xref: /linux/drivers/md/raid1.c (revision a514e6f8f5caa24413731bed54b322bd34d918dd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51 
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 		     START, LAST, static inline, raid1_rb);
56 
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 				struct serial_info *si, int idx)
59 {
60 	unsigned long flags;
61 	int ret = 0;
62 	sector_t lo = r1_bio->sector;
63 	sector_t hi = lo + r1_bio->sectors;
64 	struct serial_in_rdev *serial = &rdev->serial[idx];
65 
66 	spin_lock_irqsave(&serial->serial_lock, flags);
67 	/* collision happened */
68 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 		ret = -EBUSY;
70 	else {
71 		si->start = lo;
72 		si->last = hi;
73 		raid1_rb_insert(si, &serial->serial_rb);
74 	}
75 	spin_unlock_irqrestore(&serial->serial_lock, flags);
76 
77 	return ret;
78 }
79 
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 	struct mddev *mddev = rdev->mddev;
83 	struct serial_info *si;
84 	int idx = sector_to_idx(r1_bio->sector);
85 	struct serial_in_rdev *serial = &rdev->serial[idx];
86 
87 	if (WARN_ON(!mddev->serial_info_pool))
88 		return;
89 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 	wait_event(serial->serial_io_wait,
91 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93 
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 	struct serial_info *si;
97 	unsigned long flags;
98 	int found = 0;
99 	struct mddev *mddev = rdev->mddev;
100 	int idx = sector_to_idx(lo);
101 	struct serial_in_rdev *serial = &rdev->serial[idx];
102 
103 	spin_lock_irqsave(&serial->serial_lock, flags);
104 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
106 		if (si->start == lo && si->last == hi) {
107 			raid1_rb_remove(si, &serial->serial_rb);
108 			mempool_free(si, mddev->serial_info_pool);
109 			found = 1;
110 			break;
111 		}
112 	}
113 	if (!found)
114 		WARN(1, "The write IO is not recorded for serialization\n");
115 	spin_unlock_irqrestore(&serial->serial_lock, flags);
116 	wake_up(&serial->serial_io_wait);
117 }
118 
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 	return get_resync_pages(bio)->raid_bio;
126 }
127 
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 	struct pool_info *pi = data;
131 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132 
133 	/* allocate a r1bio with room for raid_disks entries in the bios array */
134 	return kzalloc(size, gfp_flags);
135 }
136 
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143 
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 	struct pool_info *pi = data;
147 	struct r1bio *r1_bio;
148 	struct bio *bio;
149 	int need_pages;
150 	int j;
151 	struct resync_pages *rps;
152 
153 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 	if (!r1_bio)
155 		return NULL;
156 
157 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 			    gfp_flags);
159 	if (!rps)
160 		goto out_free_r1bio;
161 
162 	/*
163 	 * Allocate bios : 1 for reading, n-1 for writing
164 	 */
165 	for (j = pi->raid_disks ; j-- ; ) {
166 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 		if (!bio)
168 			goto out_free_bio;
169 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 		r1_bio->bios[j] = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them to
174 	 * the first bio.
175 	 * If this is a user-requested check/repair, allocate
176 	 * RESYNC_PAGES for each bio.
177 	 */
178 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 		need_pages = pi->raid_disks;
180 	else
181 		need_pages = 1;
182 	for (j = 0; j < pi->raid_disks; j++) {
183 		struct resync_pages *rp = &rps[j];
184 
185 		bio = r1_bio->bios[j];
186 
187 		if (j < need_pages) {
188 			if (resync_alloc_pages(rp, gfp_flags))
189 				goto out_free_pages;
190 		} else {
191 			memcpy(rp, &rps[0], sizeof(*rp));
192 			resync_get_all_pages(rp);
193 		}
194 
195 		rp->raid_bio = r1_bio;
196 		bio->bi_private = rp;
197 	}
198 
199 	r1_bio->master_bio = NULL;
200 
201 	return r1_bio;
202 
203 out_free_pages:
204 	while (--j >= 0)
205 		resync_free_pages(&rps[j]);
206 
207 out_free_bio:
208 	while (++j < pi->raid_disks) {
209 		bio_uninit(r1_bio->bios[j]);
210 		kfree(r1_bio->bios[j]);
211 	}
212 	kfree(rps);
213 
214 out_free_r1bio:
215 	rbio_pool_free(r1_bio, data);
216 	return NULL;
217 }
218 
219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 	struct pool_info *pi = data;
222 	int i;
223 	struct r1bio *r1bio = __r1_bio;
224 	struct resync_pages *rp = NULL;
225 
226 	for (i = pi->raid_disks; i--; ) {
227 		rp = get_resync_pages(r1bio->bios[i]);
228 		resync_free_pages(rp);
229 		bio_uninit(r1bio->bios[i]);
230 		kfree(r1bio->bios[i]);
231 	}
232 
233 	/* resync pages array stored in the 1st bio's .bi_private */
234 	kfree(rp);
235 
236 	rbio_pool_free(r1bio, data);
237 }
238 
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 	int i;
242 
243 	for (i = 0; i < conf->raid_disks * 2; i++) {
244 		struct bio **bio = r1_bio->bios + i;
245 		if (!BIO_SPECIAL(*bio))
246 			bio_put(*bio);
247 		*bio = NULL;
248 	}
249 }
250 
251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 	struct r1conf *conf = r1_bio->mddev->private;
254 
255 	put_all_bios(conf, r1_bio);
256 	mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258 
259 static void put_buf(struct r1bio *r1_bio)
260 {
261 	struct r1conf *conf = r1_bio->mddev->private;
262 	sector_t sect = r1_bio->sector;
263 	int i;
264 
265 	for (i = 0; i < conf->raid_disks * 2; i++) {
266 		struct bio *bio = r1_bio->bios[i];
267 		if (bio->bi_end_io)
268 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 	}
270 
271 	mempool_free(r1_bio, &conf->r1buf_pool);
272 
273 	lower_barrier(conf, sect);
274 }
275 
276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 	unsigned long flags;
279 	struct mddev *mddev = r1_bio->mddev;
280 	struct r1conf *conf = mddev->private;
281 	int idx;
282 
283 	idx = sector_to_idx(r1_bio->sector);
284 	spin_lock_irqsave(&conf->device_lock, flags);
285 	list_add(&r1_bio->retry_list, &conf->retry_list);
286 	atomic_inc(&conf->nr_queued[idx]);
287 	spin_unlock_irqrestore(&conf->device_lock, flags);
288 
289 	wake_up(&conf->wait_barrier);
290 	md_wakeup_thread(mddev->thread);
291 }
292 
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 	struct bio *bio = r1_bio->master_bio;
301 
302 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 		bio->bi_status = BLK_STS_IOERR;
304 
305 	bio_endio(bio);
306 }
307 
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 	sector_t sector = r1_bio->sector;
313 
314 	/* if nobody has done the final endio yet, do it now */
315 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 			 (unsigned long long) bio->bi_iter.bi_sector,
319 			 (unsigned long long) bio_end_sector(bio) - 1);
320 
321 		call_bio_endio(r1_bio);
322 	}
323 
324 	free_r1bio(r1_bio);
325 	/*
326 	 * Wake up any possible resync thread that waits for the device
327 	 * to go idle.  All I/Os, even write-behind writes, are done.
328 	 */
329 	allow_barrier(conf, sector);
330 }
331 
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 	struct r1conf *conf = r1_bio->mddev->private;
338 
339 	conf->mirrors[disk].head_position =
340 		r1_bio->sector + (r1_bio->sectors);
341 }
342 
343 /*
344  * Find the disk number which triggered given bio
345  */
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 	int mirror;
349 	struct r1conf *conf = r1_bio->mddev->private;
350 	int raid_disks = conf->raid_disks;
351 
352 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 		if (r1_bio->bios[mirror] == bio)
354 			break;
355 
356 	BUG_ON(mirror == raid_disks * 2);
357 	update_head_pos(mirror, r1_bio);
358 
359 	return mirror;
360 }
361 
362 static void raid1_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_status;
365 	struct r1bio *r1_bio = bio->bi_private;
366 	struct r1conf *conf = r1_bio->mddev->private;
367 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368 
369 	/*
370 	 * this branch is our 'one mirror IO has finished' event handler:
371 	 */
372 	update_head_pos(r1_bio->read_disk, r1_bio);
373 
374 	if (uptodate)
375 		set_bit(R1BIO_Uptodate, &r1_bio->state);
376 	else if (test_bit(FailFast, &rdev->flags) &&
377 		 test_bit(R1BIO_FailFast, &r1_bio->state))
378 		/* This was a fail-fast read so we definitely
379 		 * want to retry */
380 		;
381 	else {
382 		/* If all other devices have failed, we want to return
383 		 * the error upwards rather than fail the last device.
384 		 * Here we redefine "uptodate" to mean "Don't want to retry"
385 		 */
386 		unsigned long flags;
387 		spin_lock_irqsave(&conf->device_lock, flags);
388 		if (r1_bio->mddev->degraded == conf->raid_disks ||
389 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 		     test_bit(In_sync, &rdev->flags)))
391 			uptodate = 1;
392 		spin_unlock_irqrestore(&conf->device_lock, flags);
393 	}
394 
395 	if (uptodate) {
396 		raid_end_bio_io(r1_bio);
397 		rdev_dec_pending(rdev, conf->mddev);
398 	} else {
399 		/*
400 		 * oops, read error:
401 		 */
402 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   rdev->bdev,
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
412 static void close_write(struct r1bio *r1_bio)
413 {
414 	struct mddev *mddev = r1_bio->mddev;
415 
416 	/* it really is the end of this request */
417 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 		bio_free_pages(r1_bio->behind_master_bio);
419 		bio_put(r1_bio->behind_master_bio);
420 		r1_bio->behind_master_bio = NULL;
421 	}
422 
423 	/* clear the bitmap if all writes complete successfully */
424 	mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
425 				    !test_bit(R1BIO_Degraded, &r1_bio->state),
426 				    test_bit(R1BIO_BehindIO, &r1_bio->state));
427 	md_write_end(mddev);
428 }
429 
430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 	if (!atomic_dec_and_test(&r1_bio->remaining))
433 		return;
434 
435 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 		reschedule_retry(r1_bio);
437 	else {
438 		close_write(r1_bio);
439 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 			reschedule_retry(r1_bio);
441 		else
442 			raid_end_bio_io(r1_bio);
443 	}
444 }
445 
446 static void raid1_end_write_request(struct bio *bio)
447 {
448 	struct r1bio *r1_bio = bio->bi_private;
449 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 	struct r1conf *conf = r1_bio->mddev->private;
451 	struct bio *to_put = NULL;
452 	int mirror = find_bio_disk(r1_bio, bio);
453 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 	bool discard_error;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 
458 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !discard_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Fail the request */
484 			set_bit(R1BIO_Degraded, &r1_bio->state);
485 			/* Finished with this branch */
486 			r1_bio->bios[mirror] = NULL;
487 			to_put = bio;
488 		}
489 	} else {
490 		/*
491 		 * Set R1BIO_Uptodate in our master bio, so that we
492 		 * will return a good error code for to the higher
493 		 * levels even if IO on some other mirrored buffer
494 		 * fails.
495 		 *
496 		 * The 'master' represents the composite IO operation
497 		 * to user-side. So if something waits for IO, then it
498 		 * will wait for the 'master' bio.
499 		 */
500 		r1_bio->bios[mirror] = NULL;
501 		to_put = bio;
502 		/*
503 		 * Do not set R1BIO_Uptodate if the current device is
504 		 * rebuilding or Faulty. This is because we cannot use
505 		 * such device for properly reading the data back (we could
506 		 * potentially use it, if the current write would have felt
507 		 * before rdev->recovery_offset, but for simplicity we don't
508 		 * check this here.
509 		 */
510 		if (test_bit(In_sync, &rdev->flags) &&
511 		    !test_bit(Faulty, &rdev->flags))
512 			set_bit(R1BIO_Uptodate, &r1_bio->state);
513 
514 		/* Maybe we can clear some bad blocks. */
515 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
516 		    !discard_error) {
517 			r1_bio->bios[mirror] = IO_MADE_GOOD;
518 			set_bit(R1BIO_MadeGood, &r1_bio->state);
519 		}
520 	}
521 
522 	if (behind) {
523 		if (test_bit(CollisionCheck, &rdev->flags))
524 			remove_serial(rdev, lo, hi);
525 		if (test_bit(WriteMostly, &rdev->flags))
526 			atomic_dec(&r1_bio->behind_remaining);
527 
528 		/*
529 		 * In behind mode, we ACK the master bio once the I/O
530 		 * has safely reached all non-writemostly
531 		 * disks. Setting the Returned bit ensures that this
532 		 * gets done only once -- we don't ever want to return
533 		 * -EIO here, instead we'll wait
534 		 */
535 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
536 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
537 			/* Maybe we can return now */
538 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
539 				struct bio *mbio = r1_bio->master_bio;
540 				pr_debug("raid1: behind end write sectors"
541 					 " %llu-%llu\n",
542 					 (unsigned long long) mbio->bi_iter.bi_sector,
543 					 (unsigned long long) bio_end_sector(mbio) - 1);
544 				call_bio_endio(r1_bio);
545 			}
546 		}
547 	} else if (rdev->mddev->serialize_policy)
548 		remove_serial(rdev, lo, hi);
549 	if (r1_bio->bios[mirror] == NULL)
550 		rdev_dec_pending(rdev, conf->mddev);
551 
552 	/*
553 	 * Let's see if all mirrored write operations have finished
554 	 * already.
555 	 */
556 	r1_bio_write_done(r1_bio);
557 
558 	if (to_put)
559 		bio_put(to_put);
560 }
561 
562 static sector_t align_to_barrier_unit_end(sector_t start_sector,
563 					  sector_t sectors)
564 {
565 	sector_t len;
566 
567 	WARN_ON(sectors == 0);
568 	/*
569 	 * len is the number of sectors from start_sector to end of the
570 	 * barrier unit which start_sector belongs to.
