xref: /linux/drivers/md/raid1.c (revision bb1c928df78ee6e3665a0d013e74108cc9abf34b)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41 
42 #include <trace/events/block.h>
43 
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47 
48 #define UNSUPPORTED_MDDEV_FLAGS		\
49 	((1L << MD_HAS_JOURNAL) |	\
50 	 (1L << MD_JOURNAL_CLEAN) |	\
51 	 (1L << MD_HAS_PPL))
52 
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define	NR_RAID1_BIOS 256
57 
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69 
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71 
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77 
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80 
81 #define raid1_log(md, fmt, args...)				\
82 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83 
84 #include "raid1-10.c"
85 
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92 	return get_resync_pages(bio)->raid_bio;
93 }
94 
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99 
100 	/* allocate a r1bio with room for raid_disks entries in the bios array */
101 	return kzalloc(size, gfp_flags);
102 }
103 
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106 	kfree(r1_bio);
107 }
108 
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115 
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118 	struct pool_info *pi = data;
119 	struct r1bio *r1_bio;
120 	struct bio *bio;
121 	int need_pages;
122 	int j;
123 	struct resync_pages *rps;
124 
125 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126 	if (!r1_bio)
127 		return NULL;
128 
129 	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
130 		      gfp_flags);
131 	if (!rps)
132 		goto out_free_r1bio;
133 
134 	/*
135 	 * Allocate bios : 1 for reading, n-1 for writing
136 	 */
137 	for (j = pi->raid_disks ; j-- ; ) {
138 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139 		if (!bio)
140 			goto out_free_bio;
141 		r1_bio->bios[j] = bio;
142 	}
143 	/*
144 	 * Allocate RESYNC_PAGES data pages and attach them to
145 	 * the first bio.
146 	 * If this is a user-requested check/repair, allocate
147 	 * RESYNC_PAGES for each bio.
148 	 */
149 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150 		need_pages = pi->raid_disks;
151 	else
152 		need_pages = 1;
153 	for (j = 0; j < pi->raid_disks; j++) {
154 		struct resync_pages *rp = &rps[j];
155 
156 		bio = r1_bio->bios[j];
157 
158 		if (j < need_pages) {
159 			if (resync_alloc_pages(rp, gfp_flags))
160 				goto out_free_pages;
161 		} else {
162 			memcpy(rp, &rps[0], sizeof(*rp));
163 			resync_get_all_pages(rp);
164 		}
165 
166 		rp->raid_bio = r1_bio;
167 		bio->bi_private = rp;
168 	}
169 
170 	r1_bio->master_bio = NULL;
171 
172 	return r1_bio;
173 
174 out_free_pages:
175 	while (--j >= 0)
176 		resync_free_pages(&rps[j]);
177 
178 out_free_bio:
179 	while (++j < pi->raid_disks)
180 		bio_put(r1_bio->bios[j]);
181 	kfree(rps);
182 
183 out_free_r1bio:
184 	r1bio_pool_free(r1_bio, data);
185 	return NULL;
186 }
187 
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190 	struct pool_info *pi = data;
191 	int i;
192 	struct r1bio *r1bio = __r1_bio;
193 	struct resync_pages *rp = NULL;
194 
195 	for (i = pi->raid_disks; i--; ) {
196 		rp = get_resync_pages(r1bio->bios[i]);
197 		resync_free_pages(rp);
198 		bio_put(r1bio->bios[i]);
199 	}
200 
201 	/* resync pages array stored in the 1st bio's .bi_private */
202 	kfree(rp);
203 
204 	r1bio_pool_free(r1bio, data);
205 }
206 
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209 	int i;
210 
211 	for (i = 0; i < conf->raid_disks * 2; i++) {
212 		struct bio **bio = r1_bio->bios + i;
213 		if (!BIO_SPECIAL(*bio))
214 			bio_put(*bio);
215 		*bio = NULL;
216 	}
217 }
218 
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221 	struct r1conf *conf = r1_bio->mddev->private;
222 
223 	put_all_bios(conf, r1_bio);
224 	mempool_free(r1_bio, conf->r1bio_pool);
225 }
226 
227 static void put_buf(struct r1bio *r1_bio)
228 {
229 	struct r1conf *conf = r1_bio->mddev->private;
230 	sector_t sect = r1_bio->sector;
231 	int i;
232 
233 	for (i = 0; i < conf->raid_disks * 2; i++) {
234 		struct bio *bio = r1_bio->bios[i];
235 		if (bio->bi_end_io)
236 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237 	}
238 
239 	mempool_free(r1_bio, conf->r1buf_pool);
240 
241 	lower_barrier(conf, sect);
242 }
243 
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246 	unsigned long flags;
247 	struct mddev *mddev = r1_bio->mddev;
248 	struct r1conf *conf = mddev->private;
249 	int idx;
250 
251 	idx = sector_to_idx(r1_bio->sector);
252 	spin_lock_irqsave(&conf->device_lock, flags);
253 	list_add(&r1_bio->retry_list, &conf->retry_list);
254 	atomic_inc(&conf->nr_queued[idx]);
255 	spin_unlock_irqrestore(&conf->device_lock, flags);
256 
257 	wake_up(&conf->wait_barrier);
258 	md_wakeup_thread(mddev->thread);
259 }
260 
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268 	struct bio *bio = r1_bio->master_bio;
269 	struct r1conf *conf = r1_bio->mddev->private;
270 
271 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272 		bio->bi_status = BLK_STS_IOERR;
273 
274 	bio_endio(bio);
275 	/*
276 	 * Wake up any possible resync thread that waits for the device
277 	 * to go idle.
278 	 */
279 	allow_barrier(conf, r1_bio->sector);
280 }
281 
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284 	struct bio *bio = r1_bio->master_bio;
285 
286 	/* if nobody has done the final endio yet, do it now */
287 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
290 			 (unsigned long long) bio->bi_iter.bi_sector,
291 			 (unsigned long long) bio_end_sector(bio) - 1);
292 
293 		call_bio_endio(r1_bio);
294 	}
295 	free_r1bio(r1_bio);
296 }
297 
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303 	struct r1conf *conf = r1_bio->mddev->private;
304 
305 	conf->mirrors[disk].head_position =
306 		r1_bio->sector + (r1_bio->sectors);
307 }
308 
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314 	int mirror;
315 	struct r1conf *conf = r1_bio->mddev->private;
316 	int raid_disks = conf->raid_disks;
317 
318 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
319 		if (r1_bio->bios[mirror] == bio)
320 			break;
321 
322 	BUG_ON(mirror == raid_disks * 2);
323 	update_head_pos(mirror, r1_bio);
324 
325 	return mirror;
326 }
327 
328 static void raid1_end_read_request(struct bio *bio)
329 {
330 	int uptodate = !bio->bi_status;
331 	struct r1bio *r1_bio = bio->bi_private;
332 	struct r1conf *conf = r1_bio->mddev->private;
333 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334 
335 	/*
336 	 * this branch is our 'one mirror IO has finished' event handler:
337 	 */
338 	update_head_pos(r1_bio->read_disk, r1_bio);
339 
340 	if (uptodate)
341 		set_bit(R1BIO_Uptodate, &r1_bio->state);
342 	else if (test_bit(FailFast, &rdev->flags) &&
343 		 test_bit(R1BIO_FailFast, &r1_bio->state))
344 		/* This was a fail-fast read so we definitely
345 		 * want to retry */
346 		;
347 	else {
348 		/* If all other devices have failed, we want to return
349 		 * the error upwards rather than fail the last device.
350 		 * Here we redefine "uptodate" to mean "Don't want to retry"
351 		 */
352 		unsigned long flags;
353 		spin_lock_irqsave(&conf->device_lock, flags);
354 		if (r1_bio->mddev->degraded == conf->raid_disks ||
355 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356 		     test_bit(In_sync, &rdev->flags)))
357 			uptodate = 1;
358 		spin_unlock_irqrestore(&conf->device_lock, flags);
359 	}
360 
361 	if (uptodate) {
362 		raid_end_bio_io(r1_bio);
363 		rdev_dec_pending(rdev, conf->mddev);
364 	} else {
365 		/*
366 		 * oops, read error:
367 		 */
368 		char b[BDEVNAME_SIZE];
369 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370 				   mdname(conf->mddev),
371 				   bdevname(rdev->bdev, b),
372 				   (unsigned long long)r1_bio->sector);
373 		set_bit(R1BIO_ReadError, &r1_bio->state);
374 		reschedule_retry(r1_bio);
375 		/* don't drop the reference on read_disk yet */
376 	}
377 }
378 
379 static void close_write(struct r1bio *r1_bio)
380 {
381 	/* it really is the end of this request */
382 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383 		bio_free_pages(r1_bio->behind_master_bio);
384 		bio_put(r1_bio->behind_master_bio);
385 		r1_bio->behind_master_bio = NULL;
386 	}
387 	/* clear the bitmap if all writes complete successfully */
388 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 			r1_bio->sectors,
390 			!test_bit(R1BIO_Degraded, &r1_bio->state),
391 			test_bit(R1BIO_BehindIO, &r1_bio->state));
392 	md_write_end(r1_bio->mddev);
393 }
394 
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397 	if (!atomic_dec_and_test(&r1_bio->remaining))
398 		return;
399 
400 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
401 		reschedule_retry(r1_bio);
402 	else {
403 		close_write(r1_bio);
404 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405 			reschedule_retry(r1_bio);
406 		else
407 			raid_end_bio_io(r1_bio);
408 	}
409 }
410 
411 static void raid1_end_write_request(struct bio *bio)
412 {
413 	struct r1bio *r1_bio = bio->bi_private;
414 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415 	struct r1conf *conf = r1_bio->mddev->private;
416 	struct bio *to_put = NULL;
417 	int mirror = find_bio_disk(r1_bio, bio);
418 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419 	bool discard_error;
420 
421 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422 
423 	/*
424 	 * 'one mirror IO has finished' event handler:
425 	 */
426 	if (bio->bi_status && !discard_error) {
427 		set_bit(WriteErrorSeen,	&rdev->flags);
428 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
429 			set_bit(MD_RECOVERY_NEEDED, &
430 				conf->mddev->recovery);
431 
432 		if (test_bit(FailFast, &rdev->flags) &&
433 		    (bio->bi_opf & MD_FAILFAST) &&
434 		    /* We never try FailFast to WriteMostly devices */
435 		    !test_bit(WriteMostly, &rdev->flags)) {
436 			md_error(r1_bio->mddev, rdev);
437 			if (!test_bit(Faulty, &rdev->flags))
438 				/* This is the only remaining device,
439 				 * We need to retry the write without
440 				 * FailFast
441 				 */
442 				set_bit(R1BIO_WriteError, &r1_bio->state);
443 			else {
444 				/* Finished with this branch */
445 				r1_bio->bios[mirror] = NULL;
446 				to_put = bio;
447 			}
448 		} else
449 			set_bit(R1BIO_WriteError, &r1_bio->state);
450 	} else {
451 		/*
452 		 * Set R1BIO_Uptodate in our master bio, so that we
453 		 * will return a good error code for to the higher
454 		 * levels even if IO on some other mirrored buffer
455 		 * fails.
456 		 *
457 		 * The 'master' represents the composite IO operation
458 		 * to user-side. So if something waits for IO, then it
459 		 * will wait for the 'master' bio.
460 		 */
461 		sector_t first_bad;
462 		int bad_sectors;
463 
464 		r1_bio->bios[mirror] = NULL;
465 		to_put = bio;
466 		/*
467 		 * Do not set R1BIO_Uptodate if the current device is
468 		 * rebuilding or Faulty. This is because we cannot use
469 		 * such device for properly reading the data back (we could
470 		 * potentially use it, if the current write would have felt
471 		 * before rdev->recovery_offset, but for simplicity we don't
472 		 * check this here.
473 		 */
474 		if (test_bit(In_sync, &rdev->flags) &&
475 		    !test_bit(Faulty, &rdev->flags))
476 			set_bit(R1BIO_Uptodate, &r1_bio->state);
477 
478 		/* Maybe we can clear some bad blocks. */
479 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480 				&first_bad, &bad_sectors) && !discard_error) {
481 			r1_bio->bios[mirror] = IO_MADE_GOOD;
482 			set_bit(R1BIO_MadeGood, &r1_bio->state);
483 		}
484 	}
485 
486 	if (behind) {
487 		if (test_bit(WriteMostly, &rdev->flags))
488 			atomic_dec(&r1_bio->behind_remaining);
489 
490 		/*
491 		 * In behind mode, we ACK the master bio once the I/O
492 		 * has safely reached all non-writemostly
493 		 * disks. Setting the Returned bit ensures that this
494 		 * gets done only once -- we don't ever want to return
495 		 * -EIO here, instead we'll wait
496 		 */
497 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499 			/* Maybe we can return now */
500 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501 				struct bio *mbio = r1_bio->master_bio;
502 				pr_debug("raid1: behind end write sectors"
503 					 " %llu-%llu\n",
504 					 (unsigned long long) mbio->bi_iter.bi_sector,
505 					 (unsigned long long) bio_end_sector(mbio) - 1);
506 				call_bio_endio(r1_bio);
507 			}
508 		}
509 	}
510 	if (r1_bio->bios[mirror] == NULL)
511 		rdev_dec_pending(rdev, conf->mddev);
512 
513 	/*
514 	 * Let's see if all mirrored write operations have finished
515 	 * already.
