO_Uptodate, &r1_bio->state); 470 471 /* Maybe we can clear some bad blocks. */ 472 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 473 &first_bad, &bad_sectors) && !discard_error) { 474 r1_bio->bios[mirror] = IO_MADE_GOOD; 475 set_bit(R1BIO_MadeGood, &r1_bio->state); 476 } 477 } 478 479 if (behind) { 480 if (test_bit(WriteMostly, &rdev->flags)) 481 atomic_dec(&r1_bio->behind_remaining); 482 483 /* 484 * In behind mode, we ACK the master bio once the I/O 485 * has safely reached all non-writemostly 486 * disks. Setting the Returned bit ensures that this 487 * gets done only once -- we don't ever want to return 488 * -EIO here, instead we'll wait 489 */ 490 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 491 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 492 /* Maybe we can return now */ 493 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 494 struct bio *mbio = r1_bio->master_bio; 495 pr_debug("raid1: behind end write sectors" 496 " %llu-%llu\n", 497 (unsigned long long) mbio->bi_iter.bi_sector, 498 (unsigned long long) bio_end_sector(mbio) - 1); 499 call_bio_endio(r1_bio); 500 } 501 } 502 } 503 if (r1_bio->bios[mirror] == NULL) 504 rdev_dec_pending(rdev, conf->mddev); 505 506 /* 507 * Let's see if all mirrored write operations have finished 508 * already. 509 */ 510 r1_bio_write_done(r1_bio); 511 512 if (to_put) 513 bio_put(to_put); 514 } 515 516 /* 517 * This routine returns the disk from which the requested read should 518 * be done. There is a per-array 'next expected sequential IO' sector 519 * number - if this matches on the next IO then we use the last disk. 520 * There is also a per-disk 'last know head position' sector that is 521 * maintained from IRQ contexts, both the normal and the resync IO 522 * completion handlers update this position correctly. If there is no 523 * perfect sequential match then we pick the disk whose head is closest. 524 * 525 * If there are 2 mirrors in the same 2 devices, performance degrades 526 * because position is mirror, not device based. 527 * 528 * The rdev for the device selected will have nr_pending incremented. 529 */ 530 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 531 { 532 const sector_t this_sector = r1_bio->sector; 533 int sectors; 534 int best_good_sectors; 535 int best_disk, best_dist_disk, best_pending_disk; 536 int has_nonrot_disk; 537 int disk; 538 sector_t best_dist; 539 unsigned int min_pending; 540 struct md_rdev *rdev; 541 int choose_first; 542 int choose_next_idle; 543 544 rcu_read_lock(); 545 /* 546 * Check if we can balance. We can balance on the whole 547 * device if no resync is going on, or below the resync window. 548 * We take the first readable disk when above the resync window. 549 */ 550 retry: 551 sectors = r1_bio->sectors; 552 best_disk = -1; 553 best_dist_disk = -1; 554 best_dist = MaxSector; 555 best_pending_disk = -1; 556 min_pending = UINT_MAX; 557 best_good_sectors = 0; 558 has_nonrot_disk = 0; 559 choose_next_idle = 0; 560 clear_bit(R1BIO_FailFast, &r1_bio->state); 561 562 if ((conf->mddev->recovery_cp < this_sector + sectors) || 563 (mddev_is_clustered(conf->mddev) && 564 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 565 this_sector + sectors))) 566 choose_first = 1; 567 else 568 choose_first = 0; 569 570 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 571 sector_t dist; 572 sector_t first_bad; 573 int bad_sectors; 574 unsigned int pending; 575 bool nonrot; 576 577 rdev = rcu_dereference(conf->mirrors[disk].rdev); 578 if (r1_bio->bios[disk] == IO_BLOCKED 579 || rdev == NULL 580 || test_bit(Faulty, &rdev->flags)) 581 continue; 582 if (!test_bit(In_sync, &rdev->flags) && 583 rdev->recovery_offset < this_sector + sectors) 584 continue; 585 if (test_bit(WriteMostly, &rdev->flags)) { 586 /* Don't balance among write-mostly, just 587 * use the first as a last resort */ 588 if (best_dist_disk < 0) { 589 if (is_badblock(rdev, this_sector, sectors, 590 &first_bad, &bad_sectors)) { 591 if (first_bad <= this_sector) 592 /* Cannot use this */ 593 continue; 594 best_good_sectors = first_bad - this_sector; 595 } else 596 best_good_sectors = sectors; 597 best_dist_disk = disk; 598 best_pending_disk = disk; 599 } 600 continue; 601 } 602 /* This is a reasonable device to use. It might 603 * even be best. 604 */ 605 if (is_badblock(rdev, this_sector, sectors, 606 &first_bad, &bad_sectors)) { 607 if (best_dist < MaxSector) 608 /* already have a better device */ 609 continue; 610 if (first_bad <= this_sector) { 611 /* cannot read here. If this is the 'primary' 612 * device, then we must not read beyond 613 * bad_sectors from another device.. 614 */ 615 bad_sectors -= (this_sector - first_bad); 616 if (choose_first && sectors > bad_sectors) 617 sectors = bad_sectors; 618 if (best_good_sectors > sectors) 619 best_good_sectors = sectors; 620 621 } else { 622 sector_t good_sectors = first_bad - this_sector; 623 if (good_sectors > best_good_sectors) { 624 best_good_sectors = good_sectors; 625 best_disk = disk; 626 } 627 if (choose_first) 628 break; 629 } 630 continue; 631 } else 632 best_good_sectors = sectors; 633 634 if (best_disk >= 0) 635 /* At least two disks to choose from so failfast is OK */ 636 set_bit(R1BIO_FailFast, &r1_bio->state); 637 638 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 639 has_nonrot_disk |= nonrot; 640 pending = atomic_read(&rdev->nr_pending); 641 dist = abs(this_sector - conf->mirrors[disk].head_position); 642 if (choose_first) { 643 best_disk = disk; 644 break; 645 } 646 /* Don't change to another disk for sequential reads */ 647 if (conf->mirrors[disk].next_seq_sect == this_sector 648 || dist == 0) { 649 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 650 struct raid1_info *mirror = &conf->mirrors[disk]; 651 652 best_disk = disk; 653 /* 654 * If buffered sequential IO size exceeds optimal 655 * iosize, check if there is idle disk. If yes, choose 656 * the idle disk. read_balance could already choose an 657 * idle disk before noticing it's a sequential IO in 658 * this disk. This doesn't matter because this disk 659 * will idle, next time it will be utilized after the 660 * first disk has IO size exceeds optimal iosize. In 661 * this way, iosize of the first disk will be optimal 662 * iosize at least. iosize of the second disk might be 663 * small, but not a big deal since when the second disk 664 * starts IO, the first disk is likely still busy. 665 */ 666 if (nonrot && opt_iosize > 0 && 667 mirror->seq_start != MaxSector && 668 mirror->next_seq_sect > opt_iosize && 669 mirror->next_seq_sect - opt_iosize >= 670 mirror->seq_start) { 671 choose_next_idle = 1; 672 continue; 673 } 674 break; 675 } 676 677 if (choose_next_idle) 678 continue; 679 680 if (min_pending > pending) { 681 min_pending = pending; 682 best_pending_disk = disk; 683 } 684 685 if (dist < best_dist) { 686 best_dist = dist; 687 best_dist_disk = disk; 688 } 689 } 690 691 /* 692 * If all disks are rotational, choose the closest disk. If any disk is 693 * non-rotational, choose the disk with less pending request even the 694 * disk is rotational, which might/might not be optimal for raids with 695 * mixed ratation/non-rotational disks depending on workload. 696 */ 697 if (best_disk == -1) { 698 if (has_nonrot_disk || min_pending == 0) 699 best_disk = best_pending_disk; 700 else 701 best_disk = best_dist_disk; 702 } 703 704 if (best_disk >= 0) { 705 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 706 if (!rdev) 707 goto retry; 708 atomic_inc(&rdev->nr_pending); 709 sectors = best_good_sectors; 710 711 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 712 conf->mirrors[best_disk].seq_start = this_sector; 713 714 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 715 } 716 rcu_read_unlock(); 717 *max_sectors = sectors; 718 719 return best_disk; 720 } 721 722 static int raid1_congested(struct mddev *mddev, int bits) 723 { 724 struct r1conf *conf = mddev->private; 725 int i, ret = 0; 726 727 if ((bits & (1 << WB_async_congested)) && 728 conf->pending_count >= max_queued_requests) 729 return 1; 730 731 rcu_read_lock(); 732 for (i = 0; i < conf->raid_disks * 2; i++) { 733 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 734 if (rdev && !test_bit(Faulty, &rdev->flags)) { 735 struct request_queue *q = bdev_get_queue(rdev->bdev); 736 737 BUG_ON(!q); 738 739 /* Note the '|| 1' - when read_balance prefers 740 * non-congested targets, it can be removed 741 */ 742 if ((bits & (1 << WB_async_congested)) || 1) 743 ret |= bdi_congested(&q->backing_dev_info, bits); 744 else 745 ret &= bdi_congested(&q->backing_dev_info, bits); 746 } 747 } 748 rcu_read_unlock(); 749 return ret; 750 } 751 752 static void flush_pending_writes(struct r1conf *conf) 753 { 754 /* Any writes that have been queued but are awaiting 755 * bitmap updates get flushed here. 756 */ 757 spin_lock_irq(&conf->device_lock); 758 759 if (conf->pending_bio_list.head) { 760 struct bio *bio; 761 bio = bio_list_get(&conf->pending_bio_list); 762 conf->pending_count = 0; 763 spin_unlock_irq(&conf->device_lock); 764 /* flush any pending bitmap writes to 765 * disk before proceeding w/ I/O */ 766 bitmap_unplug(conf->mddev->bitmap); 767 wake_up(&conf->wait_barrier); 768 769 while (bio) { /* submit pending writes */ 770 struct bio *next = bio->bi_next; 771 struct md_rdev *rdev = (void*)bio->bi_bdev; 772 bio->bi_next = NULL; 773 bio->bi_bdev = rdev->bdev; 774 if (test_bit(Faulty, &rdev->flags)) { 775 bio->bi_error = -EIO; 776 bio_endio(bio); 777 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 778 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 779 /* Just ignore it */ 780 bio_endio(bio); 781 else 782 generic_make_request(bio); 783 bio = next; 784 } 785 } else 786 spin_unlock_irq(&conf->device_lock); 787 } 788 789 /* Barriers.... 790 * Sometimes we need to suspend IO while we do something else, 791 * either some resync/recovery, or reconfigure the array. 792 * To do this we raise a 'barrier'. 793 * The 'barrier' is a counter that can be raised multiple times 794 * to count how many activities are happening which preclude 795 * normal IO. 796 * We can only raise the barrier if there is no pending IO. 797 * i.e. if nr_pending == 0. 798 * We choose only to raise the barrier if no-one is waiting for the 799 * barrier to go down. This means that as soon as an IO request 800 * is ready, no other operations which require a barrier will start 801 * until the IO request has had a chance. 802 * 803 * So: regular IO calls 'wait_barrier'. When that returns there 804 * is no backgroup IO happening, It must arrange to call 805 * allow_barrier when it has finished its IO. 806 * backgroup IO calls must call raise_barrier. Once that returns 807 * there is no normal IO happeing. It must arrange to call 808 * lower_barrier when the particular background IO completes. 