xref: /linux/drivers/md/raid1.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54 
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	struct r1bio *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while (++j < pi->raid_disks)
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	struct r1bio *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks * 2; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (!BIO_SPECIAL(*bio))
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177 	struct r1conf *conf = r1_bio->mddev->private;
178 
179 	put_all_bios(conf, r1_bio);
180 	mempool_free(r1_bio, conf->r1bio_pool);
181 }
182 
183 static void put_buf(struct r1bio *r1_bio)
184 {
185 	struct r1conf *conf = r1_bio->mddev->private;
186 	int i;
187 
188 	for (i = 0; i < conf->raid_disks * 2; i++) {
189 		struct bio *bio = r1_bio->bios[i];
190 		if (bio->bi_end_io)
191 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 	}
193 
194 	mempool_free(r1_bio, conf->r1buf_pool);
195 
196 	lower_barrier(conf);
197 }
198 
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201 	unsigned long flags;
202 	struct mddev *mddev = r1_bio->mddev;
203 	struct r1conf *conf = mddev->private;
204 
205 	spin_lock_irqsave(&conf->device_lock, flags);
206 	list_add(&r1_bio->retry_list, &conf->retry_list);
207 	conf->nr_queued ++;
208 	spin_unlock_irqrestore(&conf->device_lock, flags);
209 
210 	wake_up(&conf->wait_barrier);
211 	md_wakeup_thread(mddev->thread);
212 }
213 
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221 	struct bio *bio = r1_bio->master_bio;
222 	int done;
223 	struct r1conf *conf = r1_bio->mddev->private;
224 
225 	if (bio->bi_phys_segments) {
226 		unsigned long flags;
227 		spin_lock_irqsave(&conf->device_lock, flags);
228 		bio->bi_phys_segments--;
229 		done = (bio->bi_phys_segments == 0);
230 		spin_unlock_irqrestore(&conf->device_lock, flags);
231 	} else
232 		done = 1;
233 
234 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 	if (done) {
237 		bio_endio(bio, 0);
238 		/*
239 		 * Wake up any possible resync thread that waits for the device
240 		 * to go idle.
241 		 */
242 		allow_barrier(conf);
243 	}
244 }
245 
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248 	struct bio *bio = r1_bio->master_bio;
249 
250 	/* if nobody has done the final endio yet, do it now */
251 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 			 (unsigned long long) bio->bi_sector,
255 			 (unsigned long long) bio->bi_sector +
256 			 (bio->bi_size >> 9) - 1);
257 
258 		call_bio_endio(r1_bio);
259 	}
260 	free_r1bio(r1_bio);
261 }
262 
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268 	struct r1conf *conf = r1_bio->mddev->private;
269 
270 	conf->mirrors[disk].head_position =
271 		r1_bio->sector + (r1_bio->sectors);
272 }
273 
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279 	int mirror;
280 	struct r1conf *conf = r1_bio->mddev->private;
281 	int raid_disks = conf->raid_disks;
282 
283 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 		if (r1_bio->bios[mirror] == bio)
285 			break;
286 
287 	BUG_ON(mirror == raid_disks * 2);
288 	update_head_pos(mirror, r1_bio);
289 
290 	return mirror;
291 }
292 
293 static void raid1_end_read_request(struct bio *bio, int error)
294 {
295 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 	struct r1bio *r1_bio = bio->bi_private;
297 	int mirror;
298 	struct r1conf *conf = r1_bio->mddev->private;
299 
300 	mirror = r1_bio->read_disk;
301 	/*
302 	 * this branch is our 'one mirror IO has finished' event handler:
303 	 */
304 	update_head_pos(mirror, r1_bio);
305 
306 	if (uptodate)
307 		set_bit(R1BIO_Uptodate, &r1_bio->state);
308 	else {
309 		/* If all other devices have failed, we want to return
310 		 * the error upwards rather than fail the last device.
311 		 * Here we redefine "uptodate" to mean "Don't want to retry"
312 		 */
313 		unsigned long flags;
314 		spin_lock_irqsave(&conf->device_lock, flags);
315 		if (r1_bio->mddev->degraded == conf->raid_disks ||
316 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 			uptodate = 1;
319 		spin_unlock_irqrestore(&conf->device_lock, flags);
320 	}
321 
322 	if (uptodate)
323 		raid_end_bio_io(r1_bio);
324 	else {
325 		/*
326 		 * oops, read error:
327 		 */
328 		char b[BDEVNAME_SIZE];
329 		printk_ratelimited(
330 			KERN_ERR "md/raid1:%s: %s: "
331 			"rescheduling sector %llu\n",
332 			mdname(conf->mddev),
333 			bdevname(conf->mirrors[mirror].rdev->bdev,
334 				 b),
335 			(unsigned long long)r1_bio->sector);
336 		set_bit(R1BIO_ReadError, &r1_bio->state);
337 		reschedule_retry(r1_bio);
338 	}
339 
340 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 }
342 
343 static void close_write(struct r1bio *r1_bio)
344 {
345 	/* it really is the end of this request */
346 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 		/* free extra copy of the data pages */
348 		int i = r1_bio->behind_page_count;
349 		while (i--)
350 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 		kfree(r1_bio->behind_bvecs);
352 		r1_bio->behind_bvecs = NULL;
353 	}
354 	/* clear the bitmap if all writes complete successfully */
355 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 			r1_bio->sectors,
357 			!test_bit(R1BIO_Degraded, &r1_bio->state),
358 			test_bit(R1BIO_BehindIO, &r1_bio->state));
359 	md_write_end(r1_bio->mddev);
360 }
361 
362 static void r1_bio_write_done(struct r1bio *r1_bio)
363 {
364 	if (!atomic_dec_and_test(&r1_bio->remaining))
365 		return;
366 
367 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 		reschedule_retry(r1_bio);
369 	else {
370 		close_write(r1_bio);
371 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 			reschedule_retry(r1_bio);
373 		else
374 			raid_end_bio_io(r1_bio);
375 	}
376 }
377 
378 static void raid1_end_write_request(struct bio *bio, int error)
379 {
380 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 	struct r1bio *r1_bio = bio->bi_private;
382 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 	struct r1conf *conf = r1_bio->mddev->private;
384 	struct bio *to_put = NULL;
385 
386 	mirror = find_bio_disk(r1_bio, bio);
387 
388 	/*
389 	 * 'one mirror IO has finished' event handler:
390 	 */
391 	if (!uptodate) {
392 		set_bit(WriteErrorSeen,
393 			&conf->mirrors[mirror].rdev->flags);
394 		if (!test_and_set_bit(WantReplacement,
395 				      &conf->mirrors[mirror].rdev->flags))
396 			set_bit(MD_RECOVERY_NEEDED, &
397 				conf->mddev->recovery);
398 
399 		set_bit(R1BIO_WriteError, &r1_bio->state);
400 	} else {
401 		/*
402 		 * Set R1BIO_Uptodate in our master bio, so that we
403 		 * will return a good error code for to the higher
404 		 * levels even if IO on some other mirrored buffer
405 		 * fails.
406 		 *
407 		 * The 'master' represents the composite IO operation
408 		 * to user-side. So if something waits for IO, then it
409 		 * will wait for the 'master' bio.
410 		 */
411 		sector_t first_bad;
412 		int bad_sectors;
413 
414 		r1_bio->bios[mirror] = NULL;
415 		to_put = bio;
416 		set_bit(R1BIO_Uptodate, &r1_bio->state);
417 
418 		/* Maybe we can clear some bad blocks. */
419 		if (is_badblock(conf->mirrors[mirror].rdev,
420 				r1_bio->sector, r1_bio->sectors,
421 				&first_bad, &bad_sectors)) {
422 			r1_bio->bios[mirror] = IO_MADE_GOOD;
423 			set_bit(R1BIO_MadeGood, &r1_bio->state);
424 		}
425 	}
426 
427 	if (behind) {
428 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 			atomic_dec(&r1_bio->behind_remaining);
430 
431 		/*
432 		 * In behind mode, we ACK the master bio once the I/O
433 		 * has safely reached all non-writemostly
434 		 * disks. Setting the Returned bit ensures that this
435 		 * gets done only once -- we don't ever want to return
436 		 * -EIO here, instead we'll wait
437 		 */
438 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 			/* Maybe we can return now */
441 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 				struct bio *mbio = r1_bio->master_bio;
443 				pr_debug("raid1: behind end write sectors"
444 					 " %llu-%llu\n",
445 					 (unsigned long long) mbio->bi_sector,
446 					 (unsigned long long) mbio->bi_sector +
447 					 (mbio->bi_size >> 9) - 1);
448 				call_bio_endio(r1_bio);
449 			}
450 		}
451 	}
452 	if (r1_bio->bios[mirror] == NULL)
453 		rdev_dec_pending(conf->mirrors[mirror].rdev,
454 				 conf->mddev);
455 
456 	/*
457 	 * Let's see if all mirrored write operations have finished
458 	 * already.
459 	 */
460 	r1_bio_write_done(r1_bio);
461 
462 	if (to_put)
463 		bio_put(to_put);
464 }
465 
466 
467 /*
468  * This routine returns the disk from which the requested read should
469  * be done. There is a per-array 'next expected sequential IO' sector
470  * number - if this matches on the next IO then we use the last disk.
471  * There is also a per-disk 'last know head position' sector that is
472  * maintained from IRQ contexts, both the normal and the resync IO
473  * completion handlers update this position correctly. If there is no
474  * perfect sequential match then we pick the disk whose head is closest.
475  *
476  * If there are 2 mirrors in the same 2 devices, performance degrades
477  * because position is mirror, not device based.
478  *
479  * The rdev for the device selected will have nr_pending incremented.
480  */
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
482 {
483 	const sector_t this_sector = r1_bio->sector;
484 	int sectors;
485 	int best_good_sectors;
486 	int start_disk;
487 	int best_disk;
488 	int i;
489 	sector_t best_dist;
490 	struct md_rdev *rdev;
491 	int choose_first;
492 
493 	rcu_read_lock();
494 	/*
495 	 * Check if we can balance. We can balance on the whole
496 	 * device if no resync is going on, or below the resync window.
497 	 * We take the first readable disk when above the resync window.
498 	 */
499  retry:
500 	sectors = r1_bio->sectors;
501 	best_disk = -1;
502 	best_dist = MaxSector;
503 	best_good_sectors = 0;
504 
505 	if (conf->mddev->recovery_cp < MaxSector &&
506 	    (this_sector + sectors >= conf->next_resync)) {
507 		choose_first = 1;
508 		start_disk = 0;
509 	} else {
510 		choose_first = 0;
511 		start_disk = conf->last_used;
512 	}
513 
514 	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 		sector_t dist;
516 		sector_t first_bad;
517 		int bad_sectors;
518 
519 		int disk = start_disk + i;
520 		if (disk >= conf->raid_disks)
521 			disk -= conf->raid_disks;
522 
523 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 		if (r1_bio->bios[disk] == IO_BLOCKED
525 		    || rdev == NULL
526 		    || test_bit(Faulty, &rdev->flags))
527 			continue;
528 		if (!test_bit(In_sync, &rdev->flags) &&
529 		    rdev->recovery_offset < this_sector + sectors)
530 			continue;
531 		if (test_bit(WriteMostly, &rdev->flags)) {
532 			/* Don't balance among write-mostly, just
533 			 * use the first as a last resort */
534 			if (best_disk < 0) {
535 				if (is_badblock(rdev, this_sector, sectors,
536 						&first_bad, &bad_sectors)) {
537 					if (first_bad < this_sector)
538 						/* Cannot use this */
539 						continue;
540 					best_good_sectors = first_bad - this_sector;
541 				} else
542 					best_good_sectors = sectors;
543 				best_disk = disk;
544 			}
545 			continue;
546 		}
547 		/* This is a reasonable device to use.  It might
548 		 * even be best.
