1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define RAID_1_10_NAME "raid1" 50 #include "raid1-10.c" 51 52 #define START(node) ((node)->start) 53 #define LAST(node) ((node)->last) 54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 55 START, LAST, static inline, raid1_rb); 56 57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 58 struct serial_info *si, int idx) 59 { 60 unsigned long flags; 61 int ret = 0; 62 sector_t lo = r1_bio->sector; 63 sector_t hi = lo + r1_bio->sectors; 64 struct serial_in_rdev *serial = &rdev->serial[idx]; 65 66 spin_lock_irqsave(&serial->serial_lock, flags); 67 /* collision happened */ 68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 69 ret = -EBUSY; 70 else { 71 si->start = lo; 72 si->last = hi; 73 raid1_rb_insert(si, &serial->serial_rb); 74 } 75 spin_unlock_irqrestore(&serial->serial_lock, flags); 76 77 return ret; 78 } 79 80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 81 { 82 struct mddev *mddev = rdev->mddev; 83 struct serial_info *si; 84 int idx = sector_to_idx(r1_bio->sector); 85 struct serial_in_rdev *serial = &rdev->serial[idx]; 86 87 if (WARN_ON(!mddev->serial_info_pool)) 88 return; 89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 90 wait_event(serial->serial_io_wait, 91 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 92 } 93 94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 95 { 96 struct serial_info *si; 97 unsigned long flags; 98 int found = 0; 99 struct mddev *mddev = rdev->mddev; 100 int idx = sector_to_idx(lo); 101 struct serial_in_rdev *serial = &rdev->serial[idx]; 102 103 spin_lock_irqsave(&serial->serial_lock, flags); 104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 105 si; si = raid1_rb_iter_next(si, lo, hi)) { 106 if (si->start == lo && si->last == hi) { 107 raid1_rb_remove(si, &serial->serial_rb); 108 mempool_free(si, mddev->serial_info_pool); 109 found = 1; 110 break; 111 } 112 } 113 if (!found) 114 WARN(1, "The write IO is not recorded for serialization\n"); 115 spin_unlock_irqrestore(&serial->serial_lock, flags); 116 wake_up(&serial->serial_io_wait); 117 } 118 119 /* 120 * for resync bio, r1bio pointer can be retrieved from the per-bio 121 * 'struct resync_pages'. 122 */ 123 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 124 { 125 return get_resync_pages(bio)->raid_bio; 126 } 127 128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 129 { 130 struct pool_info *pi = data; 131 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 132 133 /* allocate a r1bio with room for raid_disks entries in the bios array */ 134 return kzalloc(size, gfp_flags); 135 } 136 137 #define RESYNC_DEPTH 32 138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 143 144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 145 { 146 struct pool_info *pi = data; 147 struct r1bio *r1_bio; 148 struct bio *bio; 149 int need_pages; 150 int j; 151 struct resync_pages *rps; 152 153 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 154 if (!r1_bio) 155 return NULL; 156 157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 158 gfp_flags); 159 if (!rps) 160 goto out_free_r1bio; 161 162 /* 163 * Allocate bios : 1 for reading, n-1 for writing 164 */ 165 for (j = pi->raid_disks ; j-- ; ) { 166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 167 if (!bio) 168 goto out_free_bio; 169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 170 r1_bio->bios[j] = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them to 174 * the first bio. 175 * If this is a user-requested check/repair, allocate 176 * RESYNC_PAGES for each bio. 177 */ 178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 179 need_pages = pi->raid_disks; 180 else 181 need_pages = 1; 182 for (j = 0; j < pi->raid_disks; j++) { 183 struct resync_pages *rp = &rps[j]; 184 185 bio = r1_bio->bios[j]; 186 187 if (j < need_pages) { 188 if (resync_alloc_pages(rp, gfp_flags)) 189 goto out_free_pages; 190 } else { 191 memcpy(rp, &rps[0], sizeof(*rp)); 192 resync_get_all_pages(rp); 193 } 194 195 rp->raid_bio = r1_bio; 196 bio->bi_private = rp; 197 } 198 199 r1_bio->master_bio = NULL; 200 201 return r1_bio; 202 203 out_free_pages: 204 while (--j >= 0) 205 resync_free_pages(&rps[j]); 206 207 out_free_bio: 208 while (++j < pi->raid_disks) { 209 bio_uninit(r1_bio->bios[j]); 210 kfree(r1_bio->bios[j]); 211 } 212 kfree(rps); 213 214 out_free_r1bio: 215 rbio_pool_free(r1_bio, data); 216 return NULL; 217 } 218 219 static void r1buf_pool_free(void *__r1_bio, void *data) 220 { 221 struct pool_info *pi = data; 222 int i; 223 struct r1bio *r1bio = __r1_bio; 224 struct resync_pages *rp = NULL; 225 226 for (i = pi->raid_disks; i--; ) { 227 rp = get_resync_pages(r1bio->bios[i]); 228 resync_free_pages(rp); 229 bio_uninit(r1bio->bios[i]); 230 kfree(r1bio->bios[i]); 231 } 232 233 /* resync pages array stored in the 1st bio's .bi_private */ 234 kfree(rp); 235 236 rbio_pool_free(r1bio, data); 237 } 238 239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 240 { 241 int i; 242 243 for (i = 0; i < conf->raid_disks * 2; i++) { 244 struct bio **bio = r1_bio->bios + i; 245 if (!BIO_SPECIAL(*bio)) 246 bio_put(*bio); 247 *bio = NULL; 248 } 249 } 250 251 static void free_r1bio(struct r1bio *r1_bio) 252 { 253 struct r1conf *conf = r1_bio->mddev->private; 254 255 put_all_bios(conf, r1_bio); 256 mempool_free(r1_bio, &conf->r1bio_pool); 257 } 258 259 static void put_buf(struct r1bio *r1_bio) 260 { 261 struct r1conf *conf = r1_bio->mddev->private; 262 sector_t sect = r1_bio->sector; 263 int i; 264 265 for (i = 0; i < conf->raid_disks * 2; i++) { 266 struct bio *bio = r1_bio->bios[i]; 267 if (bio->bi_end_io) 268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 269 } 270 271 mempool_free(r1_bio, &conf->r1buf_pool); 272 273 lower_barrier(conf, sect); 274 } 275 276 static void reschedule_retry(struct r1bio *r1_bio) 277 { 278 unsigned long flags; 279 struct mddev *mddev = r1_bio->mddev; 280 struct r1conf *conf = mddev->private; 281 int idx; 282 283 idx = sector_to_idx(r1_bio->sector); 284 spin_lock_irqsave(&conf->device_lock, flags); 285 list_add(&r1_bio->retry_list, &conf->retry_list); 286 atomic_inc(&conf->nr_queued[idx]); 287 spin_unlock_irqrestore(&conf->device_lock, flags); 288 289 wake_up(&conf->wait_barrier); 290 md_wakeup_thread(mddev->thread); 291 } 292 293 /* 294 * raid_end_bio_io() is called when we have finished servicing a mirrored 295 * operation and are ready to return a success/failure code to the buffer 296 * cache layer. 297 */ 298 static void call_bio_endio(struct r1bio *r1_bio) 299 { 300 struct bio *bio = r1_bio->master_bio; 301 302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 303 bio->bi_status = BLK_STS_IOERR; 304 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 sector_t sector = r1_bio->sector; 313 314 /* if nobody has done the final endio yet, do it now */ 315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 317 (bio_data_dir(bio) == WRITE) ? "write" : "read", 318 (unsigned long long) bio->bi_iter.bi_sector, 319 (unsigned long long) bio_end_sector(bio) - 1); 320 321 call_bio_endio(r1_bio); 322 } 323 324 free_r1bio(r1_bio); 325 /* 326 * Wake up any possible resync thread that waits for the device 327 * to go idle. All I/Os, even write-behind writes, are done. 328 */ 329 allow_barrier(conf, sector); 330 } 331 332 /* 333 * Update disk head position estimator based on IRQ completion info. 334 */ 335 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 336 { 337 struct r1conf *conf = r1_bio->mddev->private; 338 339 conf->mirrors[disk].head_position = 340 r1_bio->sector + (r1_bio->sectors); 341 } 342 343 /* 344 * Find the disk number which triggered given bio 345 */ 346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 347 { 348 int mirror; 349 struct r1conf *conf = r1_bio->mddev->private; 350 int raid_disks = conf->raid_disks; 351 352 for (mirror = 0; mirror < raid_disks * 2; mirror++) 353 if (r1_bio->bios[mirror] == bio) 354 break; 355 356 BUG_ON(mirror == raid_disks * 2); 357 update_head_pos(mirror, r1_bio); 358 359 return mirror; 360 } 361 362 static void raid1_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_status; 365 struct r1bio *r1_bio = bio->bi_private; 366 struct r1conf *conf = r1_bio->mddev->private; 367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 368 369 /* 370 * this branch is our 'one mirror IO has finished' event handler: 371 */ 372 update_head_pos(r1_bio->read_disk, r1_bio); 373 374 if (uptodate) 375 set_bit(R1BIO_Uptodate, &r1_bio->state); 376 else if (test_bit(FailFast, &rdev->flags) && 377 test_bit(R1BIO_FailFast, &r1_bio->state)) 378 /* This was a fail-fast read so we definitely 379 * want to retry */ 380 ; 381 else { 382 /* If all other devices have failed, we want to return 383 * the error upwards rather than fail the last device. 384 * Here we redefine "uptodate" to mean "Don't want to retry" 385 */ 386 unsigned long flags; 387 spin_lock_irqsave(&conf->device_lock, flags); 388 if (r1_bio->mddev->degraded == conf->raid_disks || 389 (r1_bio->mddev->degraded == conf->raid_disks-1 && 390 test_bit(In_sync, &rdev->flags))) 391 uptodate = 1; 392 spin_unlock_irqrestore(&conf->device_lock, flags); 393 } 394 395 if (uptodate) { 396 raid_end_bio_io(r1_bio); 397 rdev_dec_pending(rdev, conf->mddev); 398 } else { 399 /* 400 * oops, read error: 401 */ 402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 rdev->bdev, 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 /* it really is the end of this request */ 415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 416 bio_free_pages(r1_bio->behind_master_bio); 417 bio_put(r1_bio->behind_master_bio); 418 r1_bio->behind_master_bio = NULL; 419 } 420 /* clear the bitmap if all writes complete successfully */ 421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 422 r1_bio->sectors, 423 !test_bit(R1BIO_Degraded, &r1_bio->state), 424 test_bit(R1BIO_BehindIO, &r1_bio->state)); 425 md_write_end(r1_bio->mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Fail the request */ 482 set_bit(R1BIO_Degraded, &r1_bio->state); 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 r1_bio->bios[mirror] = NULL; 499 to_put = bio; 500 /* 501 * Do not set R1BIO_Uptodate if the current device is 502 * rebuilding or Faulty. This is because we cannot use 503 * such device for properly reading the data back (we could 504 * potentially use it, if the current write would have felt 505 * before rdev->recovery_offset, but for simplicity we don't 506 * check this here. 507 */ 508 if (test_bit(In_sync, &rdev->flags) && 509 !test_bit(Faulty, &rdev->flags)) 510 set_bit(R1BIO_Uptodate, &r1_bio->state); 511 512 /* Maybe we can clear some bad blocks. */ 513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 514 !discard_error) { 515 r1_bio->bios[mirror] = IO_MADE_GOOD; 516 set_bit(R1BIO_MadeGood, &r1_bio->state); 517 } 518 } 519 520 if (behind) { 521 if (test_bit(CollisionCheck, &rdev->flags)) 522 remove_serial(rdev, lo, hi); 523 if (test_bit(WriteMostly, &rdev->flags)) 524 atomic_dec(&r1_bio->behind_remaining); 525 526 /* 527 * In behind mode, we ACK the master bio once the I/O 528 * has safely reached all non-writemostly 529 * disks. Setting the Returned bit ensures that this 530 * gets done only once -- we don't ever want to return 531 * -EIO here, instead we'll wait 532 */ 533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 534 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 535 /* Maybe we can return now */ 536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 537 struct bio *mbio = r1_bio->master_bio; 538 pr_debug("raid1: behind end write sectors" 539 " %llu-%llu\n", 540 (unsigned long long) mbio->bi_iter.bi_sector, 541 (unsigned long long) bio_end_sector(mbio) - 1); 542 call_bio_endio(r1_bio); 543 } 544 } 545 } else if (rdev->mddev->serialize_policy) 546 remove_serial(rdev, lo, hi); 547 if (r1_bio->bios[mirror] == NULL) 548 rdev_dec_pending(rdev, conf->mddev); 549 550 /* 551 * Let's see if all mirrored write operations have finished 552 * already. 