1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71 static void lower_barrier(struct r1conf *conf); 72 73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74 { 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r1bio_pool_free(void *r1_bio, void *data) 83 { 84 kfree(r1_bio); 85 } 86 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_DEPTH 32 89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 94 95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 struct r1bio *r1_bio; 99 struct bio *bio; 100 int need_pages; 101 int i, j; 102 103 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 104 if (!r1_bio) 105 return NULL; 106 107 /* 108 * Allocate bios : 1 for reading, n-1 for writing 109 */ 110 for (j = pi->raid_disks ; j-- ; ) { 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r1_bio->bios[j] = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them to 118 * the first bio. 119 * If this is a user-requested check/repair, allocate 120 * RESYNC_PAGES for each bio. 121 */ 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 123 need_pages = pi->raid_disks; 124 else 125 need_pages = 1; 126 for (j = 0; j < need_pages; j++) { 127 bio = r1_bio->bios[j]; 128 bio->bi_vcnt = RESYNC_PAGES; 129 130 if (bio_alloc_pages(bio, gfp_flags)) 131 goto out_free_pages; 132 } 133 /* If not user-requests, copy the page pointers to all bios */ 134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 135 for (i=0; i<RESYNC_PAGES ; i++) 136 for (j=1; j<pi->raid_disks; j++) 137 r1_bio->bios[j]->bi_io_vec[i].bv_page = 138 r1_bio->bios[0]->bi_io_vec[i].bv_page; 139 } 140 141 r1_bio->master_bio = NULL; 142 143 return r1_bio; 144 145 out_free_pages: 146 while (--j >= 0) { 147 struct bio_vec *bv; 148 149 bio_for_each_segment_all(bv, r1_bio->bios[j], i) 150 __free_page(bv->bv_page); 151 } 152 153 out_free_bio: 154 while (++j < pi->raid_disks) 155 bio_put(r1_bio->bios[j]); 156 r1bio_pool_free(r1_bio, data); 157 return NULL; 158 } 159 160 static void r1buf_pool_free(void *__r1_bio, void *data) 161 { 162 struct pool_info *pi = data; 163 int i,j; 164 struct r1bio *r1bio = __r1_bio; 165 166 for (i = 0; i < RESYNC_PAGES; i++) 167 for (j = pi->raid_disks; j-- ;) { 168 if (j == 0 || 169 r1bio->bios[j]->bi_io_vec[i].bv_page != 170 r1bio->bios[0]->bi_io_vec[i].bv_page) 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 172 } 173 for (i=0 ; i < pi->raid_disks; i++) 174 bio_put(r1bio->bios[i]); 175 176 r1bio_pool_free(r1bio, data); 177 } 178 179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->raid_disks * 2; i++) { 184 struct bio **bio = r1_bio->bios + i; 185 if (!BIO_SPECIAL(*bio)) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r1bio(struct r1bio *r1_bio) 192 { 193 struct r1conf *conf = r1_bio->mddev->private; 194 195 put_all_bios(conf, r1_bio); 196 mempool_free(r1_bio, conf->r1bio_pool); 197 } 198 199 static void put_buf(struct r1bio *r1_bio) 200 { 201 struct r1conf *conf = r1_bio->mddev->private; 202 int i; 203 204 for (i = 0; i < conf->raid_disks * 2; i++) { 205 struct bio *bio = r1_bio->bios[i]; 206 if (bio->bi_end_io) 207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 208 } 209 210 mempool_free(r1_bio, conf->r1buf_pool); 211 212 lower_barrier(conf); 213 } 214 215 static void reschedule_retry(struct r1bio *r1_bio) 216 { 217 unsigned long flags; 218 struct mddev *mddev = r1_bio->mddev; 219 struct r1conf *conf = mddev->private; 220 221 spin_lock_irqsave(&conf->device_lock, flags); 222 list_add(&r1_bio->retry_list, &conf->retry_list); 223 conf->nr_queued ++; 224 spin_unlock_irqrestore(&conf->device_lock, flags); 225 226 wake_up(&conf->wait_barrier); 227 md_wakeup_thread(mddev->thread); 228 } 229 230 /* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235 static void call_bio_endio(struct r1bio *r1_bio) 236 { 237 struct bio *bio = r1_bio->master_bio; 238 int done; 239 struct r1conf *conf = r1_bio->mddev->private; 240 sector_t start_next_window = r1_bio->start_next_window; 241 sector_t bi_sector = bio->bi_iter.bi_sector; 242 243 if (bio->bi_phys_segments) { 244 unsigned long flags; 245 spin_lock_irqsave(&conf->device_lock, flags); 246 bio->bi_phys_segments--; 247 done = (bio->bi_phys_segments == 0); 248 spin_unlock_irqrestore(&conf->device_lock, flags); 249 /* 250 * make_request() might be waiting for 251 * bi_phys_segments to decrease 252 */ 253 wake_up(&conf->wait_barrier); 254 } else 255 done = 1; 256 257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 258 bio->bi_error = -EIO; 259 260 if (done) { 261 bio_endio(bio); 262 /* 263 * Wake up any possible resync thread that waits for the device 264 * to go idle. 265 */ 266 allow_barrier(conf, start_next_window, bi_sector); 267 } 268 } 269 270 static void raid_end_bio_io(struct r1bio *r1_bio) 271 { 272 struct bio *bio = r1_bio->master_bio; 273 274 /* if nobody has done the final endio yet, do it now */ 275 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 276 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 277 (bio_data_dir(bio) == WRITE) ? "write" : "read", 278 (unsigned long long) bio->bi_iter.bi_sector, 279 (unsigned long long) bio_end_sector(bio) - 1); 280 281 call_bio_endio(r1_bio); 282 } 283 free_r1bio(r1_bio); 284 } 285 286 /* 287 * Update disk head position estimator based on IRQ completion info. 288 */ 289 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 290 { 291 struct r1conf *conf = r1_bio->mddev->private; 292 293 conf->mirrors[disk].head_position = 294 r1_bio->sector + (r1_bio->sectors); 295 } 296 297 /* 298 * Find the disk number which triggered given bio 299 */ 300 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 301 { 302 int mirror; 303 struct r1conf *conf = r1_bio->mddev->private; 304 int raid_disks = conf->raid_disks; 305 306 for (mirror = 0; mirror < raid_disks * 2; mirror++) 307 if (r1_bio->bios[mirror] == bio) 308 break; 309 310 BUG_ON(mirror == raid_disks * 2); 311 update_head_pos(mirror, r1_bio); 312 313 return mirror; 314 } 315 316 static void raid1_end_read_request(struct bio *bio) 317 { 318 int uptodate = !bio->bi_error; 319 struct r1bio *r1_bio = bio->bi_private; 320 int mirror; 321 struct r1conf *conf = r1_bio->mddev->private; 322 323 mirror = r1_bio->read_disk; 324 /* 325 * this branch is our 'one mirror IO has finished' event handler: 326 */ 327 update_head_pos(mirror, r1_bio); 328 329 if (uptodate) 330 set_bit(R1BIO_Uptodate, &r1_bio->state); 331 else { 332 /* If all other devices have failed, we want to return 333 * the error upwards rather than fail the last device. 334 * Here we redefine "uptodate" to mean "Don't want to retry" 335 */ 336 unsigned long flags; 337 spin_lock_irqsave(&conf->device_lock, flags); 338 if (r1_bio->mddev->degraded == conf->raid_disks || 339 (r1_bio->mddev->degraded == conf->raid_disks-1 && 340 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags))) 341 uptodate = 1; 342 spin_unlock_irqrestore(&conf->device_lock, flags); 343 } 344 345 if (uptodate) { 346 raid_end_bio_io(r1_bio); 347 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 348 } else { 349 /* 350 * oops, read error: 351 */ 352 char b[BDEVNAME_SIZE]; 353 printk_ratelimited( 354 KERN_ERR "md/raid1:%s: %s: " 355 "rescheduling sector %llu\n", 356 mdname(conf->mddev), 357 bdevname(conf->mirrors[mirror].rdev->bdev, 358 b), 359 (unsigned long long)r1_bio->sector); 360 set_bit(R1BIO_ReadError, &r1_bio->state); 361 reschedule_retry(r1_bio); 362 /* don't drop the reference on read_disk yet */ 363 } 364 } 365 366 static void close_write(struct r1bio *r1_bio) 367 { 368 /* it really is the end of this request */ 369 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 370 /* free extra copy of the data pages */ 371 int i = r1_bio->behind_page_count; 372 while (i--) 373 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 374 kfree(r1_bio->behind_bvecs); 375 r1_bio->behind_bvecs = NULL; 376 } 377 /* clear the bitmap if all writes complete successfully */ 378 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 379 r1_bio->sectors, 380 !test_bit(R1BIO_Degraded, &r1_bio->state), 381 test_bit(R1BIO_BehindIO, &r1_bio->state)); 382 md_write_end(r1_bio->mddev); 383 } 384 385 static void r1_bio_write_done(struct r1bio *r1_bio) 386 { 387 if (!atomic_dec_and_test(&r1_bio->remaining)) 388 return; 389 390 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 391 reschedule_retry(r1_bio); 392 else { 393 close_write(r1_bio); 394 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 395 reschedule_retry(r1_bio); 396 else 397 raid_end_bio_io(r1_bio); 398 } 399 } 400 401 static void raid1_end_write_request(struct bio *bio) 402 { 403 struct r1bio *r1_bio = bio->bi_private; 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 405 struct r1conf *conf = r1_bio->mddev->private; 406 struct bio *to_put = NULL; 407 408 mirror = find_bio_disk(r1_bio, bio); 409 410 /* 411 * 'one mirror IO has finished' event handler: 412 */ 413 if (bio->bi_error) { 414 set_bit(WriteErrorSeen, 415 &conf->mirrors[mirror].rdev->flags); 416 if (!test_and_set_bit(WantReplacement, 417 &conf->mirrors[mirror].rdev->flags)) 418 set_bit(MD_RECOVERY_NEEDED, & 419 conf->mddev->recovery); 420 421 set_bit(R1BIO_WriteError, &r1_bio->state); 422 } else { 423 /* 424 * Set R1BIO_Uptodate in our master bio, so that we 425 * will return a good error code for to the higher 426 * levels even if IO on some other mirrored buffer 427 * fails. 428 * 429 * The 'master' represents the composite IO operation 430 * to user-side. So if something waits for IO, then it 431 * will wait for the 'master' bio. 432 */ 433 sector_t first_bad; 434 int bad_sectors; 435 436 r1_bio->bios[mirror] = NULL; 437 to_put = bio; 438 /* 439 * Do not set R1BIO_Uptodate if the current device is 440 * rebuilding or Faulty. This is because we cannot use 441 * such device for properly reading the data back (we could 442 * potentially use it, if the current write would have felt 443 * before rdev->recovery_offset, but for simplicity we don't 444 * check this here. 445 */ 446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 448 set_bit(R1BIO_Uptodate, &r1_bio->state); 449 450 /* Maybe we can clear some bad blocks. */ 451 if (is_badblock(conf->mirrors[mirror].rdev, 452 r1_bio->sector, r1_bio->sectors, 453 &first_bad, &bad_sectors)) { 454 r1_bio->bios[mirror] = IO_MADE_GOOD; 455 set_bit(R1BIO_MadeGood, &r1_bio->state); 456 } 457 } 458 459 if (behind) { 460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 461 atomic_dec(&r1_bio->behind_remaining); 462 463 /* 464 * In behind mode, we ACK the master bio once the I/O 465 * has safely reached all non-writemostly 466 * disks. Setting the Returned bit ensures that this 467 * gets done only once -- we don't ever want to return 468 * -EIO here, instead we'll wait 469 */ 470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 471 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 472 /* Maybe we can return now */ 473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 474 struct bio *mbio = r1_bio->master_bio; 475 pr_debug("raid1: behind end write sectors" 476 " %llu-%llu\n", 477 (unsigned long long) mbio->bi_iter.bi_sector, 478 (unsigned long long) bio_end_sector(mbio) - 1); 479 call_bio_endio(r1_bio); 480 } 481 } 482 } 483 if (r1_bio->bios[mirror] == NULL) 484 rdev_dec_pending(conf->mirrors[mirror].rdev, 485 conf->mddev); 486 487 /* 488 * Let's see if all mirrored write operations have finished 489 * already. 