516 	 */
517 	r1_bio_write_done(r1_bio);
518 
519 	if (to_put)
520 		bio_put(to_put);
521 }
522 
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524 					  sector_t sectors)
525 {
526 	sector_t len;
527 
528 	WARN_ON(sectors == 0);
529 	/*
530 	 * len is the number of sectors from start_sector to end of the
531 	 * barrier unit which start_sector belongs to.
532 	 */
533 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534 	      start_sector;
535 
536 	if (len > sectors)
537 		len = sectors;
538 
539 	return len;
540 }
541 
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558 	const sector_t this_sector = r1_bio->sector;
559 	int sectors;
560 	int best_good_sectors;
561 	int best_disk, best_dist_disk, best_pending_disk;
562 	int has_nonrot_disk;
563 	int disk;
564 	sector_t best_dist;
565 	unsigned int min_pending;
566 	struct md_rdev *rdev;
567 	int choose_first;
568 	int choose_next_idle;
569 
570 	rcu_read_lock();
571 	/*
572 	 * Check if we can balance. We can balance on the whole
573 	 * device if no resync is going on, or below the resync window.
574 	 * We take the first readable disk when above the resync window.
575 	 */
576  retry:
577 	sectors = r1_bio->sectors;
578 	best_disk = -1;
579 	best_dist_disk = -1;
580 	best_dist = MaxSector;
581 	best_pending_disk = -1;
582 	min_pending = UINT_MAX;
583 	best_good_sectors = 0;
584 	has_nonrot_disk = 0;
585 	choose_next_idle = 0;
586 	clear_bit(R1BIO_FailFast, &r1_bio->state);
587 
588 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589 	    (mddev_is_clustered(conf->mddev) &&
590 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591 		    this_sector + sectors)))
592 		choose_first = 1;
593 	else
594 		choose_first = 0;
595 
596 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597 		sector_t dist;
598 		sector_t first_bad;
599 		int bad_sectors;
600 		unsigned int pending;
601 		bool nonrot;
602 
603 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
604 		if (r1_bio->bios[disk] == IO_BLOCKED
605 		    || rdev == NULL
606 		    || test_bit(Faulty, &rdev->flags))
607 			continue;
608 		if (!test_bit(In_sync, &rdev->flags) &&
609 		    rdev->recovery_offset < this_sector + sectors)
610 			continue;
611 		if (test_bit(WriteMostly, &rdev->flags)) {
612 			/* Don't balance among write-mostly, just
613 			 * use the first as a last resort */
614 			if (best_dist_disk < 0) {
615 				if (is_badblock(rdev, this_sector, sectors,
616 						&first_bad, &bad_sectors)) {
617 					if (first_bad <= this_sector)
618 						/* Cannot use this */
619 						continue;
620 					best_good_sectors = first_bad - this_sector;
621 				} else
622 					best_good_sectors = sectors;
623 				best_dist_disk = disk;
624 				best_pending_disk = disk;
625 			}
626 			continue;
627 		}
628 		/* This is a reasonable device to use.  It might
629 		 * even be best.
630 		 */
631 		if (is_badblock(rdev, this_sector, sectors,
632 				&first_bad, &bad_sectors)) {
633 			if (best_dist < MaxSector)
634 				/* already have a better device */
635 				continue;
636 			if (first_bad <= this_sector) {
637 				/* cannot read here. If this is the 'primary'
638 				 * device, then we must not read beyond
639 				 * bad_sectors from another device..
640 				 */
641 				bad_sectors -= (this_sector - first_bad);
642 				if (choose_first && sectors > bad_sectors)
643 					sectors = bad_sectors;
644 				if (best_good_sectors > sectors)
645 					best_good_sectors = sectors;
646 
647 			} else {
648 				sector_t good_sectors = first_bad - this_sector;
649 				if (good_sectors > best_good_sectors) {
650 					best_good_sectors = good_sectors;
651 					best_disk = disk;
652 				}
653 				if (choose_first)
654 					break;
655 			}
656 			continue;
657 		} else {
658 			if ((sectors > best_good_sectors) && (best_disk >= 0))
659 				best_disk = -1;
660 			best_good_sectors = sectors;
661 		}
662 
663 		if (best_disk >= 0)
664 			/* At least two disks to choose from so failfast is OK */
665 			set_bit(R1BIO_FailFast, &r1_bio->state);
666 
667 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668 		has_nonrot_disk |= nonrot;
669 		pending = atomic_read(&rdev->nr_pending);
670 		dist = abs(this_sector - conf->mirrors[disk].head_position);
671 		if (choose_first) {
672 			best_disk = disk;
673 			break;
674 		}
675 		/* Don't change to another disk for sequential reads */
676 		if (conf->mirrors[disk].next_seq_sect == this_sector
677 		    || dist == 0) {
678 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679 			struct raid1_info *mirror = &conf->mirrors[disk];
680 
681 			best_disk = disk;
682 			/*
683 			 * If buffered sequential IO size exceeds optimal
684 			 * iosize, check if there is idle disk. If yes, choose
685 			 * the idle disk. read_balance could already choose an
686 			 * idle disk before noticing it's a sequential IO in
687 			 * this disk. This doesn't matter because this disk
688 			 * will idle, next time it will be utilized after the
689 			 * first disk has IO size exceeds optimal iosize. In
690 			 * this way, iosize of the first disk will be optimal
691 			 * iosize at least. iosize of the second disk might be
692 			 * small, but not a big deal since when the second disk
693 			 * starts IO, the first disk is likely still busy.
694 			 */
695 			if (nonrot && opt_iosize > 0 &&
696 			    mirror->seq_start != MaxSector &&
697 			    mirror->next_seq_sect > opt_iosize &&
698 			    mirror->next_seq_sect - opt_iosize >=
699 			    mirror->seq_start) {
700 				choose_next_idle = 1;
701 				continue;
702 			}
703 			break;
704 		}
705 
706 		if (choose_next_idle)
707 			continue;
708 
709 		if (min_pending > pending) {
710 			min_pending = pending;
711 			best_pending_disk = disk;
712 		}
713 
714 		if (dist < best_dist) {
715 			best_dist = dist;
716 			best_dist_disk = disk;
717 		}
718 	}
719 
720 	/*
721 	 * If all disks are rotational, choose the closest disk. If any disk is
722 	 * non-rotational, choose the disk with less pending request even the
723 	 * disk is rotational, which might/might not be optimal for raids with
724 	 * mixed ratation/non-rotational disks depending on workload.
725 	 */
726 	if (best_disk == -1) {
727 		if (has_nonrot_disk || min_pending == 0)
728 			best_disk = best_pending_disk;
729 		else
730 			best_disk = best_dist_disk;
731 	}
732 
733 	if (best_disk >= 0) {
734 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735 		if (!rdev)
736 			goto retry;
737 		atomic_inc(&rdev->nr_pending);
738 		sectors = best_good_sectors;
739 
740 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741 			conf->mirrors[best_disk].seq_start = this_sector;
742 
743 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744 	}
745 	rcu_read_unlock();
746 	*max_sectors = sectors;
747 
748 	return best_disk;
749 }
750 
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753 	struct r1conf *conf = mddev->private;
754 	int i, ret = 0;
755 
756 	if ((bits & (1 << WB_async_congested)) &&
757 	    conf->pending_count >= max_queued_requests)
758 		return 1;
759 
760 	rcu_read_lock();
761 	for (i = 0; i < conf->raid_disks * 2; i++) {
762 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
764 			struct request_queue *q = bdev_get_queue(rdev->bdev);
765 
766 			BUG_ON(!q);
767 
768 			/* Note the '|| 1' - when read_balance prefers
769 			 * non-congested targets, it can be removed
770 			 */
771 			if ((bits & (1 << WB_async_congested)) || 1)
772 				ret |= bdi_congested(q->backing_dev_info, bits);
773 			else
774 				ret &= bdi_congested(q->backing_dev_info, bits);
775 		}
776 	}
777 	rcu_read_unlock();
778 	return ret;
779 }
780 
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 	bitmap_unplug(conf->mddev->bitmap);
785 	wake_up(&conf->wait_barrier);
786 
787 	while (bio) { /* submit pending writes */
788 		struct bio *next = bio->bi_next;
789 		struct md_rdev *rdev = (void*)bio->bi_bdev;
790 		bio->bi_next = NULL;
791 		bio->bi_bdev = rdev->bdev;
792 		if (test_bit(Faulty, &rdev->flags)) {
793 			bio_io_error(bio);
794 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795 				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 			/* Just ignore it */
797 			bio_endio(bio);
798 		else
799 			generic_make_request(bio);
800 		bio = next;
801 	}
802 }
803 
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806 	/* Any writes that have been queued but are awaiting
807 	 * bitmap updates get flushed here.
808 	 */
809 	spin_lock_irq(&conf->device_lock);
810 
811 	if (conf->pending_bio_list.head) {
812 		struct bio *bio;
813 		bio = bio_list_get(&conf->pending_bio_list);
814 		conf->pending_count = 0;
815 		spin_unlock_irq(&conf->device_lock);
816 		flush_bio_list(conf, bio);
817 	} else
818 		spin_unlock_irq(&conf->device_lock);
819 }
820 
821 /* Barriers....
822  * Sometimes we need to suspend IO while we do something else,
823  * either some resync/recovery, or reconfigure the array.
824  * To do this we raise a 'barrier'.
825  * The 'barrier' is a counter that can be raised multiple times
826  * to count how many activities are happening which preclude
827  * normal IO.
828  * We can only raise the barrier if there is no pending IO.
829  * i.e. if nr_pending == 0.
830  * We choose only to raise the barrier if no-one is waiting for the
831  * barrier to go down.  This means that as soon as an IO request
832  * is ready, no other operations which require a barrier will start
833  * until the IO request has had a chance.
834  *
835  * So: regular IO calls 'wait_barrier'.  When that returns there
836  *    is no backgroup IO happening,  It must arrange to call
837  *    allow_barrier when it has finished its IO.
838  * backgroup IO calls must call raise_barrier.  Once that returns
839  *    there is no normal IO happeing.  It must arrange to call
840  *    lower_barrier when the particular background IO completes.
841  */
842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
843 {
844 	int idx = sector_to_idx(sector_nr);
845 
846 	spin_lock_irq(&conf->resync_lock);
847 
848 	/* Wait until no block IO is waiting */
849 	wait_event_lock_irq(conf->wait_barrier,
850 			    !atomic_read(&conf->nr_waiting[idx]),
851 			    conf->resync_lock);
852 
853 	/* block any new IO from starting */
854 	atomic_inc(&conf->barrier[idx]);
855 	/*
856 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
857 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
858 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
859 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
860 	 * be fetched before conf->barrier[idx] is increased. Otherwise
861 	 * there will be a race between raise_barrier() and _wait_barrier().
862 	 */
863 	smp_mb__after_atomic();
864 
865 	/* For these conditions we must wait:
866 	 * A: while the array is in frozen state
867 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
868 	 *    existing in corresponding I/O barrier bucket.
869 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
870 	 *    max resync count which allowed on current I/O barrier bucket.
871 	 */
872 	wait_event_lock_irq(conf->wait_barrier,
873 			    !conf->array_frozen &&
874 			     !atomic_read(&conf->nr_pending[idx]) &&
875 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
876 			    conf->resync_lock);
877 
878 	atomic_inc(&conf->nr_sync_pending);
879 	spin_unlock_irq(&conf->resync_lock);
880 }
881 
882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
883 {
884 	int idx = sector_to_idx(sector_nr);
885 
886 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
887 
888 	atomic_dec(&conf->barrier[idx]);
889 	atomic_dec(&conf->nr_sync_pending);
890 	wake_up(&conf->wait_barrier);
891 }
892 
893 static void _wait_barrier(struct r1conf *conf, int idx)
894 {
895 	/*
896 	 * We need to increase conf->nr_pending[idx] very early here,
897 	 * then raise_barrier() can be blocked when it waits for
898 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
899 	 * conf->resync_lock when there is no barrier raised in same
900 	 * barrier unit bucket. Also if the array is frozen, I/O
901 	 * should be blocked until array is unfrozen.
902 	 */
903 	atomic_inc(&conf->nr_pending[idx]);
904 	/*
905 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
906 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
907 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
908 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
909 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
910 	 * will be a race between _wait_barrier() and raise_barrier().
911 	 */
912 	smp_mb__after_atomic();
913 
914 	/*
915 	 * Don't worry about checking two atomic_t variables at same time
916 	 * here. If during we check conf->barrier[idx], the array is
917 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
918 	 * 0, it is safe to return and make the I/O continue. Because the
919 	 * array is frozen, all I/O returned here will eventually complete
920 	 * or be queued, no race will happen. See code comment in
921 	 * frozen_array().
922 	 */
923 	if (!READ_ONCE(conf->array_frozen) &&
924 	    !atomic_read(&conf->barrier[idx]))
925 		return;
926 
927 	/*
928 	 * After holding conf->resync_lock, conf->nr_pending[idx]
929 	 * should be decreased before waiting for barrier to drop.
930 	 * Otherwise, we may encounter a race condition because
931 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
932 	 * to be 0 at same time.
