xref: /linux/drivers/md/raid1.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio, bio->bi_size,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	if (bio->bi_size)
266 		return 1;
267 
268 	mirror = r1_bio->read_disk;
269 	/*
270 	 * this branch is our 'one mirror IO has finished' event handler:
271 	 */
272 	update_head_pos(mirror, r1_bio);
273 
274 	if (uptodate || (conf->raid_disks - conf->mddev->degraded) <= 1) {
275 		/*
276 		 * Set R1BIO_Uptodate in our master bio, so that
277 		 * we will return a good error code for to the higher
278 		 * levels even if IO on some other mirrored buffer fails.
279 		 *
280 		 * The 'master' represents the composite IO operation to
281 		 * user-side. So if something waits for IO, then it will
282 		 * wait for the 'master' bio.
283 		 */
284 		if (uptodate)
285 			set_bit(R1BIO_Uptodate, &r1_bio->state);
286 
287 		raid_end_bio_io(r1_bio);
288 	} else {
289 		/*
290 		 * oops, read error:
291 		 */
292 		char b[BDEVNAME_SIZE];
293 		if (printk_ratelimit())
294 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 		reschedule_retry(r1_bio);
297 	}
298 
299 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 	return 0;
301 }
302 
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 	if (bio->bi_size)
312 		return 1;
313 
314 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 		if (r1_bio->bios[mirror] == bio)
316 			break;
317 
318 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 		r1_bio->mddev->barriers_work = 0;
322 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
323 	} else {
324 		/*
325 		 * this branch is our 'one mirror IO has finished' event handler:
326 		 */
327 		r1_bio->bios[mirror] = NULL;
328 		to_put = bio;
329 		if (!uptodate) {
330 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
331 			/* an I/O failed, we can't clear the bitmap */
332 			set_bit(R1BIO_Degraded, &r1_bio->state);
333 		} else
334 			/*
335 			 * Set R1BIO_Uptodate in our master bio, so that
336 			 * we will return a good error code for to the higher
337 			 * levels even if IO on some other mirrored buffer fails.
338 			 *
339 			 * The 'master' represents the composite IO operation to
340 			 * user-side. So if something waits for IO, then it will
341 			 * wait for the 'master' bio.
342 			 */
343 			set_bit(R1BIO_Uptodate, &r1_bio->state);
344 
345 		update_head_pos(mirror, r1_bio);
346 
347 		if (behind) {
348 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
349 				atomic_dec(&r1_bio->behind_remaining);
350 
351 			/* In behind mode, we ACK the master bio once the I/O has safely
352 			 * reached all non-writemostly disks. Setting the Returned bit
353 			 * ensures that this gets done only once -- we don't ever want to
354 			 * return -EIO here, instead we'll wait */
355 
356 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
357 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
358 				/* Maybe we can return now */
359 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
360 					struct bio *mbio = r1_bio->master_bio;
361 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
362 					       (unsigned long long) mbio->bi_sector,
363 					       (unsigned long long) mbio->bi_sector +
364 					       (mbio->bi_size >> 9) - 1);
365 					bio_endio(mbio, mbio->bi_size, 0);
366 				}
367 			}
368 		}
369 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
370 	}
371 	/*
372 	 *
373 	 * Let's see if all mirrored write operations have finished
374 	 * already.
375 	 */
376 	if (atomic_dec_and_test(&r1_bio->remaining)) {
377 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
378 			reschedule_retry(r1_bio);
379 		else {
380 			/* it really is the end of this request */
381 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
382 				/* free extra copy of the data pages */
383 				int i = bio->bi_vcnt;
384 				while (i--)
385 					safe_put_page(bio->bi_io_vec[i].bv_page);
386 			}
387 			/* clear the bitmap if all writes complete successfully */
388 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 					r1_bio->sectors,
390 					!test_bit(R1BIO_Degraded, &r1_bio->state),
391 					behind);
392 			md_write_end(r1_bio->mddev);
393 			raid_end_bio_io(r1_bio);
394 		}
395 	}
396 
397 	if (to_put)
398 		bio_put(to_put);
399 
400 	return 0;
401 }
402 
403 
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420 	const unsigned long this_sector = r1_bio->sector;
421 	int new_disk = conf->last_used, disk = new_disk;
422 	int wonly_disk = -1;
423 	const int sectors = r1_bio->sectors;
424 	sector_t new_distance, current_distance;
425 	mdk_rdev_t *rdev;
426 
427 	rcu_read_lock();
428 	/*
429 	 * Check if we can balance. We can balance on the whole
430 	 * device if no resync is going on, or below the resync window.
431 	 * We take the first readable disk when above the resync window.
432 	 */
433  retry:
434 	if (conf->mddev->recovery_cp < MaxSector &&
435 	    (this_sector + sectors >= conf->next_resync)) {
436 		/* Choose the first operation device, for consistancy */
437 		new_disk = 0;
438 
439 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
441 		     !rdev || !test_bit(In_sync, &rdev->flags)
442 			     || test_bit(WriteMostly, &rdev->flags);
443 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444 
445 			if (rdev && test_bit(In_sync, &rdev->flags) &&
446 				r1_bio->bios[new_disk] != IO_BLOCKED)
447 				wonly_disk = new_disk;
448 
449 			if (new_disk == conf->raid_disks - 1) {
450 				new_disk = wonly_disk;
451 				break;
452 			}
453 		}
454 		goto rb_out;
455 	}
456 
457 
458 	/* make sure the disk is operational */
459 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
461 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
462 		     test_bit(WriteMostly, &rdev->flags);
463 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464 
465 		if (rdev && test_bit(In_sync, &rdev->flags) &&
466 		    r1_bio->bios[new_disk] != IO_BLOCKED)
467 			wonly_disk = new_disk;
468 
469 		if (new_disk <= 0)
470 			new_disk = conf->raid_disks;
471 		new_disk--;
472 		if (new_disk == disk) {
473 			new_disk = wonly_disk;
474 			break;
475 		}
476 	}
477 
478 	if (new_disk < 0)
479 		goto rb_out;
480 
481 	disk = new_disk;
482 	/* now disk == new_disk == starting point for search */
483 
484 	/*
485 	 * Don't change to another disk for sequential reads:
486 	 */
487 	if (conf->next_seq_sect == this_sector)
488 		goto rb_out;
489 	if (this_sector == conf->mirrors[new_disk].head_position)
490 		goto rb_out;
491 
492 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493 
494 	/* Find the disk whose head is closest */
495 
496 	do {
497 		if (disk <= 0)
498 			disk = conf->raid_disks;
499 		disk--;
500 
501 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
502 
503 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 		    !test_bit(In_sync, &rdev->flags) ||
505 		    test_bit(WriteMostly, &rdev->flags))
506 			continue;
507 
508 		if (!atomic_read(&rdev->nr_pending)) {
509 			new_disk = disk;
510 			break;
511 		}
512 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 		if (new_distance < current_distance) {
514 			current_distance = new_distance;
515 			new_disk = disk;
516 		}
517 	} while (disk != conf->last_used);
518 
519  rb_out:
520 
521 
522 	if (new_disk >= 0) {
523 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 		if (!rdev)
525 			goto retry;
526 		atomic_inc(&rdev->nr_pending);
527 		if (!test_bit(In_sync, &rdev->flags)) {
528 			/* cannot risk returning a device that failed
529 			 * before we inc'ed nr_pending
530 			 */
531 			rdev_dec_pending(rdev, conf->mddev);
532 			goto retry;
533 		}
534 		conf->next_seq_sect = this_sector + sectors;
535 		conf->last_used = new_disk;
536 	}
537 	rcu_read_unlock();
538 
539 	return new_disk;
540 }
541 
542 static void unplug_slaves(mddev_t *mddev)
543 {
544 	conf_t *conf = mddev_to_conf(mddev);
545 	int i;
546 
547 	rcu_read_lock();
548 	for (i=0; i<mddev->raid_disks; i++) {
549 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
552 
553 			atomic_inc(&rdev->nr_pending);
554 			rcu_read_unlock();
555 
556 			if (r_queue->unplug_fn)
557 				r_queue->unplug_fn(r_queue);
558 
559 			rdev_dec_pending(rdev, mddev);
560 			rcu_read_lock();
561 		}
562 	}
563 	rcu_read_unlock();
564 }
565 
566 static void raid1_unplug(request_queue_t *q)
567 {
568 	mddev_t *mddev = q->queuedata;
569 
570 	unplug_slaves(mddev);
571 	md_wakeup_thread(mddev->thread);
572 }
573 
574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
575 			     sector_t *error_sector)
576 {
577 	mddev_t *mddev = q->queuedata;
578 	conf_t *conf = mddev_to_conf(mddev);
579 	int i, ret = 0;
580 
581 	rcu_read_lock();
582 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
583 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
584 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
585 			struct block_device *bdev = rdev->bdev;
586 			request_queue_t *r_queue = bdev_get_queue(bdev);
587 
588 			if (!r_queue->issue_flush_fn)
589 				ret = -EOPNOTSUPP;
590 			else {
591 				atomic_inc(&rdev->nr_pending);
592 				rcu_read_unlock();
593 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
594 							      error_sector);
595 				rdev_dec_pending(rdev, mddev);
596 				rcu_read_lock();
597 			}
598 		}
599 	}
600 	rcu_read_unlock();
601 	return ret;
602 }
603 
604 static int raid1_congested(void *data, int bits)
605 {
606 	mddev_t *mddev = data;
607 	conf_t *conf = mddev_to_conf(mddev);
608 	int i, ret = 0;
609 
610 	rcu_read_lock();
611 	for (i = 0; i < mddev->raid_disks; i++) {
612 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
613 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
614 			request_queue_t *q = bdev_get_queue(rdev->bdev);
615 
616 			/* Note the '|| 1' - when read_balance prefers
617 			 * non-congested targets, it can be removed
618 			 */
619 			if ((bits & (1<<BDI_write_congested)) || 1)
620 				ret |= bdi_congested(&q->backing_dev_info, bits);
621 			else
622 				ret &= bdi_congested(&q->backing_dev_info, bits);
623 		}
624 	}
625 	rcu_read_unlock();
626 	return ret;
627 }
628 
629 
630 /* Barriers....