549 		 */
550 		if (is_badblock(rdev, this_sector, sectors,
551 				&first_bad, &bad_sectors)) {
552 			if (best_dist < MaxSector)
553 				/* already have a better device */
554 				continue;
555 			if (first_bad <= this_sector) {
556 				/* cannot read here. If this is the 'primary'
557 				 * device, then we must not read beyond
558 				 * bad_sectors from another device..
559 				 */
560 				bad_sectors -= (this_sector - first_bad);
561 				if (choose_first && sectors > bad_sectors)
562 					sectors = bad_sectors;
563 				if (best_good_sectors > sectors)
564 					best_good_sectors = sectors;
565 
566 			} else {
567 				sector_t good_sectors = first_bad - this_sector;
568 				if (good_sectors > best_good_sectors) {
569 					best_good_sectors = good_sectors;
570 					best_disk = disk;
571 				}
572 				if (choose_first)
573 					break;
574 			}
575 			continue;
576 		} else
577 			best_good_sectors = sectors;
578 
579 		dist = abs(this_sector - conf->mirrors[disk].head_position);
580 		if (choose_first
581 		    /* Don't change to another disk for sequential reads */
582 		    || conf->next_seq_sect == this_sector
583 		    || dist == 0
584 		    /* If device is idle, use it */
585 		    || atomic_read(&rdev->nr_pending) == 0) {
586 			best_disk = disk;
587 			break;
588 		}
589 		if (dist < best_dist) {
590 			best_dist = dist;
591 			best_disk = disk;
592 		}
593 	}
594 
595 	if (best_disk >= 0) {
596 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
597 		if (!rdev)
598 			goto retry;
599 		atomic_inc(&rdev->nr_pending);
600 		if (test_bit(Faulty, &rdev->flags)) {
601 			/* cannot risk returning a device that failed
602 			 * before we inc'ed nr_pending
603 			 */
604 			rdev_dec_pending(rdev, conf->mddev);
605 			goto retry;
606 		}
607 		sectors = best_good_sectors;
608 		conf->next_seq_sect = this_sector + sectors;
609 		conf->last_used = best_disk;
610 	}
611 	rcu_read_unlock();
612 	*max_sectors = sectors;
613 
614 	return best_disk;
615 }
616 
617 int md_raid1_congested(struct mddev *mddev, int bits)
618 {
619 	struct r1conf *conf = mddev->private;
620 	int i, ret = 0;
621 
622 	if ((bits & (1 << BDI_async_congested)) &&
623 	    conf->pending_count >= max_queued_requests)
624 		return 1;
625 
626 	rcu_read_lock();
627 	for (i = 0; i < conf->raid_disks; i++) {
628 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
629 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
630 			struct request_queue *q = bdev_get_queue(rdev->bdev);
631 
632 			BUG_ON(!q);
633 
634 			/* Note the '|| 1' - when read_balance prefers
635 			 * non-congested targets, it can be removed
636 			 */
637 			if ((bits & (1<<BDI_async_congested)) || 1)
638 				ret |= bdi_congested(&q->backing_dev_info, bits);
639 			else
640 				ret &= bdi_congested(&q->backing_dev_info, bits);
641 		}
642 	}
643 	rcu_read_unlock();
644 	return ret;
645 }
646 EXPORT_SYMBOL_GPL(md_raid1_congested);
647 
648 static int raid1_congested(void *data, int bits)
649 {
650 	struct mddev *mddev = data;
651 
652 	return mddev_congested(mddev, bits) ||
653 		md_raid1_congested(mddev, bits);
654 }
655 
656 static void flush_pending_writes(struct r1conf *conf)
657 {
658 	/* Any writes that have been queued but are awaiting
659 	 * bitmap updates get flushed here.
660 	 */
661 	spin_lock_irq(&conf->device_lock);
662 
663 	if (conf->pending_bio_list.head) {
664 		struct bio *bio;
665 		bio = bio_list_get(&conf->pending_bio_list);
666 		conf->pending_count = 0;
667 		spin_unlock_irq(&conf->device_lock);
668 		/* flush any pending bitmap writes to
669 		 * disk before proceeding w/ I/O */
670 		bitmap_unplug(conf->mddev->bitmap);
671 		wake_up(&conf->wait_barrier);
672 
673 		while (bio) { /* submit pending writes */
674 			struct bio *next = bio->bi_next;
675 			bio->bi_next = NULL;
676 			generic_make_request(bio);
677 			bio = next;
678 		}
679 	} else
680 		spin_unlock_irq(&conf->device_lock);
681 }
682 
683 /* Barriers....
684  * Sometimes we need to suspend IO while we do something else,
685  * either some resync/recovery, or reconfigure the array.
686  * To do this we raise a 'barrier'.
687  * The 'barrier' is a counter that can be raised multiple times
688  * to count how many activities are happening which preclude
689  * normal IO.
690  * We can only raise the barrier if there is no pending IO.
691  * i.e. if nr_pending == 0.
692  * We choose only to raise the barrier if no-one is waiting for the
693  * barrier to go down.  This means that as soon as an IO request
694  * is ready, no other operations which require a barrier will start
695  * until the IO request has had a chance.
696  *
697  * So: regular IO calls 'wait_barrier'.  When that returns there
698  *    is no backgroup IO happening,  It must arrange to call
699  *    allow_barrier when it has finished its IO.
700  * backgroup IO calls must call raise_barrier.  Once that returns
701  *    there is no normal IO happeing.  It must arrange to call
702  *    lower_barrier when the particular background IO completes.
703  */
704 #define RESYNC_DEPTH 32
705 
706 static void raise_barrier(struct r1conf *conf)
707 {
708 	spin_lock_irq(&conf->resync_lock);
709 
710 	/* Wait until no block IO is waiting */
711 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
712 			    conf->resync_lock, );
713 
714 	/* block any new IO from starting */
715 	conf->barrier++;
716 
717 	/* Now wait for all pending IO to complete */
718 	wait_event_lock_irq(conf->wait_barrier,
719 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
720 			    conf->resync_lock, );
721 
722 	spin_unlock_irq(&conf->resync_lock);
723 }
724 
725 static void lower_barrier(struct r1conf *conf)
726 {
727 	unsigned long flags;
728 	BUG_ON(conf->barrier <= 0);
729 	spin_lock_irqsave(&conf->resync_lock, flags);
730 	conf->barrier--;
731 	spin_unlock_irqrestore(&conf->resync_lock, flags);
732 	wake_up(&conf->wait_barrier);
733 }
734 
735 static void wait_barrier(struct r1conf *conf)
736 {
737 	spin_lock_irq(&conf->resync_lock);
738 	if (conf->barrier) {
739 		conf->nr_waiting++;
740 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
741 				    conf->resync_lock,
742 				    );
743 		conf->nr_waiting--;
744 	}
745 	conf->nr_pending++;
746 	spin_unlock_irq(&conf->resync_lock);
747 }
748 
749 static void allow_barrier(struct r1conf *conf)
750 {
751 	unsigned long flags;
752 	spin_lock_irqsave(&conf->resync_lock, flags);
753 	conf->nr_pending--;
754 	spin_unlock_irqrestore(&conf->resync_lock, flags);
755 	wake_up(&conf->wait_barrier);
756 }
757 
758 static void freeze_array(struct r1conf *conf)
759 {
760 	/* stop syncio and normal IO and wait for everything to
761 	 * go quite.
762 	 * We increment barrier and nr_waiting, and then
763 	 * wait until nr_pending match nr_queued+1
764 	 * This is called in the context of one normal IO request
765 	 * that has failed. Thus any sync request that might be pending
766 	 * will be blocked by nr_pending, and we need to wait for
767 	 * pending IO requests to complete or be queued for re-try.
768 	 * Thus the number queued (nr_queued) plus this request (1)
769 	 * must match the number of pending IOs (nr_pending) before
770 	 * we continue.
771 	 */
772 	spin_lock_irq(&conf->resync_lock);
773 	conf->barrier++;
774 	conf->nr_waiting++;
775 	wait_event_lock_irq(conf->wait_barrier,
776 			    conf->nr_pending == conf->nr_queued+1,
777 			    conf->resync_lock,
778 			    flush_pending_writes(conf));
779 	spin_unlock_irq(&conf->resync_lock);
780 }
781 static void unfreeze_array(struct r1conf *conf)
782 {
783 	/* reverse the effect of the freeze */
784 	spin_lock_irq(&conf->resync_lock);
785 	conf->barrier--;
786 	conf->nr_waiting--;
787 	wake_up(&conf->wait_barrier);
788 	spin_unlock_irq(&conf->resync_lock);
789 }
790 
791 
792 /* duplicate the data pages for behind I/O
793  */
794 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
795 {
796 	int i;
797 	struct bio_vec *bvec;
798 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
799 					GFP_NOIO);
800 	if (unlikely(!bvecs))
801 		return;
802 
803 	bio_for_each_segment(bvec, bio, i) {
804 		bvecs[i] = *bvec;
805 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
806 		if (unlikely(!bvecs[i].bv_page))
807 			goto do_sync_io;
808 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
809 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
810 		kunmap(bvecs[i].bv_page);
811 		kunmap(bvec->bv_page);
812 	}
813 	r1_bio->behind_bvecs = bvecs;
814 	r1_bio->behind_page_count = bio->bi_vcnt;
815 	set_bit(R1BIO_BehindIO, &r1_bio->state);
816 	return;
817 
818 do_sync_io:
819 	for (i = 0; i < bio->bi_vcnt; i++)
820 		if (bvecs[i].bv_page)
821 			put_page(bvecs[i].bv_page);
822 	kfree(bvecs);
823 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
824 }
825 
826 static void make_request(struct mddev *mddev, struct bio * bio)
827 {
828 	struct r1conf *conf = mddev->private;
829 	struct mirror_info *mirror;
830 	struct r1bio *r1_bio;
831 	struct bio *read_bio;
832 	int i, disks;
833 	struct bitmap *bitmap;
834 	unsigned long flags;
835 	const int rw = bio_data_dir(bio);
836 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
837 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
838 	struct md_rdev *blocked_rdev;
839 	int plugged;
840 	int first_clone;
841 	int sectors_handled;
842 	int max_sectors;
843 
844 	/*
845 	 * Register the new request and wait if the reconstruction
846 	 * thread has put up a bar for new requests.
847 	 * Continue immediately if no resync is active currently.
848 	 */
849 
850 	md_write_start(mddev, bio); /* wait on superblock update early */
851 
852 	if (bio_data_dir(bio) == WRITE &&
853 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
854 	    bio->bi_sector < mddev->suspend_hi) {
855 		/* As the suspend_* range is controlled by
856 		 * userspace, we want an interruptible
857 		 * wait.
858 		 */
859 		DEFINE_WAIT(w);
860 		for (;;) {
861 			flush_signals(current);
862 			prepare_to_wait(&conf->wait_barrier,
863 					&w, TASK_INTERRUPTIBLE);
864 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
865 			    bio->bi_sector >= mddev->suspend_hi)
866 				break;
867 			schedule();
868 		}
869 		finish_wait(&conf->wait_barrier, &w);
870 	}
871 
872 	wait_barrier(conf);
873 
874 	bitmap = mddev->bitmap;
875 
876 	/*
877 	 * make_request() can abort the operation when READA is being
878 	 * used and no empty request is available.