933 	 */
934 	spin_lock_irq(&conf->resync_lock);
935 	atomic_inc(&conf->nr_waiting[idx]);
936 	atomic_dec(&conf->nr_pending[idx]);
937 	/*
938 	 * In case freeze_array() is waiting for
939 	 * get_unqueued_pending() == extra
940 	 */
941 	wake_up(&conf->wait_barrier);
942 	/* Wait for the barrier in same barrier unit bucket to drop. */
943 	wait_event_lock_irq(conf->wait_barrier,
944 			    !conf->array_frozen &&
945 			     !atomic_read(&conf->barrier[idx]),
946 			    conf->resync_lock);
947 	atomic_inc(&conf->nr_pending[idx]);
948 	atomic_dec(&conf->nr_waiting[idx]);
949 	spin_unlock_irq(&conf->resync_lock);
950 }
951 
952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
953 {
954 	int idx = sector_to_idx(sector_nr);
955 
956 	/*
957 	 * Very similar to _wait_barrier(). The difference is, for read
958 	 * I/O we don't need wait for sync I/O, but if the whole array
959 	 * is frozen, the read I/O still has to wait until the array is
960 	 * unfrozen. Since there is no ordering requirement with
961 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
962 	 */
963 	atomic_inc(&conf->nr_pending[idx]);
964 
965 	if (!READ_ONCE(conf->array_frozen))
966 		return;
967 
968 	spin_lock_irq(&conf->resync_lock);
969 	atomic_inc(&conf->nr_waiting[idx]);
970 	atomic_dec(&conf->nr_pending[idx]);
971 	/*
972 	 * In case freeze_array() is waiting for
973 	 * get_unqueued_pending() == extra
974 	 */
975 	wake_up(&conf->wait_barrier);
976 	/* Wait for array to be unfrozen */
977 	wait_event_lock_irq(conf->wait_barrier,
978 			    !conf->array_frozen,
979 			    conf->resync_lock);
980 	atomic_inc(&conf->nr_pending[idx]);
981 	atomic_dec(&conf->nr_waiting[idx]);
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 
985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
986 {
987 	int idx = sector_to_idx(sector_nr);
988 
989 	_wait_barrier(conf, idx);
990 }
991 
992 static void wait_all_barriers(struct r1conf *conf)
993 {
994 	int idx;
995 
996 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
997 		_wait_barrier(conf, idx);
998 }
999 
1000 static void _allow_barrier(struct r1conf *conf, int idx)
1001 {
1002 	atomic_dec(&conf->nr_pending[idx]);
1003 	wake_up(&conf->wait_barrier);
1004 }
1005 
1006 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1007 {
1008 	int idx = sector_to_idx(sector_nr);
1009 
1010 	_allow_barrier(conf, idx);
1011 }
1012 
1013 static void allow_all_barriers(struct r1conf *conf)
1014 {
1015 	int idx;
1016 
1017 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1018 		_allow_barrier(conf, idx);
1019 }
1020 
1021 /* conf->resync_lock should be held */
1022 static int get_unqueued_pending(struct r1conf *conf)
1023 {
1024 	int idx, ret;
1025 
1026 	ret = atomic_read(&conf->nr_sync_pending);
1027 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1028 		ret += atomic_read(&conf->nr_pending[idx]) -
1029 			atomic_read(&conf->nr_queued[idx]);
1030 
1031 	return ret;
1032 }
1033 
1034 static void freeze_array(struct r1conf *conf, int extra)
1035 {
1036 	/* Stop sync I/O and normal I/O and wait for everything to
1037 	 * go quiet.
1038 	 * This is called in two situations:
1039 	 * 1) management command handlers (reshape, remove disk, quiesce).
1040 	 * 2) one normal I/O request failed.
1041 
1042 	 * After array_frozen is set to 1, new sync IO will be blocked at
1043 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1044 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1045 	 * queued. When everything goes quite, there are only queued I/Os left.
1046 
1047 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1048 	 * barrier bucket index which this I/O request hits. When all sync and
1049 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1050 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1051 	 * in handle_read_error(), we may call freeze_array() before trying to
1052 	 * fix the read error. In this case, the error read I/O is not queued,
1053 	 * so get_unqueued_pending() == 1.
1054 	 *
1055 	 * Therefore before this function returns, we need to wait until
1056 	 * get_unqueued_pendings(conf) gets equal to extra. For
1057 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1058 	 */
1059 	spin_lock_irq(&conf->resync_lock);
1060 	conf->array_frozen = 1;
1061 	raid1_log(conf->mddev, "wait freeze");
1062 	wait_event_lock_irq_cmd(
1063 		conf->wait_barrier,
1064 		get_unqueued_pending(conf) == extra,
1065 		conf->resync_lock,
1066 		flush_pending_writes(conf));
1067 	spin_unlock_irq(&conf->resync_lock);
1068 }
1069 static void unfreeze_array(struct r1conf *conf)
1070 {
1071 	/* reverse the effect of the freeze */
1072 	spin_lock_irq(&conf->resync_lock);
1073 	conf->array_frozen = 0;
1074 	spin_unlock_irq(&conf->resync_lock);
1075 	wake_up(&conf->wait_barrier);
1076 }
1077 
1078 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1079 					   struct bio *bio)
1080 {
1081 	int size = bio->bi_iter.bi_size;
1082 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1083 	int i = 0;
1084 	struct bio *behind_bio = NULL;
1085 
1086 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1087 	if (!behind_bio)
1088 		return;
1089 
1090 	/* discard op, we don't support writezero/writesame yet */
1091 	if (!bio_has_data(bio)) {
1092 		behind_bio->bi_iter.bi_size = size;
1093 		goto skip_copy;
1094 	}
1095 
1096 	while (i < vcnt && size) {
1097 		struct page *page;
1098 		int len = min_t(int, PAGE_SIZE, size);
1099 
1100 		page = alloc_page(GFP_NOIO);
1101 		if (unlikely(!page))
1102 			goto free_pages;
1103 
1104 		bio_add_page(behind_bio, page, len, 0);
1105 
1106 		size -= len;
1107 		i++;
1108 	}
1109 
1110 	bio_copy_data(behind_bio, bio);
1111 skip_copy:
1112 	r1_bio->behind_master_bio = behind_bio;;
1113 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1114 
1115 	return;
1116 
1117 free_pages:
1118 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1119 		 bio->bi_iter.bi_size);
1120 	bio_free_pages(behind_bio);
1121 	bio_put(behind_bio);
1122 }
1123 
1124 struct raid1_plug_cb {
1125 	struct blk_plug_cb	cb;
1126 	struct bio_list		pending;
1127 	int			pending_cnt;
1128 };
1129 
1130 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1131 {
1132 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1133 						  cb);
1134 	struct mddev *mddev = plug->cb.data;
1135 	struct r1conf *conf = mddev->private;
1136 	struct bio *bio;
1137 
1138 	if (from_schedule || current->bio_list) {
1139 		spin_lock_irq(&conf->device_lock);
1140 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1141 		conf->pending_count += plug->pending_cnt;
1142 		spin_unlock_irq(&conf->device_lock);
1143 		wake_up(&conf->wait_barrier);
1144 		md_wakeup_thread(mddev->thread);
1145 		kfree(plug);
1146 		return;
1147 	}
1148 
1149 	/* we aren't scheduling, so we can do the write-out directly. */
1150 	bio = bio_list_get(&plug->pending);
1151 	flush_bio_list(conf, bio);
1152 	kfree(plug);
1153 }
1154 
1155 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1156 {
1157 	r1_bio->master_bio = bio;
1158 	r1_bio->sectors = bio_sectors(bio);
1159 	r1_bio->state = 0;
1160 	r1_bio->mddev = mddev;
1161 	r1_bio->sector = bio->bi_iter.bi_sector;
1162 }
1163 
1164 static inline struct r1bio *
1165 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1166 {
1167 	struct r1conf *conf = mddev->private;
1168 	struct r1bio *r1_bio;
1169 
1170 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1171 	/* Ensure no bio records IO_BLOCKED */
1172 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1173 	init_r1bio(r1_bio, mddev, bio);
1174 	return r1_bio;
1175 }
1176 
1177 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1178 			       int max_read_sectors, struct r1bio *r1_bio)
1179 {
1180 	struct r1conf *conf = mddev->private;
1181 	struct raid1_info *mirror;
1182 	struct bio *read_bio;
1183 	struct bitmap *bitmap = mddev->bitmap;
1184 	const int op = bio_op(bio);
1185 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1186 	int max_sectors;
1187 	int rdisk;
1188 	bool print_msg = !!r1_bio;
1189 	char b[BDEVNAME_SIZE];
1190 
1191 	/*
1192 	 * If r1_bio is set, we are blocking the raid1d thread
1193 	 * so there is a tiny risk of deadlock.  So ask for
1194 	 * emergency memory if needed.
1195 	 */
1196 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1197 
1198 	if (print_msg) {
1199 		/* Need to get the block device name carefully */
1200 		struct md_rdev *rdev;
1201 		rcu_read_lock();
1202 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1203 		if (rdev)
1204 			bdevname(rdev->bdev, b);
1205 		else
1206 			strcpy(b, "???");
1207 		rcu_read_unlock();
1208 	}
1209 
1210 	/*
1211 	 * Still need barrier for READ in case that whole
1212 	 * array is frozen.
1213 	 */
1214 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1215 
1216 	if (!r1_bio)
1217 		r1_bio = alloc_r1bio(mddev, bio);
1218 	else
1219 		init_r1bio(r1_bio, mddev, bio);
1220 	r1_bio->sectors = max_read_sectors;
1221 
1222 	/*
1223 	 * make_request() can abort the operation when read-ahead is being
1224 	 * used and no empty request is available.
1225 	 */
1226 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1227 
1228 	if (rdisk < 0) {
1229 		/* couldn't find anywhere to read from */
1230 		if (print_msg) {
1231 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1232 					    mdname(mddev),
1233 					    b,
1234 					    (unsigned long long)r1_bio->sector);
1235 		}
1236 		raid_end_bio_io(r1_bio);
1237 		return;
1238 	}
1239 	mirror = conf->mirrors + rdisk;
1240 
1241 	if (print_msg)
1242 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243 				    mdname(mddev),
1244 				    (unsigned long long)r1_bio->sector,
1245 				    bdevname(mirror->rdev->bdev, b));
1246 
1247 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1248 	    bitmap) {
1249 		/*
1250 		 * Reading from a write-mostly device must take care not to
1251 		 * over-take any writes that are 'behind'
1252 		 */
1253 		raid1_log(mddev, "wait behind writes");
1254 		wait_event(bitmap->behind_wait,
1255 			   atomic_read(&bitmap->behind_writes) == 0);
1256 	}
1257 
1258 	if (max_sectors < bio_sectors(bio)) {
1259 		struct bio *split = bio_split(bio, max_sectors,
1260 					      gfp, conf->bio_split);
1261 		bio_chain(split, bio);
1262 		generic_make_request(bio);
1263 		bio = split;
1264 		r1_bio->master_bio = bio;
1265 		r1_bio->sectors = max_sectors;
1266 	}
1267 
1268 	r1_bio->read_disk = rdisk;
1269 
1270 	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
1271 
1272 	r1_bio->bios[rdisk] = read_bio;
1273 
1274 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1275 		mirror->rdev->data_offset;
1276 	read_bio->bi_bdev = mirror->rdev->bdev;
1277 	read_bio->bi_end_io = raid1_end_read_request;
1278 	bio_set_op_attrs(read_bio, op, do_sync);
1279 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1280 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1281 	        read_bio->bi_opf |= MD_FAILFAST;
1282 	read_bio->bi_private = r1_bio;
1283 
1284 	if (mddev->gendisk)
1285 	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1286 	                              read_bio, disk_devt(mddev->gendisk),
1287 	                              r1_bio->sector);
1288 
1289 	generic_make_request(read_bio);
1290 }
1291 
1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1293 				int max_write_sectors)
1294 {
1295 	struct r1conf *conf = mddev->private;
1296 	struct r1bio *r1_bio;
1297 	int i, disks;
1298 	struct bitmap *bitmap = mddev->bitmap;
1299 	unsigned long flags;
1300 	struct md_rdev *blocked_rdev;
1301 	struct blk_plug_cb *cb;
1302 	struct raid1_plug_cb *plug = NULL;
1303 	int first_clone;
1304 	int max_sectors;
1305 
1306 	/*
1307 	 * Register the new request and wait if the reconstruction
1308 	 * thread has put up a bar for new requests.
1309 	 * Continue immediately if no resync is active currently.
1310 	 */
1311 
1312 
1313 	if ((bio_end_sector(bio) > mddev->suspend_lo &&
1314 	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1315 	    (mddev_is_clustered(mddev) &&
1316 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1317 		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1318 
1319 		/*
1320 		 * As the suspend_* range is controlled by userspace, we want
1321 		 * an interruptible wait.
1322 		 */
1323 		DEFINE_WAIT(w);
1324 		for (;;) {
1325 			sigset_t full, old;
1326 			prepare_to_wait(&conf->wait_barrier,
1327 					&w, TASK_INTERRUPTIBLE);
1328 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1329 			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1330 			    (mddev_is_clustered(mddev) &&
1331 			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1332 				     bio->bi_iter.bi_sector,
1333 				     bio_end_sector(bio))))
1334 				break;
1335 			sigfillset(&full);
1336 			sigprocmask(SIG_BLOCK, &full, &old);
1337 			schedule();
1338 			sigprocmask(SIG_SETMASK, &old, NULL);
1339 		}
1340 		finish_wait(&conf->wait_barrier, &w);
1341 	}
1342 	wait_barrier(conf, bio->bi_iter.bi_sector);
1343 
1344 	r1_bio = alloc_r1bio(mddev, bio);
1345 	r1_bio->sectors = max_write_sectors;
1346 
1347 	if (conf->pending_count >= max_queued_requests) {
1348 		md_wakeup_thread(mddev->thread);
1349 		raid1_log(mddev, "wait queued");
1350 		wait_event(conf->wait_barrier,
1351 			   conf->pending_count < max_queued_requests);
1352 	}
1353 	/* first select target devices under rcu_lock and
1354 	 * inc refcount on their rdev.  Record them by setting
1355 	 * bios[x] to bio
1356 	 * If there are known/acknowledged bad blocks on any device on
1357 	 * which we have seen a write error, we want to avoid writing those
1358 	 * blocks.
