1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* When there are this many requests queue to be written by 50 * the raid1 thread, we become 'congested' to provide back-pressure 51 * for writeback. 52 */ 53 static int max_queued_requests = 1024; 54 55 static void allow_barrier(struct r1conf *conf); 56 static void lower_barrier(struct r1conf *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 struct r1bio *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while (++j < pi->raid_disks) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 struct r1bio *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks * 2; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (!BIO_SPECIAL(*bio)) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(struct r1bio *r1_bio) 176 { 177 struct r1conf *conf = r1_bio->mddev->private; 178 179 put_all_bios(conf, r1_bio); 180 mempool_free(r1_bio, conf->r1bio_pool); 181 } 182 183 static void put_buf(struct r1bio *r1_bio) 184 { 185 struct r1conf *conf = r1_bio->mddev->private; 186 int i; 187 188 for (i = 0; i < conf->raid_disks * 2; i++) { 189 struct bio *bio = r1_bio->bios[i]; 190 if (bio->bi_end_io) 191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 192 } 193 194 mempool_free(r1_bio, conf->r1buf_pool); 195 196 lower_barrier(conf); 197 } 198 199 static void reschedule_retry(struct r1bio *r1_bio) 200 { 201 unsigned long flags; 202 struct mddev *mddev = r1_bio->mddev; 203 struct r1conf *conf = mddev->private; 204 205 spin_lock_irqsave(&conf->device_lock, flags); 206 list_add(&r1_bio->retry_list, &conf->retry_list); 207 conf->nr_queued ++; 208 spin_unlock_irqrestore(&conf->device_lock, flags); 209 210 wake_up(&conf->wait_barrier); 211 md_wakeup_thread(mddev->thread); 212 } 213 214 /* 215 * raid_end_bio_io() is called when we have finished servicing a mirrored 216 * operation and are ready to return a success/failure code to the buffer 217 * cache layer. 218 */ 219 static void call_bio_endio(struct r1bio *r1_bio) 220 { 221 struct bio *bio = r1_bio->master_bio; 222 int done; 223 struct r1conf *conf = r1_bio->mddev->private; 224 225 if (bio->bi_phys_segments) { 226 unsigned long flags; 227 spin_lock_irqsave(&conf->device_lock, flags); 228 bio->bi_phys_segments--; 229 done = (bio->bi_phys_segments == 0); 230 spin_unlock_irqrestore(&conf->device_lock, flags); 231 } else 232 done = 1; 233 234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 235 clear_bit(BIO_UPTODATE, &bio->bi_flags); 236 if (done) { 237 bio_endio(bio, 0); 238 /* 239 * Wake up any possible resync thread that waits for the device 240 * to go idle. 241 */ 242 allow_barrier(conf); 243 } 244 } 245 246 static void raid_end_bio_io(struct r1bio *r1_bio) 247 { 248 struct bio *bio = r1_bio->master_bio; 249 250 /* if nobody has done the final endio yet, do it now */ 251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 253 (bio_data_dir(bio) == WRITE) ? "write" : "read", 254 (unsigned long long) bio->bi_sector, 255 (unsigned long long) bio->bi_sector + 256 (bio->bi_size >> 9) - 1); 257 258 call_bio_endio(r1_bio); 259 } 260 free_r1bio(r1_bio); 261 } 262 263 /* 264 * Update disk head position estimator based on IRQ completion info. 265 */ 266 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 267 { 268 struct r1conf *conf = r1_bio->mddev->private; 269 270 conf->mirrors[disk].head_position = 271 r1_bio->sector + (r1_bio->sectors); 272 } 273 274 /* 275 * Find the disk number which triggered given bio 276 */ 277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 278 { 279 int mirror; 280 struct r1conf *conf = r1_bio->mddev->private; 281 int raid_disks = conf->raid_disks; 282 283 for (mirror = 0; mirror < raid_disks * 2; mirror++) 284 if (r1_bio->bios[mirror] == bio) 285 break; 286 287 BUG_ON(mirror == raid_disks * 2); 288 update_head_pos(mirror, r1_bio); 289 290 return mirror; 291 } 292 293 static void raid1_end_read_request(struct bio *bio, int error) 294 { 295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 296 struct r1bio *r1_bio = bio->bi_private; 297 int mirror; 298 struct r1conf *conf = r1_bio->mddev->private; 299 300 mirror = r1_bio->read_disk; 301 /* 302 * this branch is our 'one mirror IO has finished' event handler: 303 */ 304 update_head_pos(mirror, r1_bio); 305 306 if (uptodate) 307 set_bit(R1BIO_Uptodate, &r1_bio->state); 308 else { 309 /* If all other devices have failed, we want to return 310 * the error upwards rather than fail the last device. 311 * Here we redefine "uptodate" to mean "Don't want to retry" 312 */ 313 unsigned long flags; 314 spin_lock_irqsave(&conf->device_lock, flags); 315 if (r1_bio->mddev->degraded == conf->raid_disks || 316 (r1_bio->mddev->degraded == conf->raid_disks-1 && 317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 318 uptodate = 1; 319 spin_unlock_irqrestore(&conf->device_lock, flags); 320 } 321 322 if (uptodate) 323 raid_end_bio_io(r1_bio); 324 else { 325 /* 326 * oops, read error: 327 */ 328 char b[BDEVNAME_SIZE]; 329 printk_ratelimited( 330 KERN_ERR "md/raid1:%s: %s: " 331 "rescheduling sector %llu\n", 332 mdname(conf->mddev), 333 bdevname(conf->mirrors[mirror].rdev->bdev, 334 b), 335 (unsigned long long)r1_bio->sector); 336 set_bit(R1BIO_ReadError, &r1_bio->state); 337 reschedule_retry(r1_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 341 } 342 343 static void close_write(struct r1bio *r1_bio) 344 { 345 /* it really is the end of this request */ 346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 347 /* free extra copy of the data pages */ 348 int i = r1_bio->behind_page_count; 349 while (i--) 350 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 351 kfree(r1_bio->behind_bvecs); 352 r1_bio->behind_bvecs = NULL; 353 } 354 /* clear the bitmap if all writes complete successfully */ 355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 356 r1_bio->sectors, 357 !test_bit(R1BIO_Degraded, &r1_bio->state), 358 test_bit(R1BIO_BehindIO, &r1_bio->state)); 359 md_write_end(r1_bio->mddev); 360 } 361 362 static void r1_bio_write_done(struct r1bio *r1_bio) 363 { 364 if (!atomic_dec_and_test(&r1_bio->remaining)) 365 return; 366 367 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 368 reschedule_retry(r1_bio); 369 else { 370 close_write(r1_bio); 371 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 372 reschedule_retry(r1_bio); 373 else 374 raid_end_bio_io(r1_bio); 375 } 376 } 377 378 static void raid1_end_write_request(struct bio *bio, int error) 379 { 380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 381 struct r1bio *r1_bio = bio->bi_private; 382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 383 struct r1conf *conf = r1_bio->mddev->private; 384 struct bio *to_put = NULL; 385 386 mirror = find_bio_disk(r1_bio, bio); 387 388 /* 389 * 'one mirror IO has finished' event handler: 390 */ 391 if (!uptodate) { 392 set_bit(WriteErrorSeen, 393 &conf->mirrors[mirror].rdev->flags); 394 if (!test_and_set_bit(WantReplacement, 395 &conf->mirrors[mirror].rdev->flags)) 396 set_bit(MD_RECOVERY_NEEDED, & 397 conf->mddev->recovery); 398 399 set_bit(R1BIO_WriteError, &r1_bio->state); 400 } else { 401 /* 402 * Set R1BIO_Uptodate in our master bio, so that we 403 * will return a good error code for to the higher 404 * levels even if IO on some other mirrored buffer 405 * fails. 406 * 407 * The 'master' represents the composite IO operation 408 * to user-side. So if something waits for IO, then it 409 * will wait for the 'master' bio. 410 */ 411 sector_t first_bad; 412 int bad_sectors; 413 414 r1_bio->bios[mirror] = NULL; 415 to_put = bio; 416 set_bit(R1BIO_Uptodate, &r1_bio->state); 417 418 /* Maybe we can clear some bad blocks. */ 419 if (is_badblock(conf->mirrors[mirror].rdev, 420 r1_bio->sector, r1_bio->sectors, 421 &first_bad, &bad_sectors)) { 422 r1_bio->bios[mirror] = IO_MADE_GOOD; 423 set_bit(R1BIO_MadeGood, &r1_bio->state); 424 } 425 } 426 427 if (behind) { 428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 429 atomic_dec(&r1_bio->behind_remaining); 430 431 /* 432 * In behind mode, we ACK the master bio once the I/O 433 * has safely reached all non-writemostly 434 * disks. Setting the Returned bit ensures that this 435 * gets done only once -- we don't ever want to return 436 * -EIO here, instead we'll wait 437 */ 438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 439 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 440 /* Maybe we can return now */ 441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 442 struct bio *mbio = r1_bio->master_bio; 443 pr_debug("raid1: behind end write sectors" 444 " %llu-%llu\n", 445 (unsigned long long) mbio->bi_sector, 446 (unsigned long long) mbio->bi_sector + 447 (mbio->bi_size >> 9) - 1); 448 call_bio_endio(r1_bio); 449 } 450 } 451 } 452 if (r1_bio->bios[mirror] == NULL) 453 rdev_dec_pending(conf->mirrors[mirror].rdev, 454 conf->mddev); 455 456 /* 457 * Let's see if all mirrored write operations have finished 458 * already. 459 */ 460 r1_bio_write_done(r1_bio); 461 462 if (to_put) 463 bio_put(to_put); 464 } 465 466 467 /* 468 * This routine returns the disk from which the requested read should 469 * be done. There is a per-array 'next expected sequential IO' sector 470 * number - if this matches on the next IO then we use the last disk. 471 * There is also a per-disk 'last know head position' sector that is 472 * maintained from IRQ contexts, both the normal and the resync IO 473 * completion handlers update this position correctly. If there is no 474 * perfect sequential match then we pick the disk whose head is closest. 475 * 476 * If there are 2 mirrors in the same 2 devices, performance degrades 477 * because position is mirror, not device based. 478 * 479 * The rdev for the device selected will have nr_pending incremented. 480 */ 481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 482 { 483 const sector_t this_sector = r1_bio->sector; 484 int sectors; 485 int best_good_sectors; 486 int start_disk; 487 int best_disk; 488 int i; 489 sector_t best_dist; 490 struct md_rdev *rdev; 491 int choose_first; 492 493 rcu_read_lock(); 494 /* 495 * Check if we can balance. We can balance on the whole 496 * device if no resync is going on, or below the resync window. 