879 	 *
880 	 */
881 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
882 
883 	r1_bio->master_bio = bio;
884 	r1_bio->sectors = bio->bi_size >> 9;
885 	r1_bio->state = 0;
886 	r1_bio->mddev = mddev;
887 	r1_bio->sector = bio->bi_sector;
888 
889 	/* We might need to issue multiple reads to different
890 	 * devices if there are bad blocks around, so we keep
891 	 * track of the number of reads in bio->bi_phys_segments.
892 	 * If this is 0, there is only one r1_bio and no locking
893 	 * will be needed when requests complete.  If it is
894 	 * non-zero, then it is the number of not-completed requests.
895 	 */
896 	bio->bi_phys_segments = 0;
897 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
898 
899 	if (rw == READ) {
900 		/*
901 		 * read balancing logic:
902 		 */
903 		int rdisk;
904 
905 read_again:
906 		rdisk = read_balance(conf, r1_bio, &max_sectors);
907 
908 		if (rdisk < 0) {
909 			/* couldn't find anywhere to read from */
910 			raid_end_bio_io(r1_bio);
911 			return;
912 		}
913 		mirror = conf->mirrors + rdisk;
914 
915 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
916 		    bitmap) {
917 			/* Reading from a write-mostly device must
918 			 * take care not to over-take any writes
919 			 * that are 'behind'
920 			 */
921 			wait_event(bitmap->behind_wait,
922 				   atomic_read(&bitmap->behind_writes) == 0);
923 		}
924 		r1_bio->read_disk = rdisk;
925 
926 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
927 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
928 			    max_sectors);
929 
930 		r1_bio->bios[rdisk] = read_bio;
931 
932 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
933 		read_bio->bi_bdev = mirror->rdev->bdev;
934 		read_bio->bi_end_io = raid1_end_read_request;
935 		read_bio->bi_rw = READ | do_sync;
936 		read_bio->bi_private = r1_bio;
937 
938 		if (max_sectors < r1_bio->sectors) {
939 			/* could not read all from this device, so we will
940 			 * need another r1_bio.
941 			 */
942 
943 			sectors_handled = (r1_bio->sector + max_sectors
944 					   - bio->bi_sector);
945 			r1_bio->sectors = max_sectors;
946 			spin_lock_irq(&conf->device_lock);
947 			if (bio->bi_phys_segments == 0)
948 				bio->bi_phys_segments = 2;
949 			else
950 				bio->bi_phys_segments++;
951 			spin_unlock_irq(&conf->device_lock);
952 			/* Cannot call generic_make_request directly
953 			 * as that will be queued in __make_request
954 			 * and subsequent mempool_alloc might block waiting
955 			 * for it.  So hand bio over to raid1d.
956 			 */
957 			reschedule_retry(r1_bio);
958 
959 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
960 
961 			r1_bio->master_bio = bio;
962 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
963 			r1_bio->state = 0;
964 			r1_bio->mddev = mddev;
965 			r1_bio->sector = bio->bi_sector + sectors_handled;
966 			goto read_again;
967 		} else
968 			generic_make_request(read_bio);
969 		return;
970 	}
971 
972 	/*
973 	 * WRITE:
974 	 */
975 	if (conf->pending_count >= max_queued_requests) {
976 		md_wakeup_thread(mddev->thread);
977 		wait_event(conf->wait_barrier,
978 			   conf->pending_count < max_queued_requests);
979 	}
980 	/* first select target devices under rcu_lock and
981 	 * inc refcount on their rdev.  Record them by setting
982 	 * bios[x] to bio
983 	 * If there are known/acknowledged bad blocks on any device on
984 	 * which we have seen a write error, we want to avoid writing those
985 	 * blocks.
986 	 * This potentially requires several writes to write around
987 	 * the bad blocks.  Each set of writes gets it's own r1bio
988 	 * with a set of bios attached.
989 	 */
990 	plugged = mddev_check_plugged(mddev);
991 
992 	disks = conf->raid_disks * 2;
993  retry_write:
994 	blocked_rdev = NULL;
995 	rcu_read_lock();
996 	max_sectors = r1_bio->sectors;
997 	for (i = 0;  i < disks; i++) {
998 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
999 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1000 			atomic_inc(&rdev->nr_pending);
1001 			blocked_rdev = rdev;
1002 			break;
1003 		}
1004 		r1_bio->bios[i] = NULL;
1005 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1006 			if (i < conf->raid_disks)
1007 				set_bit(R1BIO_Degraded, &r1_bio->state);
1008 			continue;
1009 		}
1010 
1011 		atomic_inc(&rdev->nr_pending);
1012 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1013 			sector_t first_bad;
1014 			int bad_sectors;
1015 			int is_bad;
1016 
1017 			is_bad = is_badblock(rdev, r1_bio->sector,
1018 					     max_sectors,
1019 					     &first_bad, &bad_sectors);
1020 			if (is_bad < 0) {
1021 				/* mustn't write here until the bad block is
1022 				 * acknowledged*/
1023 				set_bit(BlockedBadBlocks, &rdev->flags);
1024 				blocked_rdev = rdev;
1025 				break;
1026 			}
1027 			if (is_bad && first_bad <= r1_bio->sector) {
1028 				/* Cannot write here at all */
1029 				bad_sectors -= (r1_bio->sector - first_bad);
1030 				if (bad_sectors < max_sectors)
1031 					/* mustn't write more than bad_sectors
1032 					 * to other devices yet
1033 					 */
1034 					max_sectors = bad_sectors;
1035 				rdev_dec_pending(rdev, mddev);
1036 				/* We don't set R1BIO_Degraded as that
1037 				 * only applies if the disk is
1038 				 * missing, so it might be re-added,
1039 				 * and we want to know to recover this
1040 				 * chunk.
1041 				 * In this case the device is here,
1042 				 * and the fact that this chunk is not
1043 				 * in-sync is recorded in the bad
1044 				 * block log
1045 				 */
1046 				continue;
1047 			}
1048 			if (is_bad) {
1049 				int good_sectors = first_bad - r1_bio->sector;
1050 				if (good_sectors < max_sectors)
1051 					max_sectors = good_sectors;
1052 			}
1053 		}
1054 		r1_bio->bios[i] = bio;
1055 	}
1056 	rcu_read_unlock();
1057 
1058 	if (unlikely(blocked_rdev)) {
1059 		/* Wait for this device to become unblocked */
1060 		int j;
1061 
1062 		for (j = 0; j < i; j++)
1063 			if (r1_bio->bios[j])
1064 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1065 		r1_bio->state = 0;
1066 		allow_barrier(conf);
1067 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1068 		wait_barrier(conf);
1069 		goto retry_write;
1070 	}
1071 
1072 	if (max_sectors < r1_bio->sectors) {
1073 		/* We are splitting this write into multiple parts, so
1074 		 * we need to prepare for allocating another r1_bio.
1075 		 */
1076 		r1_bio->sectors = max_sectors;
1077 		spin_lock_irq(&conf->device_lock);
1078 		if (bio->bi_phys_segments == 0)
1079 			bio->bi_phys_segments = 2;
1080 		else
1081 			bio->bi_phys_segments++;
1082 		spin_unlock_irq(&conf->device_lock);
1083 	}
1084 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1085 
1086 	atomic_set(&r1_bio->remaining, 1);
1087 	atomic_set(&r1_bio->behind_remaining, 0);
1088 
1089 	first_clone = 1;
1090 	for (i = 0; i < disks; i++) {
1091 		struct bio *mbio;
1092 		if (!r1_bio->bios[i])
1093 			continue;
1094 
1095 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1096 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1097 
1098 		if (first_clone) {
1099 			/* do behind I/O ?
1100 			 * Not if there are too many, or cannot
1101 			 * allocate memory, or a reader on WriteMostly
1102 			 * is waiting for behind writes to flush */
1103 			if (bitmap &&
1104 			    (atomic_read(&bitmap->behind_writes)
1105 			     < mddev->bitmap_info.max_write_behind) &&
1106 			    !waitqueue_active(&bitmap->behind_wait))
1107 				alloc_behind_pages(mbio, r1_bio);
1108 
1109 			bitmap_startwrite(bitmap, r1_bio->sector,
1110 					  r1_bio->sectors,
1111 					  test_bit(R1BIO_BehindIO,
1112 						   &r1_bio->state));
1113 			first_clone = 0;
1114 		}
1115 		if (r1_bio->behind_bvecs) {
1116 			struct bio_vec *bvec;
1117 			int j;
1118 
1119 			/* Yes, I really want the '__' version so that
1120 			 * we clear any unused pointer in the io_vec, rather
1121 			 * than leave them unchanged.  This is important
1122 			 * because when we come to free the pages, we won't
1123 			 * know the original bi_idx, so we just free
1124 			 * them all
1125 			 */
1126 			__bio_for_each_segment(bvec, mbio, j, 0)
1127 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1128 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1129 				atomic_inc(&r1_bio->behind_remaining);
1130 		}
1131 
1132 		r1_bio->bios[i] = mbio;
1133 
1134 		mbio->bi_sector	= (r1_bio->sector +
1135 				   conf->mirrors[i].rdev->data_offset);
1136 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1137 		mbio->bi_end_io	= raid1_end_write_request;
1138 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1139 		mbio->bi_private = r1_bio;
1140 
1141 		atomic_inc(&r1_bio->remaining);
1142 		spin_lock_irqsave(&conf->device_lock, flags);
1143 		bio_list_add(&conf->pending_bio_list, mbio);
1144 		conf->pending_count++;
1145 		spin_unlock_irqrestore(&conf->device_lock, flags);
1146 	}
1147 	/* Mustn't call r1_bio_write_done before this next test,
1148 	 * as it could result in the bio being freed.
1149 	 */
1150 	if (sectors_handled < (bio->bi_size >> 9)) {
1151 		r1_bio_write_done(r1_bio);
1152 		/* We need another r1_bio.  It has already been counted
1153 		 * in bio->bi_phys_segments
1154 		 */
1155 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1156 		r1_bio->master_bio = bio;
1157 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1158 		r1_bio->state = 0;
1159 		r1_bio->mddev = mddev;
1160 		r1_bio->sector = bio->bi_sector + sectors_handled;
1161 		goto retry_write;
1162 	}
1163 
1164 	r1_bio_write_done(r1_bio);
1165 
1166 	/* In case raid1d snuck in to freeze_array */
1167 	wake_up(&conf->wait_barrier);
1168 
1169 	if (do_sync || !bitmap || !plugged)
1170 		md_wakeup_thread(mddev->thread);
1171 }
1172 
1173 static void status(struct seq_file *seq, struct mddev *mddev)
1174 {
1175 	struct r1conf *conf = mddev->private;
1176 	int i;
1177 
1178 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1179 		   conf->raid_disks - mddev->degraded);
1180 	rcu_read_lock();
1181 	for (i = 0; i < conf->raid_disks; i++) {
1182 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1183 		seq_printf(seq, "%s",
1184 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1185 	}
1186 	rcu_read_unlock();
1187 	seq_printf(seq, "]");
1188 }
1189 
1190 
1191 static void error(struct mddev *mddev, struct md_rdev *rdev)
1192 {
1193 	char b[BDEVNAME_SIZE];
1194 	struct r1conf *conf = mddev->private;
1195 
1196 	/*
1197 	 * If it is not operational, then we have already marked it as dead
1198 	 * else if it is the last working disks, ignore the error, let the
1199 	 * next level up know.
1200 	 * else mark the drive as failed
1201 	 */
1202 	if (test_bit(In_sync, &rdev->flags)
1203 	    && (conf->raid_disks - mddev->degraded) == 1) {
1204 		/*
1205 		 * Don't fail the drive, act as though we were just a
1206 		 * normal single drive.
