1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, bio->bi_size, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 if (bio->bi_size) 266 return 1; 267 268 mirror = r1_bio->read_disk; 269 /* 270 * this branch is our 'one mirror IO has finished' event handler: 271 */ 272 update_head_pos(mirror, r1_bio); 273 274 if (uptodate || (conf->raid_disks - conf->mddev->degraded) <= 1) { 275 /* 276 * Set R1BIO_Uptodate in our master bio, so that 277 * we will return a good error code for to the higher 278 * levels even if IO on some other mirrored buffer fails. 279 * 280 * The 'master' represents the composite IO operation to 281 * user-side. So if something waits for IO, then it will 282 * wait for the 'master' bio. 283 */ 284 if (uptodate) 285 set_bit(R1BIO_Uptodate, &r1_bio->state); 286 287 raid_end_bio_io(r1_bio); 288 } else { 289 /* 290 * oops, read error: 291 */ 292 char b[BDEVNAME_SIZE]; 293 if (printk_ratelimit()) 294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 296 reschedule_retry(r1_bio); 297 } 298 299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 300 return 0; 301 } 302 303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 if (bio->bi_size) 312 return 1; 313 314 for (mirror = 0; mirror < conf->raid_disks; mirror++) 315 if (r1_bio->bios[mirror] == bio) 316 break; 317 318 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 320 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 321 r1_bio->mddev->barriers_work = 0; 322 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 323 } else { 324 /* 325 * this branch is our 'one mirror IO has finished' event handler: 326 */ 327 r1_bio->bios[mirror] = NULL; 328 to_put = bio; 329 if (!uptodate) { 330 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 331 /* an I/O failed, we can't clear the bitmap */ 332 set_bit(R1BIO_Degraded, &r1_bio->state); 333 } else 334 /* 335 * Set R1BIO_Uptodate in our master bio, so that 336 * we will return a good error code for to the higher 337 * levels even if IO on some other mirrored buffer fails. 338 * 339 * The 'master' represents the composite IO operation to 340 * user-side. So if something waits for IO, then it will 341 * wait for the 'master' bio. 342 */ 343 set_bit(R1BIO_Uptodate, &r1_bio->state); 344 345 update_head_pos(mirror, r1_bio); 346 347 if (behind) { 348 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 349 atomic_dec(&r1_bio->behind_remaining); 350 351 /* In behind mode, we ACK the master bio once the I/O has safely 352 * reached all non-writemostly disks. Setting the Returned bit 353 * ensures that this gets done only once -- we don't ever want to 354 * return -EIO here, instead we'll wait */ 355 356 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 357 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 358 /* Maybe we can return now */ 359 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 360 struct bio *mbio = r1_bio->master_bio; 361 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 362 (unsigned long long) mbio->bi_sector, 363 (unsigned long long) mbio->bi_sector + 364 (mbio->bi_size >> 9) - 1); 365 bio_endio(mbio, mbio->bi_size, 0); 366 } 367 } 368 } 369 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 370 } 371 /* 372 * 373 * Let's see if all mirrored write operations have finished 374 * already. 375 */ 376 if (atomic_dec_and_test(&r1_bio->remaining)) { 377 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 378 reschedule_retry(r1_bio); 379 else { 380 /* it really is the end of this request */ 381 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 382 /* free extra copy of the data pages */ 383 int i = bio->bi_vcnt; 384 while (i--) 385 safe_put_page(bio->bi_io_vec[i].bv_page); 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 behind); 392 md_write_end(r1_bio->mddev); 393 raid_end_bio_io(r1_bio); 394 } 395 } 396 397 if (to_put) 398 bio_put(to_put); 399 400 return 0; 401 } 402 403 404 /* 405 * This routine returns the disk from which the requested read should 406 * be done. There is a per-array 'next expected sequential IO' sector 407 * number - if this matches on the next IO then we use the last disk. 408 * There is also a per-disk 'last know head position' sector that is 409 * maintained from IRQ contexts, both the normal and the resync IO 410 * completion handlers update this position correctly. If there is no 411 * perfect sequential match then we pick the disk whose head is closest. 412 * 413 * If there are 2 mirrors in the same 2 devices, performance degrades 414 * because position is mirror, not device based. 415 * 416 * The rdev for the device selected will have nr_pending incremented. 417 */ 418 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 419 { 420 const unsigned long this_sector = r1_bio->sector; 421 int new_disk = conf->last_used, disk = new_disk; 422 int wonly_disk = -1; 423 const int sectors = r1_bio->sectors; 424 sector_t new_distance, current_distance; 425 mdk_rdev_t *rdev; 426 427 rcu_read_lock(); 428 /* 429 * Check if we can balance. We can balance on the whole 430 * device if no resync is going on, or below the resync window. 431 * We take the first readable disk when above the resync window. 432 */ 433 retry: 434 if (conf->mddev->recovery_cp < MaxSector && 435 (this_sector + sectors >= conf->next_resync)) { 436 /* Choose the first operation device, for consistancy */ 437 new_disk = 0; 438 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 440 r1_bio->bios[new_disk] == IO_BLOCKED || 441 !rdev || !test_bit(In_sync, &rdev->flags) 442 || test_bit(WriteMostly, &rdev->flags); 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 444 445 if (rdev && test_bit(In_sync, &rdev->flags) && 446 r1_bio->bios[new_disk] != IO_BLOCKED) 447 wonly_disk = new_disk; 448 449 if (new_disk == conf->raid_disks - 1) { 450 new_disk = wonly_disk; 451 break; 452 } 453 } 454 goto rb_out; 455 } 456 457 458 /* make sure the disk is operational */ 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 460 r1_bio->bios[new_disk] == IO_BLOCKED || 461 !rdev || !test_bit(In_sync, &rdev->flags) || 462 test_bit(WriteMostly, &rdev->flags); 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 464 465 if (rdev && test_bit(In_sync, &rdev->flags) && 466 r1_bio->bios[new_disk] != IO_BLOCKED) 467 wonly_disk = new_disk; 468 469 if (new_disk <= 0) 470 new_disk = conf->raid_disks; 471 new_disk--; 472 if (new_disk == disk) { 473 new_disk = wonly_disk; 474 break; 475 } 476 } 477 478 if (new_disk < 0) 479 goto rb_out; 480 481 disk = new_disk; 482 /* now disk == new_disk == starting point for search */ 483 484 /* 485 * Don't change to another disk for sequential reads: 486 */ 487 if (conf->next_seq_sect == this_sector) 488 goto rb_out; 489 if (this_sector == conf->mirrors[new_disk].head_position) 490 goto rb_out; 491 492 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 493 494 /* Find the disk whose head is closest */ 495 496 do { 497 if (disk <= 0) 498 disk = conf->raid_disks; 499 disk--; 500 501 rdev = rcu_dereference(conf->mirrors[disk].rdev); 502 