809 */ 810 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 811 { 812 spin_lock_irq(&conf->resync_lock); 813 814 /* Wait until no block IO is waiting */ 815 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 816 conf->resync_lock); 817 818 /* block any new IO from starting */ 819 conf->barrier++; 820 conf->next_resync = sector_nr; 821 822 /* For these conditions we must wait: 823 * A: while the array is in frozen state 824 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 825 * the max count which allowed. 826 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 827 * next resync will reach to the window which normal bios are 828 * handling. 829 * D: while there are any active requests in the current window. 830 */ 831 wait_event_lock_irq(conf->wait_barrier, 832 !conf->array_frozen && 833 conf->barrier < RESYNC_DEPTH && 834 conf->current_window_requests == 0 && 835 (conf->start_next_window >= 836 conf->next_resync + RESYNC_SECTORS), 837 conf->resync_lock); 838 839 conf->nr_pending++; 840 spin_unlock_irq(&conf->resync_lock); 841 } 842 843 static void lower_barrier(struct r1conf *conf) 844 { 845 unsigned long flags; 846 BUG_ON(conf->barrier <= 0); 847 spin_lock_irqsave(&conf->resync_lock, flags); 848 conf->barrier--; 849 conf->nr_pending--; 850 spin_unlock_irqrestore(&conf->resync_lock, flags); 851 wake_up(&conf->wait_barrier); 852 } 853 854 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 855 { 856 bool wait = false; 857 858 if (conf->array_frozen || !bio) 859 wait = true; 860 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 861 if ((conf->mddev->curr_resync_completed 862 >= bio_end_sector(bio)) || 863 (conf->start_next_window + NEXT_NORMALIO_DISTANCE 864 <= bio->bi_iter.bi_sector)) 865 wait = false; 866 else 867 wait = true; 868 } 869 870 return wait; 871 } 872 873 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 874 { 875 sector_t sector = 0; 876 877 spin_lock_irq(&conf->resync_lock); 878 if (need_to_wait_for_sync(conf, bio)) { 879 conf->nr_waiting++; 880 /* Wait for the barrier to drop. 881 * However if there are already pending 882 * requests (preventing the barrier from 883 * rising completely), and the 884 * per-process bio queue isn't empty, 885 * then don't wait, as we need to empty 886 * that queue to allow conf->start_next_window 887 * to increase. 888 */ 889 raid1_log(conf->mddev, "wait barrier"); 890 wait_event_lock_irq(conf->wait_barrier, 891 !conf->array_frozen && 892 (!conf->barrier || 893 ((conf->start_next_window < 894 conf->next_resync + RESYNC_SECTORS) && 895 current->bio_list && 896 !bio_list_empty(current->bio_list))), 897 conf->resync_lock); 898 conf->nr_waiting--; 899 } 900 901 if (bio && bio_data_dir(bio) == WRITE) { 902 if (bio->bi_iter.bi_sector >= conf->next_resync) { 903 if (conf->start_next_window == MaxSector) 904 conf->start_next_window = 905 conf->next_resync + 906 NEXT_NORMALIO_DISTANCE; 907 908 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 909 <= bio->bi_iter.bi_sector) 910 conf->next_window_requests++; 911 else 912 conf->current_window_requests++; 913 sector = conf->start_next_window; 914 } 915 } 916 917 conf->nr_pending++; 918 spin_unlock_irq(&conf->resync_lock); 919 return sector; 920 } 921 922 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 923 sector_t bi_sector) 924 { 925 unsigned long flags; 926 927 spin_lock_irqsave(&conf->resync_lock, flags); 928 conf->nr_pending--; 929 if (start_next_window) { 930 if (start_next_window == conf->start_next_window) { 931 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 932 <= bi_sector) 933 conf->next_window_requests--; 934 else 935 conf->current_window_requests--; 936 } else 937 conf->current_window_requests--; 938 939 if (!conf->current_window_requests) { 940 if (conf->next_window_requests) { 941 conf->current_window_requests = 942 conf->next_window_requests; 943 conf->next_window_requests = 0; 944 conf->start_next_window += 945 NEXT_NORMALIO_DISTANCE; 946 } else 947 conf->start_next_window = MaxSector; 948 } 949 } 950 spin_unlock_irqrestore(&conf->resync_lock, flags); 951 wake_up(&conf->wait_barrier); 952 } 953 954 static void freeze_array(struct r1conf *conf, int extra) 955 { 956 /* stop syncio and normal IO and wait for everything to 957 * go quite. 958 * We wait until nr_pending match nr_queued+extra 959 * This is called in the context of one normal IO request 960 * that has failed. Thus any sync request that might be pending 961 * will be blocked by nr_pending, and we need to wait for 962 * pending IO requests to complete or be queued for re-try. 963 * Thus the number queued (nr_queued) plus this request (extra) 964 * must match the number of pending IOs (nr_pending) before 965 * we continue. 966 */ 967 spin_lock_irq(&conf->resync_lock); 968 conf->array_frozen = 1; 969 raid1_log(conf->mddev, "wait freeze"); 970 wait_event_lock_irq_cmd(conf->wait_barrier, 971 conf->nr_pending == conf->nr_queued+extra, 972 conf->resync_lock, 973 flush_pending_writes(conf)); 974 spin_unlock_irq(&conf->resync_lock); 975 } 976 static void unfreeze_array(struct r1conf *conf) 977 { 978 /* reverse the effect of the freeze */ 979 spin_lock_irq(&conf->resync_lock); 980 conf->array_frozen = 0; 981 wake_up(&conf->wait_barrier); 982 spin_unlock_irq(&conf->resync_lock); 983 } 984 985 /* duplicate the data pages for behind I/O 986 */ 987 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 988 { 989 int i; 990 struct bio_vec *bvec; 991 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 992 GFP_NOIO); 993 if (unlikely(!bvecs)) 994 return; 995 996 bio_for_each_segment_all(bvec, bio, i) { 997 bvecs[i] = *bvec; 998 bvecs[i].bv_page = alloc_page(GFP_NOIO); 999 if (unlikely(!bvecs[i].bv_page)) 1000 goto do_sync_io; 1001 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1002 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1003 kunmap(bvecs[i].bv_page); 1004 kunmap(bvec->bv_page); 1005 } 1006 r1_bio->behind_bvecs = bvecs; 1007 r1_bio->behind_page_count = bio->bi_vcnt; 1008 set_bit(R1BIO_BehindIO, &r1_bio->state); 1009 return; 1010 1011 do_sync_io: 1012 for (i = 0; i < bio->bi_vcnt; i++) 1013 if (bvecs[i].bv_page) 1014 put_page(bvecs[i].bv_page); 1015 kfree(bvecs); 1016 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1017 bio->bi_iter.bi_size); 1018 } 1019 1020 struct raid1_plug_cb { 1021 struct blk_plug_cb cb; 1022 struct bio_list pending; 1023 int pending_cnt; 1024 }; 1025 1026 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1027 { 1028 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1029 cb); 1030 struct mddev *mddev = plug->cb.data; 1031 struct r1conf *conf = mddev->private; 1032 struct bio *bio; 1033 1034 if (from_schedule || current->bio_list) { 1035 spin_lock_irq(&conf->device_lock); 1036 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1037 conf->pending_count += plug->pending_cnt; 1038 spin_unlock_irq(&conf->device_lock); 1039 wake_up(&conf->wait_barrier); 1040 md_wakeup_thread(mddev->thread); 1041 kfree(plug); 1042 return; 1043 } 1044 1045 /* we aren't scheduling, so we can do the write-out directly. */ 1046 bio = bio_list_get(&plug->pending); 1047 bitmap_unplug(mddev->bitmap); 1048 wake_up(&conf->wait_barrier); 1049 1050 while (bio) { /* submit pending writes */ 1051 struct bio *next = bio->bi_next; 1052 struct md_rdev *rdev = (void*)bio->bi_bdev; 1053 bio->bi_next = NULL; 1054 bio->bi_bdev = rdev->bdev; 1055 if (test_bit(Faulty, &rdev->flags)) { 1056 bio->bi_error = -EIO; 1057 bio_endio(bio); 1058 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 1059 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1060 /* Just ignore it */ 1061 bio_endio(bio); 1062 else 1063 generic_make_request(bio); 1064 bio = next; 1065 } 1066 kfree(plug); 1067 } 1068 1069 static void raid1_make_request(struct mddev *mddev, struct bio * bio) 1070 { 1071 struct r1conf *conf = mddev->private; 1072 struct raid1_info *mirror; 1073 struct r1bio *r1_bio; 1074 struct bio *read_bio; 1075 int i, disks; 1076 struct bitmap *bitmap; 1077 unsigned long flags; 1078 const int op = bio_op(bio); 1079 const int rw = bio_data_dir(bio); 1080 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1081 const unsigned long do_flush_fua = (bio->bi_opf & 1082 (REQ_PREFLUSH | REQ_FUA)); 1083 struct md_rdev *blocked_rdev; 1084 struct blk_plug_cb *cb; 1085 struct raid1_plug_cb *plug = NULL; 1086 int first_clone; 1087 int sectors_handled; 1088 int max_sectors; 1089 sector_t start_next_window; 1090 1091 /* 1092 * Register the new request and wait if the reconstruction 1093 * thread has put up a bar for new requests. 1094 * Continue immediately if no resync is active currently. 1095 */ 1096 1097 md_write_start(mddev, bio); /* wait on superblock update early */ 1098 1099 if (bio_data_dir(bio) == WRITE && 1100 ((bio_end_sector(bio) > mddev->suspend_lo && 1101 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1102 (mddev_is_clustered(mddev) && 1103 md_cluster_ops->area_resyncing(mddev, WRITE, 1104 bio->bi_iter.bi_sector, bio_end_sector(bio))))) { 1105 /* As the suspend_* range is controlled by 1106 * userspace, we want an interruptible 1107 * wait. 1108 */ 1109 DEFINE_WAIT(w); 1110 for (;;) { 1111 flush_signals(current); 1112 prepare_to_wait(&conf->wait_barrier, 1113 &w, TASK_INTERRUPTIBLE); 1114 if (bio_end_sector(bio) <= mddev->suspend_lo || 1115 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1116 (mddev_is_clustered(mddev) && 1117 !md_cluster_ops->area_resyncing(mddev, WRITE, 1118 bio->bi_iter.bi_sector, bio_end_sector(bio)))) 1119 break; 1120 schedule(); 1121 } 1122 finish_wait(&conf->wait_barrier, &w); 1123 } 1124 1125 start_next_window = wait_barrier(conf, bio); 1126 1127 bitmap = mddev->bitmap; 1128 1129 /* 1130 * make_request() can abort the operation when read-ahead is being 1131 * used and no empty request is available. 1132 * 1133 */ 1134 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1135 1136 r1_bio->master_bio = bio; 1137 r1_bio->sectors = bio_sectors(bio); 1138 r1_bio->state = 0; 1139 r1_bio->mddev = mddev; 1140 r1_bio->sector = bio->bi_iter.bi_sector; 1141 1142 /* We might need to issue multiple reads to different 1143 * devices if there are bad blocks around, so we keep 1144 * track of the number of reads in bio->bi_phys_segments. 1145 * If this is 0, there is only one r1_bio and no locking 1146 * will be needed when requests complete. If it is 1147 * non-zero, then it is the number of not-completed requests. 