571 	 */
572 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
573 	      start_sector;
574 
575 	if (len > sectors)
576 		len = sectors;
577 
578 	return len;
579 }
580 
581 static void update_read_sectors(struct r1conf *conf, int disk,
582 				sector_t this_sector, int len)
583 {
584 	struct raid1_info *info = &conf->mirrors[disk];
585 
586 	atomic_inc(&info->rdev->nr_pending);
587 	if (info->next_seq_sect != this_sector)
588 		info->seq_start = this_sector;
589 	info->next_seq_sect = this_sector + len;
590 }
591 
592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 			     int *max_sectors)
594 {
595 	sector_t this_sector = r1_bio->sector;
596 	int len = r1_bio->sectors;
597 	int disk;
598 
599 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
600 		struct md_rdev *rdev;
601 		int read_len;
602 
603 		if (r1_bio->bios[disk] == IO_BLOCKED)
604 			continue;
605 
606 		rdev = conf->mirrors[disk].rdev;
607 		if (!rdev || test_bit(Faulty, &rdev->flags))
608 			continue;
609 
610 		/* choose the first disk even if it has some bad blocks. */
611 		read_len = raid1_check_read_range(rdev, this_sector, &len);
612 		if (read_len > 0) {
613 			update_read_sectors(conf, disk, this_sector, read_len);
614 			*max_sectors = read_len;
615 			return disk;
616 		}
617 	}
618 
619 	return -1;
620 }
621 
622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
623 {
624 	return !test_bit(In_sync, &rdev->flags) &&
625 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
626 }
627 
628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 			  int *max_sectors)
630 {
631 	sector_t this_sector = r1_bio->sector;
632 	int best_disk = -1;
633 	int best_len = 0;
634 	int disk;
635 
636 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 		struct md_rdev *rdev;
638 		int len;
639 		int read_len;
640 
641 		if (r1_bio->bios[disk] == IO_BLOCKED)
642 			continue;
643 
644 		rdev = conf->mirrors[disk].rdev;
645 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
646 		    rdev_in_recovery(rdev, r1_bio) ||
647 		    test_bit(WriteMostly, &rdev->flags))
648 			continue;
649 
650 		/* keep track of the disk with the most readable sectors. */
651 		len = r1_bio->sectors;
652 		read_len = raid1_check_read_range(rdev, this_sector, &len);
653 		if (read_len > best_len) {
654 			best_disk = disk;
655 			best_len = read_len;
656 		}
657 	}
658 
659 	if (best_disk != -1) {
660 		*max_sectors = best_len;
661 		update_read_sectors(conf, best_disk, this_sector, best_len);
662 	}
663 
664 	return best_disk;
665 }
666 
667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 			    int *max_sectors)
669 {
670 	sector_t this_sector = r1_bio->sector;
671 	int bb_disk = -1;
672 	int bb_read_len = 0;
673 	int disk;
674 
675 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
676 		struct md_rdev *rdev;
677 		int len;
678 		int read_len;
679 
680 		if (r1_bio->bios[disk] == IO_BLOCKED)
681 			continue;
682 
683 		rdev = conf->mirrors[disk].rdev;
684 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
685 		    !test_bit(WriteMostly, &rdev->flags) ||
686 		    rdev_in_recovery(rdev, r1_bio))
687 			continue;
688 
689 		/* there are no bad blocks, we can use this disk */
690 		len = r1_bio->sectors;
691 		read_len = raid1_check_read_range(rdev, this_sector, &len);
692 		if (read_len == r1_bio->sectors) {
693 			*max_sectors = read_len;
694 			update_read_sectors(conf, disk, this_sector, read_len);
695 			return disk;
696 		}
697 
698 		/*
699 		 * there are partial bad blocks, choose the rdev with largest
700 		 * read length.
701 		 */
702 		if (read_len > bb_read_len) {
703 			bb_disk = disk;
704 			bb_read_len = read_len;
705 		}
706 	}
707 
708 	if (bb_disk != -1) {
709 		*max_sectors = bb_read_len;
710 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
711 	}
712 
713 	return bb_disk;
714 }
715 
716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
717 {
718 	/* TODO: address issues with this check and concurrency. */
719 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
720 	       conf->mirrors[disk].head_position == r1_bio->sector;
721 }
722 
723 /*
724  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
725  * disk. If yes, choose the idle disk.
726  */
727 static bool should_choose_next(struct r1conf *conf, int disk)
728 {
729 	struct raid1_info *mirror = &conf->mirrors[disk];
730 	int opt_iosize;
731 
732 	if (!test_bit(Nonrot, &mirror->rdev->flags))
733 		return false;
734 
735 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
736 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
737 	       mirror->next_seq_sect > opt_iosize &&
738 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
739 }
740 
741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
742 {
743 	if (!rdev || test_bit(Faulty, &rdev->flags))
744 		return false;
745 
746 	if (rdev_in_recovery(rdev, r1_bio))
747 		return false;
748 
749 	/* don't read from slow disk unless have to */
750 	if (test_bit(WriteMostly, &rdev->flags))
751 		return false;
752 
753 	/* don't split IO for bad blocks unless have to */
754 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
755 		return false;
756 
757 	return true;
758 }
759 
760 struct read_balance_ctl {
761 	sector_t closest_dist;
762 	int closest_dist_disk;
763 	int min_pending;
764 	int min_pending_disk;
765 	int sequential_disk;
766 	int readable_disks;
767 };
768 
769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
770 {
771 	int disk;
772 	struct read_balance_ctl ctl = {
773 		.closest_dist_disk      = -1,
774 		.closest_dist           = MaxSector,
775 		.min_pending_disk       = -1,
776 		.min_pending            = UINT_MAX,
777 		.sequential_disk	= -1,
778 	};
779 
780 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
781 		struct md_rdev *rdev;
782 		sector_t dist;
783 		unsigned int pending;
784 
785 		if (r1_bio->bios[disk] == IO_BLOCKED)
786 			continue;
787 
788 		rdev = conf->mirrors[disk].rdev;
789 		if (!rdev_readable(rdev, r1_bio))
790 			continue;
791 
792 		/* At least two disks to choose from so failfast is OK */
793 		if (ctl.readable_disks++ == 1)
794 			set_bit(R1BIO_FailFast, &r1_bio->state);
795 
796 		pending = atomic_read(&rdev->nr_pending);
797 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
798 
799 		/* Don't change to another disk for sequential reads */
800 		if (is_sequential(conf, disk, r1_bio)) {
801 			if (!should_choose_next(conf, disk))
802 				return disk;
803 
804 			/*
805 			 * Add 'pending' to avoid choosing this disk if
806 			 * there is other idle disk.
807 			 */
808 			pending++;
809 			/*
810 			 * If there is no other idle disk, this disk
811 			 * will be chosen.
812 			 */
813 			ctl.sequential_disk = disk;
814 		}
815 
816 		if (ctl.min_pending > pending) {
817 			ctl.min_pending = pending;
818 			ctl.min_pending_disk = disk;
819 		}
820 
821 		if (ctl.closest_dist > dist) {
822 			ctl.closest_dist = dist;
823 			ctl.closest_dist_disk = disk;
824 		}
825 	}
826 
827 	/*
828 	 * sequential IO size exceeds optimal iosize, however, there is no other
829 	 * idle disk, so choose the sequential disk.
830 	 */
831 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
832 		return ctl.sequential_disk;
833 
834 	/*
835 	 * If all disks are rotational, choose the closest disk. If any disk is
836 	 * non-rotational, choose the disk with less pending request even the
837 	 * disk is rotational, which might/might not be optimal for raids with
838 	 * mixed ratation/non-rotational disks depending on workload.
839 	 */
840 	if (ctl.min_pending_disk != -1 &&
841 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
842 		return ctl.min_pending_disk;
843 	else
844 		return ctl.closest_dist_disk;
845 }
846 
847 /*
848  * This routine returns the disk from which the requested read should be done.
849  *
850  * 1) If resync is in progress, find the first usable disk and use it even if it
851  * has some bad blocks.
852  *
853  * 2) Now that there is no resync, loop through all disks and skipping slow
854  * disks and disks with bad blocks for now. Only pay attention to key disk
855  * choice.
856  *
857  * 3) If we've made it this far, now look for disks with bad blocks and choose
858  * the one with most number of sectors.
859  *
860  * 4) If we are all the way at the end, we have no choice but to use a disk even
861  * if it is write mostly.
862  *
863  * The rdev for the device selected will have nr_pending incremented.
864  */
865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
866 			int *max_sectors)
867 {
868 	int disk;
869 
870 	clear_bit(R1BIO_FailFast, &r1_bio->state);
871 
872 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
873 				    r1_bio->sectors))
874 		return choose_first_rdev(conf, r1_bio, max_sectors);
875 
876 	disk = choose_best_rdev(conf, r1_bio);
877 	if (disk >= 0) {
878 		*max_sectors = r1_bio->sectors;
879 		update_read_sectors(conf, disk, r1_bio->sector,
880 				    r1_bio->sectors);
881 		return disk;
882 	}
883 
884 	/*
885 	 * If we are here it means we didn't find a perfectly good disk so
886 	 * now spend a bit more time trying to find one with the most good
887 	 * sectors.
888 	 */
889 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
890 	if (disk >= 0)
891 		return disk;
892 
893 	return choose_slow_rdev(conf, r1_bio, max_sectors);
894 }
895 
896 static void wake_up_barrier(struct r1conf *conf)
897 {
898 	if (wq_has_sleeper(&conf->wait_barrier))
899 		wake_up(&conf->wait_barrier);
900 }
901 
902 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
903 {
904 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
905 	raid1_prepare_flush_writes(conf->mddev);
906 	wake_up_barrier(conf);
907 
908 	while (bio) { /* submit pending writes */
909 		struct bio *next = bio->bi_next;
910 
911 		raid1_submit_write(bio);
912 		bio = next;
913 		cond_resched();
914 	}
915 }
916 
917 static void flush_pending_writes(struct r1conf *conf)
918 {
919 	/* Any writes that have been queued but are awaiting
920 	 * bitmap updates get flushed here.
921 	 */
922 	spin_lock_irq(&conf->device_lock);
923 
924 	if (conf->pending_bio_list.head) {
925 		struct blk_plug plug;
926 		struct bio *bio;
927 
928 		bio = bio_list_get(&conf->pending_bio_list);
929 		spin_unlock_irq(&conf->device_lock);
930 
931 		/*
932 		 * As this is called in a wait_event() loop (see freeze_array),
933 		 * current->state might be TASK_UNINTERRUPTIBLE which will
934 		 * cause a warning when we prepare to wait again.  As it is
935 		 * rare that this path is taken, it is perfectly safe to force
936 		 * us to go around the wait_event() loop again, so the warning
937 		 * is a false-positive.  Silence the warning by resetting
938 		 * thread state
939 		 */
940 		__set_current_state(TASK_RUNNING);
941 		blk_start_plug(&plug);
942 		flush_bio_list(conf, bio);
943 		blk_finish_plug(&plug);
944 	} else
945 		spin_unlock_irq(&conf->device_lock);
946 }
947 
948 /* Barriers....
949  * Sometimes we need to suspend IO while we do something else,
950  * either some resync/recovery, or reconfigure the array.
951  * To do this we raise a 'barrier'.
952  * The 'barrier' is a counter that can be raised multiple times
953  * to count how many activities are happening which preclude
954  * normal IO.
955  * We can only raise the barrier if there is no pending IO.
956  * i.e. if nr_pending == 0.
957  * We choose only to raise the barrier if no-one is waiting for the
958  * barrier to go down.  This means that as soon as an IO request
959  * is ready, no other operations which require a barrier will start
960  * until the IO request has had a chance.
961  *
962  * So: regular IO calls 'wait_barrier'.  When that returns there
963  *    is no backgroup IO happening,  It must arrange to call
964  *    allow_barrier when it has finished its IO.
965  * backgroup IO calls must call raise_barrier.  Once that returns
966  *    there is no normal IO happeing.  It must arrange to call
967  *    lower_barrier when the particular background IO completes.
968  *
969  * If resync/recovery is interrupted, returns -EINTR;
970  * Otherwise, returns 0.
971  */
972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
973 {
974 	int idx = sector_to_idx(sector_nr);
975 
976 	spin_lock_irq(&conf->resync_lock);
977 
978 	/* Wait until no block IO is waiting */
979 	wait_event_lock_irq(conf->wait_barrier,
980 			    !atomic_read(&conf->nr_waiting[idx]),
981 			    conf->resync_lock);
982 
983 	/* block any new IO from starting */
984 	atomic_inc(&conf->barrier[idx]);
985 	/*
986 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
987 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
988 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
989 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
990 	 * be fetched before conf->barrier[idx] is increased. Otherwise
991 	 * there will be a race between raise_barrier() and _wait_barrier().
992 	 */
993 	smp_mb__after_atomic();
994 
995 	/* For these conditions we must wait:
996 	 * A: while the array is in frozen state
997 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
998 	 *    existing in corresponding I/O barrier bucket.
999 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
1000 	 *    max resync count which allowed on current I/O barrier bucket.
1001 	 */
1002 	wait_event_lock_irq(conf->wait_barrier,
1003 			    (!conf->array_frozen &&
1004 			     !atomic_read(&conf->nr_pending[idx]) &&
1005 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1006 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 			    conf->resync_lock);
1008 
1009 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1010 		atomic_dec(&conf->barrier[idx]);
1011 		spin_unlock_irq(&conf->resync_lock);
1012 		wake_up(&conf->wait_barrier);
1013 		return -EINTR;
1014 	}
1015 
1016 	atomic_inc(&conf->nr_sync_pending);
1017 	spin_unlock_irq(&conf->resync_lock);
1018 
1019 	return 0;
1020 }
1021 
1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 	int idx = sector_to_idx(sector_nr);
1025 
1026 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1027 
1028 	atomic_dec(&conf->barrier[idx]);
1029 	atomic_dec(&conf->nr_sync_pending);
1030 	wake_up(&conf->wait_barrier);
1031 }
1032 
1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1034 {
1035 	bool ret = true;
1036 
1037 	/*
1038 	 * We need to increase conf->nr_pending[idx] very early here,
1039 	 * then raise_barrier() can be blocked when it waits for
1040 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1041 	 * conf->resync_lock when there is no barrier raised in same
1042 	 * barrier unit bucket. Also if the array is frozen, I/O
1043 	 * should be blocked until array is unfrozen.