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 504 !test_bit(In_sync, &rdev->flags) || 505 test_bit(WriteMostly, &rdev->flags)) 506 continue; 507 508 if (!atomic_read(&rdev->nr_pending)) { 509 new_disk = disk; 510 break; 511 } 512 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 513 if (new_distance < current_distance) { 514 current_distance = new_distance; 515 new_disk = disk; 516 } 517 } while (disk != conf->last_used); 518 519 rb_out: 520 521 522 if (new_disk >= 0) { 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 524 if (!rdev) 525 goto retry; 526 atomic_inc(&rdev->nr_pending); 527 if (!test_bit(In_sync, &rdev->flags)) { 528 /* cannot risk returning a device that failed 529 * before we inc'ed nr_pending 530 */ 531 rdev_dec_pending(rdev, conf->mddev); 532 goto retry; 533 } 534 conf->next_seq_sect = this_sector + sectors; 535 conf->last_used = new_disk; 536 } 537 rcu_read_unlock(); 538 539 return new_disk; 540 } 541 542 static void unplug_slaves(mddev_t *mddev) 543 { 544 conf_t *conf = mddev_to_conf(mddev); 545 int i; 546 547 rcu_read_lock(); 548 for (i=0; i<mddev->raid_disks; i++) { 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 551 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 552 553 atomic_inc(&rdev->nr_pending); 554 rcu_read_unlock(); 555 556 if (r_queue->unplug_fn) 557 r_queue->unplug_fn(r_queue); 558 559 rdev_dec_pending(rdev, mddev); 560 rcu_read_lock(); 561 } 562 } 563 rcu_read_unlock(); 564 } 565 566 static void raid1_unplug(request_queue_t *q) 567 { 568 mddev_t *mddev = q->queuedata; 569 570 unplug_slaves(mddev); 571 md_wakeup_thread(mddev->thread); 572 } 573 574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 575 sector_t *error_sector) 576 { 577 mddev_t *mddev = q->queuedata; 578 conf_t *conf = mddev_to_conf(mddev); 579 int i, ret = 0; 580 581 rcu_read_lock(); 582 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 583 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 584 if (rdev && !test_bit(Faulty, &rdev->flags)) { 585 struct block_device *bdev = rdev->bdev; 586 request_queue_t *r_queue = bdev_get_queue(bdev); 587 588 if (!r_queue->issue_flush_fn) 589 ret = -EOPNOTSUPP; 590 else { 591 atomic_inc(&rdev->nr_pending); 592 rcu_read_unlock(); 593 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 594 error_sector); 595 rdev_dec_pending(rdev, mddev); 596 rcu_read_lock(); 597 } 598 } 599 } 600 rcu_read_unlock(); 601 return ret; 602 } 603 604 static int raid1_congested(void *data, int bits) 605 { 606 mddev_t *mddev = data; 607 conf_t *conf = mddev_to_conf(mddev); 608 int i, ret = 0; 609 610 rcu_read_lock(); 611 for (i = 0; i < mddev->raid_disks; i++) { 612 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 613 if (rdev && !test_bit(Faulty, &rdev->flags)) { 614 request_queue_t *q = bdev_get_queue(rdev->bdev); 615 616 /* Note the '|| 1' - when read_balance prefers 617 * non-congested targets, it can be removed 618 */ 619 if ((bits & (1<<BDI_write_congested)) || 1) 620 ret |= bdi_congested(&q->backing_dev_info, bits); 621 else 622 ret &= bdi_congested(&q->backing_dev_info, bits); 623 } 624 } 625 rcu_read_unlock(); 626 return ret; 627 } 628 629 630 /* Barriers.... 631 * Sometimes we need to suspend IO while we do something else, 632 * either some resync/recovery, or reconfigure the array. 633 * To do this we raise a 'barrier'. 634 * The 'barrier' is a counter that can be raised multiple times 635 * to count how many activities are happening which preclude 636 * normal IO. 637 * We can only raise the barrier if there is no pending IO. 638 * i.e. if nr_pending == 0. 639 * We choose only to raise the barrier if no-one is waiting for the 640 * barrier to go down. This means that as soon as an IO request 641 * is ready, no other operations which require a barrier will start 642 * until the IO request has had a chance. 643 * 644 * So: regular IO calls 'wait_barrier'. When that returns there 645 * is no backgroup IO happening, It must arrange to call 646 * allow_barrier when it has finished its IO. 647 * backgroup IO calls must call raise_barrier. Once that returns 648 * there is no normal IO happeing. It must arrange to call 649 * lower_barrier when the particular background IO completes. 650 */ 651 #define RESYNC_DEPTH 32 652 653 static void raise_barrier(conf_t *conf) 654 { 655 spin_lock_irq(&conf->resync_lock); 656 657 /* Wait until no block IO is waiting */ 658 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 659 conf->resync_lock, 660 raid1_unplug(conf->mddev->queue)); 661 662 /* block any new IO from starting */ 663 conf->barrier++; 664 665 /* No wait for all pending IO to complete */ 666 wait_event_lock_irq(conf->wait_barrier, 667 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 668 conf->resync_lock, 669 raid1_unplug(conf->mddev->queue)); 670 671 spin_unlock_irq(&conf->resync_lock); 672 } 673 674 static void lower_barrier(conf_t *conf) 675 { 676 unsigned long flags; 677 spin_lock_irqsave(&conf->resync_lock, flags); 678 conf->barrier--; 679 spin_unlock_irqrestore(&conf->resync_lock, flags); 680 wake_up(&conf->wait_barrier); 681 } 682 683 static void wait_barrier(conf_t *conf) 684 { 685 spin_lock_irq(&conf->resync_lock); 686 if (conf->barrier) { 687 conf->nr_waiting++; 688 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 689 conf->resync_lock, 690 raid1_unplug(conf->mddev->queue)); 691 conf->nr_waiting--; 692 } 693 conf->nr_pending++; 694 spin_unlock_irq(&conf->resync_lock); 695 } 696 697 static void allow_barrier(conf_t *conf) 698 { 699 unsigned long flags; 700 spin_lock_irqsave(&conf->resync_lock, flags); 701 conf->nr_pending--; 702 spin_unlock_irqrestore(&conf->resync_lock, flags); 703 wake_up(&conf->wait_barrier); 704 } 705 706 static void freeze_array(conf_t *conf) 707 { 708 /* stop syncio and normal IO and wait for everything to 709 * go quite. 710 * We increment barrier and nr_waiting, and then 711 * wait until barrier+nr_pending match nr_queued+2 712 */ 713 spin_lock_irq(&conf->resync_lock); 714 conf->barrier++; 715 conf->nr_waiting++; 716 wait_event_lock_irq(conf->wait_barrier, 717 conf->barrier+conf->nr_pending == conf->nr_queued+2, 718 conf->resync_lock, 719 raid1_unplug(conf->mddev->queue)); 720 spin_unlock_irq(&conf->resync_lock); 721 } 722 static void unfreeze_array(conf_t *conf) 723 { 724 /* reverse the effect of the freeze */ 725 spin_lock_irq(&conf->resync_lock); 726 conf->barrier--; 727 conf->nr_waiting--; 728 wake_up(&conf->wait_barrier); 729 spin_unlock_irq(&conf->resync_lock); 730 } 731 732 733 /* duplicate the data pages for behind I/O */ 734 static struct page **alloc_behind_pages(struct bio *bio) 735 { 736 int i; 737 struct bio_vec *bvec; 738 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 739 GFP_NOIO); 740 if (unlikely(!pages)) 741 goto do_sync_io; 742 743 bio_for_each_segment(bvec, bio, i) { 744 pages[i] = alloc_page(GFP_NOIO); 745 if (unlikely(!pages[i])) 746 goto do_sync_io; 747 memcpy(kmap(pages[i]) + bvec->bv_offset, 748 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 749 kunmap(pages[i]); 750 kunmap(bvec->bv_page); 751 } 752 753 return pages; 754 755 do_sync_io: 756 if (pages) 757 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 758 put_page(pages[i]); 759 kfree(pages); 760 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 761 return NULL; 762 } 763 764 static int make_request(request_queue_t *q, struct bio * bio) 765 { 766 mddev_t *mddev = q->queuedata; 767 conf_t *conf = mddev_to_conf(mddev); 768 mirror_info_t *mirror; 769 r1bio_t *r1_bio; 770 struct bio *read_bio; 771 int i, targets = 0, disks; 772 mdk_rdev_t *rdev; 773 struct bitmap *bitmap = mddev->bitmap; 774 unsigned long flags; 775 struct bio_list bl; 776 struct page **behind_pages = NULL; 777 const int rw = bio_data_dir(bio); 778 const int do_sync = bio_sync(bio); 779 int do_barriers; 780 781 /* 782 * Register the new request and wait if the reconstruction 783 * thread has put up a bar for new requests. 