1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define RAID_1_10_NAME "raid1" 50 #include "raid1-10.c" 51 52 #define START(node) ((node)->start) 53 #define LAST(node) ((node)->last) 54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 55 START, LAST, static inline, raid1_rb); 56 57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 58 struct serial_info *si, int idx) 59 { 60 unsigned long flags; 61 int ret = 0; 62 sector_t lo = r1_bio->sector; 63 sector_t hi = lo + r1_bio->sectors; 64 struct serial_in_rdev *serial = &rdev->serial[idx]; 65 66 spin_lock_irqsave(&serial->serial_lock, flags); 67 /* collision happened */ 68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 69 ret = -EBUSY; 70 else { 71 si->start = lo; 72 si->last = hi; 73 raid1_rb_insert(si, &serial->serial_rb); 74 } 75 spin_unlock_irqrestore(&serial->serial_lock, flags); 76 77 return ret; 78 } 79 80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 81 { 82 struct mddev *mddev = rdev->mddev; 83 struct serial_info *si; 84 int idx = sector_to_idx(r1_bio->sector); 85 struct serial_in_rdev *serial = &rdev->serial[idx]; 86 87 if (WARN_ON(!mddev->serial_info_pool)) 88 return; 89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 90 wait_event(serial->serial_io_wait, 91 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 92 } 93 94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 95 { 96 struct serial_info *si; 97 unsigned long flags; 98 int found = 0; 99 struct mddev *mddev = rdev->mddev; 100 int idx = sector_to_idx(lo); 101 struct serial_in_rdev *serial = &rdev->serial[idx]; 102 103 spin_lock_irqsave(&serial->serial_lock, flags); 104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 105 si; si = raid1_rb_iter_next(si, lo, hi)) { 106 if (si->start == lo && si->last == hi) { 107 raid1_rb_remove(si, &serial->serial_rb); 108 mempool_free(si, mddev->serial_info_pool); 109 found = 1; 110 break; 111 } 112 } 113 if (!found) 114 WARN(1, "The write IO is not recorded for serialization\n"); 115 spin_unlock_irqrestore(&serial->serial_lock, flags); 116 wake_up(&serial->serial_io_wait); 117 } 118 119 /* 120 * for resync bio, r1bio pointer can be retrieved from the per-bio 121 * 'struct resync_pages'. 122 */ 123 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 124 { 125 return get_resync_pages(bio)->raid_bio; 126 } 127 128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 129 { 130 struct pool_info *pi = data; 131 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 132 133 /* allocate a r1bio with room for raid_disks entries in the bios array */ 134 return kzalloc(size, gfp_flags); 135 } 136 137 #define RESYNC_DEPTH 32 138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 143 144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 145 { 146 struct pool_info *pi = data; 147 struct r1bio *r1_bio; 148 struct bio *bio; 149 int need_pages; 150 int j; 151 struct resync_pages *rps; 152 153 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 154 if (!r1_bio) 155 return NULL; 156 157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 158 gfp_flags); 159 if (!rps) 160 goto out_free_r1bio; 161 162 /* 163 * Allocate bios : 1 for reading, n-1 for writing 164 */ 165 for (j = pi->raid_disks ; j-- ; ) { 166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 167 if (!bio) 168 goto out_free_bio; 169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 170 r1_bio->bios[j] = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them to 174 * the first bio. 175 * If this is a user-requested check/repair, allocate 176 * RESYNC_PAGES for each bio. 177 */ 178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 179 need_pages = pi->raid_disks; 180 else 181 need_pages = 1; 182 for (j = 0; j < pi->raid_disks; j++) { 183 struct resync_pages *rp = &rps[j]; 184 185 bio = r1_bio->bios[j]; 186 187 if (j < need_pages) { 188 if (resync_alloc_pages(rp, gfp_flags)) 189 goto out_free_pages; 190 } else { 191 memcpy(rp, &rps[0], sizeof(*rp)); 192 resync_get_all_pages(rp); 193 } 194 195 rp->raid_bio = r1_bio; 196 bio->bi_private = rp; 197 } 198 199 r1_bio->master_bio = NULL; 200 201 return r1_bio; 202 203 out_free_pages: 204 while (--j >= 0) 205 resync_free_pages(&rps[j]); 206 207 out_free_bio: 208 while (++j < pi->raid_disks) { 209 bio_uninit(r1_bio->bios[j]); 210 kfree(r1_bio->bios[j]); 211 } 212 kfree(rps); 213 214 out_free_r1bio: 215 rbio_pool_free(r1_bio, data); 216 return NULL; 217 } 218 219 static void r1buf_pool_free(void *__r1_bio, void *data) 220 { 221 struct pool_info *pi = data; 222 int i; 223 struct r1bio *r1bio = __r1_bio; 224 struct resync_pages *rp = NULL; 225 226 for (i = pi->raid_disks; i--; ) { 227 rp = get_resync_pages(r1bio->bios[i]); 228 resync_free_pages(rp); 229 bio_uninit(r1bio->bios[i]); 230 kfree(r1bio->bios[i]); 231 } 232 233 /* resync pages array stored in the 1st bio's .bi_private */ 234 kfree(rp); 235 236 rbio_pool_free(r1bio, data); 237 } 238 239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 240 { 241 int i; 242 243 for (i = 0; i < conf->raid_disks * 2; i++) { 244 struct bio **bio = r1_bio->bios + i; 245 if (!BIO_SPECIAL(*bio)) 246 bio_put(*bio); 247 *bio = NULL; 248 } 249 } 250 251 static void free_r1bio(struct r1bio *r1_bio) 252 { 253 struct r1conf *conf = r1_bio->mddev->private; 254 255 put_all_bios(conf, r1_bio); 256 mempool_free(r1_bio, &conf->r1bio_pool); 257 } 258 259 static void put_buf(struct r1bio *r1_bio) 260 { 261 struct r1conf *conf = r1_bio->mddev->private; 262 sector_t sect = r1_bio->sector; 263 int i; 264 265 for (i = 0; i < conf->raid_disks * 2; i++) { 266 struct bio *bio = r1_bio->bios[i]; 267 if (bio->bi_end_io) 268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 269 } 270 271 mempool_free(r1_bio, &conf->r1buf_pool); 272 273 lower_barrier(conf, sect); 274 } 275 276 static void reschedule_retry(struct r1bio *r1_bio) 277 { 278 unsigned long flags; 279 struct mddev *mddev = r1_bio->mddev; 280 struct r1conf *conf = mddev->private; 281 int idx; 282 283 idx = sector_to_idx(r1_bio->sector); 284 spin_lock_irqsave(&conf->device_lock, flags); 285 list_add(&r1_bio->retry_list, &conf->retry_list); 286 atomic_inc(&conf->nr_queued[idx]); 287 spin_unlock_irqrestore(&conf->device_lock, flags); 288 289 wake_up(&conf->wait_barrier); 290 md_wakeup_thread(mddev->thread); 291 } 292 293 /* 294 * raid_end_bio_io() is called when we have finished servicing a mirrored 295 * operation and are ready to return a success/failure code to the buffer 296 * cache layer. 297 */ 298 static void call_bio_endio(struct r1bio *r1_bio) 299 { 300 struct bio *bio = r1_bio->master_bio; 301 302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 303 bio->bi_status = BLK_STS_IOERR; 304 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 sector_t sector = r1_bio->sector; 313 314 /* if nobody has done the final endio yet, do it now */ 315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 317 (bio_data_dir(bio) == WRITE) ? "write" : "read", 318 (unsigned long long) bio->bi_iter.bi_sector, 319 (unsigned long long) bio_end_sector(bio) - 1); 320 321 call_bio_endio(r1_bio); 322 } 323 324 free_r1bio(r1_bio); 325 /* 326 * Wake up any possible resync thread that waits for the device 327 * to go idle. All I/Os, even write-behind writes, are done. 328 */ 329 allow_barrier(conf, sector); 330 } 331 332 /* 333 * Update disk head position estimator based on IRQ completion info. 334 */ 335 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 336 { 337 struct r1conf *conf = r1_bio->mddev->private; 338 339 conf->mirrors[disk].head_position = 340 r1_bio->sector + (r1_bio->sectors); 341 } 342 343 /* 344 * Find the disk number which triggered given bio 345 */ 346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 347 { 348 int mirror; 349 struct r1conf *conf = r1_bio->mddev->private; 350 int raid_disks = conf->raid_disks; 351 352 for (mirror = 0; mirror < raid_disks * 2; mirror++) 353 if (r1_bio->bios[mirror] == bio) 354 break; 355 356 BUG_ON(mirror == raid_disks * 2); 357 update_head_pos(mirror, r1_bio); 358 359 return mirror; 360 } 361 362 static void raid1_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_status; 365 struct r1bio *r1_bio = bio->bi_private; 366 struct r1conf *conf = r1_bio->mddev->private; 367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 368 369 /* 370 * this branch is our 'one mirror IO has finished' event handler: 371 */ 372 update_head_pos(r1_bio->read_disk, r1_bio); 373 374 if (uptodate) 375 set_bit(R1BIO_Uptodate, &r1_bio->state); 376 else if (test_bit(FailFast, &rdev->flags) && 377 test_bit(R1BIO_FailFast, &r1_bio->state)) 378 /* This was a fail-fast read so we definitely 379 * want to retry */ 380 ; 381 else { 382 /* If all other devices have failed, we want to return 383 * the error upwards rather than fail the last device. 384 * Here we redefine "uptodate" to mean "Don't want to retry" 385 */ 386 unsigned long flags; 387 spin_lock_irqsave(&conf->device_lock, flags); 388 if (r1_bio->mddev->degraded == conf->raid_disks || 389 (r1_bio->mddev->degraded == conf->raid_disks-1 && 390 test_bit(In_sync, &rdev->flags))) 391 uptodate = 1; 392 spin_unlock_irqrestore(&conf->device_lock, flags); 393 } 394 395 if (uptodate) { 396 raid_end_bio_io(r1_bio); 397 rdev_dec_pending(rdev, conf->mddev); 398 } else { 399 /* 400 * oops, read error: 401 */ 402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 rdev->bdev, 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 struct mddev *mddev = r1_bio->mddev; 415 416 /* it really is the end of this request */ 417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 418 bio_free_pages(r1_bio->behind_master_bio); 419 bio_put(r1_bio->behind_master_bio); 420 r1_bio->behind_master_bio = NULL; 421 } 422 423 /* clear the bitmap if all writes complete successfully */ 424 mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors, 425 !test_bit(R1BIO_Degraded, &r1_bio->state), 426 test_bit(R1BIO_BehindIO, &r1_bio->state)); 427 md_write_end(mddev); 428 } 429 430 static void r1_bio_write_done(struct r1bio *r1_bio) 431 { 432 if (!atomic_dec_and_test(&r1_bio->remaining)) 433 return; 434 435 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else { 438 close_write(r1_bio); 439 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 440 reschedule_retry(r1_bio); 441 else 442 raid_end_bio_io(r1_bio); 443 } 444 } 445 446 static void raid1_end_write_request(struct bio *bio) 447 { 448 struct r1bio *r1_bio = bio->bi_private; 449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 450 struct r1conf *conf = r1_bio->mddev->private; 451 struct bio *to_put = NULL; 452 int mirror = find_bio_disk(r1_bio, bio); 453 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 454 bool discard_error; 455 sector_t lo = r1_bio->sector; 456 sector_t hi = r1_bio->sector + r1_bio->sectors; 457 458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 459 460 /* 461 * 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_status && !discard_error) { 464 set_bit(WriteErrorSeen, &rdev->flags); 465 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 466 set_bit(MD_RECOVERY_NEEDED, & 467 conf->mddev->recovery); 468 469 if (test_bit(FailFast, &rdev->flags) && 470 (bio->bi_opf & MD_FAILFAST) && 471 /* We never try FailFast to WriteMostly devices */ 472 !test_bit(WriteMostly, &rdev->flags)) { 473 md_error(r1_bio->mddev, rdev); 474 } 475 476 /* 477 * When the device is faulty, it is not necessary to 478 * handle write error. 479 */ 480 if (!test_bit(Faulty, &rdev->flags)) 481 set_bit(R1BIO_WriteError, &r1_bio->state); 482 else { 483 /* Fail the request */ 484 set_bit(R1BIO_Degraded, &r1_bio->state); 485 /* Finished with this branch */ 486 r1_bio->bios[mirror] = NULL; 487 to_put = bio; 488 } 489 } else { 490 /* 491 * Set R1BIO_Uptodate in our master bio, so that we 492 * will return a good error code for to the higher 493 * levels even if IO on some other mirrored buffer 494 * fails. 