1207 		 * However don't try a recovery from this drive as
1208 		 * it is very likely to fail.
1209 		 */
1210 		conf->recovery_disabled = mddev->recovery_disabled;
1211 		return;
1212 	}
1213 	set_bit(Blocked, &rdev->flags);
1214 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1215 		unsigned long flags;
1216 		spin_lock_irqsave(&conf->device_lock, flags);
1217 		mddev->degraded++;
1218 		set_bit(Faulty, &rdev->flags);
1219 		spin_unlock_irqrestore(&conf->device_lock, flags);
1220 		/*
1221 		 * if recovery is running, make sure it aborts.
1222 		 */
1223 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1224 	} else
1225 		set_bit(Faulty, &rdev->flags);
1226 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1227 	printk(KERN_ALERT
1228 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1229 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1230 	       mdname(mddev), bdevname(rdev->bdev, b),
1231 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1232 }
1233 
1234 static void print_conf(struct r1conf *conf)
1235 {
1236 	int i;
1237 
1238 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1239 	if (!conf) {
1240 		printk(KERN_DEBUG "(!conf)\n");
1241 		return;
1242 	}
1243 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1244 		conf->raid_disks);
1245 
1246 	rcu_read_lock();
1247 	for (i = 0; i < conf->raid_disks; i++) {
1248 		char b[BDEVNAME_SIZE];
1249 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1250 		if (rdev)
1251 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1252 			       i, !test_bit(In_sync, &rdev->flags),
1253 			       !test_bit(Faulty, &rdev->flags),
1254 			       bdevname(rdev->bdev,b));
1255 	}
1256 	rcu_read_unlock();
1257 }
1258 
1259 static void close_sync(struct r1conf *conf)
1260 {
1261 	wait_barrier(conf);
1262 	allow_barrier(conf);
1263 
1264 	mempool_destroy(conf->r1buf_pool);
1265 	conf->r1buf_pool = NULL;
1266 }
1267 
1268 static int raid1_spare_active(struct mddev *mddev)
1269 {
1270 	int i;
1271 	struct r1conf *conf = mddev->private;
1272 	int count = 0;
1273 	unsigned long flags;
1274 
1275 	/*
1276 	 * Find all failed disks within the RAID1 configuration
1277 	 * and mark them readable.
1278 	 * Called under mddev lock, so rcu protection not needed.
1279 	 */
1280 	for (i = 0; i < conf->raid_disks; i++) {
1281 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1282 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1283 		if (repl
1284 		    && repl->recovery_offset == MaxSector
1285 		    && !test_bit(Faulty, &repl->flags)
1286 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1287 			/* replacement has just become active */
1288 			if (!rdev ||
1289 			    !test_and_clear_bit(In_sync, &rdev->flags))
1290 				count++;
1291 			if (rdev) {
1292 				/* Replaced device not technically
1293 				 * faulty, but we need to be sure
1294 				 * it gets removed and never re-added
1295 				 */
1296 				set_bit(Faulty, &rdev->flags);
1297 				sysfs_notify_dirent_safe(
1298 					rdev->sysfs_state);
1299 			}
1300 		}
1301 		if (rdev
1302 		    && !test_bit(Faulty, &rdev->flags)
1303 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1304 			count++;
1305 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1306 		}
1307 	}
1308 	spin_lock_irqsave(&conf->device_lock, flags);
1309 	mddev->degraded -= count;
1310 	spin_unlock_irqrestore(&conf->device_lock, flags);
1311 
1312 	print_conf(conf);
1313 	return count;
1314 }
1315 
1316 
1317 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1318 {
1319 	struct r1conf *conf = mddev->private;
1320 	int err = -EEXIST;
1321 	int mirror = 0;
1322 	struct mirror_info *p;
1323 	int first = 0;
1324 	int last = conf->raid_disks - 1;
1325 
1326 	if (mddev->recovery_disabled == conf->recovery_disabled)
1327 		return -EBUSY;
1328 
1329 	if (rdev->raid_disk >= 0)
1330 		first = last = rdev->raid_disk;
1331 
1332 	for (mirror = first; mirror <= last; mirror++) {
1333 		p = conf->mirrors+mirror;
1334 		if (!p->rdev) {
1335 
1336 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1337 					  rdev->data_offset << 9);
1338 			/* as we don't honour merge_bvec_fn, we must
1339 			 * never risk violating it, so limit
1340 			 * ->max_segments to one lying with a single
1341 			 * page, as a one page request is never in
1342 			 * violation.
1343 			 */
1344 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1345 				blk_queue_max_segments(mddev->queue, 1);
1346 				blk_queue_segment_boundary(mddev->queue,
1347 							   PAGE_CACHE_SIZE - 1);
1348 			}
1349 
1350 			p->head_position = 0;
1351 			rdev->raid_disk = mirror;
1352 			err = 0;
1353 			/* As all devices are equivalent, we don't need a full recovery
1354 			 * if this was recently any drive of the array
1355 			 */
1356 			if (rdev->saved_raid_disk < 0)
1357 				conf->fullsync = 1;
1358 			rcu_assign_pointer(p->rdev, rdev);
1359 			break;
1360 		}
1361 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1362 		    p[conf->raid_disks].rdev == NULL) {
1363 			/* Add this device as a replacement */
1364 			clear_bit(In_sync, &rdev->flags);
1365 			set_bit(Replacement, &rdev->flags);
1366 			rdev->raid_disk = mirror;
1367 			err = 0;
1368 			conf->fullsync = 1;
1369 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1370 			break;
1371 		}
1372 	}
1373 	md_integrity_add_rdev(rdev, mddev);
1374 	print_conf(conf);
1375 	return err;
1376 }
1377 
1378 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1379 {
1380 	struct r1conf *conf = mddev->private;
1381 	int err = 0;
1382 	int number = rdev->raid_disk;
1383 	struct mirror_info *p = conf->mirrors+ number;
1384 
1385 	if (rdev != p->rdev)
1386 		p = conf->mirrors + conf->raid_disks + number;
1387 
1388 	print_conf(conf);
1389 	if (rdev == p->rdev) {
1390 		if (test_bit(In_sync, &rdev->flags) ||
1391 		    atomic_read(&rdev->nr_pending)) {
1392 			err = -EBUSY;
1393 			goto abort;
1394 		}
1395 		/* Only remove non-faulty devices if recovery
1396 		 * is not possible.
1397 		 */
1398 		if (!test_bit(Faulty, &rdev->flags) &&
1399 		    mddev->recovery_disabled != conf->recovery_disabled &&
1400 		    mddev->degraded < conf->raid_disks) {
1401 			err = -EBUSY;
1402 			goto abort;
1403 		}
1404 		p->rdev = NULL;
1405 		synchronize_rcu();
1406 		if (atomic_read(&rdev->nr_pending)) {
1407 			/* lost the race, try later */
1408 			err = -EBUSY;
1409 			p->rdev = rdev;
1410 			goto abort;
1411 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1412 			/* We just removed a device that is being replaced.
1413 			 * Move down the replacement.  We drain all IO before
1414 			 * doing this to avoid confusion.
1415 			 */
1416 			struct md_rdev *repl =
1417 				conf->mirrors[conf->raid_disks + number].rdev;
1418 			raise_barrier(conf);
1419 			clear_bit(Replacement, &repl->flags);
1420 			p->rdev = repl;
1421 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1422 			lower_barrier(conf);
1423 			clear_bit(WantReplacement, &rdev->flags);
1424 		} else
1425 			clear_bit(WantReplacement, &rdev->flags);
1426 		err = md_integrity_register(mddev);
1427 	}
1428 abort:
1429 
1430 	print_conf(conf);
1431 	return err;
1432 }
1433 
1434 
1435 static void end_sync_read(struct bio *bio, int error)
1436 {
1437 	struct r1bio *r1_bio = bio->bi_private;
1438 
1439 	update_head_pos(r1_bio->read_disk, r1_bio);
1440 
1441 	/*
1442 	 * we have read a block, now it needs to be re-written,
1443 	 * or re-read if the read failed.
1444 	 * We don't do much here, just schedule handling by raid1d
1445 	 */
1446 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1447 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1448 
1449 	if (atomic_dec_and_test(&r1_bio->remaining))
1450 		reschedule_retry(r1_bio);
1451 }
1452 
1453 static void end_sync_write(struct bio *bio, int error)
1454 {
1455 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1456 	struct r1bio *r1_bio = bio->bi_private;
1457 	struct mddev *mddev = r1_bio->mddev;
1458 	struct r1conf *conf = mddev->private;
1459 	int mirror=0;
1460 	sector_t first_bad;
1461 	int bad_sectors;
1462 
1463 	mirror = find_bio_disk(r1_bio, bio);
1464 
1465 	if (!uptodate) {
1466 		sector_t sync_blocks = 0;
1467 		sector_t s = r1_bio->sector;
1468 		long sectors_to_go = r1_bio->sectors;
1469 		/* make sure these bits doesn't get cleared. */
1470 		do {
1471 			bitmap_end_sync(mddev->bitmap, s,
1472 					&sync_blocks, 1);
1473 			s += sync_blocks;
1474 			sectors_to_go -= sync_blocks;
1475 		} while (sectors_to_go > 0);
1476 		set_bit(WriteErrorSeen,
1477 			&conf->mirrors[mirror].rdev->flags);
1478 		if (!test_and_set_bit(WantReplacement,
1479 				      &conf->mirrors[mirror].rdev->flags))
1480 			set_bit(MD_RECOVERY_NEEDED, &
1481 				mddev->recovery);
1482 		set_bit(R1BIO_WriteError, &r1_bio->state);
1483 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1484 			       r1_bio->sector,
1485 			       r1_bio->sectors,
1486 			       &first_bad, &bad_sectors) &&
1487 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1488 				r1_bio->sector,
1489 				r1_bio->sectors,
1490 				&first_bad, &bad_sectors)
1491 		)
1492 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1493 
1494 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1495 		int s = r1_bio->sectors;
1496 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1497 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1498 			reschedule_retry(r1_bio);
1499 		else {
1500 			put_buf(r1_bio);
1501 			md_done_sync(mddev, s, uptodate);
1502 		}
1503 	}
1504 }
1505 
1506 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1507 			    int sectors, struct page *page, int rw)
1508 {
1509 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1510 		/* success */
1511 		return 1;
1512 	if (rw == WRITE) {
1513 		set_bit(WriteErrorSeen, &rdev->flags);
1514 		if (!test_and_set_bit(WantReplacement,
1515 				      &rdev->flags))
1516 			set_bit(MD_RECOVERY_NEEDED, &
1517 				rdev->mddev->recovery);
1518 	}
1519 	/* need to record an error - either for the block or the device */
1520 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1521 		md_error(rdev->mddev, rdev);
1522 	return 0;
1523 }
1524 
1525 static int fix_sync_read_error(struct r1bio *r1_bio)
1526 {
1527 	/* Try some synchronous reads of other devices to get
1528 	 * good data, much like with normal read errors.  Only
1529 	 * read into the pages we already have so we don't
1530 	 * need to re-issue the read request.
1531 	 * We don't need to freeze the array, because being in an
1532 	 * active sync request, there is no normal IO, and
1533 	 * no overlapping syncs.
1534 	 * We don't need to check is_badblock() again as we
1535 	 * made sure that anything with a bad block in range
1536 	 * will have bi_end_io clear.