631  * Sometimes we need to suspend IO while we do something else,
632  * either some resync/recovery, or reconfigure the array.
633  * To do this we raise a 'barrier'.
634  * The 'barrier' is a counter that can be raised multiple times
635  * to count how many activities are happening which preclude
636  * normal IO.
637  * We can only raise the barrier if there is no pending IO.
638  * i.e. if nr_pending == 0.
639  * We choose only to raise the barrier if no-one is waiting for the
640  * barrier to go down.  This means that as soon as an IO request
641  * is ready, no other operations which require a barrier will start
642  * until the IO request has had a chance.
643  *
644  * So: regular IO calls 'wait_barrier'.  When that returns there
645  *    is no backgroup IO happening,  It must arrange to call
646  *    allow_barrier when it has finished its IO.
647  * backgroup IO calls must call raise_barrier.  Once that returns
648  *    there is no normal IO happeing.  It must arrange to call
649  *    lower_barrier when the particular background IO completes.
650  */
651 #define RESYNC_DEPTH 32
652 
653 static void raise_barrier(conf_t *conf)
654 {
655 	spin_lock_irq(&conf->resync_lock);
656 
657 	/* Wait until no block IO is waiting */
658 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
659 			    conf->resync_lock,
660 			    raid1_unplug(conf->mddev->queue));
661 
662 	/* block any new IO from starting */
663 	conf->barrier++;
664 
665 	/* No wait for all pending IO to complete */
666 	wait_event_lock_irq(conf->wait_barrier,
667 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
668 			    conf->resync_lock,
669 			    raid1_unplug(conf->mddev->queue));
670 
671 	spin_unlock_irq(&conf->resync_lock);
672 }
673 
674 static void lower_barrier(conf_t *conf)
675 {
676 	unsigned long flags;
677 	spin_lock_irqsave(&conf->resync_lock, flags);
678 	conf->barrier--;
679 	spin_unlock_irqrestore(&conf->resync_lock, flags);
680 	wake_up(&conf->wait_barrier);
681 }
682 
683 static void wait_barrier(conf_t *conf)
684 {
685 	spin_lock_irq(&conf->resync_lock);
686 	if (conf->barrier) {
687 		conf->nr_waiting++;
688 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
689 				    conf->resync_lock,
690 				    raid1_unplug(conf->mddev->queue));
691 		conf->nr_waiting--;
692 	}
693 	conf->nr_pending++;
694 	spin_unlock_irq(&conf->resync_lock);
695 }
696 
697 static void allow_barrier(conf_t *conf)
698 {
699 	unsigned long flags;
700 	spin_lock_irqsave(&conf->resync_lock, flags);
701 	conf->nr_pending--;
702 	spin_unlock_irqrestore(&conf->resync_lock, flags);
703 	wake_up(&conf->wait_barrier);
704 }
705 
706 static void freeze_array(conf_t *conf)
707 {
708 	/* stop syncio and normal IO and wait for everything to
709 	 * go quite.
710 	 * We increment barrier and nr_waiting, and then
711 	 * wait until barrier+nr_pending match nr_queued+2
712 	 */
713 	spin_lock_irq(&conf->resync_lock);
714 	conf->barrier++;
715 	conf->nr_waiting++;
716 	wait_event_lock_irq(conf->wait_barrier,
717 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
718 			    conf->resync_lock,
719 			    raid1_unplug(conf->mddev->queue));
720 	spin_unlock_irq(&conf->resync_lock);
721 }
722 static void unfreeze_array(conf_t *conf)
723 {
724 	/* reverse the effect of the freeze */
725 	spin_lock_irq(&conf->resync_lock);
726 	conf->barrier--;
727 	conf->nr_waiting--;
728 	wake_up(&conf->wait_barrier);
729 	spin_unlock_irq(&conf->resync_lock);
730 }
731 
732 
733 /* duplicate the data pages for behind I/O */
734 static struct page **alloc_behind_pages(struct bio *bio)
735 {
736 	int i;
737 	struct bio_vec *bvec;
738 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
739 					GFP_NOIO);
740 	if (unlikely(!pages))
741 		goto do_sync_io;
742 
743 	bio_for_each_segment(bvec, bio, i) {
744 		pages[i] = alloc_page(GFP_NOIO);
745 		if (unlikely(!pages[i]))
746 			goto do_sync_io;
747 		memcpy(kmap(pages[i]) + bvec->bv_offset,
748 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
749 		kunmap(pages[i]);
750 		kunmap(bvec->bv_page);
751 	}
752 
753 	return pages;
754 
755 do_sync_io:
756 	if (pages)
757 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
758 			put_page(pages[i]);
759 	kfree(pages);
760 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
761 	return NULL;
762 }
763 
764 static int make_request(request_queue_t *q, struct bio * bio)
765 {
766 	mddev_t *mddev = q->queuedata;
767 	conf_t *conf = mddev_to_conf(mddev);
768 	mirror_info_t *mirror;
769 	r1bio_t *r1_bio;
770 	struct bio *read_bio;
771 	int i, targets = 0, disks;
772 	mdk_rdev_t *rdev;
773 	struct bitmap *bitmap = mddev->bitmap;
774 	unsigned long flags;
775 	struct bio_list bl;
776 	struct page **behind_pages = NULL;
777 	const int rw = bio_data_dir(bio);
778 	const int do_sync = bio_sync(bio);
779 	int do_barriers;
780 
781 	/*
782 	 * Register the new request and wait if the reconstruction
783 	 * thread has put up a bar for new requests.
784 	 * Continue immediately if no resync is active currently.
785 	 * We test barriers_work *after* md_write_start as md_write_start
786 	 * may cause the first superblock write, and that will check out
787 	 * if barriers work.
788 	 */
789 
790 	md_write_start(mddev, bio); /* wait on superblock update early */
791 
792 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
793 		if (rw == WRITE)
794 			md_write_end(mddev);
795 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
796 		return 0;
797 	}
798 
799 	wait_barrier(conf);
800 
801 	disk_stat_inc(mddev->gendisk, ios[rw]);
802 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
803 
804 	/*
805 	 * make_request() can abort the operation when READA is being
806 	 * used and no empty request is available.