1044 	 */
1045 	atomic_inc(&conf->nr_pending[idx]);
1046 	/*
1047 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1048 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1049 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1050 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1051 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1052 	 * will be a race between _wait_barrier() and raise_barrier().
1053 	 */
1054 	smp_mb__after_atomic();
1055 
1056 	/*
1057 	 * Don't worry about checking two atomic_t variables at same time
1058 	 * here. If during we check conf->barrier[idx], the array is
1059 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1060 	 * 0, it is safe to return and make the I/O continue. Because the
1061 	 * array is frozen, all I/O returned here will eventually complete
1062 	 * or be queued, no race will happen. See code comment in
1063 	 * frozen_array().
1064 	 */
1065 	if (!READ_ONCE(conf->array_frozen) &&
1066 	    !atomic_read(&conf->barrier[idx]))
1067 		return ret;
1068 
1069 	/*
1070 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1071 	 * should be decreased before waiting for barrier to drop.
1072 	 * Otherwise, we may encounter a race condition because
1073 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1074 	 * to be 0 at same time.
1075 	 */
1076 	spin_lock_irq(&conf->resync_lock);
1077 	atomic_inc(&conf->nr_waiting[idx]);
1078 	atomic_dec(&conf->nr_pending[idx]);
1079 	/*
1080 	 * In case freeze_array() is waiting for
1081 	 * get_unqueued_pending() == extra
1082 	 */
1083 	wake_up_barrier(conf);
1084 	/* Wait for the barrier in same barrier unit bucket to drop. */
1085 
1086 	/* Return false when nowait flag is set */
1087 	if (nowait) {
1088 		ret = false;
1089 	} else {
1090 		wait_event_lock_irq(conf->wait_barrier,
1091 				!conf->array_frozen &&
1092 				!atomic_read(&conf->barrier[idx]),
1093 				conf->resync_lock);
1094 		atomic_inc(&conf->nr_pending[idx]);
1095 	}
1096 
1097 	atomic_dec(&conf->nr_waiting[idx]);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 	return ret;
1100 }
1101 
1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1103 {
1104 	int idx = sector_to_idx(sector_nr);
1105 	bool ret = true;
1106 
1107 	/*
1108 	 * Very similar to _wait_barrier(). The difference is, for read
1109 	 * I/O we don't need wait for sync I/O, but if the whole array
1110 	 * is frozen, the read I/O still has to wait until the array is
1111 	 * unfrozen. Since there is no ordering requirement with
1112 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1113 	 */
1114 	atomic_inc(&conf->nr_pending[idx]);
1115 
1116 	if (!READ_ONCE(conf->array_frozen))
1117 		return ret;
1118 
1119 	spin_lock_irq(&conf->resync_lock);
1120 	atomic_inc(&conf->nr_waiting[idx]);
1121 	atomic_dec(&conf->nr_pending[idx]);
1122 	/*
1123 	 * In case freeze_array() is waiting for
1124 	 * get_unqueued_pending() == extra
1125 	 */
1126 	wake_up_barrier(conf);
1127 	/* Wait for array to be unfrozen */
1128 
1129 	/* Return false when nowait flag is set */
1130 	if (nowait) {
1131 		/* Return false when nowait flag is set */
1132 		ret = false;
1133 	} else {
1134 		wait_event_lock_irq(conf->wait_barrier,
1135 				!conf->array_frozen,
1136 				conf->resync_lock);
1137 		atomic_inc(&conf->nr_pending[idx]);
1138 	}
1139 
1140 	atomic_dec(&conf->nr_waiting[idx]);
1141 	spin_unlock_irq(&conf->resync_lock);
1142 	return ret;
1143 }
1144 
1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1146 {
1147 	int idx = sector_to_idx(sector_nr);
1148 
1149 	return _wait_barrier(conf, idx, nowait);
1150 }
1151 
1152 static void _allow_barrier(struct r1conf *conf, int idx)
1153 {
1154 	atomic_dec(&conf->nr_pending[idx]);
1155 	wake_up_barrier(conf);
1156 }
1157 
1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1159 {
1160 	int idx = sector_to_idx(sector_nr);
1161 
1162 	_allow_barrier(conf, idx);
1163 }
1164 
1165 /* conf->resync_lock should be held */
1166 static int get_unqueued_pending(struct r1conf *conf)
1167 {
1168 	int idx, ret;
1169 
1170 	ret = atomic_read(&conf->nr_sync_pending);
1171 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1172 		ret += atomic_read(&conf->nr_pending[idx]) -
1173 			atomic_read(&conf->nr_queued[idx]);
1174 
1175 	return ret;
1176 }
1177 
1178 static void freeze_array(struct r1conf *conf, int extra)
1179 {
1180 	/* Stop sync I/O and normal I/O and wait for everything to
1181 	 * go quiet.
1182 	 * This is called in two situations:
1183 	 * 1) management command handlers (reshape, remove disk, quiesce).
1184 	 * 2) one normal I/O request failed.
1185 
1186 	 * After array_frozen is set to 1, new sync IO will be blocked at
1187 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1188 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1189 	 * queued. When everything goes quite, there are only queued I/Os left.
1190 
1191 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1192 	 * barrier bucket index which this I/O request hits. When all sync and
1193 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1194 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1195 	 * in handle_read_error(), we may call freeze_array() before trying to
1196 	 * fix the read error. In this case, the error read I/O is not queued,
1197 	 * so get_unqueued_pending() == 1.
1198 	 *
1199 	 * Therefore before this function returns, we need to wait until
1200 	 * get_unqueued_pendings(conf) gets equal to extra. For
1201 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1202 	 */
1203 	spin_lock_irq(&conf->resync_lock);
1204 	conf->array_frozen = 1;
1205 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1206 	wait_event_lock_irq_cmd(
1207 		conf->wait_barrier,
1208 		get_unqueued_pending(conf) == extra,
1209 		conf->resync_lock,
1210 		flush_pending_writes(conf));
1211 	spin_unlock_irq(&conf->resync_lock);
1212 }
1213 static void unfreeze_array(struct r1conf *conf)
1214 {
1215 	/* reverse the effect of the freeze */
1216 	spin_lock_irq(&conf->resync_lock);
1217 	conf->array_frozen = 0;
1218 	spin_unlock_irq(&conf->resync_lock);
1219 	wake_up(&conf->wait_barrier);
1220 }
1221 
1222 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 					   struct bio *bio)
1224 {
1225 	int size = bio->bi_iter.bi_size;
1226 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 	int i = 0;
1228 	struct bio *behind_bio = NULL;
1229 
1230 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1231 				      &r1_bio->mddev->bio_set);
1232 
1233 	/* discard op, we don't support writezero/writesame yet */
1234 	if (!bio_has_data(bio)) {
1235 		behind_bio->bi_iter.bi_size = size;
1236 		goto skip_copy;
1237 	}
1238 
1239 	while (i < vcnt && size) {
1240 		struct page *page;
1241 		int len = min_t(int, PAGE_SIZE, size);
1242 
1243 		page = alloc_page(GFP_NOIO);
1244 		if (unlikely(!page))
1245 			goto free_pages;
1246 
1247 		if (!bio_add_page(behind_bio, page, len, 0)) {
1248 			put_page(page);
1249 			goto free_pages;
1250 		}
1251 
1252 		size -= len;
1253 		i++;
1254 	}
1255 
1256 	bio_copy_data(behind_bio, bio);
1257 skip_copy:
1258 	r1_bio->behind_master_bio = behind_bio;
1259 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1260 
1261 	return;
1262 
1263 free_pages:
1264 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1265 		 bio->bi_iter.bi_size);
1266 	bio_free_pages(behind_bio);
1267 	bio_put(behind_bio);
1268 }
1269 
1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1271 {
1272 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1273 						  cb);
1274 	struct mddev *mddev = plug->cb.data;
1275 	struct r1conf *conf = mddev->private;
1276 	struct bio *bio;
1277 
1278 	if (from_schedule) {
1279 		spin_lock_irq(&conf->device_lock);
1280 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1281 		spin_unlock_irq(&conf->device_lock);
1282 		wake_up_barrier(conf);
1283 		md_wakeup_thread(mddev->thread);
1284 		kfree(plug);
1285 		return;
1286 	}
1287 
1288 	/* we aren't scheduling, so we can do the write-out directly. */
1289 	bio = bio_list_get(&plug->pending);
1290 	flush_bio_list(conf, bio);
1291 	kfree(plug);
1292 }
1293 
1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1295 {
1296 	r1_bio->master_bio = bio;
1297 	r1_bio->sectors = bio_sectors(bio);
1298 	r1_bio->state = 0;
1299 	r1_bio->mddev = mddev;
1300 	r1_bio->sector = bio->bi_iter.bi_sector;
1301 }
1302 
1303 static inline struct r1bio *
1304 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1305 {
1306 	struct r1conf *conf = mddev->private;
1307 	struct r1bio *r1_bio;
1308 
1309 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1310 	/* Ensure no bio records IO_BLOCKED */
1311 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1312 	init_r1bio(r1_bio, mddev, bio);
1313 	return r1_bio;
1314 }
1315 
1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1317 			       int max_read_sectors, struct r1bio *r1_bio)
1318 {
1319 	struct r1conf *conf = mddev->private;
1320 	struct raid1_info *mirror;
1321 	struct bio *read_bio;
1322 	const enum req_op op = bio_op(bio);
1323 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1324 	int max_sectors;
1325 	int rdisk, error;
1326 	bool r1bio_existed = !!r1_bio;
1327 
1328 	/*
1329 	 * If r1_bio is set, we are blocking the raid1d thread
1330 	 * so there is a tiny risk of deadlock.  So ask for
1331 	 * emergency memory if needed.
1332 	 */
1333 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1334 
1335 	/*
1336 	 * Still need barrier for READ in case that whole
1337 	 * array is frozen.
1338 	 */
1339 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1340 				bio->bi_opf & REQ_NOWAIT)) {
1341 		bio_wouldblock_error(bio);
1342 		return;
1343 	}
1344 
1345 	if (!r1_bio)
1346 		r1_bio = alloc_r1bio(mddev, bio);
1347 	else
1348 		init_r1bio(r1_bio, mddev, bio);
1349 	r1_bio->sectors = max_read_sectors;
1350 
1351 	/*
1352 	 * make_request() can abort the operation when read-ahead is being
1353 	 * used and no empty request is available.
1354 	 */
1355 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1356 	if (rdisk < 0) {
1357 		/* couldn't find anywhere to read from */
1358 		if (r1bio_existed)
1359 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1360 					    mdname(mddev),
1361 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1362 					    r1_bio->sector);
1363 		raid_end_bio_io(r1_bio);
1364 		return;
1365 	}
1366 	mirror = conf->mirrors + rdisk;
1367 
1368 	if (r1bio_existed)
1369 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1370 				    mdname(mddev),
1371 				    (unsigned long long)r1_bio->sector,
1372 				    mirror->rdev->bdev);
1373 
1374 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1375 		/*
1376 		 * Reading from a write-mostly device must take care not to
1377 		 * over-take any writes that are 'behind'
1378 		 */
1379 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1380 		mddev->bitmap_ops->wait_behind_writes(mddev);
1381 	}
1382 
1383 	if (max_sectors < bio_sectors(bio)) {
1384 		struct bio *split = bio_split(bio, max_sectors,
1385 					      gfp, &conf->bio_split);
1386 
1387 		if (IS_ERR(split)) {
1388 			error = PTR_ERR(split);
1389 			goto err_handle;
1390 		}
1391 		bio_chain(split, bio);
1392 		submit_bio_noacct(bio);
1393 		bio = split;
1394 		r1_bio->master_bio = bio;
1395 		r1_bio->sectors = max_sectors;
1396 	}
1397 
1398 	r1_bio->read_disk = rdisk;
1399 	if (!r1bio_existed) {
1400 		md_account_bio(mddev, &bio);
1401 		r1_bio->master_bio = bio;
1402 	}
1403 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1404 				   &mddev->bio_set);
1405 
1406 	r1_bio->bios[rdisk] = read_bio;
1407 
1408 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1409 		mirror->rdev->data_offset;
1410 	read_bio->bi_end_io = raid1_end_read_request;
1411 	read_bio->bi_opf = op | do_sync;
1412 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1413 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1414 	        read_bio->bi_opf |= MD_FAILFAST;
1415 	read_bio->bi_private = r1_bio;
1416 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1417 	submit_bio_noacct(read_bio);
1418 	return;
1419 
1420 err_handle:
1421 	atomic_dec(&mirror->rdev->nr_pending);
1422 	bio->bi_status = errno_to_blk_status(error);
1423 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1424 	raid_end_bio_io(r1_bio);
1425 }
1426 
1427 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1428 {
1429 	struct r1conf *conf = mddev->private;
1430 	int disks = conf->raid_disks * 2;
1431 	int i;
1432 
1433 retry:
1434 	for (i = 0; i < disks; i++) {
1435 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1436 
1437 		if (!rdev)
1438 			continue;
1439 
1440 		/* don't write here until the bad block is acknowledged */
1441 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
1442 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1443 				      bio_sectors(bio)) < 0)
1444 			set_bit(BlockedBadBlocks, &rdev->flags);
1445 
1446 		if (rdev_blocked(rdev)) {
1447 			if (bio->bi_opf & REQ_NOWAIT)
1448 				return false;
1449 
1450 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1451 					    rdev->raid_disk);
1452 			atomic_inc(&rdev->nr_pending);
1453 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
1454 			goto retry;
1455 		}
1456 	}
1457 
1458 	return true;
1459 }
1460 
1461 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1462 				int max_write_sectors)
1463 {
1464 	struct r1conf *conf = mddev->private;
1465 	struct r1bio *r1_bio;
1466 	int i, disks, k, error;
1467 	unsigned long flags;
1468 	int first_clone;
1469 	int max_sectors;
1470 	bool write_behind = false;
1471 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1472 
1473 	if (mddev_is_clustered(mddev) &&
1474 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1475 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1476 
1477 		DEFINE_WAIT(w);
1478 		if (bio->bi_opf & REQ_NOWAIT) {
1479 			bio_wouldblock_error(bio);
1480 			return;
1481 		}
1482 		for (;;) {
1483 			prepare_to_wait(&conf->wait_barrier,
1484 					&w, TASK_IDLE);
1485 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1486 							bio->bi_iter.bi_sector,
1487 							bio_end_sector(bio)))
1488 				break;
1489 			schedule();
1490 		}
1491 		finish_wait(&conf->wait_barrier, &w);
1492 	}
1493 
1494 	/*
1495 	 * Register the new request and wait if the reconstruction
1496 	 * thread has put up a bar for new requests.
