1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <linux/sched/signal.h> 41 42 #include <trace/events/block.h> 43 44 #include "md.h" 45 #include "raid1.h" 46 #include "bitmap.h" 47 48 #define UNSUPPORTED_MDDEV_FLAGS \ 49 ((1L << MD_HAS_JOURNAL) | \ 50 (1L << MD_JOURNAL_CLEAN) | \ 51 (1L << MD_HAS_PPL)) 52 53 /* 54 * Number of guaranteed r1bios in case of extreme VM load: 55 */ 56 #define NR_RAID1_BIOS 256 57 58 /* when we get a read error on a read-only array, we redirect to another 59 * device without failing the first device, or trying to over-write to 60 * correct the read error. To keep track of bad blocks on a per-bio 61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 62 */ 63 #define IO_BLOCKED ((struct bio *)1) 64 /* When we successfully write to a known bad-block, we need to remove the 65 * bad-block marking which must be done from process context. So we record 66 * the success by setting devs[n].bio to IO_MADE_GOOD 67 */ 68 #define IO_MADE_GOOD ((struct bio *)2) 69 70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 71 72 /* When there are this many requests queue to be written by 73 * the raid1 thread, we become 'congested' to provide back-pressure 74 * for writeback. 75 */ 76 static int max_queued_requests = 1024; 77 78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 80 81 #define raid1_log(md, fmt, args...) \ 82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 83 84 #include "raid1-10.c" 85 86 /* 87 * for resync bio, r1bio pointer can be retrieved from the per-bio 88 * 'struct resync_pages'. 89 */ 90 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 91 { 92 return get_resync_pages(bio)->raid_bio; 93 } 94 95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 99 100 /* allocate a r1bio with room for raid_disks entries in the bios array */ 101 return kzalloc(size, gfp_flags); 102 } 103 104 static void r1bio_pool_free(void *r1_bio, void *data) 105 { 106 kfree(r1_bio); 107 } 108 109 #define RESYNC_DEPTH 32 110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 115 116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 117 { 118 struct pool_info *pi = data; 119 struct r1bio *r1_bio; 120 struct bio *bio; 121 int need_pages; 122 int j; 123 struct resync_pages *rps; 124 125 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 126 if (!r1_bio) 127 return NULL; 128 129 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 130 gfp_flags); 131 if (!rps) 132 goto out_free_r1bio; 133 134 /* 135 * Allocate bios : 1 for reading, n-1 for writing 136 */ 137 for (j = pi->raid_disks ; j-- ; ) { 138 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 139 if (!bio) 140 goto out_free_bio; 141 r1_bio->bios[j] = bio; 142 } 143 /* 144 * Allocate RESYNC_PAGES data pages and attach them to 145 * the first bio. 146 * If this is a user-requested check/repair, allocate 147 * RESYNC_PAGES for each bio. 148 */ 149 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 150 need_pages = pi->raid_disks; 151 else 152 need_pages = 1; 153 for (j = 0; j < pi->raid_disks; j++) { 154 struct resync_pages *rp = &rps[j]; 155 156 bio = r1_bio->bios[j]; 157 158 if (j < need_pages) { 159 if (resync_alloc_pages(rp, gfp_flags)) 160 goto out_free_pages; 161 } else { 162 memcpy(rp, &rps[0], sizeof(*rp)); 163 resync_get_all_pages(rp); 164 } 165 166 rp->raid_bio = r1_bio; 167 bio->bi_private = rp; 168 } 169 170 r1_bio->master_bio = NULL; 171 172 return r1_bio; 173 174 out_free_pages: 175 while (--j >= 0) 176 resync_free_pages(&rps[j]); 177 178 out_free_bio: 179 while (++j < pi->raid_disks) 180 bio_put(r1_bio->bios[j]); 181 kfree(rps); 182 183 out_free_r1bio: 184 r1bio_pool_free(r1_bio, data); 185 return NULL; 186 } 187 188 static void r1buf_pool_free(void *__r1_bio, void *data) 189 { 190 struct pool_info *pi = data; 191 int i; 192 struct r1bio *r1bio = __r1_bio; 193 struct resync_pages *rp = NULL; 194 195 for (i = pi->raid_disks; i--; ) { 196 rp = get_resync_pages(r1bio->bios[i]); 197 resync_free_pages(rp); 198 bio_put(r1bio->bios[i]); 199 } 200 201 /* resync pages array stored in the 1st bio's .bi_private */ 202 kfree(rp); 203 204 r1bio_pool_free(r1bio, data); 205 } 206 207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 208 { 209 int i; 210 211 for (i = 0; i < conf->raid_disks * 2; i++) { 212 struct bio **bio = r1_bio->bios + i; 213 if (!BIO_SPECIAL(*bio)) 214 bio_put(*bio); 215 *bio = NULL; 216 } 217 } 218 219 static void free_r1bio(struct r1bio *r1_bio) 220 { 221 struct r1conf *conf = r1_bio->mddev->private; 222 223 put_all_bios(conf, r1_bio); 224 mempool_free(r1_bio, conf->r1bio_pool); 225 } 226 227 static void put_buf(struct r1bio *r1_bio) 228 { 229 struct r1conf *conf = r1_bio->mddev->private; 230 sector_t sect = r1_bio->sector; 231 int i; 232 233 for (i = 0; i < conf->raid_disks * 2; i++) { 234 struct bio *bio = r1_bio->bios[i]; 235 if (bio->bi_end_io) 236 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 237 } 238 239 mempool_free(r1_bio, conf->r1buf_pool); 240 241 lower_barrier(conf, sect); 242 } 243 244 static void reschedule_retry(struct r1bio *r1_bio) 245 { 246 unsigned long flags; 247 struct mddev *mddev = r1_bio->mddev; 248 struct r1conf *conf = mddev->private; 249 int idx; 250 251 idx = sector_to_idx(r1_bio->sector); 252 spin_lock_irqsave(&conf->device_lock, flags); 253 list_add(&r1_bio->retry_list, &conf->retry_list); 254 atomic_inc(&conf->nr_queued[idx]); 255 spin_unlock_irqrestore(&conf->device_lock, flags); 256 257 wake_up(&conf->wait_barrier); 258 md_wakeup_thread(mddev->thread); 259 } 260 261 /* 262 * raid_end_bio_io() is called when we have finished servicing a mirrored 263 * operation and are ready to return a success/failure code to the buffer 264 * cache layer. 265 */ 266 static void call_bio_endio(struct r1bio *r1_bio) 267 { 268 struct bio *bio = r1_bio->master_bio; 269 struct r1conf *conf = r1_bio->mddev->private; 270 271 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 272 bio->bi_status = BLK_STS_IOERR; 273 274 bio_endio(bio); 275 /* 276 * Wake up any possible resync thread that waits for the device 277 * to go idle. 278 */ 279 allow_barrier(conf, r1_bio->sector); 280 } 281 282 static void raid_end_bio_io(struct r1bio *r1_bio) 283 { 284 struct bio *bio = r1_bio->master_bio; 285 286 /* if nobody has done the final endio yet, do it now */ 287 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 289 (bio_data_dir(bio) == WRITE) ? "write" : "read", 290 (unsigned long long) bio->bi_iter.bi_sector, 291 (unsigned long long) bio_end_sector(bio) - 1); 292 293 call_bio_endio(r1_bio); 294 } 295 free_r1bio(r1_bio); 296 } 297 298 /* 299 * Update disk head position estimator based on IRQ completion info. 300 */ 301 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 302 { 303 struct r1conf *conf = r1_bio->mddev->private; 304 305 conf->mirrors[disk].head_position = 306 r1_bio->sector + (r1_bio->sectors); 307 } 308 309 /* 310 * Find the disk number which triggered given bio 311 */ 312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 313 { 314 int mirror; 315 struct r1conf *conf = r1_bio->mddev->private; 316 int raid_disks = conf->raid_disks; 317 318 for (mirror = 0; mirror < raid_disks * 2; mirror++) 319 if (r1_bio->bios[mirror] == bio) 320 break; 321 322 BUG_ON(mirror == raid_disks * 2); 323 update_head_pos(mirror, r1_bio); 324 325 return mirror; 326 } 327 328 static void raid1_end_read_request(struct bio *bio) 329 { 330 int uptodate = !bio->bi_status; 331 struct r1bio *r1_bio = bio->bi_private; 332 struct r1conf *conf = r1_bio->mddev->private; 333 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 334 335 /* 336 * this branch is our 'one mirror IO has finished' event handler: 337 */ 338 update_head_pos(r1_bio->read_disk, r1_bio); 339 340 if (uptodate) 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 else if (test_bit(FailFast, &rdev->flags) && 343 test_bit(R1BIO_FailFast, &r1_bio->state)) 344 /* This was a fail-fast read so we definitely 345 * want to retry */ 346 ; 347 else { 348 /* If all other devices have failed, we want to return 349 * the error upwards rather than fail the last device. 350 * Here we redefine "uptodate" to mean "Don't want to retry" 351 */ 352 unsigned long flags; 353 spin_lock_irqsave(&conf->device_lock, flags); 354 if (r1_bio->mddev->degraded == conf->raid_disks || 355 (r1_bio->mddev->degraded == conf->raid_disks-1 && 356 test_bit(In_sync, &rdev->flags))) 357 uptodate = 1; 358 spin_unlock_irqrestore(&conf->device_lock, flags); 359 } 360 361 if (uptodate) { 362 raid_end_bio_io(r1_bio); 363 rdev_dec_pending(rdev, conf->mddev); 364 } else { 365 /* 366 * oops, read error: 367 */ 368 char b[BDEVNAME_SIZE]; 369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 370 mdname(conf->mddev), 371 bdevname(rdev->bdev, b), 372 (unsigned long long)r1_bio->sector); 373 set_bit(R1BIO_ReadError, &r1_bio->state); 374 reschedule_retry(r1_bio); 375 /* don't drop the reference on read_disk yet */ 376 } 377 } 378 379 static void close_write(struct r1bio *r1_bio) 380 { 381 /* it really is the end of this request */ 382 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 383 bio_free_pages(r1_bio->behind_master_bio); 384 bio_put(r1_bio->behind_master_bio); 385 r1_bio->behind_master_bio = NULL; 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 test_bit(R1BIO_BehindIO, &r1_bio->state)); 392 md_write_end(r1_bio->mddev); 393 } 394 395 static void r1_bio_write_done(struct r1bio *r1_bio) 396 { 397 if (!atomic_dec_and_test(&r1_bio->remaining)) 398 return; 399 400 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 401 reschedule_retry(r1_bio); 402 else { 403 close_write(r1_bio); 404 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 405 reschedule_retry(r1_bio); 406 else 407 raid_end_bio_io(r1_bio); 408 } 409 } 410 411 static void raid1_end_write_request(struct bio *bio) 412 { 413 struct r1bio *r1_bio = bio->bi_private; 414 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 415 struct r1conf *conf = r1_bio->mddev->private; 416 struct bio *to_put = NULL; 417 int mirror = find_bio_disk(r1_bio, bio); 418 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 419 bool discard_error; 420 421 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 422 423 /* 424 * 'one mirror IO has finished' event handler: 425 */ 426 if (bio->bi_status && !discard_error) { 427 set_bit(WriteErrorSeen, &rdev->flags); 428 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 429 set_bit(MD_RECOVERY_NEEDED, & 430 conf->mddev->recovery); 431 432 if (test_bit(FailFast, &rdev->flags) && 433 (bio->bi_opf & MD_FAILFAST) && 434 /* We never try FailFast to WriteMostly devices */ 435 !test_bit(WriteMostly, &rdev->flags)) { 436 md_error(r1_bio->mddev, rdev); 437 if (!test_bit(Faulty, &rdev->flags)) 438 /* This is the only remaining device, 439 * We need to retry the write without 440 * FailFast 441 */ 442 set_bit(R1BIO_WriteError, &r1_bio->state); 443 else { 444 /* Finished with this branch */ 445 r1_bio->bios[mirror] = NULL; 446 to_put = bio; 447 } 448 } else 449 set_bit(R1BIO_WriteError, &r1_bio->state); 450 } else { 451 /* 452 * Set R1BIO_Uptodate in our master bio, so that we 453 * will return a good error code for to the higher 454 * levels even if IO on some other mirrored buffer 455 * fails. 456 * 457 * The 'master' represents the composite IO operation 458 * to user-side. So if something waits for IO, then it 459 * will wait for the 'master' bio. 460 */ 461 sector_t first_bad; 462 int bad_sectors; 463 464 r1_bio->bios[mirror] = NULL; 465 to_put = bio; 466 /* 467 * Do not set R1BIO_Uptodate if the current device is 468 * rebuilding or Faulty. This is because we cannot use 469 * such device for properly reading the data back (we could 470 * potentially use it, if the current write would have felt 471 * before rdev->recovery_offset, but for simplicity we don't 472 * check this here. 473 */ 474 if (test_bit(In_sync, &rdev->flags) && 475 !test_bit(Faulty, &rdev->flags)) 476 set_bit(R1BIO_Uptodate, &r1_bio->state); 477 478 /* Maybe we can clear some bad blocks. */ 479 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 480 &first_bad, &bad_sectors) && !discard_error) { 481 r1_bio->bios[mirror] = IO_MADE_GOOD; 482 set_bit(R1BIO_MadeGood, &r1_bio->state); 483 } 484 } 485 486 if (behind) { 487 if (test_bit(WriteMostly, &rdev->flags)) 488 atomic_dec(&r1_bio->behind_remaining); 489 490 /* 491 * In behind mode, we ACK the master bio once the I/O 492 * has safely reached all non-writemostly 493 * disks. Setting the Returned bit ensures that this 494 * gets done only once -- we don't ever want to return 495 * -EIO here, instead we'll wait 496 */ 497 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 498 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 499 /* Maybe we can return now */ 500 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 501 struct bio *mbio = r1_bio->master_bio; 502 pr_debug("raid1: behind end write sectors" 503 " %llu-%llu\n", 504 (unsigned long long) mbio->bi_iter.bi_sector, 505 (unsigned long long) bio_end_sector(mbio) - 1); 506 call_bio_endio(r1_bio); 507 } 508 } 509 } 510 if (r1_bio->bios[mirror] == NULL) 511 rdev_dec_pending(rdev, conf->mddev); 512 513 /* 514 * Let's see if all mirrored write operations have finished 515 * already. 