1537 	 */
1538 	struct mddev *mddev = r1_bio->mddev;
1539 	struct r1conf *conf = mddev->private;
1540 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1541 	sector_t sect = r1_bio->sector;
1542 	int sectors = r1_bio->sectors;
1543 	int idx = 0;
1544 
1545 	while(sectors) {
1546 		int s = sectors;
1547 		int d = r1_bio->read_disk;
1548 		int success = 0;
1549 		struct md_rdev *rdev;
1550 		int start;
1551 
1552 		if (s > (PAGE_SIZE>>9))
1553 			s = PAGE_SIZE >> 9;
1554 		do {
1555 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1556 				/* No rcu protection needed here devices
1557 				 * can only be removed when no resync is
1558 				 * active, and resync is currently active
1559 				 */
1560 				rdev = conf->mirrors[d].rdev;
1561 				if (sync_page_io(rdev, sect, s<<9,
1562 						 bio->bi_io_vec[idx].bv_page,
1563 						 READ, false)) {
1564 					success = 1;
1565 					break;
1566 				}
1567 			}
1568 			d++;
1569 			if (d == conf->raid_disks * 2)
1570 				d = 0;
1571 		} while (!success && d != r1_bio->read_disk);
1572 
1573 		if (!success) {
1574 			char b[BDEVNAME_SIZE];
1575 			int abort = 0;
1576 			/* Cannot read from anywhere, this block is lost.
1577 			 * Record a bad block on each device.  If that doesn't
1578 			 * work just disable and interrupt the recovery.
1579 			 * Don't fail devices as that won't really help.
1580 			 */
1581 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1582 			       " for block %llu\n",
1583 			       mdname(mddev),
1584 			       bdevname(bio->bi_bdev, b),
1585 			       (unsigned long long)r1_bio->sector);
1586 			for (d = 0; d < conf->raid_disks * 2; d++) {
1587 				rdev = conf->mirrors[d].rdev;
1588 				if (!rdev || test_bit(Faulty, &rdev->flags))
1589 					continue;
1590 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1591 					abort = 1;
1592 			}
1593 			if (abort) {
1594 				conf->recovery_disabled =
1595 					mddev->recovery_disabled;
1596 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1597 				md_done_sync(mddev, r1_bio->sectors, 0);
1598 				put_buf(r1_bio);
1599 				return 0;
1600 			}
1601 			/* Try next page */
1602 			sectors -= s;
1603 			sect += s;
1604 			idx++;
1605 			continue;
1606 		}
1607 
1608 		start = d;
1609 		/* write it back and re-read */
1610 		while (d != r1_bio->read_disk) {
1611 			if (d == 0)
1612 				d = conf->raid_disks * 2;
1613 			d--;
1614 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1615 				continue;
1616 			rdev = conf->mirrors[d].rdev;
1617 			if (r1_sync_page_io(rdev, sect, s,
1618 					    bio->bi_io_vec[idx].bv_page,
1619 					    WRITE) == 0) {
1620 				r1_bio->bios[d]->bi_end_io = NULL;
1621 				rdev_dec_pending(rdev, mddev);
1622 			}
1623 		}
1624 		d = start;
1625 		while (d != r1_bio->read_disk) {
1626 			if (d == 0)
1627 				d = conf->raid_disks * 2;
1628 			d--;
1629 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1630 				continue;
1631 			rdev = conf->mirrors[d].rdev;
1632 			if (r1_sync_page_io(rdev, sect, s,
1633 					    bio->bi_io_vec[idx].bv_page,
1634 					    READ) != 0)
1635 				atomic_add(s, &rdev->corrected_errors);
1636 		}
1637 		sectors -= s;
1638 		sect += s;
1639 		idx ++;
1640 	}
1641 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1642 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1643 	return 1;
1644 }
1645 
1646 static int process_checks(struct r1bio *r1_bio)
1647 {
1648 	/* We have read all readable devices.  If we haven't
1649 	 * got the block, then there is no hope left.
1650 	 * If we have, then we want to do a comparison
1651 	 * and skip the write if everything is the same.
1652 	 * If any blocks failed to read, then we need to
1653 	 * attempt an over-write
1654 	 */
1655 	struct mddev *mddev = r1_bio->mddev;
1656 	struct r1conf *conf = mddev->private;
1657 	int primary;
1658 	int i;
1659 
1660 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1661 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1662 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1663 			r1_bio->bios[primary]->bi_end_io = NULL;
1664 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1665 			break;
1666 		}
1667 	r1_bio->read_disk = primary;
1668 	for (i = 0; i < conf->raid_disks * 2; i++) {
1669 		int j;
1670 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1671 		struct bio *pbio = r1_bio->bios[primary];
1672 		struct bio *sbio = r1_bio->bios[i];
1673 		int size;
1674 
1675 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1676 			continue;
1677 
1678 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1679 			for (j = vcnt; j-- ; ) {
1680 				struct page *p, *s;
1681 				p = pbio->bi_io_vec[j].bv_page;
1682 				s = sbio->bi_io_vec[j].bv_page;
1683 				if (memcmp(page_address(p),
1684 					   page_address(s),
1685 					   PAGE_SIZE))
1686 					break;
1687 			}
1688 		} else
1689 			j = 0;
1690 		if (j >= 0)
1691 			mddev->resync_mismatches += r1_bio->sectors;
1692 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1693 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1694 			/* No need to write to this device. */
1695 			sbio->bi_end_io = NULL;
1696 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1697 			continue;
1698 		}
1699 		/* fixup the bio for reuse */
1700 		sbio->bi_vcnt = vcnt;
1701 		sbio->bi_size = r1_bio->sectors << 9;
1702 		sbio->bi_idx = 0;
1703 		sbio->bi_phys_segments = 0;
1704 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1705 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1706 		sbio->bi_next = NULL;
1707 		sbio->bi_sector = r1_bio->sector +
1708 			conf->mirrors[i].rdev->data_offset;
1709 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1710 		size = sbio->bi_size;
1711 		for (j = 0; j < vcnt ; j++) {
1712 			struct bio_vec *bi;
1713 			bi = &sbio->bi_io_vec[j];
1714 			bi->bv_offset = 0;
1715 			if (size > PAGE_SIZE)
1716 				bi->bv_len = PAGE_SIZE;
1717 			else
1718 				bi->bv_len = size;
1719 			size -= PAGE_SIZE;
1720 			memcpy(page_address(bi->bv_page),
1721 			       page_address(pbio->bi_io_vec[j].bv_page),
1722 			       PAGE_SIZE);
1723 		}
1724 	}
1725 	return 0;
1726 }
1727 
1728 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1729 {
1730 	struct r1conf *conf = mddev->private;
1731 	int i;
1732 	int disks = conf->raid_disks * 2;
1733 	struct bio *bio, *wbio;
1734 
1735 	bio = r1_bio->bios[r1_bio->read_disk];
1736 
1737 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1738 		/* ouch - failed to read all of that. */
1739 		if (!fix_sync_read_error(r1_bio))
1740 			return;
1741 
1742 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1743 		if (process_checks(r1_bio) < 0)
1744 			return;
1745 	/*
1746 	 * schedule writes
1747 	 */
1748 	atomic_set(&r1_bio->remaining, 1);
1749 	for (i = 0; i < disks ; i++) {
1750 		wbio = r1_bio->bios[i];
1751 		if (wbio->bi_end_io == NULL ||
1752 		    (wbio->bi_end_io == end_sync_read &&
1753 		     (i == r1_bio->read_disk ||
1754 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1755 			continue;
1756 
1757 		wbio->bi_rw = WRITE;
1758 		wbio->bi_end_io = end_sync_write;
1759 		atomic_inc(&r1_bio->remaining);
1760 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1761 
1762 		generic_make_request(wbio);
1763 	}
1764 
1765 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1766 		/* if we're here, all write(s) have completed, so clean up */
1767 		md_done_sync(mddev, r1_bio->sectors, 1);
1768 		put_buf(r1_bio);
1769 	}
1770 }
1771 
1772 /*
1773  * This is a kernel thread which:
1774  *
1775  *	1.	Retries failed read operations on working mirrors.
1776  *	2.	Updates the raid superblock when problems encounter.
1777  *	3.	Performs writes following reads for array synchronising.
1778  */
1779 
1780 static void fix_read_error(struct r1conf *conf, int read_disk,
1781 			   sector_t sect, int sectors)
1782 {
1783 	struct mddev *mddev = conf->mddev;
1784 	while(sectors) {
1785 		int s = sectors;
1786 		int d = read_disk;
1787 		int success = 0;
1788 		int start;
1789 		struct md_rdev *rdev;
1790 
1791 		if (s > (PAGE_SIZE>>9))
1792 			s = PAGE_SIZE >> 9;
1793 
1794 		do {
1795 			/* Note: no rcu protection needed here
1796 			 * as this is synchronous in the raid1d thread
1797 			 * which is the thread that might remove
1798 			 * a device.  If raid1d ever becomes multi-threaded....
1799 			 */
1800 			sector_t first_bad;
1801 			int bad_sectors;
1802 
1803 			rdev = conf->mirrors[d].rdev;
1804 			if (rdev &&
1805 			    test_bit(In_sync, &rdev->flags) &&
1806 			    is_badblock(rdev, sect, s,
1807 					&first_bad, &bad_sectors) == 0 &&
1808 			    sync_page_io(rdev, sect, s<<9,
1809 					 conf->tmppage, READ, false))
1810 				success = 1;
1811 			else {
1812 				d++;
1813 				if (d == conf->raid_disks * 2)
1814 					d = 0;
1815 			}
1816 		} while (!success && d != read_disk);
1817 
1818 		if (!success) {
1819 			/* Cannot read from anywhere - mark it bad */
1820 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1821 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1822 				md_error(mddev, rdev);
1823 			break;
1824 		}
1825 		/* write it back and re-read */
1826 		start = d;
1827 		while (d != read_disk) {
1828 			if (d==0)
1829 				d = conf->raid_disks * 2;
1830 			d--;
1831 			rdev = conf->mirrors[d].rdev;
1832 			if (rdev &&
1833 			    test_bit(In_sync, &rdev->flags))
1834 				r1_sync_page_io(rdev, sect, s,
1835 						conf->tmppage, WRITE);
1836 		}
1837 		d = start;
1838 		while (d != read_disk) {
1839 			char b[BDEVNAME_SIZE];
1840 			if (d==0)
1841 				d = conf->raid_disks * 2;
1842 			d--;
1843 			rdev = conf->mirrors[d].rdev;
1844 			if (rdev &&
1845 			    test_bit(In_sync, &rdev->flags)) {
1846 				if (r1_sync_page_io(rdev, sect, s,
1847 						    conf->tmppage, READ)) {
1848 					atomic_add(s, &rdev->corrected_errors);
1849 					printk(KERN_INFO
1850 					       "md/raid1:%s: read error corrected "
1851 					       "(%d sectors at %llu on %s)\n",
1852 					       mdname(mddev), s,
1853 					       (unsigned long long)(sect +
1854 					           rdev->data_offset),
1855 					       bdevname(rdev->bdev, b));
1856 				}
1857 			}
1858 		}
1859 		sectors -= s;
1860 		sect += s;
1861 	}
1862 }
1863 
1864 static void bi_complete(struct bio *bio, int error)
1865 {
1866 	complete((struct completion *)bio->bi_private);
1867 }
1868 
1869 static int submit_bio_wait(int rw, struct bio *bio)
1870 {
1871 	struct completion event;
1872 	rw |= REQ_SYNC;
1873 
1874 	init_completion(&event);
1875 	bio->bi_private = &event;
1876 	bio->bi_end_io = bi_complete;
1877 	submit_bio(rw, bio);
1878 	wait_for_completion(&event);
1879 
1880 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1881 }
1882 
1883 static int narrow_write_error(struct r1bio *r1_bio, int i)
1884 {
1885 	struct mddev *mddev = r1_bio->mddev;
1886 	struct r1conf *conf = mddev->private;
1887 	struct md_rdev *rdev = conf->mirrors[i].rdev;
1888 	int vcnt, idx;
1889 	struct bio_vec *vec;
1890 
1891 	/* bio has the data to be written to device 'i' where
1892 	 * we just recently had a write error.