495 * 496 * The 'master' represents the composite IO operation 497 * to user-side. So if something waits for IO, then it 498 * will wait for the 'master' bio. 499 */ 500 r1_bio->bios[mirror] = NULL; 501 to_put = bio; 502 /* 503 * Do not set R1BIO_Uptodate if the current device is 504 * rebuilding or Faulty. This is because we cannot use 505 * such device for properly reading the data back (we could 506 * potentially use it, if the current write would have felt 507 * before rdev->recovery_offset, but for simplicity we don't 508 * check this here. 509 */ 510 if (test_bit(In_sync, &rdev->flags) && 511 !test_bit(Faulty, &rdev->flags)) 512 set_bit(R1BIO_Uptodate, &r1_bio->state); 513 514 /* Maybe we can clear some bad blocks. */ 515 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 516 !discard_error) { 517 r1_bio->bios[mirror] = IO_MADE_GOOD; 518 set_bit(R1BIO_MadeGood, &r1_bio->state); 519 } 520 } 521 522 if (behind) { 523 if (test_bit(CollisionCheck, &rdev->flags)) 524 remove_serial(rdev, lo, hi); 525 if (test_bit(WriteMostly, &rdev->flags)) 526 atomic_dec(&r1_bio->behind_remaining); 527 528 /* 529 * In behind mode, we ACK the master bio once the I/O 530 * has safely reached all non-writemostly 531 * disks. Setting the Returned bit ensures that this 532 * gets done only once -- we don't ever want to return 533 * -EIO here, instead we'll wait 534 */ 535 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 536 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 537 /* Maybe we can return now */ 538 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 539 struct bio *mbio = r1_bio->master_bio; 540 pr_debug("raid1: behind end write sectors" 541 " %llu-%llu\n", 542 (unsigned long long) mbio->bi_iter.bi_sector, 543 (unsigned long long) bio_end_sector(mbio) - 1); 544 call_bio_endio(r1_bio); 545 } 546 } 547 } else if (rdev->mddev->serialize_policy) 548 remove_serial(rdev, lo, hi); 549 if (r1_bio->bios[mirror] == NULL) 550 rdev_dec_pending(rdev, conf->mddev); 551 552 /* 553 * Let's see if all mirrored write operations have finished 554 * already. 555 */ 556 r1_bio_write_done(r1_bio); 557 558 if (to_put) 559 bio_put(to_put); 560 } 561 562 static sector_t align_to_barrier_unit_end(sector_t start_sector, 563 sector_t sectors) 564 { 565 sector_t len; 566 567 WARN_ON(sectors == 0); 568 /* 569 * len is the number of sectors from start_sector to end of the 570 * barrier unit which start_sector belongs to. 571 */ 572 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 573 start_sector; 574 575 if (len > sectors) 576 len = sectors; 577 578 return len; 579 } 580 581 static void update_read_sectors(struct r1conf *conf, int disk, 582 sector_t this_sector, int len) 583 { 584 struct raid1_info *info = &conf->mirrors[disk]; 585 586 atomic_inc(&info->rdev->nr_pending); 587 if (info->next_seq_sect != this_sector) 588 info->seq_start = this_sector; 589 info->next_seq_sect = this_sector + len; 590 } 591 592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 593 int *max_sectors) 594 { 595 sector_t this_sector = r1_bio->sector; 596 int len = r1_bio->sectors; 597 int disk; 598 599 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 600 struct md_rdev *rdev; 601 int read_len; 602 603 if (r1_bio->bios[disk] == IO_BLOCKED) 604 continue; 605 606 rdev = conf->mirrors[disk].rdev; 607 if (!rdev || test_bit(Faulty, &rdev->flags)) 608 continue; 609 610 /* choose the first disk even if it has some bad blocks. */ 611 read_len = raid1_check_read_range(rdev, this_sector, &len); 612 if (read_len > 0) { 613 update_read_sectors(conf, disk, this_sector, read_len); 614 *max_sectors = read_len; 615 return disk; 616 } 617 } 618 619 return -1; 620 } 621 622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) 623 { 624 return !test_bit(In_sync, &rdev->flags) && 625 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; 626 } 627 628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 629 int *max_sectors) 630 { 631 sector_t this_sector = r1_bio->sector; 632 int best_disk = -1; 633 int best_len = 0; 634 int disk; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 struct md_rdev *rdev; 638 int len; 639 int read_len; 640 641 if (r1_bio->bios[disk] == IO_BLOCKED) 642 continue; 643 644 rdev = conf->mirrors[disk].rdev; 645 if (!rdev || test_bit(Faulty, &rdev->flags) || 646 rdev_in_recovery(rdev, r1_bio) || 647 test_bit(WriteMostly, &rdev->flags)) 648 continue; 649 650 /* keep track of the disk with the most readable sectors. */ 651 len = r1_bio->sectors; 652 read_len = raid1_check_read_range(rdev, this_sector, &len); 653 if (read_len > best_len) { 654 best_disk = disk; 655 best_len = read_len; 656 } 657 } 658 659 if (best_disk != -1) { 660 *max_sectors = best_len; 661 update_read_sectors(conf, best_disk, this_sector, best_len); 662 } 663 664 return best_disk; 665 } 666 667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 668 int *max_sectors) 669 { 670 sector_t this_sector = r1_bio->sector; 671 int bb_disk = -1; 672 int bb_read_len = 0; 673 int disk; 674 675 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 676 struct md_rdev *rdev; 677 int len; 678 int read_len; 679 680 if (r1_bio->bios[disk] == IO_BLOCKED) 681 continue; 682 683 rdev = conf->mirrors[disk].rdev; 684 if (!rdev || test_bit(Faulty, &rdev->flags) || 685 !test_bit(WriteMostly, &rdev->flags) || 686 rdev_in_recovery(rdev, r1_bio)) 687 continue; 688 689 /* there are no bad blocks, we can use this disk */ 690 len = r1_bio->sectors; 691 read_len = raid1_check_read_range(rdev, this_sector, &len); 692 if (read_len == r1_bio->sectors) { 693 *max_sectors = read_len; 694 update_read_sectors(conf, disk, this_sector, read_len); 695 return disk; 696 } 697 698 /* 699 * there are partial bad blocks, choose the rdev with largest 700 * read length. 701 */ 702 if (read_len > bb_read_len) { 703 bb_disk = disk; 704 bb_read_len = read_len; 705 } 706 } 707 708 if (bb_disk != -1) { 709 *max_sectors = bb_read_len; 710 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 711 } 712 713 return bb_disk; 714 } 715 716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 717 { 718 /* TODO: address issues with this check and concurrency. */ 719 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 720 conf->mirrors[disk].head_position == r1_bio->sector; 721 } 722 723 /* 724 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 725 * disk. If yes, choose the idle disk. 726 */ 727 static bool should_choose_next(struct r1conf *conf, int disk) 728 { 729 struct raid1_info *mirror = &conf->mirrors[disk]; 730 int opt_iosize; 731 732 if (!test_bit(Nonrot, &mirror->rdev->flags)) 733 return false; 734 735 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 736 return opt_iosize > 0 && mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 739 } 740 741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 742 { 743 if (!rdev || test_bit(Faulty, &rdev->flags)) 744 return false; 745 746 if (rdev_in_recovery(rdev, r1_bio)) 747 return false; 748 749 /* don't read from slow disk unless have to */ 750 if (test_bit(WriteMostly, &rdev->flags)) 751 return false; 752 753 /* don't split IO for bad blocks unless have to */ 754 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 755 return false; 756 757 return true; 758 } 759 760 struct read_balance_ctl { 761 sector_t closest_dist; 762 int closest_dist_disk; 763 int min_pending; 764 int min_pending_disk; 765 int sequential_disk; 766 int readable_disks; 767 }; 768 769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 770 { 771 int disk; 772 struct read_balance_ctl ctl = { 773 .closest_dist_disk = -1, 774 .closest_dist = MaxSector, 775 .min_pending_disk = -1, 776 .min_pending = UINT_MAX, 777 .sequential_disk = -1, 778 }; 779 780 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 781 struct md_rdev *rdev; 782 sector_t dist; 783 unsigned int pending; 784 785 if (r1_bio->bios[disk] == IO_BLOCKED) 786 continue; 787 788 rdev = conf->mirrors[disk].rdev; 789 if (!rdev_readable(rdev, r1_bio)) 790 continue; 791 792 /* At least two disks to choose from so failfast is OK */ 793 if (ctl.readable_disks++ == 1) 794 set_bit(R1BIO_FailFast, &r1_bio->state); 795 796 pending = atomic_read(&rdev->nr_pending); 797 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 798 799 /* Don't change to another disk for sequential reads */ 800 if (is_sequential(conf, disk, r1_bio)) { 801 if (!should_choose_next(conf, disk)) 802 return disk; 803 804 /* 805 * Add 'pending' to avoid choosing this disk if 806 * there is other idle disk. 807 */ 808 pending++; 809 /* 810 * If there is no other idle disk, this disk 811 * will be chosen. 812 */ 813 ctl.sequential_disk = disk; 814 } 815 816 if (ctl.min_pending > pending) { 817 ctl.min_pending = pending; 818 ctl.min_pending_disk = disk; 819 } 820 821 if (ctl.closest_dist > dist) { 822 ctl.closest_dist = dist; 823 ctl.closest_dist_disk = disk; 824 } 825 } 826 827 /* 828 * sequential IO size exceeds optimal iosize, however, there is no other 829 * idle disk, so choose the sequential disk. 830 */ 831 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 832 return ctl.sequential_disk; 833 834 /* 835 * If all disks are rotational, choose the closest disk. If any disk is 836 * non-rotational, choose the disk with less pending request even the 837 * disk is rotational, which might/might not be optimal for raids with 838 * mixed ratation/non-rotational disks depending on workload. 839 */ 840 if (ctl.min_pending_disk != -1 && 841 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 842 return ctl.min_pending_disk; 843 else 844 return ctl.closest_dist_disk; 845 } 846 847 /* 848 * This routine returns the disk from which the requested read should be done. 849 * 850 * 1) If resync is in progress, find the first usable disk and use it even if it 851 * has some bad blocks. 852 * 853 * 2) Now that there is no resync, loop through all disks and skipping slow 854 * disks and disks with bad blocks for now. Only pay attention to key disk 855 * choice. 856 * 857 * 3) If we've made it this far, now look for disks with bad blocks and choose 858 * the one with most number of sectors. 859 * 860 * 4) If we are all the way at the end, we have no choice but to use a disk even 861 * if it is write mostly. 862 * 863 * The rdev for the device selected will have nr_pending incremented. 864 */ 865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 866 int *max_sectors) 867 { 868 int disk; 869 870 clear_bit(R1BIO_FailFast, &r1_bio->state); 871 872 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 873 r1_bio->sectors)) 874 return choose_first_rdev(conf, r1_bio, max_sectors); 875 876 disk = choose_best_rdev(conf, r1_bio); 877 if (disk >= 0) { 878 *max_sectors = r1_bio->sectors; 879 update_read_sectors(conf, disk, r1_bio->sector, 880 r1_bio->sectors); 881 return disk; 882 } 883 884 /* 885 * If we are here it means we didn't find a perfectly good disk so 886 * now spend a bit more time trying to find one with the most good 887 * sectors. 888 */ 889 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 890 if (disk >= 0) 891 return disk; 892 893 return choose_slow_rdev(conf, r1_bio, max_sectors); 894 } 895 896 static void wake_up_barrier(struct r1conf *conf) 897 { 898 if (wq_has_sleeper(&conf->wait_barrier)) 899 wake_up(&conf->wait_barrier); 900 } 901 902 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 903 { 904 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 905 raid1_prepare_flush_writes(conf->mddev); 906 wake_up_barrier(conf); 907 908 while (bio) { /* submit pending writes */ 909 struct bio *next = bio->bi_next; 910 911 raid1_submit_write(bio); 912 bio = next; 913 cond_resched(); 914 } 915 } 916 917 static void flush_pending_writes(struct r1conf *conf) 918 { 919 /* Any writes that have been queued but are awaiting 920 * bitmap updates get flushed here. 921 */ 922 spin_lock_irq(&conf->device_lock); 923 924 if (conf->pending_bio_list.head) { 925 struct blk_plug plug; 926 struct bio *bio; 927 928 bio = bio_list_get(&conf->pending_bio_list); 929 spin_unlock_irq(&conf->device_lock); 930 931 /* 932 * As this is called in a wait_event() loop (see freeze_array), 933 * current->state might be TASK_UNINTERRUPTIBLE which will 934 * cause a warning when we prepare to wait again. As it is 935 * rare that this path is taken, it is perfectly safe to force 936 * us to go around the wait_event() loop again, so the warning 937 * is a false-positive. Silence the warning by resetting 938 * thread state 939 */ 940 __set_current_state(TASK_RUNNING); 941 blk_start_plug(&plug); 942 flush_bio_list(conf, bio); 943 blk_finish_plug(&plug); 944 } else 945 spin_unlock_irq(&conf->device_lock); 946 } 947 948 /* Barriers.... 949 * Sometimes we need to suspend IO while we do something else, 950 * either some resync/recovery, or reconfigure the array. 951 * To do this we raise a 'barrier'. 952 * The 'barrier' is a counter that can be raised multiple times 953 * to count how many activities are happening which preclude 954 * normal IO. 955 * We can only raise the barrier if there is no pending IO. 956 * i.e. if nr_pending == 0. 957 * We choose only to raise the barrier if no-one is waiting for the 958 * barrier to go down. This means that as soon as an IO request 959 * is ready, no other operations which require a barrier will start 960 * until the IO request has had a chance. 961 * 962 * So: regular IO calls 'wait_barrier'. When that returns there 963 * is no backgroup IO happening, It must arrange to call 964 * allow_barrier when it has finished its IO. 965 * backgroup IO calls must call raise_barrier. Once that returns 966 * there is no normal IO happeing. It must arrange to call 967 * lower_barrier when the particular background IO completes. 