497 * We take the first readable disk when above the resync window. 498 */ 499 retry: 500 sectors = r1_bio->sectors; 501 best_disk = -1; 502 best_dist = MaxSector; 503 best_good_sectors = 0; 504 505 if (conf->mddev->recovery_cp < MaxSector && 506 (this_sector + sectors >= conf->next_resync)) { 507 choose_first = 1; 508 start_disk = 0; 509 } else { 510 choose_first = 0; 511 start_disk = conf->last_used; 512 } 513 514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) { 515 sector_t dist; 516 sector_t first_bad; 517 int bad_sectors; 518 519 int disk = start_disk + i; 520 if (disk >= conf->raid_disks) 521 disk -= conf->raid_disks; 522 523 rdev = rcu_dereference(conf->mirrors[disk].rdev); 524 if (r1_bio->bios[disk] == IO_BLOCKED 525 || rdev == NULL 526 || test_bit(Faulty, &rdev->flags)) 527 continue; 528 if (!test_bit(In_sync, &rdev->flags) && 529 rdev->recovery_offset < this_sector + sectors) 530 continue; 531 if (test_bit(WriteMostly, &rdev->flags)) { 532 /* Don't balance among write-mostly, just 533 * use the first as a last resort */ 534 if (best_disk < 0) { 535 if (is_badblock(rdev, this_sector, sectors, 536 &first_bad, &bad_sectors)) { 537 if (first_bad < this_sector) 538 /* Cannot use this */ 539 continue; 540 best_good_sectors = first_bad - this_sector; 541 } else 542 best_good_sectors = sectors; 543 best_disk = disk; 544 } 545 continue; 546 } 547 /* This is a reasonable device to use. It might 548 * even be best. 549 */ 550 if (is_badblock(rdev, this_sector, sectors, 551 &first_bad, &bad_sectors)) { 552 if (best_dist < MaxSector) 553 /* already have a better device */ 554 continue; 555 if (first_bad <= this_sector) { 556 /* cannot read here. If this is the 'primary' 557 * device, then we must not read beyond 558 * bad_sectors from another device.. 559 */ 560 bad_sectors -= (this_sector - first_bad); 561 if (choose_first && sectors > bad_sectors) 562 sectors = bad_sectors; 563 if (best_good_sectors > sectors) 564 best_good_sectors = sectors; 565 566 } else { 567 sector_t good_sectors = first_bad - this_sector; 568 if (good_sectors > best_good_sectors) { 569 best_good_sectors = good_sectors; 570 best_disk = disk; 571 } 572 if (choose_first) 573 break; 574 } 575 continue; 576 } else 577 best_good_sectors = sectors; 578 579 dist = abs(this_sector - conf->mirrors[disk].head_position); 580 if (choose_first 581 /* Don't change to another disk for sequential reads */ 582 || conf->next_seq_sect == this_sector 583 || dist == 0 584 /* If device is idle, use it */ 585 || atomic_read(&rdev->nr_pending) == 0) { 586 best_disk = disk; 587 break; 588 } 589 if (dist < best_dist) { 590 best_dist = dist; 591 best_disk = disk; 592 } 593 } 594 595 if (best_disk >= 0) { 596 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 597 if (!rdev) 598 goto retry; 599 atomic_inc(&rdev->nr_pending); 600 if (test_bit(Faulty, &rdev->flags)) { 601 /* cannot risk returning a device that failed 602 * before we inc'ed nr_pending 603 */ 604 rdev_dec_pending(rdev, conf->mddev); 605 goto retry; 606 } 607 sectors = best_good_sectors; 608 conf->next_seq_sect = this_sector + sectors; 609 conf->last_used = best_disk; 610 } 611 rcu_read_unlock(); 612 *max_sectors = sectors; 613 614 return best_disk; 615 } 616 617 int md_raid1_congested(struct mddev *mddev, int bits) 618 { 619 struct r1conf *conf = mddev->private; 620 int i, ret = 0; 621 622 if ((bits & (1 << BDI_async_congested)) && 623 conf->pending_count >= max_queued_requests) 624 return 1; 625 626 rcu_read_lock(); 627 for (i = 0; i < conf->raid_disks; i++) { 628 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 629 if (rdev && !test_bit(Faulty, &rdev->flags)) { 630 struct request_queue *q = bdev_get_queue(rdev->bdev); 631 632 BUG_ON(!q); 633 634 /* Note the '|| 1' - when read_balance prefers 635 * non-congested targets, it can be removed 636 */ 637 if ((bits & (1<<BDI_async_congested)) || 1) 638 ret |= bdi_congested(&q->backing_dev_info, bits); 639 else 640 ret &= bdi_congested(&q->backing_dev_info, bits); 641 } 642 } 643 rcu_read_unlock(); 644 return ret; 645 } 646 EXPORT_SYMBOL_GPL(md_raid1_congested); 647 648 static int raid1_congested(void *data, int bits) 649 { 650 struct mddev *mddev = data; 651 652 return mddev_congested(mddev, bits) || 653 md_raid1_congested(mddev, bits); 654 } 655 656 static void flush_pending_writes(struct r1conf *conf) 657 { 658 /* Any writes that have been queued but are awaiting 659 * bitmap updates get flushed here. 660 */ 661 spin_lock_irq(&conf->device_lock); 662 663 if (conf->pending_bio_list.head) { 664 struct bio *bio; 665 bio = bio_list_get(&conf->pending_bio_list); 666 conf->pending_count = 0; 667 spin_unlock_irq(&conf->device_lock); 668 /* flush any pending bitmap writes to 669 * disk before proceeding w/ I/O */ 670 bitmap_unplug(conf->mddev->bitmap); 671 wake_up(&conf->wait_barrier); 672 673 while (bio) { /* submit pending writes */ 674 struct bio *next = bio->bi_next; 675 bio->bi_next = NULL; 676 generic_make_request(bio); 677 bio = next; 678 } 679 } else 680 spin_unlock_irq(&conf->device_lock); 681 } 682 683 /* Barriers.... 684 * Sometimes we need to suspend IO while we do something else, 685 * either some resync/recovery, or reconfigure the array. 686 * To do this we raise a 'barrier'. 687 * The 'barrier' is a counter that can be raised multiple times 688 * to count how many activities are happening which preclude 689 * normal IO. 690 * We can only raise the barrier if there is no pending IO. 691 * i.e. if nr_pending == 0. 692 * We choose only to raise the barrier if no-one is waiting for the 693 * barrier to go down. This means that as soon as an IO request 694 * is ready, no other operations which require a barrier will start 695 * until the IO request has had a chance. 696 * 697 * So: regular IO calls 'wait_barrier'. When that returns there 698 * is no backgroup IO happening, It must arrange to call 699 * allow_barrier when it has finished its IO. 700 * backgroup IO calls must call raise_barrier. Once that returns 701 * there is no normal IO happeing. It must arrange to call 702 * lower_barrier when the particular background IO completes. 703 */ 704 #define RESYNC_DEPTH 32 705 706 static void raise_barrier(struct r1conf *conf) 707 { 708 spin_lock_irq(&conf->resync_lock); 709 710 /* Wait until no block IO is waiting */ 711 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 712 conf->resync_lock, ); 713 714 /* block any new IO from starting */ 715 conf->barrier++; 716 717 /* Now wait for all pending IO to complete */ 718 wait_event_lock_irq(conf->wait_barrier, 719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 720 conf->resync_lock, ); 721 722 spin_unlock_irq(&conf->resync_lock); 723 } 724 725 static void lower_barrier(struct r1conf *conf) 726 { 727 unsigned long flags; 728 BUG_ON(conf->barrier <= 0); 729 spin_lock_irqsave(&conf->resync_lock, flags); 730 conf->barrier--; 731 spin_unlock_irqrestore(&conf->resync_lock, flags); 732 wake_up(&conf->wait_barrier); 733 } 734 735 static void wait_barrier(struct r1conf *conf) 736 { 737 spin_lock_irq(&conf->resync_lock); 738 if (conf->barrier) { 739 conf->nr_waiting++; 740 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 741 conf->resync_lock, 742 ); 743 conf->nr_waiting--; 744 } 745 conf->nr_pending++; 746 spin_unlock_irq(&conf->resync_lock); 747 } 748 749 static void allow_barrier(struct r1conf *conf) 750 { 751 unsigned long flags; 752 spin_lock_irqsave(&conf->resync_lock, flags); 753 conf->nr_pending--; 754 spin_unlock_irqrestore(&conf->resync_lock, flags); 755 wake_up(&conf->wait_barrier); 756 } 757 758 static void freeze_array(struct r1conf *conf) 759 { 760 /* stop syncio and normal IO and wait for everything to 761 * go quite. 762 * We increment barrier and nr_waiting, and then 763 * wait until nr_pending match nr_queued+1 764 * This is called in the context of one normal IO request 765 * that has failed. Thus any sync request that might be pending 766 * will be blocked by nr_pending, and we need to wait for 767 * pending IO requests to complete or be queued for re-try. 768 * Thus the number queued (nr_queued) plus this request (1) 769 * must match the number of pending IOs (nr_pending) before 770 * we continue. 771 */ 772 spin_lock_irq(&conf->resync_lock); 773 conf->barrier++; 774 conf->nr_waiting++; 775 wait_event_lock_irq(conf->wait_barrier, 776 conf->nr_pending == conf->nr_queued+1, 777 conf->resync_lock, 778 flush_pending_writes(conf)); 779 spin_unlock_irq(&conf->resync_lock); 780 } 781 static void unfreeze_array(struct r1conf *conf) 782 { 783 /* reverse the effect of the freeze */ 784 spin_lock_irq(&conf->resync_lock); 785 conf->barrier--; 786 conf->nr_waiting--; 787 wake_up(&conf->wait_barrier); 788 spin_unlock_irq(&conf->resync_lock); 789 } 790 791 792 /* duplicate the data pages for behind I/O 793 */ 794 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 795 { 796 int i; 797 struct bio_vec *bvec; 798 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 799 GFP_NOIO); 800 if (unlikely(!bvecs)) 801 return; 802 803 bio_for_each_segment(bvec, bio, i) { 804 bvecs[i] = *bvec; 805 bvecs[i].bv_page = alloc_page(GFP_NOIO); 806 if (unlikely(!bvecs[i].bv_page)) 807 goto do_sync_io; 808 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 809 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 810 kunmap(bvecs[i].bv_page); 811 kunmap(bvec->bv_page); 812 } 813 r1_bio->behind_bvecs = bvecs; 814 r1_bio->behind_page_count = bio->bi_vcnt; 815 set_bit(R1BIO_BehindIO, &r1_bio->state); 816 return; 817 818 do_sync_io: 819 for (i = 0; i < bio->bi_vcnt; i++) 820 if (bvecs[i].bv_page) 821 put_page(bvecs[i].bv_page); 822 kfree(bvecs); 823 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 824 } 825 826 static void make_request(struct mddev *mddev, struct bio * bio) 827 { 828 struct r1conf *conf = mddev->private; 829 struct mirror_info *mirror; 830 struct r1bio *r1_bio; 831 struct bio *read_bio; 832 int i, disks; 833 struct bitmap *bitmap; 834 unsigned long flags; 835 const int rw = bio_data_dir(bio); 836 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 837 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 838 struct md_rdev *blocked_rdev; 839 int plugged; 840 int first_clone; 841 int sectors_handled; 842 int max_sectors; 843 844 /* 845 * Register the new request and wait if the reconstruction 846 * thread has put up a bar for new requests. 