1148 */ 1149 bio->bi_phys_segments = 0; 1150 bio_clear_flag(bio, BIO_SEG_VALID); 1151 1152 if (rw == READ) { 1153 /* 1154 * read balancing logic: 1155 */ 1156 int rdisk; 1157 1158 read_again: 1159 rdisk = read_balance(conf, r1_bio, &max_sectors); 1160 1161 if (rdisk < 0) { 1162 /* couldn't find anywhere to read from */ 1163 raid_end_bio_io(r1_bio); 1164 return; 1165 } 1166 mirror = conf->mirrors + rdisk; 1167 1168 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1169 bitmap) { 1170 /* Reading from a write-mostly device must 1171 * take care not to over-take any writes 1172 * that are 'behind' 1173 */ 1174 raid1_log(mddev, "wait behind writes"); 1175 wait_event(bitmap->behind_wait, 1176 atomic_read(&bitmap->behind_writes) == 0); 1177 } 1178 r1_bio->read_disk = rdisk; 1179 r1_bio->start_next_window = 0; 1180 1181 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1182 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1183 max_sectors); 1184 1185 r1_bio->bios[rdisk] = read_bio; 1186 1187 read_bio->bi_iter.bi_sector = r1_bio->sector + 1188 mirror->rdev->data_offset; 1189 read_bio->bi_bdev = mirror->rdev->bdev; 1190 read_bio->bi_end_io = raid1_end_read_request; 1191 bio_set_op_attrs(read_bio, op, do_sync); 1192 if (test_bit(FailFast, &mirror->rdev->flags) && 1193 test_bit(R1BIO_FailFast, &r1_bio->state)) 1194 read_bio->bi_opf |= MD_FAILFAST; 1195 read_bio->bi_private = r1_bio; 1196 1197 if (mddev->gendisk) 1198 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1199 read_bio, disk_devt(mddev->gendisk), 1200 r1_bio->sector); 1201 1202 if (max_sectors < r1_bio->sectors) { 1203 /* could not read all from this device, so we will 1204 * need another r1_bio. 1205 */ 1206 1207 sectors_handled = (r1_bio->sector + max_sectors 1208 - bio->bi_iter.bi_sector); 1209 r1_bio->sectors = max_sectors; 1210 spin_lock_irq(&conf->device_lock); 1211 if (bio->bi_phys_segments == 0) 1212 bio->bi_phys_segments = 2; 1213 else 1214 bio->bi_phys_segments++; 1215 spin_unlock_irq(&conf->device_lock); 1216 /* Cannot call generic_make_request directly 1217 * as that will be queued in __make_request 1218 * and subsequent mempool_alloc might block waiting 1219 * for it. So hand bio over to raid1d. 1220 */ 1221 reschedule_retry(r1_bio); 1222 1223 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1224 1225 r1_bio->master_bio = bio; 1226 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1227 r1_bio->state = 0; 1228 r1_bio->mddev = mddev; 1229 r1_bio->sector = bio->bi_iter.bi_sector + 1230 sectors_handled; 1231 goto read_again; 1232 } else 1233 generic_make_request(read_bio); 1234 return; 1235 } 1236 1237 /* 1238 * WRITE: 1239 */ 1240 if (conf->pending_count >= max_queued_requests) { 1241 md_wakeup_thread(mddev->thread); 1242 raid1_log(mddev, "wait queued"); 1243 wait_event(conf->wait_barrier, 1244 conf->pending_count < max_queued_requests); 1245 } 1246 /* first select target devices under rcu_lock and 1247 * inc refcount on their rdev. Record them by setting 1248 * bios[x] to bio 1249 * If there are known/acknowledged bad blocks on any device on 1250 * which we have seen a write error, we want to avoid writing those 1251 * blocks. 1252 * This potentially requires several writes to write around 1253 * the bad blocks. Each set of writes gets it's own r1bio 1254 * with a set of bios attached. 1255 */ 1256 1257 disks = conf->raid_disks * 2; 1258 retry_write: 1259 r1_bio->start_next_window = start_next_window; 1260 blocked_rdev = NULL; 1261 rcu_read_lock(); 1262 max_sectors = r1_bio->sectors; 1263 for (i = 0; i < disks; i++) { 1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1266 atomic_inc(&rdev->nr_pending); 1267 blocked_rdev = rdev; 1268 break; 1269 } 1270 r1_bio->bios[i] = NULL; 1271 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1272 if (i < conf->raid_disks) 1273 set_bit(R1BIO_Degraded, &r1_bio->state); 1274 continue; 1275 } 1276 1277 atomic_inc(&rdev->nr_pending); 1278 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1279 sector_t first_bad; 1280 int bad_sectors; 1281 int is_bad; 1282 1283 is_bad = is_badblock(rdev, r1_bio->sector, 1284 max_sectors, 1285 &first_bad, &bad_sectors); 1286 if (is_bad < 0) { 1287 /* mustn't write here until the bad block is 1288 * acknowledged*/ 1289 set_bit(BlockedBadBlocks, &rdev->flags); 1290 blocked_rdev = rdev; 1291 break; 1292 } 1293 if (is_bad && first_bad <= r1_bio->sector) { 1294 /* Cannot write here at all */ 1295 bad_sectors -= (r1_bio->sector - first_bad); 1296 if (bad_sectors < max_sectors) 1297 /* mustn't write more than bad_sectors 1298 * to other devices yet 1299 */ 1300 max_sectors = bad_sectors; 1301 rdev_dec_pending(rdev, mddev); 1302 /* We don't set R1BIO_Degraded as that 1303 * only applies if the disk is 1304 * missing, so it might be re-added, 1305 * and we want to know to recover this 1306 * chunk. 1307 * In this case the device is here, 1308 * and the fact that this chunk is not 1309 * in-sync is recorded in the bad 1310 * block log 1311 */ 1312 continue; 1313 } 1314 if (is_bad) { 1315 int good_sectors = first_bad - r1_bio->sector; 1316 if (good_sectors < max_sectors) 1317 max_sectors = good_sectors; 1318 } 1319 } 1320 r1_bio->bios[i] = bio; 1321 } 1322 rcu_read_unlock(); 1323 1324 if (unlikely(blocked_rdev)) { 1325 /* Wait for this device to become unblocked */ 1326 int j; 1327 sector_t old = start_next_window; 1328 1329 for (j = 0; j < i; j++) 1330 if (r1_bio->bios[j]) 1331 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1332 r1_bio->state = 0; 1333 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1334 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1335 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1336 start_next_window = wait_barrier(conf, bio); 1337 /* 1338 * We must make sure the multi r1bios of bio have 1339 * the same value of bi_phys_segments 1340 */ 1341 if (bio->bi_phys_segments && old && 1342 old != start_next_window) 1343 /* Wait for the former r1bio(s) to complete */ 1344 wait_event(conf->wait_barrier, 1345 bio->bi_phys_segments == 1); 1346 goto retry_write; 1347 } 1348 1349 if (max_sectors < r1_bio->sectors) { 1350 /* We are splitting this write into multiple parts, so 1351 * we need to prepare for allocating another r1_bio. 1352 */ 1353 r1_bio->sectors = max_sectors; 1354 spin_lock_irq(&conf->device_lock); 1355 if (bio->bi_phys_segments == 0) 1356 bio->bi_phys_segments = 2; 1357 else 1358 bio->bi_phys_segments++; 1359 spin_unlock_irq(&conf->device_lock); 1360 } 1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1362 1363 atomic_set(&r1_bio->remaining, 1); 1364 atomic_set(&r1_bio->behind_remaining, 0); 1365 1366 first_clone = 1; 1367 for (i = 0; i < disks; i++) { 1368 struct bio *mbio; 1369 if (!r1_bio->bios[i]) 1370 continue; 1371 1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1374 1375 if (first_clone) { 1376 /* do behind I/O ? 1377 * Not if there are too many, or cannot 1378 * allocate memory, or a reader on WriteMostly 1379 * is waiting for behind writes to flush */ 1380 if (bitmap && 1381 (atomic_read(&bitmap->behind_writes) 1382 < mddev->bitmap_info.max_write_behind) && 1383 !waitqueue_active(&bitmap->behind_wait)) 1384 alloc_behind_pages(mbio, r1_bio); 1385 1386 bitmap_startwrite(bitmap, r1_bio->sector, 1387 r1_bio->sectors, 1388 test_bit(R1BIO_BehindIO, 1389 &r1_bio->state)); 1390 first_clone = 0; 1391 } 1392 if (r1_bio->behind_bvecs) { 1393 struct bio_vec *bvec; 1394 int j; 1395 1396 /* 1397 * We trimmed the bio, so _all is legit 1398 */ 1399 bio_for_each_segment_all(bvec, mbio, j) 1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1402 atomic_inc(&r1_bio->behind_remaining); 1403 } 1404 1405 r1_bio->bios[i] = mbio; 1406 1407 mbio->bi_iter.bi_sector = (r1_bio->sector + 1408 conf->mirrors[i].rdev->data_offset); 1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1410 mbio->bi_end_io = raid1_end_write_request; 1411 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync); 1412 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1413 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1414 conf->raid_disks - mddev->degraded > 1) 1415 mbio->bi_opf |= MD_FAILFAST; 1416 mbio->bi_private = r1_bio; 1417 1418 atomic_inc(&r1_bio->remaining); 1419 1420 if (mddev->gendisk) 1421 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1422 mbio, disk_devt(mddev->gendisk), 1423 r1_bio->sector); 1424 /* flush_pending_writes() needs access to the rdev so...*/ 1425 mbio->bi_bdev = (void*)conf->mirrors[i].rdev; 1426 1427 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1428 if (cb) 1429 plug = container_of(cb, struct raid1_plug_cb, cb); 1430 else 1431 plug = NULL; 1432 spin_lock_irqsave(&conf->device_lock, flags); 1433 if (plug) { 1434 bio_list_add(&plug->pending, mbio); 1435 plug->pending_cnt++; 1436 } else { 1437 bio_list_add(&conf->pending_bio_list, mbio); 1438 conf->pending_count++; 1439 } 1440 spin_unlock_irqrestore(&conf->device_lock, flags); 1441 if (!plug) 1442 md_wakeup_thread(mddev->thread); 1443 } 1444 /* Mustn't call r1_bio_write_done before this next test, 1445 * as it could result in the bio being freed. 1446 */ 1447 if (sectors_handled < bio_sectors(bio)) { 1448 r1_bio_write_done(r1_bio); 1449 /* We need another r1_bio. It has already been counted 1450 * in bio->bi_phys_segments 1451 */ 1452 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1453 r1_bio->master_bio = bio; 1454 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1455 r1_bio->state = 0; 1456 r1_bio->mddev = mddev; 1457 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1458 goto retry_write; 1459 } 1460 1461 r1_bio_write_done(r1_bio); 1462 1463 /* In case raid1d snuck in to freeze_array */ 1464 wake_up(&conf->wait_barrier); 1465 } 1466 1467 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1468 { 1469 struct r1conf *conf = mddev->private; 1470 int i; 1471 1472 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1473 conf->raid_disks - mddev->degraded); 1474 rcu_read_lock(); 1475 for (i = 0; i < conf->raid_disks; i++) { 1476 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1477 seq_printf(seq, "%s", 1478 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1479 } 1480 rcu_read_unlock(); 1481 seq_printf(seq, "]"); 1482 } 1483 1484 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1485 { 1486 char b[BDEVNAME_SIZE]; 1487 struct r1conf *conf = mddev->private; 1488 unsigned long flags; 1489 1490 /* 1491 * If it is not operational, then we have already marked it as dead 1492 * else if it is the last working disks, ignore the error, let the 1493 * next level up know. 1494 * else mark the drive as failed 1495 */ 1496 spin_lock_irqsave(&conf->device_lock, flags); 1497 if (test_bit(In_sync, &rdev->flags) 1498 && (conf->raid_disks - mddev->degraded) == 1) { 1499 /* 1500 * Don't fail the drive, act as though we were just a 1501 * normal single drive. 