1893 	 * We repeatedly clone the bio and trim down to one block,
1894 	 * then try the write.  Where the write fails we record
1895 	 * a bad block.
1896 	 * It is conceivable that the bio doesn't exactly align with
1897 	 * blocks.  We must handle this somehow.
1898 	 *
1899 	 * We currently own a reference on the rdev.
1900 	 */
1901 
1902 	int block_sectors;
1903 	sector_t sector;
1904 	int sectors;
1905 	int sect_to_write = r1_bio->sectors;
1906 	int ok = 1;
1907 
1908 	if (rdev->badblocks.shift < 0)
1909 		return 0;
1910 
1911 	block_sectors = 1 << rdev->badblocks.shift;
1912 	sector = r1_bio->sector;
1913 	sectors = ((sector + block_sectors)
1914 		   & ~(sector_t)(block_sectors - 1))
1915 		- sector;
1916 
1917 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1918 		vcnt = r1_bio->behind_page_count;
1919 		vec = r1_bio->behind_bvecs;
1920 		idx = 0;
1921 		while (vec[idx].bv_page == NULL)
1922 			idx++;
1923 	} else {
1924 		vcnt = r1_bio->master_bio->bi_vcnt;
1925 		vec = r1_bio->master_bio->bi_io_vec;
1926 		idx = r1_bio->master_bio->bi_idx;
1927 	}
1928 	while (sect_to_write) {
1929 		struct bio *wbio;
1930 		if (sectors > sect_to_write)
1931 			sectors = sect_to_write;
1932 		/* Write at 'sector' for 'sectors'*/
1933 
1934 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1935 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1936 		wbio->bi_sector = r1_bio->sector;
1937 		wbio->bi_rw = WRITE;
1938 		wbio->bi_vcnt = vcnt;
1939 		wbio->bi_size = r1_bio->sectors << 9;
1940 		wbio->bi_idx = idx;
1941 
1942 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1943 		wbio->bi_sector += rdev->data_offset;
1944 		wbio->bi_bdev = rdev->bdev;
1945 		if (submit_bio_wait(WRITE, wbio) == 0)
1946 			/* failure! */
1947 			ok = rdev_set_badblocks(rdev, sector,
1948 						sectors, 0)
1949 				&& ok;
1950 
1951 		bio_put(wbio);
1952 		sect_to_write -= sectors;
1953 		sector += sectors;
1954 		sectors = block_sectors;
1955 	}
1956 	return ok;
1957 }
1958 
1959 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1960 {
1961 	int m;
1962 	int s = r1_bio->sectors;
1963 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
1964 		struct md_rdev *rdev = conf->mirrors[m].rdev;
1965 		struct bio *bio = r1_bio->bios[m];
1966 		if (bio->bi_end_io == NULL)
1967 			continue;
1968 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1969 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1970 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1971 		}
1972 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1973 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1974 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1975 				md_error(conf->mddev, rdev);
1976 		}
1977 	}
1978 	put_buf(r1_bio);
1979 	md_done_sync(conf->mddev, s, 1);
1980 }
1981 
1982 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1983 {
1984 	int m;
1985 	for (m = 0; m < conf->raid_disks * 2 ; m++)
1986 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1987 			struct md_rdev *rdev = conf->mirrors[m].rdev;
1988 			rdev_clear_badblocks(rdev,
1989 					     r1_bio->sector,
1990 					     r1_bio->sectors);
1991 			rdev_dec_pending(rdev, conf->mddev);
1992 		} else if (r1_bio->bios[m] != NULL) {
1993 			/* This drive got a write error.  We need to
1994 			 * narrow down and record precise write
1995 			 * errors.
1996 			 */
1997 			if (!narrow_write_error(r1_bio, m)) {
1998 				md_error(conf->mddev,
1999 					 conf->mirrors[m].rdev);
2000 				/* an I/O failed, we can't clear the bitmap */
2001 				set_bit(R1BIO_Degraded, &r1_bio->state);
2002 			}
2003 			rdev_dec_pending(conf->mirrors[m].rdev,
2004 					 conf->mddev);
2005 		}
2006 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2007 		close_write(r1_bio);
2008 	raid_end_bio_io(r1_bio);
2009 }
2010 
2011 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2012 {
2013 	int disk;
2014 	int max_sectors;
2015 	struct mddev *mddev = conf->mddev;
2016 	struct bio *bio;
2017 	char b[BDEVNAME_SIZE];
2018 	struct md_rdev *rdev;
2019 
2020 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2021 	/* we got a read error. Maybe the drive is bad.  Maybe just
2022 	 * the block and we can fix it.
2023 	 * We freeze all other IO, and try reading the block from
2024 	 * other devices.  When we find one, we re-write
2025 	 * and check it that fixes the read error.
2026 	 * This is all done synchronously while the array is
2027 	 * frozen
2028 	 */
2029 	if (mddev->ro == 0) {
2030 		freeze_array(conf);
2031 		fix_read_error(conf, r1_bio->read_disk,
2032 			       r1_bio->sector, r1_bio->sectors);
2033 		unfreeze_array(conf);
2034 	} else
2035 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2036 
2037 	bio = r1_bio->bios[r1_bio->read_disk];
2038 	bdevname(bio->bi_bdev, b);
2039 read_more:
2040 	disk = read_balance(conf, r1_bio, &max_sectors);
2041 	if (disk == -1) {
2042 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2043 		       " read error for block %llu\n",
2044 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2045 		raid_end_bio_io(r1_bio);
2046 	} else {
2047 		const unsigned long do_sync
2048 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2049 		if (bio) {
2050 			r1_bio->bios[r1_bio->read_disk] =
2051 				mddev->ro ? IO_BLOCKED : NULL;
2052 			bio_put(bio);
2053 		}
2054 		r1_bio->read_disk = disk;
2055 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2056 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2057 		r1_bio->bios[r1_bio->read_disk] = bio;
2058 		rdev = conf->mirrors[disk].rdev;
2059 		printk_ratelimited(KERN_ERR
2060 				   "md/raid1:%s: redirecting sector %llu"
2061 				   " to other mirror: %s\n",
2062 				   mdname(mddev),
2063 				   (unsigned long long)r1_bio->sector,
2064 				   bdevname(rdev->bdev, b));
2065 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2066 		bio->bi_bdev = rdev->bdev;
2067 		bio->bi_end_io = raid1_end_read_request;
2068 		bio->bi_rw = READ | do_sync;
2069 		bio->bi_private = r1_bio;
2070 		if (max_sectors < r1_bio->sectors) {
2071 			/* Drat - have to split this up more */
2072 			struct bio *mbio = r1_bio->master_bio;
2073 			int sectors_handled = (r1_bio->sector + max_sectors
2074 					       - mbio->bi_sector);
2075 			r1_bio->sectors = max_sectors;
2076 			spin_lock_irq(&conf->device_lock);
2077 			if (mbio->bi_phys_segments == 0)
2078 				mbio->bi_phys_segments = 2;
2079 			else
2080 				mbio->bi_phys_segments++;
2081 			spin_unlock_irq(&conf->device_lock);
2082 			generic_make_request(bio);
2083 			bio = NULL;
2084 
2085 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2086 
2087 			r1_bio->master_bio = mbio;
2088 			r1_bio->sectors = (mbio->bi_size >> 9)
2089 					  - sectors_handled;
2090 			r1_bio->state = 0;
2091 			set_bit(R1BIO_ReadError, &r1_bio->state);
2092 			r1_bio->mddev = mddev;
2093 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2094 
2095 			goto read_more;
2096 		} else
2097 			generic_make_request(bio);
2098 	}
2099 }
2100 
2101 static void raid1d(struct mddev *mddev)
2102 {
2103 	struct r1bio *r1_bio;
2104 	unsigned long flags;
2105 	struct r1conf *conf = mddev->private;
2106 	struct list_head *head = &conf->retry_list;
2107 	struct blk_plug plug;
2108 
2109 	md_check_recovery(mddev);
2110 
2111 	blk_start_plug(&plug);
2112 	for (;;) {
2113 
2114 		if (atomic_read(&mddev->plug_cnt) == 0)
2115 			flush_pending_writes(conf);
2116 
2117 		spin_lock_irqsave(&conf->device_lock, flags);
2118 		if (list_empty(head)) {
2119 			spin_unlock_irqrestore(&conf->device_lock, flags);
2120 			break;
2121 		}
2122 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2123 		list_del(head->prev);
2124 		conf->nr_queued--;
2125 		spin_unlock_irqrestore(&conf->device_lock, flags);
2126 
2127 		mddev = r1_bio->mddev;
2128 		conf = mddev->private;
2129 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2130 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2131 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2132 				handle_sync_write_finished(conf, r1_bio);
2133 			else
2134 				sync_request_write(mddev, r1_bio);
2135 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2136 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2137 			handle_write_finished(conf, r1_bio);
2138 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2139 			handle_read_error(conf, r1_bio);
2140 		else
2141 			/* just a partial read to be scheduled from separate
2142 			 * context
2143 			 */
2144 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2145 
2146 		cond_resched();
2147 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2148 			md_check_recovery(mddev);
2149 	}
2150 	blk_finish_plug(&plug);
2151 }
2152 
2153 
2154 static int init_resync(struct r1conf *conf)
2155 {
2156 	int buffs;
2157 
2158 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2159 	BUG_ON(conf->r1buf_pool);
2160 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2161 					  conf->poolinfo);
2162 	if (!conf->r1buf_pool)
2163 		return -ENOMEM;
2164 	conf->next_resync = 0;
2165 	return 0;
2166 }
2167 
2168 /*
2169  * perform a "sync" on one "block"
2170  *
2171  * We need to make sure that no normal I/O request - particularly write
2172  * requests - conflict with active sync requests.
2173  *
2174  * This is achieved by tracking pending requests and a 'barrier' concept
2175  * that can be installed to exclude normal IO requests.
2176  */
2177 
2178 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2179 {
2180 	struct r1conf *conf = mddev->private;
2181 	struct r1bio *r1_bio;
2182 	struct bio *bio;
2183 	sector_t max_sector, nr_sectors;
2184 	int disk = -1;
2185 	int i;
2186 	int wonly = -1;
2187 	int write_targets = 0, read_targets = 0;
2188 	sector_t sync_blocks;
2189 	int still_degraded = 0;
2190 	int good_sectors = RESYNC_SECTORS;
2191 	int min_bad = 0; /* number of sectors that are bad in all devices */
2192 
2193 	if (!conf->r1buf_pool)
2194 		if (init_resync(conf))
2195 			return 0;
2196 
2197 	max_sector = mddev->dev_sectors;
2198 	if (sector_nr >= max_sector) {
2199 		/* If we aborted, we need to abort the
2200 		 * sync on the 'current' bitmap chunk (there will
2201 		 * only be one in raid1 resync.