847 * Continue immediately if no resync is active currently. 848 */ 849 850 md_write_start(mddev, bio); /* wait on superblock update early */ 851 852 if (bio_data_dir(bio) == WRITE && 853 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 854 bio->bi_sector < mddev->suspend_hi) { 855 /* As the suspend_* range is controlled by 856 * userspace, we want an interruptible 857 * wait. 858 */ 859 DEFINE_WAIT(w); 860 for (;;) { 861 flush_signals(current); 862 prepare_to_wait(&conf->wait_barrier, 863 &w, TASK_INTERRUPTIBLE); 864 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 865 bio->bi_sector >= mddev->suspend_hi) 866 break; 867 schedule(); 868 } 869 finish_wait(&conf->wait_barrier, &w); 870 } 871 872 wait_barrier(conf); 873 874 bitmap = mddev->bitmap; 875 876 /* 877 * make_request() can abort the operation when READA is being 878 * used and no empty request is available. 879 * 880 */ 881 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 882 883 r1_bio->master_bio = bio; 884 r1_bio->sectors = bio->bi_size >> 9; 885 r1_bio->state = 0; 886 r1_bio->mddev = mddev; 887 r1_bio->sector = bio->bi_sector; 888 889 /* We might need to issue multiple reads to different 890 * devices if there are bad blocks around, so we keep 891 * track of the number of reads in bio->bi_phys_segments. 892 * If this is 0, there is only one r1_bio and no locking 893 * will be needed when requests complete. If it is 894 * non-zero, then it is the number of not-completed requests. 895 */ 896 bio->bi_phys_segments = 0; 897 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 898 899 if (rw == READ) { 900 /* 901 * read balancing logic: 902 */ 903 int rdisk; 904 905 read_again: 906 rdisk = read_balance(conf, r1_bio, &max_sectors); 907 908 if (rdisk < 0) { 909 /* couldn't find anywhere to read from */ 910 raid_end_bio_io(r1_bio); 911 return; 912 } 913 mirror = conf->mirrors + rdisk; 914 915 if (test_bit(WriteMostly, &mirror->rdev->flags) && 916 bitmap) { 917 /* Reading from a write-mostly device must 918 * take care not to over-take any writes 919 * that are 'behind' 920 */ 921 wait_event(bitmap->behind_wait, 922 atomic_read(&bitmap->behind_writes) == 0); 923 } 924 r1_bio->read_disk = rdisk; 925 926 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 927 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 928 max_sectors); 929 930 r1_bio->bios[rdisk] = read_bio; 931 932 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 933 read_bio->bi_bdev = mirror->rdev->bdev; 934 read_bio->bi_end_io = raid1_end_read_request; 935 read_bio->bi_rw = READ | do_sync; 936 read_bio->bi_private = r1_bio; 937 938 if (max_sectors < r1_bio->sectors) { 939 /* could not read all from this device, so we will 940 * need another r1_bio. 941 */ 942 943 sectors_handled = (r1_bio->sector + max_sectors 944 - bio->bi_sector); 945 r1_bio->sectors = max_sectors; 946 spin_lock_irq(&conf->device_lock); 947 if (bio->bi_phys_segments == 0) 948 bio->bi_phys_segments = 2; 949 else 950 bio->bi_phys_segments++; 951 spin_unlock_irq(&conf->device_lock); 952 /* Cannot call generic_make_request directly 953 * as that will be queued in __make_request 954 * and subsequent mempool_alloc might block waiting 955 * for it. So hand bio over to raid1d. 956 */ 957 reschedule_retry(r1_bio); 958 959 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 960 961 r1_bio->master_bio = bio; 962 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 963 r1_bio->state = 0; 964 r1_bio->mddev = mddev; 965 r1_bio->sector = bio->bi_sector + sectors_handled; 966 goto read_again; 967 } else 968 generic_make_request(read_bio); 969 return; 970 } 971 972 /* 973 * WRITE: 974 */ 975 if (conf->pending_count >= max_queued_requests) { 976 md_wakeup_thread(mddev->thread); 977 wait_event(conf->wait_barrier, 978 conf->pending_count < max_queued_requests); 979 } 980 /* first select target devices under rcu_lock and 981 * inc refcount on their rdev. Record them by setting 982 * bios[x] to bio 983 * If there are known/acknowledged bad blocks on any device on 984 * which we have seen a write error, we want to avoid writing those 985 * blocks. 986 * This potentially requires several writes to write around 987 * the bad blocks. Each set of writes gets it's own r1bio 988 * with a set of bios attached. 989 */ 990 plugged = mddev_check_plugged(mddev); 991 992 disks = conf->raid_disks * 2; 993 retry_write: 994 blocked_rdev = NULL; 995 rcu_read_lock(); 996 max_sectors = r1_bio->sectors; 997 for (i = 0; i < disks; i++) { 998 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 999 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1000 atomic_inc(&rdev->nr_pending); 1001 blocked_rdev = rdev; 1002 break; 1003 } 1004 r1_bio->bios[i] = NULL; 1005 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1006 if (i < conf->raid_disks) 1007 set_bit(R1BIO_Degraded, &r1_bio->state); 1008 continue; 1009 } 1010 1011 atomic_inc(&rdev->nr_pending); 1012 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1013 sector_t first_bad; 1014 int bad_sectors; 1015 int is_bad; 1016 1017 is_bad = is_badblock(rdev, r1_bio->sector, 1018 max_sectors, 1019 &first_bad, &bad_sectors); 1020 if (is_bad < 0) { 1021 /* mustn't write here until the bad block is 1022 * acknowledged*/ 1023 set_bit(BlockedBadBlocks, &rdev->flags); 1024 blocked_rdev = rdev; 1025 break; 1026 } 1027 if (is_bad && first_bad <= r1_bio->sector) { 1028 /* Cannot write here at all */ 1029 bad_sectors -= (r1_bio->sector - first_bad); 1030 if (bad_sectors < max_sectors) 1031 /* mustn't write more than bad_sectors 1032 * to other devices yet 1033 */ 1034 max_sectors = bad_sectors; 1035 rdev_dec_pending(rdev, mddev); 1036 /* We don't set R1BIO_Degraded as that 1037 * only applies if the disk is 1038 * missing, so it might be re-added, 1039 * and we want to know to recover this 1040 * chunk. 1041 * In this case the device is here, 1042 * and the fact that this chunk is not 1043 * in-sync is recorded in the bad 1044 * block log 1045 */ 1046 continue; 1047 } 1048 if (is_bad) { 1049 int good_sectors = first_bad - r1_bio->sector; 1050 if (good_sectors < max_sectors) 1051 max_sectors = good_sectors; 1052 } 1053 } 1054 r1_bio->bios[i] = bio; 1055 } 1056 rcu_read_unlock(); 1057 1058 if (unlikely(blocked_rdev)) { 1059 /* Wait for this device to become unblocked */ 1060 int j; 1061 1062 for (j = 0; j < i; j++) 1063 if (r1_bio->bios[j]) 1064 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1065 r1_bio->state = 0; 1066 allow_barrier(conf); 1067 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1068 wait_barrier(conf); 1069 goto retry_write; 1070 } 1071 1072 if (max_sectors < r1_bio->sectors) { 1073 /* We are splitting this write into multiple parts, so 1074 * we need to prepare for allocating another r1_bio. 1075 */ 1076 r1_bio->sectors = max_sectors; 1077 spin_lock_irq(&conf->device_lock); 1078 if (bio->bi_phys_segments == 0) 1079 bio->bi_phys_segments = 2; 1080 else 1081 bio->bi_phys_segments++; 1082 spin_unlock_irq(&conf->device_lock); 1083 } 1084 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1085 1086 atomic_set(&r1_bio->remaining, 1); 1087 atomic_set(&r1_bio->behind_remaining, 0); 1088 1089 first_clone = 1; 1090 for (i = 0; i < disks; i++) { 1091 struct bio *mbio; 1092 if (!r1_bio->bios[i]) 1093 continue; 1094 1095 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1096 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1097 1098 if (first_clone) { 1099 /* do behind I/O ? 1100 * Not if there are too many, or cannot 1101 * allocate memory, or a reader on WriteMostly 1102 * is waiting for behind writes to flush */ 1103 if (bitmap && 1104 (atomic_read(&bitmap->behind_writes) 1105 < mddev->bitmap_info.max_write_behind) && 1106 !waitqueue_active(&bitmap->behind_wait)) 1107 alloc_behind_pages(mbio, r1_bio); 1108 1109 bitmap_startwrite(bitmap, r1_bio->sector, 1110 r1_bio->sectors, 1111 test_bit(R1BIO_BehindIO, 1112 &r1_bio->state)); 1113 first_clone = 0; 1114 } 1115 if (r1_bio->behind_bvecs) { 1116 struct bio_vec *bvec; 1117 int j; 1118 1119 /* Yes, I really want the '__' version so that 1120 * we clear any unused pointer in the io_vec, rather 1121 * than leave them unchanged. This is important 1122 * because when we come to free the pages, we won't 1123 * know the original bi_idx, so we just free 1124 * them all 1125 */ 1126 __bio_for_each_segment(bvec, mbio, j, 0) 1127 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1128 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1129 atomic_inc(&r1_bio->behind_remaining); 1130 } 1131 1132 r1_bio->bios[i] = mbio; 1133 1134 mbio->bi_sector = (r1_bio->sector + 1135 conf->mirrors[i].rdev->data_offset); 1136 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1137 mbio->bi_end_io = raid1_end_write_request; 1138 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1139 mbio->bi_private = r1_bio; 1140 1141 atomic_inc(&r1_bio->remaining); 1142 spin_lock_irqsave(&conf->device_lock, flags); 1143 bio_list_add(&conf->pending_bio_list, mbio); 1144 conf->pending_count++; 1145 spin_unlock_irqrestore(&conf->device_lock, flags); 1146 } 1147 /* Mustn't call r1_bio_write_done before this next test, 1148 * as it could result in the bio being freed. 