1497 	 * Continue immediately if no resync is active currently.
1498 	 */
1499 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1500 				bio->bi_opf & REQ_NOWAIT)) {
1501 		bio_wouldblock_error(bio);
1502 		return;
1503 	}
1504 
1505 	if (!wait_blocked_rdev(mddev, bio)) {
1506 		bio_wouldblock_error(bio);
1507 		return;
1508 	}
1509 
1510 	r1_bio = alloc_r1bio(mddev, bio);
1511 	r1_bio->sectors = max_write_sectors;
1512 
1513 	/* first select target devices under rcu_lock and
1514 	 * inc refcount on their rdev.  Record them by setting
1515 	 * bios[x] to bio
1516 	 * If there are known/acknowledged bad blocks on any device on
1517 	 * which we have seen a write error, we want to avoid writing those
1518 	 * blocks.
1519 	 * This potentially requires several writes to write around
1520 	 * the bad blocks.  Each set of writes gets it's own r1bio
1521 	 * with a set of bios attached.
1522 	 */
1523 
1524 	disks = conf->raid_disks * 2;
1525 	max_sectors = r1_bio->sectors;
1526 	for (i = 0;  i < disks; i++) {
1527 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1528 
1529 		/*
1530 		 * The write-behind io is only attempted on drives marked as
1531 		 * write-mostly, which means we could allocate write behind
1532 		 * bio later.
1533 		 */
1534 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1535 			write_behind = true;
1536 
1537 		r1_bio->bios[i] = NULL;
1538 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1539 			if (i < conf->raid_disks)
1540 				set_bit(R1BIO_Degraded, &r1_bio->state);
1541 			continue;
1542 		}
1543 
1544 		atomic_inc(&rdev->nr_pending);
1545 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1546 			sector_t first_bad;
1547 			int bad_sectors;
1548 			int is_bad;
1549 
1550 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1551 					     &first_bad, &bad_sectors);
1552 			if (is_bad && first_bad <= r1_bio->sector) {
1553 				/* Cannot write here at all */
1554 				bad_sectors -= (r1_bio->sector - first_bad);
1555 				if (bad_sectors < max_sectors)
1556 					/* mustn't write more than bad_sectors
1557 					 * to other devices yet
1558 					 */
1559 					max_sectors = bad_sectors;
1560 				rdev_dec_pending(rdev, mddev);
1561 				/* We don't set R1BIO_Degraded as that
1562 				 * only applies if the disk is
1563 				 * missing, so it might be re-added,
1564 				 * and we want to know to recover this
1565 				 * chunk.
1566 				 * In this case the device is here,
1567 				 * and the fact that this chunk is not
1568 				 * in-sync is recorded in the bad
1569 				 * block log
1570 				 */
1571 				continue;
1572 			}
1573 			if (is_bad) {
1574 				int good_sectors = first_bad - r1_bio->sector;
1575 				if (good_sectors < max_sectors)
1576 					max_sectors = good_sectors;
1577 			}
1578 		}
1579 		r1_bio->bios[i] = bio;
1580 	}
1581 
1582 	/*
1583 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1584 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1585 	 * at a time and thus needs a new bio that can fit the whole payload
1586 	 * this bio in page sized chunks.
1587 	 */
1588 	if (write_behind && mddev->bitmap)
1589 		max_sectors = min_t(int, max_sectors,
1590 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1591 	if (max_sectors < bio_sectors(bio)) {
1592 		struct bio *split = bio_split(bio, max_sectors,
1593 					      GFP_NOIO, &conf->bio_split);
1594 
1595 		if (IS_ERR(split)) {
1596 			error = PTR_ERR(split);
1597 			goto err_handle;
1598 		}
1599 		bio_chain(split, bio);
1600 		submit_bio_noacct(bio);
1601 		bio = split;
1602 		r1_bio->master_bio = bio;
1603 		r1_bio->sectors = max_sectors;
1604 	}
1605 
1606 	md_account_bio(mddev, &bio);
1607 	r1_bio->master_bio = bio;
1608 	atomic_set(&r1_bio->remaining, 1);
1609 	atomic_set(&r1_bio->behind_remaining, 0);
1610 
1611 	first_clone = 1;
1612 
1613 	for (i = 0; i < disks; i++) {
1614 		struct bio *mbio = NULL;
1615 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1616 		if (!r1_bio->bios[i])
1617 			continue;
1618 
1619 		if (first_clone) {
1620 			unsigned long max_write_behind =
1621 				mddev->bitmap_info.max_write_behind;
1622 			struct md_bitmap_stats stats;
1623 			int err;
1624 
1625 			/* do behind I/O ?
1626 			 * Not if there are too many, or cannot
1627 			 * allocate memory, or a reader on WriteMostly
1628 			 * is waiting for behind writes to flush */
1629 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1630 			if (!err && write_behind && !stats.behind_wait &&
1631 			    stats.behind_writes < max_write_behind)
1632 				alloc_behind_master_bio(r1_bio, bio);
1633 
1634 			mddev->bitmap_ops->startwrite(
1635 				mddev, r1_bio->sector, r1_bio->sectors,
1636 				test_bit(R1BIO_BehindIO, &r1_bio->state));
1637 			first_clone = 0;
1638 		}
1639 
1640 		if (r1_bio->behind_master_bio) {
1641 			mbio = bio_alloc_clone(rdev->bdev,
1642 					       r1_bio->behind_master_bio,
1643 					       GFP_NOIO, &mddev->bio_set);
1644 			if (test_bit(CollisionCheck, &rdev->flags))
1645 				wait_for_serialization(rdev, r1_bio);
1646 			if (test_bit(WriteMostly, &rdev->flags))
1647 				atomic_inc(&r1_bio->behind_remaining);
1648 		} else {
1649 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1650 					       &mddev->bio_set);
1651 
1652 			if (mddev->serialize_policy)
1653 				wait_for_serialization(rdev, r1_bio);
1654 		}
1655 
1656 		r1_bio->bios[i] = mbio;
1657 
1658 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1659 		mbio->bi_end_io	= raid1_end_write_request;
1660 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1661 		if (test_bit(FailFast, &rdev->flags) &&
1662 		    !test_bit(WriteMostly, &rdev->flags) &&
1663 		    conf->raid_disks - mddev->degraded > 1)
1664 			mbio->bi_opf |= MD_FAILFAST;
1665 		mbio->bi_private = r1_bio;
1666 
1667 		atomic_inc(&r1_bio->remaining);
1668 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1669 		/* flush_pending_writes() needs access to the rdev so...*/
1670 		mbio->bi_bdev = (void *)rdev;
1671 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1672 			spin_lock_irqsave(&conf->device_lock, flags);
1673 			bio_list_add(&conf->pending_bio_list, mbio);
1674 			spin_unlock_irqrestore(&conf->device_lock, flags);
1675 			md_wakeup_thread(mddev->thread);
1676 		}
1677 	}
1678 
1679 	r1_bio_write_done(r1_bio);
1680 
1681 	/* In case raid1d snuck in to freeze_array */
1682 	wake_up_barrier(conf);
1683 	return;
1684 err_handle:
1685 	for (k = 0; k < i; k++) {
1686 		if (r1_bio->bios[k]) {
1687 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1688 			r1_bio->bios[k] = NULL;
1689 		}
1690 	}
1691 
1692 	bio->bi_status = errno_to_blk_status(error);
1693 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1694 	raid_end_bio_io(r1_bio);
1695 }
1696 
1697 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1698 {
1699 	sector_t sectors;
1700 
1701 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1702 	    && md_flush_request(mddev, bio))
1703 		return true;
1704 
1705 	/*
1706 	 * There is a limit to the maximum size, but
1707 	 * the read/write handler might find a lower limit
1708 	 * due to bad blocks.  To avoid multiple splits,
1709 	 * we pass the maximum number of sectors down
1710 	 * and let the lower level perform the split.
1711 	 */
1712 	sectors = align_to_barrier_unit_end(
1713 		bio->bi_iter.bi_sector, bio_sectors(bio));
1714 
1715 	if (bio_data_dir(bio) == READ)
1716 		raid1_read_request(mddev, bio, sectors, NULL);
1717 	else {
1718 		md_write_start(mddev,bio);
1719 		raid1_write_request(mddev, bio, sectors);
1720 	}
1721 	return true;
1722 }
1723 
1724 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1725 {
1726 	struct r1conf *conf = mddev->private;
1727 	int i;
1728 
1729 	lockdep_assert_held(&mddev->lock);
1730 
1731 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1732 		   conf->raid_disks - mddev->degraded);
1733 	for (i = 0; i < conf->raid_disks; i++) {
1734 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1735 
1736 		seq_printf(seq, "%s",
1737 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1738 	}
1739 	seq_printf(seq, "]");
1740 }
1741 
1742 /**
1743  * raid1_error() - RAID1 error handler.
1744  * @mddev: affected md device.
1745  * @rdev: member device to fail.
1746  *
1747  * The routine acknowledges &rdev failure and determines new @mddev state.
1748  * If it failed, then:
1749  *	- &MD_BROKEN flag is set in &mddev->flags.
1750  *	- recovery is disabled.
1751  * Otherwise, it must be degraded:
1752  *	- recovery is interrupted.
1753  *	- &mddev->degraded is bumped.
1754  *
1755  * @rdev is marked as &Faulty excluding case when array is failed and
1756  * &mddev->fail_last_dev is off.
1757  */
1758 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1759 {
1760 	struct r1conf *conf = mddev->private;
1761 	unsigned long flags;
1762 
1763 	spin_lock_irqsave(&conf->device_lock, flags);
1764 
1765 	if (test_bit(In_sync, &rdev->flags) &&
1766 	    (conf->raid_disks - mddev->degraded) == 1) {
1767 		set_bit(MD_BROKEN, &mddev->flags);
1768 
1769 		if (!mddev->fail_last_dev) {
1770 			conf->recovery_disabled = mddev->recovery_disabled;
1771 			spin_unlock_irqrestore(&conf->device_lock, flags);
1772 			return;
1773 		}
1774 	}
1775 	set_bit(Blocked, &rdev->flags);
1776 	if (test_and_clear_bit(In_sync, &rdev->flags))
1777 		mddev->degraded++;
1778 	set_bit(Faulty, &rdev->flags);
1779 	spin_unlock_irqrestore(&conf->device_lock, flags);
1780 	/*
1781 	 * if recovery is running, make sure it aborts.
1782 	 */
1783 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1784 	set_mask_bits(&mddev->sb_flags, 0,
1785 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1786 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1787 		"md/raid1:%s: Operation continuing on %d devices.\n",
1788 		mdname(mddev), rdev->bdev,
1789 		mdname(mddev), conf->raid_disks - mddev->degraded);
1790 }
1791 
1792 static void print_conf(struct r1conf *conf)
1793 {
1794 	int i;
1795 
1796 	pr_debug("RAID1 conf printout:\n");
1797 	if (!conf) {
1798 		pr_debug("(!conf)\n");
1799 		return;
1800 	}
1801 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1802 		 conf->raid_disks);
1803 
1804 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1805 	for (i = 0; i < conf->raid_disks; i++) {
1806 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1807 		if (rdev)
1808 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1809 				 i, !test_bit(In_sync, &rdev->flags),
1810 				 !test_bit(Faulty, &rdev->flags),
1811 				 rdev->bdev);
1812 	}
1813 }
1814 
1815 static void close_sync(struct r1conf *conf)
1816 {
1817 	int idx;
1818 
1819 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1820 		_wait_barrier(conf, idx, false);
1821 		_allow_barrier(conf, idx);
1822 	}
1823 
1824 	mempool_exit(&conf->r1buf_pool);
1825 }
1826 
1827 static int raid1_spare_active(struct mddev *mddev)
1828 {
1829 	int i;
1830 	struct r1conf *conf = mddev->private;
1831 	int count = 0;
1832 	unsigned long flags;
1833 
1834 	/*
1835 	 * Find all failed disks within the RAID1 configuration
1836 	 * and mark them readable.
1837 	 * Called under mddev lock, so rcu protection not needed.