784 * Continue immediately if no resync is active currently. 785 * We test barriers_work *after* md_write_start as md_write_start 786 * may cause the first superblock write, and that will check out 787 * if barriers work. 788 */ 789 790 md_write_start(mddev, bio); /* wait on superblock update early */ 791 792 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 793 if (rw == WRITE) 794 md_write_end(mddev); 795 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 796 return 0; 797 } 798 799 wait_barrier(conf); 800 801 disk_stat_inc(mddev->gendisk, ios[rw]); 802 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 803 804 /* 805 * make_request() can abort the operation when READA is being 806 * used and no empty request is available. 807 * 808 */ 809 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 810 811 r1_bio->master_bio = bio; 812 r1_bio->sectors = bio->bi_size >> 9; 813 r1_bio->state = 0; 814 r1_bio->mddev = mddev; 815 r1_bio->sector = bio->bi_sector; 816 817 if (rw == READ) { 818 /* 819 * read balancing logic: 820 */ 821 int rdisk = read_balance(conf, r1_bio); 822 823 if (rdisk < 0) { 824 /* couldn't find anywhere to read from */ 825 raid_end_bio_io(r1_bio); 826 return 0; 827 } 828 mirror = conf->mirrors + rdisk; 829 830 r1_bio->read_disk = rdisk; 831 832 read_bio = bio_clone(bio, GFP_NOIO); 833 834 r1_bio->bios[rdisk] = read_bio; 835 836 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 837 read_bio->bi_bdev = mirror->rdev->bdev; 838 read_bio->bi_end_io = raid1_end_read_request; 839 read_bio->bi_rw = READ | do_sync; 840 read_bio->bi_private = r1_bio; 841 842 generic_make_request(read_bio); 843 return 0; 844 } 845 846 /* 847 * WRITE: 848 */ 849 /* first select target devices under spinlock and 850 * inc refcount on their rdev. Record them by setting 851 * bios[x] to bio 852 */ 853 disks = conf->raid_disks; 854 #if 0 855 { static int first=1; 856 if (first) printk("First Write sector %llu disks %d\n", 857 (unsigned long long)r1_bio->sector, disks); 858 first = 0; 859 } 860 #endif 861 rcu_read_lock(); 862 for (i = 0; i < disks; i++) { 863 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 864 !test_bit(Faulty, &rdev->flags)) { 865 atomic_inc(&rdev->nr_pending); 866 if (test_bit(Faulty, &rdev->flags)) { 867 rdev_dec_pending(rdev, mddev); 868 r1_bio->bios[i] = NULL; 869 } else 870 r1_bio->bios[i] = bio; 871 targets++; 872 } else 873 r1_bio->bios[i] = NULL; 874 } 875 rcu_read_unlock(); 876 877 BUG_ON(targets == 0); /* we never fail the last device */ 878 879 if (targets < conf->raid_disks) { 880 /* array is degraded, we will not clear the bitmap 881 * on I/O completion (see raid1_end_write_request) */ 882 set_bit(R1BIO_Degraded, &r1_bio->state); 883 } 884 885 /* do behind I/O ? */ 886 if (bitmap && 887 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 888 (behind_pages = alloc_behind_pages(bio)) != NULL) 889 set_bit(R1BIO_BehindIO, &r1_bio->state); 890 891 atomic_set(&r1_bio->remaining, 0); 892 atomic_set(&r1_bio->behind_remaining, 0); 893 894 do_barriers = bio_barrier(bio); 895 if (do_barriers) 896 set_bit(R1BIO_Barrier, &r1_bio->state); 897 898 bio_list_init(&bl); 899 for (i = 0; i < disks; i++) { 900 struct bio *mbio; 901 if (!r1_bio->bios[i]) 902 continue; 903 904 mbio = bio_clone(bio, GFP_NOIO); 905 r1_bio->bios[i] = mbio; 906 907 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 908 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 909 mbio->bi_end_io = raid1_end_write_request; 910 mbio->bi_rw = WRITE | do_barriers | do_sync; 911 mbio->bi_private = r1_bio; 912 913 if (behind_pages) { 914 struct bio_vec *bvec; 915 int j; 916 917 /* Yes, I really want the '__' version so that 918 * we clear any unused pointer in the io_vec, rather 919 * than leave them unchanged. This is important 920 * because when we come to free the pages, we won't 921 * know the originial bi_idx, so we just free 922 * them all 923 */ 924 __bio_for_each_segment(bvec, mbio, j, 0) 925 bvec->bv_page = behind_pages[j]; 926 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 927 atomic_inc(&r1_bio->behind_remaining); 928 } 929 930 atomic_inc(&r1_bio->remaining); 931 932 bio_list_add(&bl, mbio); 933 } 934 kfree(behind_pages); /* the behind pages are attached to the bios now */ 935 936 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 937 test_bit(R1BIO_BehindIO, &r1_bio->state)); 938 spin_lock_irqsave(&conf->device_lock, flags); 939 bio_list_merge(&conf->pending_bio_list, &bl); 940 bio_list_init(&bl); 941 942 blk_plug_device(mddev->queue); 943 spin_unlock_irqrestore(&conf->device_lock, flags); 944 945 if (do_sync) 946 md_wakeup_thread(mddev->thread); 947 #if 0 948 while ((bio = bio_list_pop(&bl)) != NULL) 949 generic_make_request(bio); 950 #endif 951 952 return 0; 953 } 954 955 static void status(struct seq_file *seq, mddev_t *mddev) 956 { 957 conf_t *conf = mddev_to_conf(mddev); 958 int i; 959 960 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 961 conf->raid_disks - mddev->degraded); 962 rcu_read_lock(); 963 for (i = 0; i < conf->raid_disks; i++) { 964 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 965 seq_printf(seq, "%s", 966 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 967 } 968 rcu_read_unlock(); 969 seq_printf(seq, "]"); 970 } 971 972 973 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 974 { 975 char b[BDEVNAME_SIZE]; 976 conf_t *conf = mddev_to_conf(mddev); 977 978 /* 979 * If it is not operational, then we have already marked it as dead 980 * else if it is the last working disks, ignore the error, let the 981 * next level up know. 982 * else mark the drive as failed 983 */ 984 if (test_bit(In_sync, &rdev->flags) 985 && (conf->raid_disks - mddev->degraded) == 1) 986 /* 987 * Don't fail the drive, act as though we were just a 988 * normal single drive 989 */ 990 return; 991 if (test_and_clear_bit(In_sync, &rdev->flags)) { 992 unsigned long flags; 993 spin_lock_irqsave(&conf->device_lock, flags); 994 mddev->degraded++; 995 spin_unlock_irqrestore(&conf->device_lock, flags); 996 /* 997 * if recovery is running, make sure it aborts. 