807 	 *
808 	 */
809 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
810 
811 	r1_bio->master_bio = bio;
812 	r1_bio->sectors = bio->bi_size >> 9;
813 	r1_bio->state = 0;
814 	r1_bio->mddev = mddev;
815 	r1_bio->sector = bio->bi_sector;
816 
817 	if (rw == READ) {
818 		/*
819 		 * read balancing logic:
820 		 */
821 		int rdisk = read_balance(conf, r1_bio);
822 
823 		if (rdisk < 0) {
824 			/* couldn't find anywhere to read from */
825 			raid_end_bio_io(r1_bio);
826 			return 0;
827 		}
828 		mirror = conf->mirrors + rdisk;
829 
830 		r1_bio->read_disk = rdisk;
831 
832 		read_bio = bio_clone(bio, GFP_NOIO);
833 
834 		r1_bio->bios[rdisk] = read_bio;
835 
836 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
837 		read_bio->bi_bdev = mirror->rdev->bdev;
838 		read_bio->bi_end_io = raid1_end_read_request;
839 		read_bio->bi_rw = READ | do_sync;
840 		read_bio->bi_private = r1_bio;
841 
842 		generic_make_request(read_bio);
843 		return 0;
844 	}
845 
846 	/*
847 	 * WRITE:
848 	 */
849 	/* first select target devices under spinlock and
850 	 * inc refcount on their rdev.  Record them by setting
851 	 * bios[x] to bio
852 	 */
853 	disks = conf->raid_disks;
854 #if 0
855 	{ static int first=1;
856 	if (first) printk("First Write sector %llu disks %d\n",
857 			  (unsigned long long)r1_bio->sector, disks);
858 	first = 0;
859 	}
860 #endif
861 	rcu_read_lock();
862 	for (i = 0;  i < disks; i++) {
863 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
864 		    !test_bit(Faulty, &rdev->flags)) {
865 			atomic_inc(&rdev->nr_pending);
866 			if (test_bit(Faulty, &rdev->flags)) {
867 				rdev_dec_pending(rdev, mddev);
868 				r1_bio->bios[i] = NULL;
869 			} else
870 				r1_bio->bios[i] = bio;
871 			targets++;
872 		} else
873 			r1_bio->bios[i] = NULL;
874 	}
875 	rcu_read_unlock();
876 
877 	BUG_ON(targets == 0); /* we never fail the last device */
878 
879 	if (targets < conf->raid_disks) {
880 		/* array is degraded, we will not clear the bitmap
881 		 * on I/O completion (see raid1_end_write_request) */
882 		set_bit(R1BIO_Degraded, &r1_bio->state);
883 	}
884 
885 	/* do behind I/O ? */
886 	if (bitmap &&
887 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
888 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
889 		set_bit(R1BIO_BehindIO, &r1_bio->state);
890 
891 	atomic_set(&r1_bio->remaining, 0);
892 	atomic_set(&r1_bio->behind_remaining, 0);
893 
894 	do_barriers = bio_barrier(bio);
895 	if (do_barriers)
896 		set_bit(R1BIO_Barrier, &r1_bio->state);
897 
898 	bio_list_init(&bl);
899 	for (i = 0; i < disks; i++) {
900 		struct bio *mbio;
901 		if (!r1_bio->bios[i])
902 			continue;
903 
904 		mbio = bio_clone(bio, GFP_NOIO);
905 		r1_bio->bios[i] = mbio;
906 
907 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
908 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
909 		mbio->bi_end_io	= raid1_end_write_request;
910 		mbio->bi_rw = WRITE | do_barriers | do_sync;
911 		mbio->bi_private = r1_bio;
912 
913 		if (behind_pages) {
914 			struct bio_vec *bvec;
915 			int j;
916 
917 			/* Yes, I really want the '__' version so that
918 			 * we clear any unused pointer in the io_vec, rather
919 			 * than leave them unchanged.  This is important
920 			 * because when we come to free the pages, we won't
921 			 * know the originial bi_idx, so we just free
922 			 * them all
923 			 */
924 			__bio_for_each_segment(bvec, mbio, j, 0)
925 				bvec->bv_page = behind_pages[j];
926 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
927 				atomic_inc(&r1_bio->behind_remaining);
928 		}
929 
930 		atomic_inc(&r1_bio->remaining);
931 
932 		bio_list_add(&bl, mbio);
933 	}
934 	kfree(behind_pages); /* the behind pages are attached to the bios now */
935 
936 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
937 				test_bit(R1BIO_BehindIO, &r1_bio->state));
938 	spin_lock_irqsave(&conf->device_lock, flags);
939 	bio_list_merge(&conf->pending_bio_list, &bl);
940 	bio_list_init(&bl);
941 
942 	blk_plug_device(mddev->queue);
943 	spin_unlock_irqrestore(&conf->device_lock, flags);
944 
945 	if (do_sync)
946 		md_wakeup_thread(mddev->thread);
947 #if 0
948 	while ((bio = bio_list_pop(&bl)) != NULL)
949 		generic_make_request(bio);
950 #endif
951 
952 	return 0;
953 }
954 
955 static void status(struct seq_file *seq, mddev_t *mddev)
956 {
957 	conf_t *conf = mddev_to_conf(mddev);
958 	int i;
959 
960 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
961 		   conf->raid_disks - mddev->degraded);
962 	rcu_read_lock();
963 	for (i = 0; i < conf->raid_disks; i++) {
964 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
965 		seq_printf(seq, "%s",
966 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
967 	}
968 	rcu_read_unlock();
969 	seq_printf(seq, "]");
970 }
971 
972 
973 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
974 {
975 	char b[BDEVNAME_SIZE];
976 	conf_t *conf = mddev_to_conf(mddev);
977 
978 	/*
979 	 * If it is not operational, then we have already marked it as dead
980 	 * else if it is the last working disks, ignore the error, let the
981 	 * next level up know.
982 	 * else mark the drive as failed
983 	 */
984 	if (test_bit(In_sync, &rdev->flags)
985 	    && (conf->raid_disks - mddev->degraded) == 1)
986 		/*
987 		 * Don't fail the drive, act as though we were just a
988 		 * normal single drive
989 		 */
990 		return;
991 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
992 		unsigned long flags;
993 		spin_lock_irqsave(&conf->device_lock, flags);
994 		mddev->degraded++;
995 		spin_unlock_irqrestore(&conf->device_lock, flags);
996 		/*
997 		 * if recovery is running, make sure it aborts.
998 		 */
999 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1000 	}
1001 	set_bit(Faulty, &rdev->flags);
1002 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1003 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1004 		"	Operation continuing on %d devices\n",
1005 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1006 }
1007 
1008 static void print_conf(conf_t *conf)
1009 {
1010 	int i;
1011 
1012 	printk("RAID1 conf printout:\n");
1013 	if (!conf) {
1014 		printk("(!conf)\n");
1015 		return;
1016 	}
1017 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1018 		conf->raid_disks);
1019 
1020 	rcu_read_lock();
1021 	for (i = 0; i < conf->raid_disks; i++) {
1022 		char b[BDEVNAME_SIZE];
1023 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1024 		if (rdev)
1025 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1026 			       i, !test_bit(In_sync, &rdev->flags),
1027 			       !test_bit(Faulty, &rdev->flags),
1028 			       bdevname(rdev->bdev,b));
1029 	}
1030 	rcu_read_unlock();
1031 }
1032 
1033 static void close_sync(conf_t *conf)
1034 {
1035 	wait_barrier(conf);
1036 	allow_barrier(conf);
1037 
1038 	mempool_destroy(conf->r1buf_pool);
1039 	conf->r1buf_pool = NULL;
1040 }
1041 
1042 static int raid1_spare_active(mddev_t *mddev)
1043 {
1044 	int i;
1045 	conf_t *conf = mddev->private;
1046 
1047 	/*
1048 	 * Find all failed disks within the RAID1 configuration
1049 	 * and mark them readable.