553 */ 554 r1_bio_write_done(r1_bio); 555 556 if (to_put) 557 bio_put(to_put); 558 } 559 560 static sector_t align_to_barrier_unit_end(sector_t start_sector, 561 sector_t sectors) 562 { 563 sector_t len; 564 565 WARN_ON(sectors == 0); 566 /* 567 * len is the number of sectors from start_sector to end of the 568 * barrier unit which start_sector belongs to. 569 */ 570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 571 start_sector; 572 573 if (len > sectors) 574 len = sectors; 575 576 return len; 577 } 578 579 static void update_read_sectors(struct r1conf *conf, int disk, 580 sector_t this_sector, int len) 581 { 582 struct raid1_info *info = &conf->mirrors[disk]; 583 584 atomic_inc(&info->rdev->nr_pending); 585 if (info->next_seq_sect != this_sector) 586 info->seq_start = this_sector; 587 info->next_seq_sect = this_sector + len; 588 } 589 590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 591 int *max_sectors) 592 { 593 sector_t this_sector = r1_bio->sector; 594 int len = r1_bio->sectors; 595 int disk; 596 597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 598 struct md_rdev *rdev; 599 int read_len; 600 601 if (r1_bio->bios[disk] == IO_BLOCKED) 602 continue; 603 604 rdev = conf->mirrors[disk].rdev; 605 if (!rdev || test_bit(Faulty, &rdev->flags)) 606 continue; 607 608 /* choose the first disk even if it has some bad blocks. */ 609 read_len = raid1_check_read_range(rdev, this_sector, &len); 610 if (read_len > 0) { 611 update_read_sectors(conf, disk, this_sector, read_len); 612 *max_sectors = read_len; 613 return disk; 614 } 615 } 616 617 return -1; 618 } 619 620 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 621 int *max_sectors) 622 { 623 sector_t this_sector = r1_bio->sector; 624 int best_disk = -1; 625 int best_len = 0; 626 int disk; 627 628 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 629 struct md_rdev *rdev; 630 int len; 631 int read_len; 632 633 if (r1_bio->bios[disk] == IO_BLOCKED) 634 continue; 635 636 rdev = conf->mirrors[disk].rdev; 637 if (!rdev || test_bit(Faulty, &rdev->flags) || 638 test_bit(WriteMostly, &rdev->flags)) 639 continue; 640 641 /* keep track of the disk with the most readable sectors. */ 642 len = r1_bio->sectors; 643 read_len = raid1_check_read_range(rdev, this_sector, &len); 644 if (read_len > best_len) { 645 best_disk = disk; 646 best_len = read_len; 647 } 648 } 649 650 if (best_disk != -1) { 651 *max_sectors = best_len; 652 update_read_sectors(conf, best_disk, this_sector, best_len); 653 } 654 655 return best_disk; 656 } 657 658 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 659 int *max_sectors) 660 { 661 sector_t this_sector = r1_bio->sector; 662 int bb_disk = -1; 663 int bb_read_len = 0; 664 int disk; 665 666 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 667 struct md_rdev *rdev; 668 int len; 669 int read_len; 670 671 if (r1_bio->bios[disk] == IO_BLOCKED) 672 continue; 673 674 rdev = conf->mirrors[disk].rdev; 675 if (!rdev || test_bit(Faulty, &rdev->flags) || 676 !test_bit(WriteMostly, &rdev->flags)) 677 continue; 678 679 /* there are no bad blocks, we can use this disk */ 680 len = r1_bio->sectors; 681 read_len = raid1_check_read_range(rdev, this_sector, &len); 682 if (read_len == r1_bio->sectors) { 683 update_read_sectors(conf, disk, this_sector, read_len); 684 return disk; 685 } 686 687 /* 688 * there are partial bad blocks, choose the rdev with largest 689 * read length. 690 */ 691 if (read_len > bb_read_len) { 692 bb_disk = disk; 693 bb_read_len = read_len; 694 } 695 } 696 697 if (bb_disk != -1) { 698 *max_sectors = bb_read_len; 699 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 700 } 701 702 return bb_disk; 703 } 704 705 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 706 { 707 /* TODO: address issues with this check and concurrency. */ 708 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 709 conf->mirrors[disk].head_position == r1_bio->sector; 710 } 711 712 /* 713 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 714 * disk. If yes, choose the idle disk. 715 */ 716 static bool should_choose_next(struct r1conf *conf, int disk) 717 { 718 struct raid1_info *mirror = &conf->mirrors[disk]; 719 int opt_iosize; 720 721 if (!test_bit(Nonrot, &mirror->rdev->flags)) 722 return false; 723 724 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 725 return opt_iosize > 0 && mirror->seq_start != MaxSector && 726 mirror->next_seq_sect > opt_iosize && 727 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 728 } 729 730 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 731 { 732 if (!rdev || test_bit(Faulty, &rdev->flags)) 733 return false; 734 735 /* still in recovery */ 736 if (!test_bit(In_sync, &rdev->flags) && 737 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors) 738 return false; 739 740 /* don't read from slow disk unless have to */ 741 if (test_bit(WriteMostly, &rdev->flags)) 742 return false; 743 744 /* don't split IO for bad blocks unless have to */ 745 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 746 return false; 747 748 return true; 749 } 750 751 struct read_balance_ctl { 752 sector_t closest_dist; 753 int closest_dist_disk; 754 int min_pending; 755 int min_pending_disk; 756 int sequential_disk; 757 int readable_disks; 758 }; 759 760 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 761 { 762 int disk; 763 struct read_balance_ctl ctl = { 764 .closest_dist_disk = -1, 765 .closest_dist = MaxSector, 766 .min_pending_disk = -1, 767 .min_pending = UINT_MAX, 768 .sequential_disk = -1, 769 }; 770 771 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 772 struct md_rdev *rdev; 773 sector_t dist; 774 unsigned int pending; 775 776 if (r1_bio->bios[disk] == IO_BLOCKED) 777 continue; 778 779 rdev = conf->mirrors[disk].rdev; 780 if (!rdev_readable(rdev, r1_bio)) 781 continue; 782 783 /* At least two disks to choose from so failfast is OK */ 784 if (ctl.readable_disks++ == 1) 785 set_bit(R1BIO_FailFast, &r1_bio->state); 786 787 pending = atomic_read(&rdev->nr_pending); 788 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 789 790 /* Don't change to another disk for sequential reads */ 791 if (is_sequential(conf, disk, r1_bio)) { 792 if (!should_choose_next(conf, disk)) 793 return disk; 794 795 /* 796 * Add 'pending' to avoid choosing this disk if 797 * there is other idle disk. 798 */ 799 pending++; 800 /* 801 * If there is no other idle disk, this disk 802 * will be chosen. 803 */ 804 ctl.sequential_disk = disk; 805 } 806 807 if (ctl.min_pending > pending) { 808 ctl.min_pending = pending; 809 ctl.min_pending_disk = disk; 810 } 811 812 if (ctl.closest_dist > dist) { 813 ctl.closest_dist = dist; 814 ctl.closest_dist_disk = disk; 815 } 816 } 817 818 /* 819 * sequential IO size exceeds optimal iosize, however, there is no other 820 * idle disk, so choose the sequential disk. 821 */ 822 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 823 return ctl.sequential_disk; 824 825 /* 826 * If all disks are rotational, choose the closest disk. If any disk is 827 * non-rotational, choose the disk with less pending request even the 828 * disk is rotational, which might/might not be optimal for raids with 829 * mixed ratation/non-rotational disks depending on workload. 830 */ 831 if (ctl.min_pending_disk != -1 && 832 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 833 return ctl.min_pending_disk; 834 else 835 return ctl.closest_dist_disk; 836 } 837 838 /* 839 * This routine returns the disk from which the requested read should be done. 840 * 841 * 1) If resync is in progress, find the first usable disk and use it even if it 842 * has some bad blocks. 843 * 844 * 2) Now that there is no resync, loop through all disks and skipping slow 845 * disks and disks with bad blocks for now. Only pay attention to key disk 846 * choice. 847 * 848 * 3) If we've made it this far, now look for disks with bad blocks and choose 849 * the one with most number of sectors. 850 * 851 * 4) If we are all the way at the end, we have no choice but to use a disk even 852 * if it is write mostly. 853 * 854 * The rdev for the device selected will have nr_pending incremented. 855 */ 856 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 857 int *max_sectors) 858 { 859 int disk; 860 861 clear_bit(R1BIO_FailFast, &r1_bio->state); 862 863 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 864 r1_bio->sectors)) 865 return choose_first_rdev(conf, r1_bio, max_sectors); 866 867 disk = choose_best_rdev(conf, r1_bio); 868 if (disk >= 0) { 869 *max_sectors = r1_bio->sectors; 870 update_read_sectors(conf, disk, r1_bio->sector, 871 r1_bio->sectors); 872 return disk; 873 } 874 875 /* 876 * If we are here it means we didn't find a perfectly good disk so 877 * now spend a bit more time trying to find one with the most good 878 * sectors. 879 */ 880 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 881 if (disk >= 0) 882 return disk; 883 884 return choose_slow_rdev(conf, r1_bio, max_sectors); 885 } 886 887 static void wake_up_barrier(struct r1conf *conf) 888 { 889 if (wq_has_sleeper(&conf->wait_barrier)) 890 wake_up(&conf->wait_barrier); 891 } 892 893 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 894 { 895 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 896 raid1_prepare_flush_writes(conf->mddev->bitmap); 897 wake_up_barrier(conf); 898 899 while (bio) { /* submit pending writes */ 900 struct bio *next = bio->bi_next; 901 902 raid1_submit_write(bio); 903 bio = next; 904 cond_resched(); 905 } 906 } 907 908 static void flush_pending_writes(struct r1conf *conf) 909 { 910 /* Any writes that have been queued but are awaiting 911 * bitmap updates get flushed here. 912 */ 913 spin_lock_irq(&conf->device_lock); 914 915 if (conf->pending_bio_list.head) { 916 struct blk_plug plug; 917 struct bio *bio; 918 919 bio = bio_list_get(&conf->pending_bio_list); 920 spin_unlock_irq(&conf->device_lock); 921 922 /* 923 * As this is called in a wait_event() loop (see freeze_array), 924 * current->state might be TASK_UNINTERRUPTIBLE which will 925 * cause a warning when we prepare to wait again. As it is 926 * rare that this path is taken, it is perfectly safe to force 927 * us to go around the wait_event() loop again, so the warning 928 * is a false-positive. Silence the warning by resetting 929 * thread state 930 */ 931 __set_current_state(TASK_RUNNING); 932 blk_start_plug(&plug); 933 flush_bio_list(conf, bio); 934 blk_finish_plug(&plug); 935 } else 936 spin_unlock_irq(&conf->device_lock); 937 } 938 939 /* Barriers.... 940 * Sometimes we need to suspend IO while we do something else, 941 * either some resync/recovery, or reconfigure the array. 942 * To do this we raise a 'barrier'. 943 * The 'barrier' is a counter that can be raised multiple times 944 * to count how many activities are happening which preclude 945 * normal IO. 946 * We can only raise the barrier if there is no pending IO. 947 * i.e. if nr_pending == 0. 948 * We choose only to raise the barrier if no-one is waiting for the 949 * barrier to go down. This means that as soon as an IO request 950 * is ready, no other operations which require a barrier will start 951 * until the IO request has had a chance. 952 * 953 * So: regular IO calls 'wait_barrier'. When that returns there 954 * is no backgroup IO happening, It must arrange to call 955 * allow_barrier when it has finished its IO. 956 * backgroup IO calls must call raise_barrier. Once that returns 957 * there is no normal IO happeing. It must arrange to call 958 * lower_barrier when the particular background IO completes. 959 * 960 * If resync/recovery is interrupted, returns -EINTR; 961 * Otherwise, returns 0. 962 */ 963 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 964 { 965 int idx = sector_to_idx(sector_nr); 966 967 spin_lock_irq(&conf->resync_lock); 968 969 /* Wait until no block IO is waiting */ 970 wait_event_lock_irq(conf->wait_barrier, 971 !atomic_read(&conf->nr_waiting[idx]), 972 conf->resync_lock); 973 974 /* block any new IO from starting */ 975 atomic_inc(&conf->barrier[idx]); 976 /* 977 * In raise_barrier() we firstly increase conf->barrier[idx] then 978 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 979 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 980 * A memory barrier here to make sure conf->nr_pending[idx] won't 981 * be fetched before conf->barrier[idx] is increased. Otherwise 982 * there will be a race between raise_barrier() and _wait_barrier(). 983 */ 984 smp_mb__after_atomic(); 985 986 /* For these conditions we must wait: 987 * A: while the array is in frozen state 988 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 989 * existing in corresponding I/O barrier bucket. 990 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 991 * max resync count which allowed on current I/O barrier bucket. 