998 */ 999 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 1000 } 1001 set_bit(Faulty, &rdev->flags); 1002 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1003 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 1004 " Operation continuing on %d devices\n", 1005 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1006 } 1007 1008 static void print_conf(conf_t *conf) 1009 { 1010 int i; 1011 1012 printk("RAID1 conf printout:\n"); 1013 if (!conf) { 1014 printk("(!conf)\n"); 1015 return; 1016 } 1017 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1018 conf->raid_disks); 1019 1020 rcu_read_lock(); 1021 for (i = 0; i < conf->raid_disks; i++) { 1022 char b[BDEVNAME_SIZE]; 1023 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1024 if (rdev) 1025 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1026 i, !test_bit(In_sync, &rdev->flags), 1027 !test_bit(Faulty, &rdev->flags), 1028 bdevname(rdev->bdev,b)); 1029 } 1030 rcu_read_unlock(); 1031 } 1032 1033 static void close_sync(conf_t *conf) 1034 { 1035 wait_barrier(conf); 1036 allow_barrier(conf); 1037 1038 mempool_destroy(conf->r1buf_pool); 1039 conf->r1buf_pool = NULL; 1040 } 1041 1042 static int raid1_spare_active(mddev_t *mddev) 1043 { 1044 int i; 1045 conf_t *conf = mddev->private; 1046 1047 /* 1048 * Find all failed disks within the RAID1 configuration 1049 * and mark them readable. 1050 * Called under mddev lock, so rcu protection not needed. 1051 */ 1052 for (i = 0; i < conf->raid_disks; i++) { 1053 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1054 if (rdev 1055 && !test_bit(Faulty, &rdev->flags) 1056 && !test_and_set_bit(In_sync, &rdev->flags)) { 1057 unsigned long flags; 1058 spin_lock_irqsave(&conf->device_lock, flags); 1059 mddev->degraded--; 1060 spin_unlock_irqrestore(&conf->device_lock, flags); 1061 } 1062 } 1063 1064 print_conf(conf); 1065 return 0; 1066 } 1067 1068 1069 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1070 { 1071 conf_t *conf = mddev->private; 1072 int found = 0; 1073 int mirror = 0; 1074 mirror_info_t *p; 1075 1076 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1077 if ( !(p=conf->mirrors+mirror)->rdev) { 1078 1079 blk_queue_stack_limits(mddev->queue, 1080 rdev->bdev->bd_disk->queue); 1081 /* as we don't honour merge_bvec_fn, we must never risk 1082 * violating it, so limit ->max_sector to one PAGE, as 1083 * a one page request is never in violation. 1084 */ 1085 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1086 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1087 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1088 1089 p->head_position = 0; 1090 rdev->raid_disk = mirror; 1091 found = 1; 1092 /* As all devices are equivalent, we don't need a full recovery 1093 * if this was recently any drive of the array 1094 */ 1095 if (rdev->saved_raid_disk < 0) 1096 conf->fullsync = 1; 1097 rcu_assign_pointer(p->rdev, rdev); 1098 break; 1099 } 1100 1101 print_conf(conf); 1102 return found; 1103 } 1104 1105 static int raid1_remove_disk(mddev_t *mddev, int number) 1106 { 1107 conf_t *conf = mddev->private; 1108 int err = 0; 1109 mdk_rdev_t *rdev; 1110 mirror_info_t *p = conf->mirrors+ number; 1111 1112 print_conf(conf); 1113 rdev = p->rdev; 1114 if (rdev) { 1115 if (test_bit(In_sync, &rdev->flags) || 1116 atomic_read(&rdev->nr_pending)) { 1117 err = -EBUSY; 1118 goto abort; 1119 } 1120 p->rdev = NULL; 1121 synchronize_rcu(); 1122 if (atomic_read(&rdev->nr_pending)) { 1123 /* lost the race, try later */ 1124 err = -EBUSY; 1125 p->rdev = rdev; 1126 } 1127 } 1128 abort: 1129 1130 print_conf(conf); 1131 return err; 1132 } 1133 1134 1135 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1136 { 1137 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1138 int i; 1139 1140 if (bio->bi_size) 1141 return 1; 1142 1143 for (i=r1_bio->mddev->raid_disks; i--; ) 1144 if (r1_bio->bios[i] == bio) 1145 break; 1146 BUG_ON(i < 0); 1147 update_head_pos(i, r1_bio); 1148 /* 1149 * we have read a block, now it needs to be re-written, 1150 * or re-read if the read failed. 1151 * We don't do much here, just schedule handling by raid1d 1152 */ 1153 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1154 set_bit(R1BIO_Uptodate, &r1_bio->state); 1155 1156 if (atomic_dec_and_test(&r1_bio->remaining)) 1157 reschedule_retry(r1_bio); 1158 return 0; 1159 } 1160 1161 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1162 { 1163 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1164 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1165 mddev_t *mddev = r1_bio->mddev; 1166 conf_t *conf = mddev_to_conf(mddev); 1167 int i; 1168 int mirror=0; 1169 1170 if (bio->bi_size) 1171 return 1; 1172 1173 for (i = 0; i < conf->raid_disks; i++) 1174 if (r1_bio->bios[i] == bio) { 1175 mirror = i; 1176 break; 1177 } 1178 if (!uptodate) { 1179 int sync_blocks = 0; 1180 sector_t s = r1_bio->sector; 1181 long sectors_to_go = r1_bio->sectors; 1182 /* make sure these bits doesn't get cleared. */ 1183 do { 1184 bitmap_end_sync(mddev->bitmap, s, 1185 &sync_blocks, 1); 1186 s += sync_blocks; 1187 sectors_to_go -= sync_blocks; 1188 } while (sectors_to_go > 0); 1189 md_error(mddev, conf->mirrors[mirror].rdev); 1190 } 1191 1192 update_head_pos(mirror, r1_bio); 1193 1194 if (atomic_dec_and_test(&r1_bio->remaining)) { 1195 md_done_sync(mddev, r1_bio->sectors, uptodate); 1196 put_buf(r1_bio); 1197 } 1198 return 0; 1199 } 1200 1201 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1202 { 1203 conf_t *conf = mddev_to_conf(mddev); 1204 int i; 1205 int disks = conf->raid_disks; 1206 struct bio *bio, *wbio; 1207 1208 bio = r1_bio->bios[r1_bio->read_disk]; 1209 1210 1211 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1212 /* We have read all readable devices. If we haven't 1213 * got the block, then there is no hope left. 1214 * If we have, then we want to do a comparison 1215 * and skip the write if everything is the same. 1216 * If any blocks failed to read, then we need to 1217 * attempt an over-write 1218 */ 1219 int primary; 1220 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1221 for (i=0; i<mddev->raid_disks; i++) 1222 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1223 md_error(mddev, conf->mirrors[i].rdev); 1224 1225 md_done_sync(mddev, r1_bio->sectors, 1); 1226 put_buf(r1_bio); 1227 return; 1228 } 1229 for (primary=0; primary<mddev->raid_disks; primary++) 1230 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1231 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1232 r1_bio->bios[primary]->bi_end_io = NULL; 1233 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1234 break; 1235 } 1236 r1_bio->read_disk = primary; 1237 for (i=0; i<mddev->raid_disks; i++) 1238 if (r1_bio->bios[i]->bi_end_io == end_sync_read && 1239 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) { 1240 int j; 1241 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1242 struct bio *pbio = r1_bio->bios[primary]; 1243 struct bio *sbio = r1_bio->bios[i]; 1244 for (j = vcnt; j-- ; ) 1245 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page), 1246 page_address(sbio->bi_io_vec[j].bv_page), 