1149 */ 1150 if (sectors_handled < (bio->bi_size >> 9)) { 1151 r1_bio_write_done(r1_bio); 1152 /* We need another r1_bio. It has already been counted 1153 * in bio->bi_phys_segments 1154 */ 1155 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1156 r1_bio->master_bio = bio; 1157 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1158 r1_bio->state = 0; 1159 r1_bio->mddev = mddev; 1160 r1_bio->sector = bio->bi_sector + sectors_handled; 1161 goto retry_write; 1162 } 1163 1164 r1_bio_write_done(r1_bio); 1165 1166 /* In case raid1d snuck in to freeze_array */ 1167 wake_up(&conf->wait_barrier); 1168 1169 if (do_sync || !bitmap || !plugged) 1170 md_wakeup_thread(mddev->thread); 1171 } 1172 1173 static void status(struct seq_file *seq, struct mddev *mddev) 1174 { 1175 struct r1conf *conf = mddev->private; 1176 int i; 1177 1178 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1179 conf->raid_disks - mddev->degraded); 1180 rcu_read_lock(); 1181 for (i = 0; i < conf->raid_disks; i++) { 1182 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1183 seq_printf(seq, "%s", 1184 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1185 } 1186 rcu_read_unlock(); 1187 seq_printf(seq, "]"); 1188 } 1189 1190 1191 static void error(struct mddev *mddev, struct md_rdev *rdev) 1192 { 1193 char b[BDEVNAME_SIZE]; 1194 struct r1conf *conf = mddev->private; 1195 1196 /* 1197 * If it is not operational, then we have already marked it as dead 1198 * else if it is the last working disks, ignore the error, let the 1199 * next level up know. 1200 * else mark the drive as failed 1201 */ 1202 if (test_bit(In_sync, &rdev->flags) 1203 && (conf->raid_disks - mddev->degraded) == 1) { 1204 /* 1205 * Don't fail the drive, act as though we were just a 1206 * normal single drive. 1207 * However don't try a recovery from this drive as 1208 * it is very likely to fail. 1209 */ 1210 conf->recovery_disabled = mddev->recovery_disabled; 1211 return; 1212 } 1213 set_bit(Blocked, &rdev->flags); 1214 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1215 unsigned long flags; 1216 spin_lock_irqsave(&conf->device_lock, flags); 1217 mddev->degraded++; 1218 set_bit(Faulty, &rdev->flags); 1219 spin_unlock_irqrestore(&conf->device_lock, flags); 1220 /* 1221 * if recovery is running, make sure it aborts. 1222 */ 1223 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1224 } else 1225 set_bit(Faulty, &rdev->flags); 1226 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1227 printk(KERN_ALERT 1228 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1229 "md/raid1:%s: Operation continuing on %d devices.\n", 1230 mdname(mddev), bdevname(rdev->bdev, b), 1231 mdname(mddev), conf->raid_disks - mddev->degraded); 1232 } 1233 1234 static void print_conf(struct r1conf *conf) 1235 { 1236 int i; 1237 1238 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1239 if (!conf) { 1240 printk(KERN_DEBUG "(!conf)\n"); 1241 return; 1242 } 1243 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1244 conf->raid_disks); 1245 1246 rcu_read_lock(); 1247 for (i = 0; i < conf->raid_disks; i++) { 1248 char b[BDEVNAME_SIZE]; 1249 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1250 if (rdev) 1251 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1252 i, !test_bit(In_sync, &rdev->flags), 1253 !test_bit(Faulty, &rdev->flags), 1254 bdevname(rdev->bdev,b)); 1255 } 1256 rcu_read_unlock(); 1257 } 1258 1259 static void close_sync(struct r1conf *conf) 1260 { 1261 wait_barrier(conf); 1262 allow_barrier(conf); 1263 1264 mempool_destroy(conf->r1buf_pool); 1265 conf->r1buf_pool = NULL; 1266 } 1267 1268 static int raid1_spare_active(struct mddev *mddev) 1269 { 1270 int i; 1271 struct r1conf *conf = mddev->private; 1272 int count = 0; 1273 unsigned long flags; 1274 1275 /* 1276 * Find all failed disks within the RAID1 configuration 1277 * and mark them readable. 1278 * Called under mddev lock, so rcu protection not needed. 1279 */ 1280 for (i = 0; i < conf->raid_disks; i++) { 1281 struct md_rdev *rdev = conf->mirrors[i].rdev; 1282 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1283 if (repl 1284 && repl->recovery_offset == MaxSector 1285 && !test_bit(Faulty, &repl->flags) 1286 && !test_and_set_bit(In_sync, &repl->flags)) { 1287 /* replacement has just become active */ 1288 if (!rdev || 1289 !test_and_clear_bit(In_sync, &rdev->flags)) 1290 count++; 1291 if (rdev) { 1292 /* Replaced device not technically 1293 * faulty, but we need to be sure 1294 * it gets removed and never re-added 1295 */ 1296 set_bit(Faulty, &rdev->flags); 1297 sysfs_notify_dirent_safe( 1298 rdev->sysfs_state); 1299 } 1300 } 1301 if (rdev 1302 && !test_bit(Faulty, &rdev->flags) 1303 && !test_and_set_bit(In_sync, &rdev->flags)) { 1304 count++; 1305 sysfs_notify_dirent_safe(rdev->sysfs_state); 1306 } 1307 } 1308 spin_lock_irqsave(&conf->device_lock, flags); 1309 mddev->degraded -= count; 1310 spin_unlock_irqrestore(&conf->device_lock, flags); 1311 1312 print_conf(conf); 1313 return count; 1314 } 1315 1316 1317 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1318 { 1319 struct r1conf *conf = mddev->private; 1320 int err = -EEXIST; 1321 int mirror = 0; 1322 struct mirror_info *p; 1323 int first = 0; 1324 int last = conf->raid_disks - 1; 1325 1326 if (mddev->recovery_disabled == conf->recovery_disabled) 1327 return -EBUSY; 1328 1329 if (rdev->raid_disk >= 0) 1330 first = last = rdev->raid_disk; 1331 1332 for (mirror = first; mirror <= last; mirror++) { 1333 p = conf->mirrors+mirror; 1334 if (!p->rdev) { 1335 1336 disk_stack_limits(mddev->gendisk, rdev->bdev, 1337 rdev->data_offset << 9); 1338 /* as we don't honour merge_bvec_fn, we must 1339 * never risk violating it, so limit 1340 * ->max_segments to one lying with a single 1341 * page, as a one page request is never in 1342 * violation. 1343 */ 1344 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1345 blk_queue_max_segments(mddev->queue, 1); 1346 blk_queue_segment_boundary(mddev->queue, 1347 PAGE_CACHE_SIZE - 1); 1348 } 1349 1350 p->head_position = 0; 1351 rdev->raid_disk = mirror; 1352 err = 0; 1353 /* As all devices are equivalent, we don't need a full recovery 1354 * if this was recently any drive of the array 1355 */ 1356 if (rdev->saved_raid_disk < 0) 1357 conf->fullsync = 1; 1358 rcu_assign_pointer(p->rdev, rdev); 1359 break; 1360 } 1361 if (test_bit(WantReplacement, &p->rdev->flags) && 1362 p[conf->raid_disks].rdev == NULL) { 1363 /* Add this device as a replacement */ 1364 clear_bit(In_sync, &rdev->flags); 1365 set_bit(Replacement, &rdev->flags); 1366 rdev->raid_disk = mirror; 1367 err = 0; 1368 conf->fullsync = 1; 1369 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1370 break; 1371 } 1372 } 1373 md_integrity_add_rdev(rdev, mddev); 1374 print_conf(conf); 1375 return err; 1376 } 1377 1378 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1379 { 1380 struct r1conf *conf = mddev->private; 1381 int err = 0; 1382 int number = rdev->raid_disk; 1383 struct mirror_info *p = conf->mirrors+ number; 1384 1385 if (rdev != p->rdev) 1386 p = conf->mirrors + conf->raid_disks + number; 1387 1388 print_conf(conf); 1389 if (rdev == p->rdev) { 1390 if (test_bit(In_sync, &rdev->flags) || 1391 atomic_read(&rdev->nr_pending)) { 1392 err = -EBUSY; 1393 goto abort; 1394 } 1395 /* Only remove non-faulty devices if recovery 1396 * is not possible. 1397 */ 1398 if (!test_bit(Faulty, &rdev->flags) && 1399 mddev->recovery_disabled != conf->recovery_disabled && 1400 mddev->degraded < conf->raid_disks) { 1401 err = -EBUSY; 1402 goto abort; 1403 } 1404 p->rdev = NULL; 1405 synchronize_rcu(); 1406 if (atomic_read(&rdev->nr_pending)) { 1407 /* lost the race, try later */ 1408 err = -EBUSY; 1409 p->rdev = rdev; 1410 goto abort; 1411 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1412 /* We just removed a device that is being replaced. 1413 * Move down the replacement. We drain all IO before 1414 * doing this to avoid confusion. 1415 */ 1416 struct md_rdev *repl = 1417 conf->mirrors[conf->raid_disks + number].rdev; 1418 raise_barrier(conf); 1419 clear_bit(Replacement, &repl->flags); 1420 p->rdev = repl; 1421 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1422 lower_barrier(conf); 1423 clear_bit(WantReplacement, &rdev->flags); 1424 } else 1425 clear_bit(WantReplacement, &rdev->flags); 1426 err = md_integrity_register(mddev); 1427 } 1428 abort: 1429 1430 print_conf(conf); 1431 return err; 1432 } 1433 1434 1435 static void end_sync_read(struct bio *bio, int error) 1436 { 1437 struct r1bio *r1_bio = bio->bi_private; 1438 1439 update_head_pos(r1_bio->read_disk, r1_bio); 1440 1441 /* 1442 * we have read a block, now it needs to be re-written, 1443 * or re-read if the read failed. 1444 * We don't do much here, just schedule handling by raid1d 1445 */ 1446 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1447 set_bit(R1BIO_Uptodate, &r1_bio->state); 1448 1449 if (atomic_dec_and_test(&r1_bio->remaining)) 1450 reschedule_retry(r1_bio); 1451 } 1452 1453 static void end_sync_write(struct bio *bio, int error) 1454 { 1455 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1456 struct r1bio *r1_bio = bio->bi_private; 1457 struct mddev *mddev = r1_bio->mddev; 1458 struct r1conf *conf = mddev->private; 1459 int mirror=0; 1460 sector_t first_bad; 1461 int bad_sectors; 1462 1463 mirror = find_bio_disk(r1_bio, bio); 1464 1465 if (!uptodate) { 1466 sector_t sync_blocks = 0; 1467 sector_t s = r1_bio->sector; 1468 long sectors_to_go = r1_bio->sectors; 1469 /* make sure these bits doesn't get cleared. */ 1470 do { 1471 bitmap_end_sync(mddev->bitmap, s, 1472 &sync_blocks, 1); 1473 s += sync_blocks; 1474 sectors_to_go -= sync_blocks; 1475 } while (sectors_to_go > 0); 1476 set_bit(WriteErrorSeen, 1477 &conf->mirrors[mirror].rdev->flags); 1478 if (!test_and_set_bit(WantReplacement, 1479 &conf->mirrors[mirror].rdev->flags)) 1480 set_bit(MD_RECOVERY_NEEDED, & 1481 mddev->recovery); 1482 set_bit(R1BIO_WriteError, &r1_bio->state); 1483 } else if (is_badblock(conf->mirrors[mirror].rdev, 1484 r1_bio->sector, 1485 r1_bio->sectors, 1486 &first_bad, &bad_sectors) && 1487 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1488 r1_bio->sector, 1489 r1_bio->sectors, 1490 &first_bad, &bad_sectors) 1491 ) 1492 set_bit(R1BIO_MadeGood, &r1_bio->state); 1493 1494 if (atomic_dec_and_test(&r1_bio->remaining)) { 1495 int s = r1_bio->sectors; 1496 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1497 test_bit(R1BIO_WriteError, &r1_bio->state)) 1498 reschedule_retry(r1_bio); 1499 else { 1500 put_buf(r1_bio); 1501 md_done_sync(mddev, s, uptodate); 1502 } 1503 } 1504 } 1505 1506 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1507 int sectors, struct page *page, int rw) 1508 { 1509 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1510 /* success */ 1511 return 1; 1512 if (rw == WRITE) { 1513 set_bit(WriteErrorSeen, &rdev->flags); 1514 if (!test_and_set_bit(WantReplacement, 1515 &rdev->flags)) 1516 set_bit(MD_RECOVERY_NEEDED, & 1517 rdev->mddev->recovery); 1518 } 1519 /* need to record an error - either for the block or the device */ 1520 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1521 md_error(rdev->mddev, rdev); 1522 return 0; 1523 } 1524 1525 static int fix_sync_read_error(struct r1bio *r1_bio) 1526 { 1527 /* Try some synchronous reads of other devices to get 1528 * good data, much like with normal read errors. Only 1529 * read into the pages we already have so we don't 1530 * need to re-issue the read request. 