490 */ 491 r1_bio_write_done(r1_bio); 492 493 if (to_put) 494 bio_put(to_put); 495 } 496 497 /* 498 * This routine returns the disk from which the requested read should 499 * be done. There is a per-array 'next expected sequential IO' sector 500 * number - if this matches on the next IO then we use the last disk. 501 * There is also a per-disk 'last know head position' sector that is 502 * maintained from IRQ contexts, both the normal and the resync IO 503 * completion handlers update this position correctly. If there is no 504 * perfect sequential match then we pick the disk whose head is closest. 505 * 506 * If there are 2 mirrors in the same 2 devices, performance degrades 507 * because position is mirror, not device based. 508 * 509 * The rdev for the device selected will have nr_pending incremented. 510 */ 511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 512 { 513 const sector_t this_sector = r1_bio->sector; 514 int sectors; 515 int best_good_sectors; 516 int best_disk, best_dist_disk, best_pending_disk; 517 int has_nonrot_disk; 518 int disk; 519 sector_t best_dist; 520 unsigned int min_pending; 521 struct md_rdev *rdev; 522 int choose_first; 523 int choose_next_idle; 524 525 rcu_read_lock(); 526 /* 527 * Check if we can balance. We can balance on the whole 528 * device if no resync is going on, or below the resync window. 529 * We take the first readable disk when above the resync window. 530 */ 531 retry: 532 sectors = r1_bio->sectors; 533 best_disk = -1; 534 best_dist_disk = -1; 535 best_dist = MaxSector; 536 best_pending_disk = -1; 537 min_pending = UINT_MAX; 538 best_good_sectors = 0; 539 has_nonrot_disk = 0; 540 choose_next_idle = 0; 541 542 if ((conf->mddev->recovery_cp < this_sector + sectors) || 543 (mddev_is_clustered(conf->mddev) && 544 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 545 this_sector + sectors))) 546 choose_first = 1; 547 else 548 choose_first = 0; 549 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 551 sector_t dist; 552 sector_t first_bad; 553 int bad_sectors; 554 unsigned int pending; 555 bool nonrot; 556 557 rdev = rcu_dereference(conf->mirrors[disk].rdev); 558 if (r1_bio->bios[disk] == IO_BLOCKED 559 || rdev == NULL 560 || test_bit(Faulty, &rdev->flags)) 561 continue; 562 if (!test_bit(In_sync, &rdev->flags) && 563 rdev->recovery_offset < this_sector + sectors) 564 continue; 565 if (test_bit(WriteMostly, &rdev->flags)) { 566 /* Don't balance among write-mostly, just 567 * use the first as a last resort */ 568 if (best_dist_disk < 0) { 569 if (is_badblock(rdev, this_sector, sectors, 570 &first_bad, &bad_sectors)) { 571 if (first_bad < this_sector) 572 /* Cannot use this */ 573 continue; 574 best_good_sectors = first_bad - this_sector; 575 } else 576 best_good_sectors = sectors; 577 best_dist_disk = disk; 578 best_pending_disk = disk; 579 } 580 continue; 581 } 582 /* This is a reasonable device to use. It might 583 * even be best. 584 */ 585 if (is_badblock(rdev, this_sector, sectors, 586 &first_bad, &bad_sectors)) { 587 if (best_dist < MaxSector) 588 /* already have a better device */ 589 continue; 590 if (first_bad <= this_sector) { 591 /* cannot read here. If this is the 'primary' 592 * device, then we must not read beyond 593 * bad_sectors from another device.. 594 */ 595 bad_sectors -= (this_sector - first_bad); 596 if (choose_first && sectors > bad_sectors) 597 sectors = bad_sectors; 598 if (best_good_sectors > sectors) 599 best_good_sectors = sectors; 600 601 } else { 602 sector_t good_sectors = first_bad - this_sector; 603 if (good_sectors > best_good_sectors) { 604 best_good_sectors = good_sectors; 605 best_disk = disk; 606 } 607 if (choose_first) 608 break; 609 } 610 continue; 611 } else 612 best_good_sectors = sectors; 613 614 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 615 has_nonrot_disk |= nonrot; 616 pending = atomic_read(&rdev->nr_pending); 617 dist = abs(this_sector - conf->mirrors[disk].head_position); 618 if (choose_first) { 619 best_disk = disk; 620 break; 621 } 622 /* Don't change to another disk for sequential reads */ 623 if (conf->mirrors[disk].next_seq_sect == this_sector 624 || dist == 0) { 625 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 626 struct raid1_info *mirror = &conf->mirrors[disk]; 627 628 best_disk = disk; 629 /* 630 * If buffered sequential IO size exceeds optimal 631 * iosize, check if there is idle disk. If yes, choose 632 * the idle disk. read_balance could already choose an 633 * idle disk before noticing it's a sequential IO in 634 * this disk. This doesn't matter because this disk 635 * will idle, next time it will be utilized after the 636 * first disk has IO size exceeds optimal iosize. In 637 * this way, iosize of the first disk will be optimal 638 * iosize at least. iosize of the second disk might be 639 * small, but not a big deal since when the second disk 640 * starts IO, the first disk is likely still busy. 641 */ 642 if (nonrot && opt_iosize > 0 && 643 mirror->seq_start != MaxSector && 644 mirror->next_seq_sect > opt_iosize && 645 mirror->next_seq_sect - opt_iosize >= 646 mirror->seq_start) { 647 choose_next_idle = 1; 648 continue; 649 } 650 break; 651 } 652 /* If device is idle, use it */ 653 if (pending == 0) { 654 best_disk = disk; 655 break; 656 } 657 658 if (choose_next_idle) 659 continue; 660 661 if (min_pending > pending) { 662 min_pending = pending; 663 best_pending_disk = disk; 664 } 665 666 if (dist < best_dist) { 667 best_dist = dist; 668 best_dist_disk = disk; 669 } 670 } 671 672 /* 673 * If all disks are rotational, choose the closest disk. If any disk is 674 * non-rotational, choose the disk with less pending request even the 675 * disk is rotational, which might/might not be optimal for raids with 676 * mixed ratation/non-rotational disks depending on workload. 677 */ 678 if (best_disk == -1) { 679 if (has_nonrot_disk) 680 best_disk = best_pending_disk; 681 else 682 best_disk = best_dist_disk; 683 } 684 685 if (best_disk >= 0) { 686 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 687 if (!rdev) 688 goto retry; 689 atomic_inc(&rdev->nr_pending); 690 if (test_bit(Faulty, &rdev->flags)) { 691 /* cannot risk returning a device that failed 692 * before we inc'ed nr_pending 693 */ 694 rdev_dec_pending(rdev, conf->mddev); 695 goto retry; 696 } 697 sectors = best_good_sectors; 698 699 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 700 conf->mirrors[best_disk].seq_start = this_sector; 701 702 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 703 } 704 rcu_read_unlock(); 705 *max_sectors = sectors; 706 707 return best_disk; 708 } 709 710 static int raid1_congested(struct mddev *mddev, int bits) 711 { 712 struct r1conf *conf = mddev->private; 713 int i, ret = 0; 714 715 if ((bits & (1 << WB_async_congested)) && 716 conf->pending_count >= max_queued_requests) 717 return 1; 718 719 rcu_read_lock(); 720 for (i = 0; i < conf->raid_disks * 2; i++) { 721 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 722 if (rdev && !test_bit(Faulty, &rdev->flags)) { 723 struct request_queue *q = bdev_get_queue(rdev->bdev); 724 725 BUG_ON(!q); 726 727 /* Note the '|| 1' - when read_balance prefers 728 * non-congested targets, it can be removed 729 */ 730 if ((bits & (1 << WB_async_congested)) || 1) 731 ret |= bdi_congested(&q->backing_dev_info, bits); 732 else 733 ret &= bdi_congested(&q->backing_dev_info, bits); 734 } 735 } 736 rcu_read_unlock(); 737 return ret; 738 } 739 740 static void flush_pending_writes(struct r1conf *conf) 741 { 742 /* Any writes that have been queued but are awaiting 743 * bitmap updates get flushed here. 744 */ 745 spin_lock_irq(&conf->device_lock); 746 747 if (conf->pending_bio_list.head) { 748 struct bio *bio; 749 bio = bio_list_get(&conf->pending_bio_list); 750 conf->pending_count = 0; 751 spin_unlock_irq(&conf->device_lock); 752 /* flush any pending bitmap writes to 753 * disk before proceeding w/ I/O */ 754 bitmap_unplug(conf->mddev->bitmap); 755 wake_up(&conf->wait_barrier); 756 757 while (bio) { /* submit pending writes */ 758 struct bio *next = bio->bi_next; 759 bio->bi_next = NULL; 760 if (unlikely((bio->bi_rw & REQ_DISCARD) && 761 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 762 /* Just ignore it */ 763 bio_endio(bio); 764 else 765 generic_make_request(bio); 766 bio = next; 767 } 768 } else 769 spin_unlock_irq(&conf->device_lock); 770 } 771 772 /* Barriers.... 773 * Sometimes we need to suspend IO while we do something else, 774 * either some resync/recovery, or reconfigure the array. 775 * To do this we raise a 'barrier'. 776 * The 'barrier' is a counter that can be raised multiple times 777 * to count how many activities are happening which preclude 778 * normal IO. 779 * We can only raise the barrier if there is no pending IO. 780 * i.e. if nr_pending == 0. 781 * We choose only to raise the barrier if no-one is waiting for the 782 * barrier to go down. This means that as soon as an IO request 783 * is ready, no other operations which require a barrier will start 784 * until the IO request has had a chance. 785 * 786 * So: regular IO calls 'wait_barrier'. When that returns there 787 * is no backgroup IO happening, It must arrange to call 788 * allow_barrier when it has finished its IO. 789 * backgroup IO calls must call raise_barrier. Once that returns 790 * there is no normal IO happeing. It must arrange to call 791 * lower_barrier when the particular background IO completes. 792 */ 793 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 794 { 795 spin_lock_irq(&conf->resync_lock); 796 797 /* Wait until no block IO is waiting */ 798 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 799 conf->resync_lock); 800 801 /* block any new IO from starting */ 802 conf->barrier++; 803 conf->next_resync = sector_nr; 804 805 /* For these conditions we must wait: 806 * A: while the array is in frozen state 807 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 808 * the max count which allowed. 809 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 810 * next resync will reach to the window which normal bios are 811 * handling. 812 * D: while there are any active requests in the current window. 813 */ 814 wait_event_lock_irq(conf->wait_barrier, 815 !conf->array_frozen && 816 conf->barrier < RESYNC_DEPTH && 817 conf->current_window_requests == 0 && 818 (conf->start_next_window >= 819 conf->next_resync + RESYNC_SECTORS), 820 conf->resync_lock); 821 822 conf->nr_pending++; 823 spin_unlock_irq(&conf->resync_lock); 824 } 825 826 static void lower_barrier(struct r1conf *conf) 827 { 828 unsigned long flags; 829 BUG_ON(conf->barrier <= 0); 830 spin_lock_irqsave(&conf->resync_lock, flags); 831 conf->barrier--; 832 conf->nr_pending--; 833 spin_unlock_irqrestore(&conf->resync_lock, flags); 834 wake_up(&conf->wait_barrier); 835 } 836 837 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 838 { 839 bool wait = false; 840 841 if (conf->array_frozen || !bio) 842 wait = true; 843 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 844 if ((conf->mddev->curr_resync_completed 845 >= bio_end_sector(bio)) || 846 (conf->next_resync + NEXT_NORMALIO_DISTANCE 847 <= bio->bi_iter.bi_sector)) 848 wait = false; 849 else 850 wait = true; 851 } 852 853 return wait; 854 } 855 856 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 857 { 858 sector_t sector = 0; 859 860 spin_lock_irq(&conf->resync_lock); 861 if (need_to_wait_for_sync(conf, bio)) { 862 conf->nr_waiting++; 863 /* Wait for the barrier to drop. 864 * However if there are already pending 865 * requests (preventing the barrier from 866 * rising completely), and the 867 * per-process bio queue isn't empty, 868 * then don't wait, as we need to empty 869 * that queue to allow conf->start_next_window 870 * to increase. 