1359 	 * This potentially requires several writes to write around
1360 	 * the bad blocks.  Each set of writes gets it's own r1bio
1361 	 * with a set of bios attached.
1362 	 */
1363 
1364 	disks = conf->raid_disks * 2;
1365  retry_write:
1366 	blocked_rdev = NULL;
1367 	rcu_read_lock();
1368 	max_sectors = r1_bio->sectors;
1369 	for (i = 0;  i < disks; i++) {
1370 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1371 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1372 			atomic_inc(&rdev->nr_pending);
1373 			blocked_rdev = rdev;
1374 			break;
1375 		}
1376 		r1_bio->bios[i] = NULL;
1377 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1378 			if (i < conf->raid_disks)
1379 				set_bit(R1BIO_Degraded, &r1_bio->state);
1380 			continue;
1381 		}
1382 
1383 		atomic_inc(&rdev->nr_pending);
1384 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1385 			sector_t first_bad;
1386 			int bad_sectors;
1387 			int is_bad;
1388 
1389 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1390 					     &first_bad, &bad_sectors);
1391 			if (is_bad < 0) {
1392 				/* mustn't write here until the bad block is
1393 				 * acknowledged*/
1394 				set_bit(BlockedBadBlocks, &rdev->flags);
1395 				blocked_rdev = rdev;
1396 				break;
1397 			}
1398 			if (is_bad && first_bad <= r1_bio->sector) {
1399 				/* Cannot write here at all */
1400 				bad_sectors -= (r1_bio->sector - first_bad);
1401 				if (bad_sectors < max_sectors)
1402 					/* mustn't write more than bad_sectors
1403 					 * to other devices yet
1404 					 */
1405 					max_sectors = bad_sectors;
1406 				rdev_dec_pending(rdev, mddev);
1407 				/* We don't set R1BIO_Degraded as that
1408 				 * only applies if the disk is
1409 				 * missing, so it might be re-added,
1410 				 * and we want to know to recover this
1411 				 * chunk.
1412 				 * In this case the device is here,
1413 				 * and the fact that this chunk is not
1414 				 * in-sync is recorded in the bad
1415 				 * block log
1416 				 */
1417 				continue;
1418 			}
1419 			if (is_bad) {
1420 				int good_sectors = first_bad - r1_bio->sector;
1421 				if (good_sectors < max_sectors)
1422 					max_sectors = good_sectors;
1423 			}
1424 		}
1425 		r1_bio->bios[i] = bio;
1426 	}
1427 	rcu_read_unlock();
1428 
1429 	if (unlikely(blocked_rdev)) {
1430 		/* Wait for this device to become unblocked */
1431 		int j;
1432 
1433 		for (j = 0; j < i; j++)
1434 			if (r1_bio->bios[j])
1435 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1436 		r1_bio->state = 0;
1437 		allow_barrier(conf, bio->bi_iter.bi_sector);
1438 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1439 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1440 		wait_barrier(conf, bio->bi_iter.bi_sector);
1441 		goto retry_write;
1442 	}
1443 
1444 	if (max_sectors < bio_sectors(bio)) {
1445 		struct bio *split = bio_split(bio, max_sectors,
1446 					      GFP_NOIO, conf->bio_split);
1447 		bio_chain(split, bio);
1448 		generic_make_request(bio);
1449 		bio = split;
1450 		r1_bio->master_bio = bio;
1451 		r1_bio->sectors = max_sectors;
1452 	}
1453 
1454 	atomic_set(&r1_bio->remaining, 1);
1455 	atomic_set(&r1_bio->behind_remaining, 0);
1456 
1457 	first_clone = 1;
1458 
1459 	for (i = 0; i < disks; i++) {
1460 		struct bio *mbio = NULL;
1461 		if (!r1_bio->bios[i])
1462 			continue;
1463 
1464 
1465 		if (first_clone) {
1466 			/* do behind I/O ?
1467 			 * Not if there are too many, or cannot
1468 			 * allocate memory, or a reader on WriteMostly
1469 			 * is waiting for behind writes to flush */
1470 			if (bitmap &&
1471 			    (atomic_read(&bitmap->behind_writes)
1472 			     < mddev->bitmap_info.max_write_behind) &&
1473 			    !waitqueue_active(&bitmap->behind_wait)) {
1474 				alloc_behind_master_bio(r1_bio, bio);
1475 			}
1476 
1477 			bitmap_startwrite(bitmap, r1_bio->sector,
1478 					  r1_bio->sectors,
1479 					  test_bit(R1BIO_BehindIO,
1480 						   &r1_bio->state));
1481 			first_clone = 0;
1482 		}
1483 
1484 		if (r1_bio->behind_master_bio)
1485 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1486 					      GFP_NOIO, mddev->bio_set);
1487 		else
1488 			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1489 
1490 		if (r1_bio->behind_master_bio) {
1491 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1492 				atomic_inc(&r1_bio->behind_remaining);
1493 		}
1494 
1495 		r1_bio->bios[i] = mbio;
1496 
1497 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1498 				   conf->mirrors[i].rdev->data_offset);
1499 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1500 		mbio->bi_end_io	= raid1_end_write_request;
1501 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1502 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1503 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1504 		    conf->raid_disks - mddev->degraded > 1)
1505 			mbio->bi_opf |= MD_FAILFAST;
1506 		mbio->bi_private = r1_bio;
1507 
1508 		atomic_inc(&r1_bio->remaining);
1509 
1510 		if (mddev->gendisk)
1511 			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1512 					      mbio, disk_devt(mddev->gendisk),
1513 					      r1_bio->sector);
1514 		/* flush_pending_writes() needs access to the rdev so...*/
1515 		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1516 
1517 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1518 		if (cb)
1519 			plug = container_of(cb, struct raid1_plug_cb, cb);
1520 		else
1521 			plug = NULL;
1522 		if (plug) {
1523 			bio_list_add(&plug->pending, mbio);
1524 			plug->pending_cnt++;
1525 		} else {
1526 			spin_lock_irqsave(&conf->device_lock, flags);
1527 			bio_list_add(&conf->pending_bio_list, mbio);
1528 			conf->pending_count++;
1529 			spin_unlock_irqrestore(&conf->device_lock, flags);
1530 			md_wakeup_thread(mddev->thread);
1531 		}
1532 	}
1533 
1534 	r1_bio_write_done(r1_bio);
1535 
1536 	/* In case raid1d snuck in to freeze_array */
1537 	wake_up(&conf->wait_barrier);
1538 }
1539 
1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1541 {
1542 	sector_t sectors;
1543 
1544 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1545 		md_flush_request(mddev, bio);
1546 		return true;
1547 	}
1548 
1549 	/*
1550 	 * There is a limit to the maximum size, but
1551 	 * the read/write handler might find a lower limit
1552 	 * due to bad blocks.  To avoid multiple splits,
1553 	 * we pass the maximum number of sectors down
1554 	 * and let the lower level perform the split.
1555 	 */
1556 	sectors = align_to_barrier_unit_end(
1557 		bio->bi_iter.bi_sector, bio_sectors(bio));
1558 
1559 	if (bio_data_dir(bio) == READ)
1560 		raid1_read_request(mddev, bio, sectors, NULL);
1561 	else {
1562 		if (!md_write_start(mddev,bio))
1563 			return false;
1564 		raid1_write_request(mddev, bio, sectors);
1565 	}
1566 	return true;
1567 }
1568 
1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1570 {
1571 	struct r1conf *conf = mddev->private;
1572 	int i;
1573 
1574 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1575 		   conf->raid_disks - mddev->degraded);
1576 	rcu_read_lock();
1577 	for (i = 0; i < conf->raid_disks; i++) {
1578 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1579 		seq_printf(seq, "%s",
1580 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1581 	}
1582 	rcu_read_unlock();
1583 	seq_printf(seq, "]");
1584 }
1585 
1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1587 {
1588 	char b[BDEVNAME_SIZE];
1589 	struct r1conf *conf = mddev->private;
1590 	unsigned long flags;
1591 
1592 	/*
1593 	 * If it is not operational, then we have already marked it as dead
1594 	 * else if it is the last working disks, ignore the error, let the
1595 	 * next level up know.
1596 	 * else mark the drive as failed
1597 	 */
1598 	spin_lock_irqsave(&conf->device_lock, flags);
1599 	if (test_bit(In_sync, &rdev->flags)
1600 	    && (conf->raid_disks - mddev->degraded) == 1) {
1601 		/*
1602 		 * Don't fail the drive, act as though we were just a
1603 		 * normal single drive.
1604 		 * However don't try a recovery from this drive as
1605 		 * it is very likely to fail.
1606 		 */
1607 		conf->recovery_disabled = mddev->recovery_disabled;
1608 		spin_unlock_irqrestore(&conf->device_lock, flags);
1609 		return;
1610 	}
1611 	set_bit(Blocked, &rdev->flags);
1612 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1613 		mddev->degraded++;
1614 		set_bit(Faulty, &rdev->flags);
1615 	} else
1616 		set_bit(Faulty, &rdev->flags);
1617 	spin_unlock_irqrestore(&conf->device_lock, flags);
1618 	/*
1619 	 * if recovery is running, make sure it aborts.
1620 	 */
1621 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1622 	set_mask_bits(&mddev->sb_flags, 0,
1623 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1624 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1625 		"md/raid1:%s: Operation continuing on %d devices.\n",
1626 		mdname(mddev), bdevname(rdev->bdev, b),
1627 		mdname(mddev), conf->raid_disks - mddev->degraded);
1628 }
1629 
1630 static void print_conf(struct r1conf *conf)
1631 {
1632 	int i;
1633 
1634 	pr_debug("RAID1 conf printout:\n");
1635 	if (!conf) {
1636 		pr_debug("(!conf)\n");
1637 		return;
1638 	}
1639 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1640 		 conf->raid_disks);
1641 
1642 	rcu_read_lock();
1643 	for (i = 0; i < conf->raid_disks; i++) {
1644 		char b[BDEVNAME_SIZE];
1645 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1646 		if (rdev)
1647 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1648 				 i, !test_bit(In_sync, &rdev->flags),
1649 				 !test_bit(Faulty, &rdev->flags),
1650 				 bdevname(rdev->bdev,b));
1651 	}
1652 	rcu_read_unlock();
1653 }
1654 
1655 static void close_sync(struct r1conf *conf)
1656 {
1657 	wait_all_barriers(conf);
1658 	allow_all_barriers(conf);
1659 
1660 	mempool_destroy(conf->r1buf_pool);
1661 	conf->r1buf_pool = NULL;
1662 }
1663 
1664 static int raid1_spare_active(struct mddev *mddev)
1665 {
1666 	int i;
1667 	struct r1conf *conf = mddev->private;
1668 	int count = 0;
1669 	unsigned long flags;
1670 
1671 	/*
1672 	 * Find all failed disks within the RAID1 configuration
1673 	 * and mark them readable.
1674 	 * Called under mddev lock, so rcu protection not needed.
1675 	 * device_lock used to avoid races with raid1_end_read_request
1676 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1677 	 */
1678 	spin_lock_irqsave(&conf->device_lock, flags);
1679 	for (i = 0; i < conf->raid_disks; i++) {
1680 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1681 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682 		if (repl
1683 		    && !test_bit(Candidate, &repl->flags)
1684 		    && repl->recovery_offset == MaxSector
1685 		    && !test_bit(Faulty, &repl->flags)
1686 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1687 			/* replacement has just become active */
1688 			if (!rdev ||
1689 			    !test_and_clear_bit(In_sync, &rdev->flags))
1690 				count++;
1691 			if (rdev) {
1692 				/* Replaced device not technically
1693 				 * faulty, but we need to be sure
1694 				 * it gets removed and never re-added
1695 				 */
1696 				set_bit(Faulty, &rdev->flags);
1697 				sysfs_notify_dirent_safe(
1698 					rdev->sysfs_state);
1699 			}
1700 		}
1701 		if (rdev
1702 		    && rdev->recovery_offset == MaxSector
1703 		    && !test_bit(Faulty, &rdev->flags)
1704 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1705 			count++;
1706 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1707 		}
1708 	}
1709 	mddev->degraded -= count;
1710 	spin_unlock_irqrestore(&conf->device_lock, flags);
1711 
1712 	print_conf(conf);
1713 	return count;
1714 }
1715 
1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1717 {
1718 	struct r1conf *conf = mddev->private;
1719 	int err = -EEXIST;
1720 	int mirror = 0;
1721 	struct raid1_info *p;
1722 	int first = 0;
1723 	int last = conf->raid_disks - 1;
1724 
1725 	if (mddev->recovery_disabled == conf->recovery_disabled)
1726 		return -EBUSY;
1727 
1728 	if (md_integrity_add_rdev(rdev, mddev))
1729 		return -ENXIO;
1730 
1731 	if (rdev->raid_disk >= 0)
1732 		first = last = rdev->raid_disk;
1733 
1734 	/*
1735 	 * find the disk ... but prefer rdev->saved_raid_disk
1736 	 * if possible.