1531 * We don't need to freeze the array, because being in an 1532 * active sync request, there is no normal IO, and 1533 * no overlapping syncs. 1534 * We don't need to check is_badblock() again as we 1535 * made sure that anything with a bad block in range 1536 * will have bi_end_io clear. 1537 */ 1538 struct mddev *mddev = r1_bio->mddev; 1539 struct r1conf *conf = mddev->private; 1540 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1541 sector_t sect = r1_bio->sector; 1542 int sectors = r1_bio->sectors; 1543 int idx = 0; 1544 1545 while(sectors) { 1546 int s = sectors; 1547 int d = r1_bio->read_disk; 1548 int success = 0; 1549 struct md_rdev *rdev; 1550 int start; 1551 1552 if (s > (PAGE_SIZE>>9)) 1553 s = PAGE_SIZE >> 9; 1554 do { 1555 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1556 /* No rcu protection needed here devices 1557 * can only be removed when no resync is 1558 * active, and resync is currently active 1559 */ 1560 rdev = conf->mirrors[d].rdev; 1561 if (sync_page_io(rdev, sect, s<<9, 1562 bio->bi_io_vec[idx].bv_page, 1563 READ, false)) { 1564 success = 1; 1565 break; 1566 } 1567 } 1568 d++; 1569 if (d == conf->raid_disks * 2) 1570 d = 0; 1571 } while (!success && d != r1_bio->read_disk); 1572 1573 if (!success) { 1574 char b[BDEVNAME_SIZE]; 1575 int abort = 0; 1576 /* Cannot read from anywhere, this block is lost. 1577 * Record a bad block on each device. If that doesn't 1578 * work just disable and interrupt the recovery. 1579 * Don't fail devices as that won't really help. 1580 */ 1581 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1582 " for block %llu\n", 1583 mdname(mddev), 1584 bdevname(bio->bi_bdev, b), 1585 (unsigned long long)r1_bio->sector); 1586 for (d = 0; d < conf->raid_disks * 2; d++) { 1587 rdev = conf->mirrors[d].rdev; 1588 if (!rdev || test_bit(Faulty, &rdev->flags)) 1589 continue; 1590 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1591 abort = 1; 1592 } 1593 if (abort) { 1594 conf->recovery_disabled = 1595 mddev->recovery_disabled; 1596 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1597 md_done_sync(mddev, r1_bio->sectors, 0); 1598 put_buf(r1_bio); 1599 return 0; 1600 } 1601 /* Try next page */ 1602 sectors -= s; 1603 sect += s; 1604 idx++; 1605 continue; 1606 } 1607 1608 start = d; 1609 /* write it back and re-read */ 1610 while (d != r1_bio->read_disk) { 1611 if (d == 0) 1612 d = conf->raid_disks * 2; 1613 d--; 1614 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1615 continue; 1616 rdev = conf->mirrors[d].rdev; 1617 if (r1_sync_page_io(rdev, sect, s, 1618 bio->bi_io_vec[idx].bv_page, 1619 WRITE) == 0) { 1620 r1_bio->bios[d]->bi_end_io = NULL; 1621 rdev_dec_pending(rdev, mddev); 1622 } 1623 } 1624 d = start; 1625 while (d != r1_bio->read_disk) { 1626 if (d == 0) 1627 d = conf->raid_disks * 2; 1628 d--; 1629 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1630 continue; 1631 rdev = conf->mirrors[d].rdev; 1632 if (r1_sync_page_io(rdev, sect, s, 1633 bio->bi_io_vec[idx].bv_page, 1634 READ) != 0) 1635 atomic_add(s, &rdev->corrected_errors); 1636 } 1637 sectors -= s; 1638 sect += s; 1639 idx ++; 1640 } 1641 set_bit(R1BIO_Uptodate, &r1_bio->state); 1642 set_bit(BIO_UPTODATE, &bio->bi_flags); 1643 return 1; 1644 } 1645 1646 static int process_checks(struct r1bio *r1_bio) 1647 { 1648 /* We have read all readable devices. If we haven't 1649 * got the block, then there is no hope left. 1650 * If we have, then we want to do a comparison 1651 * and skip the write if everything is the same. 1652 * If any blocks failed to read, then we need to 1653 * attempt an over-write 1654 */ 1655 struct mddev *mddev = r1_bio->mddev; 1656 struct r1conf *conf = mddev->private; 1657 int primary; 1658 int i; 1659 1660 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1661 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1662 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1663 r1_bio->bios[primary]->bi_end_io = NULL; 1664 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1665 break; 1666 } 1667 r1_bio->read_disk = primary; 1668 for (i = 0; i < conf->raid_disks * 2; i++) { 1669 int j; 1670 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1671 struct bio *pbio = r1_bio->bios[primary]; 1672 struct bio *sbio = r1_bio->bios[i]; 1673 int size; 1674 1675 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1676 continue; 1677 1678 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1679 for (j = vcnt; j-- ; ) { 1680 struct page *p, *s; 1681 p = pbio->bi_io_vec[j].bv_page; 1682 s = sbio->bi_io_vec[j].bv_page; 1683 if (memcmp(page_address(p), 1684 page_address(s), 1685 PAGE_SIZE)) 1686 break; 1687 } 1688 } else 1689 j = 0; 1690 if (j >= 0) 1691 mddev->resync_mismatches += r1_bio->sectors; 1692 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1693 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1694 /* No need to write to this device. */ 1695 sbio->bi_end_io = NULL; 1696 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1697 continue; 1698 } 1699 /* fixup the bio for reuse */ 1700 sbio->bi_vcnt = vcnt; 1701 sbio->bi_size = r1_bio->sectors << 9; 1702 sbio->bi_idx = 0; 1703 sbio->bi_phys_segments = 0; 1704 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1705 sbio->bi_flags |= 1 << BIO_UPTODATE; 1706 sbio->bi_next = NULL; 1707 sbio->bi_sector = r1_bio->sector + 1708 conf->mirrors[i].rdev->data_offset; 1709 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1710 size = sbio->bi_size; 1711 for (j = 0; j < vcnt ; j++) { 1712 struct bio_vec *bi; 1713 bi = &sbio->bi_io_vec[j]; 1714 bi->bv_offset = 0; 1715 if (size > PAGE_SIZE) 1716 bi->bv_len = PAGE_SIZE; 1717 else 1718 bi->bv_len = size; 1719 size -= PAGE_SIZE; 1720 memcpy(page_address(bi->bv_page), 1721 page_address(pbio->bi_io_vec[j].bv_page), 1722 PAGE_SIZE); 1723 } 1724 } 1725 return 0; 1726 } 1727 1728 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1729 { 1730 struct r1conf *conf = mddev->private; 1731 int i; 1732 int disks = conf->raid_disks * 2; 1733 struct bio *bio, *wbio; 1734 1735 bio = r1_bio->bios[r1_bio->read_disk]; 1736 1737 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1738 /* ouch - failed to read all of that. */ 1739 if (!fix_sync_read_error(r1_bio)) 1740 return; 1741 1742 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1743 if (process_checks(r1_bio) < 0) 1744 return; 1745 /* 1746 * schedule writes 1747 */ 1748 atomic_set(&r1_bio->remaining, 1); 1749 for (i = 0; i < disks ; i++) { 1750 wbio = r1_bio->bios[i]; 1751 if (wbio->bi_end_io == NULL || 1752 (wbio->bi_end_io == end_sync_read && 1753 (i == r1_bio->read_disk || 1754 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1755 continue; 1756 1757 wbio->bi_rw = WRITE; 1758 wbio->bi_end_io = end_sync_write; 1759 atomic_inc(&r1_bio->remaining); 1760 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1761 1762 generic_make_request(wbio); 1763 } 1764 1765 if (atomic_dec_and_test(&r1_bio->remaining)) { 1766 /* if we're here, all write(s) have completed, so clean up */ 1767 md_done_sync(mddev, r1_bio->sectors, 1); 1768 put_buf(r1_bio); 1769 } 1770 } 1771 1772 /* 1773 * This is a kernel thread which: 1774 * 1775 * 1. Retries failed read operations on working mirrors. 1776 * 2. Updates the raid superblock when problems encounter. 1777 * 3. Performs writes following reads for array synchronising. 1778 */ 1779 1780 static void fix_read_error(struct r1conf *conf, int read_disk, 1781 sector_t sect, int sectors) 1782 { 1783 struct mddev *mddev = conf->mddev; 1784 while(sectors) { 1785 int s = sectors; 1786 int d = read_disk; 1787 int success = 0; 1788 int start; 1789 struct md_rdev *rdev; 1790 1791 if (s > (PAGE_SIZE>>9)) 1792 s = PAGE_SIZE >> 9; 1793 1794 do { 1795 /* Note: no rcu protection needed here 1796 * as this is synchronous in the raid1d thread 1797 * which is the thread that might remove 1798 * a device. If raid1d ever becomes multi-threaded.... 1799 */ 1800 sector_t first_bad; 1801 int bad_sectors; 1802 1803 rdev = conf->mirrors[d].rdev; 1804 if (rdev && 1805 test_bit(In_sync, &rdev->flags) && 1806 is_badblock(rdev, sect, s, 1807 &first_bad, &bad_sectors) == 0 && 1808 sync_page_io(rdev, sect, s<<9, 1809 conf->tmppage, READ, false)) 1810 success = 1; 1811 else { 1812 d++; 1813 if (d == conf->raid_disks * 2) 1814 d = 0; 1815 } 1816 } while (!success && d != read_disk); 1817 1818 if (!success) { 1819 /* Cannot read from anywhere - mark it bad */ 1820 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 1821 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1822 md_error(mddev, rdev); 1823 break; 1824 } 1825 /* write it back and re-read */ 1826 start = d; 1827 while (d != read_disk) { 1828 if (d==0) 1829 d = conf->raid_disks * 2; 1830 d--; 1831 rdev = conf->mirrors[d].rdev; 1832 if (rdev && 1833 test_bit(In_sync, &rdev->flags)) 1834 r1_sync_page_io(rdev, sect, s, 1835 conf->tmppage, WRITE); 1836 } 1837 d = start; 1838 while (d != read_disk) { 1839 char b[BDEVNAME_SIZE]; 1840 if (d==0) 1841 d = conf->raid_disks * 2; 1842 d--; 1843 rdev = conf->mirrors[d].rdev; 1844 if (rdev && 1845 test_bit(In_sync, &rdev->flags)) { 1846 if (r1_sync_page_io(rdev, sect, s, 1847 conf->tmppage, READ)) { 1848 atomic_add(s, &rdev->corrected_errors); 1849 printk(KERN_INFO 1850 "md/raid1:%s: read error corrected " 1851 "(%d sectors at %llu on %s)\n", 1852 mdname(mddev), s, 1853 (unsigned long long)(sect + 1854 rdev->data_offset), 1855 bdevname(rdev->bdev, b)); 1856 } 1857 } 1858 } 1859 sectors -= s; 1860 sect += s; 1861 } 1862 } 1863 1864 static void bi_complete(struct bio *bio, int error) 1865 { 1866 complete((struct completion *)bio->bi_private); 1867 } 1868 1869 static int submit_bio_wait(int rw, struct bio *bio) 1870 { 1871 struct completion event; 1872 rw |= REQ_SYNC; 1873 1874 init_completion(&event); 1875 bio->bi_private = &event; 1876 bio->bi_end_io = bi_complete; 1877 submit_bio(rw, bio); 1878 wait_for_completion(&event); 1879 1880 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1881 } 1882 1883 static int narrow_write_error(struct r1bio *r1_bio, int i) 1884 { 1885 struct mddev *mddev = r1_bio->mddev; 1886 struct r1conf *conf = mddev->private; 1887 struct md_rdev *rdev = conf->mirrors[i].rdev; 1888 int vcnt, idx; 1889 struct bio_vec *vec; 1890 1891 /* bio has the data to be written to device 'i' where 1892 * we just recently had a write error. 