1050 	 * Called under mddev lock, so rcu protection not needed.
1051 	 */
1052 	for (i = 0; i < conf->raid_disks; i++) {
1053 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1054 		if (rdev
1055 		    && !test_bit(Faulty, &rdev->flags)
1056 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1057 			unsigned long flags;
1058 			spin_lock_irqsave(&conf->device_lock, flags);
1059 			mddev->degraded--;
1060 			spin_unlock_irqrestore(&conf->device_lock, flags);
1061 		}
1062 	}
1063 
1064 	print_conf(conf);
1065 	return 0;
1066 }
1067 
1068 
1069 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1070 {
1071 	conf_t *conf = mddev->private;
1072 	int found = 0;
1073 	int mirror = 0;
1074 	mirror_info_t *p;
1075 
1076 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1077 		if ( !(p=conf->mirrors+mirror)->rdev) {
1078 
1079 			blk_queue_stack_limits(mddev->queue,
1080 					       rdev->bdev->bd_disk->queue);
1081 			/* as we don't honour merge_bvec_fn, we must never risk
1082 			 * violating it, so limit ->max_sector to one PAGE, as
1083 			 * a one page request is never in violation.
1084 			 */
1085 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1086 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1087 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1088 
1089 			p->head_position = 0;
1090 			rdev->raid_disk = mirror;
1091 			found = 1;
1092 			/* As all devices are equivalent, we don't need a full recovery
1093 			 * if this was recently any drive of the array
1094 			 */
1095 			if (rdev->saved_raid_disk < 0)
1096 				conf->fullsync = 1;
1097 			rcu_assign_pointer(p->rdev, rdev);
1098 			break;
1099 		}
1100 
1101 	print_conf(conf);
1102 	return found;
1103 }
1104 
1105 static int raid1_remove_disk(mddev_t *mddev, int number)
1106 {
1107 	conf_t *conf = mddev->private;
1108 	int err = 0;
1109 	mdk_rdev_t *rdev;
1110 	mirror_info_t *p = conf->mirrors+ number;
1111 
1112 	print_conf(conf);
1113 	rdev = p->rdev;
1114 	if (rdev) {
1115 		if (test_bit(In_sync, &rdev->flags) ||
1116 		    atomic_read(&rdev->nr_pending)) {
1117 			err = -EBUSY;
1118 			goto abort;
1119 		}
1120 		p->rdev = NULL;
1121 		synchronize_rcu();
1122 		if (atomic_read(&rdev->nr_pending)) {
1123 			/* lost the race, try later */
1124 			err = -EBUSY;
1125 			p->rdev = rdev;
1126 		}
1127 	}
1128 abort:
1129 
1130 	print_conf(conf);
1131 	return err;
1132 }
1133 
1134 
1135 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1136 {
1137 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1138 	int i;
1139 
1140 	if (bio->bi_size)
1141 		return 1;
1142 
1143 	for (i=r1_bio->mddev->raid_disks; i--; )
1144 		if (r1_bio->bios[i] == bio)
1145 			break;
1146 	BUG_ON(i < 0);
1147 	update_head_pos(i, r1_bio);
1148 	/*
1149 	 * we have read a block, now it needs to be re-written,
1150 	 * or re-read if the read failed.
1151 	 * We don't do much here, just schedule handling by raid1d
1152 	 */
1153 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1154 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1155 
1156 	if (atomic_dec_and_test(&r1_bio->remaining))
1157 		reschedule_retry(r1_bio);
1158 	return 0;
1159 }
1160 
1161 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1162 {
1163 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1164 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1165 	mddev_t *mddev = r1_bio->mddev;
1166 	conf_t *conf = mddev_to_conf(mddev);
1167 	int i;
1168 	int mirror=0;
1169 
1170 	if (bio->bi_size)
1171 		return 1;
1172 
1173 	for (i = 0; i < conf->raid_disks; i++)
1174 		if (r1_bio->bios[i] == bio) {
1175 			mirror = i;
1176 			break;
1177 		}
1178 	if (!uptodate) {
1179 		int sync_blocks = 0;
1180 		sector_t s = r1_bio->sector;
1181 		long sectors_to_go = r1_bio->sectors;
1182 		/* make sure these bits doesn't get cleared. */
1183 		do {
1184 			bitmap_end_sync(mddev->bitmap, s,
1185 					&sync_blocks, 1);
1186 			s += sync_blocks;
1187 			sectors_to_go -= sync_blocks;
1188 		} while (sectors_to_go > 0);
1189 		md_error(mddev, conf->mirrors[mirror].rdev);
1190 	}
1191 
1192 	update_head_pos(mirror, r1_bio);
1193 
1194 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1195 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1196 		put_buf(r1_bio);
1197 	}
1198 	return 0;
1199 }
1200 
1201 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1202 {
1203 	conf_t *conf = mddev_to_conf(mddev);
1204 	int i;
1205 	int disks = conf->raid_disks;
1206 	struct bio *bio, *wbio;
1207 
1208 	bio = r1_bio->bios[r1_bio->read_disk];
1209 
1210 
1211 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1212 		/* We have read all readable devices.  If we haven't
1213 		 * got the block, then there is no hope left.
1214 		 * If we have, then we want to do a comparison
1215 		 * and skip the write if everything is the same.
1216 		 * If any blocks failed to read, then we need to
1217 		 * attempt an over-write
1218 		 */
1219 		int primary;
1220 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1221 			for (i=0; i<mddev->raid_disks; i++)
1222 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1223 					md_error(mddev, conf->mirrors[i].rdev);
1224 
1225 			md_done_sync(mddev, r1_bio->sectors, 1);
1226 			put_buf(r1_bio);
1227 			return;
1228 		}
1229 		for (primary=0; primary<mddev->raid_disks; primary++)
1230 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1231 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1232 				r1_bio->bios[primary]->bi_end_io = NULL;
1233 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1234 				break;
1235 			}
1236 		r1_bio->read_disk = primary;
1237 		for (i=0; i<mddev->raid_disks; i++)
1238 			if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1239 			    test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1240 				int j;
1241 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1242 				struct bio *pbio = r1_bio->bios[primary];
1243 				struct bio *sbio = r1_bio->bios[i];
1244 				for (j = vcnt; j-- ; )
1245 					if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1246 						   page_address(sbio->bi_io_vec[j].bv_page),
1247 						   PAGE_SIZE))
1248 						break;
1249 				if (j >= 0)
1250 					mddev->resync_mismatches += r1_bio->sectors;
1251 				if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1252 					sbio->bi_end_io = NULL;
1253 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1254 				} else {
1255 					/* fixup the bio for reuse */
1256 					sbio->bi_vcnt = vcnt;
1257 					sbio->bi_size = r1_bio->sectors << 9;
1258 					sbio->bi_idx = 0;
1259 					sbio->bi_phys_segments = 0;
1260 					sbio->bi_hw_segments = 0;
1261 					sbio->bi_hw_front_size = 0;
1262 					sbio->bi_hw_back_size = 0;
1263 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1264 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1265 					sbio->bi_next = NULL;
1266 					sbio->bi_sector = r1_bio->sector +
1267 						conf->mirrors[i].rdev->data_offset;
1268 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1269 					for (j = 0; j < vcnt ; j++)
1270 						memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1271 						       page_address(pbio->bi_io_vec[j].bv_page),
1272 						       PAGE_SIZE);
1273 
1274 				}
1275 			}
1276 	}
1277 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1278 		/* ouch - failed to read all of that.
1279 		 * Try some synchronous reads of other devices to get
1280 		 * good data, much like with normal read errors.  Only
1281 		 * read into the pages we already have so we don't
1282 		 * need to re-issue the read request.
1283 		 * We don't need to freeze the array, because being in an
1284 		 * active sync request, there is no normal IO, and
1285 		 * no overlapping syncs.