992 */ 993 wait_event_lock_irq(conf->wait_barrier, 994 (!conf->array_frozen && 995 !atomic_read(&conf->nr_pending[idx]) && 996 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 997 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 998 conf->resync_lock); 999 1000 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1001 atomic_dec(&conf->barrier[idx]); 1002 spin_unlock_irq(&conf->resync_lock); 1003 wake_up(&conf->wait_barrier); 1004 return -EINTR; 1005 } 1006 1007 atomic_inc(&conf->nr_sync_pending); 1008 spin_unlock_irq(&conf->resync_lock); 1009 1010 return 0; 1011 } 1012 1013 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1014 { 1015 int idx = sector_to_idx(sector_nr); 1016 1017 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1018 1019 atomic_dec(&conf->barrier[idx]); 1020 atomic_dec(&conf->nr_sync_pending); 1021 wake_up(&conf->wait_barrier); 1022 } 1023 1024 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1025 { 1026 bool ret = true; 1027 1028 /* 1029 * We need to increase conf->nr_pending[idx] very early here, 1030 * then raise_barrier() can be blocked when it waits for 1031 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1032 * conf->resync_lock when there is no barrier raised in same 1033 * barrier unit bucket. Also if the array is frozen, I/O 1034 * should be blocked until array is unfrozen. 1035 */ 1036 atomic_inc(&conf->nr_pending[idx]); 1037 /* 1038 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1039 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1040 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1041 * barrier is necessary here to make sure conf->barrier[idx] won't be 1042 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1043 * will be a race between _wait_barrier() and raise_barrier(). 1044 */ 1045 smp_mb__after_atomic(); 1046 1047 /* 1048 * Don't worry about checking two atomic_t variables at same time 1049 * here. If during we check conf->barrier[idx], the array is 1050 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1051 * 0, it is safe to return and make the I/O continue. Because the 1052 * array is frozen, all I/O returned here will eventually complete 1053 * or be queued, no race will happen. See code comment in 1054 * frozen_array(). 1055 */ 1056 if (!READ_ONCE(conf->array_frozen) && 1057 !atomic_read(&conf->barrier[idx])) 1058 return ret; 1059 1060 /* 1061 * After holding conf->resync_lock, conf->nr_pending[idx] 1062 * should be decreased before waiting for barrier to drop. 1063 * Otherwise, we may encounter a race condition because 1064 * raise_barrer() might be waiting for conf->nr_pending[idx] 1065 * to be 0 at same time. 1066 */ 1067 spin_lock_irq(&conf->resync_lock); 1068 atomic_inc(&conf->nr_waiting[idx]); 1069 atomic_dec(&conf->nr_pending[idx]); 1070 /* 1071 * In case freeze_array() is waiting for 1072 * get_unqueued_pending() == extra 1073 */ 1074 wake_up_barrier(conf); 1075 /* Wait for the barrier in same barrier unit bucket to drop. */ 1076 1077 /* Return false when nowait flag is set */ 1078 if (nowait) { 1079 ret = false; 1080 } else { 1081 wait_event_lock_irq(conf->wait_barrier, 1082 !conf->array_frozen && 1083 !atomic_read(&conf->barrier[idx]), 1084 conf->resync_lock); 1085 atomic_inc(&conf->nr_pending[idx]); 1086 } 1087 1088 atomic_dec(&conf->nr_waiting[idx]); 1089 spin_unlock_irq(&conf->resync_lock); 1090 return ret; 1091 } 1092 1093 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1094 { 1095 int idx = sector_to_idx(sector_nr); 1096 bool ret = true; 1097 1098 /* 1099 * Very similar to _wait_barrier(). The difference is, for read 1100 * I/O we don't need wait for sync I/O, but if the whole array 1101 * is frozen, the read I/O still has to wait until the array is 1102 * unfrozen. Since there is no ordering requirement with 1103 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1104 */ 1105 atomic_inc(&conf->nr_pending[idx]); 1106 1107 if (!READ_ONCE(conf->array_frozen)) 1108 return ret; 1109 1110 spin_lock_irq(&conf->resync_lock); 1111 atomic_inc(&conf->nr_waiting[idx]); 1112 atomic_dec(&conf->nr_pending[idx]); 1113 /* 1114 * In case freeze_array() is waiting for 1115 * get_unqueued_pending() == extra 1116 */ 1117 wake_up_barrier(conf); 1118 /* Wait for array to be unfrozen */ 1119 1120 /* Return false when nowait flag is set */ 1121 if (nowait) { 1122 /* Return false when nowait flag is set */ 1123 ret = false; 1124 } else { 1125 wait_event_lock_irq(conf->wait_barrier, 1126 !conf->array_frozen, 1127 conf->resync_lock); 1128 atomic_inc(&conf->nr_pending[idx]); 1129 } 1130 1131 atomic_dec(&conf->nr_waiting[idx]); 1132 spin_unlock_irq(&conf->resync_lock); 1133 return ret; 1134 } 1135 1136 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1137 { 1138 int idx = sector_to_idx(sector_nr); 1139 1140 return _wait_barrier(conf, idx, nowait); 1141 } 1142 1143 static void _allow_barrier(struct r1conf *conf, int idx) 1144 { 1145 atomic_dec(&conf->nr_pending[idx]); 1146 wake_up_barrier(conf); 1147 } 1148 1149 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1150 { 1151 int idx = sector_to_idx(sector_nr); 1152 1153 _allow_barrier(conf, idx); 1154 } 1155 1156 /* conf->resync_lock should be held */ 1157 static int get_unqueued_pending(struct r1conf *conf) 1158 { 1159 int idx, ret; 1160 1161 ret = atomic_read(&conf->nr_sync_pending); 1162 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1163 ret += atomic_read(&conf->nr_pending[idx]) - 1164 atomic_read(&conf->nr_queued[idx]); 1165 1166 return ret; 1167 } 1168 1169 static void freeze_array(struct r1conf *conf, int extra) 1170 { 1171 /* Stop sync I/O and normal I/O and wait for everything to 1172 * go quiet. 1173 * This is called in two situations: 1174 * 1) management command handlers (reshape, remove disk, quiesce). 1175 * 2) one normal I/O request failed. 1176 1177 * After array_frozen is set to 1, new sync IO will be blocked at 1178 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1179 * or wait_read_barrier(). The flying I/Os will either complete or be 1180 * queued. When everything goes quite, there are only queued I/Os left. 1181 1182 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1183 * barrier bucket index which this I/O request hits. When all sync and 1184 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1185 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1186 * in handle_read_error(), we may call freeze_array() before trying to 1187 * fix the read error. In this case, the error read I/O is not queued, 1188 * so get_unqueued_pending() == 1. 1189 * 1190 * Therefore before this function returns, we need to wait until 1191 * get_unqueued_pendings(conf) gets equal to extra. For 1192 * normal I/O context, extra is 1, in rested situations extra is 0. 1193 */ 1194 spin_lock_irq(&conf->resync_lock); 1195 conf->array_frozen = 1; 1196 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1197 wait_event_lock_irq_cmd( 1198 conf->wait_barrier, 1199 get_unqueued_pending(conf) == extra, 1200 conf->resync_lock, 1201 flush_pending_writes(conf)); 1202 spin_unlock_irq(&conf->resync_lock); 1203 } 1204 static void unfreeze_array(struct r1conf *conf) 1205 { 1206 /* reverse the effect of the freeze */ 1207 spin_lock_irq(&conf->resync_lock); 1208 conf->array_frozen = 0; 1209 spin_unlock_irq(&conf->resync_lock); 1210 wake_up(&conf->wait_barrier); 1211 } 1212 1213 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1214 struct bio *bio) 1215 { 1216 int size = bio->bi_iter.bi_size; 1217 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1218 int i = 0; 1219 struct bio *behind_bio = NULL; 1220 1221 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1222 &r1_bio->mddev->bio_set); 1223 1224 /* discard op, we don't support writezero/writesame yet */ 1225 if (!bio_has_data(bio)) { 1226 behind_bio->bi_iter.bi_size = size; 1227 goto skip_copy; 1228 } 1229 1230 while (i < vcnt && size) { 1231 struct page *page; 1232 int len = min_t(int, PAGE_SIZE, size); 1233 1234 page = alloc_page(GFP_NOIO); 1235 if (unlikely(!page)) 1236 goto free_pages; 1237 1238 if (!bio_add_page(behind_bio, page, len, 0)) { 1239 put_page(page); 1240 goto free_pages; 1241 } 1242 1243 size -= len; 1244 i++; 1245 } 1246 1247 bio_copy_data(behind_bio, bio); 1248 skip_copy: 1249 r1_bio->behind_master_bio = behind_bio; 1250 set_bit(R1BIO_BehindIO, &r1_bio->state); 1251 1252 return; 1253 1254 free_pages: 1255 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1256 bio->bi_iter.bi_size); 1257 bio_free_pages(behind_bio); 1258 bio_put(behind_bio); 1259 } 1260 1261 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1262 { 1263 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1264 cb); 1265 struct mddev *mddev = plug->cb.data; 1266 struct r1conf *conf = mddev->private; 1267 struct bio *bio; 1268 1269 if (from_schedule) { 1270 spin_lock_irq(&conf->device_lock); 1271 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1272 spin_unlock_irq(&conf->device_lock); 1273 wake_up_barrier(conf); 1274 md_wakeup_thread(mddev->thread); 1275 kfree(plug); 1276 return; 1277 } 1278 1279 /* we aren't scheduling, so we can do the write-out directly. */ 1280 bio = bio_list_get(&plug->pending); 1281 flush_bio_list(conf, bio); 1282 kfree(plug); 1283 } 1284 1285 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1286 { 1287 r1_bio->master_bio = bio; 1288 r1_bio->sectors = bio_sectors(bio); 1289 r1_bio->state = 0; 1290 r1_bio->mddev = mddev; 1291 r1_bio->sector = bio->bi_iter.bi_sector; 1292 } 1293 1294 static inline struct r1bio * 1295 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1296 { 1297 struct r1conf *conf = mddev->private; 1298 struct r1bio *r1_bio; 1299 1300 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1301 /* Ensure no bio records IO_BLOCKED */ 1302 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1303 init_r1bio(r1_bio, mddev, bio); 1304 return r1_bio; 1305 } 1306 1307 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1308 int max_read_sectors, struct r1bio *r1_bio) 1309 { 1310 struct r1conf *conf = mddev->private; 1311 struct raid1_info *mirror; 1312 struct bio *read_bio; 1313 struct bitmap *bitmap = mddev->bitmap; 1314 const enum req_op op = bio_op(bio); 1315 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1316 int max_sectors; 1317 int rdisk; 1318 bool r1bio_existed = !!r1_bio; 1319 char b[BDEVNAME_SIZE]; 1320 1321 /* 1322 * If r1_bio is set, we are blocking the raid1d thread 1323 * so there is a tiny risk of deadlock. So ask for 1324 * emergency memory if needed. 1325 */ 1326 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1327 1328 if (r1bio_existed) { 1329 /* Need to get the block device name carefully */ 1330 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 1331 1332 if (rdev) 1333 snprintf(b, sizeof(b), "%pg", rdev->bdev); 1334 else 1335 strcpy(b, "???"); 1336 } 1337 1338 /* 1339 * Still need barrier for READ in case that whole 1340 * array is frozen. 1341 */ 1342 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1343 bio->bi_opf & REQ_NOWAIT)) { 1344 bio_wouldblock_error(bio); 1345 return; 1346 } 1347 1348 if (!r1_bio) 1349 r1_bio = alloc_r1bio(mddev, bio); 1350 else 1351 init_r1bio(r1_bio, mddev, bio); 1352 r1_bio->sectors = max_read_sectors; 1353 1354 /* 1355 * make_request() can abort the operation when read-ahead is being 1356 * used and no empty request is available. 