516 */ 517 r1_bio_write_done(r1_bio); 518 519 if (to_put) 520 bio_put(to_put); 521 } 522 523 static sector_t align_to_barrier_unit_end(sector_t start_sector, 524 sector_t sectors) 525 { 526 sector_t len; 527 528 WARN_ON(sectors == 0); 529 /* 530 * len is the number of sectors from start_sector to end of the 531 * barrier unit which start_sector belongs to. 532 */ 533 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 534 start_sector; 535 536 if (len > sectors) 537 len = sectors; 538 539 return len; 540 } 541 542 /* 543 * This routine returns the disk from which the requested read should 544 * be done. There is a per-array 'next expected sequential IO' sector 545 * number - if this matches on the next IO then we use the last disk. 546 * There is also a per-disk 'last know head position' sector that is 547 * maintained from IRQ contexts, both the normal and the resync IO 548 * completion handlers update this position correctly. If there is no 549 * perfect sequential match then we pick the disk whose head is closest. 550 * 551 * If there are 2 mirrors in the same 2 devices, performance degrades 552 * because position is mirror, not device based. 553 * 554 * The rdev for the device selected will have nr_pending incremented. 555 */ 556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 557 { 558 const sector_t this_sector = r1_bio->sector; 559 int sectors; 560 int best_good_sectors; 561 int best_disk, best_dist_disk, best_pending_disk; 562 int has_nonrot_disk; 563 int disk; 564 sector_t best_dist; 565 unsigned int min_pending; 566 struct md_rdev *rdev; 567 int choose_first; 568 int choose_next_idle; 569 570 rcu_read_lock(); 571 /* 572 * Check if we can balance. We can balance on the whole 573 * device if no resync is going on, or below the resync window. 574 * We take the first readable disk when above the resync window. 575 */ 576 retry: 577 sectors = r1_bio->sectors; 578 best_disk = -1; 579 best_dist_disk = -1; 580 best_dist = MaxSector; 581 best_pending_disk = -1; 582 min_pending = UINT_MAX; 583 best_good_sectors = 0; 584 has_nonrot_disk = 0; 585 choose_next_idle = 0; 586 clear_bit(R1BIO_FailFast, &r1_bio->state); 587 588 if ((conf->mddev->recovery_cp < this_sector + sectors) || 589 (mddev_is_clustered(conf->mddev) && 590 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 591 this_sector + sectors))) 592 choose_first = 1; 593 else 594 choose_first = 0; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 sector_t dist; 598 sector_t first_bad; 599 int bad_sectors; 600 unsigned int pending; 601 bool nonrot; 602 603 rdev = rcu_dereference(conf->mirrors[disk].rdev); 604 if (r1_bio->bios[disk] == IO_BLOCKED 605 || rdev == NULL 606 || test_bit(Faulty, &rdev->flags)) 607 continue; 608 if (!test_bit(In_sync, &rdev->flags) && 609 rdev->recovery_offset < this_sector + sectors) 610 continue; 611 if (test_bit(WriteMostly, &rdev->flags)) { 612 /* Don't balance among write-mostly, just 613 * use the first as a last resort */ 614 if (best_dist_disk < 0) { 615 if (is_badblock(rdev, this_sector, sectors, 616 &first_bad, &bad_sectors)) { 617 if (first_bad <= this_sector) 618 /* Cannot use this */ 619 continue; 620 best_good_sectors = first_bad - this_sector; 621 } else 622 best_good_sectors = sectors; 623 best_dist_disk = disk; 624 best_pending_disk = disk; 625 } 626 continue; 627 } 628 /* This is a reasonable device to use. It might 629 * even be best. 630 */ 631 if (is_badblock(rdev, this_sector, sectors, 632 &first_bad, &bad_sectors)) { 633 if (best_dist < MaxSector) 634 /* already have a better device */ 635 continue; 636 if (first_bad <= this_sector) { 637 /* cannot read here. If this is the 'primary' 638 * device, then we must not read beyond 639 * bad_sectors from another device.. 640 */ 641 bad_sectors -= (this_sector - first_bad); 642 if (choose_first && sectors > bad_sectors) 643 sectors = bad_sectors; 644 if (best_good_sectors > sectors) 645 best_good_sectors = sectors; 646 647 } else { 648 sector_t good_sectors = first_bad - this_sector; 649 if (good_sectors > best_good_sectors) { 650 best_good_sectors = good_sectors; 651 best_disk = disk; 652 } 653 if (choose_first) 654 break; 655 } 656 continue; 657 } else { 658 if ((sectors > best_good_sectors) && (best_disk >= 0)) 659 best_disk = -1; 660 best_good_sectors = sectors; 661 } 662 663 if (best_disk >= 0) 664 /* At least two disks to choose from so failfast is OK */ 665 set_bit(R1BIO_FailFast, &r1_bio->state); 666 667 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 668 has_nonrot_disk |= nonrot; 669 pending = atomic_read(&rdev->nr_pending); 670 dist = abs(this_sector - conf->mirrors[disk].head_position); 671 if (choose_first) { 672 best_disk = disk; 673 break; 674 } 675 /* Don't change to another disk for sequential reads */ 676 if (conf->mirrors[disk].next_seq_sect == this_sector 677 || dist == 0) { 678 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 679 struct raid1_info *mirror = &conf->mirrors[disk]; 680 681 best_disk = disk; 682 /* 683 * If buffered sequential IO size exceeds optimal 684 * iosize, check if there is idle disk. If yes, choose 685 * the idle disk. read_balance could already choose an 686 * idle disk before noticing it's a sequential IO in 687 * this disk. This doesn't matter because this disk 688 * will idle, next time it will be utilized after the 689 * first disk has IO size exceeds optimal iosize. In 690 * this way, iosize of the first disk will be optimal 691 * iosize at least. iosize of the second disk might be 692 * small, but not a big deal since when the second disk 693 * starts IO, the first disk is likely still busy. 694 */ 695 if (nonrot && opt_iosize > 0 && 696 mirror->seq_start != MaxSector && 697 mirror->next_seq_sect > opt_iosize && 698 mirror->next_seq_sect - opt_iosize >= 699 mirror->seq_start) { 700 choose_next_idle = 1; 701 continue; 702 } 703 break; 704 } 705 706 if (choose_next_idle) 707 continue; 708 709 if (min_pending > pending) { 710 min_pending = pending; 711 best_pending_disk = disk; 712 } 713 714 if (dist < best_dist) { 715 best_dist = dist; 716 best_dist_disk = disk; 717 } 718 } 719 720 /* 721 * If all disks are rotational, choose the closest disk. If any disk is 722 * non-rotational, choose the disk with less pending request even the 723 * disk is rotational, which might/might not be optimal for raids with 724 * mixed ratation/non-rotational disks depending on workload. 725 */ 726 if (best_disk == -1) { 727 if (has_nonrot_disk || min_pending == 0) 728 best_disk = best_pending_disk; 729 else 730 best_disk = best_dist_disk; 731 } 732 733 if (best_disk >= 0) { 734 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 735 if (!rdev) 736 goto retry; 737 atomic_inc(&rdev->nr_pending); 738 sectors = best_good_sectors; 739 740 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 741 conf->mirrors[best_disk].seq_start = this_sector; 742 743 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 744 } 745 rcu_read_unlock(); 746 *max_sectors = sectors; 747 748 return best_disk; 749 } 750 751 static int raid1_congested(struct mddev *mddev, int bits) 752 { 753 struct r1conf *conf = mddev->private; 754 int i, ret = 0; 755 756 if ((bits & (1 << WB_async_congested)) && 757 conf->pending_count >= max_queued_requests) 758 return 1; 759 760 rcu_read_lock(); 761 for (i = 0; i < conf->raid_disks * 2; i++) { 762 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 763 if (rdev && !test_bit(Faulty, &rdev->flags)) { 764 struct request_queue *q = bdev_get_queue(rdev->bdev); 765 766 BUG_ON(!q); 767 768 /* Note the '|| 1' - when read_balance prefers 769 * non-congested targets, it can be removed 770 */ 771 if ((bits & (1 << WB_async_congested)) || 1) 772 ret |= bdi_congested(q->backing_dev_info, bits); 773 else 774 ret &= bdi_congested(q->backing_dev_info, bits); 775 } 776 } 777 rcu_read_unlock(); 778 return ret; 779 } 780 781 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 782 { 783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 784 bitmap_unplug(conf->mddev->bitmap); 785 wake_up(&conf->wait_barrier); 786 787 while (bio) { /* submit pending writes */ 788 struct bio *next = bio->bi_next; 789 struct md_rdev *rdev = (void*)bio->bi_bdev; 790 bio->bi_next = NULL; 791 bio->bi_bdev = rdev->bdev; 792 if (test_bit(Faulty, &rdev->flags)) { 793 bio_io_error(bio); 794 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 795 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 796 /* Just ignore it */ 797 bio_endio(bio); 798 else 799 generic_make_request(bio); 800 bio = next; 801 } 802 } 803 804 static void flush_pending_writes(struct r1conf *conf) 805 { 806 /* Any writes that have been queued but are awaiting 807 * bitmap updates get flushed here. 808 */ 809 spin_lock_irq(&conf->device_lock); 810 811 if (conf->pending_bio_list.head) { 812 struct bio *bio; 813 bio = bio_list_get(&conf->pending_bio_list); 814 conf->pending_count = 0; 815 spin_unlock_irq(&conf->device_lock); 816 flush_bio_list(conf, bio); 817 } else 818 spin_unlock_irq(&conf->device_lock); 819 } 820 821 /* Barriers.... 822 * Sometimes we need to suspend IO while we do something else, 823 * either some resync/recovery, or reconfigure the array. 824 * To do this we raise a 'barrier'. 825 * The 'barrier' is a counter that can be raised multiple times 826 * to count how many activities are happening which preclude 827 * normal IO. 828 * We can only raise the barrier if there is no pending IO. 829 * i.e. if nr_pending == 0. 830 * We choose only to raise the barrier if no-one is waiting for the 831 * barrier to go down. This means that as soon as an IO request 832 * is ready, no other operations which require a barrier will start 833 * until the IO request has had a chance. 834 * 835 * So: regular IO calls 'wait_barrier'. When that returns there 836 * is no backgroup IO happening, It must arrange to call 837 * allow_barrier when it has finished its IO. 838 * backgroup IO calls must call raise_barrier. Once that returns 839 * there is no normal IO happeing. It must arrange to call 840 * lower_barrier when the particular background IO completes. 841 */ 842 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 843 { 844 int idx = sector_to_idx(sector_nr); 845 846 spin_lock_irq(&conf->resync_lock); 847 848 /* Wait until no block IO is waiting */ 849 wait_event_lock_irq(conf->wait_barrier, 850 !atomic_read(&conf->nr_waiting[idx]), 851 conf->resync_lock); 852 853 /* block any new IO from starting */ 854 atomic_inc(&conf->barrier[idx]); 855 /* 856 * In raise_barrier() we firstly increase conf->barrier[idx] then 857 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 858 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 859 * A memory barrier here to make sure conf->nr_pending[idx] won't 860 * be fetched before conf->barrier[idx] is increased. Otherwise 861 * there will be a race between raise_barrier() and _wait_barrier(). 862 */ 863 smp_mb__after_atomic(); 864 865 /* For these conditions we must wait: 866 * A: while the array is in frozen state 867 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 868 * existing in corresponding I/O barrier bucket. 869 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 870 * max resync count which allowed on current I/O barrier bucket. 