1838 	 * device_lock used to avoid races with raid1_end_read_request
1839 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1840 	 */
1841 	spin_lock_irqsave(&conf->device_lock, flags);
1842 	for (i = 0; i < conf->raid_disks; i++) {
1843 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1844 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1845 		if (repl
1846 		    && !test_bit(Candidate, &repl->flags)
1847 		    && repl->recovery_offset == MaxSector
1848 		    && !test_bit(Faulty, &repl->flags)
1849 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1850 			/* replacement has just become active */
1851 			if (!rdev ||
1852 			    !test_and_clear_bit(In_sync, &rdev->flags))
1853 				count++;
1854 			if (rdev) {
1855 				/* Replaced device not technically
1856 				 * faulty, but we need to be sure
1857 				 * it gets removed and never re-added
1858 				 */
1859 				set_bit(Faulty, &rdev->flags);
1860 				sysfs_notify_dirent_safe(
1861 					rdev->sysfs_state);
1862 			}
1863 		}
1864 		if (rdev
1865 		    && rdev->recovery_offset == MaxSector
1866 		    && !test_bit(Faulty, &rdev->flags)
1867 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1868 			count++;
1869 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1870 		}
1871 	}
1872 	mddev->degraded -= count;
1873 	spin_unlock_irqrestore(&conf->device_lock, flags);
1874 
1875 	print_conf(conf);
1876 	return count;
1877 }
1878 
1879 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1880 			   bool replacement)
1881 {
1882 	struct raid1_info *info = conf->mirrors + disk;
1883 
1884 	if (replacement)
1885 		info += conf->raid_disks;
1886 
1887 	if (info->rdev)
1888 		return false;
1889 
1890 	if (bdev_nonrot(rdev->bdev)) {
1891 		set_bit(Nonrot, &rdev->flags);
1892 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1893 	}
1894 
1895 	rdev->raid_disk = disk;
1896 	info->head_position = 0;
1897 	info->seq_start = MaxSector;
1898 	WRITE_ONCE(info->rdev, rdev);
1899 
1900 	return true;
1901 }
1902 
1903 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1904 {
1905 	struct raid1_info *info = conf->mirrors + disk;
1906 	struct md_rdev *rdev = info->rdev;
1907 
1908 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1909 	    atomic_read(&rdev->nr_pending))
1910 		return false;
1911 
1912 	/* Only remove non-faulty devices if recovery is not possible. */
1913 	if (!test_bit(Faulty, &rdev->flags) &&
1914 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1915 	    rdev->mddev->degraded < conf->raid_disks)
1916 		return false;
1917 
1918 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1919 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1920 
1921 	WRITE_ONCE(info->rdev, NULL);
1922 	return true;
1923 }
1924 
1925 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1926 {
1927 	struct r1conf *conf = mddev->private;
1928 	int err = -EEXIST;
1929 	int mirror = 0, repl_slot = -1;
1930 	struct raid1_info *p;
1931 	int first = 0;
1932 	int last = conf->raid_disks - 1;
1933 
1934 	if (mddev->recovery_disabled == conf->recovery_disabled)
1935 		return -EBUSY;
1936 
1937 	if (rdev->raid_disk >= 0)
1938 		first = last = rdev->raid_disk;
1939 
1940 	/*
1941 	 * find the disk ... but prefer rdev->saved_raid_disk
1942 	 * if possible.
1943 	 */
1944 	if (rdev->saved_raid_disk >= 0 &&
1945 	    rdev->saved_raid_disk >= first &&
1946 	    rdev->saved_raid_disk < conf->raid_disks &&
1947 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1948 		first = last = rdev->saved_raid_disk;
1949 
1950 	for (mirror = first; mirror <= last; mirror++) {
1951 		p = conf->mirrors + mirror;
1952 		if (!p->rdev) {
1953 			err = mddev_stack_new_rdev(mddev, rdev);
1954 			if (err)
1955 				return err;
1956 
1957 			raid1_add_conf(conf, rdev, mirror, false);
1958 			/* As all devices are equivalent, we don't need a full recovery
1959 			 * if this was recently any drive of the array
1960 			 */
1961 			if (rdev->saved_raid_disk < 0)
1962 				conf->fullsync = 1;
1963 			break;
1964 		}
1965 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1966 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1967 			repl_slot = mirror;
1968 	}
1969 
1970 	if (err && repl_slot >= 0) {
1971 		/* Add this device as a replacement */
1972 		clear_bit(In_sync, &rdev->flags);
1973 		set_bit(Replacement, &rdev->flags);
1974 		raid1_add_conf(conf, rdev, repl_slot, true);
1975 		err = 0;
1976 		conf->fullsync = 1;
1977 	}
1978 
1979 	print_conf(conf);
1980 	return err;
1981 }
1982 
1983 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1984 {
1985 	struct r1conf *conf = mddev->private;
1986 	int err = 0;
1987 	int number = rdev->raid_disk;
1988 	struct raid1_info *p = conf->mirrors + number;
1989 
1990 	if (unlikely(number >= conf->raid_disks))
1991 		goto abort;
1992 
1993 	if (rdev != p->rdev) {
1994 		number += conf->raid_disks;
1995 		p = conf->mirrors + number;
1996 	}
1997 
1998 	print_conf(conf);
1999 	if (rdev == p->rdev) {
2000 		if (!raid1_remove_conf(conf, number)) {
2001 			err = -EBUSY;
2002 			goto abort;
2003 		}
2004 
2005 		if (number < conf->raid_disks &&
2006 		    conf->mirrors[conf->raid_disks + number].rdev) {
2007 			/* We just removed a device that is being replaced.
2008 			 * Move down the replacement.  We drain all IO before
2009 			 * doing this to avoid confusion.
2010 			 */
2011 			struct md_rdev *repl =
2012 				conf->mirrors[conf->raid_disks + number].rdev;
2013 			freeze_array(conf, 0);
2014 			if (atomic_read(&repl->nr_pending)) {
2015 				/* It means that some queued IO of retry_list
2016 				 * hold repl. Thus, we cannot set replacement
2017 				 * as NULL, avoiding rdev NULL pointer
2018 				 * dereference in sync_request_write and
2019 				 * handle_write_finished.
2020 				 */
2021 				err = -EBUSY;
2022 				unfreeze_array(conf);
2023 				goto abort;
2024 			}
2025 			clear_bit(Replacement, &repl->flags);
2026 			WRITE_ONCE(p->rdev, repl);
2027 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2028 			unfreeze_array(conf);
2029 		}
2030 
2031 		clear_bit(WantReplacement, &rdev->flags);
2032 		err = md_integrity_register(mddev);
2033 	}
2034 abort:
2035 
2036 	print_conf(conf);
2037 	return err;
2038 }
2039 
2040 static void end_sync_read(struct bio *bio)
2041 {
2042 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2043 
2044 	update_head_pos(r1_bio->read_disk, r1_bio);
2045 
2046 	/*
2047 	 * we have read a block, now it needs to be re-written,
2048 	 * or re-read if the read failed.
2049 	 * We don't do much here, just schedule handling by raid1d
2050 	 */
2051 	if (!bio->bi_status)
2052 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2053 
2054 	if (atomic_dec_and_test(&r1_bio->remaining))
2055 		reschedule_retry(r1_bio);
2056 }
2057 
2058 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2059 {
2060 	sector_t sync_blocks = 0;
2061 	sector_t s = r1_bio->sector;
2062 	long sectors_to_go = r1_bio->sectors;
2063 
2064 	/* make sure these bits don't get cleared. */
2065 	do {
2066 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2067 		s += sync_blocks;
2068 		sectors_to_go -= sync_blocks;
2069 	} while (sectors_to_go > 0);
2070 }
2071 
2072 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2073 {
2074 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2075 		struct mddev *mddev = r1_bio->mddev;
2076 		int s = r1_bio->sectors;
2077 
2078 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2079 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2080 			reschedule_retry(r1_bio);
2081 		else {
2082 			put_buf(r1_bio);
2083 			md_done_sync(mddev, s, uptodate);
2084 		}
2085 	}
2086 }
2087 
2088 static void end_sync_write(struct bio *bio)
2089 {
2090 	int uptodate = !bio->bi_status;
2091 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2092 	struct mddev *mddev = r1_bio->mddev;
2093 	struct r1conf *conf = mddev->private;
2094 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2095 
2096 	if (!uptodate) {
2097 		abort_sync_write(mddev, r1_bio);
2098 		set_bit(WriteErrorSeen, &rdev->flags);
2099 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2100 			set_bit(MD_RECOVERY_NEEDED, &
2101 				mddev->recovery);
2102 		set_bit(R1BIO_WriteError, &r1_bio->state);
2103 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2104 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2105 				      r1_bio->sector, r1_bio->sectors)) {
2106 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2107 	}
2108 
2109 	put_sync_write_buf(r1_bio, uptodate);
2110 }
2111 
2112 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2113 			   int sectors, struct page *page, blk_opf_t rw)
2114 {
2115 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2116 		/* success */
2117 		return 1;
2118 	if (rw == REQ_OP_WRITE) {
2119 		set_bit(WriteErrorSeen, &rdev->flags);
2120 		if (!test_and_set_bit(WantReplacement,
2121 				      &rdev->flags))
2122 			set_bit(MD_RECOVERY_NEEDED, &
2123 				rdev->mddev->recovery);
2124 	}
2125 	/* need to record an error - either for the block or the device */
2126 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2127 		md_error(rdev->mddev, rdev);
2128 	return 0;
2129 }
2130 
2131 static int fix_sync_read_error(struct r1bio *r1_bio)
2132 {
2133 	/* Try some synchronous reads of other devices to get
2134 	 * good data, much like with normal read errors.  Only
2135 	 * read into the pages we already have so we don't
2136 	 * need to re-issue the read request.
2137 	 * We don't need to freeze the array, because being in an
2138 	 * active sync request, there is no normal IO, and
2139 	 * no overlapping syncs.
2140 	 * We don't need to check is_badblock() again as we
2141 	 * made sure that anything with a bad block in range
2142 	 * will have bi_end_io clear.
2143 	 */
2144 	struct mddev *mddev = r1_bio->mddev;
2145 	struct r1conf *conf = mddev->private;
2146 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2147 	struct page **pages = get_resync_pages(bio)->pages;
2148 	sector_t sect = r1_bio->sector;
2149 	int sectors = r1_bio->sectors;
2150 	int idx = 0;
2151 	struct md_rdev *rdev;
2152 
2153 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2154 	if (test_bit(FailFast, &rdev->flags)) {
2155 		/* Don't try recovering from here - just fail it
2156 		 * ... unless it is the last working device of course */
2157 		md_error(mddev, rdev);
2158 		if (test_bit(Faulty, &rdev->flags))
2159 			/* Don't try to read from here, but make sure
2160 			 * put_buf does it's thing
2161 			 */
2162 			bio->bi_end_io = end_sync_write;
2163 	}
2164 
2165 	while(sectors) {
2166 		int s = sectors;
2167 		int d = r1_bio->read_disk;
2168 		int success = 0;
2169 		int start;
2170 
2171 		if (s > (PAGE_SIZE>>9))
2172 			s = PAGE_SIZE >> 9;
2173 		do {
2174 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2175 				/* No rcu protection needed here devices
2176 				 * can only be removed when no resync is
2177 				 * active, and resync is currently active
2178 				 */
2179 				rdev = conf->mirrors[d].rdev;
2180 				if (sync_page_io(rdev, sect, s<<9,
2181 						 pages[idx],
2182 						 REQ_OP_READ, false)) {
2183 					success = 1;
2184 					break;
2185 				}
2186 			}
2187 			d++;
2188 			if (d == conf->raid_disks * 2)
2189 				d = 0;
2190 		} while (!success && d != r1_bio->read_disk);
2191 
2192 		if (!success) {
2193 			int abort = 0;
2194 			/* Cannot read from anywhere, this block is lost.
2195 			 * Record a bad block on each device.  If that doesn't
2196 			 * work just disable and interrupt the recovery.
2197 			 * Don't fail devices as that won't really help.
2198 			 */
2199 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2200 					    mdname(mddev), bio->bi_bdev,
2201 					    (unsigned long long)r1_bio->sector);
2202 			for (d = 0; d < conf->raid_disks * 2; d++) {
2203 				rdev = conf->mirrors[d].rdev;
2204 				if (!rdev || test_bit(Faulty, &rdev->flags))
2205 					continue;
2206 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2207 					abort = 1;
2208 			}
2209 			if (abort) {
2210 				conf->recovery_disabled =
2211 					mddev->recovery_disabled;
2212 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2213 				md_done_sync(mddev, r1_bio->sectors, 0);
2214 				put_buf(r1_bio);
2215 				return 0;
2216 			}
2217 			/* Try next page */
2218 			sectors -= s;
2219 			sect += s;
2220 			idx++;
2221 			continue;
2222 		}
2223 
2224 		start = d;
2225 		/* write it back and re-read */
2226 		while (d != r1_bio->read_disk) {
2227 			if (d == 0)
2228 				d = conf->raid_disks * 2;
2229 			d--;
2230 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2231 				continue;
2232 			rdev = conf->mirrors[d].rdev;
2233 			if (r1_sync_page_io(rdev, sect, s,
2234 					    pages[idx],
2235 					    REQ_OP_WRITE) == 0) {
2236 				r1_bio->bios[d]->bi_end_io = NULL;
2237 				rdev_dec_pending(rdev, mddev);
2238 			}
2239 		}
2240 		d = start;
2241 		while (d != r1_bio->read_disk) {
2242 			if (d == 0)
2243 				d = conf->raid_disks * 2;
2244 			d--;
2245 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2246 				continue;
2247 			rdev = conf->mirrors[d].rdev;
2248 			if (r1_sync_page_io(rdev, sect, s,
2249 					    pages[idx],
2250 					    REQ_OP_READ) != 0)
2251 				atomic_add(s, &rdev->corrected_errors);
2252 		}
2253 		sectors -= s;
2254 		sect += s;
2255 		idx ++;
2256 	}
2257 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2258 	bio->bi_status = 0;
2259 	return 1;
2260 }
2261 
2262 static void process_checks(struct r1bio *r1_bio)
2263 {
2264 	/* We have read all readable devices.  If we haven't
2265 	 * got the block, then there is no hope left.
2266 	 * If we have, then we want to do a comparison
2267 	 * and skip the write if everything is the same.
