xref: /linux/drivers/md/raid1.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void unplug_slaves(mddev_t *mddev);
56 
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59 
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 	struct pool_info *pi = data;
63 	r1bio_t *r1_bio;
64 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 
66 	/* allocate a r1bio with room for raid_disks entries in the bios array */
67 	r1_bio = kzalloc(size, gfp_flags);
68 	if (!r1_bio && pi->mddev)
69 		unplug_slaves(pi->mddev);
70 
71 	return r1_bio;
72 }
73 
74 static void r1bio_pool_free(void *r1_bio, void *data)
75 {
76 	kfree(r1_bio);
77 }
78 
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84 
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 {
87 	struct pool_info *pi = data;
88 	struct page *page;
89 	r1bio_t *r1_bio;
90 	struct bio *bio;
91 	int i, j;
92 
93 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 	if (!r1_bio) {
95 		unplug_slaves(pi->mddev);
96 		return NULL;
97 	}
98 
99 	/*
100 	 * Allocate bios : 1 for reading, n-1 for writing
101 	 */
102 	for (j = pi->raid_disks ; j-- ; ) {
103 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
104 		if (!bio)
105 			goto out_free_bio;
106 		r1_bio->bios[j] = bio;
107 	}
108 	/*
109 	 * Allocate RESYNC_PAGES data pages and attach them to
110 	 * the first bio.
111 	 * If this is a user-requested check/repair, allocate
112 	 * RESYNC_PAGES for each bio.
113 	 */
114 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 		j = pi->raid_disks;
116 	else
117 		j = 1;
118 	while(j--) {
119 		bio = r1_bio->bios[j];
120 		for (i = 0; i < RESYNC_PAGES; i++) {
121 			page = alloc_page(gfp_flags);
122 			if (unlikely(!page))
123 				goto out_free_pages;
124 
125 			bio->bi_io_vec[i].bv_page = page;
126 			bio->bi_vcnt = i+1;
127 		}
128 	}
129 	/* If not user-requests, copy the page pointers to all bios */
130 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 		for (i=0; i<RESYNC_PAGES ; i++)
132 			for (j=1; j<pi->raid_disks; j++)
133 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
135 	}
136 
137 	r1_bio->master_bio = NULL;
138 
139 	return r1_bio;
140 
141 out_free_pages:
142 	for (j=0 ; j < pi->raid_disks; j++)
143 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 	j = -1;
146 out_free_bio:
147 	while ( ++j < pi->raid_disks )
148 		bio_put(r1_bio->bios[j]);
149 	r1bio_pool_free(r1_bio, data);
150 	return NULL;
151 }
152 
153 static void r1buf_pool_free(void *__r1_bio, void *data)
154 {
155 	struct pool_info *pi = data;
156 	int i,j;
157 	r1bio_t *r1bio = __r1_bio;
158 
159 	for (i = 0; i < RESYNC_PAGES; i++)
160 		for (j = pi->raid_disks; j-- ;) {
161 			if (j == 0 ||
162 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
164 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 		}
166 	for (i=0 ; i < pi->raid_disks; i++)
167 		bio_put(r1bio->bios[i]);
168 
169 	r1bio_pool_free(r1bio, data);
170 }
171 
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 {
174 	int i;
175 
176 	for (i = 0; i < conf->raid_disks; i++) {
177 		struct bio **bio = r1_bio->bios + i;
178 		if (*bio && *bio != IO_BLOCKED)
179 			bio_put(*bio);
180 		*bio = NULL;
181 	}
182 }
183 
184 static void free_r1bio(r1bio_t *r1_bio)
185 {
186 	conf_t *conf = r1_bio->mddev->private;
187 
188 	/*
189 	 * Wake up any possible resync thread that waits for the device
190 	 * to go idle.
191 	 */
192 	allow_barrier(conf);
193 
194 	put_all_bios(conf, r1_bio);
195 	mempool_free(r1_bio, conf->r1bio_pool);
196 }
197 
198 static void put_buf(r1bio_t *r1_bio)
199 {
200 	conf_t *conf = r1_bio->mddev->private;
201 	int i;
202 
203 	for (i=0; i<conf->raid_disks; i++) {
204 		struct bio *bio = r1_bio->bios[i];
205 		if (bio->bi_end_io)
206 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
207 	}
208 
209 	mempool_free(r1_bio, conf->r1buf_pool);
210 
211 	lower_barrier(conf);
212 }
213 
214 static void reschedule_retry(r1bio_t *r1_bio)
215 {
216 	unsigned long flags;
217 	mddev_t *mddev = r1_bio->mddev;
218 	conf_t *conf = mddev->private;
219 
220 	spin_lock_irqsave(&conf->device_lock, flags);
221 	list_add(&r1_bio->retry_list, &conf->retry_list);
222 	conf->nr_queued ++;
223 	spin_unlock_irqrestore(&conf->device_lock, flags);
224 
225 	wake_up(&conf->wait_barrier);
226 	md_wakeup_thread(mddev->thread);
227 }
228 
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r1bio_t *r1_bio)
235 {
236 	struct bio *bio = r1_bio->master_bio;
237 
238 	/* if nobody has done the final endio yet, do it now */
239 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
242 			(unsigned long long) bio->bi_sector,
243 			(unsigned long long) bio->bi_sector +
244 				(bio->bi_size >> 9) - 1);
245 
246 		bio_endio(bio,
247 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 	}
249 	free_r1bio(r1_bio);
250 }
251 
252 /*
253  * Update disk head position estimator based on IRQ completion info.