1286 		 */
1287 		sector_t sect = r1_bio->sector;
1288 		int sectors = r1_bio->sectors;
1289 		int idx = 0;
1290 
1291 		while(sectors) {
1292 			int s = sectors;
1293 			int d = r1_bio->read_disk;
1294 			int success = 0;
1295 			mdk_rdev_t *rdev;
1296 
1297 			if (s > (PAGE_SIZE>>9))
1298 				s = PAGE_SIZE >> 9;
1299 			do {
1300 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1301 					/* No rcu protection needed here devices
1302 					 * can only be removed when no resync is
1303 					 * active, and resync is currently active
1304 					 */
1305 					rdev = conf->mirrors[d].rdev;
1306 					if (sync_page_io(rdev->bdev,
1307 							 sect + rdev->data_offset,
1308 							 s<<9,
1309 							 bio->bi_io_vec[idx].bv_page,
1310 							 READ)) {
1311 						success = 1;
1312 						break;
1313 					}
1314 				}
1315 				d++;
1316 				if (d == conf->raid_disks)
1317 					d = 0;
1318 			} while (!success && d != r1_bio->read_disk);
1319 
1320 			if (success) {
1321 				int start = d;
1322 				/* write it back and re-read */
1323 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1324 				while (d != r1_bio->read_disk) {
1325 					if (d == 0)
1326 						d = conf->raid_disks;
1327 					d--;
1328 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1329 						continue;
1330 					rdev = conf->mirrors[d].rdev;
1331 					atomic_add(s, &rdev->corrected_errors);
1332 					if (sync_page_io(rdev->bdev,
1333 							 sect + rdev->data_offset,
1334 							 s<<9,
1335 							 bio->bi_io_vec[idx].bv_page,
1336 							 WRITE) == 0)
1337 						md_error(mddev, rdev);
1338 				}
1339 				d = start;
1340 				while (d != r1_bio->read_disk) {
1341 					if (d == 0)
1342 						d = conf->raid_disks;
1343 					d--;
1344 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1345 						continue;
1346 					rdev = conf->mirrors[d].rdev;
1347 					if (sync_page_io(rdev->bdev,
1348 							 sect + rdev->data_offset,
1349 							 s<<9,
1350 							 bio->bi_io_vec[idx].bv_page,
1351 							 READ) == 0)
1352 						md_error(mddev, rdev);
1353 				}
1354 			} else {
1355 				char b[BDEVNAME_SIZE];
1356 				/* Cannot read from anywhere, array is toast */
1357 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1358 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1359 				       " for block %llu\n",
1360 				       bdevname(bio->bi_bdev,b),
1361 				       (unsigned long long)r1_bio->sector);
1362 				md_done_sync(mddev, r1_bio->sectors, 0);
1363 				put_buf(r1_bio);
1364 				return;
1365 			}
1366 			sectors -= s;
1367 			sect += s;
1368 			idx ++;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * schedule writes
1374 	 */
1375 	atomic_set(&r1_bio->remaining, 1);
1376 	for (i = 0; i < disks ; i++) {
1377 		wbio = r1_bio->bios[i];
1378 		if (wbio->bi_end_io == NULL ||
1379 		    (wbio->bi_end_io == end_sync_read &&
1380 		     (i == r1_bio->read_disk ||
1381 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1382 			continue;
1383 
1384 		wbio->bi_rw = WRITE;
1385 		wbio->bi_end_io = end_sync_write;
1386 		atomic_inc(&r1_bio->remaining);
1387 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1388 
1389 		generic_make_request(wbio);
1390 	}
1391 
1392 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1393 		/* if we're here, all write(s) have completed, so clean up */
1394 		md_done_sync(mddev, r1_bio->sectors, 1);
1395 		put_buf(r1_bio);
1396 	}
1397 }
1398 
1399 /*
1400  * This is a kernel thread which:
1401  *
1402  *	1.	Retries failed read operations on working mirrors.
1403  *	2.	Updates the raid superblock when problems encounter.
1404  *	3.	Performs writes following reads for array syncronising.
1405  */
1406 
1407 static void fix_read_error(conf_t *conf, int read_disk,
1408 			   sector_t sect, int sectors)
1409 {
1410 	mddev_t *mddev = conf->mddev;
1411 	while(sectors) {
1412 		int s = sectors;
1413 		int d = read_disk;
1414 		int success = 0;
1415 		int start;
1416 		mdk_rdev_t *rdev;
1417 
1418 		if (s > (PAGE_SIZE>>9))
1419 			s = PAGE_SIZE >> 9;
1420 
1421 		do {
1422 			/* Note: no rcu protection needed here
1423 			 * as this is synchronous in the raid1d thread
1424 			 * which is the thread that might remove
1425 			 * a device.  If raid1d ever becomes multi-threaded....
1426 			 */
1427 			rdev = conf->mirrors[d].rdev;
1428 			if (rdev &&
1429 			    test_bit(In_sync, &rdev->flags) &&
1430 			    sync_page_io(rdev->bdev,
1431 					 sect + rdev->data_offset,
1432 					 s<<9,
1433 					 conf->tmppage, READ))
1434 				success = 1;
1435 			else {
1436 				d++;
1437 				if (d == conf->raid_disks)
1438 					d = 0;
1439 			}
1440 		} while (!success && d != read_disk);
1441 
1442 		if (!success) {
1443 			/* Cannot read from anywhere -- bye bye array */
1444 			md_error(mddev, conf->mirrors[read_disk].rdev);
1445 			break;
1446 		}
1447 		/* write it back and re-read */
1448 		start = d;
1449 		while (d != read_disk) {
1450 			if (d==0)
1451 				d = conf->raid_disks;
1452 			d--;
1453 			rdev = conf->mirrors[d].rdev;
1454 			if (rdev &&
1455 			    test_bit(In_sync, &rdev->flags)) {
1456 				if (sync_page_io(rdev->bdev,
1457 						 sect + rdev->data_offset,
1458 						 s<<9, conf->tmppage, WRITE)
1459 				    == 0)
1460 					/* Well, this device is dead */
1461 					md_error(mddev, rdev);
1462 			}
1463 		}
1464 		d = start;
1465 		while (d != read_disk) {
1466 			char b[BDEVNAME_SIZE];
1467 			if (d==0)
1468 				d = conf->raid_disks;
1469 			d--;
1470 			rdev = conf->mirrors[d].rdev;
1471 			if (rdev &&
1472 			    test_bit(In_sync, &rdev->flags)) {
1473 				if (sync_page_io(rdev->bdev,
1474 						 sect + rdev->data_offset,
1475 						 s<<9, conf->tmppage, READ)
1476 				    == 0)
1477 					/* Well, this device is dead */
1478 					md_error(mddev, rdev);
1479 				else {
1480 					atomic_add(s, &rdev->corrected_errors);
1481 					printk(KERN_INFO
1482 					       "raid1:%s: read error corrected "
1483 					       "(%d sectors at %llu on %s)\n",
1484 					       mdname(mddev), s,
1485 					       (unsigned long long)(sect +
1486 					           rdev->data_offset),
1487 					       bdevname(rdev->bdev, b));
1488 				}
1489 			}
1490 		}
1491 		sectors -= s;
1492 		sect += s;
1493 	}
1494 }
1495 
1496 static void raid1d(mddev_t *mddev)
1497 {
1498 	r1bio_t *r1_bio;
1499 	struct bio *bio;
1500 	unsigned long flags;
1501 	conf_t *conf = mddev_to_conf(mddev);
1502 	struct list_head *head = &conf->retry_list;
1503 	int unplug=0;
1504 	mdk_rdev_t *rdev;
1505 
1506 	md_check_recovery(mddev);
1507 
1508 	for (;;) {
1509 		char b[BDEVNAME_SIZE];
1510 		spin_lock_irqsave(&conf->device_lock, flags);
1511 
1512 		if (conf->pending_bio_list.head) {
1513 			bio = bio_list_get(&conf->pending_bio_list);
1514 			blk_remove_plug(mddev->queue);
1515 			spin_unlock_irqrestore(&conf->device_lock, flags);
1516 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1517 			if (bitmap_unplug(mddev->bitmap) != 0)
1518 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1519 
1520 			while (bio) { /* submit pending writes */
1521 				struct bio *next = bio->bi_next;
1522 				bio->bi_next = NULL;
1523 				generic_make_request(bio);
1524 				bio = next;
1525 			}
1526 			unplug = 1;
1527 
1528 			continue;
1529 		}
1530 
1531 		if (list_empty(head))
1532 			break;
1533 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1534 		list_del(head->prev);
1535 		conf->nr_queued--;
1536 		spin_unlock_irqrestore(&conf->device_lock, flags);
1537 
1538 		mddev = r1_bio->mddev;
1539 		conf = mddev_to_conf(mddev);
1540 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1541 			sync_request_write(mddev, r1_bio);
1542 			unplug = 1;
1543 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1544 			/* some requests in the r1bio were BIO_RW_BARRIER
1545 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1546 			 * Better resubmit without the barrier.