968 * 969 * If resync/recovery is interrupted, returns -EINTR; 970 * Otherwise, returns 0. 971 */ 972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 973 { 974 int idx = sector_to_idx(sector_nr); 975 976 spin_lock_irq(&conf->resync_lock); 977 978 /* Wait until no block IO is waiting */ 979 wait_event_lock_irq(conf->wait_barrier, 980 !atomic_read(&conf->nr_waiting[idx]), 981 conf->resync_lock); 982 983 /* block any new IO from starting */ 984 atomic_inc(&conf->barrier[idx]); 985 /* 986 * In raise_barrier() we firstly increase conf->barrier[idx] then 987 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 988 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 989 * A memory barrier here to make sure conf->nr_pending[idx] won't 990 * be fetched before conf->barrier[idx] is increased. Otherwise 991 * there will be a race between raise_barrier() and _wait_barrier(). 992 */ 993 smp_mb__after_atomic(); 994 995 /* For these conditions we must wait: 996 * A: while the array is in frozen state 997 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 998 * existing in corresponding I/O barrier bucket. 999 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 1000 * max resync count which allowed on current I/O barrier bucket. 1001 */ 1002 wait_event_lock_irq(conf->wait_barrier, 1003 (!conf->array_frozen && 1004 !atomic_read(&conf->nr_pending[idx]) && 1005 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 1006 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 1007 conf->resync_lock); 1008 1009 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1010 atomic_dec(&conf->barrier[idx]); 1011 spin_unlock_irq(&conf->resync_lock); 1012 wake_up(&conf->wait_barrier); 1013 return -EINTR; 1014 } 1015 1016 atomic_inc(&conf->nr_sync_pending); 1017 spin_unlock_irq(&conf->resync_lock); 1018 1019 return 0; 1020 } 1021 1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1023 { 1024 int idx = sector_to_idx(sector_nr); 1025 1026 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1027 1028 atomic_dec(&conf->barrier[idx]); 1029 atomic_dec(&conf->nr_sync_pending); 1030 wake_up(&conf->wait_barrier); 1031 } 1032 1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1034 { 1035 bool ret = true; 1036 1037 /* 1038 * We need to increase conf->nr_pending[idx] very early here, 1039 * then raise_barrier() can be blocked when it waits for 1040 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1041 * conf->resync_lock when there is no barrier raised in same 1042 * barrier unit bucket. Also if the array is frozen, I/O 1043 * should be blocked until array is unfrozen. 1044 */ 1045 atomic_inc(&conf->nr_pending[idx]); 1046 /* 1047 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1048 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1049 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1050 * barrier is necessary here to make sure conf->barrier[idx] won't be 1051 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1052 * will be a race between _wait_barrier() and raise_barrier(). 1053 */ 1054 smp_mb__after_atomic(); 1055 1056 /* 1057 * Don't worry about checking two atomic_t variables at same time 1058 * here. If during we check conf->barrier[idx], the array is 1059 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1060 * 0, it is safe to return and make the I/O continue. Because the 1061 * array is frozen, all I/O returned here will eventually complete 1062 * or be queued, no race will happen. See code comment in 1063 * frozen_array(). 1064 */ 1065 if (!READ_ONCE(conf->array_frozen) && 1066 !atomic_read(&conf->barrier[idx])) 1067 return ret; 1068 1069 /* 1070 * After holding conf->resync_lock, conf->nr_pending[idx] 1071 * should be decreased before waiting for barrier to drop. 1072 * Otherwise, we may encounter a race condition because 1073 * raise_barrer() might be waiting for conf->nr_pending[idx] 1074 * to be 0 at same time. 1075 */ 1076 spin_lock_irq(&conf->resync_lock); 1077 atomic_inc(&conf->nr_waiting[idx]); 1078 atomic_dec(&conf->nr_pending[idx]); 1079 /* 1080 * In case freeze_array() is waiting for 1081 * get_unqueued_pending() == extra 1082 */ 1083 wake_up_barrier(conf); 1084 /* Wait for the barrier in same barrier unit bucket to drop. */ 1085 1086 /* Return false when nowait flag is set */ 1087 if (nowait) { 1088 ret = false; 1089 } else { 1090 wait_event_lock_irq(conf->wait_barrier, 1091 !conf->array_frozen && 1092 !atomic_read(&conf->barrier[idx]), 1093 conf->resync_lock); 1094 atomic_inc(&conf->nr_pending[idx]); 1095 } 1096 1097 atomic_dec(&conf->nr_waiting[idx]); 1098 spin_unlock_irq(&conf->resync_lock); 1099 return ret; 1100 } 1101 1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1103 { 1104 int idx = sector_to_idx(sector_nr); 1105 bool ret = true; 1106 1107 /* 1108 * Very similar to _wait_barrier(). The difference is, for read 1109 * I/O we don't need wait for sync I/O, but if the whole array 1110 * is frozen, the read I/O still has to wait until the array is 1111 * unfrozen. Since there is no ordering requirement with 1112 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1113 */ 1114 atomic_inc(&conf->nr_pending[idx]); 1115 1116 if (!READ_ONCE(conf->array_frozen)) 1117 return ret; 1118 1119 spin_lock_irq(&conf->resync_lock); 1120 atomic_inc(&conf->nr_waiting[idx]); 1121 atomic_dec(&conf->nr_pending[idx]); 1122 /* 1123 * In case freeze_array() is waiting for 1124 * get_unqueued_pending() == extra 1125 */ 1126 wake_up_barrier(conf); 1127 /* Wait for array to be unfrozen */ 1128 1129 /* Return false when nowait flag is set */ 1130 if (nowait) { 1131 /* Return false when nowait flag is set */ 1132 ret = false; 1133 } else { 1134 wait_event_lock_irq(conf->wait_barrier, 1135 !conf->array_frozen, 1136 conf->resync_lock); 1137 atomic_inc(&conf->nr_pending[idx]); 1138 } 1139 1140 atomic_dec(&conf->nr_waiting[idx]); 1141 spin_unlock_irq(&conf->resync_lock); 1142 return ret; 1143 } 1144 1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1146 { 1147 int idx = sector_to_idx(sector_nr); 1148 1149 return _wait_barrier(conf, idx, nowait); 1150 } 1151 1152 static void _allow_barrier(struct r1conf *conf, int idx) 1153 { 1154 atomic_dec(&conf->nr_pending[idx]); 1155 wake_up_barrier(conf); 1156 } 1157 1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1159 { 1160 int idx = sector_to_idx(sector_nr); 1161 1162 _allow_barrier(conf, idx); 1163 } 1164 1165 /* conf->resync_lock should be held */ 1166 static int get_unqueued_pending(struct r1conf *conf) 1167 { 1168 int idx, ret; 1169 1170 ret = atomic_read(&conf->nr_sync_pending); 1171 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1172 ret += atomic_read(&conf->nr_pending[idx]) - 1173 atomic_read(&conf->nr_queued[idx]); 1174 1175 return ret; 1176 } 1177 1178 static void freeze_array(struct r1conf *conf, int extra) 1179 { 1180 /* Stop sync I/O and normal I/O and wait for everything to 1181 * go quiet. 1182 * This is called in two situations: 1183 * 1) management command handlers (reshape, remove disk, quiesce). 1184 * 2) one normal I/O request failed. 1185 1186 * After array_frozen is set to 1, new sync IO will be blocked at 1187 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1188 * or wait_read_barrier(). The flying I/Os will either complete or be 1189 * queued. When everything goes quite, there are only queued I/Os left. 1190 1191 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1192 * barrier bucket index which this I/O request hits. When all sync and 1193 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1194 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1195 * in handle_read_error(), we may call freeze_array() before trying to 1196 * fix the read error. In this case, the error read I/O is not queued, 1197 * so get_unqueued_pending() == 1. 1198 * 1199 * Therefore before this function returns, we need to wait until 1200 * get_unqueued_pendings(conf) gets equal to extra. For 1201 * normal I/O context, extra is 1, in rested situations extra is 0. 1202 */ 1203 spin_lock_irq(&conf->resync_lock); 1204 conf->array_frozen = 1; 1205 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1206 wait_event_lock_irq_cmd( 1207 conf->wait_barrier, 1208 get_unqueued_pending(conf) == extra, 1209 conf->resync_lock, 1210 flush_pending_writes(conf)); 1211 spin_unlock_irq(&conf->resync_lock); 1212 } 1213 static void unfreeze_array(struct r1conf *conf) 1214 { 1215 /* reverse the effect of the freeze */ 1216 spin_lock_irq(&conf->resync_lock); 1217 conf->array_frozen = 0; 1218 spin_unlock_irq(&conf->resync_lock); 1219 wake_up(&conf->wait_barrier); 1220 } 1221 1222 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1223 struct bio *bio) 1224 { 1225 int size = bio->bi_iter.bi_size; 1226 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1227 int i = 0; 1228 struct bio *behind_bio = NULL; 1229 1230 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1231 &r1_bio->mddev->bio_set); 1232 1233 /* discard op, we don't support writezero/writesame yet */ 1234 if (!bio_has_data(bio)) { 1235 behind_bio->bi_iter.bi_size = size; 1236 goto skip_copy; 1237 } 1238 1239 while (i < vcnt && size) { 1240 struct page *page; 1241 int len = min_t(int, PAGE_SIZE, size); 1242 1243 page = alloc_page(GFP_NOIO); 1244 if (unlikely(!page)) 1245 goto free_pages; 1246 1247 if (!bio_add_page(behind_bio, page, len, 0)) { 1248 put_page(page); 1249 goto free_pages; 1250 } 1251 1252 size -= len; 1253 i++; 1254 } 1255 1256 bio_copy_data(behind_bio, bio); 1257 skip_copy: 1258 r1_bio->behind_master_bio = behind_bio; 1259 set_bit(R1BIO_BehindIO, &r1_bio->state); 1260 1261 return; 1262 1263 free_pages: 1264 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1265 bio->bi_iter.bi_size); 1266 bio_free_pages(behind_bio); 1267 bio_put(behind_bio); 1268 } 1269 1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1271 { 1272 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1273 cb); 1274 struct mddev *mddev = plug->cb.data; 1275 struct r1conf *conf = mddev->private; 1276 struct bio *bio; 1277 1278 if (from_schedule) { 1279 spin_lock_irq(&conf->device_lock); 1280 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1281 spin_unlock_irq(&conf->device_lock); 1282 wake_up_barrier(conf); 1283 md_wakeup_thread(mddev->thread); 1284 kfree(plug); 1285 return; 1286 } 1287 1288 /* we aren't scheduling, so we can do the write-out directly. */ 1289 bio = bio_list_get(&plug->pending); 1290 flush_bio_list(conf, bio); 1291 kfree(plug); 1292 } 1293 1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1295 { 1296 r1_bio->master_bio = bio; 1297 r1_bio->sectors = bio_sectors(bio); 1298 r1_bio->state = 0; 1299 r1_bio->mddev = mddev; 1300 r1_bio->sector = bio->bi_iter.bi_sector; 1301 } 1302 1303 static inline struct r1bio * 1304 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1305 { 1306 struct r1conf *conf = mddev->private; 1307 struct r1bio *r1_bio; 1308 1309 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1310 /* Ensure no bio records IO_BLOCKED */ 1311 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1312 init_r1bio(r1_bio, mddev, bio); 1313 return r1_bio; 1314 } 1315 1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1317 int max_read_sectors, struct r1bio *r1_bio) 1318 { 1319 struct r1conf *conf = mddev->private; 1320 struct raid1_info *mirror; 1321 struct bio *read_bio; 1322 const enum req_op op = bio_op(bio); 1323 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1324 int max_sectors; 1325 int rdisk, error; 1326 bool r1bio_existed = !!r1_bio; 1327 1328 /* 1329 * If r1_bio is set, we are blocking the raid1d thread 1330 * so there is a tiny risk of deadlock. So ask for 1331 * emergency memory if needed. 1332 */ 1333 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1334 1335 /* 1336 * Still need barrier for READ in case that whole 1337 * array is frozen. 1338 */ 1339 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1340 bio->bi_opf & REQ_NOWAIT)) { 1341 bio_wouldblock_error(bio); 1342 return; 1343 } 1344 1345 if (!r1_bio) 1346 r1_bio = alloc_r1bio(mddev, bio); 1347 else 1348 init_r1bio(r1_bio, mddev, bio); 1349 r1_bio->sectors = max_read_sectors; 1350 1351 /* 1352 * make_request() can abort the operation when read-ahead is being 1353 * used and no empty request is available. 