1737 	 */
1738 	if (rdev->saved_raid_disk >= 0 &&
1739 	    rdev->saved_raid_disk >= first &&
1740 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741 		first = last = rdev->saved_raid_disk;
1742 
1743 	for (mirror = first; mirror <= last; mirror++) {
1744 		p = conf->mirrors+mirror;
1745 		if (!p->rdev) {
1746 
1747 			if (mddev->gendisk)
1748 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1749 						  rdev->data_offset << 9);
1750 
1751 			p->head_position = 0;
1752 			rdev->raid_disk = mirror;
1753 			err = 0;
1754 			/* As all devices are equivalent, we don't need a full recovery
1755 			 * if this was recently any drive of the array
1756 			 */
1757 			if (rdev->saved_raid_disk < 0)
1758 				conf->fullsync = 1;
1759 			rcu_assign_pointer(p->rdev, rdev);
1760 			break;
1761 		}
1762 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1763 		    p[conf->raid_disks].rdev == NULL) {
1764 			/* Add this device as a replacement */
1765 			clear_bit(In_sync, &rdev->flags);
1766 			set_bit(Replacement, &rdev->flags);
1767 			rdev->raid_disk = mirror;
1768 			err = 0;
1769 			conf->fullsync = 1;
1770 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771 			break;
1772 		}
1773 	}
1774 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1776 	print_conf(conf);
1777 	return err;
1778 }
1779 
1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781 {
1782 	struct r1conf *conf = mddev->private;
1783 	int err = 0;
1784 	int number = rdev->raid_disk;
1785 	struct raid1_info *p = conf->mirrors + number;
1786 
1787 	if (rdev != p->rdev)
1788 		p = conf->mirrors + conf->raid_disks + number;
1789 
1790 	print_conf(conf);
1791 	if (rdev == p->rdev) {
1792 		if (test_bit(In_sync, &rdev->flags) ||
1793 		    atomic_read(&rdev->nr_pending)) {
1794 			err = -EBUSY;
1795 			goto abort;
1796 		}
1797 		/* Only remove non-faulty devices if recovery
1798 		 * is not possible.
1799 		 */
1800 		if (!test_bit(Faulty, &rdev->flags) &&
1801 		    mddev->recovery_disabled != conf->recovery_disabled &&
1802 		    mddev->degraded < conf->raid_disks) {
1803 			err = -EBUSY;
1804 			goto abort;
1805 		}
1806 		p->rdev = NULL;
1807 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808 			synchronize_rcu();
1809 			if (atomic_read(&rdev->nr_pending)) {
1810 				/* lost the race, try later */
1811 				err = -EBUSY;
1812 				p->rdev = rdev;
1813 				goto abort;
1814 			}
1815 		}
1816 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1817 			/* We just removed a device that is being replaced.
1818 			 * Move down the replacement.  We drain all IO before
1819 			 * doing this to avoid confusion.
1820 			 */
1821 			struct md_rdev *repl =
1822 				conf->mirrors[conf->raid_disks + number].rdev;
1823 			freeze_array(conf, 0);
1824 			clear_bit(Replacement, &repl->flags);
1825 			p->rdev = repl;
1826 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1827 			unfreeze_array(conf);
1828 		}
1829 
1830 		clear_bit(WantReplacement, &rdev->flags);
1831 		err = md_integrity_register(mddev);
1832 	}
1833 abort:
1834 
1835 	print_conf(conf);
1836 	return err;
1837 }
1838 
1839 static void end_sync_read(struct bio *bio)
1840 {
1841 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1842 
1843 	update_head_pos(r1_bio->read_disk, r1_bio);
1844 
1845 	/*
1846 	 * we have read a block, now it needs to be re-written,
1847 	 * or re-read if the read failed.
1848 	 * We don't do much here, just schedule handling by raid1d
1849 	 */
1850 	if (!bio->bi_status)
1851 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1852 
1853 	if (atomic_dec_and_test(&r1_bio->remaining))
1854 		reschedule_retry(r1_bio);
1855 }
1856 
1857 static void end_sync_write(struct bio *bio)
1858 {
1859 	int uptodate = !bio->bi_status;
1860 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1861 	struct mddev *mddev = r1_bio->mddev;
1862 	struct r1conf *conf = mddev->private;
1863 	sector_t first_bad;
1864 	int bad_sectors;
1865 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1866 
1867 	if (!uptodate) {
1868 		sector_t sync_blocks = 0;
1869 		sector_t s = r1_bio->sector;
1870 		long sectors_to_go = r1_bio->sectors;
1871 		/* make sure these bits doesn't get cleared. */
1872 		do {
1873 			bitmap_end_sync(mddev->bitmap, s,
1874 					&sync_blocks, 1);
1875 			s += sync_blocks;
1876 			sectors_to_go -= sync_blocks;
1877 		} while (sectors_to_go > 0);
1878 		set_bit(WriteErrorSeen, &rdev->flags);
1879 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1880 			set_bit(MD_RECOVERY_NEEDED, &
1881 				mddev->recovery);
1882 		set_bit(R1BIO_WriteError, &r1_bio->state);
1883 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1884 			       &first_bad, &bad_sectors) &&
1885 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1886 				r1_bio->sector,
1887 				r1_bio->sectors,
1888 				&first_bad, &bad_sectors)
1889 		)
1890 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1891 
1892 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1893 		int s = r1_bio->sectors;
1894 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1895 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1896 			reschedule_retry(r1_bio);
1897 		else {
1898 			put_buf(r1_bio);
1899 			md_done_sync(mddev, s, uptodate);
1900 		}
1901 	}
1902 }
1903 
1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1905 			    int sectors, struct page *page, int rw)
1906 {
1907 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1908 		/* success */
1909 		return 1;
1910 	if (rw == WRITE) {
1911 		set_bit(WriteErrorSeen, &rdev->flags);
1912 		if (!test_and_set_bit(WantReplacement,
1913 				      &rdev->flags))
1914 			set_bit(MD_RECOVERY_NEEDED, &
1915 				rdev->mddev->recovery);
1916 	}
1917 	/* need to record an error - either for the block or the device */
1918 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1919 		md_error(rdev->mddev, rdev);
1920 	return 0;
1921 }
1922 
1923 static int fix_sync_read_error(struct r1bio *r1_bio)
1924 {
1925 	/* Try some synchronous reads of other devices to get
1926 	 * good data, much like with normal read errors.  Only
1927 	 * read into the pages we already have so we don't
1928 	 * need to re-issue the read request.
1929 	 * We don't need to freeze the array, because being in an
1930 	 * active sync request, there is no normal IO, and
1931 	 * no overlapping syncs.
1932 	 * We don't need to check is_badblock() again as we
1933 	 * made sure that anything with a bad block in range
1934 	 * will have bi_end_io clear.
1935 	 */
1936 	struct mddev *mddev = r1_bio->mddev;
1937 	struct r1conf *conf = mddev->private;
1938 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1939 	struct page **pages = get_resync_pages(bio)->pages;
1940 	sector_t sect = r1_bio->sector;
1941 	int sectors = r1_bio->sectors;
1942 	int idx = 0;
1943 	struct md_rdev *rdev;
1944 
1945 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1946 	if (test_bit(FailFast, &rdev->flags)) {
1947 		/* Don't try recovering from here - just fail it
1948 		 * ... unless it is the last working device of course */
1949 		md_error(mddev, rdev);
1950 		if (test_bit(Faulty, &rdev->flags))
1951 			/* Don't try to read from here, but make sure
1952 			 * put_buf does it's thing
1953 			 */
1954 			bio->bi_end_io = end_sync_write;
1955 	}
1956 
1957 	while(sectors) {
1958 		int s = sectors;
1959 		int d = r1_bio->read_disk;
1960 		int success = 0;
1961 		int start;
1962 
1963 		if (s > (PAGE_SIZE>>9))
1964 			s = PAGE_SIZE >> 9;
1965 		do {
1966 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1967 				/* No rcu protection needed here devices
1968 				 * can only be removed when no resync is
1969 				 * active, and resync is currently active
1970 				 */
1971 				rdev = conf->mirrors[d].rdev;
1972 				if (sync_page_io(rdev, sect, s<<9,
1973 						 pages[idx],
1974 						 REQ_OP_READ, 0, false)) {
1975 					success = 1;
1976 					break;
1977 				}
1978 			}
1979 			d++;
1980 			if (d == conf->raid_disks * 2)
1981 				d = 0;
1982 		} while (!success && d != r1_bio->read_disk);
1983 
1984 		if (!success) {
1985 			char b[BDEVNAME_SIZE];
1986 			int abort = 0;
1987 			/* Cannot read from anywhere, this block is lost.
1988 			 * Record a bad block on each device.  If that doesn't
1989 			 * work just disable and interrupt the recovery.
1990 			 * Don't fail devices as that won't really help.
1991 			 */
1992 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1993 					    mdname(mddev),
1994 					    bdevname(bio->bi_bdev, b),
1995 					    (unsigned long long)r1_bio->sector);
1996 			for (d = 0; d < conf->raid_disks * 2; d++) {
1997 				rdev = conf->mirrors[d].rdev;
1998 				if (!rdev || test_bit(Faulty, &rdev->flags))
1999 					continue;
2000 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2001 					abort = 1;
2002 			}
2003 			if (abort) {
2004 				conf->recovery_disabled =
2005 					mddev->recovery_disabled;
2006 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2007 				md_done_sync(mddev, r1_bio->sectors, 0);
2008 				put_buf(r1_bio);
2009 				return 0;
2010 			}
2011 			/* Try next page */
2012 			sectors -= s;
2013 			sect += s;
2014 			idx++;
2015 			continue;
2016 		}
2017 
2018 		start = d;
2019 		/* write it back and re-read */
2020 		while (d != r1_bio->read_disk) {
2021 			if (d == 0)
2022 				d = conf->raid_disks * 2;
2023 			d--;
2024 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2025 				continue;
2026 			rdev = conf->mirrors[d].rdev;
2027 			if (r1_sync_page_io(rdev, sect, s,
2028 					    pages[idx],
2029 					    WRITE) == 0) {
2030 				r1_bio->bios[d]->bi_end_io = NULL;
2031 				rdev_dec_pending(rdev, mddev);
2032 			}
2033 		}
2034 		d = start;
2035 		while (d != r1_bio->read_disk) {
2036 			if (d == 0)
2037 				d = conf->raid_disks * 2;
2038 			d--;
2039 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2040 				continue;
2041 			rdev = conf->mirrors[d].rdev;
2042 			if (r1_sync_page_io(rdev, sect, s,
2043 					    pages[idx],
2044 					    READ) != 0)
2045 				atomic_add(s, &rdev->corrected_errors);
2046 		}
2047 		sectors -= s;
2048 		sect += s;
2049 		idx ++;
2050 	}
2051 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2052 	bio->bi_status = 0;
2053 	return 1;
2054 }
2055 
2056 static void process_checks(struct r1bio *r1_bio)
2057 {
2058 	/* We have read all readable devices.  If we haven't
2059 	 * got the block, then there is no hope left.
2060 	 * If we have, then we want to do a comparison
2061 	 * and skip the write if everything is the same.
2062 	 * If any blocks failed to read, then we need to
2063 	 * attempt an over-write
2064 	 */
2065 	struct mddev *mddev = r1_bio->mddev;
2066 	struct r1conf *conf = mddev->private;
2067 	int primary;
2068 	int i;
2069 	int vcnt;
2070 
2071 	/* Fix variable parts of all bios */
2072 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2073 	for (i = 0; i < conf->raid_disks * 2; i++) {
2074 		blk_status_t status;
2075 		struct bio *b = r1_bio->bios[i];
2076 		struct resync_pages *rp = get_resync_pages(b);
2077 		if (b->bi_end_io != end_sync_read)
2078 			continue;
2079 		/* fixup the bio for reuse, but preserve errno */
2080 		status = b->bi_status;
2081 		bio_reset(b);
2082 		b->bi_status = status;
2083 		b->bi_iter.bi_sector = r1_bio->sector +
2084 			conf->mirrors[i].rdev->data_offset;
2085 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2086 		b->bi_end_io = end_sync_read;
2087 		rp->raid_bio = r1_bio;
2088 		b->bi_private = rp;
2089 
2090 		/* initialize bvec table again */
2091 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2092 	}
2093 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2094 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2095 		    !r1_bio->bios[primary]->bi_status) {
2096 			r1_bio->bios[primary]->bi_end_io = NULL;
2097 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2098 			break;
2099 		}
2100 	r1_bio->read_disk = primary;
2101 	for (i = 0; i < conf->raid_disks * 2; i++) {
2102 		int j;
2103 		struct bio *pbio = r1_bio->bios[primary];
2104 		struct bio *sbio = r1_bio->bios[i];
2105 		blk_status_t status = sbio->bi_status;
2106 		struct page **ppages = get_resync_pages(pbio)->pages;
2107 		struct page **spages = get_resync_pages(sbio)->pages;
2108 		struct bio_vec *bi;
2109 		int page_len[RESYNC_PAGES] = { 0 };
2110 
2111 		if (sbio->bi_end_io != end_sync_read)
2112 			continue;
2113 		/* Now we can 'fixup' the error value */
2114 		sbio->bi_status = 0;
2115 
2116 		bio_for_each_segment_all(bi, sbio, j)
2117 			page_len[j] = bi->bv_len;
2118 
2119 		if (!status) {
2120 			for (j = vcnt; j-- ; ) {
2121 				if (memcmp(page_address(ppages[j]),
2122 					   page_address(spages[j]),
2123 					   page_len[j]))
2124 					break;
2125 			}
2126 		} else
2127 			j = 0;
2128 		if (j >= 0)
2129 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2130 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2131 			      && !status)) {
2132 			/* No need to write to this device. */
2133 			sbio->bi_end_io = NULL;
2134 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2135 			continue;
2136 		}
2137 
2138 		bio_copy_data(sbio, pbio);
2139 	}
2140 }
2141 
2142 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2143 {
2144 	struct r1conf *conf = mddev->private;
2145 	int i;
2146 	int disks = conf->raid_disks * 2;
2147 	struct bio *wbio;
2148 
2149 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2150 		/* ouch - failed to read all of that. */
2151 		if (!fix_sync_read_error(r1_bio))
2152 			return;
2153 
2154 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2155 		process_checks(r1_bio);
2156 
2157 	/*
2158 	 * schedule writes
2159 	 */
2160 	atomic_set(&r1_bio->remaining, 1);
2161 	for (i = 0; i < disks ; i++) {
2162 		wbio = r1_bio->bios[i];
2163 		if (wbio->bi_end_io == NULL ||
2164 		    (wbio->bi_end_io == end_sync_read &&
2165 		     (i == r1_bio->read_disk ||
2166 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2167 			continue;
2168 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2169 			continue;
2170 
2171 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2172 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2173 			wbio->bi_opf |= MD_FAILFAST;
2174 
2175 		wbio->bi_end_io = end_sync_write;
2176 		atomic_inc(&r1_bio->remaining);
2177 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2178 
2179 		generic_make_request(wbio);
2180 	}
2181 
2182 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2183 		/* if we're here, all write(s) have completed, so clean up */
2184 		int s = r1_bio->sectors;
2185 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2186 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2187 			reschedule_retry(r1_bio);
2188 		else {
2189 			put_buf(r1_bio);
2190 			md_done_sync(mddev, s, 1);
2191 		}
2192 	}
2193 }
2194 
2195 /*
2196  * This is a kernel thread which:
2197  *
2198  *	1.	Retries failed read operations on working mirrors.