1547 			 * We know which devices to resubmit for, because
1548 			 * all others have had their bios[] entry cleared.
1549 			 * We already have a nr_pending reference on these rdevs.
1550 			 */
1551 			int i;
1552 			const int do_sync = bio_sync(r1_bio->master_bio);
1553 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1554 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1555 			for (i=0; i < conf->raid_disks; i++)
1556 				if (r1_bio->bios[i])
1557 					atomic_inc(&r1_bio->remaining);
1558 			for (i=0; i < conf->raid_disks; i++)
1559 				if (r1_bio->bios[i]) {
1560 					struct bio_vec *bvec;
1561 					int j;
1562 
1563 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1564 					/* copy pages from the failed bio, as
1565 					 * this might be a write-behind device */
1566 					__bio_for_each_segment(bvec, bio, j, 0)
1567 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1568 					bio_put(r1_bio->bios[i]);
1569 					bio->bi_sector = r1_bio->sector +
1570 						conf->mirrors[i].rdev->data_offset;
1571 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1572 					bio->bi_end_io = raid1_end_write_request;
1573 					bio->bi_rw = WRITE | do_sync;
1574 					bio->bi_private = r1_bio;
1575 					r1_bio->bios[i] = bio;
1576 					generic_make_request(bio);
1577 				}
1578 		} else {
1579 			int disk;
1580 
1581 			/* we got a read error. Maybe the drive is bad.  Maybe just
1582 			 * the block and we can fix it.
1583 			 * We freeze all other IO, and try reading the block from
1584 			 * other devices.  When we find one, we re-write
1585 			 * and check it that fixes the read error.
1586 			 * This is all done synchronously while the array is
1587 			 * frozen
1588 			 */
1589 			if (mddev->ro == 0) {
1590 				freeze_array(conf);
1591 				fix_read_error(conf, r1_bio->read_disk,
1592 					       r1_bio->sector,
1593 					       r1_bio->sectors);
1594 				unfreeze_array(conf);
1595 			}
1596 
1597 			bio = r1_bio->bios[r1_bio->read_disk];
1598 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1599 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1600 				       " read error for block %llu\n",
1601 				       bdevname(bio->bi_bdev,b),
1602 				       (unsigned long long)r1_bio->sector);
1603 				raid_end_bio_io(r1_bio);
1604 			} else {
1605 				const int do_sync = bio_sync(r1_bio->master_bio);
1606 				r1_bio->bios[r1_bio->read_disk] =
1607 					mddev->ro ? IO_BLOCKED : NULL;
1608 				r1_bio->read_disk = disk;
1609 				bio_put(bio);
1610 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1611 				r1_bio->bios[r1_bio->read_disk] = bio;
1612 				rdev = conf->mirrors[disk].rdev;
1613 				if (printk_ratelimit())
1614 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1615 					       " another mirror\n",
1616 					       bdevname(rdev->bdev,b),
1617 					       (unsigned long long)r1_bio->sector);
1618 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1619 				bio->bi_bdev = rdev->bdev;
1620 				bio->bi_end_io = raid1_end_read_request;
1621 				bio->bi_rw = READ | do_sync;
1622 				bio->bi_private = r1_bio;
1623 				unplug = 1;
1624 				generic_make_request(bio);
1625 			}
1626 		}
1627 	}
1628 	spin_unlock_irqrestore(&conf->device_lock, flags);
1629 	if (unplug)
1630 		unplug_slaves(mddev);
1631 }
1632 
1633 
1634 static int init_resync(conf_t *conf)
1635 {
1636 	int buffs;
1637 
1638 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1639 	BUG_ON(conf->r1buf_pool);
1640 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1641 					  conf->poolinfo);
1642 	if (!conf->r1buf_pool)
1643 		return -ENOMEM;
1644 	conf->next_resync = 0;
1645 	return 0;
1646 }
1647 
1648 /*
1649  * perform a "sync" on one "block"
1650  *
1651  * We need to make sure that no normal I/O request - particularly write
1652  * requests - conflict with active sync requests.
1653  *
1654  * This is achieved by tracking pending requests and a 'barrier' concept
1655  * that can be installed to exclude normal IO requests.
1656  */
1657 
1658 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1659 {
1660 	conf_t *conf = mddev_to_conf(mddev);
1661 	r1bio_t *r1_bio;
1662 	struct bio *bio;
1663 	sector_t max_sector, nr_sectors;
1664 	int disk = -1;
1665 	int i;
1666 	int wonly = -1;
1667 	int write_targets = 0, read_targets = 0;
1668 	int sync_blocks;
1669 	int still_degraded = 0;
1670 
1671 	if (!conf->r1buf_pool)
1672 	{
1673 /*
1674 		printk("sync start - bitmap %p\n", mddev->bitmap);
1675 */
1676 		if (init_resync(conf))
1677 			return 0;
1678 	}
1679 
1680 	max_sector = mddev->size << 1;
1681 	if (sector_nr >= max_sector) {
1682 		/* If we aborted, we need to abort the
1683 		 * sync on the 'current' bitmap chunk (there will
1684 		 * only be one in raid1 resync.
1685 		 * We can find the current addess in mddev->curr_resync
1686 		 */
1687 		if (mddev->curr_resync < max_sector) /* aborted */
1688 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1689 						&sync_blocks, 1);
1690 		else /* completed sync */
1691 			conf->fullsync = 0;
1692 
1693 		bitmap_close_sync(mddev->bitmap);
1694 		close_sync(conf);
1695 		return 0;
1696 	}
1697 
1698 	if (mddev->bitmap == NULL &&
1699 	    mddev->recovery_cp == MaxSector &&
1700 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1701 	    conf->fullsync == 0) {
1702 		*skipped = 1;
1703 		return max_sector - sector_nr;
1704 	}
1705 	/* before building a request, check if we can skip these blocks..
1706 	 * This call the bitmap_start_sync doesn't actually record anything
1707 	 */
1708 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1709 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1710 		/* We can skip this block, and probably several more */
1711 		*skipped = 1;
1712 		return sync_blocks;
1713 	}
1714 	/*
1715 	 * If there is non-resync activity waiting for a turn,
1716 	 * and resync is going fast enough,
1717 	 * then let it though before starting on this new sync request.
1718 	 */
1719 	if (!go_faster && conf->nr_waiting)
1720 		msleep_interruptible(1000);
1721 
1722 	raise_barrier(conf);
1723 
1724 	conf->next_resync = sector_nr;
1725 
1726 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1727 	rcu_read_lock();
1728 	/*
1729 	 * If we get a correctably read error during resync or recovery,
1730 	 * we might want to read from a different device.  So we
1731 	 * flag all drives that could conceivably be read from for READ,
1732 	 * and any others (which will be non-In_sync devices) for WRITE.
1733 	 * If a read fails, we try reading from something else for which READ
1734 	 * is OK.