871 */ 872 wait_event_lock_irq(conf->wait_barrier, 873 !conf->array_frozen && 874 (!conf->barrier || 875 ((conf->start_next_window < 876 conf->next_resync + RESYNC_SECTORS) && 877 current->bio_list && 878 !bio_list_empty(current->bio_list))), 879 conf->resync_lock); 880 conf->nr_waiting--; 881 } 882 883 if (bio && bio_data_dir(bio) == WRITE) { 884 if (bio->bi_iter.bi_sector >= conf->next_resync) { 885 if (conf->start_next_window == MaxSector) 886 conf->start_next_window = 887 conf->next_resync + 888 NEXT_NORMALIO_DISTANCE; 889 890 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 891 <= bio->bi_iter.bi_sector) 892 conf->next_window_requests++; 893 else 894 conf->current_window_requests++; 895 sector = conf->start_next_window; 896 } 897 } 898 899 conf->nr_pending++; 900 spin_unlock_irq(&conf->resync_lock); 901 return sector; 902 } 903 904 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 905 sector_t bi_sector) 906 { 907 unsigned long flags; 908 909 spin_lock_irqsave(&conf->resync_lock, flags); 910 conf->nr_pending--; 911 if (start_next_window) { 912 if (start_next_window == conf->start_next_window) { 913 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 914 <= bi_sector) 915 conf->next_window_requests--; 916 else 917 conf->current_window_requests--; 918 } else 919 conf->current_window_requests--; 920 921 if (!conf->current_window_requests) { 922 if (conf->next_window_requests) { 923 conf->current_window_requests = 924 conf->next_window_requests; 925 conf->next_window_requests = 0; 926 conf->start_next_window += 927 NEXT_NORMALIO_DISTANCE; 928 } else 929 conf->start_next_window = MaxSector; 930 } 931 } 932 spin_unlock_irqrestore(&conf->resync_lock, flags); 933 wake_up(&conf->wait_barrier); 934 } 935 936 static void freeze_array(struct r1conf *conf, int extra) 937 { 938 /* stop syncio and normal IO and wait for everything to 939 * go quite. 940 * We wait until nr_pending match nr_queued+extra 941 * This is called in the context of one normal IO request 942 * that has failed. Thus any sync request that might be pending 943 * will be blocked by nr_pending, and we need to wait for 944 * pending IO requests to complete or be queued for re-try. 945 * Thus the number queued (nr_queued) plus this request (extra) 946 * must match the number of pending IOs (nr_pending) before 947 * we continue. 948 */ 949 spin_lock_irq(&conf->resync_lock); 950 conf->array_frozen = 1; 951 wait_event_lock_irq_cmd(conf->wait_barrier, 952 conf->nr_pending == conf->nr_queued+extra, 953 conf->resync_lock, 954 flush_pending_writes(conf)); 955 spin_unlock_irq(&conf->resync_lock); 956 } 957 static void unfreeze_array(struct r1conf *conf) 958 { 959 /* reverse the effect of the freeze */ 960 spin_lock_irq(&conf->resync_lock); 961 conf->array_frozen = 0; 962 wake_up(&conf->wait_barrier); 963 spin_unlock_irq(&conf->resync_lock); 964 } 965 966 /* duplicate the data pages for behind I/O 967 */ 968 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 969 { 970 int i; 971 struct bio_vec *bvec; 972 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 973 GFP_NOIO); 974 if (unlikely(!bvecs)) 975 return; 976 977 bio_for_each_segment_all(bvec, bio, i) { 978 bvecs[i] = *bvec; 979 bvecs[i].bv_page = alloc_page(GFP_NOIO); 980 if (unlikely(!bvecs[i].bv_page)) 981 goto do_sync_io; 982 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 983 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 984 kunmap(bvecs[i].bv_page); 985 kunmap(bvec->bv_page); 986 } 987 r1_bio->behind_bvecs = bvecs; 988 r1_bio->behind_page_count = bio->bi_vcnt; 989 set_bit(R1BIO_BehindIO, &r1_bio->state); 990 return; 991 992 do_sync_io: 993 for (i = 0; i < bio->bi_vcnt; i++) 994 if (bvecs[i].bv_page) 995 put_page(bvecs[i].bv_page); 996 kfree(bvecs); 997 pr_debug("%dB behind alloc failed, doing sync I/O\n", 998 bio->bi_iter.bi_size); 999 } 1000 1001 struct raid1_plug_cb { 1002 struct blk_plug_cb cb; 1003 struct bio_list pending; 1004 int pending_cnt; 1005 }; 1006 1007 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1008 { 1009 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1010 cb); 1011 struct mddev *mddev = plug->cb.data; 1012 struct r1conf *conf = mddev->private; 1013 struct bio *bio; 1014 1015 if (from_schedule || current->bio_list) { 1016 spin_lock_irq(&conf->device_lock); 1017 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1018 conf->pending_count += plug->pending_cnt; 1019 spin_unlock_irq(&conf->device_lock); 1020 wake_up(&conf->wait_barrier); 1021 md_wakeup_thread(mddev->thread); 1022 kfree(plug); 1023 return; 1024 } 1025 1026 /* we aren't scheduling, so we can do the write-out directly. */ 1027 bio = bio_list_get(&plug->pending); 1028 bitmap_unplug(mddev->bitmap); 1029 wake_up(&conf->wait_barrier); 1030 1031 while (bio) { /* submit pending writes */ 1032 struct bio *next = bio->bi_next; 1033 bio->bi_next = NULL; 1034 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1035 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1036 /* Just ignore it */ 1037 bio_endio(bio); 1038 else 1039 generic_make_request(bio); 1040 bio = next; 1041 } 1042 kfree(plug); 1043 } 1044 1045 static void make_request(struct mddev *mddev, struct bio * bio) 1046 { 1047 struct r1conf *conf = mddev->private; 1048 struct raid1_info *mirror; 1049 struct r1bio *r1_bio; 1050 struct bio *read_bio; 1051 int i, disks; 1052 struct bitmap *bitmap; 1053 unsigned long flags; 1054 const int rw = bio_data_dir(bio); 1055 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1056 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1057 const unsigned long do_discard = (bio->bi_rw 1058 & (REQ_DISCARD | REQ_SECURE)); 1059 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1060 struct md_rdev *blocked_rdev; 1061 struct blk_plug_cb *cb; 1062 struct raid1_plug_cb *plug = NULL; 1063 int first_clone; 1064 int sectors_handled; 1065 int max_sectors; 1066 sector_t start_next_window; 1067 1068 /* 1069 * Register the new request and wait if the reconstruction 1070 * thread has put up a bar for new requests. 1071 * Continue immediately if no resync is active currently. 1072 */ 1073 1074 md_write_start(mddev, bio); /* wait on superblock update early */ 1075 1076 if (bio_data_dir(bio) == WRITE && 1077 ((bio_end_sector(bio) > mddev->suspend_lo && 1078 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1079 (mddev_is_clustered(mddev) && 1080 md_cluster_ops->area_resyncing(mddev, WRITE, 1081 bio->bi_iter.bi_sector, bio_end_sector(bio))))) { 1082 /* As the suspend_* range is controlled by 1083 * userspace, we want an interruptible 1084 * wait. 1085 */ 1086 DEFINE_WAIT(w); 1087 for (;;) { 1088 flush_signals(current); 1089 prepare_to_wait(&conf->wait_barrier, 1090 &w, TASK_INTERRUPTIBLE); 1091 if (bio_end_sector(bio) <= mddev->suspend_lo || 1092 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1093 (mddev_is_clustered(mddev) && 1094 !md_cluster_ops->area_resyncing(mddev, WRITE, 1095 bio->bi_iter.bi_sector, bio_end_sector(bio)))) 1096 break; 1097 schedule(); 1098 } 1099 finish_wait(&conf->wait_barrier, &w); 1100 } 1101 1102 start_next_window = wait_barrier(conf, bio); 1103 1104 bitmap = mddev->bitmap; 1105 1106 /* 1107 * make_request() can abort the operation when READA is being 1108 * used and no empty request is available. 1109 * 1110 */ 1111 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1112 1113 r1_bio->master_bio = bio; 1114 r1_bio->sectors = bio_sectors(bio); 1115 r1_bio->state = 0; 1116 r1_bio->mddev = mddev; 1117 r1_bio->sector = bio->bi_iter.bi_sector; 1118 1119 /* We might need to issue multiple reads to different 1120 * devices if there are bad blocks around, so we keep 1121 * track of the number of reads in bio->bi_phys_segments. 1122 * If this is 0, there is only one r1_bio and no locking 1123 * will be needed when requests complete. If it is 1124 * non-zero, then it is the number of not-completed requests. 1125 */ 1126 bio->bi_phys_segments = 0; 1127 bio_clear_flag(bio, BIO_SEG_VALID); 1128 1129 if (rw == READ) { 1130 /* 1131 * read balancing logic: 1132 */ 1133 int rdisk; 1134 1135 read_again: 1136 rdisk = read_balance(conf, r1_bio, &max_sectors); 1137 1138 if (rdisk < 0) { 1139 /* couldn't find anywhere to read from */ 1140 raid_end_bio_io(r1_bio); 1141 return; 1142 } 1143 mirror = conf->mirrors + rdisk; 1144 1145 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1146 bitmap) { 1147 /* Reading from a write-mostly device must 1148 * take care not to over-take any writes 1149 * that are 'behind' 1150 */ 1151 wait_event(bitmap->behind_wait, 1152 atomic_read(&bitmap->behind_writes) == 0); 1153 } 1154 r1_bio->read_disk = rdisk; 1155 r1_bio->start_next_window = 0; 1156 1157 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1158 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1159 max_sectors); 1160 1161 r1_bio->bios[rdisk] = read_bio; 1162 1163 read_bio->bi_iter.bi_sector = r1_bio->sector + 1164 mirror->rdev->data_offset; 1165 read_bio->bi_bdev = mirror->rdev->bdev; 1166 read_bio->bi_end_io = raid1_end_read_request; 1167 read_bio->bi_rw = READ | do_sync; 1168 read_bio->bi_private = r1_bio; 1169 1170 if (max_sectors < r1_bio->sectors) { 1171 /* could not read all from this device, so we will 1172 * need another r1_bio. 1173 */ 1174 1175 sectors_handled = (r1_bio->sector + max_sectors 1176 - bio->bi_iter.bi_sector); 1177 r1_bio->sectors = max_sectors; 1178 spin_lock_irq(&conf->device_lock); 1179 if (bio->bi_phys_segments == 0) 1180 bio->bi_phys_segments = 2; 1181 else 1182 bio->bi_phys_segments++; 1183 spin_unlock_irq(&conf->device_lock); 1184 /* Cannot call generic_make_request directly 1185 * as that will be queued in __make_request 1186 * and subsequent mempool_alloc might block waiting 1187 * for it. So hand bio over to raid1d. 1188 */ 1189 reschedule_retry(r1_bio); 1190 1191 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1192 1193 r1_bio->master_bio = bio; 1194 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1195 r1_bio->state = 0; 1196 r1_bio->mddev = mddev; 1197 r1_bio->sector = bio->bi_iter.bi_sector + 1198 sectors_handled; 1199 goto read_again; 1200 } else 1201 generic_make_request(read_bio); 1202 return; 1203 } 1204 1205 /* 1206 * WRITE: 1207 */ 1208 if (conf->pending_count >= max_queued_requests) { 1209 md_wakeup_thread(mddev->thread); 1210 wait_event(conf->wait_barrier, 1211 conf->pending_count < max_queued_requests); 1212 } 1213 /* first select target devices under rcu_lock and 1214 * inc refcount on their rdev. Record them by setting 1215 * bios[x] to bio 1216 * If there are known/acknowledged bad blocks on any device on 1217 * which we have seen a write error, we want to avoid writing those 1218 * blocks. 1219 * This potentially requires several writes to write around 1220 * the bad blocks. Each set of writes gets it's own r1bio 1221 * with a set of bios attached. 