1354 */ 1355 rdisk = read_balance(conf, r1_bio, &max_sectors); 1356 if (rdisk < 0) { 1357 /* couldn't find anywhere to read from */ 1358 if (r1bio_existed) 1359 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 1360 mdname(mddev), 1361 conf->mirrors[r1_bio->read_disk].rdev->bdev, 1362 r1_bio->sector); 1363 raid_end_bio_io(r1_bio); 1364 return; 1365 } 1366 mirror = conf->mirrors + rdisk; 1367 1368 if (r1bio_existed) 1369 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1370 mdname(mddev), 1371 (unsigned long long)r1_bio->sector, 1372 mirror->rdev->bdev); 1373 1374 if (test_bit(WriteMostly, &mirror->rdev->flags)) { 1375 /* 1376 * Reading from a write-mostly device must take care not to 1377 * over-take any writes that are 'behind' 1378 */ 1379 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1380 mddev->bitmap_ops->wait_behind_writes(mddev); 1381 } 1382 1383 if (max_sectors < bio_sectors(bio)) { 1384 struct bio *split = bio_split(bio, max_sectors, 1385 gfp, &conf->bio_split); 1386 1387 if (IS_ERR(split)) { 1388 error = PTR_ERR(split); 1389 goto err_handle; 1390 } 1391 bio_chain(split, bio); 1392 submit_bio_noacct(bio); 1393 bio = split; 1394 r1_bio->master_bio = bio; 1395 r1_bio->sectors = max_sectors; 1396 } 1397 1398 r1_bio->read_disk = rdisk; 1399 if (!r1bio_existed) { 1400 md_account_bio(mddev, &bio); 1401 r1_bio->master_bio = bio; 1402 } 1403 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1404 &mddev->bio_set); 1405 1406 r1_bio->bios[rdisk] = read_bio; 1407 1408 read_bio->bi_iter.bi_sector = r1_bio->sector + 1409 mirror->rdev->data_offset; 1410 read_bio->bi_end_io = raid1_end_read_request; 1411 read_bio->bi_opf = op | do_sync; 1412 if (test_bit(FailFast, &mirror->rdev->flags) && 1413 test_bit(R1BIO_FailFast, &r1_bio->state)) 1414 read_bio->bi_opf |= MD_FAILFAST; 1415 read_bio->bi_private = r1_bio; 1416 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1417 submit_bio_noacct(read_bio); 1418 return; 1419 1420 err_handle: 1421 atomic_dec(&mirror->rdev->nr_pending); 1422 bio->bi_status = errno_to_blk_status(error); 1423 set_bit(R1BIO_Uptodate, &r1_bio->state); 1424 raid_end_bio_io(r1_bio); 1425 } 1426 1427 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio) 1428 { 1429 struct r1conf *conf = mddev->private; 1430 int disks = conf->raid_disks * 2; 1431 int i; 1432 1433 retry: 1434 for (i = 0; i < disks; i++) { 1435 struct md_rdev *rdev = conf->mirrors[i].rdev; 1436 1437 if (!rdev) 1438 continue; 1439 1440 /* don't write here until the bad block is acknowledged */ 1441 if (test_bit(WriteErrorSeen, &rdev->flags) && 1442 rdev_has_badblock(rdev, bio->bi_iter.bi_sector, 1443 bio_sectors(bio)) < 0) 1444 set_bit(BlockedBadBlocks, &rdev->flags); 1445 1446 if (rdev_blocked(rdev)) { 1447 if (bio->bi_opf & REQ_NOWAIT) 1448 return false; 1449 1450 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked", 1451 rdev->raid_disk); 1452 atomic_inc(&rdev->nr_pending); 1453 md_wait_for_blocked_rdev(rdev, rdev->mddev); 1454 goto retry; 1455 } 1456 } 1457 1458 return true; 1459 } 1460 1461 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1462 int max_write_sectors) 1463 { 1464 struct r1conf *conf = mddev->private; 1465 struct r1bio *r1_bio; 1466 int i, disks, k, error; 1467 unsigned long flags; 1468 int first_clone; 1469 int max_sectors; 1470 bool write_behind = false; 1471 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1472 1473 if (mddev_is_clustered(mddev) && 1474 md_cluster_ops->area_resyncing(mddev, WRITE, 1475 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1476 1477 DEFINE_WAIT(w); 1478 if (bio->bi_opf & REQ_NOWAIT) { 1479 bio_wouldblock_error(bio); 1480 return; 1481 } 1482 for (;;) { 1483 prepare_to_wait(&conf->wait_barrier, 1484 &w, TASK_IDLE); 1485 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1486 bio->bi_iter.bi_sector, 1487 bio_end_sector(bio))) 1488 break; 1489 schedule(); 1490 } 1491 finish_wait(&conf->wait_barrier, &w); 1492 } 1493 1494 /* 1495 * Register the new request and wait if the reconstruction 1496 * thread has put up a bar for new requests. 1497 * Continue immediately if no resync is active currently. 1498 */ 1499 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1500 bio->bi_opf & REQ_NOWAIT)) { 1501 bio_wouldblock_error(bio); 1502 return; 1503 } 1504 1505 if (!wait_blocked_rdev(mddev, bio)) { 1506 bio_wouldblock_error(bio); 1507 return; 1508 } 1509 1510 r1_bio = alloc_r1bio(mddev, bio); 1511 r1_bio->sectors = max_write_sectors; 1512 1513 /* first select target devices under rcu_lock and 1514 * inc refcount on their rdev. Record them by setting 1515 * bios[x] to bio 1516 * If there are known/acknowledged bad blocks on any device on 1517 * which we have seen a write error, we want to avoid writing those 1518 * blocks. 1519 * This potentially requires several writes to write around 1520 * the bad blocks. Each set of writes gets it's own r1bio 1521 * with a set of bios attached. 1522 */ 1523 1524 disks = conf->raid_disks * 2; 1525 max_sectors = r1_bio->sectors; 1526 for (i = 0; i < disks; i++) { 1527 struct md_rdev *rdev = conf->mirrors[i].rdev; 1528 1529 /* 1530 * The write-behind io is only attempted on drives marked as 1531 * write-mostly, which means we could allocate write behind 1532 * bio later. 1533 */ 1534 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1535 write_behind = true; 1536 1537 r1_bio->bios[i] = NULL; 1538 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1539 if (i < conf->raid_disks) 1540 set_bit(R1BIO_Degraded, &r1_bio->state); 1541 continue; 1542 } 1543 1544 atomic_inc(&rdev->nr_pending); 1545 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1546 sector_t first_bad; 1547 int bad_sectors; 1548 int is_bad; 1549 1550 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1551 &first_bad, &bad_sectors); 1552 if (is_bad && first_bad <= r1_bio->sector) { 1553 /* Cannot write here at all */ 1554 bad_sectors -= (r1_bio->sector - first_bad); 1555 if (bad_sectors < max_sectors) 1556 /* mustn't write more than bad_sectors 1557 * to other devices yet 1558 */ 1559 max_sectors = bad_sectors; 1560 rdev_dec_pending(rdev, mddev); 1561 /* We don't set R1BIO_Degraded as that 1562 * only applies if the disk is 1563 * missing, so it might be re-added, 1564 * and we want to know to recover this 1565 * chunk. 1566 * In this case the device is here, 1567 * and the fact that this chunk is not 1568 * in-sync is recorded in the bad 1569 * block log 1570 */ 1571 continue; 1572 } 1573 if (is_bad) { 1574 int good_sectors = first_bad - r1_bio->sector; 1575 if (good_sectors < max_sectors) 1576 max_sectors = good_sectors; 1577 } 1578 } 1579 r1_bio->bios[i] = bio; 1580 } 1581 1582 /* 1583 * When using a bitmap, we may call alloc_behind_master_bio below. 1584 * alloc_behind_master_bio allocates a copy of the data payload a page 1585 * at a time and thus needs a new bio that can fit the whole payload 1586 * this bio in page sized chunks. 1587 */ 1588 if (write_behind && mddev->bitmap) 1589 max_sectors = min_t(int, max_sectors, 1590 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1591 if (max_sectors < bio_sectors(bio)) { 1592 struct bio *split = bio_split(bio, max_sectors, 1593 GFP_NOIO, &conf->bio_split); 1594 1595 if (IS_ERR(split)) { 1596 error = PTR_ERR(split); 1597 goto err_handle; 1598 } 1599 bio_chain(split, bio); 1600 submit_bio_noacct(bio); 1601 bio = split; 1602 r1_bio->master_bio = bio; 1603 r1_bio->sectors = max_sectors; 1604 } 1605 1606 md_account_bio(mddev, &bio); 1607 r1_bio->master_bio = bio; 1608 atomic_set(&r1_bio->remaining, 1); 1609 atomic_set(&r1_bio->behind_remaining, 0); 1610 1611 first_clone = 1; 1612 1613 for (i = 0; i < disks; i++) { 1614 struct bio *mbio = NULL; 1615 struct md_rdev *rdev = conf->mirrors[i].rdev; 1616 if (!r1_bio->bios[i]) 1617 continue; 1618 1619 if (first_clone) { 1620 unsigned long max_write_behind = 1621 mddev->bitmap_info.max_write_behind; 1622 struct md_bitmap_stats stats; 1623 int err; 1624 1625 /* do behind I/O ? 1626 * Not if there are too many, or cannot 1627 * allocate memory, or a reader on WriteMostly 1628 * is waiting for behind writes to flush */ 1629 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1630 if (!err && write_behind && !stats.behind_wait && 1631 stats.behind_writes < max_write_behind) 1632 alloc_behind_master_bio(r1_bio, bio); 1633 1634 mddev->bitmap_ops->startwrite( 1635 mddev, r1_bio->sector, r1_bio->sectors, 1636 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1637 first_clone = 0; 1638 } 1639 1640 if (r1_bio->behind_master_bio) { 1641 mbio = bio_alloc_clone(rdev->bdev, 1642 r1_bio->behind_master_bio, 1643 GFP_NOIO, &mddev->bio_set); 1644 if (test_bit(CollisionCheck, &rdev->flags)) 1645 wait_for_serialization(rdev, r1_bio); 1646 if (test_bit(WriteMostly, &rdev->flags)) 1647 atomic_inc(&r1_bio->behind_remaining); 1648 } else { 1649 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1650 &mddev->bio_set); 1651 1652 if (mddev->serialize_policy) 1653 wait_for_serialization(rdev, r1_bio); 1654 } 1655 1656 r1_bio->bios[i] = mbio; 1657 1658 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1659 mbio->bi_end_io = raid1_end_write_request; 1660 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1661 if (test_bit(FailFast, &rdev->flags) && 1662 !test_bit(WriteMostly, &rdev->flags) && 1663 conf->raid_disks - mddev->degraded > 1) 1664 mbio->bi_opf |= MD_FAILFAST; 1665 mbio->bi_private = r1_bio; 1666 1667 atomic_inc(&r1_bio->remaining); 1668 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1669 /* flush_pending_writes() needs access to the rdev so...*/ 1670 mbio->bi_bdev = (void *)rdev; 1671 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1672 spin_lock_irqsave(&conf->device_lock, flags); 1673 bio_list_add(&conf->pending_bio_list, mbio); 1674 spin_unlock_irqrestore(&conf->device_lock, flags); 1675 md_wakeup_thread(mddev->thread); 1676 } 1677 } 1678 1679 r1_bio_write_done(r1_bio); 1680 1681 /* In case raid1d snuck in to freeze_array */ 1682 wake_up_barrier(conf); 1683 return; 1684 err_handle: 1685 for (k = 0; k < i; k++) { 1686 if (r1_bio->bios[k]) { 1687 rdev_dec_pending(conf->mirrors[k].rdev, mddev); 1688 r1_bio->bios[k] = NULL; 1689 } 1690 } 1691 1692 bio->bi_status = errno_to_blk_status(error); 1693 set_bit(R1BIO_Uptodate, &r1_bio->state); 1694 raid_end_bio_io(r1_bio); 1695 } 1696 1697 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1698 { 1699 sector_t sectors; 1700 1701 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1702 && md_flush_request(mddev, bio)) 1703 return true; 1704 1705 /* 1706 * There is a limit to the maximum size, but 1707 * the read/write handler might find a lower limit 1708 * due to bad blocks. To avoid multiple splits, 1709 * we pass the maximum number of sectors down 1710 * and let the lower level perform the split. 1711 */ 1712 sectors = align_to_barrier_unit_end( 1713 bio->bi_iter.bi_sector, bio_sectors(bio)); 1714 1715 if (bio_data_dir(bio) == READ) 1716 raid1_read_request(mddev, bio, sectors, NULL); 1717 else { 1718 md_write_start(mddev,bio); 1719 raid1_write_request(mddev, bio, sectors); 1720 } 1721 return true; 1722 } 1723 1724 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1725 { 1726 struct r1conf *conf = mddev->private; 1727 int i; 1728 1729 lockdep_assert_held(&mddev->lock); 1730 1731 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1732 conf->raid_disks - mddev->degraded); 1733 for (i = 0; i < conf->raid_disks; i++) { 1734 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1735 1736 seq_printf(seq, "%s", 1737 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1738 } 1739 seq_printf(seq, "]"); 1740 } 1741 1742 /** 1743 * raid1_error() - RAID1 error handler. 1744 * @mddev: affected md device. 1745 * @rdev: member device to fail. 1746 * 1747 * The routine acknowledges &rdev failure and determines new @mddev state. 1748 * If it failed, then: 1749 * - &MD_BROKEN flag is set in &mddev->flags. 1750 * - recovery is disabled. 1751 * Otherwise, it must be degraded: 1752 * - recovery is interrupted. 1753 * - &mddev->degraded is bumped. 1754 * 1755 * @rdev is marked as &Faulty excluding case when array is failed and 1756 * &mddev->fail_last_dev is off. 1757 */ 1758 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1759 { 1760 struct r1conf *conf = mddev->private; 1761 unsigned long flags; 1762 1763 spin_lock_irqsave(&conf->device_lock, flags); 1764 1765 if (test_bit(In_sync, &rdev->flags) && 1766 (conf->raid_disks - mddev->degraded) == 1) { 1767 set_bit(MD_BROKEN, &mddev->flags); 1768 1769 if (!mddev->fail_last_dev) { 1770 conf->recovery_disabled = mddev->recovery_disabled; 1771 spin_unlock_irqrestore(&conf->device_lock, flags); 1772 return; 1773 } 1774 } 1775 set_bit(Blocked, &rdev->flags); 1776 if (test_and_clear_bit(In_sync, &rdev->flags)) 1777 mddev->degraded++; 1778 set_bit(Faulty, &rdev->flags); 1779 spin_unlock_irqrestore(&conf->device_lock, flags); 1780 /* 1781 * if recovery is running, make sure it aborts. 1782 */ 1783 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1784 set_mask_bits(&mddev->sb_flags, 0, 1785 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1786 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1787 "md/raid1:%s: Operation continuing on %d devices.