1735 	 */
1736 
1737 	r1_bio->mddev = mddev;
1738 	r1_bio->sector = sector_nr;
1739 	r1_bio->state = 0;
1740 	set_bit(R1BIO_IsSync, &r1_bio->state);
1741 
1742 	for (i=0; i < conf->raid_disks; i++) {
1743 		mdk_rdev_t *rdev;
1744 		bio = r1_bio->bios[i];
1745 
1746 		/* take from bio_init */
1747 		bio->bi_next = NULL;
1748 		bio->bi_flags |= 1 << BIO_UPTODATE;
1749 		bio->bi_rw = READ;
1750 		bio->bi_vcnt = 0;
1751 		bio->bi_idx = 0;
1752 		bio->bi_phys_segments = 0;
1753 		bio->bi_hw_segments = 0;
1754 		bio->bi_size = 0;
1755 		bio->bi_end_io = NULL;
1756 		bio->bi_private = NULL;
1757 
1758 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1759 		if (rdev == NULL ||
1760 			   test_bit(Faulty, &rdev->flags)) {
1761 			still_degraded = 1;
1762 			continue;
1763 		} else if (!test_bit(In_sync, &rdev->flags)) {
1764 			bio->bi_rw = WRITE;
1765 			bio->bi_end_io = end_sync_write;
1766 			write_targets ++;
1767 		} else {
1768 			/* may need to read from here */
1769 			bio->bi_rw = READ;
1770 			bio->bi_end_io = end_sync_read;
1771 			if (test_bit(WriteMostly, &rdev->flags)) {
1772 				if (wonly < 0)
1773 					wonly = i;
1774 			} else {
1775 				if (disk < 0)
1776 					disk = i;
1777 			}
1778 			read_targets++;
1779 		}
1780 		atomic_inc(&rdev->nr_pending);
1781 		bio->bi_sector = sector_nr + rdev->data_offset;
1782 		bio->bi_bdev = rdev->bdev;
1783 		bio->bi_private = r1_bio;
1784 	}
1785 	rcu_read_unlock();
1786 	if (disk < 0)
1787 		disk = wonly;
1788 	r1_bio->read_disk = disk;
1789 
1790 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1791 		/* extra read targets are also write targets */
1792 		write_targets += read_targets-1;
1793 
1794 	if (write_targets == 0 || read_targets == 0) {
1795 		/* There is nowhere to write, so all non-sync
1796 		 * drives must be failed - so we are finished
1797 		 */
1798 		sector_t rv = max_sector - sector_nr;
1799 		*skipped = 1;
1800 		put_buf(r1_bio);
1801 		return rv;
1802 	}
1803 
1804 	nr_sectors = 0;
1805 	sync_blocks = 0;
1806 	do {
1807 		struct page *page;
1808 		int len = PAGE_SIZE;
1809 		if (sector_nr + (len>>9) > max_sector)
1810 			len = (max_sector - sector_nr) << 9;
1811 		if (len == 0)
1812 			break;
1813 		if (sync_blocks == 0) {
1814 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1815 					       &sync_blocks, still_degraded) &&
1816 			    !conf->fullsync &&
1817 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1818 				break;
1819 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1820 			if (len > (sync_blocks<<9))
1821 				len = sync_blocks<<9;
1822 		}
1823 
1824 		for (i=0 ; i < conf->raid_disks; i++) {
1825 			bio = r1_bio->bios[i];
1826 			if (bio->bi_end_io) {
1827 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1828 				if (bio_add_page(bio, page, len, 0) == 0) {
1829 					/* stop here */
1830 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1831 					while (i > 0) {
1832 						i--;
1833 						bio = r1_bio->bios[i];
1834 						if (bio->bi_end_io==NULL)
1835 							continue;
1836 						/* remove last page from this bio */
1837 						bio->bi_vcnt--;
1838 						bio->bi_size -= len;
1839 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1840 					}
1841 					goto bio_full;
1842 				}
1843 			}
1844 		}
1845 		nr_sectors += len>>9;
1846 		sector_nr += len>>9;
1847 		sync_blocks -= (len>>9);
1848 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1849  bio_full:
1850 	r1_bio->sectors = nr_sectors;
1851 
1852 	/* For a user-requested sync, we read all readable devices and do a
1853 	 * compare
1854 	 */
1855 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1856 		atomic_set(&r1_bio->remaining, read_targets);
1857 		for (i=0; i<conf->raid_disks; i++) {
1858 			bio = r1_bio->bios[i];
1859 			if (bio->bi_end_io == end_sync_read) {
1860 				md_sync_acct(bio->bi_bdev, nr_sectors);
1861 				generic_make_request(bio);
1862 			}
1863 		}
1864 	} else {
1865 		atomic_set(&r1_bio->remaining, 1);
1866 		bio = r1_bio->bios[r1_bio->read_disk];
1867 		md_sync_acct(bio->bi_bdev, nr_sectors);
1868 		generic_make_request(bio);
1869 
1870 	}
1871 	return nr_sectors;
1872 }
1873 
1874 static int run(mddev_t *mddev)
1875 {
1876 	conf_t *conf;
1877 	int i, j, disk_idx;
1878 	mirror_info_t *disk;
1879 	mdk_rdev_t *rdev;
1880 	struct list_head *tmp;
1881 
1882 	if (mddev->level != 1) {
1883 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1884 		       mdname(mddev), mddev->level);
1885 		goto out;
1886 	}
1887 	if (mddev->reshape_position != MaxSector) {
1888 		printk("raid1: %s: reshape_position set but not supported\n",
1889 		       mdname(mddev));
1890 		goto out;
1891 	}
1892 	/*
1893 	 * copy the already verified devices into our private RAID1
1894 	 * bookkeeping area. [whatever we allocate in run(),
1895 	 * should be freed in stop()]
1896 	 */
1897 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1898 	mddev->private = conf;
1899 	if (!conf)
1900 		goto out_no_mem;
1901 
1902 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1903 				 GFP_KERNEL);
1904 	if (!conf->mirrors)
1905 		goto out_no_mem;
1906 
1907 	conf->tmppage = alloc_page(GFP_KERNEL);
1908 	if (!conf->tmppage)
1909 		goto out_no_mem;
1910 
1911 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1912 	if (!conf->poolinfo)
1913 		goto out_no_mem;
1914 	conf->poolinfo->mddev = mddev;
1915 	conf->poolinfo->raid_disks = mddev->raid_disks;
1916 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1917 					  r1bio_pool_free,
1918 					  conf->poolinfo);
1919 	if (!conf->r1bio_pool)
1920 		goto out_no_mem;
1921 
1922 	ITERATE_RDEV(mddev, rdev, tmp) {
1923 		disk_idx = rdev->raid_disk;
1924 		if (disk_idx >= mddev->raid_disks
1925 		    || disk_idx < 0)
1926 			continue;
1927 		disk = conf->mirrors + disk_idx;
1928 
1929 		disk->rdev = rdev;
1930 
1931 		blk_queue_stack_limits(mddev->queue,
1932 				       rdev->bdev->bd_disk->queue);
1933 		/* as we don't honour merge_bvec_fn, we must never risk
1934 		 * violating it, so limit ->max_sector to one PAGE, as
1935 		 * a one page request is never in violation.
1936 		 */
1937 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1938 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1939 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1940 
1941 		disk->head_position = 0;
1942 	}
1943 	conf->raid_disks = mddev->raid_disks;
1944 	conf->mddev = mddev;
1945 	spin_lock_init(&conf->device_lock);
1946 	INIT_LIST_HEAD(&conf->retry_list);
1947 
1948 	spin_lock_init(&conf->resync_lock);
1949 	init_waitqueue_head(&conf->wait_barrier);
1950 
1951 	bio_list_init(&conf->pending_bio_list);
1952 	bio_list_init(&conf->flushing_bio_list);
1953 
1954 
1955 	mddev->degraded = 0;
1956 	for (i = 0; i < conf->raid_disks; i++) {
1957 
1958 		disk = conf->mirrors + i;
1959 
1960 		if (!disk->rdev ||
1961 		    !test_bit(In_sync, &disk->rdev->flags)) {
1962 			disk->head_position = 0;
1963 			mddev->degraded++;
1964 			conf->fullsync = 1;
1965 		}
1966 	}
1967 	if (mddev->degraded == conf->raid_disks) {
1968 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1969 			mdname(mddev));
1970 		goto out_free_conf;
1971 	}
1972 	if (conf->raid_disks - mddev->degraded == 1)
1973 		mddev->recovery_cp = MaxSector;
1974 
1975 	/*
1976 	 * find the first working one and use it as a starting point
1977 	 * to read balancing.