1357 */ 1358 rdisk = read_balance(conf, r1_bio, &max_sectors); 1359 1360 if (rdisk < 0) { 1361 /* couldn't find anywhere to read from */ 1362 if (r1bio_existed) { 1363 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1364 mdname(mddev), 1365 b, 1366 (unsigned long long)r1_bio->sector); 1367 } 1368 raid_end_bio_io(r1_bio); 1369 return; 1370 } 1371 mirror = conf->mirrors + rdisk; 1372 1373 if (r1bio_existed) 1374 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1375 mdname(mddev), 1376 (unsigned long long)r1_bio->sector, 1377 mirror->rdev->bdev); 1378 1379 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1380 bitmap) { 1381 /* 1382 * Reading from a write-mostly device must take care not to 1383 * over-take any writes that are 'behind' 1384 */ 1385 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1386 wait_event(bitmap->behind_wait, 1387 atomic_read(&bitmap->behind_writes) == 0); 1388 } 1389 1390 if (max_sectors < bio_sectors(bio)) { 1391 struct bio *split = bio_split(bio, max_sectors, 1392 gfp, &conf->bio_split); 1393 bio_chain(split, bio); 1394 submit_bio_noacct(bio); 1395 bio = split; 1396 r1_bio->master_bio = bio; 1397 r1_bio->sectors = max_sectors; 1398 } 1399 1400 r1_bio->read_disk = rdisk; 1401 if (!r1bio_existed) { 1402 md_account_bio(mddev, &bio); 1403 r1_bio->master_bio = bio; 1404 } 1405 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1406 &mddev->bio_set); 1407 1408 r1_bio->bios[rdisk] = read_bio; 1409 1410 read_bio->bi_iter.bi_sector = r1_bio->sector + 1411 mirror->rdev->data_offset; 1412 read_bio->bi_end_io = raid1_end_read_request; 1413 read_bio->bi_opf = op | do_sync; 1414 if (test_bit(FailFast, &mirror->rdev->flags) && 1415 test_bit(R1BIO_FailFast, &r1_bio->state)) 1416 read_bio->bi_opf |= MD_FAILFAST; 1417 read_bio->bi_private = r1_bio; 1418 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1419 submit_bio_noacct(read_bio); 1420 } 1421 1422 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1423 int max_write_sectors) 1424 { 1425 struct r1conf *conf = mddev->private; 1426 struct r1bio *r1_bio; 1427 int i, disks; 1428 struct bitmap *bitmap = mddev->bitmap; 1429 unsigned long flags; 1430 struct md_rdev *blocked_rdev; 1431 int first_clone; 1432 int max_sectors; 1433 bool write_behind = false; 1434 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1435 1436 if (mddev_is_clustered(mddev) && 1437 md_cluster_ops->area_resyncing(mddev, WRITE, 1438 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1439 1440 DEFINE_WAIT(w); 1441 if (bio->bi_opf & REQ_NOWAIT) { 1442 bio_wouldblock_error(bio); 1443 return; 1444 } 1445 for (;;) { 1446 prepare_to_wait(&conf->wait_barrier, 1447 &w, TASK_IDLE); 1448 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1449 bio->bi_iter.bi_sector, 1450 bio_end_sector(bio))) 1451 break; 1452 schedule(); 1453 } 1454 finish_wait(&conf->wait_barrier, &w); 1455 } 1456 1457 /* 1458 * Register the new request and wait if the reconstruction 1459 * thread has put up a bar for new requests. 1460 * Continue immediately if no resync is active currently. 1461 */ 1462 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1463 bio->bi_opf & REQ_NOWAIT)) { 1464 bio_wouldblock_error(bio); 1465 return; 1466 } 1467 1468 retry_write: 1469 r1_bio = alloc_r1bio(mddev, bio); 1470 r1_bio->sectors = max_write_sectors; 1471 1472 /* first select target devices under rcu_lock and 1473 * inc refcount on their rdev. Record them by setting 1474 * bios[x] to bio 1475 * If there are known/acknowledged bad blocks on any device on 1476 * which we have seen a write error, we want to avoid writing those 1477 * blocks. 1478 * This potentially requires several writes to write around 1479 * the bad blocks. Each set of writes gets it's own r1bio 1480 * with a set of bios attached. 1481 */ 1482 1483 disks = conf->raid_disks * 2; 1484 blocked_rdev = NULL; 1485 max_sectors = r1_bio->sectors; 1486 for (i = 0; i < disks; i++) { 1487 struct md_rdev *rdev = conf->mirrors[i].rdev; 1488 1489 /* 1490 * The write-behind io is only attempted on drives marked as 1491 * write-mostly, which means we could allocate write behind 1492 * bio later. 1493 */ 1494 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1495 write_behind = true; 1496 1497 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1498 atomic_inc(&rdev->nr_pending); 1499 blocked_rdev = rdev; 1500 break; 1501 } 1502 r1_bio->bios[i] = NULL; 1503 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1504 if (i < conf->raid_disks) 1505 set_bit(R1BIO_Degraded, &r1_bio->state); 1506 continue; 1507 } 1508 1509 atomic_inc(&rdev->nr_pending); 1510 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1511 sector_t first_bad; 1512 int bad_sectors; 1513 int is_bad; 1514 1515 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1516 &first_bad, &bad_sectors); 1517 if (is_bad < 0) { 1518 /* mustn't write here until the bad block is 1519 * acknowledged*/ 1520 set_bit(BlockedBadBlocks, &rdev->flags); 1521 blocked_rdev = rdev; 1522 break; 1523 } 1524 if (is_bad && first_bad <= r1_bio->sector) { 1525 /* Cannot write here at all */ 1526 bad_sectors -= (r1_bio->sector - first_bad); 1527 if (bad_sectors < max_sectors) 1528 /* mustn't write more than bad_sectors 1529 * to other devices yet 1530 */ 1531 max_sectors = bad_sectors; 1532 rdev_dec_pending(rdev, mddev); 1533 /* We don't set R1BIO_Degraded as that 1534 * only applies if the disk is 1535 * missing, so it might be re-added, 1536 * and we want to know to recover this 1537 * chunk. 1538 * In this case the device is here, 1539 * and the fact that this chunk is not 1540 * in-sync is recorded in the bad 1541 * block log 1542 */ 1543 continue; 1544 } 1545 if (is_bad) { 1546 int good_sectors = first_bad - r1_bio->sector; 1547 if (good_sectors < max_sectors) 1548 max_sectors = good_sectors; 1549 } 1550 } 1551 r1_bio->bios[i] = bio; 1552 } 1553 1554 if (unlikely(blocked_rdev)) { 1555 /* Wait for this device to become unblocked */ 1556 int j; 1557 1558 for (j = 0; j < i; j++) 1559 if (r1_bio->bios[j]) 1560 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1561 free_r1bio(r1_bio); 1562 allow_barrier(conf, bio->bi_iter.bi_sector); 1563 1564 if (bio->bi_opf & REQ_NOWAIT) { 1565 bio_wouldblock_error(bio); 1566 return; 1567 } 1568 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked", 1569 blocked_rdev->raid_disk); 1570 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1571 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1572 goto retry_write; 1573 } 1574 1575 /* 1576 * When using a bitmap, we may call alloc_behind_master_bio below. 1577 * alloc_behind_master_bio allocates a copy of the data payload a page 1578 * at a time and thus needs a new bio that can fit the whole payload 1579 * this bio in page sized chunks. 1580 */ 1581 if (write_behind && bitmap) 1582 max_sectors = min_t(int, max_sectors, 1583 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1584 if (max_sectors < bio_sectors(bio)) { 1585 struct bio *split = bio_split(bio, max_sectors, 1586 GFP_NOIO, &conf->bio_split); 1587 bio_chain(split, bio); 1588 submit_bio_noacct(bio); 1589 bio = split; 1590 r1_bio->master_bio = bio; 1591 r1_bio->sectors = max_sectors; 1592 } 1593 1594 md_account_bio(mddev, &bio); 1595 r1_bio->master_bio = bio; 1596 atomic_set(&r1_bio->remaining, 1); 1597 atomic_set(&r1_bio->behind_remaining, 0); 1598 1599 first_clone = 1; 1600 1601 for (i = 0; i < disks; i++) { 1602 struct bio *mbio = NULL; 1603 struct md_rdev *rdev = conf->mirrors[i].rdev; 1604 if (!r1_bio->bios[i]) 1605 continue; 1606 1607 if (first_clone) { 1608 /* do behind I/O ? 1609 * Not if there are too many, or cannot 1610 * allocate memory, or a reader on WriteMostly 1611 * is waiting for behind writes to flush */ 1612 if (bitmap && write_behind && 1613 (atomic_read(&bitmap->behind_writes) 1614 < mddev->bitmap_info.max_write_behind) && 1615 !waitqueue_active(&bitmap->behind_wait)) { 1616 alloc_behind_master_bio(r1_bio, bio); 1617 } 1618 1619 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1620 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1621 first_clone = 0; 1622 } 1623 1624 if (r1_bio->behind_master_bio) { 1625 mbio = bio_alloc_clone(rdev->bdev, 1626 r1_bio->behind_master_bio, 1627 GFP_NOIO, &mddev->bio_set); 1628 if (test_bit(CollisionCheck, &rdev->flags)) 1629 wait_for_serialization(rdev, r1_bio); 1630 if (test_bit(WriteMostly, &rdev->flags)) 1631 atomic_inc(&r1_bio->behind_remaining); 1632 } else { 1633 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1634 &mddev->bio_set); 1635 1636 if (mddev->serialize_policy) 1637 wait_for_serialization(rdev, r1_bio); 1638 } 1639 1640 r1_bio->bios[i] = mbio; 1641 1642 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1643 mbio->bi_end_io = raid1_end_write_request; 1644 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1645 if (test_bit(FailFast, &rdev->flags) && 1646 !test_bit(WriteMostly, &rdev->flags) && 1647 conf->raid_disks - mddev->degraded > 1) 1648 mbio->bi_opf |= MD_FAILFAST; 1649 mbio->bi_private = r1_bio; 1650 1651 atomic_inc(&r1_bio->remaining); 1652 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1653 /* flush_pending_writes() needs access to the rdev so...*/ 1654 mbio->bi_bdev = (void *)rdev; 1655 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1656 spin_lock_irqsave(&conf->device_lock, flags); 1657 bio_list_add(&conf->pending_bio_list, mbio); 1658 spin_unlock_irqrestore(&conf->device_lock, flags); 1659 md_wakeup_thread(mddev->thread); 1660 } 1661 } 1662 1663 r1_bio_write_done(r1_bio); 1664 1665 /* In case raid1d snuck in to freeze_array */ 1666 wake_up_barrier(conf); 1667 } 1668 1669 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1670 { 1671 sector_t sectors; 1672 1673 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1674 && md_flush_request(mddev, bio)) 1675 return true; 1676 1677 /* 1678 * There is a limit to the maximum size, but 1679 * the read/write handler might find a lower limit 1680 * due to bad blocks. To avoid multiple splits, 1681 * we pass the maximum number of sectors down 1682 * and let the lower level perform the split. 1683 */ 1684 sectors = align_to_barrier_unit_end( 1685 bio->bi_iter.bi_sector, bio_sectors(bio)); 1686 1687 if (bio_data_dir(bio) == READ) 1688 raid1_read_request(mddev, bio, sectors, NULL); 1689 else { 1690 if (!md_write_start(mddev,bio)) 1691 return false; 1692 raid1_write_request(mddev, bio, sectors); 1693 } 1694 return true; 1695 } 1696 1697 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1698 { 1699 struct r1conf *conf = mddev->private; 1700 int i; 1701 1702 lockdep_assert_held(&mddev->lock); 1703 1704 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1705 conf->raid_disks - mddev->degraded); 1706 for (i = 0; i < conf->raid_disks; i++) { 1707 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1708 1709 seq_printf(seq, "%s", 1710 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1711 } 1712 seq_printf(seq, "]"); 1713 } 1714 1715 /** 1716 * raid1_error() - RAID1 error handler. 1717 * @mddev: affected md device. 1718 * @rdev: member device to fail. 1719 * 1720 * The routine acknowledges &rdev failure and determines new @mddev state. 1721 * If it failed, then: 1722 * - &MD_BROKEN flag is set in &mddev->flags. 1723 * - recovery is disabled. 1724 * Otherwise, it must be degraded: 1725 * - recovery is interrupted. 1726 * - &mddev->degraded is bumped. 1727 * 1728 * @rdev is marked as &Faulty excluding case when array is failed and 1729 * &mddev->fail_last_dev is off. 1730 */ 1731 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1732 { 1733 struct r1conf *conf = mddev->private; 1734 unsigned long flags; 1735 1736 spin_lock_irqsave(&conf->device_lock, flags); 1737 1738 if (test_bit(In_sync, &rdev->flags) && 1739 (conf->raid_disks - mddev->degraded) == 1) { 1740 set_bit(MD_BROKEN, &mddev->flags); 1741 1742 if (!mddev->fail_last_dev) { 1743 conf->recovery_disabled = mddev->recovery_disabled; 1744 spin_unlock_irqrestore(&conf->device_lock, flags); 1745 return; 1746 } 1747 } 1748 set_bit(Blocked, &rdev->flags); 1749 if (test_and_clear_bit(In_sync, &rdev->flags)) 1750 mddev->degraded++; 1751 set_bit(Faulty, &rdev->flags); 1752 spin_unlock_irqrestore(&conf->device_lock, flags); 1753 /* 1754 * if recovery is running, make sure it aborts. 1755 */ 1756 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1757 set_mask_bits(&mddev->sb_flags, 0, 1758 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1759 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1760 "md/raid1:%s: Operation continuing on %d devices.\n", 1761 mdname(mddev), rdev->bdev, 1762 mdname(mddev), conf->raid_disks - mddev->degraded); 1763 } 1764 1765 static void print_conf(struct r1conf *conf) 1766 { 1767 int i; 1768 1769 pr_debug("RAID1 conf printout:\n"); 1770 if (!conf) { 1771 pr_debug("(!conf)\n"); 1772 return; 1773 } 1774 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1775 conf->raid_disks); 1776 1777 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1778 for (i = 0; i < conf->raid_disks; i++) { 1779 struct md_rdev *rdev = conf->mirrors[i].rdev; 1780 if (rdev) 1781 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1782 i, !test_bit(In_sync, &rdev->flags), 1783 !test_bit(Faulty, &rdev->flags), 1784 rdev->bdev); 1785 } 1786 } 1787 1788 static void close_sync(struct r1conf *conf) 1789 { 1790 int idx; 1791 1792 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1793 _wait_barrier(conf, idx, false); 1794 _allow_barrier(conf, idx); 1795 } 1796 1797 mempool_exit(&conf->r1buf_pool); 1798 } 1799 1800 static int raid1_spare_active(struct mddev *mddev) 1801 { 1802 int i; 1803 struct r1conf *conf = mddev->private; 1804 int count = 0; 1805 unsigned long flags; 1806 1807 /* 1808 * Find all failed disks within the RAID1 configuration 1809 * and mark them readable. 1810 * Called under mddev lock, so rcu protection not needed. 