\n", 1788 mdname(mddev), rdev->bdev, 1789 mdname(mddev), conf->raid_disks - mddev->degraded); 1790 } 1791 1792 static void print_conf(struct r1conf *conf) 1793 { 1794 int i; 1795 1796 pr_debug("RAID1 conf printout:\n"); 1797 if (!conf) { 1798 pr_debug("(!conf)\n"); 1799 return; 1800 } 1801 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1802 conf->raid_disks); 1803 1804 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1805 for (i = 0; i < conf->raid_disks; i++) { 1806 struct md_rdev *rdev = conf->mirrors[i].rdev; 1807 if (rdev) 1808 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1809 i, !test_bit(In_sync, &rdev->flags), 1810 !test_bit(Faulty, &rdev->flags), 1811 rdev->bdev); 1812 } 1813 } 1814 1815 static void close_sync(struct r1conf *conf) 1816 { 1817 int idx; 1818 1819 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1820 _wait_barrier(conf, idx, false); 1821 _allow_barrier(conf, idx); 1822 } 1823 1824 mempool_exit(&conf->r1buf_pool); 1825 } 1826 1827 static int raid1_spare_active(struct mddev *mddev) 1828 { 1829 int i; 1830 struct r1conf *conf = mddev->private; 1831 int count = 0; 1832 unsigned long flags; 1833 1834 /* 1835 * Find all failed disks within the RAID1 configuration 1836 * and mark them readable. 1837 * Called under mddev lock, so rcu protection not needed. 1838 * device_lock used to avoid races with raid1_end_read_request 1839 * which expects 'In_sync' flags and ->degraded to be consistent. 1840 */ 1841 spin_lock_irqsave(&conf->device_lock, flags); 1842 for (i = 0; i < conf->raid_disks; i++) { 1843 struct md_rdev *rdev = conf->mirrors[i].rdev; 1844 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1845 if (repl 1846 && !test_bit(Candidate, &repl->flags) 1847 && repl->recovery_offset == MaxSector 1848 && !test_bit(Faulty, &repl->flags) 1849 && !test_and_set_bit(In_sync, &repl->flags)) { 1850 /* replacement has just become active */ 1851 if (!rdev || 1852 !test_and_clear_bit(In_sync, &rdev->flags)) 1853 count++; 1854 if (rdev) { 1855 /* Replaced device not technically 1856 * faulty, but we need to be sure 1857 * it gets removed and never re-added 1858 */ 1859 set_bit(Faulty, &rdev->flags); 1860 sysfs_notify_dirent_safe( 1861 rdev->sysfs_state); 1862 } 1863 } 1864 if (rdev 1865 && rdev->recovery_offset == MaxSector 1866 && !test_bit(Faulty, &rdev->flags) 1867 && !test_and_set_bit(In_sync, &rdev->flags)) { 1868 count++; 1869 sysfs_notify_dirent_safe(rdev->sysfs_state); 1870 } 1871 } 1872 mddev->degraded -= count; 1873 spin_unlock_irqrestore(&conf->device_lock, flags); 1874 1875 print_conf(conf); 1876 return count; 1877 } 1878 1879 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1880 bool replacement) 1881 { 1882 struct raid1_info *info = conf->mirrors + disk; 1883 1884 if (replacement) 1885 info += conf->raid_disks; 1886 1887 if (info->rdev) 1888 return false; 1889 1890 if (bdev_nonrot(rdev->bdev)) { 1891 set_bit(Nonrot, &rdev->flags); 1892 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1893 } 1894 1895 rdev->raid_disk = disk; 1896 info->head_position = 0; 1897 info->seq_start = MaxSector; 1898 WRITE_ONCE(info->rdev, rdev); 1899 1900 return true; 1901 } 1902 1903 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1904 { 1905 struct raid1_info *info = conf->mirrors + disk; 1906 struct md_rdev *rdev = info->rdev; 1907 1908 if (!rdev || test_bit(In_sync, &rdev->flags) || 1909 atomic_read(&rdev->nr_pending)) 1910 return false; 1911 1912 /* Only remove non-faulty devices if recovery is not possible. */ 1913 if (!test_bit(Faulty, &rdev->flags) && 1914 rdev->mddev->recovery_disabled != conf->recovery_disabled && 1915 rdev->mddev->degraded < conf->raid_disks) 1916 return false; 1917 1918 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1919 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1920 1921 WRITE_ONCE(info->rdev, NULL); 1922 return true; 1923 } 1924 1925 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1926 { 1927 struct r1conf *conf = mddev->private; 1928 int err = -EEXIST; 1929 int mirror = 0, repl_slot = -1; 1930 struct raid1_info *p; 1931 int first = 0; 1932 int last = conf->raid_disks - 1; 1933 1934 if (mddev->recovery_disabled == conf->recovery_disabled) 1935 return -EBUSY; 1936 1937 if (rdev->raid_disk >= 0) 1938 first = last = rdev->raid_disk; 1939 1940 /* 1941 * find the disk ... but prefer rdev->saved_raid_disk 1942 * if possible. 1943 */ 1944 if (rdev->saved_raid_disk >= 0 && 1945 rdev->saved_raid_disk >= first && 1946 rdev->saved_raid_disk < conf->raid_disks && 1947 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1948 first = last = rdev->saved_raid_disk; 1949 1950 for (mirror = first; mirror <= last; mirror++) { 1951 p = conf->mirrors + mirror; 1952 if (!p->rdev) { 1953 err = mddev_stack_new_rdev(mddev, rdev); 1954 if (err) 1955 return err; 1956 1957 raid1_add_conf(conf, rdev, mirror, false); 1958 /* As all devices are equivalent, we don't need a full recovery 1959 * if this was recently any drive of the array 1960 */ 1961 if (rdev->saved_raid_disk < 0) 1962 conf->fullsync = 1; 1963 break; 1964 } 1965 if (test_bit(WantReplacement, &p->rdev->flags) && 1966 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1967 repl_slot = mirror; 1968 } 1969 1970 if (err && repl_slot >= 0) { 1971 /* Add this device as a replacement */ 1972 clear_bit(In_sync, &rdev->flags); 1973 set_bit(Replacement, &rdev->flags); 1974 raid1_add_conf(conf, rdev, repl_slot, true); 1975 err = 0; 1976 conf->fullsync = 1; 1977 } 1978 1979 print_conf(conf); 1980 return err; 1981 } 1982 1983 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1984 { 1985 struct r1conf *conf = mddev->private; 1986 int err = 0; 1987 int number = rdev->raid_disk; 1988 struct raid1_info *p = conf->mirrors + number; 1989 1990 if (unlikely(number >= conf->raid_disks)) 1991 goto abort; 1992 1993 if (rdev != p->rdev) { 1994 number += conf->raid_disks; 1995 p = conf->mirrors + number; 1996 } 1997 1998 print_conf(conf); 1999 if (rdev == p->rdev) { 2000 if (!raid1_remove_conf(conf, number)) { 2001 err = -EBUSY; 2002 goto abort; 2003 } 2004 2005 if (number < conf->raid_disks && 2006 conf->mirrors[conf->raid_disks + number].rdev) { 2007 /* We just removed a device that is being replaced. 2008 * Move down the replacement. We drain all IO before 2009 * doing this to avoid confusion. 2010 */ 2011 struct md_rdev *repl = 2012 conf->mirrors[conf->raid_disks + number].rdev; 2013 freeze_array(conf, 0); 2014 if (atomic_read(&repl->nr_pending)) { 2015 /* It means that some queued IO of retry_list 2016 * hold repl. Thus, we cannot set replacement 2017 * as NULL, avoiding rdev NULL pointer 2018 * dereference in sync_request_write and 2019 * handle_write_finished. 2020 */ 2021 err = -EBUSY; 2022 unfreeze_array(conf); 2023 goto abort; 2024 } 2025 clear_bit(Replacement, &repl->flags); 2026 WRITE_ONCE(p->rdev, repl); 2027 conf->mirrors[conf->raid_disks + number].rdev = NULL; 2028 unfreeze_array(conf); 2029 } 2030 2031 clear_bit(WantReplacement, &rdev->flags); 2032 err = md_integrity_register(mddev); 2033 } 2034 abort: 2035 2036 print_conf(conf); 2037 return err; 2038 } 2039 2040 static void end_sync_read(struct bio *bio) 2041 { 2042 struct r1bio *r1_bio = get_resync_r1bio(bio); 2043 2044 update_head_pos(r1_bio->read_disk, r1_bio); 2045 2046 /* 2047 * we have read a block, now it needs to be re-written, 2048 * or re-read if the read failed. 2049 * We don't do much here, just schedule handling by raid1d 2050 */ 2051 if (!bio->bi_status) 2052 set_bit(R1BIO_Uptodate, &r1_bio->state); 2053 2054 if (atomic_dec_and_test(&r1_bio->remaining)) 2055 reschedule_retry(r1_bio); 2056 } 2057 2058 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2059 { 2060 sector_t sync_blocks = 0; 2061 sector_t s = r1_bio->sector; 2062 long sectors_to_go = r1_bio->sectors; 2063 2064 /* make sure these bits don't get cleared. */ 2065 do { 2066 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks); 2067 s += sync_blocks; 2068 sectors_to_go -= sync_blocks; 2069 } while (sectors_to_go > 0); 2070 } 2071 2072 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 2073 { 2074 if (atomic_dec_and_test(&r1_bio->remaining)) { 2075 struct mddev *mddev = r1_bio->mddev; 2076 int s = r1_bio->sectors; 2077 2078 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2079 test_bit(R1BIO_WriteError, &r1_bio->state)) 2080 reschedule_retry(r1_bio); 2081 else { 2082 put_buf(r1_bio); 2083 md_done_sync(mddev, s, uptodate); 2084 } 2085 } 2086 } 2087 2088 static void end_sync_write(struct bio *bio) 2089 { 2090 int uptodate = !bio->bi_status; 2091 struct r1bio *r1_bio = get_resync_r1bio(bio); 2092 struct mddev *mddev = r1_bio->mddev; 2093 struct r1conf *conf = mddev->private; 2094 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2095 2096 if (!uptodate) { 2097 abort_sync_write(mddev, r1_bio); 2098 set_bit(WriteErrorSeen, &rdev->flags); 2099 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2100 set_bit(MD_RECOVERY_NEEDED, & 2101 mddev->recovery); 2102 set_bit(R1BIO_WriteError, &r1_bio->state); 2103 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2104 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2105 r1_bio->sector, r1_bio->sectors)) { 2106 set_bit(R1BIO_MadeGood, &r1_bio->state); 2107 } 2108 2109 put_sync_write_buf(r1_bio, uptodate); 2110 } 2111 2112 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2113 int sectors, struct page *page, blk_opf_t rw) 2114 { 2115 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2116 /* success */ 2117 return 1; 2118 if (rw == REQ_OP_WRITE) { 2119 set_bit(WriteErrorSeen, &rdev->flags); 2120 if (!test_and_set_bit(WantReplacement, 2121 &rdev->flags)) 2122 set_bit(MD_RECOVERY_NEEDED, & 2123 rdev->mddev->recovery); 2124 } 2125 /* need to record an error - either for the block or the device */ 2126 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2127 md_error(rdev->mddev, rdev); 2128 return 0; 2129 } 2130 2131 static int fix_sync_read_error(struct r1bio *r1_bio) 2132 { 2133 /* Try some synchronous reads of other devices to get 2134 * good data, much like with normal read errors. Only 2135 * read into the pages we already have so we don't 2136 * need to re-issue the read request. 2137 * We don't need to freeze the array, because being in an 2138 * active sync request, there is no normal IO, and 2139 * no overlapping syncs. 2140 * We don't need to check is_badblock() again as we 2141 * made sure that anything with a bad block in range 2142 * will have bi_end_io clear. 2143 */ 2144 struct mddev *mddev = r1_bio->mddev; 2145 struct r1conf *conf = mddev->private; 2146 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2147 struct page **pages = get_resync_pages(bio)->pages; 2148 sector_t sect = r1_bio->sector; 2149 int sectors = r1_bio->sectors; 2150 int idx = 0; 2151 struct md_rdev *rdev; 2152 2153 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2154 if (test_bit(FailFast, &rdev->flags)) { 2155 /* Don't try recovering from here - just fail it 2156 * ... unless it is the last working device of course */ 2157 md_error(mddev, rdev); 2158 if (test_bit(Faulty, &rdev->flags)) 2159 /* Don't try to read from here, but make sure 2160 * put_buf does it's thing 2161 */ 2162 bio->bi_end_io = end_sync_write; 2163 } 2164 2165 while(sectors) { 2166 int s = sectors; 2167 int d = r1_bio->read_disk; 2168 int success = 0; 2169 int start; 2170 2171 if (s > (PAGE_SIZE>>9)) 2172 s = PAGE_SIZE >> 9; 2173 do { 2174 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2175 /* No rcu protection needed here devices 2176 * can only be removed when no resync is 2177 * active, and resync is currently active 2178 */ 2179 rdev = conf->mirrors[d].rdev; 2180 if (sync_page_io(rdev, sect, s<<9, 2181 pages[idx], 2182 REQ_OP_READ, false)) { 2183 success = 1; 2184 break; 2185 } 2186 } 2187 d++; 2188 if (d == conf->raid_disks * 2) 2189 d = 0; 2190 } while (!success && d != r1_bio->read_disk); 2191 2192 if (!success) { 2193 int abort = 0; 2194 /* Cannot read from anywhere, this block is lost. 2195 * Record a bad block on each device. If that doesn't 2196 * work just disable and interrupt the recovery. 