1502 * However don't try a recovery from this drive as 1503 * it is very likely to fail. 1504 */ 1505 conf->recovery_disabled = mddev->recovery_disabled; 1506 spin_unlock_irqrestore(&conf->device_lock, flags); 1507 return; 1508 } 1509 set_bit(Blocked, &rdev->flags); 1510 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1511 mddev->degraded++; 1512 set_bit(Faulty, &rdev->flags); 1513 } else 1514 set_bit(Faulty, &rdev->flags); 1515 spin_unlock_irqrestore(&conf->device_lock, flags); 1516 /* 1517 * if recovery is running, make sure it aborts. 1518 */ 1519 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1520 set_mask_bits(&mddev->sb_flags, 0, 1521 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1522 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1523 "md/raid1:%s: Operation continuing on %d devices.\n", 1524 mdname(mddev), bdevname(rdev->bdev, b), 1525 mdname(mddev), conf->raid_disks - mddev->degraded); 1526 } 1527 1528 static void print_conf(struct r1conf *conf) 1529 { 1530 int i; 1531 1532 pr_debug("RAID1 conf printout:\n"); 1533 if (!conf) { 1534 pr_debug("(!conf)\n"); 1535 return; 1536 } 1537 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1538 conf->raid_disks); 1539 1540 rcu_read_lock(); 1541 for (i = 0; i < conf->raid_disks; i++) { 1542 char b[BDEVNAME_SIZE]; 1543 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1544 if (rdev) 1545 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1546 i, !test_bit(In_sync, &rdev->flags), 1547 !test_bit(Faulty, &rdev->flags), 1548 bdevname(rdev->bdev,b)); 1549 } 1550 rcu_read_unlock(); 1551 } 1552 1553 static void close_sync(struct r1conf *conf) 1554 { 1555 wait_barrier(conf, NULL); 1556 allow_barrier(conf, 0, 0); 1557 1558 mempool_destroy(conf->r1buf_pool); 1559 conf->r1buf_pool = NULL; 1560 1561 spin_lock_irq(&conf->resync_lock); 1562 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE; 1563 conf->start_next_window = MaxSector; 1564 conf->current_window_requests += 1565 conf->next_window_requests; 1566 conf->next_window_requests = 0; 1567 spin_unlock_irq(&conf->resync_lock); 1568 } 1569 1570 static int raid1_spare_active(struct mddev *mddev) 1571 { 1572 int i; 1573 struct r1conf *conf = mddev->private; 1574 int count = 0; 1575 unsigned long flags; 1576 1577 /* 1578 * Find all failed disks within the RAID1 configuration 1579 * and mark them readable. 1580 * Called under mddev lock, so rcu protection not needed. 1581 * device_lock used to avoid races with raid1_end_read_request 1582 * which expects 'In_sync' flags and ->degraded to be consistent. 1583 */ 1584 spin_lock_irqsave(&conf->device_lock, flags); 1585 for (i = 0; i < conf->raid_disks; i++) { 1586 struct md_rdev *rdev = conf->mirrors[i].rdev; 1587 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1588 if (repl 1589 && !test_bit(Candidate, &repl->flags) 1590 && repl->recovery_offset == MaxSector 1591 && !test_bit(Faulty, &repl->flags) 1592 && !test_and_set_bit(In_sync, &repl->flags)) { 1593 /* replacement has just become active */ 1594 if (!rdev || 1595 !test_and_clear_bit(In_sync, &rdev->flags)) 1596 count++; 1597 if (rdev) { 1598 /* Replaced device not technically 1599 * faulty, but we need to be sure 1600 * it gets removed and never re-added 1601 */ 1602 set_bit(Faulty, &rdev->flags); 1603 sysfs_notify_dirent_safe( 1604 rdev->sysfs_state); 1605 } 1606 } 1607 if (rdev 1608 && rdev->recovery_offset == MaxSector 1609 && !test_bit(Faulty, &rdev->flags) 1610 && !test_and_set_bit(In_sync, &rdev->flags)) { 1611 count++; 1612 sysfs_notify_dirent_safe(rdev->sysfs_state); 1613 } 1614 } 1615 mddev->degraded -= count; 1616 spin_unlock_irqrestore(&conf->device_lock, flags); 1617 1618 print_conf(conf); 1619 return count; 1620 } 1621 1622 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1623 { 1624 struct r1conf *conf = mddev->private; 1625 int err = -EEXIST; 1626 int mirror = 0; 1627 struct raid1_info *p; 1628 int first = 0; 1629 int last = conf->raid_disks - 1; 1630 1631 if (mddev->recovery_disabled == conf->recovery_disabled) 1632 return -EBUSY; 1633 1634 if (md_integrity_add_rdev(rdev, mddev)) 1635 return -ENXIO; 1636 1637 if (rdev->raid_disk >= 0) 1638 first = last = rdev->raid_disk; 1639 1640 /* 1641 * find the disk ... but prefer rdev->saved_raid_disk 1642 * if possible. 1643 */ 1644 if (rdev->saved_raid_disk >= 0 && 1645 rdev->saved_raid_disk >= first && 1646 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1647 first = last = rdev->saved_raid_disk; 1648 1649 for (mirror = first; mirror <= last; mirror++) { 1650 p = conf->mirrors+mirror; 1651 if (!p->rdev) { 1652 1653 if (mddev->gendisk) 1654 disk_stack_limits(mddev->gendisk, rdev->bdev, 1655 rdev->data_offset << 9); 1656 1657 p->head_position = 0; 1658 rdev->raid_disk = mirror; 1659 err = 0; 1660 /* As all devices are equivalent, we don't need a full recovery 1661 * if this was recently any drive of the array 1662 */ 1663 if (rdev->saved_raid_disk < 0) 1664 conf->fullsync = 1; 1665 rcu_assign_pointer(p->rdev, rdev); 1666 break; 1667 } 1668 if (test_bit(WantReplacement, &p->rdev->flags) && 1669 p[conf->raid_disks].rdev == NULL) { 1670 /* Add this device as a replacement */ 1671 clear_bit(In_sync, &rdev->flags); 1672 set_bit(Replacement, &rdev->flags); 1673 rdev->raid_disk = mirror; 1674 err = 0; 1675 conf->fullsync = 1; 1676 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1677 break; 1678 } 1679 } 1680 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1681 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1682 print_conf(conf); 1683 return err; 1684 } 1685 1686 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1687 { 1688 struct r1conf *conf = mddev->private; 1689 int err = 0; 1690 int number = rdev->raid_disk; 1691 struct raid1_info *p = conf->mirrors + number; 1692 1693 if (rdev != p->rdev) 1694 p = conf->mirrors + conf->raid_disks + number; 1695 1696 print_conf(conf); 1697 if (rdev == p->rdev) { 1698 if (test_bit(In_sync, &rdev->flags) || 1699 atomic_read(&rdev->nr_pending)) { 1700 err = -EBUSY; 1701 goto abort; 1702 } 1703 /* Only remove non-faulty devices if recovery 1704 * is not possible. 1705 */ 1706 if (!test_bit(Faulty, &rdev->flags) && 1707 mddev->recovery_disabled != conf->recovery_disabled && 1708 mddev->degraded < conf->raid_disks) { 1709 err = -EBUSY; 1710 goto abort; 1711 } 1712 p->rdev = NULL; 1713 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1714 synchronize_rcu(); 1715 if (atomic_read(&rdev->nr_pending)) { 1716 /* lost the race, try later */ 1717 err = -EBUSY; 1718 p->rdev = rdev; 1719 goto abort; 1720 } 1721 } 1722 if (conf->mirrors[conf->raid_disks + number].rdev) { 1723 /* We just removed a device that is being replaced. 1724 * Move down the replacement. We drain all IO before 1725 * doing this to avoid confusion. 1726 */ 1727 struct md_rdev *repl = 1728 conf->mirrors[conf->raid_disks + number].rdev; 1729 freeze_array(conf, 0); 1730 clear_bit(Replacement, &repl->flags); 1731 p->rdev = repl; 1732 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1733 unfreeze_array(conf); 1734 clear_bit(WantReplacement, &rdev->flags); 1735 } else 1736 clear_bit(WantReplacement, &rdev->flags); 1737 err = md_integrity_register(mddev); 1738 } 1739 abort: 1740 1741 print_conf(conf); 1742 return err; 1743 } 1744 1745 static void end_sync_read(struct bio *bio) 1746 { 1747 struct r1bio *r1_bio = bio->bi_private; 1748 1749 update_head_pos(r1_bio->read_disk, r1_bio); 1750 1751 /* 1752 * we have read a block, now it needs to be re-written, 1753 * or re-read if the read failed. 1754 * We don't do much here, just schedule handling by raid1d 1755 */ 1756 if (!bio->bi_error) 1757 set_bit(R1BIO_Uptodate, &r1_bio->state); 1758 1759 if (atomic_dec_and_test(&r1_bio->remaining)) 1760 reschedule_retry(r1_bio); 1761 } 1762 1763 static void end_sync_write(struct bio *bio) 1764 { 1765 int uptodate = !bio->bi_error; 1766 struct r1bio *r1_bio = bio->bi_private; 1767 struct mddev *mddev = r1_bio->mddev; 1768 struct r1conf *conf = mddev->private; 1769 sector_t first_bad; 1770 int bad_sectors; 1771 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1772 1773 if (!uptodate) { 1774 sector_t sync_blocks = 0; 1775 sector_t s = r1_bio->sector; 1776 long sectors_to_go = r1_bio->sectors; 1777 /* make sure these bits doesn't get cleared. */ 1778 do { 1779 bitmap_end_sync(mddev->bitmap, s, 1780 &sync_blocks, 1); 1781 s += sync_blocks; 1782 sectors_to_go -= sync_blocks; 1783 } while (sectors_to_go > 0); 1784 set_bit(WriteErrorSeen, &rdev->flags); 1785 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1786 set_bit(MD_RECOVERY_NEEDED, & 1787 mddev->recovery); 1788 set_bit(R1BIO_WriteError, &r1_bio->state); 1789 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1790 &first_bad, &bad_sectors) && 1791 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1792 r1_bio->sector, 1793 r1_bio->sectors, 1794 &first_bad, &bad_sectors) 1795 ) 1796 set_bit(R1BIO_MadeGood, &r1_bio->state); 1797 1798 if (atomic_dec_and_test(&r1_bio->remaining)) { 1799 int s = r1_bio->sectors; 1800 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1801 test_bit(R1BIO_WriteError, &r1_bio->state)) 1802 reschedule_retry(r1_bio); 1803 else { 1804 put_buf(r1_bio); 1805 md_done_sync(mddev, s, uptodate); 1806 } 1807 } 1808 } 1809 1810 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1811 int sectors, struct page *page, int rw) 1812 { 1813 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1814 /* success */ 1815 return 1; 1816 if (rw == WRITE) { 1817 set_bit(WriteErrorSeen, &rdev->flags); 1818 if (!test_and_set_bit(WantReplacement, 1819 &rdev->flags)) 1820 set_bit(MD_RECOVERY_NEEDED, & 1821 rdev->mddev->recovery); 1822 } 1823 /* need to record an error - either for the block or the device */ 1824 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1825 md_error(rdev->mddev, rdev); 1826 return 0; 1827 } 1828 1829 static int fix_sync_read_error(struct r1bio *r1_bio) 1830 { 1831 /* Try some synchronous reads of other devices to get 1832 * good data, much like with normal read errors. Only 1833 * read into the pages we already have so we don't 1834 * need to re-issue the read request. 1835 * We don't need to freeze the array, because being in an 1836 * active sync request, there is no normal IO, and 1837 * no overlapping syncs. 1838 * We don't need to check is_badblock() again as we 1839 * made sure that anything with a bad block in range 1840 * will have bi_end_io clear. 