2199  *	2.	Updates the raid superblock when problems encounter.
2200  *	3.	Performs writes following reads for array synchronising.
2201  */
2202 
2203 static void fix_read_error(struct r1conf *conf, int read_disk,
2204 			   sector_t sect, int sectors)
2205 {
2206 	struct mddev *mddev = conf->mddev;
2207 	while(sectors) {
2208 		int s = sectors;
2209 		int d = read_disk;
2210 		int success = 0;
2211 		int start;
2212 		struct md_rdev *rdev;
2213 
2214 		if (s > (PAGE_SIZE>>9))
2215 			s = PAGE_SIZE >> 9;
2216 
2217 		do {
2218 			sector_t first_bad;
2219 			int bad_sectors;
2220 
2221 			rcu_read_lock();
2222 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2223 			if (rdev &&
2224 			    (test_bit(In_sync, &rdev->flags) ||
2225 			     (!test_bit(Faulty, &rdev->flags) &&
2226 			      rdev->recovery_offset >= sect + s)) &&
2227 			    is_badblock(rdev, sect, s,
2228 					&first_bad, &bad_sectors) == 0) {
2229 				atomic_inc(&rdev->nr_pending);
2230 				rcu_read_unlock();
2231 				if (sync_page_io(rdev, sect, s<<9,
2232 					 conf->tmppage, REQ_OP_READ, 0, false))
2233 					success = 1;
2234 				rdev_dec_pending(rdev, mddev);
2235 				if (success)
2236 					break;
2237 			} else
2238 				rcu_read_unlock();
2239 			d++;
2240 			if (d == conf->raid_disks * 2)
2241 				d = 0;
2242 		} while (!success && d != read_disk);
2243 
2244 		if (!success) {
2245 			/* Cannot read from anywhere - mark it bad */
2246 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2247 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2248 				md_error(mddev, rdev);
2249 			break;
2250 		}
2251 		/* write it back and re-read */
2252 		start = d;
2253 		while (d != read_disk) {
2254 			if (d==0)
2255 				d = conf->raid_disks * 2;
2256 			d--;
2257 			rcu_read_lock();
2258 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2259 			if (rdev &&
2260 			    !test_bit(Faulty, &rdev->flags)) {
2261 				atomic_inc(&rdev->nr_pending);
2262 				rcu_read_unlock();
2263 				r1_sync_page_io(rdev, sect, s,
2264 						conf->tmppage, WRITE);
2265 				rdev_dec_pending(rdev, mddev);
2266 			} else
2267 				rcu_read_unlock();
2268 		}
2269 		d = start;
2270 		while (d != read_disk) {
2271 			char b[BDEVNAME_SIZE];
2272 			if (d==0)
2273 				d = conf->raid_disks * 2;
2274 			d--;
2275 			rcu_read_lock();
2276 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2277 			if (rdev &&
2278 			    !test_bit(Faulty, &rdev->flags)) {
2279 				atomic_inc(&rdev->nr_pending);
2280 				rcu_read_unlock();
2281 				if (r1_sync_page_io(rdev, sect, s,
2282 						    conf->tmppage, READ)) {
2283 					atomic_add(s, &rdev->corrected_errors);
2284 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2285 						mdname(mddev), s,
2286 						(unsigned long long)(sect +
2287 								     rdev->data_offset),
2288 						bdevname(rdev->bdev, b));
2289 				}
2290 				rdev_dec_pending(rdev, mddev);
2291 			} else
2292 				rcu_read_unlock();
2293 		}
2294 		sectors -= s;
2295 		sect += s;
2296 	}
2297 }
2298 
2299 static int narrow_write_error(struct r1bio *r1_bio, int i)
2300 {
2301 	struct mddev *mddev = r1_bio->mddev;
2302 	struct r1conf *conf = mddev->private;
2303 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2304 
2305 	/* bio has the data to be written to device 'i' where
2306 	 * we just recently had a write error.
2307 	 * We repeatedly clone the bio and trim down to one block,
2308 	 * then try the write.  Where the write fails we record
2309 	 * a bad block.
2310 	 * It is conceivable that the bio doesn't exactly align with
2311 	 * blocks.  We must handle this somehow.
2312 	 *
2313 	 * We currently own a reference on the rdev.
2314 	 */
2315 
2316 	int block_sectors;
2317 	sector_t sector;
2318 	int sectors;
2319 	int sect_to_write = r1_bio->sectors;
2320 	int ok = 1;
2321 
2322 	if (rdev->badblocks.shift < 0)
2323 		return 0;
2324 
2325 	block_sectors = roundup(1 << rdev->badblocks.shift,
2326 				bdev_logical_block_size(rdev->bdev) >> 9);
2327 	sector = r1_bio->sector;
2328 	sectors = ((sector + block_sectors)
2329 		   & ~(sector_t)(block_sectors - 1))
2330 		- sector;
2331 
2332 	while (sect_to_write) {
2333 		struct bio *wbio;
2334 		if (sectors > sect_to_write)
2335 			sectors = sect_to_write;
2336 		/* Write at 'sector' for 'sectors'*/
2337 
2338 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2339 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2340 					      GFP_NOIO,
2341 					      mddev->bio_set);
2342 		} else {
2343 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2344 					      mddev->bio_set);
2345 		}
2346 
2347 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2348 		wbio->bi_iter.bi_sector = r1_bio->sector;
2349 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2350 
2351 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2352 		wbio->bi_iter.bi_sector += rdev->data_offset;
2353 		wbio->bi_bdev = rdev->bdev;
2354 
2355 		if (submit_bio_wait(wbio) < 0)
2356 			/* failure! */
2357 			ok = rdev_set_badblocks(rdev, sector,
2358 						sectors, 0)
2359 				&& ok;
2360 
2361 		bio_put(wbio);
2362 		sect_to_write -= sectors;
2363 		sector += sectors;
2364 		sectors = block_sectors;
2365 	}
2366 	return ok;
2367 }
2368 
2369 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2370 {
2371 	int m;
2372 	int s = r1_bio->sectors;
2373 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2374 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2375 		struct bio *bio = r1_bio->bios[m];
2376 		if (bio->bi_end_io == NULL)
2377 			continue;
2378 		if (!bio->bi_status &&
2379 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2380 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2381 		}
2382 		if (bio->bi_status &&
2383 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2384 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2385 				md_error(conf->mddev, rdev);
2386 		}
2387 	}
2388 	put_buf(r1_bio);
2389 	md_done_sync(conf->mddev, s, 1);
2390 }
2391 
2392 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2393 {
2394 	int m, idx;
2395 	bool fail = false;
2396 
2397 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2398 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2399 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2400 			rdev_clear_badblocks(rdev,
2401 					     r1_bio->sector,
2402 					     r1_bio->sectors, 0);
2403 			rdev_dec_pending(rdev, conf->mddev);
2404 		} else if (r1_bio->bios[m] != NULL) {
2405 			/* This drive got a write error.  We need to
2406 			 * narrow down and record precise write
2407 			 * errors.
2408 			 */
2409 			fail = true;
2410 			if (!narrow_write_error(r1_bio, m)) {
2411 				md_error(conf->mddev,
2412 					 conf->mirrors[m].rdev);
2413 				/* an I/O failed, we can't clear the bitmap */
2414 				set_bit(R1BIO_Degraded, &r1_bio->state);
2415 			}
2416 			rdev_dec_pending(conf->mirrors[m].rdev,
2417 					 conf->mddev);
2418 		}
2419 	if (fail) {
2420 		spin_lock_irq(&conf->device_lock);
2421 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2422 		idx = sector_to_idx(r1_bio->sector);
2423 		atomic_inc(&conf->nr_queued[idx]);
2424 		spin_unlock_irq(&conf->device_lock);
2425 		/*
2426 		 * In case freeze_array() is waiting for condition
2427 		 * get_unqueued_pending() == extra to be true.
2428 		 */
2429 		wake_up(&conf->wait_barrier);
2430 		md_wakeup_thread(conf->mddev->thread);
2431 	} else {
2432 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2433 			close_write(r1_bio);
2434 		raid_end_bio_io(r1_bio);
2435 	}
2436 }
2437 
2438 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2439 {
2440 	struct mddev *mddev = conf->mddev;
2441 	struct bio *bio;
2442 	struct md_rdev *rdev;
2443 	dev_t bio_dev;
2444 	sector_t bio_sector;
2445 
2446 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2447 	/* we got a read error. Maybe the drive is bad.  Maybe just
2448 	 * the block and we can fix it.
2449 	 * We freeze all other IO, and try reading the block from
2450 	 * other devices.  When we find one, we re-write
2451 	 * and check it that fixes the read error.
2452 	 * This is all done synchronously while the array is
2453 	 * frozen
2454 	 */
2455 
2456 	bio = r1_bio->bios[r1_bio->read_disk];
2457 	bio_dev = bio->bi_bdev->bd_dev;
2458 	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2459 	bio_put(bio);
2460 	r1_bio->bios[r1_bio->read_disk] = NULL;
2461 
2462 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2463 	if (mddev->ro == 0
2464 	    && !test_bit(FailFast, &rdev->flags)) {
2465 		freeze_array(conf, 1);
2466 		fix_read_error(conf, r1_bio->read_disk,
2467 			       r1_bio->sector, r1_bio->sectors);
2468 		unfreeze_array(conf);
2469 	} else {
2470 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2471 	}
2472 
2473 	rdev_dec_pending(rdev, conf->mddev);
2474 	allow_barrier(conf, r1_bio->sector);
2475 	bio = r1_bio->master_bio;
2476 
2477 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2478 	r1_bio->state = 0;
2479 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2480 }
2481 
2482 static void raid1d(struct md_thread *thread)
2483 {
2484 	struct mddev *mddev = thread->mddev;
2485 	struct r1bio *r1_bio;
2486 	unsigned long flags;
2487 	struct r1conf *conf = mddev->private;
2488 	struct list_head *head = &conf->retry_list;
2489 	struct blk_plug plug;
2490 	int idx;
2491 
2492 	md_check_recovery(mddev);
2493 
2494 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2495 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2496 		LIST_HEAD(tmp);
2497 		spin_lock_irqsave(&conf->device_lock, flags);
2498 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2499 			list_splice_init(&conf->bio_end_io_list, &tmp);
2500 		spin_unlock_irqrestore(&conf->device_lock, flags);
2501 		while (!list_empty(&tmp)) {
2502 			r1_bio = list_first_entry(&tmp, struct r1bio,
2503 						  retry_list);
2504 			list_del(&r1_bio->retry_list);
2505 			idx = sector_to_idx(r1_bio->sector);
2506 			atomic_dec(&conf->nr_queued[idx]);
2507 			if (mddev->degraded)
2508 				set_bit(R1BIO_Degraded, &r1_bio->state);
2509 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2510 				close_write(r1_bio);
2511 			raid_end_bio_io(r1_bio);
2512 		}
2513 	}
2514 
2515 	blk_start_plug(&plug);
2516 	for (;;) {
2517 
2518 		flush_pending_writes(conf);
2519 
2520 		spin_lock_irqsave(&conf->device_lock, flags);
2521 		if (list_empty(head)) {
2522 			spin_unlock_irqrestore(&conf->device_lock, flags);
2523 			break;
2524 		}
2525 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2526 		list_del(head->prev);
2527 		idx = sector_to_idx(r1_bio->sector);
2528 		atomic_dec(&conf->nr_queued[idx]);
2529 		spin_unlock_irqrestore(&conf->device_lock, flags);
2530 
2531 		mddev = r1_bio->mddev;
2532 		conf = mddev->private;
2533 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2534 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2535 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2536 				handle_sync_write_finished(conf, r1_bio);
2537 			else
2538 				sync_request_write(mddev, r1_bio);
2539 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2540 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2541 			handle_write_finished(conf, r1_bio);
2542 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2543 			handle_read_error(conf, r1_bio);
2544 		else
2545 			WARN_ON_ONCE(1);
2546 
2547 		cond_resched();
2548 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2549 			md_check_recovery(mddev);
2550 	}
2551 	blk_finish_plug(&plug);
2552 }
2553 
2554 static int init_resync(struct r1conf *conf)
2555 {
2556 	int buffs;
2557 
2558 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2559 	BUG_ON(conf->r1buf_pool);
2560 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2561 					  conf->poolinfo);
2562 	if (!conf->r1buf_pool)
2563 		return -ENOMEM;
2564 	return 0;
2565 }
2566 
2567 /*
2568  * perform a "sync" on one "block"
2569  *
2570  * We need to make sure that no normal I/O request - particularly write
2571  * requests - conflict with active sync requests.