254  */
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 {
257 	conf_t *conf = r1_bio->mddev->private;
258 
259 	conf->mirrors[disk].head_position =
260 		r1_bio->sector + (r1_bio->sectors);
261 }
262 
263 static void raid1_end_read_request(struct bio *bio, int error)
264 {
265 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
267 	int mirror;
268 	conf_t *conf = r1_bio->mddev->private;
269 
270 	mirror = r1_bio->read_disk;
271 	/*
272 	 * this branch is our 'one mirror IO has finished' event handler:
273 	 */
274 	update_head_pos(mirror, r1_bio);
275 
276 	if (uptodate)
277 		set_bit(R1BIO_Uptodate, &r1_bio->state);
278 	else {
279 		/* If all other devices have failed, we want to return
280 		 * the error upwards rather than fail the last device.
281 		 * Here we redefine "uptodate" to mean "Don't want to retry"
282 		 */
283 		unsigned long flags;
284 		spin_lock_irqsave(&conf->device_lock, flags);
285 		if (r1_bio->mddev->degraded == conf->raid_disks ||
286 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 			uptodate = 1;
289 		spin_unlock_irqrestore(&conf->device_lock, flags);
290 	}
291 
292 	if (uptodate)
293 		raid_end_bio_io(r1_bio);
294 	else {
295 		/*
296 		 * oops, read error:
297 		 */
298 		char b[BDEVNAME_SIZE];
299 		if (printk_ratelimit())
300 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
301 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
302 		reschedule_retry(r1_bio);
303 	}
304 
305 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
306 }
307 
308 static void raid1_end_write_request(struct bio *bio, int error)
309 {
310 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
311 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
312 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
313 	conf_t *conf = r1_bio->mddev->private;
314 	struct bio *to_put = NULL;
315 
316 
317 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
318 		if (r1_bio->bios[mirror] == bio)
319 			break;
320 
321 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
322 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
323 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
324 		r1_bio->mddev->barriers_work = 0;
325 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
326 	} else {
327 		/*
328 		 * this branch is our 'one mirror IO has finished' event handler:
329 		 */
330 		r1_bio->bios[mirror] = NULL;
331 		to_put = bio;
332 		if (!uptodate) {
333 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
334 			/* an I/O failed, we can't clear the bitmap */
335 			set_bit(R1BIO_Degraded, &r1_bio->state);
336 		} else
337 			/*
338 			 * Set R1BIO_Uptodate in our master bio, so that
339 			 * we will return a good error code for to the higher
340 			 * levels even if IO on some other mirrored buffer fails.
341 			 *
342 			 * The 'master' represents the composite IO operation to
343 			 * user-side. So if something waits for IO, then it will
344 			 * wait for the 'master' bio.
345 			 */
346 			set_bit(R1BIO_Uptodate, &r1_bio->state);
347 
348 		update_head_pos(mirror, r1_bio);
349 
350 		if (behind) {
351 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
352 				atomic_dec(&r1_bio->behind_remaining);
353 
354 			/* In behind mode, we ACK the master bio once the I/O has safely
355 			 * reached all non-writemostly disks. Setting the Returned bit
356 			 * ensures that this gets done only once -- we don't ever want to
357 			 * return -EIO here, instead we'll wait */
358 
359 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
360 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
361 				/* Maybe we can return now */
362 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
363 					struct bio *mbio = r1_bio->master_bio;
364 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
365 					       (unsigned long long) mbio->bi_sector,
366 					       (unsigned long long) mbio->bi_sector +
367 					       (mbio->bi_size >> 9) - 1);
368 					bio_endio(mbio, 0);
369 				}
370 			}
371 		}
372 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
373 	}
374 	/*
375 	 *
376 	 * Let's see if all mirrored write operations have finished
377 	 * already.
378 	 */
379 	if (atomic_dec_and_test(&r1_bio->remaining)) {
380 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
381 			reschedule_retry(r1_bio);
382 		else {
383 			/* it really is the end of this request */
384 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
385 				/* free extra copy of the data pages */
386 				int i = bio->bi_vcnt;
387 				while (i--)
388 					safe_put_page(bio->bi_io_vec[i].bv_page);
389 			}
390 			/* clear the bitmap if all writes complete successfully */
391 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
392 					r1_bio->sectors,
393 					!test_bit(R1BIO_Degraded, &r1_bio->state),
394 					behind);
395 			md_write_end(r1_bio->mddev);
396 			raid_end_bio_io(r1_bio);
397 		}
398 	}
399 
400 	if (to_put)
401 		bio_put(to_put);
402 }
403 
404 
405 /*
406  * This routine returns the disk from which the requested read should
407  * be done. There is a per-array 'next expected sequential IO' sector
408  * number - if this matches on the next IO then we use the last disk.