1841 */ 1842 struct mddev *mddev = r1_bio->mddev; 1843 struct r1conf *conf = mddev->private; 1844 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1845 sector_t sect = r1_bio->sector; 1846 int sectors = r1_bio->sectors; 1847 int idx = 0; 1848 struct md_rdev *rdev; 1849 1850 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1851 if (test_bit(FailFast, &rdev->flags)) { 1852 /* Don't try recovering from here - just fail it 1853 * ... unless it is the last working device of course */ 1854 md_error(mddev, rdev); 1855 if (test_bit(Faulty, &rdev->flags)) 1856 /* Don't try to read from here, but make sure 1857 * put_buf does it's thing 1858 */ 1859 bio->bi_end_io = end_sync_write; 1860 } 1861 1862 while(sectors) { 1863 int s = sectors; 1864 int d = r1_bio->read_disk; 1865 int success = 0; 1866 int start; 1867 1868 if (s > (PAGE_SIZE>>9)) 1869 s = PAGE_SIZE >> 9; 1870 do { 1871 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1872 /* No rcu protection needed here devices 1873 * can only be removed when no resync is 1874 * active, and resync is currently active 1875 */ 1876 rdev = conf->mirrors[d].rdev; 1877 if (sync_page_io(rdev, sect, s<<9, 1878 bio->bi_io_vec[idx].bv_page, 1879 REQ_OP_READ, 0, false)) { 1880 success = 1; 1881 break; 1882 } 1883 } 1884 d++; 1885 if (d == conf->raid_disks * 2) 1886 d = 0; 1887 } while (!success && d != r1_bio->read_disk); 1888 1889 if (!success) { 1890 char b[BDEVNAME_SIZE]; 1891 int abort = 0; 1892 /* Cannot read from anywhere, this block is lost. 1893 * Record a bad block on each device. If that doesn't 1894 * work just disable and interrupt the recovery. 1895 * Don't fail devices as that won't really help. 1896 */ 1897 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1898 mdname(mddev), 1899 bdevname(bio->bi_bdev, b), 1900 (unsigned long long)r1_bio->sector); 1901 for (d = 0; d < conf->raid_disks * 2; d++) { 1902 rdev = conf->mirrors[d].rdev; 1903 if (!rdev || test_bit(Faulty, &rdev->flags)) 1904 continue; 1905 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1906 abort = 1; 1907 } 1908 if (abort) { 1909 conf->recovery_disabled = 1910 mddev->recovery_disabled; 1911 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1912 md_done_sync(mddev, r1_bio->sectors, 0); 1913 put_buf(r1_bio); 1914 return 0; 1915 } 1916 /* Try next page */ 1917 sectors -= s; 1918 sect += s; 1919 idx++; 1920 continue; 1921 } 1922 1923 start = d; 1924 /* write it back and re-read */ 1925 while (d != r1_bio->read_disk) { 1926 if (d == 0) 1927 d = conf->raid_disks * 2; 1928 d--; 1929 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1930 continue; 1931 rdev = conf->mirrors[d].rdev; 1932 if (r1_sync_page_io(rdev, sect, s, 1933 bio->bi_io_vec[idx].bv_page, 1934 WRITE) == 0) { 1935 r1_bio->bios[d]->bi_end_io = NULL; 1936 rdev_dec_pending(rdev, mddev); 1937 } 1938 } 1939 d = start; 1940 while (d != r1_bio->read_disk) { 1941 if (d == 0) 1942 d = conf->raid_disks * 2; 1943 d--; 1944 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1945 continue; 1946 rdev = conf->mirrors[d].rdev; 1947 if (r1_sync_page_io(rdev, sect, s, 1948 bio->bi_io_vec[idx].bv_page, 1949 READ) != 0) 1950 atomic_add(s, &rdev->corrected_errors); 1951 } 1952 sectors -= s; 1953 sect += s; 1954 idx ++; 1955 } 1956 set_bit(R1BIO_Uptodate, &r1_bio->state); 1957 bio->bi_error = 0; 1958 return 1; 1959 } 1960 1961 static void process_checks(struct r1bio *r1_bio) 1962 { 1963 /* We have read all readable devices. If we haven't 1964 * got the block, then there is no hope left. 1965 * If we have, then we want to do a comparison 1966 * and skip the write if everything is the same. 1967 * If any blocks failed to read, then we need to 1968 * attempt an over-write 1969 */ 1970 struct mddev *mddev = r1_bio->mddev; 1971 struct r1conf *conf = mddev->private; 1972 int primary; 1973 int i; 1974 int vcnt; 1975 1976 /* Fix variable parts of all bios */ 1977 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1978 for (i = 0; i < conf->raid_disks * 2; i++) { 1979 int j; 1980 int size; 1981 int error; 1982 struct bio *b = r1_bio->bios[i]; 1983 if (b->bi_end_io != end_sync_read) 1984 continue; 1985 /* fixup the bio for reuse, but preserve errno */ 1986 error = b->bi_error; 1987 bio_reset(b); 1988 b->bi_error = error; 1989 b->bi_vcnt = vcnt; 1990 b->bi_iter.bi_size = r1_bio->sectors << 9; 1991 b->bi_iter.bi_sector = r1_bio->sector + 1992 conf->mirrors[i].rdev->data_offset; 1993 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1994 b->bi_end_io = end_sync_read; 1995 b->bi_private = r1_bio; 1996 1997 size = b->bi_iter.bi_size; 1998 for (j = 0; j < vcnt ; j++) { 1999 struct bio_vec *bi; 2000 bi = &b->bi_io_vec[j]; 2001 bi->bv_offset = 0; 2002 if (size > PAGE_SIZE) 2003 bi->bv_len = PAGE_SIZE; 2004 else 2005 bi->bv_len = size; 2006 size -= PAGE_SIZE; 2007 } 2008 } 2009 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2010 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2011 !r1_bio->bios[primary]->bi_error) { 2012 r1_bio->bios[primary]->bi_end_io = NULL; 2013 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2014 break; 2015 } 2016 r1_bio->read_disk = primary; 2017 for (i = 0; i < conf->raid_disks * 2; i++) { 2018 int j; 2019 struct bio *pbio = r1_bio->bios[primary]; 2020 struct bio *sbio = r1_bio->bios[i]; 2021 int error = sbio->bi_error; 2022 2023 if (sbio->bi_end_io != end_sync_read) 2024 continue; 2025 /* Now we can 'fixup' the error value */ 2026 sbio->bi_error = 0; 2027 2028 if (!error) { 2029 for (j = vcnt; j-- ; ) { 2030 struct page *p, *s; 2031 p = pbio->bi_io_vec[j].bv_page; 2032 s = sbio->bi_io_vec[j].bv_page; 2033 if (memcmp(page_address(p), 2034 page_address(s), 2035 sbio->bi_io_vec[j].bv_len)) 2036 break; 2037 } 2038 } else 2039 j = 0; 2040 if (j >= 0) 2041 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2042 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2043 && !error)) { 2044 /* No need to write to this device. */ 2045 sbio->bi_end_io = NULL; 2046 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2047 continue; 2048 } 2049 2050 bio_copy_data(sbio, pbio); 2051 } 2052 } 2053 2054 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2055 { 2056 struct r1conf *conf = mddev->private; 2057 int i; 2058 int disks = conf->raid_disks * 2; 2059 struct bio *bio, *wbio; 2060 2061 bio = r1_bio->bios[r1_bio->read_disk]; 2062 2063 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2064 /* ouch - failed to read all of that. */ 2065 if (!fix_sync_read_error(r1_bio)) 2066 return; 2067 2068 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2069 process_checks(r1_bio); 2070 2071 /* 2072 * schedule writes 2073 */ 2074 atomic_set(&r1_bio->remaining, 1); 2075 for (i = 0; i < disks ; i++) { 2076 wbio = r1_bio->bios[i]; 2077 if (wbio->bi_end_io == NULL || 2078 (wbio->bi_end_io == end_sync_read && 2079 (i == r1_bio->read_disk || 2080 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2081 continue; 2082 2083 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2084 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2085 wbio->bi_opf |= MD_FAILFAST; 2086 2087 wbio->bi_end_io = end_sync_write; 2088 atomic_inc(&r1_bio->remaining); 2089 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2090 2091 generic_make_request(wbio); 2092 } 2093 2094 if (atomic_dec_and_test(&r1_bio->remaining)) { 2095 /* if we're here, all write(s) have completed, so clean up */ 2096 int s = r1_bio->sectors; 2097 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2098 test_bit(R1BIO_WriteError, &r1_bio->state)) 2099 reschedule_retry(r1_bio); 2100 else { 2101 put_buf(r1_bio); 2102 md_done_sync(mddev, s, 1); 2103 } 2104 } 2105 } 2106 2107 /* 2108 * This is a kernel thread which: 2109 * 2110 * 1. Retries failed read operations on working mirrors. 2111 * 2. Updates the raid superblock when problems encounter. 2112 * 3. Performs writes following reads for array synchronising. 2113 */ 2114 2115 static void fix_read_error(struct r1conf *conf, int read_disk, 2116 sector_t sect, int sectors) 2117 { 2118 struct mddev *mddev = conf->mddev; 2119 while(sectors) { 2120 int s = sectors; 2121 int d = read_disk; 2122 int success = 0; 2123 int start; 2124 struct md_rdev *rdev; 2125 2126 if (s > (PAGE_SIZE>>9)) 2127 s = PAGE_SIZE >> 9; 2128 2129 do { 2130 sector_t first_bad; 2131 int bad_sectors; 2132 2133 rcu_read_lock(); 2134 rdev = rcu_dereference(conf->mirrors[d].rdev); 2135 if (rdev && 2136 (test_bit(In_sync, &rdev->flags) || 2137 (!test_bit(Faulty, &rdev->flags) && 2138 rdev->recovery_offset >= sect + s)) && 2139 is_badblock(rdev, sect, s, 2140 &first_bad, &bad_sectors) == 0) { 2141 atomic_inc(&rdev->nr_pending); 2142 rcu_read_unlock(); 2143 if (sync_page_io(rdev, sect, s<<9, 2144 conf->tmppage, REQ_OP_READ, 0, false)) 2145 success = 1; 2146 rdev_dec_pending(rdev, mddev); 2147 if (success) 2148 break; 2149 } else 2150 rcu_read_unlock(); 2151 d++; 2152 if (d == conf->raid_disks * 2) 2153 d = 0; 2154 } while (!success && d != read_disk); 2155 2156 if (!success) { 2157 /* Cannot read from anywhere - mark it bad */ 2158 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2159 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2160 md_error(mddev, rdev); 2161 break; 2162 } 2163 /* write it back and re-read */ 2164 start = d; 2165 while (d != read_disk) { 2166 if (d==0) 2167 d = conf->raid_disks * 2; 2168 d--; 2169 rcu_read_lock(); 2170 rdev = rcu_dereference(conf->mirrors[d].rdev); 2171 if (rdev && 2172 !test_bit(Faulty, &rdev->flags)) { 2173 atomic_inc(&rdev->nr_pending); 2174 rcu_read_unlock(); 2175 r1_sync_page_io(rdev, sect, s, 2176 conf->tmppage, WRITE); 2177 rdev_dec_pending(rdev, mddev); 2178 } else 2179 rcu_read_unlock(); 2180 } 2181 d = start; 2182 while (d != read_disk) { 2183 char b[BDEVNAME_SIZE]; 2184 if (d==0) 2185 d = conf->raid_disks * 2; 2186 d--; 2187 rcu_read_lock(); 2188 rdev = rcu_dereference(conf->mirrors[d].rdev); 2189 if (rdev && 2190 !test_bit(Faulty, &rdev->flags)) { 2191 atomic_inc(&rdev->nr_pending); 2192 rcu_read_unlock(); 2193 if (r1_sync_page_io(rdev, sect, s, 2194 conf->tmppage, READ)) { 2195 atomic_add(s, &rdev->corrected_errors); 2196 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2197 mdname(mddev), s, 2198 (unsigned long long)(sect + 2199 rdev->data_offset), 2200 bdevname(rdev->bdev, b)); 2201 } 2202 rdev_dec_pending(rdev, mddev); 2203 } else 2204 rcu_read_unlock(); 2205 } 2206 sectors -= s; 2207 sect += s; 2208 } 2209 } 2210 2211 static int narrow_write_error(struct r1bio *r1_bio, int i) 2212 { 2213 struct mddev *mddev = r1_bio->mddev; 2214 struct r1conf *conf = mddev->private; 2215 struct md_rdev *rdev = conf->mirrors[i].rdev; 2216 2217 /* bio has the data to be written to device 'i' where 2218 * we just recently had a write error. 2219 * We repeatedly clone the bio and trim down to one block, 2220 * then try the write. Where the write fails we record 2221 * a bad block. 