871 */ 872 wait_event_lock_irq(conf->wait_barrier, 873 !conf->array_frozen && 874 !atomic_read(&conf->nr_pending[idx]) && 875 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 876 conf->resync_lock); 877 878 atomic_inc(&conf->nr_sync_pending); 879 spin_unlock_irq(&conf->resync_lock); 880 } 881 882 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 883 { 884 int idx = sector_to_idx(sector_nr); 885 886 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 887 888 atomic_dec(&conf->barrier[idx]); 889 atomic_dec(&conf->nr_sync_pending); 890 wake_up(&conf->wait_barrier); 891 } 892 893 static void _wait_barrier(struct r1conf *conf, int idx) 894 { 895 /* 896 * We need to increase conf->nr_pending[idx] very early here, 897 * then raise_barrier() can be blocked when it waits for 898 * conf->nr_pending[idx] to be 0. Then we can avoid holding 899 * conf->resync_lock when there is no barrier raised in same 900 * barrier unit bucket. Also if the array is frozen, I/O 901 * should be blocked until array is unfrozen. 902 */ 903 atomic_inc(&conf->nr_pending[idx]); 904 /* 905 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 906 * check conf->barrier[idx]. In raise_barrier() we firstly increase 907 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 908 * barrier is necessary here to make sure conf->barrier[idx] won't be 909 * fetched before conf->nr_pending[idx] is increased. Otherwise there 910 * will be a race between _wait_barrier() and raise_barrier(). 911 */ 912 smp_mb__after_atomic(); 913 914 /* 915 * Don't worry about checking two atomic_t variables at same time 916 * here. If during we check conf->barrier[idx], the array is 917 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 918 * 0, it is safe to return and make the I/O continue. Because the 919 * array is frozen, all I/O returned here will eventually complete 920 * or be queued, no race will happen. See code comment in 921 * frozen_array(). 922 */ 923 if (!READ_ONCE(conf->array_frozen) && 924 !atomic_read(&conf->barrier[idx])) 925 return; 926 927 /* 928 * After holding conf->resync_lock, conf->nr_pending[idx] 929 * should be decreased before waiting for barrier to drop. 930 * Otherwise, we may encounter a race condition because 931 * raise_barrer() might be waiting for conf->nr_pending[idx] 932 * to be 0 at same time. 933 */ 934 spin_lock_irq(&conf->resync_lock); 935 atomic_inc(&conf->nr_waiting[idx]); 936 atomic_dec(&conf->nr_pending[idx]); 937 /* 938 * In case freeze_array() is waiting for 939 * get_unqueued_pending() == extra 940 */ 941 wake_up(&conf->wait_barrier); 942 /* Wait for the barrier in same barrier unit bucket to drop. */ 943 wait_event_lock_irq(conf->wait_barrier, 944 !conf->array_frozen && 945 !atomic_read(&conf->barrier[idx]), 946 conf->resync_lock); 947 atomic_inc(&conf->nr_pending[idx]); 948 atomic_dec(&conf->nr_waiting[idx]); 949 spin_unlock_irq(&conf->resync_lock); 950 } 951 952 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 953 { 954 int idx = sector_to_idx(sector_nr); 955 956 /* 957 * Very similar to _wait_barrier(). The difference is, for read 958 * I/O we don't need wait for sync I/O, but if the whole array 959 * is frozen, the read I/O still has to wait until the array is 960 * unfrozen. Since there is no ordering requirement with 961 * conf->barrier[idx] here, memory barrier is unnecessary as well. 962 */ 963 atomic_inc(&conf->nr_pending[idx]); 964 965 if (!READ_ONCE(conf->array_frozen)) 966 return; 967 968 spin_lock_irq(&conf->resync_lock); 969 atomic_inc(&conf->nr_waiting[idx]); 970 atomic_dec(&conf->nr_pending[idx]); 971 /* 972 * In case freeze_array() is waiting for 973 * get_unqueued_pending() == extra 974 */ 975 wake_up(&conf->wait_barrier); 976 /* Wait for array to be unfrozen */ 977 wait_event_lock_irq(conf->wait_barrier, 978 !conf->array_frozen, 979 conf->resync_lock); 980 atomic_inc(&conf->nr_pending[idx]); 981 atomic_dec(&conf->nr_waiting[idx]); 982 spin_unlock_irq(&conf->resync_lock); 983 } 984 985 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 986 { 987 int idx = sector_to_idx(sector_nr); 988 989 _wait_barrier(conf, idx); 990 } 991 992 static void wait_all_barriers(struct r1conf *conf) 993 { 994 int idx; 995 996 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 997 _wait_barrier(conf, idx); 998 } 999 1000 static void _allow_barrier(struct r1conf *conf, int idx) 1001 { 1002 atomic_dec(&conf->nr_pending[idx]); 1003 wake_up(&conf->wait_barrier); 1004 } 1005 1006 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1007 { 1008 int idx = sector_to_idx(sector_nr); 1009 1010 _allow_barrier(conf, idx); 1011 } 1012 1013 static void allow_all_barriers(struct r1conf *conf) 1014 { 1015 int idx; 1016 1017 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1018 _allow_barrier(conf, idx); 1019 } 1020 1021 /* conf->resync_lock should be held */ 1022 static int get_unqueued_pending(struct r1conf *conf) 1023 { 1024 int idx, ret; 1025 1026 ret = atomic_read(&conf->nr_sync_pending); 1027 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1028 ret += atomic_read(&conf->nr_pending[idx]) - 1029 atomic_read(&conf->nr_queued[idx]); 1030 1031 return ret; 1032 } 1033 1034 static void freeze_array(struct r1conf *conf, int extra) 1035 { 1036 /* Stop sync I/O and normal I/O and wait for everything to 1037 * go quiet. 1038 * This is called in two situations: 1039 * 1) management command handlers (reshape, remove disk, quiesce). 1040 * 2) one normal I/O request failed. 1041 1042 * After array_frozen is set to 1, new sync IO will be blocked at 1043 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1044 * or wait_read_barrier(). The flying I/Os will either complete or be 1045 * queued. When everything goes quite, there are only queued I/Os left. 1046 1047 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1048 * barrier bucket index which this I/O request hits. When all sync and 1049 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1050 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1051 * in handle_read_error(), we may call freeze_array() before trying to 1052 * fix the read error. In this case, the error read I/O is not queued, 1053 * so get_unqueued_pending() == 1. 1054 * 1055 * Therefore before this function returns, we need to wait until 1056 * get_unqueued_pendings(conf) gets equal to extra. For 1057 * normal I/O context, extra is 1, in rested situations extra is 0. 1058 */ 1059 spin_lock_irq(&conf->resync_lock); 1060 conf->array_frozen = 1; 1061 raid1_log(conf->mddev, "wait freeze"); 1062 wait_event_lock_irq_cmd( 1063 conf->wait_barrier, 1064 get_unqueued_pending(conf) == extra, 1065 conf->resync_lock, 1066 flush_pending_writes(conf)); 1067 spin_unlock_irq(&conf->resync_lock); 1068 } 1069 static void unfreeze_array(struct r1conf *conf) 1070 { 1071 /* reverse the effect of the freeze */ 1072 spin_lock_irq(&conf->resync_lock); 1073 conf->array_frozen = 0; 1074 spin_unlock_irq(&conf->resync_lock); 1075 wake_up(&conf->wait_barrier); 1076 } 1077 1078 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1079 struct bio *bio) 1080 { 1081 int size = bio->bi_iter.bi_size; 1082 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1083 int i = 0; 1084 struct bio *behind_bio = NULL; 1085 1086 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1087 if (!behind_bio) 1088 return; 1089 1090 /* discard op, we don't support writezero/writesame yet */ 1091 if (!bio_has_data(bio)) { 1092 behind_bio->bi_iter.bi_size = size; 1093 goto skip_copy; 1094 } 1095 1096 while (i < vcnt && size) { 1097 struct page *page; 1098 int len = min_t(int, PAGE_SIZE, size); 1099 1100 page = alloc_page(GFP_NOIO); 1101 if (unlikely(!page)) 1102 goto free_pages; 1103 1104 bio_add_page(behind_bio, page, len, 0); 1105 1106 size -= len; 1107 i++; 1108 } 1109 1110 bio_copy_data(behind_bio, bio); 1111 skip_copy: 1112 r1_bio->behind_master_bio = behind_bio;; 1113 set_bit(R1BIO_BehindIO, &r1_bio->state); 1114 1115 return; 1116 1117 free_pages: 1118 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1119 bio->bi_iter.bi_size); 1120 bio_free_pages(behind_bio); 1121 bio_put(behind_bio); 1122 } 1123 1124 struct raid1_plug_cb { 1125 struct blk_plug_cb cb; 1126 struct bio_list pending; 1127 int pending_cnt; 1128 }; 1129 1130 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1131 { 1132 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1133 cb); 1134 struct mddev *mddev = plug->cb.data; 1135 struct r1conf *conf = mddev->private; 1136 struct bio *bio; 1137 1138 if (from_schedule || current->bio_list) { 1139 spin_lock_irq(&conf->device_lock); 1140 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1141 conf->pending_count += plug->pending_cnt; 1142 spin_unlock_irq(&conf->device_lock); 1143 wake_up(&conf->wait_barrier); 1144 md_wakeup_thread(mddev->thread); 1145 kfree(plug); 1146 return; 1147 } 1148 1149 /* we aren't scheduling, so we can do the write-out directly. */ 1150 bio = bio_list_get(&plug->pending); 1151 flush_bio_list(conf, bio); 1152 kfree(plug); 1153 } 1154 1155 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1156 { 1157 r1_bio->master_bio = bio; 1158 r1_bio->sectors = bio_sectors(bio); 1159 r1_bio->state = 0; 1160 r1_bio->mddev = mddev; 1161 r1_bio->sector = bio->bi_iter.bi_sector; 1162 } 1163 1164 static inline struct r1bio * 1165 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1166 { 1167 struct r1conf *conf = mddev->private; 1168 struct r1bio *r1_bio; 1169 1170 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1171 /* Ensure no bio records IO_BLOCKED */ 1172 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1173 init_r1bio(r1_bio, mddev, bio); 1174 return r1_bio; 1175 } 1176 1177 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1178 int max_read_sectors, struct r1bio *r1_bio) 1179 { 1180 struct r1conf *conf = mddev->private; 1181 struct raid1_info *mirror; 1182 struct bio *read_bio; 1183 struct bitmap *bitmap = mddev->bitmap; 1184 const int op = bio_op(bio); 1185 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1186 int max_sectors; 1187 int rdisk; 1188 bool print_msg = !!r1_bio; 1189 char b[BDEVNAME_SIZE]; 1190 1191 /* 1192 * If r1_bio is set, we are blocking the raid1d thread 1193 * so there is a tiny risk of deadlock. So ask for 1194 * emergency memory if needed. 1195 */ 1196 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1197 1198 if (print_msg) { 1199 /* Need to get the block device name carefully */ 1200 struct md_rdev *rdev; 1201 rcu_read_lock(); 1202 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1203 if (rdev) 1204 bdevname(rdev->bdev, b); 1205 else 1206 strcpy(b, "???"); 1207 rcu_read_unlock(); 1208 } 1209 1210 /* 1211 * Still need barrier for READ in case that whole 1212 * array is frozen. 1213 */ 1214 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1215 1216 if (!r1_bio) 1217 r1_bio = alloc_r1bio(mddev, bio); 1218 else 1219 init_r1bio(r1_bio, mddev, bio); 1220 r1_bio->sectors = max_read_sectors; 1221 1222 /* 1223 * make_request() can abort the operation when read-ahead is being 1224 * used and no empty request is available. 1225 */ 1226 rdisk = read_balance(conf, r1_bio, &max_sectors); 1227 1228 if (rdisk < 0) { 1229 /* couldn't find anywhere to read from */ 1230 if (print_msg) { 1231 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1232 mdname(mddev), 1233 b, 1234 (unsigned long long)r1_bio->sector); 1235 } 1236 raid_end_bio_io(r1_bio); 1237 return; 1238 } 1239 mirror = conf->mirrors + rdisk; 1240 1241 if (print_msg) 1242 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1243 mdname(mddev), 1244 (unsigned long long)r1_bio->sector, 1245 bdevname(mirror->rdev->bdev, b)); 1246 1247 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1248 bitmap) { 1249 /* 1250 * Reading from a write-mostly device must take care not to 1251 * over-take any writes that are 'behind' 1252 */ 1253 raid1_log(mddev, "wait behind writes"); 1254 wait_event(bitmap->behind_wait, 1255 atomic_read(&bitmap->behind_writes) == 0); 1256 } 1257 1258 if (max_sectors < bio_sectors(bio)) { 1259 struct bio *split = bio_split(bio, max_sectors, 1260 gfp, conf->bio_split); 1261 bio_chain(split, bio); 1262 generic_make_request(bio); 1263 bio = split; 1264 r1_bio->master_bio = bio; 1265 r1_bio->sectors = max_sectors; 1266 } 1267 1268 r1_bio->read_disk = rdisk; 1269 1270 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1271 1272 r1_bio->bios[rdisk] = read_bio; 1273 1274 read_bio->bi_iter.bi_sector = r1_bio->sector + 1275 mirror->rdev->data_offset; 1276 read_bio->bi_bdev = mirror->rdev->bdev; 1277 read_bio->bi_end_io = raid1_end_read_request; 1278 bio_set_op_attrs(read_bio, op, do_sync); 1279 if (test_bit(FailFast, &mirror->rdev->flags) && 1280 test_bit(R1BIO_FailFast, &r1_bio->state)) 1281 read_bio->bi_opf |= MD_FAILFAST; 1282 read_bio->bi_private = r1_bio; 1283 1284 if (mddev->gendisk) 1285 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev), 1286 read_bio, disk_devt(mddev->gendisk), 1287 r1_bio->sector); 1288 1289 generic_make_request(read_bio); 1290 } 1291 1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1293 int max_write_sectors) 1294 { 1295 struct r1conf *conf = mddev->private; 1296 struct r1bio *r1_bio; 1297 int i, disks; 1298 struct bitmap *bitmap = mddev->bitmap; 1299 unsigned long flags; 1300 struct md_rdev *blocked_rdev; 1301 struct blk_plug_cb *cb; 1302 struct raid1_plug_cb *plug = NULL; 1303 int first_clone; 1304 int max_sectors; 1305 1306 /* 1307 * Register the new request and wait if the reconstruction 1308 * thread has put up a bar for new requests. 