2572  *
2573  * This is achieved by tracking pending requests and a 'barrier' concept
2574  * that can be installed to exclude normal IO requests.
2575  */
2576 
2577 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2578 				   int *skipped)
2579 {
2580 	struct r1conf *conf = mddev->private;
2581 	struct r1bio *r1_bio;
2582 	struct bio *bio;
2583 	sector_t max_sector, nr_sectors;
2584 	int disk = -1;
2585 	int i;
2586 	int wonly = -1;
2587 	int write_targets = 0, read_targets = 0;
2588 	sector_t sync_blocks;
2589 	int still_degraded = 0;
2590 	int good_sectors = RESYNC_SECTORS;
2591 	int min_bad = 0; /* number of sectors that are bad in all devices */
2592 	int idx = sector_to_idx(sector_nr);
2593 	int page_idx = 0;
2594 
2595 	if (!conf->r1buf_pool)
2596 		if (init_resync(conf))
2597 			return 0;
2598 
2599 	max_sector = mddev->dev_sectors;
2600 	if (sector_nr >= max_sector) {
2601 		/* If we aborted, we need to abort the
2602 		 * sync on the 'current' bitmap chunk (there will
2603 		 * only be one in raid1 resync.
2604 		 * We can find the current addess in mddev->curr_resync
2605 		 */
2606 		if (mddev->curr_resync < max_sector) /* aborted */
2607 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2608 						&sync_blocks, 1);
2609 		else /* completed sync */
2610 			conf->fullsync = 0;
2611 
2612 		bitmap_close_sync(mddev->bitmap);
2613 		close_sync(conf);
2614 
2615 		if (mddev_is_clustered(mddev)) {
2616 			conf->cluster_sync_low = 0;
2617 			conf->cluster_sync_high = 0;
2618 		}
2619 		return 0;
2620 	}
2621 
2622 	if (mddev->bitmap == NULL &&
2623 	    mddev->recovery_cp == MaxSector &&
2624 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2625 	    conf->fullsync == 0) {
2626 		*skipped = 1;
2627 		return max_sector - sector_nr;
2628 	}
2629 	/* before building a request, check if we can skip these blocks..
2630 	 * This call the bitmap_start_sync doesn't actually record anything
2631 	 */
2632 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2633 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2634 		/* We can skip this block, and probably several more */
2635 		*skipped = 1;
2636 		return sync_blocks;
2637 	}
2638 
2639 	/*
2640 	 * If there is non-resync activity waiting for a turn, then let it
2641 	 * though before starting on this new sync request.
2642 	 */
2643 	if (atomic_read(&conf->nr_waiting[idx]))
2644 		schedule_timeout_uninterruptible(1);
2645 
2646 	/* we are incrementing sector_nr below. To be safe, we check against
2647 	 * sector_nr + two times RESYNC_SECTORS
2648 	 */
2649 
2650 	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2651 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2652 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2653 
2654 	raise_barrier(conf, sector_nr);
2655 
2656 	rcu_read_lock();
2657 	/*
2658 	 * If we get a correctably read error during resync or recovery,
2659 	 * we might want to read from a different device.  So we
2660 	 * flag all drives that could conceivably be read from for READ,
2661 	 * and any others (which will be non-In_sync devices) for WRITE.
2662 	 * If a read fails, we try reading from something else for which READ
2663 	 * is OK.
2664 	 */
2665 
2666 	r1_bio->mddev = mddev;
2667 	r1_bio->sector = sector_nr;
2668 	r1_bio->state = 0;
2669 	set_bit(R1BIO_IsSync, &r1_bio->state);
2670 	/* make sure good_sectors won't go across barrier unit boundary */
2671 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2672 
2673 	for (i = 0; i < conf->raid_disks * 2; i++) {
2674 		struct md_rdev *rdev;
2675 		bio = r1_bio->bios[i];
2676 
2677 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2678 		if (rdev == NULL ||
2679 		    test_bit(Faulty, &rdev->flags)) {
2680 			if (i < conf->raid_disks)
2681 				still_degraded = 1;
2682 		} else if (!test_bit(In_sync, &rdev->flags)) {
2683 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2684 			bio->bi_end_io = end_sync_write;
2685 			write_targets ++;
2686 		} else {
2687 			/* may need to read from here */
2688 			sector_t first_bad = MaxSector;
2689 			int bad_sectors;
2690 
2691 			if (is_badblock(rdev, sector_nr, good_sectors,
2692 					&first_bad, &bad_sectors)) {
2693 				if (first_bad > sector_nr)
2694 					good_sectors = first_bad - sector_nr;
2695 				else {
2696 					bad_sectors -= (sector_nr - first_bad);
2697 					if (min_bad == 0 ||
2698 					    min_bad > bad_sectors)
2699 						min_bad = bad_sectors;
2700 				}
2701 			}
2702 			if (sector_nr < first_bad) {
2703 				if (test_bit(WriteMostly, &rdev->flags)) {
2704 					if (wonly < 0)
2705 						wonly = i;
2706 				} else {
2707 					if (disk < 0)
2708 						disk = i;
2709 				}
2710 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2711 				bio->bi_end_io = end_sync_read;
2712 				read_targets++;
2713 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2714 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2715 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2716 				/*
2717 				 * The device is suitable for reading (InSync),
2718 				 * but has bad block(s) here. Let's try to correct them,
2719 				 * if we are doing resync or repair. Otherwise, leave
2720 				 * this device alone for this sync request.
2721 				 */
2722 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2723 				bio->bi_end_io = end_sync_write;
2724 				write_targets++;
2725 			}
2726 		}
2727 		if (bio->bi_end_io) {
2728 			atomic_inc(&rdev->nr_pending);
2729 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2730 			bio->bi_bdev = rdev->bdev;
2731 			if (test_bit(FailFast, &rdev->flags))
2732 				bio->bi_opf |= MD_FAILFAST;
2733 		}
2734 	}
2735 	rcu_read_unlock();
2736 	if (disk < 0)
2737 		disk = wonly;
2738 	r1_bio->read_disk = disk;
2739 
2740 	if (read_targets == 0 && min_bad > 0) {
2741 		/* These sectors are bad on all InSync devices, so we
2742 		 * need to mark them bad on all write targets
2743 		 */
2744 		int ok = 1;
2745 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2746 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2747 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2748 				ok = rdev_set_badblocks(rdev, sector_nr,
2749 							min_bad, 0
2750 					) && ok;
2751 			}
2752 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2753 		*skipped = 1;
2754 		put_buf(r1_bio);
2755 
2756 		if (!ok) {
2757 			/* Cannot record the badblocks, so need to
2758 			 * abort the resync.
2759 			 * If there are multiple read targets, could just
2760 			 * fail the really bad ones ???
2761 			 */
2762 			conf->recovery_disabled = mddev->recovery_disabled;
2763 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2764 			return 0;
2765 		} else
2766 			return min_bad;
2767 
2768 	}
2769 	if (min_bad > 0 && min_bad < good_sectors) {
2770 		/* only resync enough to reach the next bad->good
2771 		 * transition */
2772 		good_sectors = min_bad;
2773 	}
2774 
2775 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2776 		/* extra read targets are also write targets */
2777 		write_targets += read_targets-1;
2778 
2779 	if (write_targets == 0 || read_targets == 0) {
2780 		/* There is nowhere to write, so all non-sync
2781 		 * drives must be failed - so we are finished
2782 		 */
2783 		sector_t rv;
2784 		if (min_bad > 0)
2785 			max_sector = sector_nr + min_bad;
2786 		rv = max_sector - sector_nr;
2787 		*skipped = 1;
2788 		put_buf(r1_bio);
2789 		return rv;
2790 	}
2791 
2792 	if (max_sector > mddev->resync_max)
2793 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2794 	if (max_sector > sector_nr + good_sectors)
2795 		max_sector = sector_nr + good_sectors;
2796 	nr_sectors = 0;
2797 	sync_blocks = 0;
2798 	do {
2799 		struct page *page;
2800 		int len = PAGE_SIZE;
2801 		if (sector_nr + (len>>9) > max_sector)
2802 			len = (max_sector - sector_nr) << 9;
2803 		if (len == 0)
2804 			break;
2805 		if (sync_blocks == 0) {
2806 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2807 					       &sync_blocks, still_degraded) &&
2808 			    !conf->fullsync &&
2809 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2810 				break;
2811 			if ((len >> 9) > sync_blocks)
2812 				len = sync_blocks<<9;
2813 		}
2814 
2815 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2816 			struct resync_pages *rp;
2817 
2818 			bio = r1_bio->bios[i];
2819 			rp = get_resync_pages(bio);
2820 			if (bio->bi_end_io) {
2821 				page = resync_fetch_page(rp, page_idx);
2822 
2823 				/*
2824 				 * won't fail because the vec table is big
2825 				 * enough to hold all these pages
2826 				 */
2827 				bio_add_page(bio, page, len, 0);
2828 			}
2829 		}
2830 		nr_sectors += len>>9;
2831 		sector_nr += len>>9;
2832 		sync_blocks -= (len>>9);
2833 	} while (++page_idx < RESYNC_PAGES);
2834 
2835 	r1_bio->sectors = nr_sectors;
2836 
2837 	if (mddev_is_clustered(mddev) &&
2838 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2839 		conf->cluster_sync_low = mddev->curr_resync_completed;
2840 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2841 		/* Send resync message */
2842 		md_cluster_ops->resync_info_update(mddev,
2843 				conf->cluster_sync_low,
2844 				conf->cluster_sync_high);
2845 	}
2846 
2847 	/* For a user-requested sync, we read all readable devices and do a
2848 	 * compare
2849 	 */
2850 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2851 		atomic_set(&r1_bio->remaining, read_targets);
2852 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2853 			bio = r1_bio->bios[i];
2854 			if (bio->bi_end_io == end_sync_read) {
2855 				read_targets--;
2856 				md_sync_acct(bio->bi_bdev, nr_sectors);
2857 				if (read_targets == 1)
2858 					bio->bi_opf &= ~MD_FAILFAST;
2859 				generic_make_request(bio);
2860 			}
2861 		}
2862 	} else {
2863 		atomic_set(&r1_bio->remaining, 1);
2864 		bio = r1_bio->bios[r1_bio->read_disk];
2865 		md_sync_acct(bio->bi_bdev, nr_sectors);
2866 		if (read_targets == 1)
2867 			bio->bi_opf &= ~MD_FAILFAST;
2868 		generic_make_request(bio);
2869 
2870 	}
2871 	return nr_sectors;
2872 }
2873 
2874 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2875 {
2876 	if (sectors)
2877 		return sectors;
2878 
2879 	return mddev->dev_sectors;
2880 }
2881 
2882 static struct r1conf *setup_conf(struct mddev *mddev)
2883 {
2884 	struct r1conf *conf;
2885 	int i;
2886 	struct raid1_info *disk;
2887 	struct md_rdev *rdev;
2888 	int err = -ENOMEM;
2889 
2890 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2891 	if (!conf)
2892 		goto abort;
2893 
2894 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2895 				   sizeof(atomic_t), GFP_KERNEL);
2896 	if (!conf->nr_pending)
2897 		goto abort;
2898 
2899 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2900 				   sizeof(atomic_t), GFP_KERNEL);
2901 	if (!conf->nr_waiting)
2902 		goto abort;
2903 
2904 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2905 				  sizeof(atomic_t), GFP_KERNEL);
2906 	if (!conf->nr_queued)
2907 		goto abort;
2908 
2909 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2910 				sizeof(atomic_t), GFP_KERNEL);
2911 	if (!conf->barrier)
2912 		goto abort;
2913 
2914 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2915 				* mddev->raid_disks * 2,
2916 				 GFP_KERNEL);
2917 	if (!conf->mirrors)
2918 		goto abort;
2919 
2920 	conf->tmppage = alloc_page(GFP_KERNEL);
2921 	if (!conf->tmppage)
2922 		goto abort;
2923 
2924 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2925 	if (!conf->poolinfo)
2926 		goto abort;
2927 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2928 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2929 					  r1bio_pool_free,
2930 					  conf->poolinfo);
2931 	if (!conf->r1bio_pool)
2932 		goto abort;
2933 
2934 	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2935 	if (!conf->bio_split)
2936 		goto abort;
2937 
2938 	conf->poolinfo->mddev = mddev;
2939 
2940 	err = -EINVAL;
2941 	spin_lock_init(&conf->device_lock);
2942 	rdev_for_each(rdev, mddev) {
2943 		int disk_idx = rdev->raid_disk;