2222 * It is conceivable that the bio doesn't exactly align with 2223 * blocks. We must handle this somehow. 2224 * 2225 * We currently own a reference on the rdev. 2226 */ 2227 2228 int block_sectors; 2229 sector_t sector; 2230 int sectors; 2231 int sect_to_write = r1_bio->sectors; 2232 int ok = 1; 2233 2234 if (rdev->badblocks.shift < 0) 2235 return 0; 2236 2237 block_sectors = roundup(1 << rdev->badblocks.shift, 2238 bdev_logical_block_size(rdev->bdev) >> 9); 2239 sector = r1_bio->sector; 2240 sectors = ((sector + block_sectors) 2241 & ~(sector_t)(block_sectors - 1)) 2242 - sector; 2243 2244 while (sect_to_write) { 2245 struct bio *wbio; 2246 if (sectors > sect_to_write) 2247 sectors = sect_to_write; 2248 /* Write at 'sector' for 'sectors'*/ 2249 2250 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2251 unsigned vcnt = r1_bio->behind_page_count; 2252 struct bio_vec *vec = r1_bio->behind_bvecs; 2253 2254 while (!vec->bv_page) { 2255 vec++; 2256 vcnt--; 2257 } 2258 2259 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2260 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2261 2262 wbio->bi_vcnt = vcnt; 2263 } else { 2264 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2265 } 2266 2267 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2268 wbio->bi_iter.bi_sector = r1_bio->sector; 2269 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2270 2271 bio_trim(wbio, sector - r1_bio->sector, sectors); 2272 wbio->bi_iter.bi_sector += rdev->data_offset; 2273 wbio->bi_bdev = rdev->bdev; 2274 2275 if (submit_bio_wait(wbio) < 0) 2276 /* failure! */ 2277 ok = rdev_set_badblocks(rdev, sector, 2278 sectors, 0) 2279 && ok; 2280 2281 bio_put(wbio); 2282 sect_to_write -= sectors; 2283 sector += sectors; 2284 sectors = block_sectors; 2285 } 2286 return ok; 2287 } 2288 2289 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2290 { 2291 int m; 2292 int s = r1_bio->sectors; 2293 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2294 struct md_rdev *rdev = conf->mirrors[m].rdev; 2295 struct bio *bio = r1_bio->bios[m]; 2296 if (bio->bi_end_io == NULL) 2297 continue; 2298 if (!bio->bi_error && 2299 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2300 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2301 } 2302 if (bio->bi_error && 2303 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2304 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2305 md_error(conf->mddev, rdev); 2306 } 2307 } 2308 put_buf(r1_bio); 2309 md_done_sync(conf->mddev, s, 1); 2310 } 2311 2312 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2313 { 2314 int m; 2315 bool fail = false; 2316 for (m = 0; m < conf->raid_disks * 2 ; m++) 2317 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2318 struct md_rdev *rdev = conf->mirrors[m].rdev; 2319 rdev_clear_badblocks(rdev, 2320 r1_bio->sector, 2321 r1_bio->sectors, 0); 2322 rdev_dec_pending(rdev, conf->mddev); 2323 } else if (r1_bio->bios[m] != NULL) { 2324 /* This drive got a write error. We need to 2325 * narrow down and record precise write 2326 * errors. 2327 */ 2328 fail = true; 2329 if (!narrow_write_error(r1_bio, m)) { 2330 md_error(conf->mddev, 2331 conf->mirrors[m].rdev); 2332 /* an I/O failed, we can't clear the bitmap */ 2333 set_bit(R1BIO_Degraded, &r1_bio->state); 2334 } 2335 rdev_dec_pending(conf->mirrors[m].rdev, 2336 conf->mddev); 2337 } 2338 if (fail) { 2339 spin_lock_irq(&conf->device_lock); 2340 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2341 conf->nr_queued++; 2342 spin_unlock_irq(&conf->device_lock); 2343 md_wakeup_thread(conf->mddev->thread); 2344 } else { 2345 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2346 close_write(r1_bio); 2347 raid_end_bio_io(r1_bio); 2348 } 2349 } 2350 2351 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2352 { 2353 int disk; 2354 int max_sectors; 2355 struct mddev *mddev = conf->mddev; 2356 struct bio *bio; 2357 char b[BDEVNAME_SIZE]; 2358 struct md_rdev *rdev; 2359 dev_t bio_dev; 2360 sector_t bio_sector; 2361 2362 clear_bit(R1BIO_ReadError, &r1_bio->state); 2363 /* we got a read error. Maybe the drive is bad. Maybe just 2364 * the block and we can fix it. 2365 * We freeze all other IO, and try reading the block from 2366 * other devices. When we find one, we re-write 2367 * and check it that fixes the read error. 2368 * This is all done synchronously while the array is 2369 * frozen 2370 */ 2371 2372 bio = r1_bio->bios[r1_bio->read_disk]; 2373 bdevname(bio->bi_bdev, b); 2374 bio_dev = bio->bi_bdev->bd_dev; 2375 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2376 bio_put(bio); 2377 r1_bio->bios[r1_bio->read_disk] = NULL; 2378 2379 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2380 if (mddev->ro == 0 2381 && !test_bit(FailFast, &rdev->flags)) { 2382 freeze_array(conf, 1); 2383 fix_read_error(conf, r1_bio->read_disk, 2384 r1_bio->sector, r1_bio->sectors); 2385 unfreeze_array(conf); 2386 } else { 2387 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2388 } 2389 2390 rdev_dec_pending(rdev, conf->mddev); 2391 2392 read_more: 2393 disk = read_balance(conf, r1_bio, &max_sectors); 2394 if (disk == -1) { 2395 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2396 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2397 raid_end_bio_io(r1_bio); 2398 } else { 2399 const unsigned long do_sync 2400 = r1_bio->master_bio->bi_opf & REQ_SYNC; 2401 r1_bio->read_disk = disk; 2402 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2403 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2404 max_sectors); 2405 r1_bio->bios[r1_bio->read_disk] = bio; 2406 rdev = conf->mirrors[disk].rdev; 2407 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 2408 mdname(mddev), 2409 (unsigned long long)r1_bio->sector, 2410 bdevname(rdev->bdev, b)); 2411 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2412 bio->bi_bdev = rdev->bdev; 2413 bio->bi_end_io = raid1_end_read_request; 2414 bio_set_op_attrs(bio, REQ_OP_READ, do_sync); 2415 if (test_bit(FailFast, &rdev->flags) && 2416 test_bit(R1BIO_FailFast, &r1_bio->state)) 2417 bio->bi_opf |= MD_FAILFAST; 2418 bio->bi_private = r1_bio; 2419 if (max_sectors < r1_bio->sectors) { 2420 /* Drat - have to split this up more */ 2421 struct bio *mbio = r1_bio->master_bio; 2422 int sectors_handled = (r1_bio->sector + max_sectors 2423 - mbio->bi_iter.bi_sector); 2424 r1_bio->sectors = max_sectors; 2425 spin_lock_irq(&conf->device_lock); 2426 if (mbio->bi_phys_segments == 0) 2427 mbio->bi_phys_segments = 2; 2428 else 2429 mbio->bi_phys_segments++; 2430 spin_unlock_irq(&conf->device_lock); 2431 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2432 bio, bio_dev, bio_sector); 2433 generic_make_request(bio); 2434 bio = NULL; 2435 2436 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2437 2438 r1_bio->master_bio = mbio; 2439 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2440 r1_bio->state = 0; 2441 set_bit(R1BIO_ReadError, &r1_bio->state); 2442 r1_bio->mddev = mddev; 2443 r1_bio->sector = mbio->bi_iter.bi_sector + 2444 sectors_handled; 2445 2446 goto read_more; 2447 } else { 2448 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), 2449 bio, bio_dev, bio_sector); 2450 generic_make_request(bio); 2451 } 2452 } 2453 } 2454 2455 static void raid1d(struct md_thread *thread) 2456 { 2457 struct mddev *mddev = thread->mddev; 2458 struct r1bio *r1_bio; 2459 unsigned long flags; 2460 struct r1conf *conf = mddev->private; 2461 struct list_head *head = &conf->retry_list; 2462 struct blk_plug plug; 2463 2464 md_check_recovery(mddev); 2465 2466 if (!list_empty_careful(&conf->bio_end_io_list) && 2467 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2468 LIST_HEAD(tmp); 2469 spin_lock_irqsave(&conf->device_lock, flags); 2470 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2471 while (!list_empty(&conf->bio_end_io_list)) { 2472 list_move(conf->bio_end_io_list.prev, &tmp); 2473 conf->nr_queued--; 2474 } 2475 } 2476 spin_unlock_irqrestore(&conf->device_lock, flags); 2477 while (!list_empty(&tmp)) { 2478 r1_bio = list_first_entry(&tmp, struct r1bio, 2479 retry_list); 2480 list_del(&r1_bio->retry_list); 2481 if (mddev->degraded) 2482 set_bit(R1BIO_Degraded, &r1_bio->state); 2483 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2484 close_write(r1_bio); 2485 raid_end_bio_io(r1_bio); 2486 } 2487 } 2488 2489 blk_start_plug(&plug); 2490 for (;;) { 2491 2492 flush_pending_writes(conf); 2493 2494 spin_lock_irqsave(&conf->device_lock, flags); 2495 if (list_empty(head)) { 2496 spin_unlock_irqrestore(&conf->device_lock, flags); 2497 break; 2498 } 2499 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2500 list_del(head->prev); 2501 conf->nr_queued--; 2502 spin_unlock_irqrestore(&conf->device_lock, flags); 2503 2504 mddev = r1_bio->mddev; 2505 conf = mddev->private; 2506 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2507 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2508 test_bit(R1BIO_WriteError, &r1_bio->state)) 2509 handle_sync_write_finished(conf, r1_bio); 2510 else 2511 sync_request_write(mddev, r1_bio); 2512 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2513 test_bit(R1BIO_WriteError, &r1_bio->state)) 2514 handle_write_finished(conf, r1_bio); 2515 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2516 handle_read_error(conf, r1_bio); 2517 else 2518 /* just a partial read to be scheduled from separate 2519 * context 2520 */ 2521 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2522 2523 cond_resched(); 2524 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2525 md_check_recovery(mddev); 2526 } 2527 blk_finish_plug(&plug); 2528 } 2529 2530 static int init_resync(struct r1conf *conf) 2531 { 2532 int buffs; 2533 2534 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2535 BUG_ON(conf->r1buf_pool); 2536 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2537 conf->poolinfo); 2538 if (!conf->r1buf_pool) 2539 return -ENOMEM; 2540 conf->next_resync = 0; 2541 return 0; 2542 } 2543 2544 /* 2545 * perform a "sync" on one "block" 2546 * 2547 * We need to make sure that no normal I/O request - particularly write 2548 * requests - conflict with active sync requests. 2549 * 2550 * This is achieved by tracking pending requests and a 'barrier' concept 2551 * that can be installed to exclude normal IO requests. 