1247 PAGE_SIZE)) 1248 break; 1249 if (j >= 0) 1250 mddev->resync_mismatches += r1_bio->sectors; 1251 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 1252 sbio->bi_end_io = NULL; 1253 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1254 } else { 1255 /* fixup the bio for reuse */ 1256 sbio->bi_vcnt = vcnt; 1257 sbio->bi_size = r1_bio->sectors << 9; 1258 sbio->bi_idx = 0; 1259 sbio->bi_phys_segments = 0; 1260 sbio->bi_hw_segments = 0; 1261 sbio->bi_hw_front_size = 0; 1262 sbio->bi_hw_back_size = 0; 1263 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1264 sbio->bi_flags |= 1 << BIO_UPTODATE; 1265 sbio->bi_next = NULL; 1266 sbio->bi_sector = r1_bio->sector + 1267 conf->mirrors[i].rdev->data_offset; 1268 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1269 for (j = 0; j < vcnt ; j++) 1270 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1271 page_address(pbio->bi_io_vec[j].bv_page), 1272 PAGE_SIZE); 1273 1274 } 1275 } 1276 } 1277 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1278 /* ouch - failed to read all of that. 1279 * Try some synchronous reads of other devices to get 1280 * good data, much like with normal read errors. Only 1281 * read into the pages we already have so we don't 1282 * need to re-issue the read request. 1283 * We don't need to freeze the array, because being in an 1284 * active sync request, there is no normal IO, and 1285 * no overlapping syncs. 1286 */ 1287 sector_t sect = r1_bio->sector; 1288 int sectors = r1_bio->sectors; 1289 int idx = 0; 1290 1291 while(sectors) { 1292 int s = sectors; 1293 int d = r1_bio->read_disk; 1294 int success = 0; 1295 mdk_rdev_t *rdev; 1296 1297 if (s > (PAGE_SIZE>>9)) 1298 s = PAGE_SIZE >> 9; 1299 do { 1300 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1301 /* No rcu protection needed here devices 1302 * can only be removed when no resync is 1303 * active, and resync is currently active 1304 */ 1305 rdev = conf->mirrors[d].rdev; 1306 if (sync_page_io(rdev->bdev, 1307 sect + rdev->data_offset, 1308 s<<9, 1309 bio->bi_io_vec[idx].bv_page, 1310 READ)) { 1311 success = 1; 1312 break; 1313 } 1314 } 1315 d++; 1316 if (d == conf->raid_disks) 1317 d = 0; 1318 } while (!success && d != r1_bio->read_disk); 1319 1320 if (success) { 1321 int start = d; 1322 /* write it back and re-read */ 1323 set_bit(R1BIO_Uptodate, &r1_bio->state); 1324 while (d != r1_bio->read_disk) { 1325 if (d == 0) 1326 d = conf->raid_disks; 1327 d--; 1328 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1329 continue; 1330 rdev = conf->mirrors[d].rdev; 1331 atomic_add(s, &rdev->corrected_errors); 1332 if (sync_page_io(rdev->bdev, 1333 sect + rdev->data_offset, 1334 s<<9, 1335 bio->bi_io_vec[idx].bv_page, 1336 WRITE) == 0) 1337 md_error(mddev, rdev); 1338 } 1339 d = start; 1340 while (d != r1_bio->read_disk) { 1341 if (d == 0) 1342 d = conf->raid_disks; 1343 d--; 1344 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1345 continue; 1346 rdev = conf->mirrors[d].rdev; 1347 if (sync_page_io(rdev->bdev, 1348 sect + rdev->data_offset, 1349 s<<9, 1350 bio->bi_io_vec[idx].bv_page, 1351 READ) == 0) 1352 md_error(mddev, rdev); 1353 } 1354 } else { 1355 char b[BDEVNAME_SIZE]; 1356 /* Cannot read from anywhere, array is toast */ 1357 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1358 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1359 " for block %llu\n", 1360 bdevname(bio->bi_bdev,b), 1361 (unsigned long long)r1_bio->sector); 1362 md_done_sync(mddev, r1_bio->sectors, 0); 1363 put_buf(r1_bio); 1364 return; 1365 } 1366 sectors -= s; 1367 sect += s; 1368 idx ++; 1369 } 1370 } 1371 1372 /* 1373 * schedule writes 1374 */ 1375 atomic_set(&r1_bio->remaining, 1); 1376 for (i = 0; i < disks ; i++) { 1377 wbio = r1_bio->bios[i]; 1378 if (wbio->bi_end_io == NULL || 1379 (wbio->bi_end_io == end_sync_read && 1380 (i == r1_bio->read_disk || 1381 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1382 continue; 1383 1384 wbio->bi_rw = WRITE; 1385 wbio->bi_end_io = end_sync_write; 1386 atomic_inc(&r1_bio->remaining); 1387 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1388 1389 generic_make_request(wbio); 1390 } 1391 1392 if (atomic_dec_and_test(&r1_bio->remaining)) { 1393 /* if we're here, all write(s) have completed, so clean up */ 1394 md_done_sync(mddev, r1_bio->sectors, 1); 1395 put_buf(r1_bio); 1396 } 1397 } 1398 1399 /* 1400 * This is a kernel thread which: 1401 * 1402 * 1. Retries failed read operations on working mirrors. 1403 * 2. Updates the raid superblock when problems encounter. 1404 * 3. Performs writes following reads for array syncronising. 1405 */ 1406 1407 static void fix_read_error(conf_t *conf, int read_disk, 1408 sector_t sect, int sectors) 1409 { 1410 mddev_t *mddev = conf->mddev; 1411 while(sectors) { 1412 int s = sectors; 1413 int d = read_disk; 1414 int success = 0; 1415 int start; 1416 mdk_rdev_t *rdev; 1417 1418 if (s > (PAGE_SIZE>>9)) 1419 s = PAGE_SIZE >> 9; 1420 1421 do { 1422 /* Note: no rcu protection needed here 1423 * as this is synchronous in the raid1d thread 1424 * which is the thread that might remove 1425 * a device. If raid1d ever becomes multi-threaded.... 1426 */ 1427 rdev = conf->mirrors[d].rdev; 1428 if (rdev && 1429 test_bit(In_sync, &rdev->flags) && 1430 sync_page_io(rdev->bdev, 1431 sect + rdev->data_offset, 1432 s<<9, 1433 conf->tmppage, READ)) 1434 success = 1; 1435 else { 1436 d++; 1437 if (d == conf->raid_disks) 1438 d = 0; 1439 } 1440 } while (!success && d != read_disk); 1441 1442 if (!success) { 1443 /* Cannot read from anywhere -- bye bye array */ 1444 md_error(mddev, conf->mirrors[read_disk].rdev); 1445 break; 1446 } 1447 /* write it back and re-read */ 1448 start = d; 1449 while (d != read_disk) { 1450 if (d==0) 1451 d = conf->raid_disks; 1452 d--; 1453 rdev = conf->mirrors[d].rdev; 1454 if (rdev && 1455 test_bit(In_sync, &rdev->flags)) { 1456 if (sync_page_io(rdev->bdev, 1457 sect + rdev->data_offset, 1458 s<<9, conf->tmppage, WRITE) 1459 == 0) 1460 /* Well, this device is dead */ 1461 md_error(mddev, rdev); 1462 } 1463 } 1464 d = start; 1465 while (d != read_disk) { 1466 char b[BDEVNAME_SIZE]; 1467 if (d==0) 1468 d = conf->raid_disks; 1469 d--; 1470 rdev = conf->mirrors[d].rdev; 1471 if (rdev && 1472 test_bit(In_sync, &rdev->flags)) { 1473 if (sync_page_io(rdev->bdev, 1474 sect + rdev->data_offset, 1475 s<<9, conf->tmppage, READ) 1476 == 0) 1477 /* Well, this device is dead */ 1478 md_error(mddev, rdev); 1479 else { 1480 atomic_add(s, &rdev->corrected_errors); 1481 printk(KERN_INFO 1482 "raid1:%s: read error corrected " 1483 "(%d sectors at %llu on %s)\n", 1484 mdname(mddev), s, 1485 (unsigned long long)(sect + 1486 rdev->data_offset), 1487 bdevname(rdev->bdev, b)); 1488 } 1489 } 1490 } 1491 sectors -= s; 1492 sect += s; 1493 } 1494 } 1495 1496 static void raid1d(mddev_t *mddev) 1497 { 1498 r1bio_t *r1_bio; 1499 struct bio *bio; 1500 unsigned long flags; 1501 conf_t *conf = mddev_to_conf(mddev); 1502 struct list_head *head = &conf->retry_list; 1503 int unplug=0; 1504 