1222 */ 1223 1224 disks = conf->raid_disks * 2; 1225 retry_write: 1226 r1_bio->start_next_window = start_next_window; 1227 blocked_rdev = NULL; 1228 rcu_read_lock(); 1229 max_sectors = r1_bio->sectors; 1230 for (i = 0; i < disks; i++) { 1231 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1232 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1233 atomic_inc(&rdev->nr_pending); 1234 blocked_rdev = rdev; 1235 break; 1236 } 1237 r1_bio->bios[i] = NULL; 1238 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1239 if (i < conf->raid_disks) 1240 set_bit(R1BIO_Degraded, &r1_bio->state); 1241 continue; 1242 } 1243 1244 atomic_inc(&rdev->nr_pending); 1245 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1246 sector_t first_bad; 1247 int bad_sectors; 1248 int is_bad; 1249 1250 is_bad = is_badblock(rdev, r1_bio->sector, 1251 max_sectors, 1252 &first_bad, &bad_sectors); 1253 if (is_bad < 0) { 1254 /* mustn't write here until the bad block is 1255 * acknowledged*/ 1256 set_bit(BlockedBadBlocks, &rdev->flags); 1257 blocked_rdev = rdev; 1258 break; 1259 } 1260 if (is_bad && first_bad <= r1_bio->sector) { 1261 /* Cannot write here at all */ 1262 bad_sectors -= (r1_bio->sector - first_bad); 1263 if (bad_sectors < max_sectors) 1264 /* mustn't write more than bad_sectors 1265 * to other devices yet 1266 */ 1267 max_sectors = bad_sectors; 1268 rdev_dec_pending(rdev, mddev); 1269 /* We don't set R1BIO_Degraded as that 1270 * only applies if the disk is 1271 * missing, so it might be re-added, 1272 * and we want to know to recover this 1273 * chunk. 1274 * In this case the device is here, 1275 * and the fact that this chunk is not 1276 * in-sync is recorded in the bad 1277 * block log 1278 */ 1279 continue; 1280 } 1281 if (is_bad) { 1282 int good_sectors = first_bad - r1_bio->sector; 1283 if (good_sectors < max_sectors) 1284 max_sectors = good_sectors; 1285 } 1286 } 1287 r1_bio->bios[i] = bio; 1288 } 1289 rcu_read_unlock(); 1290 1291 if (unlikely(blocked_rdev)) { 1292 /* Wait for this device to become unblocked */ 1293 int j; 1294 sector_t old = start_next_window; 1295 1296 for (j = 0; j < i; j++) 1297 if (r1_bio->bios[j]) 1298 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1299 r1_bio->state = 0; 1300 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1301 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1302 start_next_window = wait_barrier(conf, bio); 1303 /* 1304 * We must make sure the multi r1bios of bio have 1305 * the same value of bi_phys_segments 1306 */ 1307 if (bio->bi_phys_segments && old && 1308 old != start_next_window) 1309 /* Wait for the former r1bio(s) to complete */ 1310 wait_event(conf->wait_barrier, 1311 bio->bi_phys_segments == 1); 1312 goto retry_write; 1313 } 1314 1315 if (max_sectors < r1_bio->sectors) { 1316 /* We are splitting this write into multiple parts, so 1317 * we need to prepare for allocating another r1_bio. 1318 */ 1319 r1_bio->sectors = max_sectors; 1320 spin_lock_irq(&conf->device_lock); 1321 if (bio->bi_phys_segments == 0) 1322 bio->bi_phys_segments = 2; 1323 else 1324 bio->bi_phys_segments++; 1325 spin_unlock_irq(&conf->device_lock); 1326 } 1327 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1328 1329 atomic_set(&r1_bio->remaining, 1); 1330 atomic_set(&r1_bio->behind_remaining, 0); 1331 1332 first_clone = 1; 1333 for (i = 0; i < disks; i++) { 1334 struct bio *mbio; 1335 if (!r1_bio->bios[i]) 1336 continue; 1337 1338 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1339 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1340 1341 if (first_clone) { 1342 /* do behind I/O ? 1343 * Not if there are too many, or cannot 1344 * allocate memory, or a reader on WriteMostly 1345 * is waiting for behind writes to flush */ 1346 if (bitmap && 1347 (atomic_read(&bitmap->behind_writes) 1348 < mddev->bitmap_info.max_write_behind) && 1349 !waitqueue_active(&bitmap->behind_wait)) 1350 alloc_behind_pages(mbio, r1_bio); 1351 1352 bitmap_startwrite(bitmap, r1_bio->sector, 1353 r1_bio->sectors, 1354 test_bit(R1BIO_BehindIO, 1355 &r1_bio->state)); 1356 first_clone = 0; 1357 } 1358 if (r1_bio->behind_bvecs) { 1359 struct bio_vec *bvec; 1360 int j; 1361 1362 /* 1363 * We trimmed the bio, so _all is legit 1364 */ 1365 bio_for_each_segment_all(bvec, mbio, j) 1366 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1367 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1368 atomic_inc(&r1_bio->behind_remaining); 1369 } 1370 1371 r1_bio->bios[i] = mbio; 1372 1373 mbio->bi_iter.bi_sector = (r1_bio->sector + 1374 conf->mirrors[i].rdev->data_offset); 1375 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1376 mbio->bi_end_io = raid1_end_write_request; 1377 mbio->bi_rw = 1378 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1379 mbio->bi_private = r1_bio; 1380 1381 atomic_inc(&r1_bio->remaining); 1382 1383 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1384 if (cb) 1385 plug = container_of(cb, struct raid1_plug_cb, cb); 1386 else 1387 plug = NULL; 1388 spin_lock_irqsave(&conf->device_lock, flags); 1389 if (plug) { 1390 bio_list_add(&plug->pending, mbio); 1391 plug->pending_cnt++; 1392 } else { 1393 bio_list_add(&conf->pending_bio_list, mbio); 1394 conf->pending_count++; 1395 } 1396 spin_unlock_irqrestore(&conf->device_lock, flags); 1397 if (!plug) 1398 md_wakeup_thread(mddev->thread); 1399 } 1400 /* Mustn't call r1_bio_write_done before this next test, 1401 * as it could result in the bio being freed. 1402 */ 1403 if (sectors_handled < bio_sectors(bio)) { 1404 r1_bio_write_done(r1_bio); 1405 /* We need another r1_bio. It has already been counted 1406 * in bio->bi_phys_segments 1407 */ 1408 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1409 r1_bio->master_bio = bio; 1410 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1411 r1_bio->state = 0; 1412 r1_bio->mddev = mddev; 1413 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1414 goto retry_write; 1415 } 1416 1417 r1_bio_write_done(r1_bio); 1418 1419 /* In case raid1d snuck in to freeze_array */ 1420 wake_up(&conf->wait_barrier); 1421 } 1422 1423 static void status(struct seq_file *seq, struct mddev *mddev) 1424 { 1425 struct r1conf *conf = mddev->private; 1426 int i; 1427 1428 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1429 conf->raid_disks - mddev->degraded); 1430 rcu_read_lock(); 1431 for (i = 0; i < conf->raid_disks; i++) { 1432 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1433 seq_printf(seq, "%s", 1434 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1435 } 1436 rcu_read_unlock(); 1437 seq_printf(seq, "]"); 1438 } 1439 1440 static void error(struct mddev *mddev, struct md_rdev *rdev) 1441 { 1442 char b[BDEVNAME_SIZE]; 1443 struct r1conf *conf = mddev->private; 1444 unsigned long flags; 1445 1446 /* 1447 * If it is not operational, then we have already marked it as dead 1448 * else if it is the last working disks, ignore the error, let the 1449 * next level up know. 1450 * else mark the drive as failed 1451 */ 1452 if (test_bit(In_sync, &rdev->flags) 1453 && (conf->raid_disks - mddev->degraded) == 1) { 1454 /* 1455 * Don't fail the drive, act as though we were just a 1456 * normal single drive. 1457 * However don't try a recovery from this drive as 1458 * it is very likely to fail. 1459 */ 1460 conf->recovery_disabled = mddev->recovery_disabled; 1461 return; 1462 } 1463 set_bit(Blocked, &rdev->flags); 1464 spin_lock_irqsave(&conf->device_lock, flags); 1465 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1466 mddev->degraded++; 1467 set_bit(Faulty, &rdev->flags); 1468 } else 1469 set_bit(Faulty, &rdev->flags); 1470 spin_unlock_irqrestore(&conf->device_lock, flags); 1471 /* 1472 * if recovery is running, make sure it aborts. 1473 */ 1474 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1475 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1476 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1477 printk(KERN_ALERT 1478 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1479 "md/raid1:%s: Operation continuing on %d devices.\n", 1480 mdname(mddev), bdevname(rdev->bdev, b), 1481 mdname(mddev), conf->raid_disks - mddev->degraded); 1482 } 1483 1484 static void print_conf(struct r1conf *conf) 1485 { 1486 int i; 1487 1488 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1489 if (!conf) { 1490 printk(KERN_DEBUG "(!conf)\n"); 1491 return; 1492 } 1493 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1494 conf->raid_disks); 1495 1496 rcu_read_lock(); 1497 for (i = 0; i < conf->raid_disks; i++) { 1498 char b[BDEVNAME_SIZE]; 1499 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1500 if (rdev) 1501 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1502 i, !test_bit(In_sync, &rdev->flags), 1503 !test_bit(Faulty, &rdev->flags), 1504 bdevname(rdev->bdev,b)); 1505 } 1506 rcu_read_unlock(); 1507 } 1508 1509 static void close_sync(struct r1conf *conf) 1510 { 1511 wait_barrier(conf, NULL); 1512 allow_barrier(conf, 0, 0); 1513 1514 mempool_destroy(conf->r1buf_pool); 1515 conf->r1buf_pool = NULL; 1516 1517 spin_lock_irq(&conf->resync_lock); 1518 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE; 1519 conf->start_next_window = MaxSector; 1520 conf->current_window_requests += 1521 conf->next_window_requests; 1522 conf->next_window_requests = 0; 1523 spin_unlock_irq(&conf->resync_lock); 1524 } 1525 1526 static int raid1_spare_active(struct mddev *mddev) 1527 { 1528 int i; 1529 struct r1conf *conf = mddev->private; 1530 int count = 0; 1531 unsigned long flags; 1532 1533 /* 1534 * Find all failed disks within the RAID1 configuration 1535 * and mark them readable. 1536 * Called under mddev lock, so rcu protection not needed. 1537 * device_lock used to avoid races with raid1_end_read_request 1538 * which expects 'In_sync' flags and ->degraded to be consistent. 1539 */ 1540 spin_lock_irqsave(&conf->device_lock, flags); 1541 for (i = 0; i < conf->raid_disks; i++) { 1542 struct md_rdev *rdev = conf->mirrors[i].rdev; 1543 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1544 if (repl 1545 && !test_bit(Candidate, &repl->flags) 1546 && repl->recovery_offset == MaxSector 1547 && !test_bit(Faulty, &repl->flags) 1548 && !test_and_set_bit(In_sync, &repl->flags)) { 1549 /* replacement has just become active */ 1550 if (!rdev || 1551 !test_and_clear_bit(In_sync, &rdev->flags)) 1552 count++; 1553 if (rdev) { 1554 /* Replaced device not technically 1555 * faulty, but we need to be sure 1556 * it gets removed and never re-added 1557 */ 1558 set_bit(Faulty, &rdev->flags); 1559 sysfs_notify_dirent_safe( 1560 rdev->sysfs_state); 1561 } 1562 } 1563 if (rdev 1564 && rdev->recovery_offset == MaxSector 1565 && !test_bit(Faulty, &rdev->flags) 1566 && !test_and_set_bit(In_sync, &rdev->flags)) { 1567 count++; 1568 sysfs_notify_dirent_safe(rdev->sysfs_state); 1569 } 1570 } 1571 mddev->degraded -= count; 1572 spin_unlock_irqrestore(&conf->device_lock, flags); 1573 1574 print_conf(conf); 1575 return count; 1576 } 1577 1578 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1579 { 1580 struct r1conf *conf = mddev->private; 1581 int err = -EEXIST; 1582 int mirror = 0; 1583 struct raid1_info *p; 1584 int first = 0; 1585 int last = conf->raid_disks - 1; 1586 1587 if (mddev->recovery_disabled == conf->recovery_disabled) 1588 return -EBUSY; 1589 1590 if (rdev->raid_disk >= 0) 1591 first = last = rdev->raid_disk; 1592 1593 for (mirror = first; mirror <= last; mirror++) { 1594 p = conf->mirrors+mirror; 1595 if (!p->rdev) { 1596 1597 if (mddev->gendisk) 1598 disk_stack_limits(mddev->gendisk, rdev->bdev, 1599 rdev->data_offset << 9); 1600 1601 p->head_position = 0; 1602 rdev->raid_disk = mirror; 1603 err = 0; 1604 /* As all devices are equivalent, we don't need a full recovery 1605 * if this was recently any drive of the array 1606 */ 1607 if (rdev->saved_raid_disk < 0) 1608 conf->fullsync = 1; 1609 rcu_assign_pointer(p->rdev, rdev); 1610 break; 1611 } 1612 if (test_bit(WantReplacement, &p->rdev->flags) && 1613 p[conf->raid_disks].rdev == NULL) { 1614 /* Add this device as a replacement */ 1615 clear_bit(In_sync, &rdev->flags); 1616 set_bit(Replacement, &rdev->flags); 1617 rdev->raid_disk = mirror; 1618 err = 0; 1619 conf->fullsync = 1; 1620 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1621 break; 1622 } 1623 } 1624 md_integrity_add_rdev(rdev, mddev); 1625 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1626 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1627 print_conf(conf); 1628 return err; 1629 } 1630 1631 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1632 { 1633 struct r1conf *conf = mddev->private; 1634 int err = 0; 1635 int number = rdev->raid_disk; 1636 struct raid1_info *p = conf->mirrors + number; 1637 1638 if (rdev != p->rdev) 1639 p = conf->mirrors + conf->raid_disks + number; 1640 1641 print_conf(conf); 1642 if (rdev == p->rdev) { 1643 if (test_bit(In_sync, &rdev->flags) || 1644 atomic_read(&rdev->nr_pending)) { 1645 err = -EBUSY; 1646 goto abort; 1647 } 1648 /* Only remove non-faulty devices if recovery 1649 * is not possible. 