2944 		if (disk_idx >= mddev->raid_disks
2945 		    || disk_idx < 0)
2946 			continue;
2947 		if (test_bit(Replacement, &rdev->flags))
2948 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2949 		else
2950 			disk = conf->mirrors + disk_idx;
2951 
2952 		if (disk->rdev)
2953 			goto abort;
2954 		disk->rdev = rdev;
2955 		disk->head_position = 0;
2956 		disk->seq_start = MaxSector;
2957 	}
2958 	conf->raid_disks = mddev->raid_disks;
2959 	conf->mddev = mddev;
2960 	INIT_LIST_HEAD(&conf->retry_list);
2961 	INIT_LIST_HEAD(&conf->bio_end_io_list);
2962 
2963 	spin_lock_init(&conf->resync_lock);
2964 	init_waitqueue_head(&conf->wait_barrier);
2965 
2966 	bio_list_init(&conf->pending_bio_list);
2967 	conf->pending_count = 0;
2968 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2969 
2970 	err = -EIO;
2971 	for (i = 0; i < conf->raid_disks * 2; i++) {
2972 
2973 		disk = conf->mirrors + i;
2974 
2975 		if (i < conf->raid_disks &&
2976 		    disk[conf->raid_disks].rdev) {
2977 			/* This slot has a replacement. */
2978 			if (!disk->rdev) {
2979 				/* No original, just make the replacement
2980 				 * a recovering spare
2981 				 */
2982 				disk->rdev =
2983 					disk[conf->raid_disks].rdev;
2984 				disk[conf->raid_disks].rdev = NULL;
2985 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2986 				/* Original is not in_sync - bad */
2987 				goto abort;
2988 		}
2989 
2990 		if (!disk->rdev ||
2991 		    !test_bit(In_sync, &disk->rdev->flags)) {
2992 			disk->head_position = 0;
2993 			if (disk->rdev &&
2994 			    (disk->rdev->saved_raid_disk < 0))
2995 				conf->fullsync = 1;
2996 		}
2997 	}
2998 
2999 	err = -ENOMEM;
3000 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3001 	if (!conf->thread)
3002 		goto abort;
3003 
3004 	return conf;
3005 
3006  abort:
3007 	if (conf) {
3008 		mempool_destroy(conf->r1bio_pool);
3009 		kfree(conf->mirrors);
3010 		safe_put_page(conf->tmppage);
3011 		kfree(conf->poolinfo);
3012 		kfree(conf->nr_pending);
3013 		kfree(conf->nr_waiting);
3014 		kfree(conf->nr_queued);
3015 		kfree(conf->barrier);
3016 		if (conf->bio_split)
3017 			bioset_free(conf->bio_split);
3018 		kfree(conf);
3019 	}
3020 	return ERR_PTR(err);
3021 }
3022 
3023 static void raid1_free(struct mddev *mddev, void *priv);
3024 static int raid1_run(struct mddev *mddev)
3025 {
3026 	struct r1conf *conf;
3027 	int i;
3028 	struct md_rdev *rdev;
3029 	int ret;
3030 	bool discard_supported = false;
3031 
3032 	if (mddev->level != 1) {
3033 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3034 			mdname(mddev), mddev->level);
3035 		return -EIO;
3036 	}
3037 	if (mddev->reshape_position != MaxSector) {
3038 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3039 			mdname(mddev));
3040 		return -EIO;
3041 	}
3042 	if (mddev_init_writes_pending(mddev) < 0)
3043 		return -ENOMEM;
3044 	/*
3045 	 * copy the already verified devices into our private RAID1
3046 	 * bookkeeping area. [whatever we allocate in run(),
3047 	 * should be freed in raid1_free()]
3048 	 */
3049 	if (mddev->private == NULL)
3050 		conf = setup_conf(mddev);
3051 	else
3052 		conf = mddev->private;
3053 
3054 	if (IS_ERR(conf))
3055 		return PTR_ERR(conf);
3056 
3057 	if (mddev->queue) {
3058 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3059 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3060 	}
3061 
3062 	rdev_for_each(rdev, mddev) {
3063 		if (!mddev->gendisk)
3064 			continue;
3065 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3066 				  rdev->data_offset << 9);
3067 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3068 			discard_supported = true;
3069 	}
3070 
3071 	mddev->degraded = 0;
3072 	for (i=0; i < conf->raid_disks; i++)
3073 		if (conf->mirrors[i].rdev == NULL ||
3074 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3075 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3076 			mddev->degraded++;
3077 
3078 	if (conf->raid_disks - mddev->degraded == 1)
3079 		mddev->recovery_cp = MaxSector;
3080 
3081 	if (mddev->recovery_cp != MaxSector)
3082 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3083 			mdname(mddev));
3084 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3085 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3086 		mddev->raid_disks);
3087 
3088 	/*
3089 	 * Ok, everything is just fine now
3090 	 */
3091 	mddev->thread = conf->thread;
3092 	conf->thread = NULL;
3093 	mddev->private = conf;
3094 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3095 
3096 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3097 
3098 	if (mddev->queue) {
3099 		if (discard_supported)
3100 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3101 						mddev->queue);
3102 		else
3103 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3104 						  mddev->queue);
3105 	}
3106 
3107 	ret =  md_integrity_register(mddev);
3108 	if (ret) {
3109 		md_unregister_thread(&mddev->thread);
3110 		raid1_free(mddev, conf);
3111 	}
3112 	return ret;
3113 }
3114 
3115 static void raid1_free(struct mddev *mddev, void *priv)
3116 {
3117 	struct r1conf *conf = priv;
3118 
3119 	mempool_destroy(conf->r1bio_pool);
3120 	kfree(conf->mirrors);
3121 	safe_put_page(conf->tmppage);
3122 	kfree(conf->poolinfo);
3123 	kfree(conf->nr_pending);
3124 	kfree(conf->nr_waiting);
3125 	kfree(conf->nr_queued);
3126 	kfree(conf->barrier);
3127 	if (conf->bio_split)
3128 		bioset_free(conf->bio_split);
3129 	kfree(conf);
3130 }
3131 
3132 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3133 {
3134 	/* no resync is happening, and there is enough space
3135 	 * on all devices, so we can resize.
3136 	 * We need to make sure resync covers any new space.
3137 	 * If the array is shrinking we should possibly wait until
3138 	 * any io in the removed space completes, but it hardly seems
3139 	 * worth it.
3140 	 */
3141 	sector_t newsize = raid1_size(mddev, sectors, 0);
3142 	if (mddev->external_size &&
3143 	    mddev->array_sectors > newsize)
3144 		return -EINVAL;
3145 	if (mddev->bitmap) {
3146 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3147 		if (ret)
3148 			return ret;
3149 	}
3150 	md_set_array_sectors(mddev, newsize);
3151 	if (sectors > mddev->dev_sectors &&
3152 	    mddev->recovery_cp > mddev->dev_sectors) {
3153 		mddev->recovery_cp = mddev->dev_sectors;
3154 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3155 	}
3156 	mddev->dev_sectors = sectors;
3157 	mddev->resync_max_sectors = sectors;
3158 	return 0;
3159 }
3160 
3161 static int raid1_reshape(struct mddev *mddev)
3162 {
3163 	/* We need to:
3164 	 * 1/ resize the r1bio_pool
3165 	 * 2/ resize conf->mirrors
3166 	 *
3167 	 * We allocate a new r1bio_pool if we can.
3168 	 * Then raise a device barrier and wait until all IO stops.
3169 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3170 	 *
3171 	 * At the same time, we "pack" the devices so that all the missing
3172 	 * devices have the higher raid_disk numbers.
3173 	 */
3174 	mempool_t *newpool, *oldpool;
3175 	struct pool_info *newpoolinfo;
3176 	struct raid1_info *newmirrors;
3177 	struct r1conf *conf = mddev->private;
3178 	int cnt, raid_disks;
3179 	unsigned long flags;
3180 	int d, d2;
3181 
3182 	/* Cannot change chunk_size, layout, or level */
3183 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3184 	    mddev->layout != mddev->new_layout ||
3185 	    mddev->level != mddev->new_level) {
3186 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3187 		mddev->new_layout = mddev->layout;
3188 		mddev->new_level = mddev->level;
3189 		return -EINVAL;
3190 	}
3191 
3192 	if (!mddev_is_clustered(mddev))
3193 		md_allow_write(mddev);
3194 
3195 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3196 
3197 	if (raid_disks < conf->raid_disks) {
3198 		cnt=0;
3199 		for (d= 0; d < conf->raid_disks; d++)
3200 			if (conf->mirrors[d].rdev)
3201 				cnt++;
3202 		if (cnt > raid_disks)
3203 			return -EBUSY;
3204 	}
3205 
3206 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3207 	if (!newpoolinfo)
3208 		return -ENOMEM;
3209 	newpoolinfo->mddev = mddev;
3210 	newpoolinfo->raid_disks = raid_disks * 2;
3211 
3212 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3213 				 r1bio_pool_free, newpoolinfo);
3214 	if (!newpool) {
3215 		kfree(newpoolinfo);
3216 		return -ENOMEM;
3217 	}
3218 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3219 			     GFP_KERNEL);
3220 	if (!newmirrors) {
3221 		kfree(newpoolinfo);
3222 		mempool_destroy(newpool);
3223 		return -ENOMEM;
3224 	}
3225 
3226 	freeze_array(conf, 0);
3227 
3228 	/* ok, everything is stopped */
3229 	oldpool = conf->r1bio_pool;
3230 	conf->r1bio_pool = newpool;
3231 
3232 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3233 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3234 		if (rdev && rdev->raid_disk != d2) {
3235 			sysfs_unlink_rdev(mddev, rdev);
3236 			rdev->raid_disk = d2;
3237 			sysfs_unlink_rdev(mddev, rdev);
3238 			if (sysfs_link_rdev(mddev, rdev))
3239 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3240 					mdname(mddev), rdev->raid_disk);
3241 		}
3242 		if (rdev)
3243 			newmirrors[d2++].rdev = rdev;
3244 	}
3245 	kfree(conf->mirrors);
3246 	conf->mirrors = newmirrors;
3247 	kfree(conf->poolinfo);
3248 	conf->poolinfo = newpoolinfo;
3249 
3250 	spin_lock_irqsave(&conf->device_lock, flags);
3251 	mddev->degraded += (raid_disks - conf->raid_disks);
3252 	spin_unlock_irqrestore(&conf->device_lock, flags);
3253 	conf->raid_disks = mddev->raid_disks = raid_disks;
3254 	mddev->delta_disks = 0;
3255 
3256 	unfreeze_array(conf);
3257 
3258 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3259 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3260 	md_wakeup_thread(mddev->thread);
3261 
3262 	mempool_destroy(oldpool);
3263 	return 0;
3264 }
3265 
3266 static void raid1_quiesce(struct mddev *mddev, int state)
3267 {
3268 	struct r1conf *conf = mddev->private;
3269 
3270 	switch(state) {
3271 	case 2: /* wake for suspend */
3272 		wake_up(&conf->wait_barrier);
3273 		break;
3274 	case 1:
3275 		freeze_array(conf, 0);
3276 		break;
3277 	case 0:
3278 		unfreeze_array(conf);
3279 		break;
3280 	}
3281 }
3282 
3283 static void *raid1_takeover(struct mddev *mddev)
3284 {
3285 	/* raid1 can take over:
3286 	 *  raid5 with 2 devices, any layout or chunk size
3287 	 */
3288 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3289 		struct r1conf *conf;
3290 		mddev->new_level = 1;
3291 		mddev->new_layout = 0;
3292 		mddev->new_chunk_sectors = 0;
3293 		conf = setup_conf(mddev);
3294 		if (!IS_ERR(conf)) {
3295 			/* Array must appear to be quiesced */
3296 			conf->array_frozen = 1;
3297 			mddev_clear_unsupported_flags(mddev,
3298 				UNSUPPORTED_MDDEV_FLAGS);
3299 		}
3300 		return conf;
3301 	}
3302 	return ERR_PTR(-EINVAL);
3303 }
3304 
3305 static struct md_personality raid1_personality =
3306 {
3307 	.name		= "raid1",
3308 	.level		= 1,
3309 	.owner		= THIS_MODULE,
3310 	.make_request	= raid1_make_request,
3311 	.run		= raid1_run,
3312 	.free		= raid1_free,
3313 	.status		= raid1_status,
3314 	.error_handler	= raid1_error,
3315 	.hot_add_disk	= raid1_add_disk,
3316 	.hot_remove_disk= raid1_remove_disk,
3317 	.spare_active	= raid1_spare_active,
3318 	.sync_request	= raid1_sync_request,
3319 	.resize		= raid1_resize,
3320 	.size		= raid1_size,
3321 	.check_reshape	= raid1_reshape,
3322 	.quiesce	= raid1_quiesce,
3323 	.takeover	= raid1_takeover,
3324 	.congested	= raid1_congested,
3325 };
3326 
3327 static int __init raid_init(void)
3328 {
3329 	return register_md_personality(&raid1_personality);
3330 }
3331 
3332 static void raid_exit(void)
3333 {
3334 	unregister_md_personality(&raid1_personality);
3335 }
3336 
3337 module_init(raid_init);
3338 module_exit(raid_exit);
3339 MODULE_LICENSE("GPL");
3340 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3341 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3342 MODULE_ALIAS("md-raid1");
3343 MODULE_ALIAS("md-level-1");
3344 
3345 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3346