1811 * device_lock used to avoid races with raid1_end_read_request 1812 * which expects 'In_sync' flags and ->degraded to be consistent. 1813 */ 1814 spin_lock_irqsave(&conf->device_lock, flags); 1815 for (i = 0; i < conf->raid_disks; i++) { 1816 struct md_rdev *rdev = conf->mirrors[i].rdev; 1817 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1818 if (repl 1819 && !test_bit(Candidate, &repl->flags) 1820 && repl->recovery_offset == MaxSector 1821 && !test_bit(Faulty, &repl->flags) 1822 && !test_and_set_bit(In_sync, &repl->flags)) { 1823 /* replacement has just become active */ 1824 if (!rdev || 1825 !test_and_clear_bit(In_sync, &rdev->flags)) 1826 count++; 1827 if (rdev) { 1828 /* Replaced device not technically 1829 * faulty, but we need to be sure 1830 * it gets removed and never re-added 1831 */ 1832 set_bit(Faulty, &rdev->flags); 1833 sysfs_notify_dirent_safe( 1834 rdev->sysfs_state); 1835 } 1836 } 1837 if (rdev 1838 && rdev->recovery_offset == MaxSector 1839 && !test_bit(Faulty, &rdev->flags) 1840 && !test_and_set_bit(In_sync, &rdev->flags)) { 1841 count++; 1842 sysfs_notify_dirent_safe(rdev->sysfs_state); 1843 } 1844 } 1845 mddev->degraded -= count; 1846 spin_unlock_irqrestore(&conf->device_lock, flags); 1847 1848 print_conf(conf); 1849 return count; 1850 } 1851 1852 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1853 bool replacement) 1854 { 1855 struct raid1_info *info = conf->mirrors + disk; 1856 1857 if (replacement) 1858 info += conf->raid_disks; 1859 1860 if (info->rdev) 1861 return false; 1862 1863 if (bdev_nonrot(rdev->bdev)) { 1864 set_bit(Nonrot, &rdev->flags); 1865 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1866 } 1867 1868 rdev->raid_disk = disk; 1869 info->head_position = 0; 1870 info->seq_start = MaxSector; 1871 WRITE_ONCE(info->rdev, rdev); 1872 1873 return true; 1874 } 1875 1876 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1877 { 1878 struct raid1_info *info = conf->mirrors + disk; 1879 struct md_rdev *rdev = info->rdev; 1880 1881 if (!rdev || test_bit(In_sync, &rdev->flags) || 1882 atomic_read(&rdev->nr_pending)) 1883 return false; 1884 1885 /* Only remove non-faulty devices if recovery is not possible. */ 1886 if (!test_bit(Faulty, &rdev->flags) && 1887 rdev->mddev->recovery_disabled != conf->recovery_disabled && 1888 rdev->mddev->degraded < conf->raid_disks) 1889 return false; 1890 1891 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1892 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1893 1894 WRITE_ONCE(info->rdev, NULL); 1895 return true; 1896 } 1897 1898 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1899 { 1900 struct r1conf *conf = mddev->private; 1901 int err = -EEXIST; 1902 int mirror = 0, repl_slot = -1; 1903 struct raid1_info *p; 1904 int first = 0; 1905 int last = conf->raid_disks - 1; 1906 1907 if (mddev->recovery_disabled == conf->recovery_disabled) 1908 return -EBUSY; 1909 1910 if (md_integrity_add_rdev(rdev, mddev)) 1911 return -ENXIO; 1912 1913 if (rdev->raid_disk >= 0) 1914 first = last = rdev->raid_disk; 1915 1916 /* 1917 * find the disk ... but prefer rdev->saved_raid_disk 1918 * if possible. 1919 */ 1920 if (rdev->saved_raid_disk >= 0 && 1921 rdev->saved_raid_disk >= first && 1922 rdev->saved_raid_disk < conf->raid_disks && 1923 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1924 first = last = rdev->saved_raid_disk; 1925 1926 for (mirror = first; mirror <= last; mirror++) { 1927 p = conf->mirrors + mirror; 1928 if (!p->rdev) { 1929 err = mddev_stack_new_rdev(mddev, rdev); 1930 if (err) 1931 return err; 1932 1933 raid1_add_conf(conf, rdev, mirror, false); 1934 /* As all devices are equivalent, we don't need a full recovery 1935 * if this was recently any drive of the array 1936 */ 1937 if (rdev->saved_raid_disk < 0) 1938 conf->fullsync = 1; 1939 break; 1940 } 1941 if (test_bit(WantReplacement, &p->rdev->flags) && 1942 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1943 repl_slot = mirror; 1944 } 1945 1946 if (err && repl_slot >= 0) { 1947 /* Add this device as a replacement */ 1948 clear_bit(In_sync, &rdev->flags); 1949 set_bit(Replacement, &rdev->flags); 1950 raid1_add_conf(conf, rdev, repl_slot, true); 1951 err = 0; 1952 conf->fullsync = 1; 1953 } 1954 1955 print_conf(conf); 1956 return err; 1957 } 1958 1959 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1960 { 1961 struct r1conf *conf = mddev->private; 1962 int err = 0; 1963 int number = rdev->raid_disk; 1964 struct raid1_info *p = conf->mirrors + number; 1965 1966 if (unlikely(number >= conf->raid_disks)) 1967 goto abort; 1968 1969 if (rdev != p->rdev) { 1970 number += conf->raid_disks; 1971 p = conf->mirrors + number; 1972 } 1973 1974 print_conf(conf); 1975 if (rdev == p->rdev) { 1976 if (!raid1_remove_conf(conf, number)) { 1977 err = -EBUSY; 1978 goto abort; 1979 } 1980 1981 if (number < conf->raid_disks && 1982 conf->mirrors[conf->raid_disks + number].rdev) { 1983 /* We just removed a device that is being replaced. 1984 * Move down the replacement. We drain all IO before 1985 * doing this to avoid confusion. 1986 */ 1987 struct md_rdev *repl = 1988 conf->mirrors[conf->raid_disks + number].rdev; 1989 freeze_array(conf, 0); 1990 if (atomic_read(&repl->nr_pending)) { 1991 /* It means that some queued IO of retry_list 1992 * hold repl. Thus, we cannot set replacement 1993 * as NULL, avoiding rdev NULL pointer 1994 * dereference in sync_request_write and 1995 * handle_write_finished. 1996 */ 1997 err = -EBUSY; 1998 unfreeze_array(conf); 1999 goto abort; 2000 } 2001 clear_bit(Replacement, &repl->flags); 2002 WRITE_ONCE(p->rdev, repl); 2003 conf->mirrors[conf->raid_disks + number].rdev = NULL; 2004 unfreeze_array(conf); 2005 } 2006 2007 clear_bit(WantReplacement, &rdev->flags); 2008 err = md_integrity_register(mddev); 2009 } 2010 abort: 2011 2012 print_conf(conf); 2013 return err; 2014 } 2015 2016 static void end_sync_read(struct bio *bio) 2017 { 2018 struct r1bio *r1_bio = get_resync_r1bio(bio); 2019 2020 update_head_pos(r1_bio->read_disk, r1_bio); 2021 2022 /* 2023 * we have read a block, now it needs to be re-written, 2024 * or re-read if the read failed. 2025 * We don't do much here, just schedule handling by raid1d 2026 */ 2027 if (!bio->bi_status) 2028 set_bit(R1BIO_Uptodate, &r1_bio->state); 2029 2030 if (atomic_dec_and_test(&r1_bio->remaining)) 2031 reschedule_retry(r1_bio); 2032 } 2033 2034 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2035 { 2036 sector_t sync_blocks = 0; 2037 sector_t s = r1_bio->sector; 2038 long sectors_to_go = r1_bio->sectors; 2039 2040 /* make sure these bits don't get cleared. */ 2041 do { 2042 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 2043 s += sync_blocks; 2044 sectors_to_go -= sync_blocks; 2045 } while (sectors_to_go > 0); 2046 } 2047 2048 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 2049 { 2050 if (atomic_dec_and_test(&r1_bio->remaining)) { 2051 struct mddev *mddev = r1_bio->mddev; 2052 int s = r1_bio->sectors; 2053 2054 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2055 test_bit(R1BIO_WriteError, &r1_bio->state)) 2056 reschedule_retry(r1_bio); 2057 else { 2058 put_buf(r1_bio); 2059 md_done_sync(mddev, s, uptodate); 2060 } 2061 } 2062 } 2063 2064 static void end_sync_write(struct bio *bio) 2065 { 2066 int uptodate = !bio->bi_status; 2067 struct r1bio *r1_bio = get_resync_r1bio(bio); 2068 struct mddev *mddev = r1_bio->mddev; 2069 struct r1conf *conf = mddev->private; 2070 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2071 2072 if (!uptodate) { 2073 abort_sync_write(mddev, r1_bio); 2074 set_bit(WriteErrorSeen, &rdev->flags); 2075 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2076 set_bit(MD_RECOVERY_NEEDED, & 2077 mddev->recovery); 2078 set_bit(R1BIO_WriteError, &r1_bio->state); 2079 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2080 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2081 r1_bio->sector, r1_bio->sectors)) { 2082 set_bit(R1BIO_MadeGood, &r1_bio->state); 2083 } 2084 2085 put_sync_write_buf(r1_bio, uptodate); 2086 } 2087 2088 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2089 int sectors, struct page *page, blk_opf_t rw) 2090 { 2091 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2092 /* success */ 2093 return 1; 2094 if (rw == REQ_OP_WRITE) { 2095 set_bit(WriteErrorSeen, &rdev->flags); 2096 if (!test_and_set_bit(WantReplacement, 2097 &rdev->flags)) 2098 set_bit(MD_RECOVERY_NEEDED, & 2099 rdev->mddev->recovery); 2100 } 2101 /* need to record an error - either for the block or the device */ 2102 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2103 md_error(rdev->mddev, rdev); 2104 return 0; 2105 } 2106 2107 static int fix_sync_read_error(struct r1bio *r1_bio) 2108 { 2109 /* Try some synchronous reads of other devices to get 2110 * good data, much like with normal read errors. Only 2111 * read into the pages we already have so we don't 2112 * need to re-issue the read request. 2113 * We don't need to freeze the array, because being in an 2114 * active sync request, there is no normal IO, and 2115 * no overlapping syncs. 2116 * We don't need to check is_badblock() again as we 2117 * made sure that anything with a bad block in range 2118 * will have bi_end_io clear. 2119 */ 2120 struct mddev *mddev = r1_bio->mddev; 2121 struct r1conf *conf = mddev->private; 2122 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2123 struct page **pages = get_resync_pages(bio)->pages; 2124 sector_t sect = r1_bio->sector; 2125 int sectors = r1_bio->sectors; 2126 int idx = 0; 2127 struct md_rdev *rdev; 2128 2129 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2130 if (test_bit(FailFast, &rdev->flags)) { 2131 /* Don't try recovering from here - just fail it 2132 * ... unless it is the last working device of course */ 2133 md_error(mddev, rdev); 2134 if (test_bit(Faulty, &rdev->flags)) 2135 /* Don't try to read from here, but make sure 2136 * put_buf does it's thing 2137 */ 2138 bio->bi_end_io = end_sync_write; 2139 } 2140 2141 while(sectors) { 2142 int s = sectors; 2143 int d = r1_bio->read_disk; 2144 int success = 0; 2145 int start; 2146 2147 if (s > (PAGE_SIZE>>9)) 2148 s = PAGE_SIZE >> 9; 2149 do { 2150 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2151 /* No rcu protection needed here devices 2152 * can only be removed when no resync is 2153 * active, and resync is currently active 2154 */ 2155 rdev = conf->mirrors[d].rdev; 2156 if (sync_page_io(rdev, sect, s<<9, 2157 pages[idx], 2158 REQ_OP_READ, false)) { 2159 success = 1; 2160 break; 2161 } 2162 } 2163 d++; 2164 if (d == conf->raid_disks * 2) 2165 d = 0; 2166 } while (!success && d != r1_bio->read_disk); 2167 2168 if (!success) { 2169 int abort = 0; 2170 /* Cannot read from anywhere, this block is lost. 2171 * Record a bad block on each device. If that doesn't 2172 * work just disable and interrupt the recovery. 