2197 * Don't fail devices as that won't really help. 2198 */ 2199 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2200 mdname(mddev), bio->bi_bdev, 2201 (unsigned long long)r1_bio->sector); 2202 for (d = 0; d < conf->raid_disks * 2; d++) { 2203 rdev = conf->mirrors[d].rdev; 2204 if (!rdev || test_bit(Faulty, &rdev->flags)) 2205 continue; 2206 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2207 abort = 1; 2208 } 2209 if (abort) { 2210 conf->recovery_disabled = 2211 mddev->recovery_disabled; 2212 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2213 md_done_sync(mddev, r1_bio->sectors, 0); 2214 put_buf(r1_bio); 2215 return 0; 2216 } 2217 /* Try next page */ 2218 sectors -= s; 2219 sect += s; 2220 idx++; 2221 continue; 2222 } 2223 2224 start = d; 2225 /* write it back and re-read */ 2226 while (d != r1_bio->read_disk) { 2227 if (d == 0) 2228 d = conf->raid_disks * 2; 2229 d--; 2230 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2231 continue; 2232 rdev = conf->mirrors[d].rdev; 2233 if (r1_sync_page_io(rdev, sect, s, 2234 pages[idx], 2235 REQ_OP_WRITE) == 0) { 2236 r1_bio->bios[d]->bi_end_io = NULL; 2237 rdev_dec_pending(rdev, mddev); 2238 } 2239 } 2240 d = start; 2241 while (d != r1_bio->read_disk) { 2242 if (d == 0) 2243 d = conf->raid_disks * 2; 2244 d--; 2245 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2246 continue; 2247 rdev = conf->mirrors[d].rdev; 2248 if (r1_sync_page_io(rdev, sect, s, 2249 pages[idx], 2250 REQ_OP_READ) != 0) 2251 atomic_add(s, &rdev->corrected_errors); 2252 } 2253 sectors -= s; 2254 sect += s; 2255 idx ++; 2256 } 2257 set_bit(R1BIO_Uptodate, &r1_bio->state); 2258 bio->bi_status = 0; 2259 return 1; 2260 } 2261 2262 static void process_checks(struct r1bio *r1_bio) 2263 { 2264 /* We have read all readable devices. If we haven't 2265 * got the block, then there is no hope left. 2266 * If we have, then we want to do a comparison 2267 * and skip the write if everything is the same. 2268 * If any blocks failed to read, then we need to 2269 * attempt an over-write 2270 */ 2271 struct mddev *mddev = r1_bio->mddev; 2272 struct r1conf *conf = mddev->private; 2273 int primary; 2274 int i; 2275 int vcnt; 2276 2277 /* Fix variable parts of all bios */ 2278 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2279 for (i = 0; i < conf->raid_disks * 2; i++) { 2280 blk_status_t status; 2281 struct bio *b = r1_bio->bios[i]; 2282 struct resync_pages *rp = get_resync_pages(b); 2283 if (b->bi_end_io != end_sync_read) 2284 continue; 2285 /* fixup the bio for reuse, but preserve errno */ 2286 status = b->bi_status; 2287 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2288 b->bi_status = status; 2289 b->bi_iter.bi_sector = r1_bio->sector + 2290 conf->mirrors[i].rdev->data_offset; 2291 b->bi_end_io = end_sync_read; 2292 rp->raid_bio = r1_bio; 2293 b->bi_private = rp; 2294 2295 /* initialize bvec table again */ 2296 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2297 } 2298 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2299 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2300 !r1_bio->bios[primary]->bi_status) { 2301 r1_bio->bios[primary]->bi_end_io = NULL; 2302 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2303 break; 2304 } 2305 r1_bio->read_disk = primary; 2306 for (i = 0; i < conf->raid_disks * 2; i++) { 2307 int j = 0; 2308 struct bio *pbio = r1_bio->bios[primary]; 2309 struct bio *sbio = r1_bio->bios[i]; 2310 blk_status_t status = sbio->bi_status; 2311 struct page **ppages = get_resync_pages(pbio)->pages; 2312 struct page **spages = get_resync_pages(sbio)->pages; 2313 struct bio_vec *bi; 2314 int page_len[RESYNC_PAGES] = { 0 }; 2315 struct bvec_iter_all iter_all; 2316 2317 if (sbio->bi_end_io != end_sync_read) 2318 continue; 2319 /* Now we can 'fixup' the error value */ 2320 sbio->bi_status = 0; 2321 2322 bio_for_each_segment_all(bi, sbio, iter_all) 2323 page_len[j++] = bi->bv_len; 2324 2325 if (!status) { 2326 for (j = vcnt; j-- ; ) { 2327 if (memcmp(page_address(ppages[j]), 2328 page_address(spages[j]), 2329 page_len[j])) 2330 break; 2331 } 2332 } else 2333 j = 0; 2334 if (j >= 0) 2335 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2336 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2337 && !status)) { 2338 /* No need to write to this device. */ 2339 sbio->bi_end_io = NULL; 2340 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2341 continue; 2342 } 2343 2344 bio_copy_data(sbio, pbio); 2345 } 2346 } 2347 2348 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2349 { 2350 struct r1conf *conf = mddev->private; 2351 int i; 2352 int disks = conf->raid_disks * 2; 2353 struct bio *wbio; 2354 2355 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2356 /* ouch - failed to read all of that. */ 2357 if (!fix_sync_read_error(r1_bio)) 2358 return; 2359 2360 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2361 process_checks(r1_bio); 2362 2363 /* 2364 * schedule writes 2365 */ 2366 atomic_set(&r1_bio->remaining, 1); 2367 for (i = 0; i < disks ; i++) { 2368 wbio = r1_bio->bios[i]; 2369 if (wbio->bi_end_io == NULL || 2370 (wbio->bi_end_io == end_sync_read && 2371 (i == r1_bio->read_disk || 2372 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2373 continue; 2374 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2375 abort_sync_write(mddev, r1_bio); 2376 continue; 2377 } 2378 2379 wbio->bi_opf = REQ_OP_WRITE; 2380 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2381 wbio->bi_opf |= MD_FAILFAST; 2382 2383 wbio->bi_end_io = end_sync_write; 2384 atomic_inc(&r1_bio->remaining); 2385 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2386 2387 submit_bio_noacct(wbio); 2388 } 2389 2390 put_sync_write_buf(r1_bio, 1); 2391 } 2392 2393 /* 2394 * This is a kernel thread which: 2395 * 2396 * 1. Retries failed read operations on working mirrors. 2397 * 2. Updates the raid superblock when problems encounter. 2398 * 3. Performs writes following reads for array synchronising. 2399 */ 2400 2401 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2402 { 2403 sector_t sect = r1_bio->sector; 2404 int sectors = r1_bio->sectors; 2405 int read_disk = r1_bio->read_disk; 2406 struct mddev *mddev = conf->mddev; 2407 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2408 2409 if (exceed_read_errors(mddev, rdev)) { 2410 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2411 return; 2412 } 2413 2414 while(sectors) { 2415 int s = sectors; 2416 int d = read_disk; 2417 int success = 0; 2418 int start; 2419 2420 if (s > (PAGE_SIZE>>9)) 2421 s = PAGE_SIZE >> 9; 2422 2423 do { 2424 rdev = conf->mirrors[d].rdev; 2425 if (rdev && 2426 (test_bit(In_sync, &rdev->flags) || 2427 (!test_bit(Faulty, &rdev->flags) && 2428 rdev->recovery_offset >= sect + s)) && 2429 rdev_has_badblock(rdev, sect, s) == 0) { 2430 atomic_inc(&rdev->nr_pending); 2431 if (sync_page_io(rdev, sect, s<<9, 2432 conf->tmppage, REQ_OP_READ, false)) 2433 success = 1; 2434 rdev_dec_pending(rdev, mddev); 2435 if (success) 2436 break; 2437 } 2438 2439 d++; 2440 if (d == conf->raid_disks * 2) 2441 d = 0; 2442 } while (d != read_disk); 2443 2444 if (!success) { 2445 /* Cannot read from anywhere - mark it bad */ 2446 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2447 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2448 md_error(mddev, rdev); 2449 break; 2450 } 2451 /* write it back and re-read */ 2452 start = d; 2453 while (d != read_disk) { 2454 if (d==0) 2455 d = conf->raid_disks * 2; 2456 d--; 2457 rdev = conf->mirrors[d].rdev; 2458 if (rdev && 2459 !test_bit(Faulty, &rdev->flags)) { 2460 atomic_inc(&rdev->nr_pending); 2461 r1_sync_page_io(rdev, sect, s, 2462 conf->tmppage, REQ_OP_WRITE); 2463 rdev_dec_pending(rdev, mddev); 2464 } 2465 } 2466 d = start; 2467 while (d != read_disk) { 2468 if (d==0) 2469 d = conf->raid_disks * 2; 2470 d--; 2471 rdev = conf->mirrors[d].rdev; 2472 if (rdev && 2473 !test_bit(Faulty, &rdev->flags)) { 2474 atomic_inc(&rdev->nr_pending); 2475 if (r1_sync_page_io(rdev, sect, s, 2476 conf->tmppage, REQ_OP_READ)) { 2477 atomic_add(s, &rdev->corrected_errors); 2478 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2479 mdname(mddev), s, 2480 (unsigned long long)(sect + 2481 rdev->data_offset), 2482 rdev->bdev); 2483 } 2484 rdev_dec_pending(rdev, mddev); 2485 } 2486 } 2487 sectors -= s; 2488 sect += s; 2489 } 2490 } 2491 2492 static int narrow_write_error(struct r1bio *r1_bio, int i) 2493 { 2494 struct mddev *mddev = r1_bio->mddev; 2495 struct r1conf *conf = mddev->private; 2496 struct md_rdev *rdev = conf->mirrors[i].rdev; 2497 2498 /* bio has the data to be written to device 'i' where 2499 * we just recently had a write error. 2500 * We repeatedly clone the bio and trim down to one block, 2501 * then try the write. Where the write fails we record 2502 * a bad block. 2503 * It is conceivable that the bio doesn't exactly align with 2504 * blocks. We must handle this somehow. 2505 * 2506 * We currently own a reference on the rdev. 2507 */ 2508 2509 int block_sectors; 2510 sector_t sector; 2511 int sectors; 2512 int sect_to_write = r1_bio->sectors; 2513 int ok = 1; 2514 2515 if (rdev->badblocks.shift < 0) 2516 return 0; 2517 2518 block_sectors = roundup(1 << rdev->badblocks.shift, 2519 bdev_logical_block_size(rdev->bdev) >> 9); 2520 sector = r1_bio->sector; 2521 sectors = ((sector + block_sectors) 2522 & ~(sector_t)(block_sectors - 1)) 2523 - sector; 2524 2525 while (sect_to_write) { 2526 struct bio *wbio; 2527 if (sectors > sect_to_write) 2528 sectors = sect_to_write; 2529 /* Write at 'sector' for 'sectors'*/ 2530 2531 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2532 wbio = bio_alloc_clone(rdev->bdev, 2533 r1_bio->behind_master_bio, 2534 GFP_NOIO, &mddev->bio_set); 2535 } else { 2536 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2537 GFP_NOIO, &mddev->bio_set); 2538 } 2539 2540 wbio->bi_opf = REQ_OP_WRITE; 2541 wbio->bi_iter.bi_sector = r1_bio->sector; 2542 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2543 2544 bio_trim(wbio, sector - r1_bio->sector, sectors); 2545 wbio->bi_iter.bi_sector += rdev->data_offset; 2546 2547 if (submit_bio_wait(wbio) < 0) 2548 /* failure! */ 2549 ok = rdev_set_badblocks(rdev, sector, 2550 sectors, 0) 2551 && ok; 2552 2553 bio_put(wbio); 2554 sect_to_write -= sectors; 2555 sector += sectors; 2556 sectors = block_sectors; 2557 } 2558 return ok; 2559 } 2560 2561 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2562 { 2563 int m; 2564 int s = r1_bio->sectors; 2565 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2566 struct md_rdev *rdev = conf->mirrors[m].rdev; 2567 struct bio *bio = r1_bio->bios[m]; 2568 if (bio->bi_end_io == NULL) 2569 continue; 2570 if (!bio->bi_status && 2571 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2572 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2573 } 2574 if (bio->bi_status && 2575 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2576 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2577 md_error(conf->mddev, rdev); 2578 } 2579 } 2580 put_buf(r1_bio); 2581 md_done_sync(conf->mddev, s, 1); 2582 } 2583 2584 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2585 { 2586 int m, idx; 2587 bool fail = false; 2588 2589 for (m = 0; m < conf->raid_disks * 2 ; m++) 2590 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2591 struct md_rdev *rdev = conf->mirrors[m].rdev; 2592 rdev_clear_badblocks(rdev, 2593 r1_bio->sector, 2594 r1_bio->sectors, 0); 2595 rdev_dec_pending(rdev, conf->mddev); 2596 } else if (r1_bio->bios[m] != NULL) { 2597 /* This drive got a write error. We need to 2598 * narrow down and record precise write 2599 * errors. 2600 */ 2601 fail = true; 2602 if (!narrow_write_error(r1_bio, m)) { 2603 md_error(conf->mddev, 2604 conf->mirrors[m].rdev); 2605 /* an I/O failed, we can't clear the bitmap */ 2606 set_bit(R1BIO_Degraded, &r1_bio->state); 2607 } 2608 rdev_dec_pending(conf->mirrors[m].rdev, 2609 conf->mddev); 2610 } 2611 if (fail) { 2612 spin_lock_irq(&conf->device_lock); 2613 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2614 idx = sector_to_idx(r1_bio->sector); 2615 atomic_inc(&conf->nr_queued[idx]); 2616 spin_unlock_irq(&conf->device_lock); 2617 /* 2618 * In case freeze_array() is waiting for condition 2619 * get_unqueued_pending() == extra to be true. 2620 */ 2621 wake_up(&conf->wait_barrier); 2622 md_wakeup_thread(conf->mddev->thread); 2623 } else { 2624 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2625 close_write(r1_bio); 2626 raid_end_bio_io(r1_bio); 2627 } 2628 } 2629 2630 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2631 { 2632 struct mddev *mddev = conf->mddev; 2633 struct bio *bio; 2634 struct md_rdev *rdev; 2635 sector_t sector; 2636 2637 clear_bit(R1BIO_ReadError, &r1_bio->state); 2638 /* we got a read error. Maybe the drive is bad. Maybe just 2639 * the block and we can fix it. 2640 * We freeze all other IO, and try reading the block from 2641 * other devices. When we find one, we re-write 2642 * and check it that fixes the read error. 