1309 * Continue immediately if no resync is active currently. 1310 */ 1311 1312 1313 if ((bio_end_sector(bio) > mddev->suspend_lo && 1314 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1315 (mddev_is_clustered(mddev) && 1316 md_cluster_ops->area_resyncing(mddev, WRITE, 1317 bio->bi_iter.bi_sector, bio_end_sector(bio)))) { 1318 1319 /* 1320 * As the suspend_* range is controlled by userspace, we want 1321 * an interruptible wait. 1322 */ 1323 DEFINE_WAIT(w); 1324 for (;;) { 1325 sigset_t full, old; 1326 prepare_to_wait(&conf->wait_barrier, 1327 &w, TASK_INTERRUPTIBLE); 1328 if (bio_end_sector(bio) <= mddev->suspend_lo || 1329 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1330 (mddev_is_clustered(mddev) && 1331 !md_cluster_ops->area_resyncing(mddev, WRITE, 1332 bio->bi_iter.bi_sector, 1333 bio_end_sector(bio)))) 1334 break; 1335 sigfillset(&full); 1336 sigprocmask(SIG_BLOCK, &full, &old); 1337 schedule(); 1338 sigprocmask(SIG_SETMASK, &old, NULL); 1339 } 1340 finish_wait(&conf->wait_barrier, &w); 1341 } 1342 wait_barrier(conf, bio->bi_iter.bi_sector); 1343 1344 r1_bio = alloc_r1bio(mddev, bio); 1345 r1_bio->sectors = max_write_sectors; 1346 1347 if (conf->pending_count >= max_queued_requests) { 1348 md_wakeup_thread(mddev->thread); 1349 raid1_log(mddev, "wait queued"); 1350 wait_event(conf->wait_barrier, 1351 conf->pending_count < max_queued_requests); 1352 } 1353 /* first select target devices under rcu_lock and 1354 * inc refcount on their rdev. Record them by setting 1355 * bios[x] to bio 1356 * If there are known/acknowledged bad blocks on any device on 1357 * which we have seen a write error, we want to avoid writing those 1358 * blocks. 1359 * This potentially requires several writes to write around 1360 * the bad blocks. Each set of writes gets it's own r1bio 1361 * with a set of bios attached. 1362 */ 1363 1364 disks = conf->raid_disks * 2; 1365 retry_write: 1366 blocked_rdev = NULL; 1367 rcu_read_lock(); 1368 max_sectors = r1_bio->sectors; 1369 for (i = 0; i < disks; i++) { 1370 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1371 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1372 atomic_inc(&rdev->nr_pending); 1373 blocked_rdev = rdev; 1374 break; 1375 } 1376 r1_bio->bios[i] = NULL; 1377 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1378 if (i < conf->raid_disks) 1379 set_bit(R1BIO_Degraded, &r1_bio->state); 1380 continue; 1381 } 1382 1383 atomic_inc(&rdev->nr_pending); 1384 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1385 sector_t first_bad; 1386 int bad_sectors; 1387 int is_bad; 1388 1389 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1390 &first_bad, &bad_sectors); 1391 if (is_bad < 0) { 1392 /* mustn't write here until the bad block is 1393 * acknowledged*/ 1394 set_bit(BlockedBadBlocks, &rdev->flags); 1395 blocked_rdev = rdev; 1396 break; 1397 } 1398 if (is_bad && first_bad <= r1_bio->sector) { 1399 /* Cannot write here at all */ 1400 bad_sectors -= (r1_bio->sector - first_bad); 1401 if (bad_sectors < max_sectors) 1402 /* mustn't write more than bad_sectors 1403 * to other devices yet 1404 */ 1405 max_sectors = bad_sectors; 1406 rdev_dec_pending(rdev, mddev); 1407 /* We don't set R1BIO_Degraded as that 1408 * only applies if the disk is 1409 * missing, so it might be re-added, 1410 * and we want to know to recover this 1411 * chunk. 1412 * In this case the device is here, 1413 * and the fact that this chunk is not 1414 * in-sync is recorded in the bad 1415 * block log 1416 */ 1417 continue; 1418 } 1419 if (is_bad) { 1420 int good_sectors = first_bad - r1_bio->sector; 1421 if (good_sectors < max_sectors) 1422 max_sectors = good_sectors; 1423 } 1424 } 1425 r1_bio->bios[i] = bio; 1426 } 1427 rcu_read_unlock(); 1428 1429 if (unlikely(blocked_rdev)) { 1430 /* Wait for this device to become unblocked */ 1431 int j; 1432 1433 for (j = 0; j < i; j++) 1434 if (r1_bio->bios[j]) 1435 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1436 r1_bio->state = 0; 1437 allow_barrier(conf, bio->bi_iter.bi_sector); 1438 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1439 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1440 wait_barrier(conf, bio->bi_iter.bi_sector); 1441 goto retry_write; 1442 } 1443 1444 if (max_sectors < bio_sectors(bio)) { 1445 struct bio *split = bio_split(bio, max_sectors, 1446 GFP_NOIO, conf->bio_split); 1447 bio_chain(split, bio); 1448 generic_make_request(bio); 1449 bio = split; 1450 r1_bio->master_bio = bio; 1451 r1_bio->sectors = max_sectors; 1452 } 1453 1454 atomic_set(&r1_bio->remaining, 1); 1455 atomic_set(&r1_bio->behind_remaining, 0); 1456 1457 first_clone = 1; 1458 1459 for (i = 0; i < disks; i++) { 1460 struct bio *mbio = NULL; 1461 if (!r1_bio->bios[i]) 1462 continue; 1463 1464 1465 if (first_clone) { 1466 /* do behind I/O ? 1467 * Not if there are too many, or cannot 1468 * allocate memory, or a reader on WriteMostly 1469 * is waiting for behind writes to flush */ 1470 if (bitmap && 1471 (atomic_read(&bitmap->behind_writes) 1472 < mddev->bitmap_info.max_write_behind) && 1473 !waitqueue_active(&bitmap->behind_wait)) { 1474 alloc_behind_master_bio(r1_bio, bio); 1475 } 1476 1477 bitmap_startwrite(bitmap, r1_bio->sector, 1478 r1_bio->sectors, 1479 test_bit(R1BIO_BehindIO, 1480 &r1_bio->state)); 1481 first_clone = 0; 1482 } 1483 1484 if (r1_bio->behind_master_bio) 1485 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1486 GFP_NOIO, mddev->bio_set); 1487 else 1488 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1489 1490 if (r1_bio->behind_master_bio) { 1491 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1492 atomic_inc(&r1_bio->behind_remaining); 1493 } 1494 1495 r1_bio->bios[i] = mbio; 1496 1497 mbio->bi_iter.bi_sector = (r1_bio->sector + 1498 conf->mirrors[i].rdev->data_offset); 1499 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1500 mbio->bi_end_io = raid1_end_write_request; 1501 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1502 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1503 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1504 conf->raid_disks - mddev->degraded > 1) 1505 mbio->bi_opf |= MD_FAILFAST; 1506 mbio->bi_private = r1_bio; 1507 1508 atomic_inc(&r1_bio->remaining); 1509 1510 if (mddev->gendisk) 1511 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev), 1512 mbio, disk_devt(mddev->gendisk), 1513 r1_bio->sector); 1514 /* flush_pending_writes() needs access to the rdev so...*/ 1515 mbio->bi_bdev = (void*)conf->mirrors[i].rdev; 1516 1517 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1518 if (cb) 1519 plug = container_of(cb, struct raid1_plug_cb, cb); 1520 else 1521 plug = NULL; 1522 if (plug) { 1523 bio_list_add(&plug->pending, mbio); 1524 plug->pending_cnt++; 1525 } else { 1526 spin_lock_irqsave(&conf->device_lock, flags); 1527 bio_list_add(&conf->pending_bio_list, mbio); 1528 conf->pending_count++; 1529 spin_unlock_irqrestore(&conf->device_lock, flags); 1530 md_wakeup_thread(mddev->thread); 1531 } 1532 } 1533 1534 r1_bio_write_done(r1_bio); 1535 1536 /* In case raid1d snuck in to freeze_array */ 1537 wake_up(&conf->wait_barrier); 1538 } 1539 1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1541 { 1542 sector_t sectors; 1543 1544 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1545 md_flush_request(mddev, bio); 1546 return true; 1547 } 1548 1549 /* 1550 * There is a limit to the maximum size, but 1551 * the read/write handler might find a lower limit 1552 * due to bad blocks. To avoid multiple splits, 1553 * we pass the maximum number of sectors down 1554 * and let the lower level perform the split. 1555 */ 1556 sectors = align_to_barrier_unit_end( 1557 bio->bi_iter.bi_sector, bio_sectors(bio)); 1558 1559 if (bio_data_dir(bio) == READ) 1560 raid1_read_request(mddev, bio, sectors, NULL); 1561 else { 1562 if (!md_write_start(mddev,bio)) 1563 return false; 1564 raid1_write_request(mddev, bio, sectors); 1565 } 1566 return true; 1567 } 1568 1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1570 { 1571 struct r1conf *conf = mddev->private; 1572 int i; 1573 1574 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1575 conf->raid_disks - mddev->degraded); 1576 rcu_read_lock(); 1577 for (i = 0; i < conf->raid_disks; i++) { 1578 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1579 seq_printf(seq, "%s", 1580 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1581 } 1582 rcu_read_unlock(); 1583 seq_printf(seq, "]"); 1584 } 1585 1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1587 { 1588 char b[BDEVNAME_SIZE]; 1589 struct r1conf *conf = mddev->private; 1590 unsigned long flags; 1591 1592 /* 1593 * If it is not operational, then we have already marked it as dead 1594 * else if it is the last working disks, ignore the error, let the 1595 * next level up know. 1596 * else mark the drive as failed 1597 */ 1598 spin_lock_irqsave(&conf->device_lock, flags); 1599 if (test_bit(In_sync, &rdev->flags) 1600 && (conf->raid_disks - mddev->degraded) == 1) { 1601 /* 1602 * Don't fail the drive, act as though we were just a 1603 * normal single drive. 1604 * However don't try a recovery from this drive as 1605 * it is very likely to fail. 1606 */ 1607 conf->recovery_disabled = mddev->recovery_disabled; 1608 spin_unlock_irqrestore(&conf->device_lock, flags); 1609 return; 1610 } 1611 set_bit(Blocked, &rdev->flags); 1612 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1613 mddev->degraded++; 1614 set_bit(Faulty, &rdev->flags); 1615 } else 1616 set_bit(Faulty, &rdev->flags); 1617 spin_unlock_irqrestore(&conf->device_lock, flags); 1618 /* 1619 * if recovery is running, make sure it aborts. 1620 */ 1621 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1622 set_mask_bits(&mddev->sb_flags, 0, 1623 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1624 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1625 "md/raid1:%s: Operation continuing on %d devices.\n", 1626 mdname(mddev), bdevname(rdev->bdev, b), 1627 mdname(mddev), conf->raid_disks - mddev->degraded); 1628 } 1629 1630 static void print_conf(struct r1conf *conf) 1631 { 1632 int i; 1633 1634 pr_debug("RAID1 conf printout:\n"); 1635 if (!conf) { 1636 pr_debug("(!conf)\n"); 1637 return; 1638 } 1639 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1640 conf->raid_disks); 1641 1642 rcu_read_lock(); 1643 for (i = 0; i < conf->raid_disks; i++) { 1644 char b[BDEVNAME_SIZE]; 1645 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1646 if (rdev) 1647 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1648 i, !test_bit(In_sync, &rdev->flags), 1649 !test_bit(Faulty, &rdev->flags), 1650 bdevname(rdev->bdev,b)); 1651 } 1652 rcu_read_unlock(); 1653 } 1654 1655 static void close_sync(struct r1conf *conf) 1656 { 1657 wait_all_barriers(conf); 1658 allow_all_barriers(conf); 1659 1660 mempool_destroy(conf->r1buf_pool); 1661 conf->r1buf_pool = NULL; 1662 } 1663 1664 static int raid1_spare_active(struct mddev *mddev) 1665 { 1666 int i; 1667 struct r1conf *conf = mddev->private; 1668 int count = 0; 1669 unsigned long flags; 1670 1671 /* 1672 * Find all failed disks within the RAID1 configuration 1673 * and mark them readable. 1674 * Called under mddev lock, so rcu protection not needed. 1675 * device_lock used to avoid races with raid1_end_read_request 1676 * which expects 'In_sync' flags and ->degraded to be consistent. 