2173 * Don't fail devices as that won't really help. 2174 */ 2175 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2176 mdname(mddev), bio->bi_bdev, 2177 (unsigned long long)r1_bio->sector); 2178 for (d = 0; d < conf->raid_disks * 2; d++) { 2179 rdev = conf->mirrors[d].rdev; 2180 if (!rdev || test_bit(Faulty, &rdev->flags)) 2181 continue; 2182 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2183 abort = 1; 2184 } 2185 if (abort) { 2186 conf->recovery_disabled = 2187 mddev->recovery_disabled; 2188 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2189 md_done_sync(mddev, r1_bio->sectors, 0); 2190 put_buf(r1_bio); 2191 return 0; 2192 } 2193 /* Try next page */ 2194 sectors -= s; 2195 sect += s; 2196 idx++; 2197 continue; 2198 } 2199 2200 start = d; 2201 /* write it back and re-read */ 2202 while (d != r1_bio->read_disk) { 2203 if (d == 0) 2204 d = conf->raid_disks * 2; 2205 d--; 2206 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2207 continue; 2208 rdev = conf->mirrors[d].rdev; 2209 if (r1_sync_page_io(rdev, sect, s, 2210 pages[idx], 2211 REQ_OP_WRITE) == 0) { 2212 r1_bio->bios[d]->bi_end_io = NULL; 2213 rdev_dec_pending(rdev, mddev); 2214 } 2215 } 2216 d = start; 2217 while (d != r1_bio->read_disk) { 2218 if (d == 0) 2219 d = conf->raid_disks * 2; 2220 d--; 2221 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2222 continue; 2223 rdev = conf->mirrors[d].rdev; 2224 if (r1_sync_page_io(rdev, sect, s, 2225 pages[idx], 2226 REQ_OP_READ) != 0) 2227 atomic_add(s, &rdev->corrected_errors); 2228 } 2229 sectors -= s; 2230 sect += s; 2231 idx ++; 2232 } 2233 set_bit(R1BIO_Uptodate, &r1_bio->state); 2234 bio->bi_status = 0; 2235 return 1; 2236 } 2237 2238 static void process_checks(struct r1bio *r1_bio) 2239 { 2240 /* We have read all readable devices. If we haven't 2241 * got the block, then there is no hope left. 2242 * If we have, then we want to do a comparison 2243 * and skip the write if everything is the same. 2244 * If any blocks failed to read, then we need to 2245 * attempt an over-write 2246 */ 2247 struct mddev *mddev = r1_bio->mddev; 2248 struct r1conf *conf = mddev->private; 2249 int primary; 2250 int i; 2251 int vcnt; 2252 2253 /* Fix variable parts of all bios */ 2254 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2255 for (i = 0; i < conf->raid_disks * 2; i++) { 2256 blk_status_t status; 2257 struct bio *b = r1_bio->bios[i]; 2258 struct resync_pages *rp = get_resync_pages(b); 2259 if (b->bi_end_io != end_sync_read) 2260 continue; 2261 /* fixup the bio for reuse, but preserve errno */ 2262 status = b->bi_status; 2263 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2264 b->bi_status = status; 2265 b->bi_iter.bi_sector = r1_bio->sector + 2266 conf->mirrors[i].rdev->data_offset; 2267 b->bi_end_io = end_sync_read; 2268 rp->raid_bio = r1_bio; 2269 b->bi_private = rp; 2270 2271 /* initialize bvec table again */ 2272 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2273 } 2274 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2276 !r1_bio->bios[primary]->bi_status) { 2277 r1_bio->bios[primary]->bi_end_io = NULL; 2278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2279 break; 2280 } 2281 r1_bio->read_disk = primary; 2282 for (i = 0; i < conf->raid_disks * 2; i++) { 2283 int j = 0; 2284 struct bio *pbio = r1_bio->bios[primary]; 2285 struct bio *sbio = r1_bio->bios[i]; 2286 blk_status_t status = sbio->bi_status; 2287 struct page **ppages = get_resync_pages(pbio)->pages; 2288 struct page **spages = get_resync_pages(sbio)->pages; 2289 struct bio_vec *bi; 2290 int page_len[RESYNC_PAGES] = { 0 }; 2291 struct bvec_iter_all iter_all; 2292 2293 if (sbio->bi_end_io != end_sync_read) 2294 continue; 2295 /* Now we can 'fixup' the error value */ 2296 sbio->bi_status = 0; 2297 2298 bio_for_each_segment_all(bi, sbio, iter_all) 2299 page_len[j++] = bi->bv_len; 2300 2301 if (!status) { 2302 for (j = vcnt; j-- ; ) { 2303 if (memcmp(page_address(ppages[j]), 2304 page_address(spages[j]), 2305 page_len[j])) 2306 break; 2307 } 2308 } else 2309 j = 0; 2310 if (j >= 0) 2311 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2312 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2313 && !status)) { 2314 /* No need to write to this device. */ 2315 sbio->bi_end_io = NULL; 2316 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2317 continue; 2318 } 2319 2320 bio_copy_data(sbio, pbio); 2321 } 2322 } 2323 2324 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2325 { 2326 struct r1conf *conf = mddev->private; 2327 int i; 2328 int disks = conf->raid_disks * 2; 2329 struct bio *wbio; 2330 2331 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2332 /* ouch - failed to read all of that. */ 2333 if (!fix_sync_read_error(r1_bio)) 2334 return; 2335 2336 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2337 process_checks(r1_bio); 2338 2339 /* 2340 * schedule writes 2341 */ 2342 atomic_set(&r1_bio->remaining, 1); 2343 for (i = 0; i < disks ; i++) { 2344 wbio = r1_bio->bios[i]; 2345 if (wbio->bi_end_io == NULL || 2346 (wbio->bi_end_io == end_sync_read && 2347 (i == r1_bio->read_disk || 2348 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2349 continue; 2350 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2351 abort_sync_write(mddev, r1_bio); 2352 continue; 2353 } 2354 2355 wbio->bi_opf = REQ_OP_WRITE; 2356 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2357 wbio->bi_opf |= MD_FAILFAST; 2358 2359 wbio->bi_end_io = end_sync_write; 2360 atomic_inc(&r1_bio->remaining); 2361 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2362 2363 submit_bio_noacct(wbio); 2364 } 2365 2366 put_sync_write_buf(r1_bio, 1); 2367 } 2368 2369 /* 2370 * This is a kernel thread which: 2371 * 2372 * 1. Retries failed read operations on working mirrors. 2373 * 2. Updates the raid superblock when problems encounter. 2374 * 3. Performs writes following reads for array synchronising. 2375 */ 2376 2377 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2378 { 2379 sector_t sect = r1_bio->sector; 2380 int sectors = r1_bio->sectors; 2381 int read_disk = r1_bio->read_disk; 2382 struct mddev *mddev = conf->mddev; 2383 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2384 2385 if (exceed_read_errors(mddev, rdev)) { 2386 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2387 return; 2388 } 2389 2390 while(sectors) { 2391 int s = sectors; 2392 int d = read_disk; 2393 int success = 0; 2394 int start; 2395 2396 if (s > (PAGE_SIZE>>9)) 2397 s = PAGE_SIZE >> 9; 2398 2399 do { 2400 rdev = conf->mirrors[d].rdev; 2401 if (rdev && 2402 (test_bit(In_sync, &rdev->flags) || 2403 (!test_bit(Faulty, &rdev->flags) && 2404 rdev->recovery_offset >= sect + s)) && 2405 rdev_has_badblock(rdev, sect, s) == 0) { 2406 atomic_inc(&rdev->nr_pending); 2407 if (sync_page_io(rdev, sect, s<<9, 2408 conf->tmppage, REQ_OP_READ, false)) 2409 success = 1; 2410 rdev_dec_pending(rdev, mddev); 2411 if (success) 2412 break; 2413 } 2414 2415 d++; 2416 if (d == conf->raid_disks * 2) 2417 d = 0; 2418 } while (d != read_disk); 2419 2420 if (!success) { 2421 /* Cannot read from anywhere - mark it bad */ 2422 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2423 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2424 md_error(mddev, rdev); 2425 break; 2426 } 2427 /* write it back and re-read */ 2428 start = d; 2429 while (d != read_disk) { 2430 if (d==0) 2431 d = conf->raid_disks * 2; 2432 d--; 2433 rdev = conf->mirrors[d].rdev; 2434 if (rdev && 2435 !test_bit(Faulty, &rdev->flags)) { 2436 atomic_inc(&rdev->nr_pending); 2437 r1_sync_page_io(rdev, sect, s, 2438 conf->tmppage, REQ_OP_WRITE); 2439 rdev_dec_pending(rdev, mddev); 2440 } 2441 } 2442 d = start; 2443 while (d != read_disk) { 2444 if (d==0) 2445 d = conf->raid_disks * 2; 2446 d--; 2447 rdev = conf->mirrors[d].rdev; 2448 if (rdev && 2449 !test_bit(Faulty, &rdev->flags)) { 2450 atomic_inc(&rdev->nr_pending); 2451 if (r1_sync_page_io(rdev, sect, s, 2452 conf->tmppage, REQ_OP_READ)) { 2453 atomic_add(s, &rdev->corrected_errors); 2454 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2455 mdname(mddev), s, 2456 (unsigned long long)(sect + 2457 rdev->data_offset), 2458 rdev->bdev); 2459 } 2460 rdev_dec_pending(rdev, mddev); 2461 } 2462 } 2463 sectors -= s; 2464 sect += s; 2465 } 2466 } 2467 2468 static int narrow_write_error(struct r1bio *r1_bio, int i) 2469 { 2470 struct mddev *mddev = r1_bio->mddev; 2471 struct r1conf *conf = mddev->private; 2472 struct md_rdev *rdev = conf->mirrors[i].rdev; 2473 2474 /* bio has the data to be written to device 'i' where 2475 * we just recently had a write error. 2476 * We repeatedly clone the bio and trim down to one block, 2477 * then try the write. Where the write fails we record 2478 * a bad block. 2479 * It is conceivable that the bio doesn't exactly align with 2480 * blocks. We must handle this somehow. 2481 * 2482 * We currently own a reference on the rdev. 2483 */ 2484 2485 int block_sectors; 2486 sector_t sector; 2487 int sectors; 2488 int sect_to_write = r1_bio->sectors; 2489 int ok = 1; 2490 2491 if (rdev->badblocks.shift < 0) 2492 return 0; 2493 2494 block_sectors = roundup(1 << rdev->badblocks.shift, 2495 bdev_logical_block_size(rdev->bdev) >> 9); 2496 sector = r1_bio->sector; 2497 sectors = ((sector + block_sectors) 2498 & ~(sector_t)(block_sectors - 1)) 2499 - sector; 2500 2501 while (sect_to_write) { 2502 struct bio *wbio; 2503 if (sectors > sect_to_write) 2504 sectors = sect_to_write; 2505 /* Write at 'sector' for 'sectors'*/ 2506 2507 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2508 wbio = bio_alloc_clone(rdev->bdev, 2509 r1_bio->behind_master_bio, 2510 GFP_NOIO, &mddev->bio_set); 2511 } else { 2512 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2513 GFP_NOIO, &mddev->bio_set); 2514 } 2515 2516 wbio->bi_opf = REQ_OP_WRITE; 2517 wbio->bi_iter.bi_sector = r1_bio->sector; 2518 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2519 2520 bio_trim(wbio, sector - r1_bio->sector, sectors); 2521 wbio->bi_iter.bi_sector += rdev->data_offset; 2522 2523 if (submit_bio_wait(wbio) < 0) 2524 /* failure! */ 2525 ok = rdev_set_badblocks(rdev, sector, 2526 sectors, 0) 2527 && ok; 2528 2529 bio_put(wbio); 2530 sect_to_write -= sectors; 2531 sector += sectors; 2532 sectors = block_sectors; 2533 } 2534 return ok; 2535 } 2536 2537 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2538 { 2539 int m; 2540 int s = r1_bio->sectors; 2541 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2542 struct md_rdev *rdev = conf->mirrors[m].rdev; 2543 struct bio *bio = r1_bio->bios[m]; 2544 if (bio->bi_end_io == NULL) 2545 continue; 2546 if (!bio->bi_status && 2547 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2548 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2549 } 2550 if (bio->bi_status && 2551 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2552 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2553 md_error(conf->mddev, rdev); 2554 } 2555 } 2556 put_buf(r1_bio); 2557 md_done_sync(conf->mddev, s, 1); 2558 } 2559 2560 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2561 { 2562 int m, idx; 2563 bool fail = false; 2564 2565 for (m = 0; m < conf->raid_disks * 2 ; m++) 2566 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2567 struct md_rdev *rdev = conf->mirrors[m].rdev; 2568 rdev_clear_badblocks(rdev, 2569 r1_bio->sector, 2570 r1_bio->sectors, 0); 2571 rdev_dec_pending(rdev, conf->mddev); 2572 } else if (r1_bio->bios[m] != NULL) { 2573 /* This drive got a write error. We need to 2574 * narrow down and record precise write 2575 * errors. 2576 */ 2577 fail = true; 2578 if (!narrow_write_error(r1_bio, m)) { 2579 md_error(conf->mddev, 2580 conf->mirrors[m].rdev); 2581 /* an I/O failed, we can't clear the bitmap */ 2582 set_bit(R1BIO_Degraded, &r1_bio->state); 2583 } 2584 rdev_dec_pending(conf->mirrors[m].rdev, 2585 conf->mddev); 2586 } 2587 if (fail) { 2588 spin_lock_irq(&conf->device_lock); 2589 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2590 idx = sector_to_idx(r1_bio->sector); 2591 atomic_inc(&conf->nr_queued[idx]); 2592 spin_unlock_irq(&conf->device_lock); 2593 /* 2594 * In case freeze_array() is waiting for condition 2595 * get_unqueued_pending() == extra to be true. 2596 */ 2597 wake_up(&conf->wait_barrier); 2598 md_wakeup_thread(conf->mddev->thread); 2599 } else { 2600 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2601 close_write(r1_bio); 2602 raid_end_bio_io(r1_bio); 2603 } 2604 } 2605 2606 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2607 { 2608 struct mddev *mddev = conf->mddev; 2609 struct bio *bio; 2610 struct md_rdev *rdev; 2611 sector_t sector; 2612 2613 clear_bit(R1BIO_ReadError, &r1_bio->state); 2614 /* we got a read error. Maybe the drive is bad. Maybe just 2615 * the block and we can fix it. 2616 * We freeze all other IO, and try reading the block from 2617 * other devices. When we find one, we re-write 2618 * and check it that fixes the read error. 