2202 		 * We can find the current addess in mddev->curr_resync
2203 		 */
2204 		if (mddev->curr_resync < max_sector) /* aborted */
2205 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2206 						&sync_blocks, 1);
2207 		else /* completed sync */
2208 			conf->fullsync = 0;
2209 
2210 		bitmap_close_sync(mddev->bitmap);
2211 		close_sync(conf);
2212 		return 0;
2213 	}
2214 
2215 	if (mddev->bitmap == NULL &&
2216 	    mddev->recovery_cp == MaxSector &&
2217 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2218 	    conf->fullsync == 0) {
2219 		*skipped = 1;
2220 		return max_sector - sector_nr;
2221 	}
2222 	/* before building a request, check if we can skip these blocks..
2223 	 * This call the bitmap_start_sync doesn't actually record anything
2224 	 */
2225 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2226 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2227 		/* We can skip this block, and probably several more */
2228 		*skipped = 1;
2229 		return sync_blocks;
2230 	}
2231 	/*
2232 	 * If there is non-resync activity waiting for a turn,
2233 	 * and resync is going fast enough,
2234 	 * then let it though before starting on this new sync request.
2235 	 */
2236 	if (!go_faster && conf->nr_waiting)
2237 		msleep_interruptible(1000);
2238 
2239 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2240 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2241 	raise_barrier(conf);
2242 
2243 	conf->next_resync = sector_nr;
2244 
2245 	rcu_read_lock();
2246 	/*
2247 	 * If we get a correctably read error during resync or recovery,
2248 	 * we might want to read from a different device.  So we
2249 	 * flag all drives that could conceivably be read from for READ,
2250 	 * and any others (which will be non-In_sync devices) for WRITE.
2251 	 * If a read fails, we try reading from something else for which READ
2252 	 * is OK.
2253 	 */
2254 
2255 	r1_bio->mddev = mddev;
2256 	r1_bio->sector = sector_nr;
2257 	r1_bio->state = 0;
2258 	set_bit(R1BIO_IsSync, &r1_bio->state);
2259 
2260 	for (i = 0; i < conf->raid_disks * 2; i++) {
2261 		struct md_rdev *rdev;
2262 		bio = r1_bio->bios[i];
2263 
2264 		/* take from bio_init */
2265 		bio->bi_next = NULL;
2266 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2267 		bio->bi_flags |= 1 << BIO_UPTODATE;
2268 		bio->bi_rw = READ;
2269 		bio->bi_vcnt = 0;
2270 		bio->bi_idx = 0;
2271 		bio->bi_phys_segments = 0;
2272 		bio->bi_size = 0;
2273 		bio->bi_end_io = NULL;
2274 		bio->bi_private = NULL;
2275 
2276 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2277 		if (rdev == NULL ||
2278 		    test_bit(Faulty, &rdev->flags)) {
2279 			if (i < conf->raid_disks)
2280 				still_degraded = 1;
2281 		} else if (!test_bit(In_sync, &rdev->flags)) {
2282 			bio->bi_rw = WRITE;
2283 			bio->bi_end_io = end_sync_write;
2284 			write_targets ++;
2285 		} else {
2286 			/* may need to read from here */
2287 			sector_t first_bad = MaxSector;
2288 			int bad_sectors;
2289 
2290 			if (is_badblock(rdev, sector_nr, good_sectors,
2291 					&first_bad, &bad_sectors)) {
2292 				if (first_bad > sector_nr)
2293 					good_sectors = first_bad - sector_nr;
2294 				else {
2295 					bad_sectors -= (sector_nr - first_bad);
2296 					if (min_bad == 0 ||
2297 					    min_bad > bad_sectors)
2298 						min_bad = bad_sectors;
2299 				}
2300 			}
2301 			if (sector_nr < first_bad) {
2302 				if (test_bit(WriteMostly, &rdev->flags)) {
2303 					if (wonly < 0)
2304 						wonly = i;
2305 				} else {
2306 					if (disk < 0)
2307 						disk = i;
2308 				}
2309 				bio->bi_rw = READ;
2310 				bio->bi_end_io = end_sync_read;
2311 				read_targets++;
2312 			}
2313 		}
2314 		if (bio->bi_end_io) {
2315 			atomic_inc(&rdev->nr_pending);
2316 			bio->bi_sector = sector_nr + rdev->data_offset;
2317 			bio->bi_bdev = rdev->bdev;
2318 			bio->bi_private = r1_bio;
2319 		}
2320 	}
2321 	rcu_read_unlock();
2322 	if (disk < 0)
2323 		disk = wonly;
2324 	r1_bio->read_disk = disk;
2325 
2326 	if (read_targets == 0 && min_bad > 0) {
2327 		/* These sectors are bad on all InSync devices, so we
2328 		 * need to mark them bad on all write targets
2329 		 */
2330 		int ok = 1;
2331 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2332 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2333 				struct md_rdev *rdev =
2334 					rcu_dereference(conf->mirrors[i].rdev);
2335 				ok = rdev_set_badblocks(rdev, sector_nr,
2336 							min_bad, 0
2337 					) && ok;
2338 			}
2339 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2340 		*skipped = 1;
2341 		put_buf(r1_bio);
2342 
2343 		if (!ok) {
2344 			/* Cannot record the badblocks, so need to
2345 			 * abort the resync.
2346 			 * If there are multiple read targets, could just
2347 			 * fail the really bad ones ???
2348 			 */
2349 			conf->recovery_disabled = mddev->recovery_disabled;
2350 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2351 			return 0;
2352 		} else
2353 			return min_bad;
2354 
2355 	}
2356 	if (min_bad > 0 && min_bad < good_sectors) {
2357 		/* only resync enough to reach the next bad->good
2358 		 * transition */
2359 		good_sectors = min_bad;
2360 	}
2361 
2362 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2363 		/* extra read targets are also write targets */
2364 		write_targets += read_targets-1;
2365 
2366 	if (write_targets == 0 || read_targets == 0) {
2367 		/* There is nowhere to write, so all non-sync
2368 		 * drives must be failed - so we are finished
2369 		 */
2370 		sector_t rv = max_sector - sector_nr;
2371 		*skipped = 1;
2372 		put_buf(r1_bio);
2373 		return rv;
2374 	}
2375 
2376 	if (max_sector > mddev->resync_max)
2377 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2378 	if (max_sector > sector_nr + good_sectors)
2379 		max_sector = sector_nr + good_sectors;
2380 	nr_sectors = 0;
2381 	sync_blocks = 0;
2382 	do {
2383 		struct page *page;
2384 		int len = PAGE_SIZE;
2385 		if (sector_nr + (len>>9) > max_sector)
2386 			len = (max_sector - sector_nr) << 9;
2387 		if (len == 0)
2388 			break;
2389 		if (sync_blocks == 0) {
2390 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2391 					       &sync_blocks, still_degraded) &&
2392 			    !conf->fullsync &&
2393 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2394 				break;
2395 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2396 			if ((len >> 9) > sync_blocks)
2397 				len = sync_blocks<<9;
2398 		}
2399 
2400 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2401 			bio = r1_bio->bios[i];
2402 			if (bio->bi_end_io) {
2403 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2404 				if (bio_add_page(bio, page, len, 0) == 0) {
2405 					/* stop here */
2406 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2407 					while (i > 0) {
2408 						i--;
2409 						bio = r1_bio->bios[i];
2410 						if (bio->bi_end_io==NULL)
2411 							continue;
2412 						/* remove last page from this bio */
2413 						bio->bi_vcnt--;
2414 						bio->bi_size -= len;
2415 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2416 					}
2417 					goto bio_full;
2418 				}
2419 			}
2420 		}
2421 		nr_sectors += len>>9;
2422 		sector_nr += len>>9;
2423 		sync_blocks -= (len>>9);
2424 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2425  bio_full:
2426 	r1_bio->sectors = nr_sectors;
2427 
2428 	/* For a user-requested sync, we read all readable devices and do a
2429 	 * compare
2430 	 */
2431 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2432 		atomic_set(&r1_bio->remaining, read_targets);
2433 		for (i = 0; i < conf->raid_disks * 2; i++) {
2434 			bio = r1_bio->bios[i];
2435 			if (bio->bi_end_io == end_sync_read) {
2436 				md_sync_acct(bio->bi_bdev, nr_sectors);
2437 				generic_make_request(bio);
2438 			}
2439 		}
2440 	} else {
2441 		atomic_set(&r1_bio->remaining, 1);
2442 		bio = r1_bio->bios[r1_bio->read_disk];
2443 		md_sync_acct(bio->bi_bdev, nr_sectors);
2444 		generic_make_request(bio);
2445 
2446 	}
2447 	return nr_sectors;
2448 }
2449 
2450 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2451 {
2452 	if (sectors)
2453 		return sectors;
2454 
2455 	return mddev->dev_sectors;
2456 }
2457 
2458 static struct r1conf *setup_conf(struct mddev *mddev)
2459 {
2460 	struct r1conf *conf;
2461 	int i;
2462 	struct mirror_info *disk;
2463 	struct md_rdev *rdev;
2464 	int err = -ENOMEM;
2465 
2466 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2467 	if (!conf)
2468 		goto abort;
2469 
2470 	conf->mirrors = kzalloc(sizeof(struct mirror_info)
2471 				* mddev->raid_disks * 2,
2472 				 GFP_KERNEL);
2473 	if (!conf->mirrors)
2474 		goto abort;
2475 
2476 	conf->tmppage = alloc_page(GFP_KERNEL);
2477 	if (!conf->tmppage)
2478 		goto abort;
2479 
2480 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2481 	if (!conf->poolinfo)
2482 		goto abort;
2483 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2484 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2485 					  r1bio_pool_free,
2486 					  conf->poolinfo);
2487 	if (!conf->r1bio_pool)
2488 		goto abort;
2489 
2490 	conf->poolinfo->mddev = mddev;
2491 
2492 	err = -EINVAL;
2493 	spin_lock_init(&conf->device_lock);
2494 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2495 		int disk_idx = rdev->raid_disk;
2496 		if (disk_idx >= mddev->raid_disks
2497 		    || disk_idx < 0)
2498 			continue;
2499 		if (test_bit(Replacement, &rdev->flags))
2500 			disk = conf->mirrors + conf->raid_disks + disk_idx;
2501 		else
2502 			disk = conf->mirrors + disk_idx;
2503 
2504 		if (disk->rdev)
2505 			goto abort;
2506 		disk->rdev = rdev;
2507 
2508 		disk->head_position = 0;
2509 	}
2510 	conf->raid_disks = mddev->raid_disks;
2511 	conf->mddev = mddev;
2512 	INIT_LIST_HEAD(&conf->retry_list);
2513 
2514 	spin_lock_init(&conf->resync_lock);
2515 	init_waitqueue_head(&conf->wait_barrier);
2516 
2517 	bio_list_init(&conf->pending_bio_list);
2518 	conf->pending_count = 0;
2519 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2520 
2521 	err = -EIO;
2522 	conf->last_used = -1;
2523 	for (i = 0; i < conf->raid_disks * 2; i++) {
2524 
2525 		disk = conf->mirrors + i;
2526 
2527 		if (i < conf->raid_disks &&
2528 		    disk[conf->raid_disks].rdev) {
2529 			/* This slot has a replacement. */
2530 			if (!disk->rdev) {
2531 				/* No original, just make the replacement
2532 				 * a recovering spare
2533 				 */
2534 				disk->rdev =
2535 					disk[conf->raid_disks].rdev;
2536 				disk[conf->raid_disks].rdev = NULL;
2537 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2538 				/* Original is not in_sync - bad */
2539 				goto abort;
2540 		}
2541 
2542 		if (!disk->rdev ||
2543 		    !test_bit(In_sync, &disk->rdev->flags)) {
2544 			disk->head_position = 0;
2545 			if (disk->rdev)
2546 				conf->fullsync = 1;
2547 		} else if (conf->last_used < 0)
2548 			/*
2549 			 * The first working device is used as a
2550 			 * starting point to read balancing.