2552 */ 2553 2554 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2555 int *skipped) 2556 { 2557 struct r1conf *conf = mddev->private; 2558 struct r1bio *r1_bio; 2559 struct bio *bio; 2560 sector_t max_sector, nr_sectors; 2561 int disk = -1; 2562 int i; 2563 int wonly = -1; 2564 int write_targets = 0, read_targets = 0; 2565 sector_t sync_blocks; 2566 int still_degraded = 0; 2567 int good_sectors = RESYNC_SECTORS; 2568 int min_bad = 0; /* number of sectors that are bad in all devices */ 2569 2570 if (!conf->r1buf_pool) 2571 if (init_resync(conf)) 2572 return 0; 2573 2574 max_sector = mddev->dev_sectors; 2575 if (sector_nr >= max_sector) { 2576 /* If we aborted, we need to abort the 2577 * sync on the 'current' bitmap chunk (there will 2578 * only be one in raid1 resync. 2579 * We can find the current addess in mddev->curr_resync 2580 */ 2581 if (mddev->curr_resync < max_sector) /* aborted */ 2582 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2583 &sync_blocks, 1); 2584 else /* completed sync */ 2585 conf->fullsync = 0; 2586 2587 bitmap_close_sync(mddev->bitmap); 2588 close_sync(conf); 2589 2590 if (mddev_is_clustered(mddev)) { 2591 conf->cluster_sync_low = 0; 2592 conf->cluster_sync_high = 0; 2593 } 2594 return 0; 2595 } 2596 2597 if (mddev->bitmap == NULL && 2598 mddev->recovery_cp == MaxSector && 2599 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2600 conf->fullsync == 0) { 2601 *skipped = 1; 2602 return max_sector - sector_nr; 2603 } 2604 /* before building a request, check if we can skip these blocks.. 2605 * This call the bitmap_start_sync doesn't actually record anything 2606 */ 2607 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2608 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2609 /* We can skip this block, and probably several more */ 2610 *skipped = 1; 2611 return sync_blocks; 2612 } 2613 2614 /* 2615 * If there is non-resync activity waiting for a turn, then let it 2616 * though before starting on this new sync request. 2617 */ 2618 if (conf->nr_waiting) 2619 schedule_timeout_uninterruptible(1); 2620 2621 /* we are incrementing sector_nr below. To be safe, we check against 2622 * sector_nr + two times RESYNC_SECTORS 2623 */ 2624 2625 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2626 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2627 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2628 2629 raise_barrier(conf, sector_nr); 2630 2631 rcu_read_lock(); 2632 /* 2633 * If we get a correctably read error during resync or recovery, 2634 * we might want to read from a different device. So we 2635 * flag all drives that could conceivably be read from for READ, 2636 * and any others (which will be non-In_sync devices) for WRITE. 2637 * If a read fails, we try reading from something else for which READ 2638 * is OK. 2639 */ 2640 2641 r1_bio->mddev = mddev; 2642 r1_bio->sector = sector_nr; 2643 r1_bio->state = 0; 2644 set_bit(R1BIO_IsSync, &r1_bio->state); 2645 2646 for (i = 0; i < conf->raid_disks * 2; i++) { 2647 struct md_rdev *rdev; 2648 bio = r1_bio->bios[i]; 2649 bio_reset(bio); 2650 2651 rdev = rcu_dereference(conf->mirrors[i].rdev); 2652 if (rdev == NULL || 2653 test_bit(Faulty, &rdev->flags)) { 2654 if (i < conf->raid_disks) 2655 still_degraded = 1; 2656 } else if (!test_bit(In_sync, &rdev->flags)) { 2657 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2658 bio->bi_end_io = end_sync_write; 2659 write_targets ++; 2660 } else { 2661 /* may need to read from here */ 2662 sector_t first_bad = MaxSector; 2663 int bad_sectors; 2664 2665 if (is_badblock(rdev, sector_nr, good_sectors, 2666 &first_bad, &bad_sectors)) { 2667 if (first_bad > sector_nr) 2668 good_sectors = first_bad - sector_nr; 2669 else { 2670 bad_sectors -= (sector_nr - first_bad); 2671 if (min_bad == 0 || 2672 min_bad > bad_sectors) 2673 min_bad = bad_sectors; 2674 } 2675 } 2676 if (sector_nr < first_bad) { 2677 if (test_bit(WriteMostly, &rdev->flags)) { 2678 if (wonly < 0) 2679 wonly = i; 2680 } else { 2681 if (disk < 0) 2682 disk = i; 2683 } 2684 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2685 bio->bi_end_io = end_sync_read; 2686 read_targets++; 2687 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2688 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2689 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2690 /* 2691 * The device is suitable for reading (InSync), 2692 * but has bad block(s) here. Let's try to correct them, 2693 * if we are doing resync or repair. Otherwise, leave 2694 * this device alone for this sync request. 2695 */ 2696 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2697 bio->bi_end_io = end_sync_write; 2698 write_targets++; 2699 } 2700 } 2701 if (bio->bi_end_io) { 2702 atomic_inc(&rdev->nr_pending); 2703 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2704 bio->bi_bdev = rdev->bdev; 2705 bio->bi_private = r1_bio; 2706 if (test_bit(FailFast, &rdev->flags)) 2707 bio->bi_opf |= MD_FAILFAST; 2708 } 2709 } 2710 rcu_read_unlock(); 2711 if (disk < 0) 2712 disk = wonly; 2713 r1_bio->read_disk = disk; 2714 2715 if (read_targets == 0 && min_bad > 0) { 2716 /* These sectors are bad on all InSync devices, so we 2717 * need to mark them bad on all write targets 2718 */ 2719 int ok = 1; 2720 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2721 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2722 struct md_rdev *rdev = conf->mirrors[i].rdev; 2723 ok = rdev_set_badblocks(rdev, sector_nr, 2724 min_bad, 0 2725 ) && ok; 2726 } 2727 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2728 *skipped = 1; 2729 put_buf(r1_bio); 2730 2731 if (!ok) { 2732 /* Cannot record the badblocks, so need to 2733 * abort the resync. 2734 * If there are multiple read targets, could just 2735 * fail the really bad ones ??? 2736 */ 2737 conf->recovery_disabled = mddev->recovery_disabled; 2738 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2739 return 0; 2740 } else 2741 return min_bad; 2742 2743 } 2744 if (min_bad > 0 && min_bad < good_sectors) { 2745 /* only resync enough to reach the next bad->good 2746 * transition */ 2747 good_sectors = min_bad; 2748 } 2749 2750 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2751 /* extra read targets are also write targets */ 2752 write_targets += read_targets-1; 2753 2754 if (write_targets == 0 || read_targets == 0) { 2755 /* There is nowhere to write, so all non-sync 2756 * drives must be failed - so we are finished 2757 */ 2758 sector_t rv; 2759 if (min_bad > 0) 2760 max_sector = sector_nr + min_bad; 2761 rv = max_sector - sector_nr; 2762 *skipped = 1; 2763 put_buf(r1_bio); 2764 return rv; 2765 } 2766 2767 if (max_sector > mddev->resync_max) 2768 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2769 if (max_sector > sector_nr + good_sectors) 2770 max_sector = sector_nr + good_sectors; 2771 nr_sectors = 0; 2772 sync_blocks = 0; 2773 do { 2774 struct page *page; 2775 int len = PAGE_SIZE; 2776 if (sector_nr + (len>>9) > max_sector) 2777 len = (max_sector - sector_nr) << 9; 2778 if (len == 0) 2779 break; 2780 if (sync_blocks == 0) { 2781 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2782 &sync_blocks, still_degraded) && 2783 !conf->fullsync && 2784 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2785 break; 2786 if ((len >> 9) > sync_blocks) 2787 len = sync_blocks<<9; 2788 } 2789 2790 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2791 bio = r1_bio->bios[i]; 2792 if (bio->bi_end_io) { 2793 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2794 if (bio_add_page(bio, page, len, 0) == 0) { 2795 /* stop here */ 2796 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2797 while (i > 0) { 2798 i--; 2799 bio = r1_bio->bios[i]; 2800 if (bio->bi_end_io==NULL) 2801 continue; 2802 /* remove last page from this bio */ 2803 bio->bi_vcnt--; 2804 bio->bi_iter.bi_size -= len; 2805 bio_clear_flag(bio, BIO_SEG_VALID); 2806 } 2807 goto bio_full; 2808 } 2809 } 2810 } 2811 nr_sectors += len>>9; 2812 sector_nr += len>>9; 2813 sync_blocks -= (len>>9); 2814 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2815 bio_full: 2816 r1_bio->sectors = nr_sectors; 2817 2818 if (mddev_is_clustered(mddev) && 2819 conf->cluster_sync_high < sector_nr + nr_sectors) { 2820 conf->cluster_sync_low = mddev->curr_resync_completed; 2821 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2822 /* Send resync message */ 2823 md_cluster_ops->resync_info_update(mddev, 2824 conf->cluster_sync_low, 2825 conf->cluster_sync_high); 2826 } 2827 2828 /* For a user-requested sync, we read all readable devices and do a 2829 * compare 2830 */ 2831 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2832 atomic_set(&r1_bio->remaining, read_targets); 2833 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2834 bio = r1_bio->bios[i]; 2835 if (bio->bi_end_io == end_sync_read) { 2836 read_targets--; 2837 md_sync_acct(bio->bi_bdev, nr_sectors); 2838 if (read_targets == 1) 2839 bio->bi_opf &= ~MD_FAILFAST; 2840 generic_make_request(bio); 2841 } 2842 } 2843 } else { 2844 atomic_set(&r1_bio->remaining, 1); 2845 bio = r1_bio->bios[r1_bio->read_disk]; 2846 md_sync_acct(bio->bi_bdev, nr_sectors); 2847 if (read_targets == 1) 2848 bio->bi_opf &= ~MD_FAILFAST; 2849 generic_make_request(bio); 2850 2851 } 2852 return nr_sectors; 2853 } 2854 2855 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2856 { 2857 if (sectors) 2858 return sectors; 2859 2860 return mddev->dev_sectors; 2861 } 2862 2863 static struct r1conf *setup_conf(struct mddev *mddev) 2864 { 2865 struct r1conf *conf; 2866 int i; 2867 struct raid1_info *disk; 2868 struct md_rdev *rdev; 2869 int err = -ENOMEM; 2870 2871 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2872 if (!conf) 2873 goto abort; 2874 2875 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2876 * mddev->raid_disks * 2, 2877 GFP_KERNEL); 2878 if (!conf->mirrors) 2879 goto abort; 2880 2881 conf->tmppage = alloc_page(GFP_KERNEL); 2882 if (!conf->tmppage) 2883 goto abort; 2884 2885 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2886 if (!conf->poolinfo) 2887 goto abort; 2888 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2889 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2890 r1bio_pool_free, 2891 conf->poolinfo); 2892 if (!conf->r1bio_pool) 2893 goto abort; 2894 2895 conf->poolinfo->mddev = mddev; 2896 2897 err = -EINVAL; 2898 spin_lock_init(&conf->device_lock); 2899 rdev_for_each(rdev, mddev) { 2900 struct request_queue *q; 2901 int disk_idx = rdev->raid_disk; 2902 if (disk_idx >= mddev->raid_disks 2903 || disk_idx < 0) 2904 continue; 2905 if (test_bit(Replacement, &rdev->flags)) 2906 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2907 else 2908 disk = conf->mirrors + disk_idx; 2909 2910 if (disk->rdev) 2911 goto abort; 2912 disk->rdev = rdev; 2913 q = bdev_get_queue(rdev->bdev); 2914 2915 disk->head_position = 0; 2916 disk->seq_start = MaxSector; 2917 } 2918 conf->raid_disks = mddev->raid_disks; 2919 conf->mddev = mddev; 2920 INIT_LIST_HEAD(&conf->retry_list); 2921 INIT_LIST_HEAD(&conf->bio_end_io_list); 2922 2923 