1677 */ 1678 spin_lock_irqsave(&conf->device_lock, flags); 1679 for (i = 0; i < conf->raid_disks; i++) { 1680 struct md_rdev *rdev = conf->mirrors[i].rdev; 1681 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1682 if (repl 1683 && !test_bit(Candidate, &repl->flags) 1684 && repl->recovery_offset == MaxSector 1685 && !test_bit(Faulty, &repl->flags) 1686 && !test_and_set_bit(In_sync, &repl->flags)) { 1687 /* replacement has just become active */ 1688 if (!rdev || 1689 !test_and_clear_bit(In_sync, &rdev->flags)) 1690 count++; 1691 if (rdev) { 1692 /* Replaced device not technically 1693 * faulty, but we need to be sure 1694 * it gets removed and never re-added 1695 */ 1696 set_bit(Faulty, &rdev->flags); 1697 sysfs_notify_dirent_safe( 1698 rdev->sysfs_state); 1699 } 1700 } 1701 if (rdev 1702 && rdev->recovery_offset == MaxSector 1703 && !test_bit(Faulty, &rdev->flags) 1704 && !test_and_set_bit(In_sync, &rdev->flags)) { 1705 count++; 1706 sysfs_notify_dirent_safe(rdev->sysfs_state); 1707 } 1708 } 1709 mddev->degraded -= count; 1710 spin_unlock_irqrestore(&conf->device_lock, flags); 1711 1712 print_conf(conf); 1713 return count; 1714 } 1715 1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1717 { 1718 struct r1conf *conf = mddev->private; 1719 int err = -EEXIST; 1720 int mirror = 0; 1721 struct raid1_info *p; 1722 int first = 0; 1723 int last = conf->raid_disks - 1; 1724 1725 if (mddev->recovery_disabled == conf->recovery_disabled) 1726 return -EBUSY; 1727 1728 if (md_integrity_add_rdev(rdev, mddev)) 1729 return -ENXIO; 1730 1731 if (rdev->raid_disk >= 0) 1732 first = last = rdev->raid_disk; 1733 1734 /* 1735 * find the disk ... but prefer rdev->saved_raid_disk 1736 * if possible. 1737 */ 1738 if (rdev->saved_raid_disk >= 0 && 1739 rdev->saved_raid_disk >= first && 1740 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1741 first = last = rdev->saved_raid_disk; 1742 1743 for (mirror = first; mirror <= last; mirror++) { 1744 p = conf->mirrors+mirror; 1745 if (!p->rdev) { 1746 1747 if (mddev->gendisk) 1748 disk_stack_limits(mddev->gendisk, rdev->bdev, 1749 rdev->data_offset << 9); 1750 1751 p->head_position = 0; 1752 rdev->raid_disk = mirror; 1753 err = 0; 1754 /* As all devices are equivalent, we don't need a full recovery 1755 * if this was recently any drive of the array 1756 */ 1757 if (rdev->saved_raid_disk < 0) 1758 conf->fullsync = 1; 1759 rcu_assign_pointer(p->rdev, rdev); 1760 break; 1761 } 1762 if (test_bit(WantReplacement, &p->rdev->flags) && 1763 p[conf->raid_disks].rdev == NULL) { 1764 /* Add this device as a replacement */ 1765 clear_bit(In_sync, &rdev->flags); 1766 set_bit(Replacement, &rdev->flags); 1767 rdev->raid_disk = mirror; 1768 err = 0; 1769 conf->fullsync = 1; 1770 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1771 break; 1772 } 1773 } 1774 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1775 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1776 print_conf(conf); 1777 return err; 1778 } 1779 1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1781 { 1782 struct r1conf *conf = mddev->private; 1783 int err = 0; 1784 int number = rdev->raid_disk; 1785 struct raid1_info *p = conf->mirrors + number; 1786 1787 if (rdev != p->rdev) 1788 p = conf->mirrors + conf->raid_disks + number; 1789 1790 print_conf(conf); 1791 if (rdev == p->rdev) { 1792 if (test_bit(In_sync, &rdev->flags) || 1793 atomic_read(&rdev->nr_pending)) { 1794 err = -EBUSY; 1795 goto abort; 1796 } 1797 /* Only remove non-faulty devices if recovery 1798 * is not possible. 1799 */ 1800 if (!test_bit(Faulty, &rdev->flags) && 1801 mddev->recovery_disabled != conf->recovery_disabled && 1802 mddev->degraded < conf->raid_disks) { 1803 err = -EBUSY; 1804 goto abort; 1805 } 1806 p->rdev = NULL; 1807 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1808 synchronize_rcu(); 1809 if (atomic_read(&rdev->nr_pending)) { 1810 /* lost the race, try later */ 1811 err = -EBUSY; 1812 p->rdev = rdev; 1813 goto abort; 1814 } 1815 } 1816 if (conf->mirrors[conf->raid_disks + number].rdev) { 1817 /* We just removed a device that is being replaced. 1818 * Move down the replacement. We drain all IO before 1819 * doing this to avoid confusion. 1820 */ 1821 struct md_rdev *repl = 1822 conf->mirrors[conf->raid_disks + number].rdev; 1823 freeze_array(conf, 0); 1824 clear_bit(Replacement, &repl->flags); 1825 p->rdev = repl; 1826 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1827 unfreeze_array(conf); 1828 } 1829 1830 clear_bit(WantReplacement, &rdev->flags); 1831 err = md_integrity_register(mddev); 1832 } 1833 abort: 1834 1835 print_conf(conf); 1836 return err; 1837 } 1838 1839 static void end_sync_read(struct bio *bio) 1840 { 1841 struct r1bio *r1_bio = get_resync_r1bio(bio); 1842 1843 update_head_pos(r1_bio->read_disk, r1_bio); 1844 1845 /* 1846 * we have read a block, now it needs to be re-written, 1847 * or re-read if the read failed. 1848 * We don't do much here, just schedule handling by raid1d 1849 */ 1850 if (!bio->bi_status) 1851 set_bit(R1BIO_Uptodate, &r1_bio->state); 1852 1853 if (atomic_dec_and_test(&r1_bio->remaining)) 1854 reschedule_retry(r1_bio); 1855 } 1856 1857 static void end_sync_write(struct bio *bio) 1858 { 1859 int uptodate = !bio->bi_status; 1860 struct r1bio *r1_bio = get_resync_r1bio(bio); 1861 struct mddev *mddev = r1_bio->mddev; 1862 struct r1conf *conf = mddev->private; 1863 sector_t first_bad; 1864 int bad_sectors; 1865 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1866 1867 if (!uptodate) { 1868 sector_t sync_blocks = 0; 1869 sector_t s = r1_bio->sector; 1870 long sectors_to_go = r1_bio->sectors; 1871 /* make sure these bits doesn't get cleared. */ 1872 do { 1873 bitmap_end_sync(mddev->bitmap, s, 1874 &sync_blocks, 1); 1875 s += sync_blocks; 1876 sectors_to_go -= sync_blocks; 1877 } while (sectors_to_go > 0); 1878 set_bit(WriteErrorSeen, &rdev->flags); 1879 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1880 set_bit(MD_RECOVERY_NEEDED, & 1881 mddev->recovery); 1882 set_bit(R1BIO_WriteError, &r1_bio->state); 1883 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1884 &first_bad, &bad_sectors) && 1885 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1886 r1_bio->sector, 1887 r1_bio->sectors, 1888 &first_bad, &bad_sectors) 1889 ) 1890 set_bit(R1BIO_MadeGood, &r1_bio->state); 1891 1892 if (atomic_dec_and_test(&r1_bio->remaining)) { 1893 int s = r1_bio->sectors; 1894 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1895 test_bit(R1BIO_WriteError, &r1_bio->state)) 1896 reschedule_retry(r1_bio); 1897 else { 1898 put_buf(r1_bio); 1899 md_done_sync(mddev, s, uptodate); 1900 } 1901 } 1902 } 1903 1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1905 int sectors, struct page *page, int rw) 1906 { 1907 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1908 /* success */ 1909 return 1; 1910 if (rw == WRITE) { 1911 set_bit(WriteErrorSeen, &rdev->flags); 1912 if (!test_and_set_bit(WantReplacement, 1913 &rdev->flags)) 1914 set_bit(MD_RECOVERY_NEEDED, & 1915 rdev->mddev->recovery); 1916 } 1917 /* need to record an error - either for the block or the device */ 1918 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1919 md_error(rdev->mddev, rdev); 1920 return 0; 1921 } 1922 1923 static int fix_sync_read_error(struct r1bio *r1_bio) 1924 { 1925 /* Try some synchronous reads of other devices to get 1926 * good data, much like with normal read errors. Only 1927 * read into the pages we already have so we don't 1928 * need to re-issue the read request. 1929 * We don't need to freeze the array, because being in an 1930 * active sync request, there is no normal IO, and 1931 * no overlapping syncs. 1932 * We don't need to check is_badblock() again as we 1933 * made sure that anything with a bad block in range 1934 * will have bi_end_io clear. 1935 */ 1936 struct mddev *mddev = r1_bio->mddev; 1937 struct r1conf *conf = mddev->private; 1938 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1939 struct page **pages = get_resync_pages(bio)->pages; 1940 sector_t sect = r1_bio->sector; 1941 int sectors = r1_bio->sectors; 1942 int idx = 0; 1943 struct md_rdev *rdev; 1944 1945 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1946 if (test_bit(FailFast, &rdev->flags)) { 1947 /* Don't try recovering from here - just fail it 1948 * ... unless it is the last working device of course */ 1949 md_error(mddev, rdev); 1950 if (test_bit(Faulty, &rdev->flags)) 1951 /* Don't try to read from here, but make sure 1952 * put_buf does it's thing 1953 */ 1954 bio->bi_end_io = end_sync_write; 1955 } 1956 1957 while(sectors) { 1958 int s = sectors; 1959 int d = r1_bio->read_disk; 1960 int success = 0; 1961 int start; 1962 1963 if (s > (PAGE_SIZE>>9)) 1964 s = PAGE_SIZE >> 9; 1965 do { 1966 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1967 /* No rcu protection needed here devices 1968 * can only be removed when no resync is 1969 * active, and resync is currently active 1970 */ 1971 rdev = conf->mirrors[d].rdev; 1972 if (sync_page_io(rdev, sect, s<<9, 1973 pages[idx], 1974 REQ_OP_READ, 0, false)) { 1975 success = 1; 1976 break; 1977 } 1978 } 1979 d++; 1980 if (d == conf->raid_disks * 2) 1981 d = 0; 1982 } while (!success && d != r1_bio->read_disk); 1983 1984 if (!success) { 1985 char b[BDEVNAME_SIZE]; 1986 int abort = 0; 1987 /* Cannot read from anywhere, this block is lost. 1988 * Record a bad block on each device. If that doesn't 1989 * work just disable and interrupt the recovery. 1990 * Don't fail devices as that won't really help. 1991 */ 1992 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1993 mdname(mddev), 1994 bdevname(bio->bi_bdev, b), 1995 (unsigned long long)r1_bio->sector); 1996 for (d = 0; d < conf->raid_disks * 2; d++) { 1997 rdev = conf->mirrors[d].rdev; 1998 if (!rdev || test_bit(Faulty, &rdev->flags)) 1999 continue; 2000 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2001 abort = 1; 2002 } 2003 if (abort) { 2004 conf->recovery_disabled = 2005 mddev->recovery_disabled; 2006 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2007 md_done_sync(mddev, r1_bio->sectors, 0); 2008 put_buf(r1_bio); 2009 return 0; 2010 } 2011 /* Try next page */ 2012 sectors -= s; 2013 sect += s; 2014 idx++; 2015 continue; 2016 } 2017 2018 start = d; 2019 /* write it back and re-read */ 2020 while (d != r1_bio->read_disk) { 2021 if (d == 0) 2022 d = conf->raid_disks * 2; 2023 d--; 2024 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2025 continue; 2026 rdev = conf->mirrors[d].rdev; 2027 if (r1_sync_page_io(rdev, sect, s, 2028 pages[idx], 2029 WRITE) == 0) { 2030 r1_bio->bios[d]->bi_end_io = NULL; 2031 rdev_dec_pending(rdev, mddev); 2032 } 2033 } 2034 d = start; 2035 while (d != r1_bio->read_disk) { 2036 if (d == 0) 2037 d = conf->raid_disks * 2; 2038 d--; 2039 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2040 continue; 2041 rdev = conf->mirrors[d].rdev; 2042 if (r1_sync_page_io(rdev, sect, s, 2043 pages[idx], 2044 READ) != 0) 2045 atomic_add(s, &rdev->corrected_errors); 2046 } 2047 sectors -= s; 2048 sect += s; 2049 idx ++; 2050 } 2051 set_bit(R1BIO_Uptodate, &r1_bio->state); 2052 bio->bi_status = 0; 2053 return 1; 2054 } 2055 2056 static void process_checks(struct r1bio *r1_bio) 2057 { 2058 /* We have read all readable devices. If we haven't 2059 * got the block, then there is no hope left. 2060 * If we have, then we want to do a comparison 2061 * and skip the write if everything is the same. 2062 * If any blocks failed to read, then we need to 2063 * attempt an over-write 2064 */ 2065 struct mddev *mddev = r1_bio->mddev; 2066 struct r1conf *conf = mddev->private; 2067 int primary; 2068 int i; 2069 int vcnt; 2070 2071 /* Fix variable parts of all bios */ 2072 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2073 for (i = 0; i < conf->raid_disks * 2; i++) { 2074 blk_status_t status; 2075 struct bio *b = r1_bio->bios[i]; 2076 struct resync_pages *rp = get_resync_pages(b); 2077 if (b->bi_end_io != end_sync_read) 2078 continue; 2079 /* fixup the bio for reuse, but preserve errno */ 2080 status = b->bi_status; 2081 bio_reset(b); 2082 b->bi_status = status; 2083 b->bi_iter.bi_sector = r1_bio->sector + 2084 conf->mirrors[i].rdev->data_offset; 2085 b->bi_bdev = conf->mirrors[i].rdev->bdev; 2086 b->bi_end_io = end_sync_read; 2087 rp->raid_bio = r1_bio; 2088 