2643 * This is all done synchronously while the array is 2644 * frozen 2645 */ 2646 2647 bio = r1_bio->bios[r1_bio->read_disk]; 2648 bio_put(bio); 2649 r1_bio->bios[r1_bio->read_disk] = NULL; 2650 2651 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2652 if (mddev->ro == 0 2653 && !test_bit(FailFast, &rdev->flags)) { 2654 freeze_array(conf, 1); 2655 fix_read_error(conf, r1_bio); 2656 unfreeze_array(conf); 2657 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2658 md_error(mddev, rdev); 2659 } else { 2660 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2661 } 2662 2663 rdev_dec_pending(rdev, conf->mddev); 2664 sector = r1_bio->sector; 2665 bio = r1_bio->master_bio; 2666 2667 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2668 r1_bio->state = 0; 2669 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2670 allow_barrier(conf, sector); 2671 } 2672 2673 static void raid1d(struct md_thread *thread) 2674 { 2675 struct mddev *mddev = thread->mddev; 2676 struct r1bio *r1_bio; 2677 unsigned long flags; 2678 struct r1conf *conf = mddev->private; 2679 struct list_head *head = &conf->retry_list; 2680 struct blk_plug plug; 2681 int idx; 2682 2683 md_check_recovery(mddev); 2684 2685 if (!list_empty_careful(&conf->bio_end_io_list) && 2686 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2687 LIST_HEAD(tmp); 2688 spin_lock_irqsave(&conf->device_lock, flags); 2689 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2690 list_splice_init(&conf->bio_end_io_list, &tmp); 2691 spin_unlock_irqrestore(&conf->device_lock, flags); 2692 while (!list_empty(&tmp)) { 2693 r1_bio = list_first_entry(&tmp, struct r1bio, 2694 retry_list); 2695 list_del(&r1_bio->retry_list); 2696 idx = sector_to_idx(r1_bio->sector); 2697 atomic_dec(&conf->nr_queued[idx]); 2698 if (mddev->degraded) 2699 set_bit(R1BIO_Degraded, &r1_bio->state); 2700 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2701 close_write(r1_bio); 2702 raid_end_bio_io(r1_bio); 2703 } 2704 } 2705 2706 blk_start_plug(&plug); 2707 for (;;) { 2708 2709 flush_pending_writes(conf); 2710 2711 spin_lock_irqsave(&conf->device_lock, flags); 2712 if (list_empty(head)) { 2713 spin_unlock_irqrestore(&conf->device_lock, flags); 2714 break; 2715 } 2716 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2717 list_del(head->prev); 2718 idx = sector_to_idx(r1_bio->sector); 2719 atomic_dec(&conf->nr_queued[idx]); 2720 spin_unlock_irqrestore(&conf->device_lock, flags); 2721 2722 mddev = r1_bio->mddev; 2723 conf = mddev->private; 2724 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2725 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2726 test_bit(R1BIO_WriteError, &r1_bio->state)) 2727 handle_sync_write_finished(conf, r1_bio); 2728 else 2729 sync_request_write(mddev, r1_bio); 2730 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2731 test_bit(R1BIO_WriteError, &r1_bio->state)) 2732 handle_write_finished(conf, r1_bio); 2733 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2734 handle_read_error(conf, r1_bio); 2735 else 2736 WARN_ON_ONCE(1); 2737 2738 cond_resched(); 2739 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2740 md_check_recovery(mddev); 2741 } 2742 blk_finish_plug(&plug); 2743 } 2744 2745 static int init_resync(struct r1conf *conf) 2746 { 2747 int buffs; 2748 2749 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2750 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2751 2752 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2753 r1buf_pool_free, conf->poolinfo); 2754 } 2755 2756 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2757 { 2758 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2759 struct resync_pages *rps; 2760 struct bio *bio; 2761 int i; 2762 2763 for (i = conf->poolinfo->raid_disks; i--; ) { 2764 bio = r1bio->bios[i]; 2765 rps = bio->bi_private; 2766 bio_reset(bio, NULL, 0); 2767 bio->bi_private = rps; 2768 } 2769 r1bio->master_bio = NULL; 2770 return r1bio; 2771 } 2772 2773 /* 2774 * perform a "sync" on one "block" 2775 * 2776 * We need to make sure that no normal I/O request - particularly write 2777 * requests - conflict with active sync requests. 2778 * 2779 * This is achieved by tracking pending requests and a 'barrier' concept 2780 * that can be installed to exclude normal IO requests. 2781 */ 2782 2783 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2784 sector_t max_sector, int *skipped) 2785 { 2786 struct r1conf *conf = mddev->private; 2787 struct r1bio *r1_bio; 2788 struct bio *bio; 2789 sector_t nr_sectors; 2790 int disk = -1; 2791 int i; 2792 int wonly = -1; 2793 int write_targets = 0, read_targets = 0; 2794 sector_t sync_blocks; 2795 bool still_degraded = false; 2796 int good_sectors = RESYNC_SECTORS; 2797 int min_bad = 0; /* number of sectors that are bad in all devices */ 2798 int idx = sector_to_idx(sector_nr); 2799 int page_idx = 0; 2800 2801 if (!mempool_initialized(&conf->r1buf_pool)) 2802 if (init_resync(conf)) 2803 return 0; 2804 2805 if (sector_nr >= max_sector) { 2806 /* If we aborted, we need to abort the 2807 * sync on the 'current' bitmap chunk (there will 2808 * only be one in raid1 resync. 2809 * We can find the current addess in mddev->curr_resync 2810 */ 2811 if (mddev->curr_resync < max_sector) /* aborted */ 2812 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 2813 &sync_blocks); 2814 else /* completed sync */ 2815 conf->fullsync = 0; 2816 2817 mddev->bitmap_ops->close_sync(mddev); 2818 close_sync(conf); 2819 2820 if (mddev_is_clustered(mddev)) { 2821 conf->cluster_sync_low = 0; 2822 conf->cluster_sync_high = 0; 2823 } 2824 return 0; 2825 } 2826 2827 if (mddev->bitmap == NULL && 2828 mddev->recovery_cp == MaxSector && 2829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2830 conf->fullsync == 0) { 2831 *skipped = 1; 2832 return max_sector - sector_nr; 2833 } 2834 /* before building a request, check if we can skip these blocks.. 2835 * This call the bitmap_start_sync doesn't actually record anything 2836 */ 2837 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) && 2838 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2839 /* We can skip this block, and probably several more */ 2840 *skipped = 1; 2841 return sync_blocks; 2842 } 2843 2844 /* 2845 * If there is non-resync activity waiting for a turn, then let it 2846 * though before starting on this new sync request. 2847 */ 2848 if (atomic_read(&conf->nr_waiting[idx])) 2849 schedule_timeout_uninterruptible(1); 2850 2851 /* we are incrementing sector_nr below. To be safe, we check against 2852 * sector_nr + two times RESYNC_SECTORS 2853 */ 2854 2855 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 2856 mddev_is_clustered(mddev) && 2857 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2858 2859 if (raise_barrier(conf, sector_nr)) 2860 return 0; 2861 2862 r1_bio = raid1_alloc_init_r1buf(conf); 2863 2864 /* 2865 * If we get a correctably read error during resync or recovery, 2866 * we might want to read from a different device. So we 2867 * flag all drives that could conceivably be read from for READ, 2868 * and any others (which will be non-In_sync devices) for WRITE. 2869 * If a read fails, we try reading from something else for which READ 2870 * is OK. 2871 */ 2872 2873 r1_bio->mddev = mddev; 2874 r1_bio->sector = sector_nr; 2875 r1_bio->state = 0; 2876 set_bit(R1BIO_IsSync, &r1_bio->state); 2877 /* make sure good_sectors won't go across barrier unit boundary */ 2878 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2879 2880 for (i = 0; i < conf->raid_disks * 2; i++) { 2881 struct md_rdev *rdev; 2882 bio = r1_bio->bios[i]; 2883 2884 rdev = conf->mirrors[i].rdev; 2885 if (rdev == NULL || 2886 test_bit(Faulty, &rdev->flags)) { 2887 if (i < conf->raid_disks) 2888 still_degraded = true; 2889 } else if (!test_bit(In_sync, &rdev->flags)) { 2890 bio->bi_opf = REQ_OP_WRITE; 2891 bio->bi_end_io = end_sync_write; 2892 write_targets ++; 2893 } else { 2894 /* may need to read from here */ 2895 sector_t first_bad = MaxSector; 2896 int bad_sectors; 2897 2898 if (is_badblock(rdev, sector_nr, good_sectors, 2899 &first_bad, &bad_sectors)) { 2900 if (first_bad > sector_nr) 2901 good_sectors = first_bad - sector_nr; 2902 else { 2903 bad_sectors -= (sector_nr - first_bad); 2904 if (min_bad == 0 || 2905 min_bad > bad_sectors) 2906 min_bad = bad_sectors; 2907 } 2908 } 2909 if (sector_nr < first_bad) { 2910 if (test_bit(WriteMostly, &rdev->flags)) { 2911 if (wonly < 0) 2912 wonly = i; 2913 } else { 2914 if (disk < 0) 2915 disk = i; 2916 } 2917 bio->bi_opf = REQ_OP_READ; 2918 bio->bi_end_io = end_sync_read; 2919 read_targets++; 2920 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2921 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2922 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2923 /* 2924 * The device is suitable for reading (InSync), 2925 * but has bad block(s) here. Let's try to correct them, 2926 * if we are doing resync or repair. Otherwise, leave 2927 * this device alone for this sync request. 2928 */ 2929 bio->bi_opf = REQ_OP_WRITE; 2930 bio->bi_end_io = end_sync_write; 2931 write_targets++; 2932 } 2933 } 2934 if (rdev && bio->bi_end_io) { 2935 atomic_inc(&rdev->nr_pending); 2936 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2937 bio_set_dev(bio, rdev->bdev); 2938 if (test_bit(FailFast, &rdev->flags)) 2939 bio->bi_opf |= MD_FAILFAST; 2940 } 2941 } 2942 if (disk < 0) 2943 disk = wonly; 2944 r1_bio->read_disk = disk; 2945 2946 if (read_targets == 0 && min_bad > 0) { 2947 /* These sectors are bad on all InSync devices, so we 2948 * need to mark them bad on all write targets 2949 */ 2950 int ok = 1; 2951 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2952 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2953 struct md_rdev *rdev = conf->mirrors[i].rdev; 2954 ok = rdev_set_badblocks(rdev, sector_nr, 2955 min_bad, 0 2956 ) && ok; 2957 } 2958 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2959 *skipped = 1; 2960 put_buf(r1_bio); 2961 2962 if (!ok) { 2963 /* Cannot record the badblocks, so need to 2964 * abort the resync. 2965 * If there are multiple read targets, could just 2966 * fail the really bad ones ??? 2967 */ 2968 conf->recovery_disabled = mddev->recovery_disabled; 2969 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2970 return 0; 2971 } else 2972 return min_bad; 2973 2974 } 2975 if (min_bad > 0 && min_bad < good_sectors) { 2976 /* only resync enough to reach the next bad->good 2977 * transition */ 2978 good_sectors = min_bad; 2979 } 2980 2981 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2982 /* extra read targets are also write targets */ 2983 write_targets += read_targets-1; 2984 2985 if (write_targets == 0 || read_targets == 0) { 2986 /* There is nowhere to write, so all non-sync 2987 * drives must be failed - so we are finished 2988 */ 2989 sector_t rv; 2990 if (min_bad > 0) 2991 max_sector = sector_nr + min_bad; 2992 rv = max_sector - sector_nr; 2993 *skipped = 1; 2994 put_buf(r1_bio); 2995 return rv; 2996 } 2997 2998 if (max_sector > mddev->resync_max) 2999 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 3000 if (max_sector > sector_nr + good_sectors) 3001 max_sector = sector_nr + good_sectors; 3002 nr_sectors = 0; 3003 sync_blocks = 0; 3004 do { 3005 struct page *page; 3006 int len = PAGE_SIZE; 3007 if (sector_nr + (len>>9) > max_sector) 3008 len = (max_sector - sector_nr) << 9; 3009 if (len == 0) 3010 break; 3011 if (sync_blocks == 0) { 3012 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3013 &sync_blocks, still_degraded) && 3014 !conf->fullsync && 3015 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3016 break; 3017 if ((len >> 9) > sync_blocks) 3018 len = sync_blocks<<9; 3019 } 3020 3021 for (i = 0 ; i < conf->raid_disks * 2; i++) { 3022 struct resync_pages *rp; 3023 3024 bio = r1_bio->bios[i]; 3025 rp = get_resync_pages(bio); 3026 if (bio->bi_end_io) { 3027 page = resync_fetch_page(rp, page_idx); 3028 3029 /* 3030 * won't fail because the vec table is big 3031 * enough to hold all these pages 3032 */ 3033 __bio_add_page(bio, page, len, 0); 3034 } 3035 } 3036 nr_sectors += len>>9; 3037 sector_nr += len>>9; 3038 sync_blocks -= (len>>9); 3039 } while (++page_idx < RESYNC_PAGES); 3040 3041 r1_bio->sectors = nr_sectors; 3042 3043 if (mddev_is_clustered(mddev) && 3044 conf->cluster_sync_high < sector_nr + nr_sectors) { 3045 conf->cluster_sync_low = mddev->curr_resync_completed; 3046 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3047 /* Send resync message */ 3048 md_cluster_ops->resync_info_update(mddev, 3049 conf->cluster_sync_low, 3050 conf->cluster_sync_high); 3051 } 3052 3053 /* For a user-requested sync, we read all readable devices and do a 3054 * compare 3055 */ 3056 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3057 atomic_set(&r1_bio->remaining, read_targets); 3058 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3059 bio = r1_bio->bios[i]; 3060 if (bio->bi_end_io == end_sync_read) { 3061 read_targets--; 3062 md_sync_acct_bio(bio, nr_sectors); 3063 if (read_targets == 1) 3064 bio->bi_opf &= ~MD_FAILFAST; 3065 submit_bio_noacct(bio); 3066 } 3067 } 3068 } else { 3069 atomic_set(&r1_bio->remaining, 1); 3070 bio = r1_bio->bios[r1_bio->read_disk]; 3071 md_sync_acct_bio(bio, nr_sectors); 3072 if (read_targets == 1) 3073 bio->bi_opf &= ~MD_FAILFAST; 3074 submit_bio_noacct(bio); 3075 } 