2268 	 * If any blocks failed to read, then we need to
2269 	 * attempt an over-write
2270 	 */
2271 	struct mddev *mddev = r1_bio->mddev;
2272 	struct r1conf *conf = mddev->private;
2273 	int primary;
2274 	int i;
2275 	int vcnt;
2276 
2277 	/* Fix variable parts of all bios */
2278 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2279 	for (i = 0; i < conf->raid_disks * 2; i++) {
2280 		blk_status_t status;
2281 		struct bio *b = r1_bio->bios[i];
2282 		struct resync_pages *rp = get_resync_pages(b);
2283 		if (b->bi_end_io != end_sync_read)
2284 			continue;
2285 		/* fixup the bio for reuse, but preserve errno */
2286 		status = b->bi_status;
2287 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2288 		b->bi_status = status;
2289 		b->bi_iter.bi_sector = r1_bio->sector +
2290 			conf->mirrors[i].rdev->data_offset;
2291 		b->bi_end_io = end_sync_read;
2292 		rp->raid_bio = r1_bio;
2293 		b->bi_private = rp;
2294 
2295 		/* initialize bvec table again */
2296 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2297 	}
2298 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2299 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2300 		    !r1_bio->bios[primary]->bi_status) {
2301 			r1_bio->bios[primary]->bi_end_io = NULL;
2302 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2303 			break;
2304 		}
2305 	r1_bio->read_disk = primary;
2306 	for (i = 0; i < conf->raid_disks * 2; i++) {
2307 		int j = 0;
2308 		struct bio *pbio = r1_bio->bios[primary];
2309 		struct bio *sbio = r1_bio->bios[i];
2310 		blk_status_t status = sbio->bi_status;
2311 		struct page **ppages = get_resync_pages(pbio)->pages;
2312 		struct page **spages = get_resync_pages(sbio)->pages;
2313 		struct bio_vec *bi;
2314 		int page_len[RESYNC_PAGES] = { 0 };
2315 		struct bvec_iter_all iter_all;
2316 
2317 		if (sbio->bi_end_io != end_sync_read)
2318 			continue;
2319 		/* Now we can 'fixup' the error value */
2320 		sbio->bi_status = 0;
2321 
2322 		bio_for_each_segment_all(bi, sbio, iter_all)
2323 			page_len[j++] = bi->bv_len;
2324 
2325 		if (!status) {
2326 			for (j = vcnt; j-- ; ) {
2327 				if (memcmp(page_address(ppages[j]),
2328 					   page_address(spages[j]),
2329 					   page_len[j]))
2330 					break;
2331 			}
2332 		} else
2333 			j = 0;
2334 		if (j >= 0)
2335 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2336 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2337 			      && !status)) {
2338 			/* No need to write to this device. */
2339 			sbio->bi_end_io = NULL;
2340 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2341 			continue;
2342 		}
2343 
2344 		bio_copy_data(sbio, pbio);
2345 	}
2346 }
2347 
2348 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2349 {
2350 	struct r1conf *conf = mddev->private;
2351 	int i;
2352 	int disks = conf->raid_disks * 2;
2353 	struct bio *wbio;
2354 
2355 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2356 		/* ouch - failed to read all of that. */
2357 		if (!fix_sync_read_error(r1_bio))
2358 			return;
2359 
2360 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2361 		process_checks(r1_bio);
2362 
2363 	/*
2364 	 * schedule writes
2365 	 */
2366 	atomic_set(&r1_bio->remaining, 1);
2367 	for (i = 0; i < disks ; i++) {
2368 		wbio = r1_bio->bios[i];
2369 		if (wbio->bi_end_io == NULL ||
2370 		    (wbio->bi_end_io == end_sync_read &&
2371 		     (i == r1_bio->read_disk ||
2372 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2373 			continue;
2374 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2375 			abort_sync_write(mddev, r1_bio);
2376 			continue;
2377 		}
2378 
2379 		wbio->bi_opf = REQ_OP_WRITE;
2380 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2381 			wbio->bi_opf |= MD_FAILFAST;
2382 
2383 		wbio->bi_end_io = end_sync_write;
2384 		atomic_inc(&r1_bio->remaining);
2385 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2386 
2387 		submit_bio_noacct(wbio);
2388 	}
2389 
2390 	put_sync_write_buf(r1_bio, 1);
2391 }
2392 
2393 /*
2394  * This is a kernel thread which:
2395  *
2396  *	1.	Retries failed read operations on working mirrors.
2397  *	2.	Updates the raid superblock when problems encounter.
2398  *	3.	Performs writes following reads for array synchronising.
2399  */
2400 
2401 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2402 {
2403 	sector_t sect = r1_bio->sector;
2404 	int sectors = r1_bio->sectors;
2405 	int read_disk = r1_bio->read_disk;
2406 	struct mddev *mddev = conf->mddev;
2407 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2408 
2409 	if (exceed_read_errors(mddev, rdev)) {
2410 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2411 		return;
2412 	}
2413 
2414 	while(sectors) {
2415 		int s = sectors;
2416 		int d = read_disk;
2417 		int success = 0;
2418 		int start;
2419 
2420 		if (s > (PAGE_SIZE>>9))
2421 			s = PAGE_SIZE >> 9;
2422 
2423 		do {
2424 			rdev = conf->mirrors[d].rdev;
2425 			if (rdev &&
2426 			    (test_bit(In_sync, &rdev->flags) ||
2427 			     (!test_bit(Faulty, &rdev->flags) &&
2428 			      rdev->recovery_offset >= sect + s)) &&
2429 			    rdev_has_badblock(rdev, sect, s) == 0) {
2430 				atomic_inc(&rdev->nr_pending);
2431 				if (sync_page_io(rdev, sect, s<<9,
2432 					 conf->tmppage, REQ_OP_READ, false))
2433 					success = 1;
2434 				rdev_dec_pending(rdev, mddev);
2435 				if (success)
2436 					break;
2437 			}
2438 
2439 			d++;
2440 			if (d == conf->raid_disks * 2)
2441 				d = 0;
2442 		} while (d != read_disk);
2443 
2444 		if (!success) {
2445 			/* Cannot read from anywhere - mark it bad */
2446 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2447 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2448 				md_error(mddev, rdev);
2449 			break;
2450 		}
2451 		/* write it back and re-read */
2452 		start = d;
2453 		while (d != read_disk) {
2454 			if (d==0)
2455 				d = conf->raid_disks * 2;
2456 			d--;
2457 			rdev = conf->mirrors[d].rdev;
2458 			if (rdev &&
2459 			    !test_bit(Faulty, &rdev->flags)) {
2460 				atomic_inc(&rdev->nr_pending);
2461 				r1_sync_page_io(rdev, sect, s,
2462 						conf->tmppage, REQ_OP_WRITE);
2463 				rdev_dec_pending(rdev, mddev);
2464 			}
2465 		}
2466 		d = start;
2467 		while (d != read_disk) {
2468 			if (d==0)
2469 				d = conf->raid_disks * 2;
2470 			d--;
2471 			rdev = conf->mirrors[d].rdev;
2472 			if (rdev &&
2473 			    !test_bit(Faulty, &rdev->flags)) {
2474 				atomic_inc(&rdev->nr_pending);
2475 				if (r1_sync_page_io(rdev, sect, s,
2476 						conf->tmppage, REQ_OP_READ)) {
2477 					atomic_add(s, &rdev->corrected_errors);
2478 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2479 						mdname(mddev), s,
2480 						(unsigned long long)(sect +
2481 								     rdev->data_offset),
2482 						rdev->bdev);
2483 				}
2484 				rdev_dec_pending(rdev, mddev);
2485 			}
2486 		}
2487 		sectors -= s;
2488 		sect += s;
2489 	}
2490 }
2491 
2492 static int narrow_write_error(struct r1bio *r1_bio, int i)
2493 {
2494 	struct mddev *mddev = r1_bio->mddev;
2495 	struct r1conf *conf = mddev->private;
2496 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2497 
2498 	/* bio has the data to be written to device 'i' where
2499 	 * we just recently had a write error.
2500 	 * We repeatedly clone the bio and trim down to one block,
2501 	 * then try the write.  Where the write fails we record
2502 	 * a bad block.
2503 	 * It is conceivable that the bio doesn't exactly align with
2504 	 * blocks.  We must handle this somehow.
2505 	 *
2506 	 * We currently own a reference on the rdev.
2507 	 */
2508 
2509 	int block_sectors;
2510 	sector_t sector;
2511 	int sectors;
2512 	int sect_to_write = r1_bio->sectors;
2513 	int ok = 1;
2514 
2515 	if (rdev->badblocks.shift < 0)
2516 		return 0;
2517 
2518 	block_sectors = roundup(1 << rdev->badblocks.shift,
2519 				bdev_logical_block_size(rdev->bdev) >> 9);
2520 	sector = r1_bio->sector;
2521 	sectors = ((sector + block_sectors)
2522 		   & ~(sector_t)(block_sectors - 1))
2523 		- sector;
2524 
2525 	while (sect_to_write) {
2526 		struct bio *wbio;
2527 		if (sectors > sect_to_write)
2528 			sectors = sect_to_write;
2529 		/* Write at 'sector' for 'sectors'*/
2530 
2531 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2532 			wbio = bio_alloc_clone(rdev->bdev,
2533 					       r1_bio->behind_master_bio,
2534 					       GFP_NOIO, &mddev->bio_set);
2535 		} else {
2536 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2537 					       GFP_NOIO, &mddev->bio_set);
2538 		}
2539 
2540 		wbio->bi_opf = REQ_OP_WRITE;
2541 		wbio->bi_iter.bi_sector = r1_bio->sector;
2542 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2543 
2544 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2545 		wbio->bi_iter.bi_sector += rdev->data_offset;
2546 
2547 		if (submit_bio_wait(wbio) < 0)
2548 			/* failure! */
2549 			ok = rdev_set_badblocks(rdev, sector,
2550 						sectors, 0)
2551 				&& ok;
2552 
2553 		bio_put(wbio);
2554 		sect_to_write -= sectors;
2555 		sector += sectors;
2556 		sectors = block_sectors;
2557 	}
2558 	return ok;
2559 }
2560 
2561 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2562 {
2563 	int m;
2564 	int s = r1_bio->sectors;
2565 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2566 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2567 		struct bio *bio = r1_bio->bios[m];
2568 		if (bio->bi_end_io == NULL)
2569 			continue;
2570 		if (!bio->bi_status &&
2571 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2572 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2573 		}
2574 		if (bio->bi_status &&
2575 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2576 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2577 				md_error(conf->mddev, rdev);
2578 		}
2579 	}
2580 	put_buf(r1_bio);
2581 	md_done_sync(conf->mddev, s, 1);
2582 }
2583 
2584 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2585 {
2586 	int m, idx;
2587 	bool fail = false;
2588 
2589 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2590 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2591 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2592 			rdev_clear_badblocks(rdev,
2593 					     r1_bio->sector,
2594 					     r1_bio->sectors, 0);
2595 			rdev_dec_pending(rdev, conf->mddev);
2596 		} else if (r1_bio->bios[m] != NULL) {
2597 			/* This drive got a write error.  We need to
2598 			 * narrow down and record precise write
2599 			 * errors.
2600 			 */
2601 			fail = true;
2602 			if (!narrow_write_error(r1_bio, m)) {
2603 				md_error(conf->mddev,
2604 					 conf->mirrors[m].rdev);
2605 				/* an I/O failed, we can't clear the bitmap */
2606 				set_bit(R1BIO_Degraded, &r1_bio->state);
2607 			}
2608 			rdev_dec_pending(conf->mirrors[m].rdev,
2609 					 conf->mddev);
2610 		}
2611 	if (fail) {
2612 		spin_lock_irq(&conf->device_lock);
2613 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2614 		idx = sector_to_idx(r1_bio->sector);
2615 		atomic_inc(&conf->nr_queued[idx]);
2616 		spin_unlock_irq(&conf->device_lock);
2617 		/*
2618 		 * In case freeze_array() is waiting for condition
2619 		 * get_unqueued_pending() == extra to be true.
2620 		 */
2621 		wake_up(&conf->wait_barrier);
2622 		md_wakeup_thread(conf->mddev->thread);
2623 	} else {
2624 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2625 			close_write(r1_bio);
2626 		raid_end_bio_io(r1_bio);
2627 	}
2628 }
2629 
2630 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2631 {
2632 	struct mddev *mddev = conf->mddev;
2633 	struct bio *bio;
2634 	struct md_rdev *rdev;
2635 	sector_t sector;
2636 
2637 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2638 	/* we got a read error. Maybe the drive is bad.  Maybe just
2639 	 * the block and we can fix it.
2640 	 * We freeze all other IO, and try reading the block from
2641 	 * other devices.  When we find one, we re-write
2642 	 * and check it that fixes the read error.