2619 * This is all done synchronously while the array is 2620 * frozen 2621 */ 2622 2623 bio = r1_bio->bios[r1_bio->read_disk]; 2624 bio_put(bio); 2625 r1_bio->bios[r1_bio->read_disk] = NULL; 2626 2627 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2628 if (mddev->ro == 0 2629 && !test_bit(FailFast, &rdev->flags)) { 2630 freeze_array(conf, 1); 2631 fix_read_error(conf, r1_bio); 2632 unfreeze_array(conf); 2633 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2634 md_error(mddev, rdev); 2635 } else { 2636 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2637 } 2638 2639 rdev_dec_pending(rdev, conf->mddev); 2640 sector = r1_bio->sector; 2641 bio = r1_bio->master_bio; 2642 2643 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2644 r1_bio->state = 0; 2645 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2646 allow_barrier(conf, sector); 2647 } 2648 2649 static void raid1d(struct md_thread *thread) 2650 { 2651 struct mddev *mddev = thread->mddev; 2652 struct r1bio *r1_bio; 2653 unsigned long flags; 2654 struct r1conf *conf = mddev->private; 2655 struct list_head *head = &conf->retry_list; 2656 struct blk_plug plug; 2657 int idx; 2658 2659 md_check_recovery(mddev); 2660 2661 if (!list_empty_careful(&conf->bio_end_io_list) && 2662 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2663 LIST_HEAD(tmp); 2664 spin_lock_irqsave(&conf->device_lock, flags); 2665 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2666 list_splice_init(&conf->bio_end_io_list, &tmp); 2667 spin_unlock_irqrestore(&conf->device_lock, flags); 2668 while (!list_empty(&tmp)) { 2669 r1_bio = list_first_entry(&tmp, struct r1bio, 2670 retry_list); 2671 list_del(&r1_bio->retry_list); 2672 idx = sector_to_idx(r1_bio->sector); 2673 atomic_dec(&conf->nr_queued[idx]); 2674 if (mddev->degraded) 2675 set_bit(R1BIO_Degraded, &r1_bio->state); 2676 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2677 close_write(r1_bio); 2678 raid_end_bio_io(r1_bio); 2679 } 2680 } 2681 2682 blk_start_plug(&plug); 2683 for (;;) { 2684 2685 flush_pending_writes(conf); 2686 2687 spin_lock_irqsave(&conf->device_lock, flags); 2688 if (list_empty(head)) { 2689 spin_unlock_irqrestore(&conf->device_lock, flags); 2690 break; 2691 } 2692 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2693 list_del(head->prev); 2694 idx = sector_to_idx(r1_bio->sector); 2695 atomic_dec(&conf->nr_queued[idx]); 2696 spin_unlock_irqrestore(&conf->device_lock, flags); 2697 2698 mddev = r1_bio->mddev; 2699 conf = mddev->private; 2700 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2701 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2702 test_bit(R1BIO_WriteError, &r1_bio->state)) 2703 handle_sync_write_finished(conf, r1_bio); 2704 else 2705 sync_request_write(mddev, r1_bio); 2706 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2707 test_bit(R1BIO_WriteError, &r1_bio->state)) 2708 handle_write_finished(conf, r1_bio); 2709 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2710 handle_read_error(conf, r1_bio); 2711 else 2712 WARN_ON_ONCE(1); 2713 2714 cond_resched(); 2715 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2716 md_check_recovery(mddev); 2717 } 2718 blk_finish_plug(&plug); 2719 } 2720 2721 static int init_resync(struct r1conf *conf) 2722 { 2723 int buffs; 2724 2725 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2726 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2727 2728 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2729 r1buf_pool_free, conf->poolinfo); 2730 } 2731 2732 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2733 { 2734 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2735 struct resync_pages *rps; 2736 struct bio *bio; 2737 int i; 2738 2739 for (i = conf->poolinfo->raid_disks; i--; ) { 2740 bio = r1bio->bios[i]; 2741 rps = bio->bi_private; 2742 bio_reset(bio, NULL, 0); 2743 bio->bi_private = rps; 2744 } 2745 r1bio->master_bio = NULL; 2746 return r1bio; 2747 } 2748 2749 /* 2750 * perform a "sync" on one "block" 2751 * 2752 * We need to make sure that no normal I/O request - particularly write 2753 * requests - conflict with active sync requests. 2754 * 2755 * This is achieved by tracking pending requests and a 'barrier' concept 2756 * that can be installed to exclude normal IO requests. 2757 */ 2758 2759 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2760 int *skipped) 2761 { 2762 struct r1conf *conf = mddev->private; 2763 struct r1bio *r1_bio; 2764 struct bio *bio; 2765 sector_t max_sector, nr_sectors; 2766 int disk = -1; 2767 int i; 2768 int wonly = -1; 2769 int write_targets = 0, read_targets = 0; 2770 sector_t sync_blocks; 2771 int still_degraded = 0; 2772 int good_sectors = RESYNC_SECTORS; 2773 int min_bad = 0; /* number of sectors that are bad in all devices */ 2774 int idx = sector_to_idx(sector_nr); 2775 int page_idx = 0; 2776 2777 if (!mempool_initialized(&conf->r1buf_pool)) 2778 if (init_resync(conf)) 2779 return 0; 2780 2781 max_sector = mddev->dev_sectors; 2782 if (sector_nr >= max_sector) { 2783 /* If we aborted, we need to abort the 2784 * sync on the 'current' bitmap chunk (there will 2785 * only be one in raid1 resync. 2786 * We can find the current addess in mddev->curr_resync 2787 */ 2788 if (mddev->curr_resync < max_sector) /* aborted */ 2789 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2790 &sync_blocks, 1); 2791 else /* completed sync */ 2792 conf->fullsync = 0; 2793 2794 md_bitmap_close_sync(mddev->bitmap); 2795 close_sync(conf); 2796 2797 if (mddev_is_clustered(mddev)) { 2798 conf->cluster_sync_low = 0; 2799 conf->cluster_sync_high = 0; 2800 } 2801 return 0; 2802 } 2803 2804 if (mddev->bitmap == NULL && 2805 mddev->recovery_cp == MaxSector && 2806 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2807 conf->fullsync == 0) { 2808 *skipped = 1; 2809 return max_sector - sector_nr; 2810 } 2811 /* before building a request, check if we can skip these blocks.. 2812 * This call the bitmap_start_sync doesn't actually record anything 2813 */ 2814 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2815 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2816 /* We can skip this block, and probably several more */ 2817 *skipped = 1; 2818 return sync_blocks; 2819 } 2820 2821 /* 2822 * If there is non-resync activity waiting for a turn, then let it 2823 * though before starting on this new sync request. 2824 */ 2825 if (atomic_read(&conf->nr_waiting[idx])) 2826 schedule_timeout_uninterruptible(1); 2827 2828 /* we are incrementing sector_nr below. To be safe, we check against 2829 * sector_nr + two times RESYNC_SECTORS 2830 */ 2831 2832 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2833 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2834 2835 2836 if (raise_barrier(conf, sector_nr)) 2837 return 0; 2838 2839 r1_bio = raid1_alloc_init_r1buf(conf); 2840 2841 /* 2842 * If we get a correctably read error during resync or recovery, 2843 * we might want to read from a different device. So we 2844 * flag all drives that could conceivably be read from for READ, 2845 * and any others (which will be non-In_sync devices) for WRITE. 2846 * If a read fails, we try reading from something else for which READ 2847 * is OK. 2848 */ 2849 2850 r1_bio->mddev = mddev; 2851 r1_bio->sector = sector_nr; 2852 r1_bio->state = 0; 2853 set_bit(R1BIO_IsSync, &r1_bio->state); 2854 /* make sure good_sectors won't go across barrier unit boundary */ 2855 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2856 2857 for (i = 0; i < conf->raid_disks * 2; i++) { 2858 struct md_rdev *rdev; 2859 bio = r1_bio->bios[i]; 2860 2861 rdev = conf->mirrors[i].rdev; 2862 if (rdev == NULL || 2863 test_bit(Faulty, &rdev->flags)) { 2864 if (i < conf->raid_disks) 2865 still_degraded = 1; 2866 } else if (!test_bit(In_sync, &rdev->flags)) { 2867 bio->bi_opf = REQ_OP_WRITE; 2868 bio->bi_end_io = end_sync_write; 2869 write_targets ++; 2870 } else { 2871 /* may need to read from here */ 2872 sector_t first_bad = MaxSector; 2873 int bad_sectors; 2874 2875 if (is_badblock(rdev, sector_nr, good_sectors, 2876 &first_bad, &bad_sectors)) { 2877 if (first_bad > sector_nr) 2878 good_sectors = first_bad - sector_nr; 2879 else { 2880 bad_sectors -= (sector_nr - first_bad); 2881 if (min_bad == 0 || 2882 min_bad > bad_sectors) 2883 min_bad = bad_sectors; 2884 } 2885 } 2886 if (sector_nr < first_bad) { 2887 if (test_bit(WriteMostly, &rdev->flags)) { 2888 if (wonly < 0) 2889 wonly = i; 2890 } else { 2891 if (disk < 0) 2892 disk = i; 2893 } 2894 bio->bi_opf = REQ_OP_READ; 2895 bio->bi_end_io = end_sync_read; 2896 read_targets++; 2897 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2898 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2899 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2900 /* 2901 * The device is suitable for reading (InSync), 2902 * but has bad block(s) here. Let's try to correct them, 2903 * if we are doing resync or repair. Otherwise, leave 2904 * this device alone for this sync request. 2905 */ 2906 bio->bi_opf = REQ_OP_WRITE; 2907 bio->bi_end_io = end_sync_write; 2908 write_targets++; 2909 } 2910 } 2911 if (rdev && bio->bi_end_io) { 2912 atomic_inc(&rdev->nr_pending); 2913 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2914 bio_set_dev(bio, rdev->bdev); 2915 if (test_bit(FailFast, &rdev->flags)) 2916 bio->bi_opf |= MD_FAILFAST; 2917 } 2918 } 2919 if (disk < 0) 2920 disk = wonly; 2921 r1_bio->read_disk = disk; 2922 2923 if (read_targets == 0 && min_bad > 0) { 2924 /* These sectors are bad on all InSync devices, so we 2925 * need to mark them bad on all write targets 2926 */ 2927 int ok = 1; 2928 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2929 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2930 struct md_rdev *rdev = conf->mirrors[i].rdev; 2931 ok = rdev_set_badblocks(rdev, sector_nr, 2932 min_bad, 0 2933 ) && ok; 2934 } 2935 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2936 *skipped = 1; 2937 put_buf(r1_bio); 2938 2939 if (!ok) { 2940 /* Cannot record the badblocks, so need to 2941 * abort the resync. 2942 * If there are multiple read targets, could just 2943 * fail the really bad ones ??? 2944 */ 2945 conf->recovery_disabled = mddev->recovery_disabled; 2946 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2947 return 0; 2948 } else 2949 return min_bad; 2950 2951 } 2952 if (min_bad > 0 && min_bad < good_sectors) { 2953 /* only resync enough to reach the next bad->good 2954 * transition */ 2955 good_sectors = min_bad; 2956 } 2957 2958 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2959 /* extra read targets are also write targets */ 2960 write_targets += read_targets-1; 2961 2962 if (write_targets == 0 || read_targets == 0) { 2963 /* There is nowhere to write, so all non-sync 2964 * drives must be failed - so we are finished 2965 */ 2966 sector_t rv; 2967 if (min_bad > 0) 2968 max_sector = sector_nr + min_bad; 2969 rv = max_sector - sector_nr; 2970 *skipped = 1; 2971 put_buf(r1_bio); 2972 return rv; 2973 } 2974 2975 if (max_sector > mddev->resync_max) 2976 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2977 if (max_sector > sector_nr + good_sectors) 2978 max_sector = sector_nr + good_sectors; 2979 nr_sectors = 0; 2980 sync_blocks = 0; 2981 do { 2982 struct page *page; 2983 int len = PAGE_SIZE; 2984 if (sector_nr + (len>>9) > max_sector) 2985 len = (max_sector - sector_nr) << 9; 2986 if (len == 0) 2987 break; 2988 if (sync_blocks == 0) { 2989 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2990 &sync_blocks, still_degraded) && 2991 !conf->fullsync && 2992 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2993 break; 2994 if ((len >> 9) > sync_blocks) 2995 len = sync_blocks<<9; 2996 } 2997 2998 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2999 struct resync_pages *rp; 3000 3001 bio = r1_bio->bios[i]; 3002 rp = get_resync_pages(bio); 3003 if (bio->bi_end_io) { 3004 page = resync_fetch_page(rp, page_idx); 3005 3006 /* 3007 * won't fail because the vec table is big 3008 * enough to hold all these pages 3009 */ 3010 __bio_add_page(bio, page, len, 0); 3011 } 3012 } 3013 nr_sectors += len>>9; 3014 sector_nr += len>>9; 3015 sync_blocks -= (len>>9); 3016 } while (++page_idx < RESYNC_PAGES); 3017 3018 r1_bio->sectors = nr_sectors; 3019 3020 if (mddev_is_clustered(mddev) && 3021 conf->cluster_sync_high < sector_nr + nr_sectors) { 3022 conf->cluster_sync_low = mddev->curr_resync_completed; 3023 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3024 /* Send resync message */ 3025 md_cluster_ops->resync_info_update(mddev, 3026 conf->cluster_sync_low, 3027 conf->cluster_sync_high); 3028 } 3029 3030 /* For a user-requested sync, we read all readable devices and do a 3031 * compare 3032 */ 3033 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3034 atomic_set(&r1_bio->remaining, read_targets); 3035 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3036 bio = r1_bio->bios[i]; 3037 if (bio->bi_end_io == end_sync_read) { 3038 read_targets--; 3039 md_sync_acct_bio(bio, nr_sectors); 3040 if (read_targets == 1) 3041 bio->bi_opf &= ~MD_FAILFAST; 3042 submit_bio_noacct(bio); 3043 } 3044 } 3045 } else { 3046 atomic_set(&r1_bio->remaining, 1); 3047 bio = r1_bio->bios[r1_bio->read_disk]; 3048 md_sync_acct_bio(bio, nr_sectors); 3049 if (read_targets == 1) 3050 bio->bi_opf &= ~MD_FAILFAST; 3051 submit_bio_noacct(bio); 3052 } 3053 return nr_sectors; 3054 } 3055 3056 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3057 { 3058 if (sectors) 3059 return sectors; 3060 3061 return mddev->dev_sectors; 3062 } 3063 3064 static struct r1conf *setup_conf(struct mddev *mddev) 3065 { 3066 struct r1conf *conf; 3067 int i; 3068 struct raid1_info *disk; 3069 struct