mdk_rdev_t *rdev; 1505 1506 md_check_recovery(mddev); 1507 1508 for (;;) { 1509 char b[BDEVNAME_SIZE]; 1510 spin_lock_irqsave(&conf->device_lock, flags); 1511 1512 if (conf->pending_bio_list.head) { 1513 bio = bio_list_get(&conf->pending_bio_list); 1514 blk_remove_plug(mddev->queue); 1515 spin_unlock_irqrestore(&conf->device_lock, flags); 1516 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1517 if (bitmap_unplug(mddev->bitmap) != 0) 1518 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1519 1520 while (bio) { /* submit pending writes */ 1521 struct bio *next = bio->bi_next; 1522 bio->bi_next = NULL; 1523 generic_make_request(bio); 1524 bio = next; 1525 } 1526 unplug = 1; 1527 1528 continue; 1529 } 1530 1531 if (list_empty(head)) 1532 break; 1533 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1534 list_del(head->prev); 1535 conf->nr_queued--; 1536 spin_unlock_irqrestore(&conf->device_lock, flags); 1537 1538 mddev = r1_bio->mddev; 1539 conf = mddev_to_conf(mddev); 1540 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1541 sync_request_write(mddev, r1_bio); 1542 unplug = 1; 1543 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1544 /* some requests in the r1bio were BIO_RW_BARRIER 1545 * requests which failed with -EOPNOTSUPP. Hohumm.. 1546 * Better resubmit without the barrier. 1547 * We know which devices to resubmit for, because 1548 * all others have had their bios[] entry cleared. 1549 * We already have a nr_pending reference on these rdevs. 1550 */ 1551 int i; 1552 const int do_sync = bio_sync(r1_bio->master_bio); 1553 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1554 clear_bit(R1BIO_Barrier, &r1_bio->state); 1555 for (i=0; i < conf->raid_disks; i++) 1556 if (r1_bio->bios[i]) 1557 atomic_inc(&r1_bio->remaining); 1558 for (i=0; i < conf->raid_disks; i++) 1559 if (r1_bio->bios[i]) { 1560 struct bio_vec *bvec; 1561 int j; 1562 1563 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1564 /* copy pages from the failed bio, as 1565 * this might be a write-behind device */ 1566 __bio_for_each_segment(bvec, bio, j, 0) 1567 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1568 bio_put(r1_bio->bios[i]); 1569 bio->bi_sector = r1_bio->sector + 1570 conf->mirrors[i].rdev->data_offset; 1571 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1572 bio->bi_end_io = raid1_end_write_request; 1573 bio->bi_rw = WRITE | do_sync; 1574 bio->bi_private = r1_bio; 1575 r1_bio->bios[i] = bio; 1576 generic_make_request(bio); 1577 } 1578 } else { 1579 int disk; 1580 1581 /* we got a read error. Maybe the drive is bad. Maybe just 1582 * the block and we can fix it. 1583 * We freeze all other IO, and try reading the block from 1584 * other devices. When we find one, we re-write 1585 * and check it that fixes the read error. 1586 * This is all done synchronously while the array is 1587 * frozen 1588 */ 1589 if (mddev->ro == 0) { 1590 freeze_array(conf); 1591 fix_read_error(conf, r1_bio->read_disk, 1592 r1_bio->sector, 1593 r1_bio->sectors); 1594 unfreeze_array(conf); 1595 } 1596 1597 bio = r1_bio->bios[r1_bio->read_disk]; 1598 if ((disk=read_balance(conf, r1_bio)) == -1) { 1599 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1600 " read error for block %llu\n", 1601 bdevname(bio->bi_bdev,b), 1602 (unsigned long long)r1_bio->sector); 1603 raid_end_bio_io(r1_bio); 1604 } else { 1605 const int do_sync = bio_sync(r1_bio->master_bio); 1606 r1_bio->bios[r1_bio->read_disk] = 1607 mddev->ro ? IO_BLOCKED : NULL; 1608 r1_bio->read_disk = disk; 1609 bio_put(bio); 1610 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1611 r1_bio->bios[r1_bio->read_disk] = bio; 1612 rdev = conf->mirrors[disk].rdev; 1613 if (printk_ratelimit()) 1614 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1615 " another mirror\n", 1616 bdevname(rdev->bdev,b), 1617 (unsigned long long)r1_bio->sector); 1618 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1619 bio->bi_bdev = rdev->bdev; 1620 bio->bi_end_io = raid1_end_read_request; 1621 bio->bi_rw = READ | do_sync; 1622 bio->bi_private = r1_bio; 1623 unplug = 1; 1624 generic_make_request(bio); 1625 } 1626 } 1627 } 1628 spin_unlock_irqrestore(&conf->device_lock, flags); 1629 if (unplug) 1630 unplug_slaves(mddev); 1631 } 1632 1633 1634 static int init_resync(conf_t *conf) 1635 { 1636 int buffs; 1637 1638 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1639 BUG_ON(conf->r1buf_pool); 1640 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1641 conf->poolinfo); 1642 if (!conf->r1buf_pool) 1643 return -ENOMEM; 1644 conf->next_resync = 0; 1645 return 0; 1646 } 1647 1648 /* 1649 * perform a "sync" on one "block" 1650 * 1651 * We need to make sure that no normal I/O request - particularly write 1652 * requests - conflict with active sync requests. 1653 * 1654 * This is achieved by tracking pending requests and a 'barrier' concept 1655 * that can be installed to exclude normal IO requests. 1656 */ 1657 1658 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1659 { 1660 conf_t *conf = mddev_to_conf(mddev); 1661 r1bio_t *r1_bio; 1662 struct bio *bio; 1663 sector_t max_sector, nr_sectors; 1664 int disk = -1; 1665 int i; 1666 int wonly = -1; 1667 int write_targets = 0, read_targets = 0; 1668 int sync_blocks; 1669 int still_degraded = 0; 1670 1671 if (!conf->r1buf_pool) 1672 { 1673 /* 1674 printk("sync start - bitmap %p\n", mddev->bitmap); 1675 */ 1676 if (init_resync(conf)) 1677 return 0; 1678 } 1679 1680 max_sector = mddev->size << 1; 1681 if (sector_nr >= max_sector) { 1682 /* If we aborted, we need to abort the 1683 * sync on the 'current' bitmap chunk (there will 1684 * only be one in raid1 resync. 1685 * We can find the current addess in mddev->curr_resync 1686 */ 1687 if (mddev->curr_resync < max_sector) /* aborted */ 1688 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1689 &sync_blocks, 1); 1690 else /* completed sync */ 1691 conf->fullsync = 0; 1692 1693 bitmap_close_sync(mddev->bitmap); 1694 close_sync(conf); 1695 return 0; 1696 } 1697 1698 if (mddev->bitmap == NULL && 1699 mddev->recovery_cp == MaxSector && 1700 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1701 conf->fullsync == 0) { 1702 *skipped = 1; 1703 return max_sector - sector_nr; 1704 } 1705 /* before building a request, check if we can skip these blocks.. 1706 * This call the bitmap_start_sync doesn't actually record anything 1707 */ 1708 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1709 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1710 /* We can skip this block, and probably several more */ 1711 *skipped = 1; 1712 return sync_blocks; 1713 } 1714 /* 1715 * If there is non-resync activity waiting for a turn, 1716 * and resync is going fast enough, 1717 * then let it though before starting on this new sync request. 1718 */ 1719 if (!go_faster && conf->nr_waiting) 1720 msleep_interruptible(1000); 1721 1722 raise_barrier(conf); 1723 1724 conf->next_resync = sector_nr; 1725 1726 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1727 rcu_read_lock(); 1728 /* 1729 * If we get a correctably read error during resync or recovery, 1730 * we might want to read from a different device. So we 1731 * flag all drives that could conceivably be read from for READ, 1732 * and any others (which will be non-In_sync devices) for WRITE. 