2643 	 * This is all done synchronously while the array is
2644 	 * frozen
2645 	 */
2646 
2647 	bio = r1_bio->bios[r1_bio->read_disk];
2648 	bio_put(bio);
2649 	r1_bio->bios[r1_bio->read_disk] = NULL;
2650 
2651 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2652 	if (mddev->ro == 0
2653 	    && !test_bit(FailFast, &rdev->flags)) {
2654 		freeze_array(conf, 1);
2655 		fix_read_error(conf, r1_bio);
2656 		unfreeze_array(conf);
2657 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2658 		md_error(mddev, rdev);
2659 	} else {
2660 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2661 	}
2662 
2663 	rdev_dec_pending(rdev, conf->mddev);
2664 	sector = r1_bio->sector;
2665 	bio = r1_bio->master_bio;
2666 
2667 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2668 	r1_bio->state = 0;
2669 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2670 	allow_barrier(conf, sector);
2671 }
2672 
2673 static void raid1d(struct md_thread *thread)
2674 {
2675 	struct mddev *mddev = thread->mddev;
2676 	struct r1bio *r1_bio;
2677 	unsigned long flags;
2678 	struct r1conf *conf = mddev->private;
2679 	struct list_head *head = &conf->retry_list;
2680 	struct blk_plug plug;
2681 	int idx;
2682 
2683 	md_check_recovery(mddev);
2684 
2685 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2686 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2687 		LIST_HEAD(tmp);
2688 		spin_lock_irqsave(&conf->device_lock, flags);
2689 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2690 			list_splice_init(&conf->bio_end_io_list, &tmp);
2691 		spin_unlock_irqrestore(&conf->device_lock, flags);
2692 		while (!list_empty(&tmp)) {
2693 			r1_bio = list_first_entry(&tmp, struct r1bio,
2694 						  retry_list);
2695 			list_del(&r1_bio->retry_list);
2696 			idx = sector_to_idx(r1_bio->sector);
2697 			atomic_dec(&conf->nr_queued[idx]);
2698 			if (mddev->degraded)
2699 				set_bit(R1BIO_Degraded, &r1_bio->state);
2700 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2701 				close_write(r1_bio);
2702 			raid_end_bio_io(r1_bio);
2703 		}
2704 	}
2705 
2706 	blk_start_plug(&plug);
2707 	for (;;) {
2708 
2709 		flush_pending_writes(conf);
2710 
2711 		spin_lock_irqsave(&conf->device_lock, flags);
2712 		if (list_empty(head)) {
2713 			spin_unlock_irqrestore(&conf->device_lock, flags);
2714 			break;
2715 		}
2716 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2717 		list_del(head->prev);
2718 		idx = sector_to_idx(r1_bio->sector);
2719 		atomic_dec(&conf->nr_queued[idx]);
2720 		spin_unlock_irqrestore(&conf->device_lock, flags);
2721 
2722 		mddev = r1_bio->mddev;
2723 		conf = mddev->private;
2724 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2725 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2726 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2727 				handle_sync_write_finished(conf, r1_bio);
2728 			else
2729 				sync_request_write(mddev, r1_bio);
2730 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2731 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2732 			handle_write_finished(conf, r1_bio);
2733 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2734 			handle_read_error(conf, r1_bio);
2735 		else
2736 			WARN_ON_ONCE(1);
2737 
2738 		cond_resched();
2739 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2740 			md_check_recovery(mddev);
2741 	}
2742 	blk_finish_plug(&plug);
2743 }
2744 
2745 static int init_resync(struct r1conf *conf)
2746 {
2747 	int buffs;
2748 
2749 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2750 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2751 
2752 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2753 			    r1buf_pool_free, conf->poolinfo);
2754 }
2755 
2756 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2757 {
2758 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2759 	struct resync_pages *rps;
2760 	struct bio *bio;
2761 	int i;
2762 
2763 	for (i = conf->poolinfo->raid_disks; i--; ) {
2764 		bio = r1bio->bios[i];
2765 		rps = bio->bi_private;
2766 		bio_reset(bio, NULL, 0);
2767 		bio->bi_private = rps;
2768 	}
2769 	r1bio->master_bio = NULL;
2770 	return r1bio;
2771 }
2772 
2773 /*
2774  * perform a "sync" on one "block"
2775  *
2776  * We need to make sure that no normal I/O request - particularly write
2777  * requests - conflict with active sync requests.
2778  *
2779  * This is achieved by tracking pending requests and a 'barrier' concept
2780  * that can be installed to exclude normal IO requests.
2781  */
2782 
2783 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2784 				   sector_t max_sector, int *skipped)
2785 {
2786 	struct r1conf *conf = mddev->private;
2787 	struct r1bio *r1_bio;
2788 	struct bio *bio;
2789 	sector_t nr_sectors;
2790 	int disk = -1;
2791 	int i;
2792 	int wonly = -1;
2793 	int write_targets = 0, read_targets = 0;
2794 	sector_t sync_blocks;
2795 	bool still_degraded = false;
2796 	int good_sectors = RESYNC_SECTORS;
2797 	int min_bad = 0; /* number of sectors that are bad in all devices */
2798 	int idx = sector_to_idx(sector_nr);
2799 	int page_idx = 0;
2800 
2801 	if (!mempool_initialized(&conf->r1buf_pool))
2802 		if (init_resync(conf))
2803 			return 0;
2804 
2805 	if (sector_nr >= max_sector) {
2806 		/* If we aborted, we need to abort the
2807 		 * sync on the 'current' bitmap chunk (there will
2808 		 * only be one in raid1 resync.
2809 		 * We can find the current addess in mddev->curr_resync
2810 		 */
2811 		if (mddev->curr_resync < max_sector) /* aborted */
2812 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2813 						    &sync_blocks);
2814 		else /* completed sync */
2815 			conf->fullsync = 0;
2816 
2817 		mddev->bitmap_ops->close_sync(mddev);
2818 		close_sync(conf);
2819 
2820 		if (mddev_is_clustered(mddev)) {
2821 			conf->cluster_sync_low = 0;
2822 			conf->cluster_sync_high = 0;
2823 		}
2824 		return 0;
2825 	}
2826 
2827 	if (mddev->bitmap == NULL &&
2828 	    mddev->recovery_cp == MaxSector &&
2829 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2830 	    conf->fullsync == 0) {
2831 		*skipped = 1;
2832 		return max_sector - sector_nr;
2833 	}
2834 	/* before building a request, check if we can skip these blocks..
2835 	 * This call the bitmap_start_sync doesn't actually record anything
2836 	 */
2837 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2838 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2839 		/* We can skip this block, and probably several more */
2840 		*skipped = 1;
2841 		return sync_blocks;
2842 	}
2843 
2844 	/*
2845 	 * If there is non-resync activity waiting for a turn, then let it
2846 	 * though before starting on this new sync request.
2847 	 */
2848 	if (atomic_read(&conf->nr_waiting[idx]))
2849 		schedule_timeout_uninterruptible(1);
2850 
2851 	/* we are incrementing sector_nr below. To be safe, we check against
2852 	 * sector_nr + two times RESYNC_SECTORS
2853 	 */
2854 
2855 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2856 		mddev_is_clustered(mddev) &&
2857 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2858 
2859 	if (raise_barrier(conf, sector_nr))
2860 		return 0;
2861 
2862 	r1_bio = raid1_alloc_init_r1buf(conf);
2863 
2864 	/*
2865 	 * If we get a correctably read error during resync or recovery,
2866 	 * we might want to read from a different device.  So we
2867 	 * flag all drives that could conceivably be read from for READ,
2868 	 * and any others (which will be non-In_sync devices) for WRITE.
2869 	 * If a read fails, we try reading from something else for which READ
2870 	 * is OK.
2871 	 */
2872 
2873 	r1_bio->mddev = mddev;
2874 	r1_bio->sector = sector_nr;
2875 	r1_bio->state = 0;
2876 	set_bit(R1BIO_IsSync, &r1_bio->state);
2877 	/* make sure good_sectors won't go across barrier unit boundary */
2878 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2879 
2880 	for (i = 0; i < conf->raid_disks * 2; i++) {
2881 		struct md_rdev *rdev;
2882 		bio = r1_bio->bios[i];
2883 
2884 		rdev = conf->mirrors[i].rdev;
2885 		if (rdev == NULL ||
2886 		    test_bit(Faulty, &rdev->flags)) {
2887 			if (i < conf->raid_disks)
2888 				still_degraded = true;
2889 		} else if (!test_bit(In_sync, &rdev->flags)) {
2890 			bio->bi_opf = REQ_OP_WRITE;
2891 			bio->bi_end_io = end_sync_write;
2892 			write_targets ++;
2893 		} else {
2894 			/* may need to read from here */
2895 			sector_t first_bad = MaxSector;
2896 			int bad_sectors;
2897 
2898 			if (is_badblock(rdev, sector_nr, good_sectors,
2899 					&first_bad, &bad_sectors)) {
2900 				if (first_bad > sector_nr)
2901 					good_sectors = first_bad - sector_nr;
2902 				else {
2903 					bad_sectors -= (sector_nr - first_bad);
2904 					if (min_bad == 0 ||
2905 					    min_bad > bad_sectors)
2906 						min_bad = bad_sectors;
2907 				}
2908 			}
2909 			if (sector_nr < first_bad) {
2910 				if (test_bit(WriteMostly, &rdev->flags)) {
2911 					if (wonly < 0)
2912 						wonly = i;
2913 				} else {
2914 					if (disk < 0)
2915 						disk = i;
2916 				}
2917 				bio->bi_opf = REQ_OP_READ;
2918 				bio->bi_end_io = end_sync_read;
2919 				read_targets++;
2920 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2921 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2922 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2923 				/*
2924 				 * The device is suitable for reading (InSync),
2925 				 * but has bad block(s) here. Let's try to correct them,
2926 				 * if we are doing resync or repair. Otherwise, leave
2927 				 * this device alone for this sync request.
2928 				 */
2929 				bio->bi_opf = REQ_OP_WRITE;
2930 				bio->bi_end_io = end_sync_write;
2931 				write_targets++;
2932 			}
2933 		}
2934 		if (rdev && bio->bi_end_io) {
2935 			atomic_inc(&rdev->nr_pending);
2936 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2937 			bio_set_dev(bio, rdev->bdev);
2938 			if (test_bit(FailFast, &rdev->flags))
2939 				bio->bi_opf |= MD_FAILFAST;
2940 		}
2941 	}
2942 	if (disk < 0)
2943 		disk = wonly;
2944 	r1_bio->read_disk = disk;
2945 
2946 	if (read_targets == 0 && min_bad > 0) {
2947 		/* These sectors are bad on all InSync devices, so we
2948 		 * need to mark them bad on all write targets
2949 		 */
2950 		int ok = 1;
2951 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2952 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2953 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2954 				ok = rdev_set_badblocks(rdev, sector_nr,
2955 							min_bad, 0
2956 					) && ok;
2957 			}
2958 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2959 		*skipped = 1;
2960 		put_buf(r1_bio);
2961 
2962 		if (!ok) {
2963 			/* Cannot record the badblocks, so need to
2964 			 * abort the resync.
2965 			 * If there are multiple read targets, could just
2966 			 * fail the really bad ones ???
2967 			 */
2968 			conf->recovery_disabled = mddev->recovery_disabled;
2969 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2970 			return 0;
2971 		} else
2972 			return min_bad;
2973 
2974 	}
2975 	if (min_bad > 0 && min_bad < good_sectors) {
2976 		/* only resync enough to reach the next bad->good
2977 		 * transition */
2978 		good_sectors = min_bad;
2979 	}
2980 
2981 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2982 		/* extra read targets are also write targets */
2983 		write_targets += read_targets-1;
2984 
2985 	if (write_targets == 0 || read_targets == 0) {
2986 		/* There is nowhere to write, so all non-sync
2987 		 * drives must be failed - so we are finished
2988 		 */
2989 		sector_t rv;
2990 		if (min_bad > 0)
2991 			max_sector = sector_nr + min_bad;
2992 		rv = max_sector - sector_nr;
2993 		*skipped = 1;
2994 		put_buf(r1_bio);
2995 		return rv;
2996 	}
2997 
2998 	if (max_sector > mddev->resync_max)
2999 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3000 	if (max_sector > sector_nr + good_sectors)
3001 		max_sector = sector_nr + good_sectors;
3002 	nr_sectors = 0;
3003 	sync_blocks = 0;
3004 	do {
3005 		struct page *page;
3006 		int len = PAGE_SIZE;
3007 		if (sector_nr + (len>>9) > max_sector)
3008 			len = (max_sector - sector_nr) << 9;
3009 		if (len == 0)
3010 			break;
3011 		if (sync_blocks == 0) {
3012 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3013 						&sync_blocks, still_degraded) &&
3014 			    !conf->fullsync &&
3015 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3016 				break;
3017 			if ((len >> 9) > sync_blocks)
3018 				len = sync_blocks<<9;
3019 		}
3020 
3021 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3022 			struct resync_pages *rp;
3023 
3024 			bio = r1_bio->bios[i];
3025 			rp = get_resync_pages(bio);
3026 			if (bio->bi_end_io) {
3027 				page = resync_fetch_page(rp, page_idx);
3028 
3029 				/*
3030 				 * won't fail because the vec table is big
3031 				 * enough to hold all these pages
3032 				 */
3033 				__bio_add_page(bio, page, len, 0);
3034 			}
3035 		}
3036 		nr_sectors += len>>9;
3037 		sector_nr += len>>9;
3038 		sync_blocks -= (len>>9);
3039 	} while (++page_idx < RESYNC_PAGES);
3040 
3041 	r1_bio->sectors = nr_sectors;
3042 
3043 	if (mddev_is_clustered(mddev) &&
3044 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3045 		conf->cluster_sync_low = mddev->curr_resync_completed;
3046 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3047 		/* Send resync message */
3048 		md_cluster_ops->resync_info_update(mddev,
3049 				conf->cluster_sync_low,
3050 				conf->cluster_sync_high);
3051 	}
3052 
3053 	/* For a user-requested sync, we read all readable devices and do a
3054 	 * compare
3055 	 */
3056 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3057 		atomic_set(&r1_bio->remaining, read_targets);
3058 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3059 			bio = r1_bio->bios[i];
3060 			if (bio->bi_end_io == end_sync_read) {
3061 				read_targets--;
3062 				md_sync_acct_bio(bio, nr_sectors);