md_rdev *rdev; 3070 int err = -ENOMEM; 3071 3072 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3073 if (!conf) 3074 goto abort; 3075 3076 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3077 sizeof(atomic_t), GFP_KERNEL); 3078 if (!conf->nr_pending) 3079 goto abort; 3080 3081 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3082 sizeof(atomic_t), GFP_KERNEL); 3083 if (!conf->nr_waiting) 3084 goto abort; 3085 3086 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3087 sizeof(atomic_t), GFP_KERNEL); 3088 if (!conf->nr_queued) 3089 goto abort; 3090 3091 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3092 sizeof(atomic_t), GFP_KERNEL); 3093 if (!conf->barrier) 3094 goto abort; 3095 3096 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3097 mddev->raid_disks, 2), 3098 GFP_KERNEL); 3099 if (!conf->mirrors) 3100 goto abort; 3101 3102 conf->tmppage = alloc_page(GFP_KERNEL); 3103 if (!conf->tmppage) 3104 goto abort; 3105 3106 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3107 if (!conf->poolinfo) 3108 goto abort; 3109 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3110 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3111 rbio_pool_free, conf->poolinfo); 3112 if (err) 3113 goto abort; 3114 3115 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3116 if (err) 3117 goto abort; 3118 3119 conf->poolinfo->mddev = mddev; 3120 3121 err = -EINVAL; 3122 spin_lock_init(&conf->device_lock); 3123 conf->raid_disks = mddev->raid_disks; 3124 rdev_for_each(rdev, mddev) { 3125 int disk_idx = rdev->raid_disk; 3126 3127 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3128 continue; 3129 3130 if (!raid1_add_conf(conf, rdev, disk_idx, 3131 test_bit(Replacement, &rdev->flags))) 3132 goto abort; 3133 } 3134 conf->mddev = mddev; 3135 INIT_LIST_HEAD(&conf->retry_list); 3136 INIT_LIST_HEAD(&conf->bio_end_io_list); 3137 3138 spin_lock_init(&conf->resync_lock); 3139 init_waitqueue_head(&conf->wait_barrier); 3140 3141 bio_list_init(&conf->pending_bio_list); 3142 conf->recovery_disabled = mddev->recovery_disabled - 1; 3143 3144 err = -EIO; 3145 for (i = 0; i < conf->raid_disks * 2; i++) { 3146 3147 disk = conf->mirrors + i; 3148 3149 if (i < conf->raid_disks && 3150 disk[conf->raid_disks].rdev) { 3151 /* This slot has a replacement. */ 3152 if (!disk->rdev) { 3153 /* No original, just make the replacement 3154 * a recovering spare 3155 */ 3156 disk->rdev = 3157 disk[conf->raid_disks].rdev; 3158 disk[conf->raid_disks].rdev = NULL; 3159 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3160 /* Original is not in_sync - bad */ 3161 goto abort; 3162 } 3163 3164 if (!disk->rdev || 3165 !test_bit(In_sync, &disk->rdev->flags)) { 3166 disk->head_position = 0; 3167 if (disk->rdev && 3168 (disk->rdev->saved_raid_disk < 0)) 3169 conf->fullsync = 1; 3170 } 3171 } 3172 3173 err = -ENOMEM; 3174 rcu_assign_pointer(conf->thread, 3175 md_register_thread(raid1d, mddev, "raid1")); 3176 if (!conf->thread) 3177 goto abort; 3178 3179 return conf; 3180 3181 abort: 3182 if (conf) { 3183 mempool_exit(&conf->r1bio_pool); 3184 kfree(conf->mirrors); 3185 safe_put_page(conf->tmppage); 3186 kfree(conf->poolinfo); 3187 kfree(conf->nr_pending); 3188 kfree(conf->nr_waiting); 3189 kfree(conf->nr_queued); 3190 kfree(conf->barrier); 3191 bioset_exit(&conf->bio_split); 3192 kfree(conf); 3193 } 3194 return ERR_PTR(err); 3195 } 3196 3197 static int raid1_set_limits(struct mddev *mddev) 3198 { 3199 struct queue_limits lim; 3200 3201 blk_set_stacking_limits(&lim); 3202 lim.max_write_zeroes_sectors = 0; 3203 mddev_stack_rdev_limits(mddev, &lim); 3204 return queue_limits_set(mddev->gendisk->queue, &lim); 3205 } 3206 3207 static void raid1_free(struct mddev *mddev, void *priv); 3208 static int raid1_run(struct mddev *mddev) 3209 { 3210 struct r1conf *conf; 3211 int i; 3212 int ret; 3213 3214 if (mddev->level != 1) { 3215 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3216 mdname(mddev), mddev->level); 3217 return -EIO; 3218 } 3219 if (mddev->reshape_position != MaxSector) { 3220 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3221 mdname(mddev)); 3222 return -EIO; 3223 } 3224 3225 /* 3226 * copy the already verified devices into our private RAID1 3227 * bookkeeping area. [whatever we allocate in run(), 3228 * should be freed in raid1_free()] 3229 */ 3230 if (mddev->private == NULL) 3231 conf = setup_conf(mddev); 3232 else 3233 conf = mddev->private; 3234 3235 if (IS_ERR(conf)) 3236 return PTR_ERR(conf); 3237 3238 if (!mddev_is_dm(mddev)) { 3239 ret = raid1_set_limits(mddev); 3240 if (ret) 3241 goto abort; 3242 } 3243 3244 mddev->degraded = 0; 3245 for (i = 0; i < conf->raid_disks; i++) 3246 if (conf->mirrors[i].rdev == NULL || 3247 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3248 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3249 mddev->degraded++; 3250 /* 3251 * RAID1 needs at least one disk in active 3252 */ 3253 if (conf->raid_disks - mddev->degraded < 1) { 3254 md_unregister_thread(mddev, &conf->thread); 3255 ret = -EINVAL; 3256 goto abort; 3257 } 3258 3259 if (conf->raid_disks - mddev->degraded == 1) 3260 mddev->recovery_cp = MaxSector; 3261 3262 if (mddev->recovery_cp != MaxSector) 3263 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3264 mdname(mddev)); 3265 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3266 mdname(mddev), mddev->raid_disks - mddev->degraded, 3267 mddev->raid_disks); 3268 3269 /* 3270 * Ok, everything is just fine now 3271 */ 3272 rcu_assign_pointer(mddev->thread, conf->thread); 3273 rcu_assign_pointer(conf->thread, NULL); 3274 mddev->private = conf; 3275 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3276 3277 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3278 3279 ret = md_integrity_register(mddev); 3280 if (ret) { 3281 md_unregister_thread(mddev, &mddev->thread); 3282 goto abort; 3283 } 3284 return 0; 3285 3286 abort: 3287 raid1_free(mddev, conf); 3288 return ret; 3289 } 3290 3291 static void raid1_free(struct mddev *mddev, void *priv) 3292 { 3293 struct r1conf *conf = priv; 3294 3295 mempool_exit(&conf->r1bio_pool); 3296 kfree(conf->mirrors); 3297 safe_put_page(conf->tmppage); 3298 kfree(conf->poolinfo); 3299 kfree(conf->nr_pending); 3300 kfree(conf->nr_waiting); 3301 kfree(conf->nr_queued); 3302 kfree(conf->barrier); 3303 bioset_exit(&conf->bio_split); 3304 kfree(conf); 3305 } 3306 3307 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3308 { 3309 /* no resync is happening, and there is enough space 3310 * on all devices, so we can resize. 3311 * We need to make sure resync covers any new space. 3312 * If the array is shrinking we should possibly wait until 3313 * any io in the removed space completes, but it hardly seems 3314 * worth it. 3315 */ 3316 sector_t newsize = raid1_size(mddev, sectors, 0); 3317 if (mddev->external_size && 3318 mddev->array_sectors > newsize) 3319 return -EINVAL; 3320 if (mddev->bitmap) { 3321 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3322 if (ret) 3323 return ret; 3324 } 3325 md_set_array_sectors(mddev, newsize); 3326 if (sectors > mddev->dev_sectors && 3327 mddev->recovery_cp > mddev->dev_sectors) { 3328 mddev->recovery_cp = mddev->dev_sectors; 3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3330 } 3331 mddev->dev_sectors = sectors; 3332 mddev->resync_max_sectors = sectors; 3333 return 0; 3334 } 3335 3336 static int raid1_reshape(struct mddev *mddev) 3337 { 3338 /* We need to: 3339 * 1/ resize the r1bio_pool 3340 * 2/ resize conf->mirrors 3341 * 3342 * We allocate a new r1bio_pool if we can. 3343 * Then raise a device barrier and wait until all IO stops. 3344 * Then resize conf->mirrors and swap in the new r1bio pool. 3345 * 3346 * At the same time, we "pack" the devices so that all the missing 3347 * devices have the higher raid_disk numbers. 3348 */ 3349 mempool_t newpool, oldpool; 3350 struct pool_info *newpoolinfo; 3351 struct raid1_info *newmirrors; 3352 struct r1conf *conf = mddev->private; 3353 int cnt, raid_disks; 3354 unsigned long flags; 3355 int d, d2; 3356 int ret; 3357 3358 memset(&newpool, 0, sizeof(newpool)); 3359 memset(&oldpool, 0, sizeof(oldpool)); 3360 3361 /* Cannot change chunk_size, layout, or level */ 3362 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3363 mddev->layout != mddev->new_layout || 3364 mddev->level != mddev->new_level) { 3365 mddev->new_chunk_sectors = mddev->chunk_sectors; 3366 mddev->new_layout = mddev->layout; 3367 mddev->new_level = mddev->level; 3368 return -EINVAL; 3369 } 3370 3371 if (!mddev_is_clustered(mddev)) 3372 md_allow_write(mddev); 3373 3374 raid_disks = mddev->raid_disks + mddev->delta_disks; 3375 3376 if (raid_disks < conf->raid_disks) { 3377 cnt=0; 3378 for (d= 0; d < conf->raid_disks; d++) 3379 if (conf->mirrors[d].rdev) 3380 cnt++; 3381 if (cnt > raid_disks) 3382 return -EBUSY; 3383 } 3384 3385 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3386 if (!newpoolinfo) 3387 return -ENOMEM; 3388 newpoolinfo->mddev = mddev; 3389 newpoolinfo->raid_disks = raid_disks * 2; 3390 3391 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3392 rbio_pool_free, newpoolinfo); 3393 if (ret) { 3394 kfree(newpoolinfo); 3395 return ret; 3396 } 3397 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3398 raid_disks, 2), 3399 GFP_KERNEL); 3400 if (!newmirrors) { 3401 kfree(newpoolinfo); 3402 mempool_exit(&newpool); 3403 return -ENOMEM; 3404 } 3405 3406 freeze_array(conf, 0); 3407 3408 /* ok, everything is stopped */ 3409 oldpool = conf->r1bio_pool; 3410 conf->r1bio_pool = newpool; 3411 3412 for (d = d2 = 0; d < conf->raid_disks; d++) { 3413 struct md_rdev *rdev = conf->mirrors[d].rdev; 3414 if (rdev && rdev->raid_disk != d2) { 3415 sysfs_unlink_rdev(mddev, rdev); 3416 rdev->raid_disk = d2; 3417 sysfs_unlink_rdev(mddev, rdev); 3418 if (sysfs_link_rdev(mddev, rdev)) 3419 pr_warn("md/raid1:%s: cannot register rd%d\n", 3420 mdname(mddev), rdev->raid_disk); 3421 } 3422 if (rdev) 3423 newmirrors[d2++].rdev = rdev; 3424 } 3425 kfree(conf->mirrors); 3426 conf->mirrors = newmirrors; 3427 kfree(conf->poolinfo); 3428 conf->poolinfo = newpoolinfo; 3429 3430 spin_lock_irqsave(&conf->device_lock, flags); 3431 mddev->degraded += (raid_disks - conf->raid_disks); 3432 spin_unlock_irqrestore(&conf->device_lock, flags); 3433 conf->raid_disks = mddev->raid_disks = raid_disks; 3434 mddev->delta_disks = 0; 3435 3436 unfreeze_array(conf); 3437 3438 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3439 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3440 md_wakeup_thread(mddev->thread); 3441 3442 mempool_exit(&oldpool); 3443 return 0; 3444 } 3445 3446 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3447 { 3448 struct r1conf *conf = mddev->private; 3449 3450 if (quiesce) 3451 freeze_array(conf, 0); 3452 else 3453 unfreeze_array(conf); 3454 } 3455 3456 static void *raid1_takeover(struct mddev *mddev) 3457 { 3458 /* raid1 can take over: 3459 * raid5 with 2 devices, any layout or chunk size 3460 */ 3461 if (mddev->level == 5 && mddev->raid_disks == 2) { 3462 struct r1conf *conf; 3463 mddev->new_level = 1; 3464 mddev->new_layout = 0; 3465 mddev->new_chunk_sectors = 0; 3466 conf = setup_conf(mddev); 3467 if (!IS_ERR(conf)) { 3468 /* Array must appear to be quiesced */ 3469 conf->array_frozen = 1; 3470 mddev_clear_unsupported_flags(mddev, 3471 UNSUPPORTED_MDDEV_FLAGS); 3472 } 3473 return conf; 3474 } 3475 return ERR_PTR(-EINVAL); 3476 } 3477 3478 static struct md_personality raid1_personality = 3479 { 3480 .name = "raid1", 3481 .level = 1, 3482 .owner = THIS_MODULE, 3483 .make_request = raid1_make_request, 3484 .run = raid1_run, 3485 .free = raid1_free, 3486 .status = raid1_status, 3487 .error_handler = raid1_error, 3488 .hot_add_disk = raid1_add_disk, 3489 .hot_remove_disk= raid1_remove_disk, 3490 .spare_active = raid1_spare_active, 3491 .sync_request = raid1_sync_request, 3492 .resize = raid1_resize, 3493 .size = raid1_size, 3494 .check_reshape = raid1_reshape, 3495 .quiesce = raid1_quiesce, 3496 .takeover = raid1_takeover, 3497 }; 3498 3499 static int __init raid_init(void) 3500 { 3501 return register_md_personality(&raid1_personality); 3502 } 3503 3504 static void raid_exit(void) 3505 { 3506 unregister_md_personality(&raid1_personality); 3507 } 3508 3509 module_init(raid_init); 3510 module_exit(raid_exit); 3511 MODULE_LICENSE("GPL"); 3512 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3513 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3514 MODULE_ALIAS("md-raid1"); 3515 MODULE_ALIAS("md-level-1"); 3516