1650 */ 1651 if (!test_bit(Faulty, &rdev->flags) && 1652 mddev->recovery_disabled != conf->recovery_disabled && 1653 mddev->degraded < conf->raid_disks) { 1654 err = -EBUSY; 1655 goto abort; 1656 } 1657 p->rdev = NULL; 1658 synchronize_rcu(); 1659 if (atomic_read(&rdev->nr_pending)) { 1660 /* lost the race, try later */ 1661 err = -EBUSY; 1662 p->rdev = rdev; 1663 goto abort; 1664 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1665 /* We just removed a device that is being replaced. 1666 * Move down the replacement. We drain all IO before 1667 * doing this to avoid confusion. 1668 */ 1669 struct md_rdev *repl = 1670 conf->mirrors[conf->raid_disks + number].rdev; 1671 freeze_array(conf, 0); 1672 clear_bit(Replacement, &repl->flags); 1673 p->rdev = repl; 1674 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1675 unfreeze_array(conf); 1676 clear_bit(WantReplacement, &rdev->flags); 1677 } else 1678 clear_bit(WantReplacement, &rdev->flags); 1679 err = md_integrity_register(mddev); 1680 } 1681 abort: 1682 1683 print_conf(conf); 1684 return err; 1685 } 1686 1687 static void end_sync_read(struct bio *bio) 1688 { 1689 struct r1bio *r1_bio = bio->bi_private; 1690 1691 update_head_pos(r1_bio->read_disk, r1_bio); 1692 1693 /* 1694 * we have read a block, now it needs to be re-written, 1695 * or re-read if the read failed. 1696 * We don't do much here, just schedule handling by raid1d 1697 */ 1698 if (!bio->bi_error) 1699 set_bit(R1BIO_Uptodate, &r1_bio->state); 1700 1701 if (atomic_dec_and_test(&r1_bio->remaining)) 1702 reschedule_retry(r1_bio); 1703 } 1704 1705 static void end_sync_write(struct bio *bio) 1706 { 1707 int uptodate = !bio->bi_error; 1708 struct r1bio *r1_bio = bio->bi_private; 1709 struct mddev *mddev = r1_bio->mddev; 1710 struct r1conf *conf = mddev->private; 1711 int mirror=0; 1712 sector_t first_bad; 1713 int bad_sectors; 1714 1715 mirror = find_bio_disk(r1_bio, bio); 1716 1717 if (!uptodate) { 1718 sector_t sync_blocks = 0; 1719 sector_t s = r1_bio->sector; 1720 long sectors_to_go = r1_bio->sectors; 1721 /* make sure these bits doesn't get cleared. */ 1722 do { 1723 bitmap_end_sync(mddev->bitmap, s, 1724 &sync_blocks, 1); 1725 s += sync_blocks; 1726 sectors_to_go -= sync_blocks; 1727 } while (sectors_to_go > 0); 1728 set_bit(WriteErrorSeen, 1729 &conf->mirrors[mirror].rdev->flags); 1730 if (!test_and_set_bit(WantReplacement, 1731 &conf->mirrors[mirror].rdev->flags)) 1732 set_bit(MD_RECOVERY_NEEDED, & 1733 mddev->recovery); 1734 set_bit(R1BIO_WriteError, &r1_bio->state); 1735 } else if (is_badblock(conf->mirrors[mirror].rdev, 1736 r1_bio->sector, 1737 r1_bio->sectors, 1738 &first_bad, &bad_sectors) && 1739 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1740 r1_bio->sector, 1741 r1_bio->sectors, 1742 &first_bad, &bad_sectors) 1743 ) 1744 set_bit(R1BIO_MadeGood, &r1_bio->state); 1745 1746 if (atomic_dec_and_test(&r1_bio->remaining)) { 1747 int s = r1_bio->sectors; 1748 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1749 test_bit(R1BIO_WriteError, &r1_bio->state)) 1750 reschedule_retry(r1_bio); 1751 else { 1752 put_buf(r1_bio); 1753 md_done_sync(mddev, s, uptodate); 1754 } 1755 } 1756 } 1757 1758 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1759 int sectors, struct page *page, int rw) 1760 { 1761 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1762 /* success */ 1763 return 1; 1764 if (rw == WRITE) { 1765 set_bit(WriteErrorSeen, &rdev->flags); 1766 if (!test_and_set_bit(WantReplacement, 1767 &rdev->flags)) 1768 set_bit(MD_RECOVERY_NEEDED, & 1769 rdev->mddev->recovery); 1770 } 1771 /* need to record an error - either for the block or the device */ 1772 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1773 md_error(rdev->mddev, rdev); 1774 return 0; 1775 } 1776 1777 static int fix_sync_read_error(struct r1bio *r1_bio) 1778 { 1779 /* Try some synchronous reads of other devices to get 1780 * good data, much like with normal read errors. Only 1781 * read into the pages we already have so we don't 1782 * need to re-issue the read request. 1783 * We don't need to freeze the array, because being in an 1784 * active sync request, there is no normal IO, and 1785 * no overlapping syncs. 1786 * We don't need to check is_badblock() again as we 1787 * made sure that anything with a bad block in range 1788 * will have bi_end_io clear. 1789 */ 1790 struct mddev *mddev = r1_bio->mddev; 1791 struct r1conf *conf = mddev->private; 1792 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1793 sector_t sect = r1_bio->sector; 1794 int sectors = r1_bio->sectors; 1795 int idx = 0; 1796 1797 while(sectors) { 1798 int s = sectors; 1799 int d = r1_bio->read_disk; 1800 int success = 0; 1801 struct md_rdev *rdev; 1802 int start; 1803 1804 if (s > (PAGE_SIZE>>9)) 1805 s = PAGE_SIZE >> 9; 1806 do { 1807 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1808 /* No rcu protection needed here devices 1809 * can only be removed when no resync is 1810 * active, and resync is currently active 1811 */ 1812 rdev = conf->mirrors[d].rdev; 1813 if (sync_page_io(rdev, sect, s<<9, 1814 bio->bi_io_vec[idx].bv_page, 1815 READ, false)) { 1816 success = 1; 1817 break; 1818 } 1819 } 1820 d++; 1821 if (d == conf->raid_disks * 2) 1822 d = 0; 1823 } while (!success && d != r1_bio->read_disk); 1824 1825 if (!success) { 1826 char b[BDEVNAME_SIZE]; 1827 int abort = 0; 1828 /* Cannot read from anywhere, this block is lost. 1829 * Record a bad block on each device. If that doesn't 1830 * work just disable and interrupt the recovery. 1831 * Don't fail devices as that won't really help. 1832 */ 1833 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1834 " for block %llu\n", 1835 mdname(mddev), 1836 bdevname(bio->bi_bdev, b), 1837 (unsigned long long)r1_bio->sector); 1838 for (d = 0; d < conf->raid_disks * 2; d++) { 1839 rdev = conf->mirrors[d].rdev; 1840 if (!rdev || test_bit(Faulty, &rdev->flags)) 1841 continue; 1842 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1843 abort = 1; 1844 } 1845 if (abort) { 1846 conf->recovery_disabled = 1847 mddev->recovery_disabled; 1848 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1849 md_done_sync(mddev, r1_bio->sectors, 0); 1850 put_buf(r1_bio); 1851 return 0; 1852 } 1853 /* Try next page */ 1854 sectors -= s; 1855 sect += s; 1856 idx++; 1857 continue; 1858 } 1859 1860 start = d; 1861 /* write it back and re-read */ 1862 while (d != r1_bio->read_disk) { 1863 if (d == 0) 1864 d = conf->raid_disks * 2; 1865 d--; 1866 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1867 continue; 1868 rdev = conf->mirrors[d].rdev; 1869 if (r1_sync_page_io(rdev, sect, s, 1870 bio->bi_io_vec[idx].bv_page, 1871 WRITE) == 0) { 1872 r1_bio->bios[d]->bi_end_io = NULL; 1873 rdev_dec_pending(rdev, mddev); 1874 } 1875 } 1876 d = start; 1877 while (d != r1_bio->read_disk) { 1878 if (d == 0) 1879 d = conf->raid_disks * 2; 1880 d--; 1881 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1882 continue; 1883 rdev = conf->mirrors[d].rdev; 1884 if (r1_sync_page_io(rdev, sect, s, 1885 bio->bi_io_vec[idx].bv_page, 1886 READ) != 0) 1887 atomic_add(s, &rdev->corrected_errors); 1888 } 1889 sectors -= s; 1890 sect += s; 1891 idx ++; 1892 } 1893 set_bit(R1BIO_Uptodate, &r1_bio->state); 1894 bio->bi_error = 0; 1895 return 1; 1896 } 1897 1898 static void process_checks(struct r1bio *r1_bio) 1899 { 1900 /* We have read all readable devices. If we haven't 1901 * got the block, then there is no hope left. 1902 * If we have, then we want to do a comparison 1903 * and skip the write if everything is the same. 1904 * If any blocks failed to read, then we need to 1905 * attempt an over-write 1906 */ 1907 struct mddev *mddev = r1_bio->mddev; 1908 struct r1conf *conf = mddev->private; 1909 int primary; 1910 int i; 1911 int vcnt; 1912 1913 /* Fix variable parts of all bios */ 1914 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1915 for (i = 0; i < conf->raid_disks * 2; i++) { 1916 int j; 1917 int size; 1918 int error; 1919 struct bio *b = r1_bio->bios[i]; 1920 if (b->bi_end_io != end_sync_read) 1921 continue; 1922 /* fixup the bio for reuse, but preserve errno */ 1923 error = b->bi_error; 1924 bio_reset(b); 1925 b->bi_error = error; 1926 b->bi_vcnt = vcnt; 1927 b->bi_iter.bi_size = r1_bio->sectors << 9; 1928 b->bi_iter.bi_sector = r1_bio->sector + 1929 conf->mirrors[i].rdev->data_offset; 1930 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1931 b->bi_end_io = end_sync_read; 1932 b->bi_private = r1_bio; 1933 1934 size = b->bi_iter.bi_size; 1935 for (j = 0; j < vcnt ; j++) { 1936 struct bio_vec *bi; 1937 bi = &b->bi_io_vec[j]; 1938 bi->bv_offset = 0; 1939 if (size > PAGE_SIZE) 1940 bi->bv_len = PAGE_SIZE; 1941 else 1942 bi->bv_len = size; 1943 size -= PAGE_SIZE; 1944 } 1945 } 1946 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1947 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1948 !r1_bio->bios[primary]->bi_error) { 1949 r1_bio->bios[primary]->bi_end_io = NULL; 1950 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1951 break; 1952 } 1953 r1_bio->read_disk = primary; 1954 for (i = 0; i < conf->raid_disks * 2; i++) { 1955 int j; 1956 struct bio *pbio = r1_bio->bios[primary]; 1957 struct bio *sbio = r1_bio->bios[i]; 1958 int error = sbio->bi_error; 1959 1960 if (sbio->bi_end_io != end_sync_read) 1961 continue; 1962 /* Now we can 'fixup' the error value */ 1963 sbio->bi_error = 0; 1964 1965 if (!error) { 1966 for (j = vcnt; j-- ; ) { 1967 struct page *p, *s; 1968 p = pbio->bi_io_vec[j].bv_page; 1969 s = sbio->bi_io_vec[j].bv_page; 1970 if (memcmp(page_address(p), 1971 page_address(s), 1972 sbio->bi_io_vec[j].bv_len)) 1973 break; 1974 } 1975 } else 1976 j = 0; 1977 if (j >= 0) 1978 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1979 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1980 && !error)) { 1981 /* No need to write to this device. */ 1982 sbio->bi_end_io = NULL; 1983 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1984 continue; 1985 } 1986 1987 bio_copy_data(sbio, pbio); 1988 } 1989 } 1990 1991 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1992 { 1993 struct r1conf *conf = mddev->private; 1994 int i; 1995 int disks = conf->raid_disks * 2; 1996 struct bio *bio, *wbio; 1997 1998 bio = r1_bio->bios[r1_bio->read_disk]; 1999 2000 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2001 /* ouch - failed to read all of that. */ 2002 if (!fix_sync_read_error(r1_bio)) 2003 return; 2004 2005 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2006 process_checks(r1_bio); 2007 2008 /* 2009 * schedule writes 2010 */ 2011 atomic_set(&r1_bio->remaining, 1); 2012 for (i = 0; i < disks ; i++) { 2013 wbio = r1_bio->bios[i]; 2014 if (wbio->bi_end_io == NULL || 2015 (wbio->bi_end_io == end_sync_read && 2016 (i == r1_bio->read_disk || 2017 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2018 continue; 2019 2020 wbio->bi_rw = WRITE; 2021 wbio->bi_end_io = end_sync_write; 2022 atomic_inc(&r1_bio->remaining); 2023 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2024 2025 generic_make_request(wbio); 2026 } 2027 2028 if (atomic_dec_and_test(&r1_bio->remaining)) { 2029 /* if we're here, all write(s) have completed, so clean up */ 2030 int s = r1_bio->sectors; 2031 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2032 test_bit(R1BIO_WriteError, &r1_bio->state)) 2033 reschedule_retry(r1_bio); 2034 else { 2035 put_buf(r1_bio); 2036 md_done_sync(mddev, s, 1); 2037 } 2038 } 2039 } 2040 2041 /* 2042 * This is a kernel thread which: 2043 * 2044 * 1. Retries failed read operations on working mirrors. 