3076 return nr_sectors; 3077 } 3078 3079 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3080 { 3081 if (sectors) 3082 return sectors; 3083 3084 return mddev->dev_sectors; 3085 } 3086 3087 static struct r1conf *setup_conf(struct mddev *mddev) 3088 { 3089 struct r1conf *conf; 3090 int i; 3091 struct raid1_info *disk; 3092 struct md_rdev *rdev; 3093 int err = -ENOMEM; 3094 3095 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3096 if (!conf) 3097 goto abort; 3098 3099 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3100 sizeof(atomic_t), GFP_KERNEL); 3101 if (!conf->nr_pending) 3102 goto abort; 3103 3104 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3105 sizeof(atomic_t), GFP_KERNEL); 3106 if (!conf->nr_waiting) 3107 goto abort; 3108 3109 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3110 sizeof(atomic_t), GFP_KERNEL); 3111 if (!conf->nr_queued) 3112 goto abort; 3113 3114 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3115 sizeof(atomic_t), GFP_KERNEL); 3116 if (!conf->barrier) 3117 goto abort; 3118 3119 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3120 mddev->raid_disks, 2), 3121 GFP_KERNEL); 3122 if (!conf->mirrors) 3123 goto abort; 3124 3125 conf->tmppage = alloc_page(GFP_KERNEL); 3126 if (!conf->tmppage) 3127 goto abort; 3128 3129 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3130 if (!conf->poolinfo) 3131 goto abort; 3132 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3133 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3134 rbio_pool_free, conf->poolinfo); 3135 if (err) 3136 goto abort; 3137 3138 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3139 if (err) 3140 goto abort; 3141 3142 conf->poolinfo->mddev = mddev; 3143 3144 err = -EINVAL; 3145 spin_lock_init(&conf->device_lock); 3146 conf->raid_disks = mddev->raid_disks; 3147 rdev_for_each(rdev, mddev) { 3148 int disk_idx = rdev->raid_disk; 3149 3150 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3151 continue; 3152 3153 if (!raid1_add_conf(conf, rdev, disk_idx, 3154 test_bit(Replacement, &rdev->flags))) 3155 goto abort; 3156 } 3157 conf->mddev = mddev; 3158 INIT_LIST_HEAD(&conf->retry_list); 3159 INIT_LIST_HEAD(&conf->bio_end_io_list); 3160 3161 spin_lock_init(&conf->resync_lock); 3162 init_waitqueue_head(&conf->wait_barrier); 3163 3164 bio_list_init(&conf->pending_bio_list); 3165 conf->recovery_disabled = mddev->recovery_disabled - 1; 3166 3167 err = -EIO; 3168 for (i = 0; i < conf->raid_disks * 2; i++) { 3169 3170 disk = conf->mirrors + i; 3171 3172 if (i < conf->raid_disks && 3173 disk[conf->raid_disks].rdev) { 3174 /* This slot has a replacement. */ 3175 if (!disk->rdev) { 3176 /* No original, just make the replacement 3177 * a recovering spare 3178 */ 3179 disk->rdev = 3180 disk[conf->raid_disks].rdev; 3181 disk[conf->raid_disks].rdev = NULL; 3182 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3183 /* Original is not in_sync - bad */ 3184 goto abort; 3185 } 3186 3187 if (!disk->rdev || 3188 !test_bit(In_sync, &disk->rdev->flags)) { 3189 disk->head_position = 0; 3190 if (disk->rdev && 3191 (disk->rdev->saved_raid_disk < 0)) 3192 conf->fullsync = 1; 3193 } 3194 } 3195 3196 err = -ENOMEM; 3197 rcu_assign_pointer(conf->thread, 3198 md_register_thread(raid1d, mddev, "raid1")); 3199 if (!conf->thread) 3200 goto abort; 3201 3202 return conf; 3203 3204 abort: 3205 if (conf) { 3206 mempool_exit(&conf->r1bio_pool); 3207 kfree(conf->mirrors); 3208 safe_put_page(conf->tmppage); 3209 kfree(conf->poolinfo); 3210 kfree(conf->nr_pending); 3211 kfree(conf->nr_waiting); 3212 kfree(conf->nr_queued); 3213 kfree(conf->barrier); 3214 bioset_exit(&conf->bio_split); 3215 kfree(conf); 3216 } 3217 return ERR_PTR(err); 3218 } 3219 3220 static int raid1_set_limits(struct mddev *mddev) 3221 { 3222 struct queue_limits lim; 3223 int err; 3224 3225 md_init_stacking_limits(&lim); 3226 lim.max_write_zeroes_sectors = 0; 3227 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3228 if (err) { 3229 queue_limits_cancel_update(mddev->gendisk->queue); 3230 return err; 3231 } 3232 return queue_limits_set(mddev->gendisk->queue, &lim); 3233 } 3234 3235 static int raid1_run(struct mddev *mddev) 3236 { 3237 struct r1conf *conf; 3238 int i; 3239 int ret; 3240 3241 if (mddev->level != 1) { 3242 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3243 mdname(mddev), mddev->level); 3244 return -EIO; 3245 } 3246 if (mddev->reshape_position != MaxSector) { 3247 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3248 mdname(mddev)); 3249 return -EIO; 3250 } 3251 3252 /* 3253 * copy the already verified devices into our private RAID1 3254 * bookkeeping area. [whatever we allocate in run(), 3255 * should be freed in raid1_free()] 3256 */ 3257 if (mddev->private == NULL) 3258 conf = setup_conf(mddev); 3259 else 3260 conf = mddev->private; 3261 3262 if (IS_ERR(conf)) 3263 return PTR_ERR(conf); 3264 3265 if (!mddev_is_dm(mddev)) { 3266 ret = raid1_set_limits(mddev); 3267 if (ret) 3268 return ret; 3269 } 3270 3271 mddev->degraded = 0; 3272 for (i = 0; i < conf->raid_disks; i++) 3273 if (conf->mirrors[i].rdev == NULL || 3274 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3275 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3276 mddev->degraded++; 3277 /* 3278 * RAID1 needs at least one disk in active 3279 */ 3280 if (conf->raid_disks - mddev->degraded < 1) { 3281 md_unregister_thread(mddev, &conf->thread); 3282 return -EINVAL; 3283 } 3284 3285 if (conf->raid_disks - mddev->degraded == 1) 3286 mddev->recovery_cp = MaxSector; 3287 3288 if (mddev->recovery_cp != MaxSector) 3289 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3290 mdname(mddev)); 3291 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3292 mdname(mddev), mddev->raid_disks - mddev->degraded, 3293 mddev->raid_disks); 3294 3295 /* 3296 * Ok, everything is just fine now 3297 */ 3298 rcu_assign_pointer(mddev->thread, conf->thread); 3299 rcu_assign_pointer(conf->thread, NULL); 3300 mddev->private = conf; 3301 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3302 3303 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3304 3305 ret = md_integrity_register(mddev); 3306 if (ret) 3307 md_unregister_thread(mddev, &mddev->thread); 3308 return ret; 3309 } 3310 3311 static void raid1_free(struct mddev *mddev, void *priv) 3312 { 3313 struct r1conf *conf = priv; 3314 3315 mempool_exit(&conf->r1bio_pool); 3316 kfree(conf->mirrors); 3317 safe_put_page(conf->tmppage); 3318 kfree(conf->poolinfo); 3319 kfree(conf->nr_pending); 3320 kfree(conf->nr_waiting); 3321 kfree(conf->nr_queued); 3322 kfree(conf->barrier); 3323 bioset_exit(&conf->bio_split); 3324 kfree(conf); 3325 } 3326 3327 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3328 { 3329 /* no resync is happening, and there is enough space 3330 * on all devices, so we can resize. 3331 * We need to make sure resync covers any new space. 3332 * If the array is shrinking we should possibly wait until 3333 * any io in the removed space completes, but it hardly seems 3334 * worth it. 3335 */ 3336 sector_t newsize = raid1_size(mddev, sectors, 0); 3337 int ret; 3338 3339 if (mddev->external_size && 3340 mddev->array_sectors > newsize) 3341 return -EINVAL; 3342 3343 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 3344 if (ret) 3345 return ret; 3346 3347 md_set_array_sectors(mddev, newsize); 3348 if (sectors > mddev->dev_sectors && 3349 mddev->recovery_cp > mddev->dev_sectors) { 3350 mddev->recovery_cp = mddev->dev_sectors; 3351 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3352 } 3353 mddev->dev_sectors = sectors; 3354 mddev->resync_max_sectors = sectors; 3355 return 0; 3356 } 3357 3358 static int raid1_reshape(struct mddev *mddev) 3359 { 3360 /* We need to: 3361 * 1/ resize the r1bio_pool 3362 * 2/ resize conf->mirrors 3363 * 3364 * We allocate a new r1bio_pool if we can. 3365 * Then raise a device barrier and wait until all IO stops. 3366 * Then resize conf->mirrors and swap in the new r1bio pool. 3367 * 3368 * At the same time, we "pack" the devices so that all the missing 3369 * devices have the higher raid_disk numbers. 3370 */ 3371 mempool_t newpool, oldpool; 3372 struct pool_info *newpoolinfo; 3373 struct raid1_info *newmirrors; 3374 struct r1conf *conf = mddev->private; 3375 int cnt, raid_disks; 3376 unsigned long flags; 3377 int d, d2; 3378 int ret; 3379 3380 memset(&newpool, 0, sizeof(newpool)); 3381 memset(&oldpool, 0, sizeof(oldpool)); 3382 3383 /* Cannot change chunk_size, layout, or level */ 3384 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3385 mddev->layout != mddev->new_layout || 3386 mddev->level != mddev->new_level) { 3387 mddev->new_chunk_sectors = mddev->chunk_sectors; 3388 mddev->new_layout = mddev->layout; 3389 mddev->new_level = mddev->level; 3390 return -EINVAL; 3391 } 3392 3393 if (!mddev_is_clustered(mddev)) 3394 md_allow_write(mddev); 3395 3396 raid_disks = mddev->raid_disks + mddev->delta_disks; 3397 3398 if (raid_disks < conf->raid_disks) { 3399 cnt=0; 3400 for (d= 0; d < conf->raid_disks; d++) 3401 if (conf->mirrors[d].rdev) 3402 cnt++; 3403 if (cnt > raid_disks) 3404 return -EBUSY; 3405 } 3406 3407 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3408 if (!newpoolinfo) 3409 return -ENOMEM; 3410 newpoolinfo->mddev = mddev; 3411 newpoolinfo->raid_disks = raid_disks * 2; 3412 3413 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3414 rbio_pool_free, newpoolinfo); 3415 if (ret) { 3416 kfree(newpoolinfo); 3417 return ret; 3418 } 3419 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3420 raid_disks, 2), 3421 GFP_KERNEL); 3422 if (!newmirrors) { 3423 kfree(newpoolinfo); 3424 mempool_exit(&newpool); 3425 return -ENOMEM; 3426 } 3427 3428 freeze_array(conf, 0); 3429 3430 /* ok, everything is stopped */ 3431 oldpool = conf->r1bio_pool; 3432 conf->r1bio_pool = newpool; 3433 3434 for (d = d2 = 0; d < conf->raid_disks; d++) { 3435 struct md_rdev *rdev = conf->mirrors[d].rdev; 3436 if (rdev && rdev->raid_disk != d2) { 3437 sysfs_unlink_rdev(mddev, rdev); 3438 rdev->raid_disk = d2; 3439 sysfs_unlink_rdev(mddev, rdev); 3440 if (sysfs_link_rdev(mddev, rdev)) 3441 pr_warn("md/raid1:%s: cannot register rd%d\n", 3442 mdname(mddev), rdev->raid_disk); 3443 } 3444 if (rdev) 3445 newmirrors[d2++].rdev = rdev; 3446 } 3447 kfree(conf->mirrors); 3448 conf->mirrors = newmirrors; 3449 kfree(conf->poolinfo); 3450 conf->poolinfo = newpoolinfo; 3451 3452 spin_lock_irqsave(&conf->device_lock, flags); 3453 mddev->degraded += (raid_disks - conf->raid_disks); 3454 spin_unlock_irqrestore(&conf->device_lock, flags); 3455 conf->raid_disks = mddev->raid_disks = raid_disks; 3456 mddev->delta_disks = 0; 3457 3458 unfreeze_array(conf); 3459 3460 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3461 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3462 md_wakeup_thread(mddev->thread); 3463 3464 mempool_exit(&oldpool); 3465 return 0; 3466 } 3467 3468 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3469 { 3470 struct r1conf *conf = mddev->private; 3471 3472 if (quiesce) 3473 freeze_array(conf, 0); 3474 else 3475 unfreeze_array(conf); 3476 } 3477 3478 static void *raid1_takeover(struct mddev *mddev) 3479 { 3480 /* raid1 can take over: 3481 * raid5 with 2 devices, any layout or chunk size 3482 */ 3483 if (mddev->level == 5 && mddev->raid_disks == 2) { 3484 struct r1conf *conf; 3485 mddev->new_level = 1; 3486 mddev->new_layout = 0; 3487 mddev->new_chunk_sectors = 0; 3488 conf = setup_conf(mddev); 3489 if (!IS_ERR(conf)) { 3490 /* Array must appear to be quiesced */ 3491 conf->array_frozen = 1; 3492 mddev_clear_unsupported_flags(mddev, 3493 UNSUPPORTED_MDDEV_FLAGS); 3494 } 3495 return conf; 3496 } 3497 return ERR_PTR(-EINVAL); 3498 } 3499 3500 static struct md_personality raid1_personality = 3501 { 3502 .name = "raid1", 3503 .level = 1, 3504 .owner = THIS_MODULE, 3505 .make_request = raid1_make_request, 3506 .run = raid1_run, 3507 .free = raid1_free, 3508 .status = raid1_status, 3509 .error_handler = raid1_error, 3510 .hot_add_disk = raid1_add_disk, 3511 .hot_remove_disk= raid1_remove_disk, 3512 .spare_active = raid1_spare_active, 3513 .sync_request = raid1_sync_request, 3514 .resize = raid1_resize, 3515 .size = raid1_size, 3516 .check_reshape = raid1_reshape, 3517 .quiesce = raid1_quiesce, 3518 .takeover = raid1_takeover, 3519 }; 3520 3521 static int __init raid_init(void) 3522 { 3523 return register_md_personality(&raid1_personality); 3524 } 3525 3526 static void raid_exit(void) 3527 { 3528 unregister_md_personality(&raid1_personality); 3529 } 3530 3531 module_init(raid_init); 3532 module_exit(raid_exit); 3533 MODULE_LICENSE("GPL"); 3534 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3535 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3536 MODULE_ALIAS("md-raid1"); 3537 MODULE_ALIAS("md-level-1"); 3538