b->bi_private = rp; 2089 2090 /* initialize bvec table again */ 2091 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2092 } 2093 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2094 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2095 !r1_bio->bios[primary]->bi_status) { 2096 r1_bio->bios[primary]->bi_end_io = NULL; 2097 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2098 break; 2099 } 2100 r1_bio->read_disk = primary; 2101 for (i = 0; i < conf->raid_disks * 2; i++) { 2102 int j; 2103 struct bio *pbio = r1_bio->bios[primary]; 2104 struct bio *sbio = r1_bio->bios[i]; 2105 blk_status_t status = sbio->bi_status; 2106 struct page **ppages = get_resync_pages(pbio)->pages; 2107 struct page **spages = get_resync_pages(sbio)->pages; 2108 struct bio_vec *bi; 2109 int page_len[RESYNC_PAGES] = { 0 }; 2110 2111 if (sbio->bi_end_io != end_sync_read) 2112 continue; 2113 /* Now we can 'fixup' the error value */ 2114 sbio->bi_status = 0; 2115 2116 bio_for_each_segment_all(bi, sbio, j) 2117 page_len[j] = bi->bv_len; 2118 2119 if (!status) { 2120 for (j = vcnt; j-- ; ) { 2121 if (memcmp(page_address(ppages[j]), 2122 page_address(spages[j]), 2123 page_len[j])) 2124 break; 2125 } 2126 } else 2127 j = 0; 2128 if (j >= 0) 2129 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2130 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2131 && !status)) { 2132 /* No need to write to this device. */ 2133 sbio->bi_end_io = NULL; 2134 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2135 continue; 2136 } 2137 2138 bio_copy_data(sbio, pbio); 2139 } 2140 } 2141 2142 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2143 { 2144 struct r1conf *conf = mddev->private; 2145 int i; 2146 int disks = conf->raid_disks * 2; 2147 struct bio *wbio; 2148 2149 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2150 /* ouch - failed to read all of that. */ 2151 if (!fix_sync_read_error(r1_bio)) 2152 return; 2153 2154 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2155 process_checks(r1_bio); 2156 2157 /* 2158 * schedule writes 2159 */ 2160 atomic_set(&r1_bio->remaining, 1); 2161 for (i = 0; i < disks ; i++) { 2162 wbio = r1_bio->bios[i]; 2163 if (wbio->bi_end_io == NULL || 2164 (wbio->bi_end_io == end_sync_read && 2165 (i == r1_bio->read_disk || 2166 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2167 continue; 2168 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2169 continue; 2170 2171 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2172 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2173 wbio->bi_opf |= MD_FAILFAST; 2174 2175 wbio->bi_end_io = end_sync_write; 2176 atomic_inc(&r1_bio->remaining); 2177 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2178 2179 generic_make_request(wbio); 2180 } 2181 2182 if (atomic_dec_and_test(&r1_bio->remaining)) { 2183 /* if we're here, all write(s) have completed, so clean up */ 2184 int s = r1_bio->sectors; 2185 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2186 test_bit(R1BIO_WriteError, &r1_bio->state)) 2187 reschedule_retry(r1_bio); 2188 else { 2189 put_buf(r1_bio); 2190 md_done_sync(mddev, s, 1); 2191 } 2192 } 2193 } 2194 2195 /* 2196 * This is a kernel thread which: 2197 * 2198 * 1. Retries failed read operations on working mirrors. 2199 * 2. Updates the raid superblock when problems encounter. 2200 * 3. Performs writes following reads for array synchronising. 2201 */ 2202 2203 static void fix_read_error(struct r1conf *conf, int read_disk, 2204 sector_t sect, int sectors) 2205 { 2206 struct mddev *mddev = conf->mddev; 2207 while(sectors) { 2208 int s = sectors; 2209 int d = read_disk; 2210 int success = 0; 2211 int start; 2212 struct md_rdev *rdev; 2213 2214 if (s > (PAGE_SIZE>>9)) 2215 s = PAGE_SIZE >> 9; 2216 2217 do { 2218 sector_t first_bad; 2219 int bad_sectors; 2220 2221 rcu_read_lock(); 2222 rdev = rcu_dereference(conf->mirrors[d].rdev); 2223 if (rdev && 2224 (test_bit(In_sync, &rdev->flags) || 2225 (!test_bit(Faulty, &rdev->flags) && 2226 rdev->recovery_offset >= sect + s)) && 2227 is_badblock(rdev, sect, s, 2228 &first_bad, &bad_sectors) == 0) { 2229 atomic_inc(&rdev->nr_pending); 2230 rcu_read_unlock(); 2231 if (sync_page_io(rdev, sect, s<<9, 2232 conf->tmppage, REQ_OP_READ, 0, false)) 2233 success = 1; 2234 rdev_dec_pending(rdev, mddev); 2235 if (success) 2236 break; 2237 } else 2238 rcu_read_unlock(); 2239 d++; 2240 if (d == conf->raid_disks * 2) 2241 d = 0; 2242 } while (!success && d != read_disk); 2243 2244 if (!success) { 2245 /* Cannot read from anywhere - mark it bad */ 2246 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2247 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2248 md_error(mddev, rdev); 2249 break; 2250 } 2251 /* write it back and re-read */ 2252 start = d; 2253 while (d != read_disk) { 2254 if (d==0) 2255 d = conf->raid_disks * 2; 2256 d--; 2257 rcu_read_lock(); 2258 rdev = rcu_dereference(conf->mirrors[d].rdev); 2259 if (rdev && 2260 !test_bit(Faulty, &rdev->flags)) { 2261 atomic_inc(&rdev->nr_pending); 2262 rcu_read_unlock(); 2263 r1_sync_page_io(rdev, sect, s, 2264 conf->tmppage, WRITE); 2265 rdev_dec_pending(rdev, mddev); 2266 } else 2267 rcu_read_unlock(); 2268 } 2269 d = start; 2270 while (d != read_disk) { 2271 char b[BDEVNAME_SIZE]; 2272 if (d==0) 2273 d = conf->raid_disks * 2; 2274 d--; 2275 rcu_read_lock(); 2276 rdev = rcu_dereference(conf->mirrors[d].rdev); 2277 if (rdev && 2278 !test_bit(Faulty, &rdev->flags)) { 2279 atomic_inc(&rdev->nr_pending); 2280 rcu_read_unlock(); 2281 if (r1_sync_page_io(rdev, sect, s, 2282 conf->tmppage, READ)) { 2283 atomic_add(s, &rdev->corrected_errors); 2284 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2285 mdname(mddev), s, 2286 (unsigned long long)(sect + 2287 rdev->data_offset), 2288 bdevname(rdev->bdev, b)); 2289 } 2290 rdev_dec_pending(rdev, mddev); 2291 } else 2292 rcu_read_unlock(); 2293 } 2294 sectors -= s; 2295 sect += s; 2296 } 2297 } 2298 2299 static int narrow_write_error(struct r1bio *r1_bio, int i) 2300 { 2301 struct mddev *mddev = r1_bio->mddev; 2302 struct r1conf *conf = mddev->private; 2303 struct md_rdev *rdev = conf->mirrors[i].rdev; 2304 2305 /* bio has the data to be written to device 'i' where 2306 * we just recently had a write error. 2307 * We repeatedly clone the bio and trim down to one block, 2308 * then try the write. Where the write fails we record 2309 * a bad block. 2310 * It is conceivable that the bio doesn't exactly align with 2311 * blocks. We must handle this somehow. 2312 * 2313 * We currently own a reference on the rdev. 2314 */ 2315 2316 int block_sectors; 2317 sector_t sector; 2318 int sectors; 2319 int sect_to_write = r1_bio->sectors; 2320 int ok = 1; 2321 2322 if (rdev->badblocks.shift < 0) 2323 return 0; 2324 2325 block_sectors = roundup(1 << rdev->badblocks.shift, 2326 bdev_logical_block_size(rdev->bdev) >> 9); 2327 sector = r1_bio->sector; 2328 sectors = ((sector + block_sectors) 2329 & ~(sector_t)(block_sectors - 1)) 2330 - sector; 2331 2332 while (sect_to_write) { 2333 struct bio *wbio; 2334 if (sectors > sect_to_write) 2335 sectors = sect_to_write; 2336 /* Write at 'sector' for 'sectors'*/ 2337 2338 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2339 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2340 GFP_NOIO, 2341 mddev->bio_set); 2342 } else { 2343 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2344 mddev->bio_set); 2345 } 2346 2347 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2348 wbio->bi_iter.bi_sector = r1_bio->sector; 2349 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2350 2351 bio_trim(wbio, sector - r1_bio->sector, sectors); 2352 wbio->bi_iter.bi_sector += rdev->data_offset; 2353 wbio->bi_bdev = rdev->bdev; 2354 2355 if (submit_bio_wait(wbio) < 0) 2356 /* failure! */ 2357 ok = rdev_set_badblocks(rdev, sector, 2358 sectors, 0) 2359 && ok; 2360 2361 bio_put(wbio); 2362 sect_to_write -= sectors; 2363 sector += sectors; 2364 sectors = block_sectors; 2365 } 2366 return ok; 2367 } 2368 2369 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2370 { 2371 int m; 2372 int s = r1_bio->sectors; 2373 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2374 struct md_rdev *rdev = conf->mirrors[m].rdev; 2375 struct bio *bio = r1_bio->bios[m]; 2376 if (bio->bi_end_io == NULL) 2377 continue; 2378 if (!bio->bi_status && 2379 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2380 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2381 } 2382 if (bio->bi_status && 2383 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2384 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2385 md_error(conf->mddev, rdev); 2386 } 2387 } 2388 put_buf(r1_bio); 2389 md_done_sync(conf->mddev, s, 1); 2390 } 2391 2392 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2393 { 2394 int m, idx; 2395 bool fail = false; 2396 2397 for (m = 0; m < conf->raid_disks * 2 ; m++) 2398 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2399 struct md_rdev *rdev = conf->mirrors[m].rdev; 2400 rdev_clear_badblocks(rdev, 2401 r1_bio->sector, 2402 r1_bio->sectors, 0); 2403 rdev_dec_pending(rdev, conf->mddev); 2404 } else if (r1_bio->bios[m] != NULL) { 2405 /* This drive got a write error. We need to 2406 * narrow down and record precise write 2407 * errors. 2408 */ 2409 fail = true; 2410 if (!narrow_write_error(r1_bio, m)) { 2411 md_error(conf->mddev, 2412 conf->mirrors[m].rdev); 2413 /* an I/O failed, we can't clear the bitmap */ 2414 set_bit(R1BIO_Degraded, &r1_bio->state); 2415 } 2416 rdev_dec_pending(conf->mirrors[m].rdev, 2417 conf->mddev); 2418 } 2419 if (fail) { 2420 spin_lock_irq(&conf->device_lock); 2421 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2422 idx = sector_to_idx(r1_bio->sector); 2423 atomic_inc(&conf->nr_queued[idx]); 2424 spin_unlock_irq(&conf->device_lock); 2425 /* 2426 * In case freeze_array() is waiting for condition 2427 * get_unqueued_pending() == extra to be true. 2428 */ 2429 wake_up(&conf->wait_barrier); 2430 md_wakeup_thread(conf->mddev->thread); 2431 } else { 2432 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2433 close_write(r1_bio); 2434 raid_end_bio_io(r1_bio); 2435 } 2436 } 2437 2438 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2439 { 2440 struct mddev *mddev = conf->mddev; 2441 struct bio *bio; 2442 struct md_rdev *rdev; 2443 dev_t bio_dev; 2444 sector_t bio_sector; 2445 2446 clear_bit(R1BIO_ReadError, &r1_bio->state); 2447 /* we got a read error. Maybe the drive is bad. Maybe just 2448 * the block and we can fix it. 2449 * We freeze all other IO, and try reading the block from 2450 * other devices. When we find one, we re-write 2451 * and check it that fixes the read error. 