2045 * 2. Updates the raid superblock when problems encounter. 2046 * 3. Performs writes following reads for array synchronising. 2047 */ 2048 2049 static void fix_read_error(struct r1conf *conf, int read_disk, 2050 sector_t sect, int sectors) 2051 { 2052 struct mddev *mddev = conf->mddev; 2053 while(sectors) { 2054 int s = sectors; 2055 int d = read_disk; 2056 int success = 0; 2057 int start; 2058 struct md_rdev *rdev; 2059 2060 if (s > (PAGE_SIZE>>9)) 2061 s = PAGE_SIZE >> 9; 2062 2063 do { 2064 /* Note: no rcu protection needed here 2065 * as this is synchronous in the raid1d thread 2066 * which is the thread that might remove 2067 * a device. If raid1d ever becomes multi-threaded.... 2068 */ 2069 sector_t first_bad; 2070 int bad_sectors; 2071 2072 rdev = conf->mirrors[d].rdev; 2073 if (rdev && 2074 (test_bit(In_sync, &rdev->flags) || 2075 (!test_bit(Faulty, &rdev->flags) && 2076 rdev->recovery_offset >= sect + s)) && 2077 is_badblock(rdev, sect, s, 2078 &first_bad, &bad_sectors) == 0 && 2079 sync_page_io(rdev, sect, s<<9, 2080 conf->tmppage, READ, false)) 2081 success = 1; 2082 else { 2083 d++; 2084 if (d == conf->raid_disks * 2) 2085 d = 0; 2086 } 2087 } while (!success && d != read_disk); 2088 2089 if (!success) { 2090 /* Cannot read from anywhere - mark it bad */ 2091 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2092 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2093 md_error(mddev, rdev); 2094 break; 2095 } 2096 /* write it back and re-read */ 2097 start = d; 2098 while (d != read_disk) { 2099 if (d==0) 2100 d = conf->raid_disks * 2; 2101 d--; 2102 rdev = conf->mirrors[d].rdev; 2103 if (rdev && 2104 !test_bit(Faulty, &rdev->flags)) 2105 r1_sync_page_io(rdev, sect, s, 2106 conf->tmppage, WRITE); 2107 } 2108 d = start; 2109 while (d != read_disk) { 2110 char b[BDEVNAME_SIZE]; 2111 if (d==0) 2112 d = conf->raid_disks * 2; 2113 d--; 2114 rdev = conf->mirrors[d].rdev; 2115 if (rdev && 2116 !test_bit(Faulty, &rdev->flags)) { 2117 if (r1_sync_page_io(rdev, sect, s, 2118 conf->tmppage, READ)) { 2119 atomic_add(s, &rdev->corrected_errors); 2120 printk(KERN_INFO 2121 "md/raid1:%s: read error corrected " 2122 "(%d sectors at %llu on %s)\n", 2123 mdname(mddev), s, 2124 (unsigned long long)(sect + 2125 rdev->data_offset), 2126 bdevname(rdev->bdev, b)); 2127 } 2128 } 2129 } 2130 sectors -= s; 2131 sect += s; 2132 } 2133 } 2134 2135 static int narrow_write_error(struct r1bio *r1_bio, int i) 2136 { 2137 struct mddev *mddev = r1_bio->mddev; 2138 struct r1conf *conf = mddev->private; 2139 struct md_rdev *rdev = conf->mirrors[i].rdev; 2140 2141 /* bio has the data to be written to device 'i' where 2142 * we just recently had a write error. 2143 * We repeatedly clone the bio and trim down to one block, 2144 * then try the write. Where the write fails we record 2145 * a bad block. 2146 * It is conceivable that the bio doesn't exactly align with 2147 * blocks. We must handle this somehow. 2148 * 2149 * We currently own a reference on the rdev. 2150 */ 2151 2152 int block_sectors; 2153 sector_t sector; 2154 int sectors; 2155 int sect_to_write = r1_bio->sectors; 2156 int ok = 1; 2157 2158 if (rdev->badblocks.shift < 0) 2159 return 0; 2160 2161 block_sectors = roundup(1 << rdev->badblocks.shift, 2162 bdev_logical_block_size(rdev->bdev) >> 9); 2163 sector = r1_bio->sector; 2164 sectors = ((sector + block_sectors) 2165 & ~(sector_t)(block_sectors - 1)) 2166 - sector; 2167 2168 while (sect_to_write) { 2169 struct bio *wbio; 2170 if (sectors > sect_to_write) 2171 sectors = sect_to_write; 2172 /* Write at 'sector' for 'sectors'*/ 2173 2174 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2175 unsigned vcnt = r1_bio->behind_page_count; 2176 struct bio_vec *vec = r1_bio->behind_bvecs; 2177 2178 while (!vec->bv_page) { 2179 vec++; 2180 vcnt--; 2181 } 2182 2183 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2184 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2185 2186 wbio->bi_vcnt = vcnt; 2187 } else { 2188 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2189 } 2190 2191 wbio->bi_rw = WRITE; 2192 wbio->bi_iter.bi_sector = r1_bio->sector; 2193 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2194 2195 bio_trim(wbio, sector - r1_bio->sector, sectors); 2196 wbio->bi_iter.bi_sector += rdev->data_offset; 2197 wbio->bi_bdev = rdev->bdev; 2198 if (submit_bio_wait(WRITE, wbio) < 0) 2199 /* failure! */ 2200 ok = rdev_set_badblocks(rdev, sector, 2201 sectors, 0) 2202 && ok; 2203 2204 bio_put(wbio); 2205 sect_to_write -= sectors; 2206 sector += sectors; 2207 sectors = block_sectors; 2208 } 2209 return ok; 2210 } 2211 2212 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2213 { 2214 int m; 2215 int s = r1_bio->sectors; 2216 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2217 struct md_rdev *rdev = conf->mirrors[m].rdev; 2218 struct bio *bio = r1_bio->bios[m]; 2219 if (bio->bi_end_io == NULL) 2220 continue; 2221 if (!bio->bi_error && 2222 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2223 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2224 } 2225 if (bio->bi_error && 2226 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2227 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2228 md_error(conf->mddev, rdev); 2229 } 2230 } 2231 put_buf(r1_bio); 2232 md_done_sync(conf->mddev, s, 1); 2233 } 2234 2235 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2236 { 2237 int m; 2238 bool fail = false; 2239 for (m = 0; m < conf->raid_disks * 2 ; m++) 2240 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2241 struct md_rdev *rdev = conf->mirrors[m].rdev; 2242 rdev_clear_badblocks(rdev, 2243 r1_bio->sector, 2244 r1_bio->sectors, 0); 2245 rdev_dec_pending(rdev, conf->mddev); 2246 } else if (r1_bio->bios[m] != NULL) { 2247 /* This drive got a write error. We need to 2248 * narrow down and record precise write 2249 * errors. 2250 */ 2251 fail = true; 2252 if (!narrow_write_error(r1_bio, m)) { 2253 md_error(conf->mddev, 2254 conf->mirrors[m].rdev); 2255 /* an I/O failed, we can't clear the bitmap */ 2256 set_bit(R1BIO_Degraded, &r1_bio->state); 2257 } 2258 rdev_dec_pending(conf->mirrors[m].rdev, 2259 conf->mddev); 2260 } 2261 if (fail) { 2262 spin_lock_irq(&conf->device_lock); 2263 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2264 spin_unlock_irq(&conf->device_lock); 2265 md_wakeup_thread(conf->mddev->thread); 2266 } else { 2267 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2268 close_write(r1_bio); 2269 raid_end_bio_io(r1_bio); 2270 } 2271 } 2272 2273 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2274 { 2275 int disk; 2276 int max_sectors; 2277 struct mddev *mddev = conf->mddev; 2278 struct bio *bio; 2279 char b[BDEVNAME_SIZE]; 2280 struct md_rdev *rdev; 2281 2282 clear_bit(R1BIO_ReadError, &r1_bio->state); 2283 /* we got a read error. Maybe the drive is bad. Maybe just 2284 * the block and we can fix it. 2285 * We freeze all other IO, and try reading the block from 2286 * other devices. When we find one, we re-write 2287 * and check it that fixes the read error. 2288 * This is all done synchronously while the array is 2289 * frozen 2290 */ 2291 if (mddev->ro == 0) { 2292 freeze_array(conf, 1); 2293 fix_read_error(conf, r1_bio->read_disk, 2294 r1_bio->sector, r1_bio->sectors); 2295 unfreeze_array(conf); 2296 } else 2297 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2298 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2299 2300 bio = r1_bio->bios[r1_bio->read_disk]; 2301 bdevname(bio->bi_bdev, b); 2302 read_more: 2303 disk = read_balance(conf, r1_bio, &max_sectors); 2304 if (disk == -1) { 2305 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2306 " read error for block %llu\n", 2307 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2308 raid_end_bio_io(r1_bio); 2309 } else { 2310 const unsigned long do_sync 2311 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2312 if (bio) { 2313 r1_bio->bios[r1_bio->read_disk] = 2314 mddev->ro ? IO_BLOCKED : NULL; 2315 bio_put(bio); 2316 } 2317 r1_bio->read_disk = disk; 2318 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2319 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2320 max_sectors); 2321 r1_bio->bios[r1_bio->read_disk] = bio; 2322 rdev = conf->mirrors[disk].rdev; 2323 printk_ratelimited(KERN_ERR 2324 "md/raid1:%s: redirecting sector %llu" 2325 " to other mirror: %s\n", 2326 mdname(mddev), 2327 (unsigned long long)r1_bio->sector, 2328 bdevname(rdev->bdev, b)); 2329 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2330 bio->bi_bdev = rdev->bdev; 2331 bio->bi_end_io = raid1_end_read_request; 2332 bio->bi_rw = READ | do_sync; 2333 bio->bi_private = r1_bio; 2334 if (max_sectors < r1_bio->sectors) { 2335 /* Drat - have to split this up more */ 2336 struct bio *mbio = r1_bio->master_bio; 2337 int sectors_handled = (r1_bio->sector + max_sectors 2338 - mbio->bi_iter.bi_sector); 2339 r1_bio->sectors = max_sectors; 2340 spin_lock_irq(&conf->device_lock); 2341 if (mbio->bi_phys_segments == 0) 2342 mbio->bi_phys_segments = 2; 2343 else 2344 mbio->bi_phys_segments++; 2345 spin_unlock_irq(&conf->device_lock); 2346 generic_make_request(bio); 2347 bio = NULL; 2348 2349 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2350 2351 r1_bio->master_bio = mbio; 2352 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2353 r1_bio->state = 0; 2354 set_bit(R1BIO_ReadError, &r1_bio->state); 2355 r1_bio->mddev = mddev; 2356 r1_bio->sector = mbio->bi_iter.bi_sector + 2357 sectors_handled; 2358 2359 goto read_more; 2360 } else 2361 generic_make_request(bio); 2362 } 2363 } 2364 2365 static void raid1d(struct md_thread *thread) 2366 { 2367 struct mddev *mddev = thread->mddev; 2368 struct r1bio *r1_bio; 2369 unsigned long flags; 2370 struct r1conf *conf = mddev->private; 2371 struct list_head *head = &conf->retry_list; 2372 struct blk_plug plug; 2373 2374 md_check_recovery(mddev); 2375 2376 if (!list_empty_careful(&conf->bio_end_io_list) && 2377 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2378 LIST_HEAD(tmp); 2379 spin_lock_irqsave(&conf->device_lock, flags); 2380 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 2381 list_add(&tmp, &conf->bio_end_io_list); 2382 