3063 				if (read_targets == 1)
3064 					bio->bi_opf &= ~MD_FAILFAST;
3065 				submit_bio_noacct(bio);
3066 			}
3067 		}
3068 	} else {
3069 		atomic_set(&r1_bio->remaining, 1);
3070 		bio = r1_bio->bios[r1_bio->read_disk];
3071 		md_sync_acct_bio(bio, nr_sectors);
3072 		if (read_targets == 1)
3073 			bio->bi_opf &= ~MD_FAILFAST;
3074 		submit_bio_noacct(bio);
3075 	}
3076 	return nr_sectors;
3077 }
3078 
3079 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3080 {
3081 	if (sectors)
3082 		return sectors;
3083 
3084 	return mddev->dev_sectors;
3085 }
3086 
3087 static struct r1conf *setup_conf(struct mddev *mddev)
3088 {
3089 	struct r1conf *conf;
3090 	int i;
3091 	struct raid1_info *disk;
3092 	struct md_rdev *rdev;
3093 	int err = -ENOMEM;
3094 
3095 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3096 	if (!conf)
3097 		goto abort;
3098 
3099 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3100 				   sizeof(atomic_t), GFP_KERNEL);
3101 	if (!conf->nr_pending)
3102 		goto abort;
3103 
3104 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3105 				   sizeof(atomic_t), GFP_KERNEL);
3106 	if (!conf->nr_waiting)
3107 		goto abort;
3108 
3109 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3110 				  sizeof(atomic_t), GFP_KERNEL);
3111 	if (!conf->nr_queued)
3112 		goto abort;
3113 
3114 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3115 				sizeof(atomic_t), GFP_KERNEL);
3116 	if (!conf->barrier)
3117 		goto abort;
3118 
3119 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3120 					    mddev->raid_disks, 2),
3121 				GFP_KERNEL);
3122 	if (!conf->mirrors)
3123 		goto abort;
3124 
3125 	conf->tmppage = alloc_page(GFP_KERNEL);
3126 	if (!conf->tmppage)
3127 		goto abort;
3128 
3129 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3130 	if (!conf->poolinfo)
3131 		goto abort;
3132 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3133 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3134 			   rbio_pool_free, conf->poolinfo);
3135 	if (err)
3136 		goto abort;
3137 
3138 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3139 	if (err)
3140 		goto abort;
3141 
3142 	conf->poolinfo->mddev = mddev;
3143 
3144 	err = -EINVAL;
3145 	spin_lock_init(&conf->device_lock);
3146 	conf->raid_disks = mddev->raid_disks;
3147 	rdev_for_each(rdev, mddev) {
3148 		int disk_idx = rdev->raid_disk;
3149 
3150 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3151 			continue;
3152 
3153 		if (!raid1_add_conf(conf, rdev, disk_idx,
3154 				    test_bit(Replacement, &rdev->flags)))
3155 			goto abort;
3156 	}
3157 	conf->mddev = mddev;
3158 	INIT_LIST_HEAD(&conf->retry_list);
3159 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3160 
3161 	spin_lock_init(&conf->resync_lock);
3162 	init_waitqueue_head(&conf->wait_barrier);
3163 
3164 	bio_list_init(&conf->pending_bio_list);
3165 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3166 
3167 	err = -EIO;
3168 	for (i = 0; i < conf->raid_disks * 2; i++) {
3169 
3170 		disk = conf->mirrors + i;
3171 
3172 		if (i < conf->raid_disks &&
3173 		    disk[conf->raid_disks].rdev) {
3174 			/* This slot has a replacement. */
3175 			if (!disk->rdev) {
3176 				/* No original, just make the replacement
3177 				 * a recovering spare
3178 				 */
3179 				disk->rdev =
3180 					disk[conf->raid_disks].rdev;
3181 				disk[conf->raid_disks].rdev = NULL;
3182 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3183 				/* Original is not in_sync - bad */
3184 				goto abort;
3185 		}
3186 
3187 		if (!disk->rdev ||
3188 		    !test_bit(In_sync, &disk->rdev->flags)) {
3189 			disk->head_position = 0;
3190 			if (disk->rdev &&
3191 			    (disk->rdev->saved_raid_disk < 0))
3192 				conf->fullsync = 1;
3193 		}
3194 	}
3195 
3196 	err = -ENOMEM;
3197 	rcu_assign_pointer(conf->thread,
3198 			   md_register_thread(raid1d, mddev, "raid1"));
3199 	if (!conf->thread)
3200 		goto abort;
3201 
3202 	return conf;
3203 
3204  abort:
3205 	if (conf) {
3206 		mempool_exit(&conf->r1bio_pool);
3207 		kfree(conf->mirrors);
3208 		safe_put_page(conf->tmppage);
3209 		kfree(conf->poolinfo);
3210 		kfree(conf->nr_pending);
3211 		kfree(conf->nr_waiting);
3212 		kfree(conf->nr_queued);
3213 		kfree(conf->barrier);
3214 		bioset_exit(&conf->bio_split);
3215 		kfree(conf);
3216 	}
3217 	return ERR_PTR(err);
3218 }
3219 
3220 static int raid1_set_limits(struct mddev *mddev)
3221 {
3222 	struct queue_limits lim;
3223 	int err;
3224 
3225 	md_init_stacking_limits(&lim);
3226 	lim.max_write_zeroes_sectors = 0;
3227 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3228 	if (err) {
3229 		queue_limits_cancel_update(mddev->gendisk->queue);
3230 		return err;
3231 	}
3232 	return queue_limits_set(mddev->gendisk->queue, &lim);
3233 }
3234 
3235 static int raid1_run(struct mddev *mddev)
3236 {
3237 	struct r1conf *conf;
3238 	int i;
3239 	int ret;
3240 
3241 	if (mddev->level != 1) {
3242 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3243 			mdname(mddev), mddev->level);
3244 		return -EIO;
3245 	}
3246 	if (mddev->reshape_position != MaxSector) {
3247 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3248 			mdname(mddev));
3249 		return -EIO;
3250 	}
3251 
3252 	/*
3253 	 * copy the already verified devices into our private RAID1
3254 	 * bookkeeping area. [whatever we allocate in run(),
3255 	 * should be freed in raid1_free()]
3256 	 */
3257 	if (mddev->private == NULL)
3258 		conf = setup_conf(mddev);
3259 	else
3260 		conf = mddev->private;
3261 
3262 	if (IS_ERR(conf))
3263 		return PTR_ERR(conf);
3264 
3265 	if (!mddev_is_dm(mddev)) {
3266 		ret = raid1_set_limits(mddev);
3267 		if (ret)
3268 			return ret;
3269 	}
3270 
3271 	mddev->degraded = 0;
3272 	for (i = 0; i < conf->raid_disks; i++)
3273 		if (conf->mirrors[i].rdev == NULL ||
3274 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3275 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3276 			mddev->degraded++;
3277 	/*
3278 	 * RAID1 needs at least one disk in active
3279 	 */
3280 	if (conf->raid_disks - mddev->degraded < 1) {
3281 		md_unregister_thread(mddev, &conf->thread);
3282 		return -EINVAL;
3283 	}
3284 
3285 	if (conf->raid_disks - mddev->degraded == 1)
3286 		mddev->recovery_cp = MaxSector;
3287 
3288 	if (mddev->recovery_cp != MaxSector)
3289 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3290 			mdname(mddev));
3291 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3292 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3293 		mddev->raid_disks);
3294 
3295 	/*
3296 	 * Ok, everything is just fine now
3297 	 */
3298 	rcu_assign_pointer(mddev->thread, conf->thread);
3299 	rcu_assign_pointer(conf->thread, NULL);
3300 	mddev->private = conf;
3301 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3302 
3303 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3304 
3305 	ret = md_integrity_register(mddev);
3306 	if (ret)
3307 		md_unregister_thread(mddev, &mddev->thread);
3308 	return ret;
3309 }
3310 
3311 static void raid1_free(struct mddev *mddev, void *priv)
3312 {
3313 	struct r1conf *conf = priv;
3314 
3315 	mempool_exit(&conf->r1bio_pool);
3316 	kfree(conf->mirrors);
3317 	safe_put_page(conf->tmppage);
3318 	kfree(conf->poolinfo);
3319 	kfree(conf->nr_pending);
3320 	kfree(conf->nr_waiting);
3321 	kfree(conf->nr_queued);
3322 	kfree(conf->barrier);
3323 	bioset_exit(&conf->bio_split);
3324 	kfree(conf);
3325 }
3326 
3327 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3328 {
3329 	/* no resync is happening, and there is enough space
3330 	 * on all devices, so we can resize.
3331 	 * We need to make sure resync covers any new space.
3332 	 * If the array is shrinking we should possibly wait until
3333 	 * any io in the removed space completes, but it hardly seems
3334 	 * worth it.
3335 	 */
3336 	sector_t newsize = raid1_size(mddev, sectors, 0);
3337 	int ret;
3338 
3339 	if (mddev->external_size &&
3340 	    mddev->array_sectors > newsize)
3341 		return -EINVAL;
3342 
3343 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3344 	if (ret)
3345 		return ret;
3346 
3347 	md_set_array_sectors(mddev, newsize);
3348 	if (sectors > mddev->dev_sectors &&
3349 	    mddev->recovery_cp > mddev->dev_sectors) {
3350 		mddev->recovery_cp = mddev->dev_sectors;
3351 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3352 	}
3353 	mddev->dev_sectors = sectors;
3354 	mddev->resync_max_sectors = sectors;
3355 	return 0;
3356 }
3357 
3358 static int raid1_reshape(struct mddev *mddev)
3359 {
3360 	/* We need to:
3361 	 * 1/ resize the r1bio_pool
3362 	 * 2/ resize conf->mirrors
3363 	 *
3364 	 * We allocate a new r1bio_pool if we can.
3365 	 * Then raise a device barrier and wait until all IO stops.
3366 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3367 	 *
3368 	 * At the same time, we "pack" the devices so that all the missing
3369 	 * devices have the higher raid_disk numbers.
3370 	 */
3371 	mempool_t newpool, oldpool;
3372 	struct pool_info *newpoolinfo;
3373 	struct raid1_info *newmirrors;
3374 	struct r1conf *conf = mddev->private;
3375 	int cnt, raid_disks;
3376 	unsigned long flags;
3377 	int d, d2;
3378 	int ret;
3379 
3380 	memset(&newpool, 0, sizeof(newpool));
3381 	memset(&oldpool, 0, sizeof(oldpool));
3382 
3383 	/* Cannot change chunk_size, layout, or level */
3384 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3385 	    mddev->layout != mddev->new_layout ||
3386 	    mddev->level != mddev->new_level) {
3387 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3388 		mddev->new_layout = mddev->layout;
3389 		mddev->new_level = mddev->level;
3390 		return -EINVAL;
3391 	}
3392 
3393 	if (!mddev_is_clustered(mddev))
3394 		md_allow_write(mddev);
3395 
3396 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3397 
3398 	if (raid_disks < conf->raid_disks) {
3399 		cnt=0;
3400 		for (d= 0; d < conf->raid_disks; d++)
3401 			if (conf->mirrors[d].rdev)
3402 				cnt++;
3403 		if (cnt > raid_disks)
3404 			return -EBUSY;
3405 	}
3406 
3407 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3408 	if (!newpoolinfo)
3409 		return -ENOMEM;
3410 	newpoolinfo->mddev = mddev;
3411 	newpoolinfo->raid_disks = raid_disks * 2;
3412 
3413 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3414 			   rbio_pool_free, newpoolinfo);
3415 	if (ret) {
3416 		kfree(newpoolinfo);
3417 		return ret;
3418 	}
3419 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3420 					 raid_disks, 2),
3421 			     GFP_KERNEL);
3422 	if (!newmirrors) {
3423 		kfree(newpoolinfo);
3424 		mempool_exit(&newpool);
3425 		return -ENOMEM;
3426 	}
3427 
3428 	freeze_array(conf, 0);
3429 
3430 	/* ok, everything is stopped */
3431 	oldpool = conf->r1bio_pool;
3432 	conf->r1bio_pool = newpool;
3433 
3434 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3435 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3436 		if (rdev && rdev->raid_disk != d2) {
3437 			sysfs_unlink_rdev(mddev, rdev);
3438 			rdev->raid_disk = d2;
3439 			sysfs_unlink_rdev(mddev, rdev);
3440 			if (sysfs_link_rdev(mddev, rdev))
3441 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3442 					mdname(mddev), rdev->raid_disk);
3443 		}
3444 		if (rdev)
3445 			newmirrors[d2++].rdev = rdev;
3446 	}
3447 	kfree(conf->mirrors);
3448 	conf->mirrors = newmirrors;
3449 	kfree(conf->poolinfo);
3450 	conf->poolinfo = newpoolinfo;
3451 
3452 	spin_lock_irqsave(&conf->device_lock, flags);
3453 	mddev->degraded += (raid_disks - conf->raid_disks);
3454 	spin_unlock_irqrestore(&conf->device_lock, flags);
3455 	conf->raid_disks = mddev->raid_disks = raid_disks;
3456 	mddev->delta_disks = 0;
3457 
3458 	unfreeze_array(conf);
3459 
3460 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3461 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3462 	md_wakeup_thread(mddev->thread);
3463 
3464 	mempool_exit(&oldpool);
3465 	return 0;
3466 }
3467 
3468 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3469 {
3470 	struct r1conf *conf = mddev->private;
3471 
3472 	if (quiesce)
3473 		freeze_array(conf, 0);
3474 	else
3475 		unfreeze_array(conf);
3476 }
3477 
3478 static void *raid1_takeover(struct mddev *mddev)
3479 {
3480 	/* raid1 can take over:
3481 	 *  raid5 with 2 devices, any layout or chunk size
3482 	 */
3483 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3484 		struct r1conf *conf;
3485 		mddev->new_level = 1;
3486 		mddev->new_layout = 0;
3487 		mddev->new_chunk_sectors = 0;
3488 		conf = setup_conf(mddev);
3489 		if (!IS_ERR(conf)) {
3490 			/* Array must appear to be quiesced */
3491 			conf->array_frozen = 1;
3492 			mddev_clear_unsupported_flags(mddev,
3493 				UNSUPPORTED_MDDEV_FLAGS);
3494 		}
3495 		return conf;
3496 	}
3497 	return ERR_PTR(-EINVAL);
3498 }
3499 
3500 static struct md_personality raid1_personality =
3501 {
3502 	.name		= "raid1",
3503 	.level		= 1,
3504 	.owner		= THIS_MODULE,
3505 	.make_request	= raid1_make_request,
3506 	.run		= raid1_run,
3507 	.free		= raid1_free,
3508 	.status		= raid1_status,
3509 	.error_handler	= raid1_error,
3510 	.hot_add_disk	= raid1_add_disk,
3511 	.hot_remove_disk= raid1_remove_disk,
3512 	.spare_active	= raid1_spare_active,
3513 	.sync_request	= raid1_sync_request,
3514 	.resize		= raid1_resize,
3515 	.size		= raid1_size,
3516 	.check_reshape	= raid1_reshape,
3517 	.quiesce	= raid1_quiesce,
3518 	.takeover	= raid1_takeover,
3519 };
3520 
3521 static int __init raid_init(void)
3522 {
3523 	return register_md_personality(&raid1_personality);
3524 }
3525 
3526 static void raid_exit(void)
3527 {
3528 	unregister_md_personality(&raid1_personality);
3529 }
3530 
3531 module_init(raid_init);
3532 module_exit(raid_exit);
3533 MODULE_LICENSE("GPL");
3534 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3535 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3536 MODULE_ALIAS("md-raid1");
3537 MODULE_ALIAS("md-level-1");
3538