1893 * We repeatedly clone the bio and trim down to one block, 1894 * then try the write. Where the write fails we record 1895 * a bad block. 1896 * It is conceivable that the bio doesn't exactly align with 1897 * blocks. We must handle this somehow. 1898 * 1899 * We currently own a reference on the rdev. 1900 */ 1901 1902 int block_sectors; 1903 sector_t sector; 1904 int sectors; 1905 int sect_to_write = r1_bio->sectors; 1906 int ok = 1; 1907 1908 if (rdev->badblocks.shift < 0) 1909 return 0; 1910 1911 block_sectors = 1 << rdev->badblocks.shift; 1912 sector = r1_bio->sector; 1913 sectors = ((sector + block_sectors) 1914 & ~(sector_t)(block_sectors - 1)) 1915 - sector; 1916 1917 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 1918 vcnt = r1_bio->behind_page_count; 1919 vec = r1_bio->behind_bvecs; 1920 idx = 0; 1921 while (vec[idx].bv_page == NULL) 1922 idx++; 1923 } else { 1924 vcnt = r1_bio->master_bio->bi_vcnt; 1925 vec = r1_bio->master_bio->bi_io_vec; 1926 idx = r1_bio->master_bio->bi_idx; 1927 } 1928 while (sect_to_write) { 1929 struct bio *wbio; 1930 if (sectors > sect_to_write) 1931 sectors = sect_to_write; 1932 /* Write at 'sector' for 'sectors'*/ 1933 1934 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 1935 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 1936 wbio->bi_sector = r1_bio->sector; 1937 wbio->bi_rw = WRITE; 1938 wbio->bi_vcnt = vcnt; 1939 wbio->bi_size = r1_bio->sectors << 9; 1940 wbio->bi_idx = idx; 1941 1942 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 1943 wbio->bi_sector += rdev->data_offset; 1944 wbio->bi_bdev = rdev->bdev; 1945 if (submit_bio_wait(WRITE, wbio) == 0) 1946 /* failure! */ 1947 ok = rdev_set_badblocks(rdev, sector, 1948 sectors, 0) 1949 && ok; 1950 1951 bio_put(wbio); 1952 sect_to_write -= sectors; 1953 sector += sectors; 1954 sectors = block_sectors; 1955 } 1956 return ok; 1957 } 1958 1959 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1960 { 1961 int m; 1962 int s = r1_bio->sectors; 1963 for (m = 0; m < conf->raid_disks * 2 ; m++) { 1964 struct md_rdev *rdev = conf->mirrors[m].rdev; 1965 struct bio *bio = r1_bio->bios[m]; 1966 if (bio->bi_end_io == NULL) 1967 continue; 1968 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 1969 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 1970 rdev_clear_badblocks(rdev, r1_bio->sector, s); 1971 } 1972 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 1973 test_bit(R1BIO_WriteError, &r1_bio->state)) { 1974 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 1975 md_error(conf->mddev, rdev); 1976 } 1977 } 1978 put_buf(r1_bio); 1979 md_done_sync(conf->mddev, s, 1); 1980 } 1981 1982 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1983 { 1984 int m; 1985 for (m = 0; m < conf->raid_disks * 2 ; m++) 1986 if (r1_bio->bios[m] == IO_MADE_GOOD) { 1987 struct md_rdev *rdev = conf->mirrors[m].rdev; 1988 rdev_clear_badblocks(rdev, 1989 r1_bio->sector, 1990 r1_bio->sectors); 1991 rdev_dec_pending(rdev, conf->mddev); 1992 } else if (r1_bio->bios[m] != NULL) { 1993 /* This drive got a write error. We need to 1994 * narrow down and record precise write 1995 * errors. 1996 */ 1997 if (!narrow_write_error(r1_bio, m)) { 1998 md_error(conf->mddev, 1999 conf->mirrors[m].rdev); 2000 /* an I/O failed, we can't clear the bitmap */ 2001 set_bit(R1BIO_Degraded, &r1_bio->state); 2002 } 2003 rdev_dec_pending(conf->mirrors[m].rdev, 2004 conf->mddev); 2005 } 2006 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2007 close_write(r1_bio); 2008 raid_end_bio_io(r1_bio); 2009 } 2010 2011 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2012 { 2013 int disk; 2014 int max_sectors; 2015 struct mddev *mddev = conf->mddev; 2016 struct bio *bio; 2017 char b[BDEVNAME_SIZE]; 2018 struct md_rdev *rdev; 2019 2020 clear_bit(R1BIO_ReadError, &r1_bio->state); 2021 /* we got a read error. Maybe the drive is bad. Maybe just 2022 * the block and we can fix it. 2023 * We freeze all other IO, and try reading the block from 2024 * other devices. When we find one, we re-write 2025 * and check it that fixes the read error. 2026 * This is all done synchronously while the array is 2027 * frozen 2028 */ 2029 if (mddev->ro == 0) { 2030 freeze_array(conf); 2031 fix_read_error(conf, r1_bio->read_disk, 2032 r1_bio->sector, r1_bio->sectors); 2033 unfreeze_array(conf); 2034 } else 2035 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2036 2037 bio = r1_bio->bios[r1_bio->read_disk]; 2038 bdevname(bio->bi_bdev, b); 2039 read_more: 2040 disk = read_balance(conf, r1_bio, &max_sectors); 2041 if (disk == -1) { 2042 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2043 " read error for block %llu\n", 2044 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2045 raid_end_bio_io(r1_bio); 2046 } else { 2047 const unsigned long do_sync 2048 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2049 if (bio) { 2050 r1_bio->bios[r1_bio->read_disk] = 2051 mddev->ro ? IO_BLOCKED : NULL; 2052 bio_put(bio); 2053 } 2054 r1_bio->read_disk = disk; 2055 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2056 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2057 r1_bio->bios[r1_bio->read_disk] = bio; 2058 rdev = conf->mirrors[disk].rdev; 2059 printk_ratelimited(KERN_ERR 2060 "md/raid1:%s: redirecting sector %llu" 2061 " to other mirror: %s\n", 2062 mdname(mddev), 2063 (unsigned long long)r1_bio->sector, 2064 bdevname(rdev->bdev, b)); 2065 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2066 bio->bi_bdev = rdev->bdev; 2067 bio->bi_end_io = raid1_end_read_request; 2068 bio->bi_rw = READ | do_sync; 2069 bio->bi_private = r1_bio; 2070 if (max_sectors < r1_bio->sectors) { 2071 /* Drat - have to split this up more */ 2072 struct bio *mbio = r1_bio->master_bio; 2073 int sectors_handled = (r1_bio->sector + max_sectors 2074 - mbio->bi_sector); 2075 r1_bio->sectors = max_sectors; 2076 spin_lock_irq(&conf->device_lock); 2077 if (mbio->bi_phys_segments == 0) 2078 mbio->bi_phys_segments = 2; 2079 else 2080 mbio->bi_phys_segments++; 2081 spin_unlock_irq(&conf->device_lock); 2082 generic_make_request(bio); 2083 bio = NULL; 2084 2085 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2086 2087 r1_bio->master_bio = mbio; 2088 r1_bio->sectors = (mbio->bi_size >> 9) 2089 - sectors_handled; 2090 r1_bio->state = 0; 2091 set_bit(R1BIO_ReadError, &r1_bio->state); 2092 r1_bio->mddev = mddev; 2093 r1_bio->sector = mbio->bi_sector + sectors_handled; 2094 2095 goto read_more; 2096 } else 2097 generic_make_request(bio); 2098 } 2099 } 2100 2101 static void raid1d(struct mddev *mddev) 2102 { 2103 struct r1bio *r1_bio; 2104 unsigned long flags; 2105 struct r1conf *conf = mddev->private; 2106 struct list_head *head = &conf->retry_list; 2107 struct blk_plug plug; 2108 2109 md_check_recovery(mddev); 2110 2111 blk_start_plug(&plug); 2112 for (;;) { 2113 2114 if (atomic_read(&mddev->plug_cnt) == 0) 2115 flush_pending_writes(conf); 2116 2117 spin_lock_irqsave(&conf->device_lock, flags); 2118 if (list_empty(head)) { 2119 spin_unlock_irqrestore(&conf->device_lock, flags); 2120 break; 2121 } 2122 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2123 list_del(head->prev); 2124 conf->nr_queued--; 2125 spin_unlock_irqrestore(&conf->device_lock, flags); 2126 2127 mddev = r1_bio->mddev; 2128 conf = mddev->private; 2129 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2130 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2131 test_bit(R1BIO_WriteError, &r1_bio->state)) 2132 handle_sync_write_finished(conf, r1_bio); 2133 else 2134 sync_request_write(mddev, r1_bio); 2135 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2136 test_bit(R1BIO_WriteError, &r1_bio->state)) 2137 handle_write_finished(conf, r1_bio); 2138 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2139 handle_read_error(conf, r1_bio); 2140 else 2141 /* just a partial read to be scheduled from separate 2142 * context 2143 */ 2144 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2145 2146 cond_resched(); 2147 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2148 md_check_recovery(mddev); 2149 } 2150 blk_finish_plug(&plug); 2151 } 2152 2153 2154 static int init_resync(struct r1conf *conf) 2155 { 2156 int buffs; 2157 2158 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2159 BUG_ON(conf->r1buf_pool); 2160 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2161 conf->poolinfo); 2162 if (!conf->r1buf_pool) 2163 return -ENOMEM; 2164 conf->next_resync = 0; 2165 return 0; 2166 } 2167 2168 /* 2169 * perform a "sync" on one "block" 2170 * 2171 * We need to make sure that no normal I/O request - particularly write 2172 * requests - conflict with active sync requests. 2173 * 2174 * This is achieved by tracking pending requests and a 'barrier' concept 2175 * that can be installed to exclude normal IO requests. 2176 */ 2177 2178 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2179 { 2180 struct r1conf *conf = mddev->private; 2181 struct r1bio *r1_bio; 2182 struct bio *bio; 2183 sector_t max_sector, nr_sectors; 2184 int disk = -1; 2185 int i; 2186 int wonly = -1; 2187 int write_targets = 0, read_targets = 0; 2188 sector_t sync_blocks; 2189 int still_degraded = 0; 2190 int good_sectors = RESYNC_SECTORS; 2191 int min_bad = 0; /* number of sectors that are bad in all devices */ 2192 2193 if (!conf->r1buf_pool) 2194 if (init_resync(conf)) 2195 return 0; 2196 2197 max_sector = mddev->dev_sectors; 2198 if (sector_nr >= max_sector) { 2199 /* If we aborted, we need to abort the 2200 * sync on the 'current' bitmap chunk (there will 2201 * only be one in raid1 resync. 