1733 * If a read fails, we try reading from something else for which READ 1734 * is OK. 1735 */ 1736 1737 r1_bio->mddev = mddev; 1738 r1_bio->sector = sector_nr; 1739 r1_bio->state = 0; 1740 set_bit(R1BIO_IsSync, &r1_bio->state); 1741 1742 for (i=0; i < conf->raid_disks; i++) { 1743 mdk_rdev_t *rdev; 1744 bio = r1_bio->bios[i]; 1745 1746 /* take from bio_init */ 1747 bio->bi_next = NULL; 1748 bio->bi_flags |= 1 << BIO_UPTODATE; 1749 bio->bi_rw = READ; 1750 bio->bi_vcnt = 0; 1751 bio->bi_idx = 0; 1752 bio->bi_phys_segments = 0; 1753 bio->bi_hw_segments = 0; 1754 bio->bi_size = 0; 1755 bio->bi_end_io = NULL; 1756 bio->bi_private = NULL; 1757 1758 rdev = rcu_dereference(conf->mirrors[i].rdev); 1759 if (rdev == NULL || 1760 test_bit(Faulty, &rdev->flags)) { 1761 still_degraded = 1; 1762 continue; 1763 } else if (!test_bit(In_sync, &rdev->flags)) { 1764 bio->bi_rw = WRITE; 1765 bio->bi_end_io = end_sync_write; 1766 write_targets ++; 1767 } else { 1768 /* may need to read from here */ 1769 bio->bi_rw = READ; 1770 bio->bi_end_io = end_sync_read; 1771 if (test_bit(WriteMostly, &rdev->flags)) { 1772 if (wonly < 0) 1773 wonly = i; 1774 } else { 1775 if (disk < 0) 1776 disk = i; 1777 } 1778 read_targets++; 1779 } 1780 atomic_inc(&rdev->nr_pending); 1781 bio->bi_sector = sector_nr + rdev->data_offset; 1782 bio->bi_bdev = rdev->bdev; 1783 bio->bi_private = r1_bio; 1784 } 1785 rcu_read_unlock(); 1786 if (disk < 0) 1787 disk = wonly; 1788 r1_bio->read_disk = disk; 1789 1790 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1791 /* extra read targets are also write targets */ 1792 write_targets += read_targets-1; 1793 1794 if (write_targets == 0 || read_targets == 0) { 1795 /* There is nowhere to write, so all non-sync 1796 * drives must be failed - so we are finished 1797 */ 1798 sector_t rv = max_sector - sector_nr; 1799 *skipped = 1; 1800 put_buf(r1_bio); 1801 return rv; 1802 } 1803 1804 nr_sectors = 0; 1805 sync_blocks = 0; 1806 do { 1807 struct page *page; 1808 int len = PAGE_SIZE; 1809 if (sector_nr + (len>>9) > max_sector) 1810 len = (max_sector - sector_nr) << 9; 1811 if (len == 0) 1812 break; 1813 if (sync_blocks == 0) { 1814 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1815 &sync_blocks, still_degraded) && 1816 !conf->fullsync && 1817 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1818 break; 1819 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1820 if (len > (sync_blocks<<9)) 1821 len = sync_blocks<<9; 1822 } 1823 1824 for (i=0 ; i < conf->raid_disks; i++) { 1825 bio = r1_bio->bios[i]; 1826 if (bio->bi_end_io) { 1827 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1828 if (bio_add_page(bio, page, len, 0) == 0) { 1829 /* stop here */ 1830 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1831 while (i > 0) { 1832 i--; 1833 bio = r1_bio->bios[i]; 1834 if (bio->bi_end_io==NULL) 1835 continue; 1836 /* remove last page from this bio */ 1837 bio->bi_vcnt--; 1838 bio->bi_size -= len; 1839 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1840 } 1841 goto bio_full; 1842 } 1843 } 1844 } 1845 nr_sectors += len>>9; 1846 sector_nr += len>>9; 1847 sync_blocks -= (len>>9); 1848 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1849 bio_full: 1850 r1_bio->sectors = nr_sectors; 1851 1852 /* For a user-requested sync, we read all readable devices and do a 1853 * compare 1854 */ 1855 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1856 atomic_set(&r1_bio->remaining, read_targets); 1857 for (i=0; i<conf->raid_disks; i++) { 1858 bio = r1_bio->bios[i]; 1859 if (bio->bi_end_io == end_sync_read) { 1860 md_sync_acct(bio->bi_bdev, nr_sectors); 1861 generic_make_request(bio); 1862 } 1863 } 1864 } else { 1865 atomic_set(&r1_bio->remaining, 1); 1866 bio = r1_bio->bios[r1_bio->read_disk]; 1867 md_sync_acct(bio->bi_bdev, nr_sectors); 1868 generic_make_request(bio); 1869 1870 } 1871 return nr_sectors; 1872 } 1873 1874 static int run(mddev_t *mddev) 1875 { 1876 conf_t *conf; 1877 int i, j, disk_idx; 1878 mirror_info_t *disk; 1879 mdk_rdev_t *rdev; 1880 struct list_head *tmp; 1881 1882 if (mddev->level != 1) { 1883 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1884 mdname(mddev), mddev->level); 1885 goto out; 1886 } 1887 if (mddev->reshape_position != MaxSector) { 1888 printk("raid1: %s: reshape_position set but not supported\n", 1889 mdname(mddev)); 1890 goto out; 1891 } 1892 /* 1893 * copy the already verified devices into our private RAID1 1894 * bookkeeping area. [whatever we allocate in run(), 1895 * should be freed in stop()] 1896 */ 1897 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1898 mddev->private = conf; 1899 if (!conf) 1900 goto out_no_mem; 1901 1902 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1903 GFP_KERNEL); 1904 if (!conf->mirrors) 1905 goto out_no_mem; 1906 1907 conf->tmppage = alloc_page(GFP_KERNEL); 1908 if (!conf->tmppage) 1909 goto out_no_mem; 1910 1911 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1912 if (!conf->poolinfo) 1913 goto out_no_mem; 1914 conf->poolinfo->mddev = mddev; 1915 conf->poolinfo->raid_disks = mddev->raid_disks; 1916 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1917 r1bio_pool_free, 1918 conf->poolinfo); 1919 if (!conf->r1bio_pool) 1920 goto out_no_mem; 1921 1922 ITERATE_RDEV(mddev, rdev, tmp) { 1923 disk_idx = rdev->raid_disk; 1924 if (disk_idx >= mddev->raid_disks 1925 || disk_idx < 0) 1926 continue; 1927 disk = conf->mirrors + disk_idx; 1928 1929 disk->rdev = rdev; 1930 1931 blk_queue_stack_limits(mddev->queue, 1932 rdev->bdev->bd_disk->queue); 1933 /* as we don't honour merge_bvec_fn, we must never risk 1934 * violating it, so limit ->max_sector to one PAGE, as 1935 * a one page request is never in violation. 1936 */ 1937 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1938 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1939 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1940 1941 disk->head_position = 0; 1942 } 1943 conf->raid_disks = mddev->raid_disks; 1944 conf->mddev = mddev; 1945 spin_lock_init(&conf->device_lock); 1946 INIT_LIST_HEAD(&conf->retry_list); 1947 1948 spin_lock_init(&conf->resync_lock); 1949 init_waitqueue_head(&conf->wait_barrier); 1950 1951 bio_list_init(&conf->pending_bio_list); 1952 bio_list_init(&conf->flushing_bio_list); 1953 1954 1955 mddev->degraded = 0; 1956 for (i = 0; i < conf->raid_disks; i++) { 1957 1958 disk = conf->mirrors + i; 1959 1960 if (!disk->rdev || 1961 !test_bit(In_sync, &disk->rdev->flags)) { 1962 disk->head_position = 0; 1963 mddev->degraded++; 1964 conf->fullsync = 1; 1965 } 1966 } 1967 if (mddev->degraded == conf->raid_disks) { 1968 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1969 mdname(mddev)); 1970 goto out_free_conf; 1971 } 1972 if (conf->raid_disks - mddev->degraded == 1) 1973 mddev->recovery_cp = MaxSector; 1974 1975 /* 1976 * find the first working one and use it as a starting point 1977 * to read balancing. 