spin_lock_init(&conf->resync_lock); 2924 init_waitqueue_head(&conf->wait_barrier); 2925 2926 bio_list_init(&conf->pending_bio_list); 2927 conf->pending_count = 0; 2928 conf->recovery_disabled = mddev->recovery_disabled - 1; 2929 2930 conf->start_next_window = MaxSector; 2931 conf->current_window_requests = conf->next_window_requests = 0; 2932 2933 err = -EIO; 2934 for (i = 0; i < conf->raid_disks * 2; i++) { 2935 2936 disk = conf->mirrors + i; 2937 2938 if (i < conf->raid_disks && 2939 disk[conf->raid_disks].rdev) { 2940 /* This slot has a replacement. */ 2941 if (!disk->rdev) { 2942 /* No original, just make the replacement 2943 * a recovering spare 2944 */ 2945 disk->rdev = 2946 disk[conf->raid_disks].rdev; 2947 disk[conf->raid_disks].rdev = NULL; 2948 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2949 /* Original is not in_sync - bad */ 2950 goto abort; 2951 } 2952 2953 if (!disk->rdev || 2954 !test_bit(In_sync, &disk->rdev->flags)) { 2955 disk->head_position = 0; 2956 if (disk->rdev && 2957 (disk->rdev->saved_raid_disk < 0)) 2958 conf->fullsync = 1; 2959 } 2960 } 2961 2962 err = -ENOMEM; 2963 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2964 if (!conf->thread) 2965 goto abort; 2966 2967 return conf; 2968 2969 abort: 2970 if (conf) { 2971 mempool_destroy(conf->r1bio_pool); 2972 kfree(conf->mirrors); 2973 safe_put_page(conf->tmppage); 2974 kfree(conf->poolinfo); 2975 kfree(conf); 2976 } 2977 return ERR_PTR(err); 2978 } 2979 2980 static void raid1_free(struct mddev *mddev, void *priv); 2981 static int raid1_run(struct mddev *mddev) 2982 { 2983 struct r1conf *conf; 2984 int i; 2985 struct md_rdev *rdev; 2986 int ret; 2987 bool discard_supported = false; 2988 2989 if (mddev->level != 1) { 2990 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 2991 mdname(mddev), mddev->level); 2992 return -EIO; 2993 } 2994 if (mddev->reshape_position != MaxSector) { 2995 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 2996 mdname(mddev)); 2997 return -EIO; 2998 } 2999 /* 3000 * copy the already verified devices into our private RAID1 3001 * bookkeeping area. [whatever we allocate in run(), 3002 * should be freed in raid1_free()] 3003 */ 3004 if (mddev->private == NULL) 3005 conf = setup_conf(mddev); 3006 else 3007 conf = mddev->private; 3008 3009 if (IS_ERR(conf)) 3010 return PTR_ERR(conf); 3011 3012 if (mddev->queue) 3013 blk_queue_max_write_same_sectors(mddev->queue, 0); 3014 3015 rdev_for_each(rdev, mddev) { 3016 if (!mddev->gendisk) 3017 continue; 3018 disk_stack_limits(mddev->gendisk, rdev->bdev, 3019 rdev->data_offset << 9); 3020 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3021 discard_supported = true; 3022 } 3023 3024 mddev->degraded = 0; 3025 for (i=0; i < conf->raid_disks; i++) 3026 if (conf->mirrors[i].rdev == NULL || 3027 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3028 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3029 mddev->degraded++; 3030 3031 if (conf->raid_disks - mddev->degraded == 1) 3032 mddev->recovery_cp = MaxSector; 3033 3034 if (mddev->recovery_cp != MaxSector) 3035 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3036 mdname(mddev)); 3037 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3038 mdname(mddev), mddev->raid_disks - mddev->degraded, 3039 mddev->raid_disks); 3040 3041 /* 3042 * Ok, everything is just fine now 3043 */ 3044 mddev->thread = conf->thread; 3045 conf->thread = NULL; 3046 mddev->private = conf; 3047 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3048 3049 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3050 3051 if (mddev->queue) { 3052 if (discard_supported) 3053 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3054 mddev->queue); 3055 else 3056 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3057 mddev->queue); 3058 } 3059 3060 ret = md_integrity_register(mddev); 3061 if (ret) { 3062 md_unregister_thread(&mddev->thread); 3063 raid1_free(mddev, conf); 3064 } 3065 return ret; 3066 } 3067 3068 static void raid1_free(struct mddev *mddev, void *priv) 3069 { 3070 struct r1conf *conf = priv; 3071 3072 mempool_destroy(conf->r1bio_pool); 3073 kfree(conf->mirrors); 3074 safe_put_page(conf->tmppage); 3075 kfree(conf->poolinfo); 3076 kfree(conf); 3077 } 3078 3079 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3080 { 3081 /* no resync is happening, and there is enough space 3082 * on all devices, so we can resize. 3083 * We need to make sure resync covers any new space. 3084 * If the array is shrinking we should possibly wait until 3085 * any io in the removed space completes, but it hardly seems 3086 * worth it. 3087 */ 3088 sector_t newsize = raid1_size(mddev, sectors, 0); 3089 if (mddev->external_size && 3090 mddev->array_sectors > newsize) 3091 return -EINVAL; 3092 if (mddev->bitmap) { 3093 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3094 if (ret) 3095 return ret; 3096 } 3097 md_set_array_sectors(mddev, newsize); 3098 set_capacity(mddev->gendisk, mddev->array_sectors); 3099 revalidate_disk(mddev->gendisk); 3100 if (sectors > mddev->dev_sectors && 3101 mddev->recovery_cp > mddev->dev_sectors) { 3102 mddev->recovery_cp = mddev->dev_sectors; 3103 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3104 } 3105 mddev->dev_sectors = sectors; 3106 mddev->resync_max_sectors = sectors; 3107 return 0; 3108 } 3109 3110 static int raid1_reshape(struct mddev *mddev) 3111 { 3112 /* We need to: 3113 * 1/ resize the r1bio_pool 3114 * 2/ resize conf->mirrors 3115 * 3116 * We allocate a new r1bio_pool if we can. 3117 * Then raise a device barrier and wait until all IO stops. 3118 * Then resize conf->mirrors and swap in the new r1bio pool. 3119 * 3120 * At the same time, we "pack" the devices so that all the missing 3121 * devices have the higher raid_disk numbers. 3122 */ 3123 mempool_t *newpool, *oldpool; 3124 struct pool_info *newpoolinfo; 3125 struct raid1_info *newmirrors; 3126 struct r1conf *conf = mddev->private; 3127 int cnt, raid_disks; 3128 unsigned long flags; 3129 int d, d2, err; 3130 3131 /* Cannot change chunk_size, layout, or level */ 3132 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3133 mddev->layout != mddev->new_layout || 3134 mddev->level != mddev->new_level) { 3135 mddev->new_chunk_sectors = mddev->chunk_sectors; 3136 mddev->new_layout = mddev->layout; 3137 mddev->new_level = mddev->level; 3138 return -EINVAL; 3139 } 3140 3141 if (!mddev_is_clustered(mddev)) { 3142 err = md_allow_write(mddev); 3143 if (err) 3144 return err; 3145 } 3146 3147 raid_disks = mddev->raid_disks + mddev->delta_disks; 3148 3149 if (raid_disks < conf->raid_disks) { 3150 cnt=0; 3151 for (d= 0; d < conf->raid_disks; d++) 3152 if (conf->mirrors[d].rdev) 3153 cnt++; 3154 if (cnt > raid_disks) 3155 return -EBUSY; 3156 } 3157 3158 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3159 if (!newpoolinfo) 3160 return -ENOMEM; 3161 newpoolinfo->mddev = mddev; 3162 newpoolinfo->raid_disks = raid_disks * 2; 3163 3164 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3165 r1bio_pool_free, newpoolinfo); 3166 if (!newpool) { 3167 kfree(newpoolinfo); 3168 return -ENOMEM; 3169 } 3170 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3171 GFP_KERNEL); 3172 if (!newmirrors) { 3173 kfree(newpoolinfo); 3174 mempool_destroy(newpool); 3175 return -ENOMEM; 3176 } 3177 3178 freeze_array(conf, 0); 3179 3180 /* ok, everything is stopped */ 3181 oldpool = conf->r1bio_pool; 3182 conf->r1bio_pool = newpool; 3183 3184 for (d = d2 = 0; d < conf->raid_disks; d++) { 3185 struct md_rdev *rdev = conf->mirrors[d].rdev; 3186 if (rdev && rdev->raid_disk != d2) { 3187 sysfs_unlink_rdev(mddev, rdev); 3188 rdev->raid_disk = d2; 3189 sysfs_unlink_rdev(mddev, rdev); 3190 if (sysfs_link_rdev(mddev, rdev)) 3191 pr_warn("md/raid1:%s: cannot register rd%d\n", 3192 mdname(mddev), rdev->raid_disk); 3193 } 3194 if (rdev) 3195 newmirrors[d2++].rdev = rdev; 3196 } 3197 kfree(conf->mirrors); 3198 conf->mirrors = newmirrors; 3199 kfree(conf->poolinfo); 3200 conf->poolinfo = newpoolinfo; 3201 3202 spin_lock_irqsave(&conf->device_lock, flags); 3203 mddev->degraded += (raid_disks - conf->raid_disks); 3204 spin_unlock_irqrestore(&conf->device_lock, flags); 3205 conf->raid_disks = mddev->raid_disks = raid_disks; 3206 mddev->delta_disks = 0; 3207 3208 unfreeze_array(conf); 3209 3210 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3211 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3212 md_wakeup_thread(mddev->thread); 3213 3214 mempool_destroy(oldpool); 3215 return 0; 3216 } 3217 3218 static void raid1_quiesce(struct mddev *mddev, int state) 3219 { 3220 struct r1conf *conf = mddev->private; 3221 3222 switch(state) { 3223 case 2: /* wake for suspend */ 3224 wake_up(&conf->wait_barrier); 3225 break; 3226 case 1: 3227 freeze_array(conf, 0); 3228 break; 3229 case 0: 3230 unfreeze_array(conf); 3231 break; 3232 } 3233 } 3234 3235 static void *raid1_takeover(struct mddev *mddev) 3236 { 3237 /* raid1 can take over: 3238 * raid5 with 2 devices, any layout or chunk size 3239 */ 3240 if (mddev->level == 5 && mddev->raid_disks == 2) { 3241 struct r1conf *conf; 3242 mddev->new_level = 1; 3243 mddev->new_layout = 0; 3244 mddev->new_chunk_sectors = 0; 3245 conf = setup_conf(mddev); 3246 if (!IS_ERR(conf)) { 3247 /* Array must appear to be quiesced */ 3248 conf->array_frozen = 1; 3249 clear_bit(MD_HAS_JOURNAL, &mddev->flags); 3250 clear_bit(MD_JOURNAL_CLEAN, &mddev->flags); 3251 } 3252 return conf; 3253 } 3254 return ERR_PTR(-EINVAL); 3255 } 3256 3257 static struct md_personality raid1_personality = 3258 { 3259 .name = "raid1", 3260 .level = 1, 3261 .owner = THIS_MODULE, 3262 .make_request = raid1_make_request, 3263 .run = raid1_run, 3264 .free = raid1_free, 3265 .status = raid1_status, 3266 .error_handler = raid1_error, 3267 .hot_add_disk = raid1_add_disk, 3268 .hot_remove_disk= raid1_remove_disk, 3269 .spare_active = raid1_spare_active, 3270 .sync_request = raid1_sync_request, 3271 .resize = raid1_resize, 3272 .size = raid1_size, 3273 .check_reshape = raid1_reshape, 3274 .quiesce = raid1_quiesce, 3275 .takeover = raid1_takeover, 3276 .congested = raid1_congested, 3277 }; 3278 3279 static int __init raid_init(void) 3280 { 3281 return register_md_personality(&raid1_personality); 3282 } 3283 3284 static void raid_exit(void) 3285 { 3286 unregister_md_personality(&raid1_personality); 3287 } 3288 3289 module_init(raid_init); 3290 module_exit(raid_exit); 3291 MODULE_LICENSE("GPL"); 3292 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3293 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3294 MODULE_ALIAS("md-raid1"); 3295 MODULE_ALIAS("md-level-1"); 3296 3297 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3298