2202 * We can find the current addess in mddev->curr_resync 2203 */ 2204 if (mddev->curr_resync < max_sector) /* aborted */ 2205 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2206 &sync_blocks, 1); 2207 else /* completed sync */ 2208 conf->fullsync = 0; 2209 2210 bitmap_close_sync(mddev->bitmap); 2211 close_sync(conf); 2212 return 0; 2213 } 2214 2215 if (mddev->bitmap == NULL && 2216 mddev->recovery_cp == MaxSector && 2217 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2218 conf->fullsync == 0) { 2219 *skipped = 1; 2220 return max_sector - sector_nr; 2221 } 2222 /* before building a request, check if we can skip these blocks.. 2223 * This call the bitmap_start_sync doesn't actually record anything 2224 */ 2225 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2226 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2227 /* We can skip this block, and probably several more */ 2228 *skipped = 1; 2229 return sync_blocks; 2230 } 2231 /* 2232 * If there is non-resync activity waiting for a turn, 2233 * and resync is going fast enough, 2234 * then let it though before starting on this new sync request. 2235 */ 2236 if (!go_faster && conf->nr_waiting) 2237 msleep_interruptible(1000); 2238 2239 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2240 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2241 raise_barrier(conf); 2242 2243 conf->next_resync = sector_nr; 2244 2245 rcu_read_lock(); 2246 /* 2247 * If we get a correctably read error during resync or recovery, 2248 * we might want to read from a different device. So we 2249 * flag all drives that could conceivably be read from for READ, 2250 * and any others (which will be non-In_sync devices) for WRITE. 2251 * If a read fails, we try reading from something else for which READ 2252 * is OK. 2253 */ 2254 2255 r1_bio->mddev = mddev; 2256 r1_bio->sector = sector_nr; 2257 r1_bio->state = 0; 2258 set_bit(R1BIO_IsSync, &r1_bio->state); 2259 2260 for (i = 0; i < conf->raid_disks * 2; i++) { 2261 struct md_rdev *rdev; 2262 bio = r1_bio->bios[i]; 2263 2264 /* take from bio_init */ 2265 bio->bi_next = NULL; 2266 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2267 bio->bi_flags |= 1 << BIO_UPTODATE; 2268 bio->bi_rw = READ; 2269 bio->bi_vcnt = 0; 2270 bio->bi_idx = 0; 2271 bio->bi_phys_segments = 0; 2272 bio->bi_size = 0; 2273 bio->bi_end_io = NULL; 2274 bio->bi_private = NULL; 2275 2276 rdev = rcu_dereference(conf->mirrors[i].rdev); 2277 if (rdev == NULL || 2278 test_bit(Faulty, &rdev->flags)) { 2279 if (i < conf->raid_disks) 2280 still_degraded = 1; 2281 } else if (!test_bit(In_sync, &rdev->flags)) { 2282 bio->bi_rw = WRITE; 2283 bio->bi_end_io = end_sync_write; 2284 write_targets ++; 2285 } else { 2286 /* may need to read from here */ 2287 sector_t first_bad = MaxSector; 2288 int bad_sectors; 2289 2290 if (is_badblock(rdev, sector_nr, good_sectors, 2291 &first_bad, &bad_sectors)) { 2292 if (first_bad > sector_nr) 2293 good_sectors = first_bad - sector_nr; 2294 else { 2295 bad_sectors -= (sector_nr - first_bad); 2296 if (min_bad == 0 || 2297 min_bad > bad_sectors) 2298 min_bad = bad_sectors; 2299 } 2300 } 2301 if (sector_nr < first_bad) { 2302 if (test_bit(WriteMostly, &rdev->flags)) { 2303 if (wonly < 0) 2304 wonly = i; 2305 } else { 2306 if (disk < 0) 2307 disk = i; 2308 } 2309 bio->bi_rw = READ; 2310 bio->bi_end_io = end_sync_read; 2311 read_targets++; 2312 } 2313 } 2314 if (bio->bi_end_io) { 2315 atomic_inc(&rdev->nr_pending); 2316 bio->bi_sector = sector_nr + rdev->data_offset; 2317 bio->bi_bdev = rdev->bdev; 2318 bio->bi_private = r1_bio; 2319 } 2320 } 2321 rcu_read_unlock(); 2322 if (disk < 0) 2323 disk = wonly; 2324 r1_bio->read_disk = disk; 2325 2326 if (read_targets == 0 && min_bad > 0) { 2327 /* These sectors are bad on all InSync devices, so we 2328 * need to mark them bad on all write targets 2329 */ 2330 int ok = 1; 2331 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2332 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2333 struct md_rdev *rdev = 2334 rcu_dereference(conf->mirrors[i].rdev); 2335 ok = rdev_set_badblocks(rdev, sector_nr, 2336 min_bad, 0 2337 ) && ok; 2338 } 2339 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2340 *skipped = 1; 2341 put_buf(r1_bio); 2342 2343 if (!ok) { 2344 /* Cannot record the badblocks, so need to 2345 * abort the resync. 2346 * If there are multiple read targets, could just 2347 * fail the really bad ones ??? 2348 */ 2349 conf->recovery_disabled = mddev->recovery_disabled; 2350 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2351 return 0; 2352 } else 2353 return min_bad; 2354 2355 } 2356 if (min_bad > 0 && min_bad < good_sectors) { 2357 /* only resync enough to reach the next bad->good 2358 * transition */ 2359 good_sectors = min_bad; 2360 } 2361 2362 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2363 /* extra read targets are also write targets */ 2364 write_targets += read_targets-1; 2365 2366 if (write_targets == 0 || read_targets == 0) { 2367 /* There is nowhere to write, so all non-sync 2368 * drives must be failed - so we are finished 2369 */ 2370 sector_t rv = max_sector - sector_nr; 2371 *skipped = 1; 2372 put_buf(r1_bio); 2373 return rv; 2374 } 2375 2376 if (max_sector > mddev->resync_max) 2377 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2378 if (max_sector > sector_nr + good_sectors) 2379 max_sector = sector_nr + good_sectors; 2380 nr_sectors = 0; 2381 sync_blocks = 0; 2382 do { 2383 struct page *page; 2384 int len = PAGE_SIZE; 2385 if (sector_nr + (len>>9) > max_sector) 2386 len = (max_sector - sector_nr) << 9; 2387 if (len == 0) 2388 break; 2389 if (sync_blocks == 0) { 2390 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2391 &sync_blocks, still_degraded) && 2392 !conf->fullsync && 2393 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2394 break; 2395 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2396 if ((len >> 9) > sync_blocks) 2397 len = sync_blocks<<9; 2398 } 2399 2400 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2401 bio = r1_bio->bios[i]; 2402 if (bio->bi_end_io) { 2403 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2404 if (bio_add_page(bio, page, len, 0) == 0) { 2405 /* stop here */ 2406 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2407 while (i > 0) { 2408 i--; 2409 bio = r1_bio->bios[i]; 2410 if (bio->bi_end_io==NULL) 2411 continue; 2412 /* remove last page from this bio */ 2413 bio->bi_vcnt--; 2414 bio->bi_size -= len; 2415 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2416 } 2417 goto bio_full; 2418 } 2419 } 2420 } 2421 nr_sectors += len>>9; 2422 sector_nr += len>>9; 2423 sync_blocks -= (len>>9); 2424 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2425 bio_full: 2426 r1_bio->sectors = nr_sectors; 2427 2428 /* For a user-requested sync, we read all readable devices and do a 2429 * compare 2430 */ 2431 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2432 atomic_set(&r1_bio->remaining, read_targets); 2433 for (i = 0; i < conf->raid_disks * 2; i++) { 2434 bio = r1_bio->bios[i]; 2435 if (bio->bi_end_io == end_sync_read) { 2436 md_sync_acct(bio->bi_bdev, nr_sectors); 2437 generic_make_request(bio); 2438 } 2439 } 2440 } else { 2441 atomic_set(&r1_bio->remaining, 1); 2442 bio = r1_bio->bios[r1_bio->read_disk]; 2443 md_sync_acct(bio->bi_bdev, nr_sectors); 2444 generic_make_request(bio); 2445 2446 } 2447 return nr_sectors; 2448 } 2449 2450 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2451 { 2452 if (sectors) 2453 return sectors; 2454 2455 return mddev->dev_sectors; 2456 } 2457 2458 static struct r1conf *setup_conf(struct mddev *mddev) 2459 { 2460 struct r1conf *conf; 2461 int i; 2462 struct mirror_info *disk; 2463 struct md_rdev *rdev; 2464 int err = -ENOMEM; 2465 2466 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2467 if (!conf) 2468 goto abort; 2469 2470 conf->mirrors = kzalloc(sizeof(struct mirror_info) 2471 * mddev->raid_disks * 2, 2472 GFP_KERNEL); 2473 if (!conf->mirrors) 2474 goto abort; 2475 2476 conf->tmppage = alloc_page(GFP_KERNEL); 2477 if (!conf->tmppage) 2478 goto abort; 2479 2480 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2481 if (!conf->poolinfo) 2482 goto abort; 2483 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2484 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2485 r1bio_pool_free, 2486 conf->poolinfo); 2487 if (!conf->r1bio_pool) 2488 goto abort; 2489 2490 conf->poolinfo->mddev = mddev; 2491 2492 err = -EINVAL; 2493 spin_lock_init(&conf->device_lock); 2494 list_for_each_entry(rdev, &mddev->disks, same_set) { 2495 int disk_idx = rdev->raid_disk; 2496 if (disk_idx >= mddev->raid_disks 2497 || disk_idx < 0) 2498 continue; 2499 if (test_bit(Replacement, &rdev->flags)) 2500 disk = conf->mirrors + conf->raid_disks + disk_idx; 2501 else 2502 disk = conf->mirrors + disk_idx; 2503 2504 if (disk->rdev) 2505 goto abort; 2506 disk->rdev = rdev; 2507 2508 disk->head_position = 0; 2509 } 2510 conf->raid_disks = mddev->raid_disks; 2511 conf->mddev = mddev; 2512 INIT_LIST_HEAD(&conf->retry_list); 2513 2514 spin_lock_init(&conf->resync_lock); 2515 init_waitqueue_head(&conf->wait_barrier); 2516 2517 bio_list_init(&conf->pending_bio_list); 2518 conf->pending_count = 0; 2519 conf->recovery_disabled = mddev->recovery_disabled - 1; 2520 2521 err = -EIO; 2522 conf->last_used = -1; 2523 for (i = 0; i < conf->raid_disks * 2; i++) { 2524 2525 disk = conf->mirrors + i; 2526 2527 if (i < conf->raid_disks && 2528 disk[conf->raid_disks].rdev) { 2529 /* This slot has a replacement. */ 2530 if (!disk->rdev) { 2531 /* No original, just make the replacement 2532 * a recovering spare 2533 */ 2534 disk->rdev = 2535 disk[conf->raid_disks].rdev; 2536 disk[conf->raid_disks].rdev = NULL; 2537 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2538 /* Original is not in_sync - bad */ 2539 goto abort; 2540 } 2541 2542 if (!disk->rdev || 2543 !test_bit(In_sync, &disk->rdev->flags)) { 2544 disk->head_position = 0; 2545 if (disk->rdev) 2546 conf->fullsync = 1; 2547 } else if (conf->last_used < 0) 2548 /* 2549 * The first working device is used as a 2550 * starting point to read balancing. 