1978 */ 1979 for (j = 0; j < conf->raid_disks && 1980 (!conf->mirrors[j].rdev || 1981 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1982 /* nothing */; 1983 conf->last_used = j; 1984 1985 1986 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1987 if (!mddev->thread) { 1988 printk(KERN_ERR 1989 "raid1: couldn't allocate thread for %s\n", 1990 mdname(mddev)); 1991 goto out_free_conf; 1992 } 1993 1994 printk(KERN_INFO 1995 "raid1: raid set %s active with %d out of %d mirrors\n", 1996 mdname(mddev), mddev->raid_disks - mddev->degraded, 1997 mddev->raid_disks); 1998 /* 1999 * Ok, everything is just fine now 2000 */ 2001 mddev->array_size = mddev->size; 2002 2003 mddev->queue->unplug_fn = raid1_unplug; 2004 mddev->queue->issue_flush_fn = raid1_issue_flush; 2005 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2006 mddev->queue->backing_dev_info.congested_data = mddev; 2007 2008 return 0; 2009 2010 out_no_mem: 2011 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2012 mdname(mddev)); 2013 2014 out_free_conf: 2015 if (conf) { 2016 if (conf->r1bio_pool) 2017 mempool_destroy(conf->r1bio_pool); 2018 kfree(conf->mirrors); 2019 safe_put_page(conf->tmppage); 2020 kfree(conf->poolinfo); 2021 kfree(conf); 2022 mddev->private = NULL; 2023 } 2024 out: 2025 return -EIO; 2026 } 2027 2028 static int stop(mddev_t *mddev) 2029 { 2030 conf_t *conf = mddev_to_conf(mddev); 2031 struct bitmap *bitmap = mddev->bitmap; 2032 int behind_wait = 0; 2033 2034 /* wait for behind writes to complete */ 2035 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2036 behind_wait++; 2037 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2038 set_current_state(TASK_UNINTERRUPTIBLE); 2039 schedule_timeout(HZ); /* wait a second */ 2040 /* need to kick something here to make sure I/O goes? */ 2041 } 2042 2043 md_unregister_thread(mddev->thread); 2044 mddev->thread = NULL; 2045 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2046 if (conf->r1bio_pool) 2047 mempool_destroy(conf->r1bio_pool); 2048 kfree(conf->mirrors); 2049 kfree(conf->poolinfo); 2050 kfree(conf); 2051 mddev->private = NULL; 2052 return 0; 2053 } 2054 2055 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2056 { 2057 /* no resync is happening, and there is enough space 2058 * on all devices, so we can resize. 2059 * We need to make sure resync covers any new space. 2060 * If the array is shrinking we should possibly wait until 2061 * any io in the removed space completes, but it hardly seems 2062 * worth it. 2063 */ 2064 mddev->array_size = sectors>>1; 2065 set_capacity(mddev->gendisk, mddev->array_size << 1); 2066 mddev->changed = 1; 2067 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2068 mddev->recovery_cp = mddev->size << 1; 2069 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2070 } 2071 mddev->size = mddev->array_size; 2072 mddev->resync_max_sectors = sectors; 2073 return 0; 2074 } 2075 2076 static int raid1_reshape(mddev_t *mddev) 2077 { 2078 /* We need to: 2079 * 1/ resize the r1bio_pool 2080 * 2/ resize conf->mirrors 2081 * 2082 * We allocate a new r1bio_pool if we can. 2083 * Then raise a device barrier and wait until all IO stops. 2084 * Then resize conf->mirrors and swap in the new r1bio pool. 2085 * 2086 * At the same time, we "pack" the devices so that all the missing 2087 * devices have the higher raid_disk numbers. 2088 */ 2089 mempool_t *newpool, *oldpool; 2090 struct pool_info *newpoolinfo; 2091 mirror_info_t *newmirrors; 2092 conf_t *conf = mddev_to_conf(mddev); 2093 int cnt, raid_disks; 2094 unsigned long flags; 2095 int d, d2; 2096 2097 /* Cannot change chunk_size, layout, or level */ 2098 if (mddev->chunk_size != mddev->new_chunk || 2099 mddev->layout != mddev->new_layout || 2100 mddev->level != mddev->new_level) { 2101 mddev->new_chunk = mddev->chunk_size; 2102 mddev->new_layout = mddev->layout; 2103 mddev->new_level = mddev->level; 2104 return -EINVAL; 2105 } 2106 2107 md_allow_write(mddev); 2108 2109 raid_disks = mddev->raid_disks + mddev->delta_disks; 2110 2111 if (raid_disks < conf->raid_disks) { 2112 cnt=0; 2113 for (d= 0; d < conf->raid_disks; d++) 2114 if (conf->mirrors[d].rdev) 2115 cnt++; 2116 if (cnt > raid_disks) 2117 return -EBUSY; 2118 } 2119 2120 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2121 if (!newpoolinfo) 2122 return -ENOMEM; 2123 newpoolinfo->mddev = mddev; 2124 newpoolinfo->raid_disks = raid_disks; 2125 2126 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2127 r1bio_pool_free, newpoolinfo); 2128 if (!newpool) { 2129 kfree(newpoolinfo); 2130 return -ENOMEM; 2131 } 2132 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2133 if (!newmirrors) { 2134 kfree(newpoolinfo); 2135 mempool_destroy(newpool); 2136 return -ENOMEM; 2137 } 2138 2139 raise_barrier(conf); 2140 2141 /* ok, everything is stopped */ 2142 oldpool = conf->r1bio_pool; 2143 conf->r1bio_pool = newpool; 2144 2145 for (d=d2=0; d < conf->raid_disks; d++) 2146 if (conf->mirrors[d].rdev) { 2147 conf->mirrors[d].rdev->raid_disk = d2; 2148 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 2149 } 2150 kfree(conf->mirrors); 2151 conf->mirrors = newmirrors; 2152 kfree(conf->poolinfo); 2153 conf->poolinfo = newpoolinfo; 2154 2155 spin_lock_irqsave(&conf->device_lock, flags); 2156 mddev->degraded += (raid_disks - conf->raid_disks); 2157 spin_unlock_irqrestore(&conf->device_lock, flags); 2158 conf->raid_disks = mddev->raid_disks = raid_disks; 2159 mddev->delta_disks = 0; 2160 2161 conf->last_used = 0; /* just make sure it is in-range */ 2162 lower_barrier(conf); 2163 2164 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2165 md_wakeup_thread(mddev->thread); 2166 2167 mempool_destroy(oldpool); 2168 return 0; 2169 } 2170 2171 static void raid1_quiesce(mddev_t *mddev, int state) 2172 { 2173 conf_t *conf = mddev_to_conf(mddev); 2174 2175 switch(state) { 2176 case 1: 2177 raise_barrier(conf); 2178 break; 2179 case 0: 2180 lower_barrier(conf); 2181 break; 2182 } 2183 } 2184 2185 2186 static struct mdk_personality raid1_personality = 2187 { 2188 .name = "raid1", 2189 .level = 1, 2190 .owner = THIS_MODULE, 2191 .make_request = make_request, 2192 .run = run, 2193 .stop = stop, 2194 .status = status, 2195 .error_handler = error, 2196 .hot_add_disk = raid1_add_disk, 2197 .hot_remove_disk= raid1_remove_disk, 2198 .spare_active = raid1_spare_active, 2199 .sync_request = sync_request, 2200 .resize = raid1_resize, 2201 .check_reshape = raid1_reshape, 2202 .quiesce = raid1_quiesce, 2203 }; 2204 2205 static int __init raid_init(void) 2206 { 2207 return register_md_personality(&raid1_personality); 2208 } 2209 2210 static void raid_exit(void) 2211 { 2212 unregister_md_personality(&raid1_personality); 2213 } 2214 2215 module_init(raid_init); 2216 module_exit(raid_exit); 2217 MODULE_LICENSE("GPL"); 2218 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2219 MODULE_ALIAS("md-raid1"); 2220 MODULE_ALIAS("md-level-1"); 2221