1978 	 */
1979 	for (j = 0; j < conf->raid_disks &&
1980 		     (!conf->mirrors[j].rdev ||
1981 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1982 		/* nothing */;
1983 	conf->last_used = j;
1984 
1985 
1986 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1987 	if (!mddev->thread) {
1988 		printk(KERN_ERR
1989 		       "raid1: couldn't allocate thread for %s\n",
1990 		       mdname(mddev));
1991 		goto out_free_conf;
1992 	}
1993 
1994 	printk(KERN_INFO
1995 		"raid1: raid set %s active with %d out of %d mirrors\n",
1996 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1997 		mddev->raid_disks);
1998 	/*
1999 	 * Ok, everything is just fine now
2000 	 */
2001 	mddev->array_size = mddev->size;
2002 
2003 	mddev->queue->unplug_fn = raid1_unplug;
2004 	mddev->queue->issue_flush_fn = raid1_issue_flush;
2005 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2006 	mddev->queue->backing_dev_info.congested_data = mddev;
2007 
2008 	return 0;
2009 
2010 out_no_mem:
2011 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2012 	       mdname(mddev));
2013 
2014 out_free_conf:
2015 	if (conf) {
2016 		if (conf->r1bio_pool)
2017 			mempool_destroy(conf->r1bio_pool);
2018 		kfree(conf->mirrors);
2019 		safe_put_page(conf->tmppage);
2020 		kfree(conf->poolinfo);
2021 		kfree(conf);
2022 		mddev->private = NULL;
2023 	}
2024 out:
2025 	return -EIO;
2026 }
2027 
2028 static int stop(mddev_t *mddev)
2029 {
2030 	conf_t *conf = mddev_to_conf(mddev);
2031 	struct bitmap *bitmap = mddev->bitmap;
2032 	int behind_wait = 0;
2033 
2034 	/* wait for behind writes to complete */
2035 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2036 		behind_wait++;
2037 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2038 		set_current_state(TASK_UNINTERRUPTIBLE);
2039 		schedule_timeout(HZ); /* wait a second */
2040 		/* need to kick something here to make sure I/O goes? */
2041 	}
2042 
2043 	md_unregister_thread(mddev->thread);
2044 	mddev->thread = NULL;
2045 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2046 	if (conf->r1bio_pool)
2047 		mempool_destroy(conf->r1bio_pool);
2048 	kfree(conf->mirrors);
2049 	kfree(conf->poolinfo);
2050 	kfree(conf);
2051 	mddev->private = NULL;
2052 	return 0;
2053 }
2054 
2055 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2056 {
2057 	/* no resync is happening, and there is enough space
2058 	 * on all devices, so we can resize.
2059 	 * We need to make sure resync covers any new space.
2060 	 * If the array is shrinking we should possibly wait until
2061 	 * any io in the removed space completes, but it hardly seems
2062 	 * worth it.
2063 	 */
2064 	mddev->array_size = sectors>>1;
2065 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2066 	mddev->changed = 1;
2067 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2068 		mddev->recovery_cp = mddev->size << 1;
2069 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2070 	}
2071 	mddev->size = mddev->array_size;
2072 	mddev->resync_max_sectors = sectors;
2073 	return 0;
2074 }
2075 
2076 static int raid1_reshape(mddev_t *mddev)
2077 {
2078 	/* We need to:
2079 	 * 1/ resize the r1bio_pool
2080 	 * 2/ resize conf->mirrors
2081 	 *
2082 	 * We allocate a new r1bio_pool if we can.
2083 	 * Then raise a device barrier and wait until all IO stops.
2084 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2085 	 *
2086 	 * At the same time, we "pack" the devices so that all the missing
2087 	 * devices have the higher raid_disk numbers.
2088 	 */
2089 	mempool_t *newpool, *oldpool;
2090 	struct pool_info *newpoolinfo;
2091 	mirror_info_t *newmirrors;
2092 	conf_t *conf = mddev_to_conf(mddev);
2093 	int cnt, raid_disks;
2094 	unsigned long flags;
2095 	int d, d2;
2096 
2097 	/* Cannot change chunk_size, layout, or level */
2098 	if (mddev->chunk_size != mddev->new_chunk ||
2099 	    mddev->layout != mddev->new_layout ||
2100 	    mddev->level != mddev->new_level) {
2101 		mddev->new_chunk = mddev->chunk_size;
2102 		mddev->new_layout = mddev->layout;
2103 		mddev->new_level = mddev->level;
2104 		return -EINVAL;
2105 	}
2106 
2107 	md_allow_write(mddev);
2108 
2109 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2110 
2111 	if (raid_disks < conf->raid_disks) {
2112 		cnt=0;
2113 		for (d= 0; d < conf->raid_disks; d++)
2114 			if (conf->mirrors[d].rdev)
2115 				cnt++;
2116 		if (cnt > raid_disks)
2117 			return -EBUSY;
2118 	}
2119 
2120 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2121 	if (!newpoolinfo)
2122 		return -ENOMEM;
2123 	newpoolinfo->mddev = mddev;
2124 	newpoolinfo->raid_disks = raid_disks;
2125 
2126 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2127 				 r1bio_pool_free, newpoolinfo);
2128 	if (!newpool) {
2129 		kfree(newpoolinfo);
2130 		return -ENOMEM;
2131 	}
2132 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2133 	if (!newmirrors) {
2134 		kfree(newpoolinfo);
2135 		mempool_destroy(newpool);
2136 		return -ENOMEM;
2137 	}
2138 
2139 	raise_barrier(conf);
2140 
2141 	/* ok, everything is stopped */
2142 	oldpool = conf->r1bio_pool;
2143 	conf->r1bio_pool = newpool;
2144 
2145 	for (d=d2=0; d < conf->raid_disks; d++)
2146 		if (conf->mirrors[d].rdev) {
2147 			conf->mirrors[d].rdev->raid_disk = d2;
2148 			newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2149 		}
2150 	kfree(conf->mirrors);
2151 	conf->mirrors = newmirrors;
2152 	kfree(conf->poolinfo);
2153 	conf->poolinfo = newpoolinfo;
2154 
2155 	spin_lock_irqsave(&conf->device_lock, flags);
2156 	mddev->degraded += (raid_disks - conf->raid_disks);
2157 	spin_unlock_irqrestore(&conf->device_lock, flags);
2158 	conf->raid_disks = mddev->raid_disks = raid_disks;
2159 	mddev->delta_disks = 0;
2160 
2161 	conf->last_used = 0; /* just make sure it is in-range */
2162 	lower_barrier(conf);
2163 
2164 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2165 	md_wakeup_thread(mddev->thread);
2166 
2167 	mempool_destroy(oldpool);
2168 	return 0;
2169 }
2170 
2171 static void raid1_quiesce(mddev_t *mddev, int state)
2172 {
2173 	conf_t *conf = mddev_to_conf(mddev);
2174 
2175 	switch(state) {
2176 	case 1:
2177 		raise_barrier(conf);
2178 		break;
2179 	case 0:
2180 		lower_barrier(conf);
2181 		break;
2182 	}
2183 }
2184 
2185 
2186 static struct mdk_personality raid1_personality =
2187 {
2188 	.name		= "raid1",
2189 	.level		= 1,
2190 	.owner		= THIS_MODULE,
2191 	.make_request	= make_request,
2192 	.run		= run,
2193 	.stop		= stop,
2194 	.status		= status,
2195 	.error_handler	= error,
2196 	.hot_add_disk	= raid1_add_disk,
2197 	.hot_remove_disk= raid1_remove_disk,
2198 	.spare_active	= raid1_spare_active,
2199 	.sync_request	= sync_request,
2200 	.resize		= raid1_resize,
2201 	.check_reshape	= raid1_reshape,
2202 	.quiesce	= raid1_quiesce,
2203 };
2204 
2205 static int __init raid_init(void)
2206 {
2207 	return register_md_personality(&raid1_personality);
2208 }
2209 
2210 static void raid_exit(void)
2211 {
2212 	unregister_md_personality(&raid1_personality);
2213 }
2214 
2215 module_init(raid_init);
2216 module_exit(raid_exit);
2217 MODULE_LICENSE("GPL");
2218 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2219 MODULE_ALIAS("md-raid1");
2220 MODULE_ALIAS("md-level-1");
2221