2551 */ 2552 conf->last_used = i; 2553 } 2554 2555 if (conf->last_used < 0) { 2556 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2557 mdname(mddev)); 2558 goto abort; 2559 } 2560 err = -ENOMEM; 2561 conf->thread = md_register_thread(raid1d, mddev, NULL); 2562 if (!conf->thread) { 2563 printk(KERN_ERR 2564 "md/raid1:%s: couldn't allocate thread\n", 2565 mdname(mddev)); 2566 goto abort; 2567 } 2568 2569 return conf; 2570 2571 abort: 2572 if (conf) { 2573 if (conf->r1bio_pool) 2574 mempool_destroy(conf->r1bio_pool); 2575 kfree(conf->mirrors); 2576 safe_put_page(conf->tmppage); 2577 kfree(conf->poolinfo); 2578 kfree(conf); 2579 } 2580 return ERR_PTR(err); 2581 } 2582 2583 static int run(struct mddev *mddev) 2584 { 2585 struct r1conf *conf; 2586 int i; 2587 struct md_rdev *rdev; 2588 2589 if (mddev->level != 1) { 2590 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2591 mdname(mddev), mddev->level); 2592 return -EIO; 2593 } 2594 if (mddev->reshape_position != MaxSector) { 2595 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2596 mdname(mddev)); 2597 return -EIO; 2598 } 2599 /* 2600 * copy the already verified devices into our private RAID1 2601 * bookkeeping area. [whatever we allocate in run(), 2602 * should be freed in stop()] 2603 */ 2604 if (mddev->private == NULL) 2605 conf = setup_conf(mddev); 2606 else 2607 conf = mddev->private; 2608 2609 if (IS_ERR(conf)) 2610 return PTR_ERR(conf); 2611 2612 list_for_each_entry(rdev, &mddev->disks, same_set) { 2613 if (!mddev->gendisk) 2614 continue; 2615 disk_stack_limits(mddev->gendisk, rdev->bdev, 2616 rdev->data_offset << 9); 2617 /* as we don't honour merge_bvec_fn, we must never risk 2618 * violating it, so limit ->max_segments to 1 lying within 2619 * a single page, as a one page request is never in violation. 2620 */ 2621 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2622 blk_queue_max_segments(mddev->queue, 1); 2623 blk_queue_segment_boundary(mddev->queue, 2624 PAGE_CACHE_SIZE - 1); 2625 } 2626 } 2627 2628 mddev->degraded = 0; 2629 for (i=0; i < conf->raid_disks; i++) 2630 if (conf->mirrors[i].rdev == NULL || 2631 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2632 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2633 mddev->degraded++; 2634 2635 if (conf->raid_disks - mddev->degraded == 1) 2636 mddev->recovery_cp = MaxSector; 2637 2638 if (mddev->recovery_cp != MaxSector) 2639 printk(KERN_NOTICE "md/raid1:%s: not clean" 2640 " -- starting background reconstruction\n", 2641 mdname(mddev)); 2642 printk(KERN_INFO 2643 "md/raid1:%s: active with %d out of %d mirrors\n", 2644 mdname(mddev), mddev->raid_disks - mddev->degraded, 2645 mddev->raid_disks); 2646 2647 /* 2648 * Ok, everything is just fine now 2649 */ 2650 mddev->thread = conf->thread; 2651 conf->thread = NULL; 2652 mddev->private = conf; 2653 2654 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2655 2656 if (mddev->queue) { 2657 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2658 mddev->queue->backing_dev_info.congested_data = mddev; 2659 } 2660 return md_integrity_register(mddev); 2661 } 2662 2663 static int stop(struct mddev *mddev) 2664 { 2665 struct r1conf *conf = mddev->private; 2666 struct bitmap *bitmap = mddev->bitmap; 2667 2668 /* wait for behind writes to complete */ 2669 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2670 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2671 mdname(mddev)); 2672 /* need to kick something here to make sure I/O goes? */ 2673 wait_event(bitmap->behind_wait, 2674 atomic_read(&bitmap->behind_writes) == 0); 2675 } 2676 2677 raise_barrier(conf); 2678 lower_barrier(conf); 2679 2680 md_unregister_thread(&mddev->thread); 2681 if (conf->r1bio_pool) 2682 mempool_destroy(conf->r1bio_pool); 2683 kfree(conf->mirrors); 2684 kfree(conf->poolinfo); 2685 kfree(conf); 2686 mddev->private = NULL; 2687 return 0; 2688 } 2689 2690 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2691 { 2692 /* no resync is happening, and there is enough space 2693 * on all devices, so we can resize. 2694 * We need to make sure resync covers any new space. 2695 * If the array is shrinking we should possibly wait until 2696 * any io in the removed space completes, but it hardly seems 2697 * worth it. 2698 */ 2699 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2700 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2701 return -EINVAL; 2702 set_capacity(mddev->gendisk, mddev->array_sectors); 2703 revalidate_disk(mddev->gendisk); 2704 if (sectors > mddev->dev_sectors && 2705 mddev->recovery_cp > mddev->dev_sectors) { 2706 mddev->recovery_cp = mddev->dev_sectors; 2707 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2708 } 2709 mddev->dev_sectors = sectors; 2710 mddev->resync_max_sectors = sectors; 2711 return 0; 2712 } 2713 2714 static int raid1_reshape(struct mddev *mddev) 2715 { 2716 /* We need to: 2717 * 1/ resize the r1bio_pool 2718 * 2/ resize conf->mirrors 2719 * 2720 * We allocate a new r1bio_pool if we can. 2721 * Then raise a device barrier and wait until all IO stops. 2722 * Then resize conf->mirrors and swap in the new r1bio pool. 2723 * 2724 * At the same time, we "pack" the devices so that all the missing 2725 * devices have the higher raid_disk numbers. 2726 */ 2727 mempool_t *newpool, *oldpool; 2728 struct pool_info *newpoolinfo; 2729 struct mirror_info *newmirrors; 2730 struct r1conf *conf = mddev->private; 2731 int cnt, raid_disks; 2732 unsigned long flags; 2733 int d, d2, err; 2734 2735 /* Cannot change chunk_size, layout, or level */ 2736 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2737 mddev->layout != mddev->new_layout || 2738 mddev->level != mddev->new_level) { 2739 mddev->new_chunk_sectors = mddev->chunk_sectors; 2740 mddev->new_layout = mddev->layout; 2741 mddev->new_level = mddev->level; 2742 return -EINVAL; 2743 } 2744 2745 err = md_allow_write(mddev); 2746 if (err) 2747 return err; 2748 2749 raid_disks = mddev->raid_disks + mddev->delta_disks; 2750 2751 if (raid_disks < conf->raid_disks) { 2752 cnt=0; 2753 for (d= 0; d < conf->raid_disks; d++) 2754 if (conf->mirrors[d].rdev) 2755 cnt++; 2756 if (cnt > raid_disks) 2757 return -EBUSY; 2758 } 2759 2760 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2761 if (!newpoolinfo) 2762 return -ENOMEM; 2763 newpoolinfo->mddev = mddev; 2764 newpoolinfo->raid_disks = raid_disks * 2; 2765 2766 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2767 r1bio_pool_free, newpoolinfo); 2768 if (!newpool) { 2769 kfree(newpoolinfo); 2770 return -ENOMEM; 2771 } 2772 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2, 2773 GFP_KERNEL); 2774 if (!newmirrors) { 2775 kfree(newpoolinfo); 2776 mempool_destroy(newpool); 2777 return -ENOMEM; 2778 } 2779 2780 raise_barrier(conf); 2781 2782 /* ok, everything is stopped */ 2783 oldpool = conf->r1bio_pool; 2784 conf->r1bio_pool = newpool; 2785 2786 for (d = d2 = 0; d < conf->raid_disks; d++) { 2787 struct md_rdev *rdev = conf->mirrors[d].rdev; 2788 if (rdev && rdev->raid_disk != d2) { 2789 sysfs_unlink_rdev(mddev, rdev); 2790 rdev->raid_disk = d2; 2791 sysfs_unlink_rdev(mddev, rdev); 2792 if (sysfs_link_rdev(mddev, rdev)) 2793 printk(KERN_WARNING 2794 "md/raid1:%s: cannot register rd%d\n", 2795 mdname(mddev), rdev->raid_disk); 2796 } 2797 if (rdev) 2798 newmirrors[d2++].rdev = rdev; 2799 } 2800 kfree(conf->mirrors); 2801 conf->mirrors = newmirrors; 2802 kfree(conf->poolinfo); 2803 conf->poolinfo = newpoolinfo; 2804 2805 spin_lock_irqsave(&conf->device_lock, flags); 2806 mddev->degraded += (raid_disks - conf->raid_disks); 2807 spin_unlock_irqrestore(&conf->device_lock, flags); 2808 conf->raid_disks = mddev->raid_disks = raid_disks; 2809 mddev->delta_disks = 0; 2810 2811 conf->last_used = 0; /* just make sure it is in-range */ 2812 lower_barrier(conf); 2813 2814 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2815 md_wakeup_thread(mddev->thread); 2816 2817 mempool_destroy(oldpool); 2818 return 0; 2819 } 2820 2821 static void raid1_quiesce(struct mddev *mddev, int state) 2822 { 2823 struct r1conf *conf = mddev->private; 2824 2825 switch(state) { 2826 case 2: /* wake for suspend */ 2827 wake_up(&conf->wait_barrier); 2828 break; 2829 case 1: 2830 raise_barrier(conf); 2831 break; 2832 case 0: 2833 lower_barrier(conf); 2834 break; 2835 } 2836 } 2837 2838 static void *raid1_takeover(struct mddev *mddev) 2839 { 2840 /* raid1 can take over: 2841 * raid5 with 2 devices, any layout or chunk size 2842 */ 2843 if (mddev->level == 5 && mddev->raid_disks == 2) { 2844 struct r1conf *conf; 2845 mddev->new_level = 1; 2846 mddev->new_layout = 0; 2847 mddev->new_chunk_sectors = 0; 2848 conf = setup_conf(mddev); 2849 if (!IS_ERR(conf)) 2850 conf->barrier = 1; 2851 return conf; 2852 } 2853 return ERR_PTR(-EINVAL); 2854 } 2855 2856 static struct md_personality raid1_personality = 2857 { 2858 .name = "raid1", 2859 .level = 1, 2860 .owner = THIS_MODULE, 2861 .make_request = make_request, 2862 .run = run, 2863 .stop = stop, 2864 .status = status, 2865 .error_handler = error, 2866 .hot_add_disk = raid1_add_disk, 2867 .hot_remove_disk= raid1_remove_disk, 2868 .spare_active = raid1_spare_active, 2869 .sync_request = sync_request, 2870 .resize = raid1_resize, 2871 .size = raid1_size, 2872 .check_reshape = raid1_reshape, 2873 .quiesce = raid1_quiesce, 2874 .takeover = raid1_takeover, 2875 }; 2876 2877 static int __init raid_init(void) 2878 { 2879 return register_md_personality(&raid1_personality); 2880 } 2881 2882 static void raid_exit(void) 2883 { 2884 unregister_md_personality(&raid1_personality); 2885 } 2886 2887 module_init(raid_init); 2888 module_exit(raid_exit); 2889 MODULE_LICENSE("GPL"); 2890 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2891 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2892 MODULE_ALIAS("md-raid1"); 2893 MODULE_ALIAS("md-level-1"); 2894 2895 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 2896