list_del_init(&conf->bio_end_io_list); 2383 } 2384 spin_unlock_irqrestore(&conf->device_lock, flags); 2385 while (!list_empty(&tmp)) { 2386 r1_bio = list_first_entry(&tmp, struct r1bio, 2387 retry_list); 2388 list_del(&r1_bio->retry_list); 2389 if (mddev->degraded) 2390 set_bit(R1BIO_Degraded, &r1_bio->state); 2391 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2392 close_write(r1_bio); 2393 raid_end_bio_io(r1_bio); 2394 } 2395 } 2396 2397 blk_start_plug(&plug); 2398 for (;;) { 2399 2400 flush_pending_writes(conf); 2401 2402 spin_lock_irqsave(&conf->device_lock, flags); 2403 if (list_empty(head)) { 2404 spin_unlock_irqrestore(&conf->device_lock, flags); 2405 break; 2406 } 2407 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2408 list_del(head->prev); 2409 conf->nr_queued--; 2410 spin_unlock_irqrestore(&conf->device_lock, flags); 2411 2412 mddev = r1_bio->mddev; 2413 conf = mddev->private; 2414 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2415 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2416 test_bit(R1BIO_WriteError, &r1_bio->state)) 2417 handle_sync_write_finished(conf, r1_bio); 2418 else 2419 sync_request_write(mddev, r1_bio); 2420 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2421 test_bit(R1BIO_WriteError, &r1_bio->state)) 2422 handle_write_finished(conf, r1_bio); 2423 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2424 handle_read_error(conf, r1_bio); 2425 else 2426 /* just a partial read to be scheduled from separate 2427 * context 2428 */ 2429 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2430 2431 cond_resched(); 2432 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2433 md_check_recovery(mddev); 2434 } 2435 blk_finish_plug(&plug); 2436 } 2437 2438 static int init_resync(struct r1conf *conf) 2439 { 2440 int buffs; 2441 2442 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2443 BUG_ON(conf->r1buf_pool); 2444 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2445 conf->poolinfo); 2446 if (!conf->r1buf_pool) 2447 return -ENOMEM; 2448 conf->next_resync = 0; 2449 return 0; 2450 } 2451 2452 /* 2453 * perform a "sync" on one "block" 2454 * 2455 * We need to make sure that no normal I/O request - particularly write 2456 * requests - conflict with active sync requests. 2457 * 2458 * This is achieved by tracking pending requests and a 'barrier' concept 2459 * that can be installed to exclude normal IO requests. 2460 */ 2461 2462 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 2463 { 2464 struct r1conf *conf = mddev->private; 2465 struct r1bio *r1_bio; 2466 struct bio *bio; 2467 sector_t max_sector, nr_sectors; 2468 int disk = -1; 2469 int i; 2470 int wonly = -1; 2471 int write_targets = 0, read_targets = 0; 2472 sector_t sync_blocks; 2473 int still_degraded = 0; 2474 int good_sectors = RESYNC_SECTORS; 2475 int min_bad = 0; /* number of sectors that are bad in all devices */ 2476 2477 if (!conf->r1buf_pool) 2478 if (init_resync(conf)) 2479 return 0; 2480 2481 max_sector = mddev->dev_sectors; 2482 if (sector_nr >= max_sector) { 2483 /* If we aborted, we need to abort the 2484 * sync on the 'current' bitmap chunk (there will 2485 * only be one in raid1 resync. 2486 * We can find the current addess in mddev->curr_resync 2487 */ 2488 if (mddev->curr_resync < max_sector) /* aborted */ 2489 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2490 &sync_blocks, 1); 2491 else /* completed sync */ 2492 conf->fullsync = 0; 2493 2494 bitmap_close_sync(mddev->bitmap); 2495 close_sync(conf); 2496 return 0; 2497 } 2498 2499 if (mddev->bitmap == NULL && 2500 mddev->recovery_cp == MaxSector && 2501 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2502 conf->fullsync == 0) { 2503 *skipped = 1; 2504 return max_sector - sector_nr; 2505 } 2506 /* before building a request, check if we can skip these blocks.. 2507 * This call the bitmap_start_sync doesn't actually record anything 2508 */ 2509 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2510 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2511 /* We can skip this block, and probably several more */ 2512 *skipped = 1; 2513 return sync_blocks; 2514 } 2515 2516 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2517 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2518 2519 raise_barrier(conf, sector_nr); 2520 2521 rcu_read_lock(); 2522 /* 2523 * If we get a correctably read error during resync or recovery, 2524 * we might want to read from a different device. So we 2525 * flag all drives that could conceivably be read from for READ, 2526 * and any others (which will be non-In_sync devices) for WRITE. 2527 * If a read fails, we try reading from something else for which READ 2528 * is OK. 2529 */ 2530 2531 r1_bio->mddev = mddev; 2532 r1_bio->sector = sector_nr; 2533 r1_bio->state = 0; 2534 set_bit(R1BIO_IsSync, &r1_bio->state); 2535 2536 for (i = 0; i < conf->raid_disks * 2; i++) { 2537 struct md_rdev *rdev; 2538 bio = r1_bio->bios[i]; 2539 bio_reset(bio); 2540 2541 rdev = rcu_dereference(conf->mirrors[i].rdev); 2542 if (rdev == NULL || 2543 test_bit(Faulty, &rdev->flags)) { 2544 if (i < conf->raid_disks) 2545 still_degraded = 1; 2546 } else if (!test_bit(In_sync, &rdev->flags)) { 2547 bio->bi_rw = WRITE; 2548 bio->bi_end_io = end_sync_write; 2549 write_targets ++; 2550 } else { 2551 /* may need to read from here */ 2552 sector_t first_bad = MaxSector; 2553 int bad_sectors; 2554 2555 if (is_badblock(rdev, sector_nr, good_sectors, 2556 &first_bad, &bad_sectors)) { 2557 if (first_bad > sector_nr) 2558 good_sectors = first_bad - sector_nr; 2559 else { 2560 bad_sectors -= (sector_nr - first_bad); 2561 if (min_bad == 0 || 2562 min_bad > bad_sectors) 2563 min_bad = bad_sectors; 2564 } 2565 } 2566 if (sector_nr < first_bad) { 2567 if (test_bit(WriteMostly, &rdev->flags)) { 2568 if (wonly < 0) 2569 wonly = i; 2570 } else { 2571 if (disk < 0) 2572 disk = i; 2573 } 2574 bio->bi_rw = READ; 2575 bio->bi_end_io = end_sync_read; 2576 read_targets++; 2577 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2578 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2579 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2580 /* 2581 * The device is suitable for reading (InSync), 2582 * but has bad block(s) here. Let's try to correct them, 2583 * if we are doing resync or repair. Otherwise, leave 2584 * this device alone for this sync request. 2585 */ 2586 bio->bi_rw = WRITE; 2587 bio->bi_end_io = end_sync_write; 2588 write_targets++; 2589 } 2590 } 2591 if (bio->bi_end_io) { 2592 atomic_inc(&rdev->nr_pending); 2593 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2594 bio->bi_bdev = rdev->bdev; 2595 bio->bi_private = r1_bio; 2596 } 2597 } 2598 rcu_read_unlock(); 2599 if (disk < 0) 2600 disk = wonly; 2601 r1_bio->read_disk = disk; 2602 2603 if (read_targets == 0 && min_bad > 0) { 2604 /* These sectors are bad on all InSync devices, so we 2605 * need to mark them bad on all write targets 2606 */ 2607 int ok = 1; 2608 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2609 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2610 struct md_rdev *rdev = conf->mirrors[i].rdev; 2611 ok = rdev_set_badblocks(rdev, sector_nr, 2612 min_bad, 0 2613 ) && ok; 2614 } 2615 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2616 *skipped = 1; 2617 put_buf(r1_bio); 2618 2619 if (!ok) { 2620 /* Cannot record the badblocks, so need to 2621 * abort the resync. 2622 * If there are multiple read targets, could just 2623 * fail the really bad ones ??? 2624 */ 2625 conf->recovery_disabled = mddev->recovery_disabled; 2626 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2627 return 0; 2628 } else 2629 return min_bad; 2630 2631 } 2632 if (min_bad > 0 && min_bad < good_sectors) { 2633 /* only resync enough to reach the next bad->good 2634 * transition */ 2635 good_sectors = min_bad; 2636 } 2637 2638 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2639 /* extra read targets are also write targets */ 2640 write_targets += read_targets-1; 2641 2642 if (write_targets == 0 || read_targets == 0) { 2643 /* There is nowhere to write, so all non-sync 2644 * drives must be failed - so we are finished 2645 */ 2646 sector_t rv; 2647 if (min_bad > 0) 2648 max_sector = sector_nr + min_bad; 2649 rv = max_sector - sector_nr; 2650 *skipped = 1; 2651 put_buf(r1_bio); 2652 return rv; 2653 } 2654 2655 if (max_sector > mddev->resync_max) 2656 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2657 if (max_sector > sector_nr + good_sectors) 2658 max_sector = sector_nr + good_sectors; 2659 nr_sectors = 0; 2660 sync_blocks = 0; 2661 do { 2662 struct page *page; 2663 int len = PAGE_SIZE; 2664 if (sector_nr + (len>>9) > max_sector) 2665 len = (max_sector - sector_nr) << 9; 2666 if (len == 0) 2667 break; 2668 if (sync_blocks == 0) { 2669 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2670 &sync_blocks, still_degraded) && 2671 !conf->fullsync && 2672 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2673 break; 2674 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2675 if ((len >> 9) > sync_blocks) 2676 len = sync_blocks<<9; 2677 } 2678 2679 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2680 bio = r1_bio->bios[i]; 2681 if (bio->bi_end_io) { 2682 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2683 if (bio_add_page(bio, page, len, 0) == 0) { 2684 /* stop here */ 2685 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2686 while (i > 0) { 2687 i--; 2688 bio = r1_bio->bios[i]; 2689 if (bio->bi_end_io==NULL) 2690 continue; 2691 /* remove last page from this bio */ 2692 bio->bi_vcnt--; 2693 bio->bi_iter.bi_size -= len; 2694 bio_clear_flag(bio, BIO_SEG_VALID); 2695 } 2696 goto bio_full; 2697 } 2698 } 2699 } 2700 nr_sectors += len>>9; 2701 sector_nr += len>>9; 2702 sync_blocks -= (len>>9); 2703 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2704 bio_full: 2705 r1_bio->sectors = nr_sectors; 2706 2707 /* For a user-requested sync, we read all readable devices and do a 2708 * compare 2709 */ 2710 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2711 atomic_set(&r1_bio->remaining, read_targets); 2712 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2713 bio = r1_bio->bios[i]; 2714 if (bio->bi_end_io == end_sync_read) { 2715 read_targets--; 2716 md_sync_acct(bio->bi_bdev, nr_sectors); 2717 generic_make_request(bio); 2718 } 2719 } 2720 } else { 2721 atomic_set(&r1_bio->remaining, 1); 2722 bio = r1_bio->bios[r1_bio->read_disk]; 2723 md_sync_acct(bio->bi_bdev, nr_sectors); 2724 generic_make_request(bio); 2725 2726 } 2727 return nr_sectors; 2728 } 2729 2730 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2731 { 2732 if (sectors) 2733 return sectors; 2734 2735 return mddev->dev_sectors; 2736 } 2737 2738 static struct r1conf *setup_conf(struct mddev *mddev) 2739 { 2740 struct r1conf *conf; 2741 int i; 2742 struct raid1_info *disk; 2743 struct md_rdev *rdev; 2744 int err = -ENOMEM; 2745 2746 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2747 if (!conf) 2748 goto abort; 2749 2750 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2751 * mddev->raid_disks * 2, 2752 GFP_KERNEL); 2753 if (!conf->mirrors) 2754 goto abort; 2755 2756 conf->tmppage = alloc_page(GFP_KERNEL); 2757 if (!conf->tmppage) 2758 goto abort; 2759 2760 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2761 if (!conf->poolinfo) 2762 goto abort; 2763 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2764 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2765 r1bio_pool_free, 