2452 * This is all done synchronously while the array is 2453 * frozen 2454 */ 2455 2456 bio = r1_bio->bios[r1_bio->read_disk]; 2457 bio_dev = bio->bi_bdev->bd_dev; 2458 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2459 bio_put(bio); 2460 r1_bio->bios[r1_bio->read_disk] = NULL; 2461 2462 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2463 if (mddev->ro == 0 2464 && !test_bit(FailFast, &rdev->flags)) { 2465 freeze_array(conf, 1); 2466 fix_read_error(conf, r1_bio->read_disk, 2467 r1_bio->sector, r1_bio->sectors); 2468 unfreeze_array(conf); 2469 } else { 2470 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2471 } 2472 2473 rdev_dec_pending(rdev, conf->mddev); 2474 allow_barrier(conf, r1_bio->sector); 2475 bio = r1_bio->master_bio; 2476 2477 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2478 r1_bio->state = 0; 2479 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2480 } 2481 2482 static void raid1d(struct md_thread *thread) 2483 { 2484 struct mddev *mddev = thread->mddev; 2485 struct r1bio *r1_bio; 2486 unsigned long flags; 2487 struct r1conf *conf = mddev->private; 2488 struct list_head *head = &conf->retry_list; 2489 struct blk_plug plug; 2490 int idx; 2491 2492 md_check_recovery(mddev); 2493 2494 if (!list_empty_careful(&conf->bio_end_io_list) && 2495 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2496 LIST_HEAD(tmp); 2497 spin_lock_irqsave(&conf->device_lock, flags); 2498 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2499 list_splice_init(&conf->bio_end_io_list, &tmp); 2500 spin_unlock_irqrestore(&conf->device_lock, flags); 2501 while (!list_empty(&tmp)) { 2502 r1_bio = list_first_entry(&tmp, struct r1bio, 2503 retry_list); 2504 list_del(&r1_bio->retry_list); 2505 idx = sector_to_idx(r1_bio->sector); 2506 atomic_dec(&conf->nr_queued[idx]); 2507 if (mddev->degraded) 2508 set_bit(R1BIO_Degraded, &r1_bio->state); 2509 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2510 close_write(r1_bio); 2511 raid_end_bio_io(r1_bio); 2512 } 2513 } 2514 2515 blk_start_plug(&plug); 2516 for (;;) { 2517 2518 flush_pending_writes(conf); 2519 2520 spin_lock_irqsave(&conf->device_lock, flags); 2521 if (list_empty(head)) { 2522 spin_unlock_irqrestore(&conf->device_lock, flags); 2523 break; 2524 } 2525 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2526 list_del(head->prev); 2527 idx = sector_to_idx(r1_bio->sector); 2528 atomic_dec(&conf->nr_queued[idx]); 2529 spin_unlock_irqrestore(&conf->device_lock, flags); 2530 2531 mddev = r1_bio->mddev; 2532 conf = mddev->private; 2533 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2534 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2535 test_bit(R1BIO_WriteError, &r1_bio->state)) 2536 handle_sync_write_finished(conf, r1_bio); 2537 else 2538 sync_request_write(mddev, r1_bio); 2539 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2540 test_bit(R1BIO_WriteError, &r1_bio->state)) 2541 handle_write_finished(conf, r1_bio); 2542 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2543 handle_read_error(conf, r1_bio); 2544 else 2545 WARN_ON_ONCE(1); 2546 2547 cond_resched(); 2548 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2549 md_check_recovery(mddev); 2550 } 2551 blk_finish_plug(&plug); 2552 } 2553 2554 static int init_resync(struct r1conf *conf) 2555 { 2556 int buffs; 2557 2558 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2559 BUG_ON(conf->r1buf_pool); 2560 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2561 conf->poolinfo); 2562 if (!conf->r1buf_pool) 2563 return -ENOMEM; 2564 return 0; 2565 } 2566 2567 /* 2568 * perform a "sync" on one "block" 2569 * 2570 * We need to make sure that no normal I/O request - particularly write 2571 * requests - conflict with active sync requests. 2572 * 2573 * This is achieved by tracking pending requests and a 'barrier' concept 2574 * that can be installed to exclude normal IO requests. 2575 */ 2576 2577 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2578 int *skipped) 2579 { 2580 struct r1conf *conf = mddev->private; 2581 struct r1bio *r1_bio; 2582 struct bio *bio; 2583 sector_t max_sector, nr_sectors; 2584 int disk = -1; 2585 int i; 2586 int wonly = -1; 2587 int write_targets = 0, read_targets = 0; 2588 sector_t sync_blocks; 2589 int still_degraded = 0; 2590 int good_sectors = RESYNC_SECTORS; 2591 int min_bad = 0; /* number of sectors that are bad in all devices */ 2592 int idx = sector_to_idx(sector_nr); 2593 int page_idx = 0; 2594 2595 if (!conf->r1buf_pool) 2596 if (init_resync(conf)) 2597 return 0; 2598 2599 max_sector = mddev->dev_sectors; 2600 if (sector_nr >= max_sector) { 2601 /* If we aborted, we need to abort the 2602 * sync on the 'current' bitmap chunk (there will 2603 * only be one in raid1 resync. 2604 * We can find the current addess in mddev->curr_resync 2605 */ 2606 if (mddev->curr_resync < max_sector) /* aborted */ 2607 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2608 &sync_blocks, 1); 2609 else /* completed sync */ 2610 conf->fullsync = 0; 2611 2612 bitmap_close_sync(mddev->bitmap); 2613 close_sync(conf); 2614 2615 if (mddev_is_clustered(mddev)) { 2616 conf->cluster_sync_low = 0; 2617 conf->cluster_sync_high = 0; 2618 } 2619 return 0; 2620 } 2621 2622 if (mddev->bitmap == NULL && 2623 mddev->recovery_cp == MaxSector && 2624 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2625 conf->fullsync == 0) { 2626 *skipped = 1; 2627 return max_sector - sector_nr; 2628 } 2629 /* before building a request, check if we can skip these blocks.. 2630 * This call the bitmap_start_sync doesn't actually record anything 2631 */ 2632 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2633 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2634 /* We can skip this block, and probably several more */ 2635 *skipped = 1; 2636 return sync_blocks; 2637 } 2638 2639 /* 2640 * If there is non-resync activity waiting for a turn, then let it 2641 * though before starting on this new sync request. 2642 */ 2643 if (atomic_read(&conf->nr_waiting[idx])) 2644 schedule_timeout_uninterruptible(1); 2645 2646 /* we are incrementing sector_nr below. To be safe, we check against 2647 * sector_nr + two times RESYNC_SECTORS 2648 */ 2649 2650 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2651 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2652 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2653 2654 raise_barrier(conf, sector_nr); 2655 2656 rcu_read_lock(); 2657 /* 2658 * If we get a correctably read error during resync or recovery, 2659 * we might want to read from a different device. So we 2660 * flag all drives that could conceivably be read from for READ, 2661 * and any others (which will be non-In_sync devices) for WRITE. 2662 * If a read fails, we try reading from something else for which READ 2663 * is OK. 2664 */ 2665 2666 r1_bio->mddev = mddev; 2667 r1_bio->sector = sector_nr; 2668 r1_bio->state = 0; 2669 set_bit(R1BIO_IsSync, &r1_bio->state); 2670 /* make sure good_sectors won't go across barrier unit boundary */ 2671 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2672 2673 for (i = 0; i < conf->raid_disks * 2; i++) { 2674 struct md_rdev *rdev; 2675 bio = r1_bio->bios[i]; 2676 2677 rdev = rcu_dereference(conf->mirrors[i].rdev); 2678 if (rdev == NULL || 2679 test_bit(Faulty, &rdev->flags)) { 2680 if (i < conf->raid_disks) 2681 still_degraded = 1; 2682 } else if (!test_bit(In_sync, &rdev->flags)) { 2683 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2684 bio->bi_end_io = end_sync_write; 2685 write_targets ++; 2686 } else { 2687 /* may need to read from here */ 2688 sector_t first_bad = MaxSector; 2689 int bad_sectors; 2690 2691 if (is_badblock(rdev, sector_nr, good_sectors, 2692 &first_bad, &bad_sectors)) { 2693 if (first_bad > sector_nr) 2694 good_sectors = first_bad - sector_nr; 2695 else { 2696 bad_sectors -= (sector_nr - first_bad); 2697 if (min_bad == 0 || 2698 min_bad > bad_sectors) 2699 min_bad = bad_sectors; 2700 } 2701 } 2702 if (sector_nr < first_bad) { 2703 if (test_bit(WriteMostly, &rdev->flags)) { 2704 if (wonly < 0) 2705 wonly = i; 2706 } else { 2707 if (disk < 0) 2708 disk = i; 2709 } 2710 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2711 bio->bi_end_io = end_sync_read; 2712 read_targets++; 2713 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2714 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2715 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2716 /* 2717 * The device is suitable for reading (InSync), 2718 * but has bad block(s) here. Let's try to correct them, 2719 * if we are doing resync or repair. Otherwise, leave 2720 * this device alone for this sync request. 2721 */ 2722 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2723 bio->bi_end_io = end_sync_write; 2724 write_targets++; 2725 } 2726 } 2727 if (bio->bi_end_io) { 2728 atomic_inc(&rdev->nr_pending); 2729 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2730 bio->bi_bdev = rdev->bdev; 2731 if (test_bit(FailFast, &rdev->flags)) 2732 bio->bi_opf |= MD_FAILFAST; 2733 } 2734 } 2735 rcu_read_unlock(); 2736 if (disk < 0) 2737 disk = wonly; 2738 r1_bio->read_disk = disk; 2739 2740 if (read_targets == 0 && min_bad > 0) { 2741 /* These sectors are bad on all InSync devices, so we 2742 * need to mark them bad on all write targets 2743 */ 2744 int ok = 1; 2745 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2746 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2747 struct md_rdev *rdev = conf->mirrors[i].rdev; 2748 ok = rdev_set_badblocks(rdev, sector_nr, 2749 min_bad, 0 2750 ) && ok; 2751 } 2752 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2753 *skipped = 1; 2754 put_buf(r1_bio); 2755 2756 if (!ok) { 2757 /* Cannot record the badblocks, so need to 2758 * abort the resync. 2759 * If there are multiple read targets, could just 2760 * fail the really bad ones ??? 2761 */ 2762 conf->recovery_disabled = mddev->recovery_disabled; 2763 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2764 return 0; 2765 } else 2766 return min_bad; 2767 2768 } 2769 if (min_bad > 0 && min_bad < good_sectors) { 2770 /* only resync enough to reach the next bad->good 2771 * transition */ 2772 good_sectors = min_bad; 2773 } 2774 2775 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2776 /* extra read targets are also write targets */ 2777 write_targets += read_targets-1; 2778 2779 if (write_targets == 0 || read_targets == 0) { 2780 /* There is nowhere to write, so all non-sync 2781 * drives must be failed - so we are finished 2782 */ 2783 sector_t rv; 2784 if (min_bad > 0) 2785 max_sector = sector_nr + min_bad; 2786 rv = max_sector - sector_nr; 2787 *skipped = 1; 2788 put_buf(r1_bio); 2789 return rv; 2790 } 2791 2792 if (max_sector > mddev->resync_max) 2793 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2794 if (max_sector > sector_nr + good_sectors) 2795 max_sector = sector_nr + good_sectors; 2796 nr_sectors = 0; 2797 sync_blocks = 0; 2798 do { 2799 struct page *page; 2800 int len = PAGE_SIZE; 2801 if (sector_nr + (len>>9) > max_sector) 2802 len = (max_sector - sector_nr) << 9; 2803 if (len == 0) 2804 break; 2805 if (sync_blocks == 0) { 2806 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2807 &sync_blocks, still_degraded) && 2808 !conf->fullsync && 2809 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2810 break; 2811 if ((len >> 9) > sync_blocks) 2812 len = sync_blocks<<9; 2813 } 2814 2815 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2816 struct resync_pages *rp; 2817 2818 bio = r1_bio->bios[i]; 2819 rp = get_resync_pages(bio); 2820 if (bio->bi_end_io) { 2821 page = resync_fetch_page(rp, page_idx); 2822 2823 /* 2824 * won't fail because the vec table is big 2825 * enough to hold all these pages 2826 */ 2827 bio_add_page(bio, page, len, 0); 2828 } 2829 } 2830 nr_sectors += len>>9; 2831 sector_nr += len>>9; 2832 sync_blocks -= (len>>9); 2833 } while (++page_idx < RESYNC_PAGES); 2834 2835 r1_bio->sectors = nr_sectors; 2836 2837 if (mddev_is_clustered(mddev) && 2838 conf->cluster_sync_high < sector_nr + nr_sectors) { 2839 conf->cluster_sync_low = mddev->curr_resync_completed; 2840 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2841 /* Send resync message */ 2842 md_cluster_ops->resync_info_update(mddev, 2843 conf->cluster_sync_low, 2844 conf->cluster_sync_high); 2845 } 2846 2847 /* For a user-requested sync, we read all readable devices and do a 2848 * compare 2849 */ 2850 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2851 atomic_set(&r1_bio->remaining, read_targets); 2852 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2853 bio = r1_bio->bios[i]; 2854 if (bio->bi_end_io == end_sync_read) { 2855 read_targets--; 2856 md_sync_acct(bio->bi_bdev, nr_sectors); 2857 if (read_targets == 1) 2858 bio->bi_opf &= ~MD_FAILFAST; 2859 generic_make_request(bio); 2860 } 2861 } 2862 } else { 2863 atomic_set(&r1_bio->remaining, 1); 2864 bio = r1_bio->bios[r1_bio->read_disk]; 2865 md_sync_acct(bio->bi_bdev, nr_sectors); 2866 if (read_targets == 1) 2867 bio->bi_opf &= ~MD_FAILFAST; 2868 generic_make_request(bio); 2869 2870 } 2871 return nr_sectors; 2872 } 2873 2874 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2875 { 2876 if (sectors) 2877 return sectors; 2878 2879 return mddev->dev_sectors; 2880 } 2881 2882 static struct r1conf *setup_conf(struct mddev *mddev) 2883 { 2884 struct r1conf *conf; 2885 int i; 2886 struct raid1_info *disk; 2887 struct md_rdev *rdev; 2888 int err = -ENOMEM; 2889 2890 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2891 if (!conf) 2892 goto abort; 2893 2894 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2895 sizeof(atomic_t), GFP_KERNEL); 2896 if (!conf->nr_pending) 2897 goto abort; 2898 2899 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2900 sizeof(atomic_t), GFP_KERNEL); 2901 if (!conf->nr_waiting) 2902 goto abort; 2903 2904 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2905 sizeof(atomic_t), GFP_KERNEL); 2906 if (!conf->nr_queued) 2907 goto abort; 2908 2909 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2910 