2551 			 */
2552 			conf->last_used = i;
2553 	}
2554 
2555 	if (conf->last_used < 0) {
2556 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2557 		       mdname(mddev));
2558 		goto abort;
2559 	}
2560 	err = -ENOMEM;
2561 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2562 	if (!conf->thread) {
2563 		printk(KERN_ERR
2564 		       "md/raid1:%s: couldn't allocate thread\n",
2565 		       mdname(mddev));
2566 		goto abort;
2567 	}
2568 
2569 	return conf;
2570 
2571  abort:
2572 	if (conf) {
2573 		if (conf->r1bio_pool)
2574 			mempool_destroy(conf->r1bio_pool);
2575 		kfree(conf->mirrors);
2576 		safe_put_page(conf->tmppage);
2577 		kfree(conf->poolinfo);
2578 		kfree(conf);
2579 	}
2580 	return ERR_PTR(err);
2581 }
2582 
2583 static int run(struct mddev *mddev)
2584 {
2585 	struct r1conf *conf;
2586 	int i;
2587 	struct md_rdev *rdev;
2588 
2589 	if (mddev->level != 1) {
2590 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2591 		       mdname(mddev), mddev->level);
2592 		return -EIO;
2593 	}
2594 	if (mddev->reshape_position != MaxSector) {
2595 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2596 		       mdname(mddev));
2597 		return -EIO;
2598 	}
2599 	/*
2600 	 * copy the already verified devices into our private RAID1
2601 	 * bookkeeping area. [whatever we allocate in run(),
2602 	 * should be freed in stop()]
2603 	 */
2604 	if (mddev->private == NULL)
2605 		conf = setup_conf(mddev);
2606 	else
2607 		conf = mddev->private;
2608 
2609 	if (IS_ERR(conf))
2610 		return PTR_ERR(conf);
2611 
2612 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2613 		if (!mddev->gendisk)
2614 			continue;
2615 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2616 				  rdev->data_offset << 9);
2617 		/* as we don't honour merge_bvec_fn, we must never risk
2618 		 * violating it, so limit ->max_segments to 1 lying within
2619 		 * a single page, as a one page request is never in violation.
2620 		 */
2621 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2622 			blk_queue_max_segments(mddev->queue, 1);
2623 			blk_queue_segment_boundary(mddev->queue,
2624 						   PAGE_CACHE_SIZE - 1);
2625 		}
2626 	}
2627 
2628 	mddev->degraded = 0;
2629 	for (i=0; i < conf->raid_disks; i++)
2630 		if (conf->mirrors[i].rdev == NULL ||
2631 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2632 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2633 			mddev->degraded++;
2634 
2635 	if (conf->raid_disks - mddev->degraded == 1)
2636 		mddev->recovery_cp = MaxSector;
2637 
2638 	if (mddev->recovery_cp != MaxSector)
2639 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2640 		       " -- starting background reconstruction\n",
2641 		       mdname(mddev));
2642 	printk(KERN_INFO
2643 		"md/raid1:%s: active with %d out of %d mirrors\n",
2644 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2645 		mddev->raid_disks);
2646 
2647 	/*
2648 	 * Ok, everything is just fine now
2649 	 */
2650 	mddev->thread = conf->thread;
2651 	conf->thread = NULL;
2652 	mddev->private = conf;
2653 
2654 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2655 
2656 	if (mddev->queue) {
2657 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2658 		mddev->queue->backing_dev_info.congested_data = mddev;
2659 	}
2660 	return md_integrity_register(mddev);
2661 }
2662 
2663 static int stop(struct mddev *mddev)
2664 {
2665 	struct r1conf *conf = mddev->private;
2666 	struct bitmap *bitmap = mddev->bitmap;
2667 
2668 	/* wait for behind writes to complete */
2669 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2670 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2671 		       mdname(mddev));
2672 		/* need to kick something here to make sure I/O goes? */
2673 		wait_event(bitmap->behind_wait,
2674 			   atomic_read(&bitmap->behind_writes) == 0);
2675 	}
2676 
2677 	raise_barrier(conf);
2678 	lower_barrier(conf);
2679 
2680 	md_unregister_thread(&mddev->thread);
2681 	if (conf->r1bio_pool)
2682 		mempool_destroy(conf->r1bio_pool);
2683 	kfree(conf->mirrors);
2684 	kfree(conf->poolinfo);
2685 	kfree(conf);
2686 	mddev->private = NULL;
2687 	return 0;
2688 }
2689 
2690 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2691 {
2692 	/* no resync is happening, and there is enough space
2693 	 * on all devices, so we can resize.
2694 	 * We need to make sure resync covers any new space.
2695 	 * If the array is shrinking we should possibly wait until
2696 	 * any io in the removed space completes, but it hardly seems
2697 	 * worth it.
2698 	 */
2699 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2700 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2701 		return -EINVAL;
2702 	set_capacity(mddev->gendisk, mddev->array_sectors);
2703 	revalidate_disk(mddev->gendisk);
2704 	if (sectors > mddev->dev_sectors &&
2705 	    mddev->recovery_cp > mddev->dev_sectors) {
2706 		mddev->recovery_cp = mddev->dev_sectors;
2707 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2708 	}
2709 	mddev->dev_sectors = sectors;
2710 	mddev->resync_max_sectors = sectors;
2711 	return 0;
2712 }
2713 
2714 static int raid1_reshape(struct mddev *mddev)
2715 {
2716 	/* We need to:
2717 	 * 1/ resize the r1bio_pool
2718 	 * 2/ resize conf->mirrors
2719 	 *
2720 	 * We allocate a new r1bio_pool if we can.
2721 	 * Then raise a device barrier and wait until all IO stops.
2722 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2723 	 *
2724 	 * At the same time, we "pack" the devices so that all the missing
2725 	 * devices have the higher raid_disk numbers.
2726 	 */
2727 	mempool_t *newpool, *oldpool;
2728 	struct pool_info *newpoolinfo;
2729 	struct mirror_info *newmirrors;
2730 	struct r1conf *conf = mddev->private;
2731 	int cnt, raid_disks;
2732 	unsigned long flags;
2733 	int d, d2, err;
2734 
2735 	/* Cannot change chunk_size, layout, or level */
2736 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2737 	    mddev->layout != mddev->new_layout ||
2738 	    mddev->level != mddev->new_level) {
2739 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2740 		mddev->new_layout = mddev->layout;
2741 		mddev->new_level = mddev->level;
2742 		return -EINVAL;
2743 	}
2744 
2745 	err = md_allow_write(mddev);
2746 	if (err)
2747 		return err;
2748 
2749 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2750 
2751 	if (raid_disks < conf->raid_disks) {
2752 		cnt=0;
2753 		for (d= 0; d < conf->raid_disks; d++)
2754 			if (conf->mirrors[d].rdev)
2755 				cnt++;
2756 		if (cnt > raid_disks)
2757 			return -EBUSY;
2758 	}
2759 
2760 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2761 	if (!newpoolinfo)
2762 		return -ENOMEM;
2763 	newpoolinfo->mddev = mddev;
2764 	newpoolinfo->raid_disks = raid_disks * 2;
2765 
2766 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2767 				 r1bio_pool_free, newpoolinfo);
2768 	if (!newpool) {
2769 		kfree(newpoolinfo);
2770 		return -ENOMEM;
2771 	}
2772 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2773 			     GFP_KERNEL);
2774 	if (!newmirrors) {
2775 		kfree(newpoolinfo);
2776 		mempool_destroy(newpool);
2777 		return -ENOMEM;
2778 	}
2779 
2780 	raise_barrier(conf);
2781 
2782 	/* ok, everything is stopped */
2783 	oldpool = conf->r1bio_pool;
2784 	conf->r1bio_pool = newpool;
2785 
2786 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2787 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2788 		if (rdev && rdev->raid_disk != d2) {
2789 			sysfs_unlink_rdev(mddev, rdev);
2790 			rdev->raid_disk = d2;
2791 			sysfs_unlink_rdev(mddev, rdev);
2792 			if (sysfs_link_rdev(mddev, rdev))
2793 				printk(KERN_WARNING
2794 				       "md/raid1:%s: cannot register rd%d\n",
2795 				       mdname(mddev), rdev->raid_disk);
2796 		}
2797 		if (rdev)
2798 			newmirrors[d2++].rdev = rdev;
2799 	}
2800 	kfree(conf->mirrors);
2801 	conf->mirrors = newmirrors;
2802 	kfree(conf->poolinfo);
2803 	conf->poolinfo = newpoolinfo;
2804 
2805 	spin_lock_irqsave(&conf->device_lock, flags);
2806 	mddev->degraded += (raid_disks - conf->raid_disks);
2807 	spin_unlock_irqrestore(&conf->device_lock, flags);
2808 	conf->raid_disks = mddev->raid_disks = raid_disks;
2809 	mddev->delta_disks = 0;
2810 
2811 	conf->last_used = 0; /* just make sure it is in-range */
2812 	lower_barrier(conf);
2813 
2814 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2815 	md_wakeup_thread(mddev->thread);
2816 
2817 	mempool_destroy(oldpool);
2818 	return 0;
2819 }
2820 
2821 static void raid1_quiesce(struct mddev *mddev, int state)
2822 {
2823 	struct r1conf *conf = mddev->private;
2824 
2825 	switch(state) {
2826 	case 2: /* wake for suspend */
2827 		wake_up(&conf->wait_barrier);
2828 		break;
2829 	case 1:
2830 		raise_barrier(conf);
2831 		break;
2832 	case 0:
2833 		lower_barrier(conf);
2834 		break;
2835 	}
2836 }
2837 
2838 static void *raid1_takeover(struct mddev *mddev)
2839 {
2840 	/* raid1 can take over:
2841 	 *  raid5 with 2 devices, any layout or chunk size
2842 	 */
2843 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2844 		struct r1conf *conf;
2845 		mddev->new_level = 1;
2846 		mddev->new_layout = 0;
2847 		mddev->new_chunk_sectors = 0;
2848 		conf = setup_conf(mddev);
2849 		if (!IS_ERR(conf))
2850 			conf->barrier = 1;
2851 		return conf;
2852 	}
2853 	return ERR_PTR(-EINVAL);
2854 }
2855 
2856 static struct md_personality raid1_personality =
2857 {
2858 	.name		= "raid1",
2859 	.level		= 1,
2860 	.owner		= THIS_MODULE,
2861 	.make_request	= make_request,
2862 	.run		= run,
2863 	.stop		= stop,
2864 	.status		= status,
2865 	.error_handler	= error,
2866 	.hot_add_disk	= raid1_add_disk,
2867 	.hot_remove_disk= raid1_remove_disk,
2868 	.spare_active	= raid1_spare_active,
2869 	.sync_request	= sync_request,
2870 	.resize		= raid1_resize,
2871 	.size		= raid1_size,
2872 	.check_reshape	= raid1_reshape,
2873 	.quiesce	= raid1_quiesce,
2874 	.takeover	= raid1_takeover,
2875 };
2876 
2877 static int __init raid_init(void)
2878 {
2879 	return register_md_personality(&raid1_personality);
2880 }
2881 
2882 static void raid_exit(void)
2883 {
2884 	unregister_md_personality(&raid1_personality);
2885 }
2886 
2887 module_init(raid_init);
2888 module_exit(raid_exit);
2889 MODULE_LICENSE("GPL");
2890 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2891 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2892 MODULE_ALIAS("md-raid1");
2893 MODULE_ALIAS("md-level-1");
2894 
2895 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2896