2766 conf->poolinfo); 2767 if (!conf->r1bio_pool) 2768 goto abort; 2769 2770 conf->poolinfo->mddev = mddev; 2771 2772 err = -EINVAL; 2773 spin_lock_init(&conf->device_lock); 2774 rdev_for_each(rdev, mddev) { 2775 struct request_queue *q; 2776 int disk_idx = rdev->raid_disk; 2777 if (disk_idx >= mddev->raid_disks 2778 || disk_idx < 0) 2779 continue; 2780 if (test_bit(Replacement, &rdev->flags)) 2781 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2782 else 2783 disk = conf->mirrors + disk_idx; 2784 2785 if (disk->rdev) 2786 goto abort; 2787 disk->rdev = rdev; 2788 q = bdev_get_queue(rdev->bdev); 2789 2790 disk->head_position = 0; 2791 disk->seq_start = MaxSector; 2792 } 2793 conf->raid_disks = mddev->raid_disks; 2794 conf->mddev = mddev; 2795 INIT_LIST_HEAD(&conf->retry_list); 2796 INIT_LIST_HEAD(&conf->bio_end_io_list); 2797 2798 spin_lock_init(&conf->resync_lock); 2799 init_waitqueue_head(&conf->wait_barrier); 2800 2801 bio_list_init(&conf->pending_bio_list); 2802 conf->pending_count = 0; 2803 conf->recovery_disabled = mddev->recovery_disabled - 1; 2804 2805 conf->start_next_window = MaxSector; 2806 conf->current_window_requests = conf->next_window_requests = 0; 2807 2808 err = -EIO; 2809 for (i = 0; i < conf->raid_disks * 2; i++) { 2810 2811 disk = conf->mirrors + i; 2812 2813 if (i < conf->raid_disks && 2814 disk[conf->raid_disks].rdev) { 2815 /* This slot has a replacement. */ 2816 if (!disk->rdev) { 2817 /* No original, just make the replacement 2818 * a recovering spare 2819 */ 2820 disk->rdev = 2821 disk[conf->raid_disks].rdev; 2822 disk[conf->raid_disks].rdev = NULL; 2823 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2824 /* Original is not in_sync - bad */ 2825 goto abort; 2826 } 2827 2828 if (!disk->rdev || 2829 !test_bit(In_sync, &disk->rdev->flags)) { 2830 disk->head_position = 0; 2831 if (disk->rdev && 2832 (disk->rdev->saved_raid_disk < 0)) 2833 conf->fullsync = 1; 2834 } 2835 } 2836 2837 err = -ENOMEM; 2838 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2839 if (!conf->thread) { 2840 printk(KERN_ERR 2841 "md/raid1:%s: couldn't allocate thread\n", 2842 mdname(mddev)); 2843 goto abort; 2844 } 2845 2846 return conf; 2847 2848 abort: 2849 if (conf) { 2850 mempool_destroy(conf->r1bio_pool); 2851 kfree(conf->mirrors); 2852 safe_put_page(conf->tmppage); 2853 kfree(conf->poolinfo); 2854 kfree(conf); 2855 } 2856 return ERR_PTR(err); 2857 } 2858 2859 static void raid1_free(struct mddev *mddev, void *priv); 2860 static int run(struct mddev *mddev) 2861 { 2862 struct r1conf *conf; 2863 int i; 2864 struct md_rdev *rdev; 2865 int ret; 2866 bool discard_supported = false; 2867 2868 if (mddev->level != 1) { 2869 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2870 mdname(mddev), mddev->level); 2871 return -EIO; 2872 } 2873 if (mddev->reshape_position != MaxSector) { 2874 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2875 mdname(mddev)); 2876 return -EIO; 2877 } 2878 /* 2879 * copy the already verified devices into our private RAID1 2880 * bookkeeping area. [whatever we allocate in run(), 2881 * should be freed in raid1_free()] 2882 */ 2883 if (mddev->private == NULL) 2884 conf = setup_conf(mddev); 2885 else 2886 conf = mddev->private; 2887 2888 if (IS_ERR(conf)) 2889 return PTR_ERR(conf); 2890 2891 if (mddev->queue) 2892 blk_queue_max_write_same_sectors(mddev->queue, 0); 2893 2894 rdev_for_each(rdev, mddev) { 2895 if (!mddev->gendisk) 2896 continue; 2897 disk_stack_limits(mddev->gendisk, rdev->bdev, 2898 rdev->data_offset << 9); 2899 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2900 discard_supported = true; 2901 } 2902 2903 mddev->degraded = 0; 2904 for (i=0; i < conf->raid_disks; i++) 2905 if (conf->mirrors[i].rdev == NULL || 2906 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2907 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2908 mddev->degraded++; 2909 2910 if (conf->raid_disks - mddev->degraded == 1) 2911 mddev->recovery_cp = MaxSector; 2912 2913 if (mddev->recovery_cp != MaxSector) 2914 printk(KERN_NOTICE "md/raid1:%s: not clean" 2915 " -- starting background reconstruction\n", 2916 mdname(mddev)); 2917 printk(KERN_INFO 2918 "md/raid1:%s: active with %d out of %d mirrors\n", 2919 mdname(mddev), mddev->raid_disks - mddev->degraded, 2920 mddev->raid_disks); 2921 2922 /* 2923 * Ok, everything is just fine now 2924 */ 2925 mddev->thread = conf->thread; 2926 conf->thread = NULL; 2927 mddev->private = conf; 2928 2929 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2930 2931 if (mddev->queue) { 2932 if (discard_supported) 2933 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2934 mddev->queue); 2935 else 2936 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2937 mddev->queue); 2938 } 2939 2940 ret = md_integrity_register(mddev); 2941 if (ret) { 2942 md_unregister_thread(&mddev->thread); 2943 raid1_free(mddev, conf); 2944 } 2945 return ret; 2946 } 2947 2948 static void raid1_free(struct mddev *mddev, void *priv) 2949 { 2950 struct r1conf *conf = priv; 2951 2952 mempool_destroy(conf->r1bio_pool); 2953 kfree(conf->mirrors); 2954 safe_put_page(conf->tmppage); 2955 kfree(conf->poolinfo); 2956 kfree(conf); 2957 } 2958 2959 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2960 { 2961 /* no resync is happening, and there is enough space 2962 * on all devices, so we can resize. 2963 * We need to make sure resync covers any new space. 2964 * If the array is shrinking we should possibly wait until 2965 * any io in the removed space completes, but it hardly seems 2966 * worth it. 2967 */ 2968 sector_t newsize = raid1_size(mddev, sectors, 0); 2969 if (mddev->external_size && 2970 mddev->array_sectors > newsize) 2971 return -EINVAL; 2972 if (mddev->bitmap) { 2973 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2974 if (ret) 2975 return ret; 2976 } 2977 md_set_array_sectors(mddev, newsize); 2978 set_capacity(mddev->gendisk, mddev->array_sectors); 2979 revalidate_disk(mddev->gendisk); 2980 if (sectors > mddev->dev_sectors && 2981 mddev->recovery_cp > mddev->dev_sectors) { 2982 mddev->recovery_cp = mddev->dev_sectors; 2983 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2984 } 2985 mddev->dev_sectors = sectors; 2986 mddev->resync_max_sectors = sectors; 2987 return 0; 2988 } 2989 2990 static int raid1_reshape(struct mddev *mddev) 2991 { 2992 /* We need to: 2993 * 1/ resize the r1bio_pool 2994 * 2/ resize conf->mirrors 2995 * 2996 * We allocate a new r1bio_pool if we can. 2997 * Then raise a device barrier and wait until all IO stops. 2998 * Then resize conf->mirrors and swap in the new r1bio pool. 2999 * 3000 * At the same time, we "pack" the devices so that all the missing 3001 * devices have the higher raid_disk numbers. 3002 */ 3003 mempool_t *newpool, *oldpool; 3004 struct pool_info *newpoolinfo; 3005 struct raid1_info *newmirrors; 3006 struct r1conf *conf = mddev->private; 3007 int cnt, raid_disks; 3008 unsigned long flags; 3009 int d, d2, err; 3010 3011 /* Cannot change chunk_size, layout, or level */ 3012 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3013 mddev->layout != mddev->new_layout || 3014 mddev->level != mddev->new_level) { 3015 mddev->new_chunk_sectors = mddev->chunk_sectors; 3016 mddev->new_layout = mddev->layout; 3017 mddev->new_level = mddev->level; 3018 return -EINVAL; 3019 } 3020 3021 err = md_allow_write(mddev); 3022 if (err) 3023 return err; 3024 3025 raid_disks = mddev->raid_disks + mddev->delta_disks; 3026 3027 if (raid_disks < conf->raid_disks) { 3028 cnt=0; 3029 for (d= 0; d < conf->raid_disks; d++) 3030 if (conf->mirrors[d].rdev) 3031 cnt++; 3032 if (cnt > raid_disks) 3033 return -EBUSY; 3034 } 3035 3036 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3037 if (!newpoolinfo) 3038 return -ENOMEM; 3039 newpoolinfo->mddev = mddev; 3040 newpoolinfo->raid_disks = raid_disks * 2; 3041 3042 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3043 r1bio_pool_free, newpoolinfo); 3044 if (!newpool) { 3045 kfree(newpoolinfo); 3046 return -ENOMEM; 3047 } 3048 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3049 GFP_KERNEL); 3050 if (!newmirrors) { 3051 kfree(newpoolinfo); 3052 mempool_destroy(newpool); 3053 return -ENOMEM; 3054 } 3055 3056 freeze_array(conf, 0); 3057 3058 /* ok, everything is stopped */ 3059 oldpool = conf->r1bio_pool; 3060 conf->r1bio_pool = newpool; 3061 3062 for (d = d2 = 0; d < conf->raid_disks; d++) { 3063 struct md_rdev *rdev = conf->mirrors[d].rdev; 3064 if (rdev && rdev->raid_disk != d2) { 3065 sysfs_unlink_rdev(mddev, rdev); 3066 rdev->raid_disk = d2; 3067 sysfs_unlink_rdev(mddev, rdev); 3068 if (sysfs_link_rdev(mddev, rdev)) 3069 printk(KERN_WARNING 3070 "md/raid1:%s: cannot register rd%d\n", 3071 mdname(mddev), rdev->raid_disk); 3072 } 3073 if (rdev) 3074 newmirrors[d2++].rdev = rdev; 3075 } 3076 kfree(conf->mirrors); 3077 conf->mirrors = newmirrors; 3078 kfree(conf->poolinfo); 3079 conf->poolinfo = newpoolinfo; 3080 3081 spin_lock_irqsave(&conf->device_lock, flags); 3082 mddev->degraded += (raid_disks - conf->raid_disks); 3083 spin_unlock_irqrestore(&conf->device_lock, flags); 3084 conf->raid_disks = mddev->raid_disks = raid_disks; 3085 mddev->delta_disks = 0; 3086 3087 unfreeze_array(conf); 3088 3089 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3090 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3091 md_wakeup_thread(mddev->thread); 3092 3093 mempool_destroy(oldpool); 3094 return 0; 3095 } 3096 3097 static void raid1_quiesce(struct mddev *mddev, int state) 3098 { 3099 struct r1conf *conf = mddev->private; 3100 3101 switch(state) { 3102 case 2: /* wake for suspend */ 3103 wake_up(&conf->wait_barrier); 3104 break; 3105 case 1: 3106 freeze_array(conf, 0); 3107 break; 3108 case 0: 3109 unfreeze_array(conf); 3110 break; 3111 } 3112 } 3113 3114 static void *raid1_takeover(struct mddev *mddev) 3115 { 3116 /* raid1 can take over: 3117 * raid5 with 2 devices, any layout or chunk size 3118 */ 3119 if (mddev->level == 5 && mddev->raid_disks == 2) { 3120 struct r1conf *conf; 3121 mddev->new_level = 1; 3122 mddev->new_layout = 0; 3123 mddev->new_chunk_sectors = 0; 3124 conf = setup_conf(mddev); 3125 if (!IS_ERR(conf)) 3126 /* Array must appear to be quiesced */ 3127 conf->array_frozen = 1; 3128 return conf; 3129 } 3130 return ERR_PTR(-EINVAL); 3131 } 3132 3133 static struct md_personality raid1_personality = 3134 { 3135 .name = "raid1", 3136 .level = 1, 3137 .owner = THIS_MODULE, 3138 .make_request = make_request, 3139 .run = run, 3140 .free = raid1_free, 3141 .status = status, 3142 .error_handler = error, 3143 .hot_add_disk = raid1_add_disk, 3144 .hot_remove_disk= raid1_remove_disk, 3145 .spare_active = raid1_spare_active, 3146 .sync_request = sync_request, 3147 .resize = raid1_resize, 3148 .size = raid1_size, 3149 .check_reshape = raid1_reshape, 3150 .quiesce = raid1_quiesce, 3151 .takeover = raid1_takeover, 3152 .congested = raid1_congested, 3153 }; 3154 3155 static int __init raid_init(void) 3156 { 3157 return register_md_personality(&raid1_personality); 3158 } 3159 3160 static void raid_exit(void) 3161 { 3162 unregister_md_personality(&raid1_personality); 3163 } 3164 3165 module_init(raid_init); 3166 module_exit(raid_exit); 3167 MODULE_LICENSE("GPL"); 3168 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3169 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3170 MODULE_ALIAS("md-raid1"); 3171 MODULE_ALIAS("md-level-1"); 3172 3173 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3174