sizeof(atomic_t), GFP_KERNEL); 2911 if (!conf->barrier) 2912 goto abort; 2913 2914 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2915 * mddev->raid_disks * 2, 2916 GFP_KERNEL); 2917 if (!conf->mirrors) 2918 goto abort; 2919 2920 conf->tmppage = alloc_page(GFP_KERNEL); 2921 if (!conf->tmppage) 2922 goto abort; 2923 2924 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2925 if (!conf->poolinfo) 2926 goto abort; 2927 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2928 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2929 r1bio_pool_free, 2930 conf->poolinfo); 2931 if (!conf->r1bio_pool) 2932 goto abort; 2933 2934 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 2935 if (!conf->bio_split) 2936 goto abort; 2937 2938 conf->poolinfo->mddev = mddev; 2939 2940 err = -EINVAL; 2941 spin_lock_init(&conf->device_lock); 2942 rdev_for_each(rdev, mddev) { 2943 int disk_idx = rdev->raid_disk; 2944 if (disk_idx >= mddev->raid_disks 2945 || disk_idx < 0) 2946 continue; 2947 if (test_bit(Replacement, &rdev->flags)) 2948 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2949 else 2950 disk = conf->mirrors + disk_idx; 2951 2952 if (disk->rdev) 2953 goto abort; 2954 disk->rdev = rdev; 2955 disk->head_position = 0; 2956 disk->seq_start = MaxSector; 2957 } 2958 conf->raid_disks = mddev->raid_disks; 2959 conf->mddev = mddev; 2960 INIT_LIST_HEAD(&conf->retry_list); 2961 INIT_LIST_HEAD(&conf->bio_end_io_list); 2962 2963 spin_lock_init(&conf->resync_lock); 2964 init_waitqueue_head(&conf->wait_barrier); 2965 2966 bio_list_init(&conf->pending_bio_list); 2967 conf->pending_count = 0; 2968 conf->recovery_disabled = mddev->recovery_disabled - 1; 2969 2970 err = -EIO; 2971 for (i = 0; i < conf->raid_disks * 2; i++) { 2972 2973 disk = conf->mirrors + i; 2974 2975 if (i < conf->raid_disks && 2976 disk[conf->raid_disks].rdev) { 2977 /* This slot has a replacement. */ 2978 if (!disk->rdev) { 2979 /* No original, just make the replacement 2980 * a recovering spare 2981 */ 2982 disk->rdev = 2983 disk[conf->raid_disks].rdev; 2984 disk[conf->raid_disks].rdev = NULL; 2985 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2986 /* Original is not in_sync - bad */ 2987 goto abort; 2988 } 2989 2990 if (!disk->rdev || 2991 !test_bit(In_sync, &disk->rdev->flags)) { 2992 disk->head_position = 0; 2993 if (disk->rdev && 2994 (disk->rdev->saved_raid_disk < 0)) 2995 conf->fullsync = 1; 2996 } 2997 } 2998 2999 err = -ENOMEM; 3000 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3001 if (!conf->thread) 3002 goto abort; 3003 3004 return conf; 3005 3006 abort: 3007 if (conf) { 3008 mempool_destroy(conf->r1bio_pool); 3009 kfree(conf->mirrors); 3010 safe_put_page(conf->tmppage); 3011 kfree(conf->poolinfo); 3012 kfree(conf->nr_pending); 3013 kfree(conf->nr_waiting); 3014 kfree(conf->nr_queued); 3015 kfree(conf->barrier); 3016 if (conf->bio_split) 3017 bioset_free(conf->bio_split); 3018 kfree(conf); 3019 } 3020 return ERR_PTR(err); 3021 } 3022 3023 static void raid1_free(struct mddev *mddev, void *priv); 3024 static int raid1_run(struct mddev *mddev) 3025 { 3026 struct r1conf *conf; 3027 int i; 3028 struct md_rdev *rdev; 3029 int ret; 3030 bool discard_supported = false; 3031 3032 if (mddev->level != 1) { 3033 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3034 mdname(mddev), mddev->level); 3035 return -EIO; 3036 } 3037 if (mddev->reshape_position != MaxSector) { 3038 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3039 mdname(mddev)); 3040 return -EIO; 3041 } 3042 if (mddev_init_writes_pending(mddev) < 0) 3043 return -ENOMEM; 3044 /* 3045 * copy the already verified devices into our private RAID1 3046 * bookkeeping area. [whatever we allocate in run(), 3047 * should be freed in raid1_free()] 3048 */ 3049 if (mddev->private == NULL) 3050 conf = setup_conf(mddev); 3051 else 3052 conf = mddev->private; 3053 3054 if (IS_ERR(conf)) 3055 return PTR_ERR(conf); 3056 3057 if (mddev->queue) { 3058 blk_queue_max_write_same_sectors(mddev->queue, 0); 3059 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3060 } 3061 3062 rdev_for_each(rdev, mddev) { 3063 if (!mddev->gendisk) 3064 continue; 3065 disk_stack_limits(mddev->gendisk, rdev->bdev, 3066 rdev->data_offset << 9); 3067 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3068 discard_supported = true; 3069 } 3070 3071 mddev->degraded = 0; 3072 for (i=0; i < conf->raid_disks; i++) 3073 if (conf->mirrors[i].rdev == NULL || 3074 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3075 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3076 mddev->degraded++; 3077 3078 if (conf->raid_disks - mddev->degraded == 1) 3079 mddev->recovery_cp = MaxSector; 3080 3081 if (mddev->recovery_cp != MaxSector) 3082 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3083 mdname(mddev)); 3084 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3085 mdname(mddev), mddev->raid_disks - mddev->degraded, 3086 mddev->raid_disks); 3087 3088 /* 3089 * Ok, everything is just fine now 3090 */ 3091 mddev->thread = conf->thread; 3092 conf->thread = NULL; 3093 mddev->private = conf; 3094 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3095 3096 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3097 3098 if (mddev->queue) { 3099 if (discard_supported) 3100 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3101 mddev->queue); 3102 else 3103 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3104 mddev->queue); 3105 } 3106 3107 ret = md_integrity_register(mddev); 3108 if (ret) { 3109 md_unregister_thread(&mddev->thread); 3110 raid1_free(mddev, conf); 3111 } 3112 return ret; 3113 } 3114 3115 static void raid1_free(struct mddev *mddev, void *priv) 3116 { 3117 struct r1conf *conf = priv; 3118 3119 mempool_destroy(conf->r1bio_pool); 3120 kfree(conf->mirrors); 3121 safe_put_page(conf->tmppage); 3122 kfree(conf->poolinfo); 3123 kfree(conf->nr_pending); 3124 kfree(conf->nr_waiting); 3125 kfree(conf->nr_queued); 3126 kfree(conf->barrier); 3127 if (conf->bio_split) 3128 bioset_free(conf->bio_split); 3129 kfree(conf); 3130 } 3131 3132 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3133 { 3134 /* no resync is happening, and there is enough space 3135 * on all devices, so we can resize. 3136 * We need to make sure resync covers any new space. 3137 * If the array is shrinking we should possibly wait until 3138 * any io in the removed space completes, but it hardly seems 3139 * worth it. 3140 */ 3141 sector_t newsize = raid1_size(mddev, sectors, 0); 3142 if (mddev->external_size && 3143 mddev->array_sectors > newsize) 3144 return -EINVAL; 3145 if (mddev->bitmap) { 3146 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3147 if (ret) 3148 return ret; 3149 } 3150 md_set_array_sectors(mddev, newsize); 3151 if (sectors > mddev->dev_sectors && 3152 mddev->recovery_cp > mddev->dev_sectors) { 3153 mddev->recovery_cp = mddev->dev_sectors; 3154 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3155 } 3156 mddev->dev_sectors = sectors; 3157 mddev->resync_max_sectors = sectors; 3158 return 0; 3159 } 3160 3161 static int raid1_reshape(struct mddev *mddev) 3162 { 3163 /* We need to: 3164 * 1/ resize the r1bio_pool 3165 * 2/ resize conf->mirrors 3166 * 3167 * We allocate a new r1bio_pool if we can. 3168 * Then raise a device barrier and wait until all IO stops. 3169 * Then resize conf->mirrors and swap in the new r1bio pool. 3170 * 3171 * At the same time, we "pack" the devices so that all the missing 3172 * devices have the higher raid_disk numbers. 3173 */ 3174 mempool_t *newpool, *oldpool; 3175 struct pool_info *newpoolinfo; 3176 struct raid1_info *newmirrors; 3177 struct r1conf *conf = mddev->private; 3178 int cnt, raid_disks; 3179 unsigned long flags; 3180 int d, d2; 3181 3182 /* Cannot change chunk_size, layout, or level */ 3183 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3184 mddev->layout != mddev->new_layout || 3185 mddev->level != mddev->new_level) { 3186 mddev->new_chunk_sectors = mddev->chunk_sectors; 3187 mddev->new_layout = mddev->layout; 3188 mddev->new_level = mddev->level; 3189 return -EINVAL; 3190 } 3191 3192 if (!mddev_is_clustered(mddev)) 3193 md_allow_write(mddev); 3194 3195 raid_disks = mddev->raid_disks + mddev->delta_disks; 3196 3197 if (raid_disks < conf->raid_disks) { 3198 cnt=0; 3199 for (d= 0; d < conf->raid_disks; d++) 3200 if (conf->mirrors[d].rdev) 3201 cnt++; 3202 if (cnt > raid_disks) 3203 return -EBUSY; 3204 } 3205 3206 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3207 if (!newpoolinfo) 3208 return -ENOMEM; 3209 newpoolinfo->mddev = mddev; 3210 newpoolinfo->raid_disks = raid_disks * 2; 3211 3212 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3213 r1bio_pool_free, newpoolinfo); 3214 if (!newpool) { 3215 kfree(newpoolinfo); 3216 return -ENOMEM; 3217 } 3218 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3219 GFP_KERNEL); 3220 if (!newmirrors) { 3221 kfree(newpoolinfo); 3222 mempool_destroy(newpool); 3223 return -ENOMEM; 3224 } 3225 3226 freeze_array(conf, 0); 3227 3228 /* ok, everything is stopped */ 3229 oldpool = conf->r1bio_pool; 3230 conf->r1bio_pool = newpool; 3231 3232 for (d = d2 = 0; d < conf->raid_disks; d++) { 3233 struct md_rdev *rdev = conf->mirrors[d].rdev; 3234 if (rdev && rdev->raid_disk != d2) { 3235 sysfs_unlink_rdev(mddev, rdev); 3236 rdev->raid_disk = d2; 3237 sysfs_unlink_rdev(mddev, rdev); 3238 if (sysfs_link_rdev(mddev, rdev)) 3239 pr_warn("md/raid1:%s: cannot register rd%d\n", 3240 mdname(mddev), rdev->raid_disk); 3241 } 3242 if (rdev) 3243 newmirrors[d2++].rdev = rdev; 3244 } 3245 kfree(conf->mirrors); 3246 conf->mirrors = newmirrors; 3247 kfree(conf->poolinfo); 3248 conf->poolinfo = newpoolinfo; 3249 3250 spin_lock_irqsave(&conf->device_lock, flags); 3251 mddev->degraded += (raid_disks - conf->raid_disks); 3252 spin_unlock_irqrestore(&conf->device_lock, flags); 3253 conf->raid_disks = mddev->raid_disks = raid_disks; 3254 mddev->delta_disks = 0; 3255 3256 unfreeze_array(conf); 3257 3258 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3259 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3260 md_wakeup_thread(mddev->thread); 3261 3262 mempool_destroy(oldpool); 3263 return 0; 3264 } 3265 3266 static void raid1_quiesce(struct mddev *mddev, int state) 3267 { 3268 struct r1conf *conf = mddev->private; 3269 3270 switch(state) { 3271 case 2: /* wake for suspend */ 3272 wake_up(&conf->wait_barrier); 3273 break; 3274 case 1: 3275 freeze_array(conf, 0); 3276 break; 3277 case 0: 3278 unfreeze_array(conf); 3279 break; 3280 } 3281 } 3282 3283 static void *raid1_takeover(struct mddev *mddev) 3284 { 3285 /* raid1 can take over: 3286 * raid5 with 2 devices, any layout or chunk size 3287 */ 3288 if (mddev->level == 5 && mddev->raid_disks == 2) { 3289 struct r1conf *conf; 3290 mddev->new_level = 1; 3291 mddev->new_layout = 0; 3292 mddev->new_chunk_sectors = 0; 3293 conf = setup_conf(mddev); 3294 if (!IS_ERR(conf)) { 3295 /* Array must appear to be quiesced */ 3296 conf->array_frozen = 1; 3297 mddev_clear_unsupported_flags(mddev, 3298 UNSUPPORTED_MDDEV_FLAGS); 3299 } 3300 return conf; 3301 } 3302 return ERR_PTR(-EINVAL); 3303 } 3304 3305 static struct md_personality raid1_personality = 3306 { 3307 .name = "raid1", 3308 .level = 1, 3309 .owner = THIS_MODULE, 3310 .make_request = raid1_make_request, 3311 .run = raid1_run, 3312 .free = raid1_free, 3313 .status = raid1_status, 3314 .error_handler = raid1_error, 3315 .hot_add_disk = raid1_add_disk, 3316 .hot_remove_disk= raid1_remove_disk, 3317 .spare_active = raid1_spare_active, 3318 .sync_request = raid1_sync_request, 3319 .resize = raid1_resize, 3320 .size = raid1_size, 3321 .check_reshape = raid1_reshape, 3322 .quiesce = raid1_quiesce, 3323 .takeover = raid1_takeover, 3324 .congested = raid1_congested, 3325 }; 3326 3327 static int __init raid_init(void) 3328 { 3329 return register_md_personality(&raid1_personality); 3330 } 3331 3332 static void raid_exit(void) 3333 { 3334 unregister_md_personality(&raid1_personality); 3335 } 3336 3337 module_init(raid_init); 3338 module_exit(raid_exit); 3339 MODULE_LICENSE("GPL"); 3340 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3341 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3342 MODULE_ALIAS("md-raid1"); 3343 MODULE_ALIAS("md-level-1"); 3344 3345 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3346