409  * There is also a per-disk 'last know head position' sector that is
410  * maintained from IRQ contexts, both the normal and the resync IO
411  * completion handlers update this position correctly. If there is no
412  * perfect sequential match then we pick the disk whose head is closest.
413  *
414  * If there are 2 mirrors in the same 2 devices, performance degrades
415  * because position is mirror, not device based.
416  *
417  * The rdev for the device selected will have nr_pending incremented.
418  */
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 {
421 	const unsigned long this_sector = r1_bio->sector;
422 	int new_disk = conf->last_used, disk = new_disk;
423 	int wonly_disk = -1;
424 	const int sectors = r1_bio->sectors;
425 	sector_t new_distance, current_distance;
426 	mdk_rdev_t *rdev;
427 
428 	rcu_read_lock();
429 	/*
430 	 * Check if we can balance. We can balance on the whole
431 	 * device if no resync is going on, or below the resync window.
432 	 * We take the first readable disk when above the resync window.
433 	 */
434  retry:
435 	if (conf->mddev->recovery_cp < MaxSector &&
436 	    (this_sector + sectors >= conf->next_resync)) {
437 		/* Choose the first operation device, for consistancy */
438 		new_disk = 0;
439 
440 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
441 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
442 		     !rdev || !test_bit(In_sync, &rdev->flags)
443 			     || test_bit(WriteMostly, &rdev->flags);
444 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 
446 			if (rdev && test_bit(In_sync, &rdev->flags) &&
447 				r1_bio->bios[new_disk] != IO_BLOCKED)
448 				wonly_disk = new_disk;
449 
450 			if (new_disk == conf->raid_disks - 1) {
451 				new_disk = wonly_disk;
452 				break;
453 			}
454 		}
455 		goto rb_out;
456 	}
457 
458 
459 	/* make sure the disk is operational */
460 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
461 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
462 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
463 		     test_bit(WriteMostly, &rdev->flags);
464 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 
466 		if (rdev && test_bit(In_sync, &rdev->flags) &&
467 		    r1_bio->bios[new_disk] != IO_BLOCKED)
468 			wonly_disk = new_disk;
469 
470 		if (new_disk <= 0)
471 			new_disk = conf->raid_disks;
472 		new_disk--;
473 		if (new_disk == disk) {
474 			new_disk = wonly_disk;
475 			break;
476 		}
477 	}
478 
479 	if (new_disk < 0)
480 		goto rb_out;
481 
482 	disk = new_disk;
483 	/* now disk == new_disk == starting point for search */
484 
485 	/*
486 	 * Don't change to another disk for sequential reads:
487 	 */
488 	if (conf->next_seq_sect == this_sector)
489 		goto rb_out;
490 	if (this_sector == conf->mirrors[new_disk].head_position)
491 		goto rb_out;
492 
493 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 
495 	/* Find the disk whose head is closest */
496 
497 	do {
498 		if (disk <= 0)
499 			disk = conf->raid_disks;
500 		disk--;
501 
502 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 
504 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
505 		    !test_bit(In_sync, &rdev->flags) ||
506 		    test_bit(WriteMostly, &rdev->flags))
507 			continue;
508 
509 		if (!atomic_read(&rdev->nr_pending)) {
510 			new_disk = disk;
511 			break;
512 		}
513 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
514 		if (new_distance < current_distance) {
515 			current_distance = new_distance;
516 			new_disk = disk;
517 		}
518 	} while (disk != conf->last_used);
519 
520  rb_out:
521 
522 
523 	if (new_disk >= 0) {
524 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
525 		if (!rdev)
526 			goto retry;
527 		atomic_inc(&rdev->nr_pending);
528 		if (!test_bit(In_sync, &rdev->flags)) {
529 			/* cannot risk returning a device that failed
530 			 * before we inc'ed nr_pending
531 			 */
532 			rdev_dec_pending(rdev, conf->mddev);
533 			goto retry;
534 		}
535 		conf->next_seq_sect = this_sector + sectors;
536 		conf->last_used = new_disk;
537 	}
538 	rcu_read_unlock();
539 
540 	return new_disk;
541 }
542 
543 static void unplug_slaves(mddev_t *mddev)
544 {
545 	conf_t *conf = mddev->private;
546 	int i;
547 
548 	rcu_read_lock();
549 	for (i=0; i<mddev->raid_disks; i++) {
550 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
551 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
552 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
553 
554 			atomic_inc(&rdev->nr_pending);
555 			rcu_read_unlock();
556 
557 			blk_unplug(r_queue);
558 
559 			rdev_dec_pending(rdev, mddev);
560 			rcu_read_lock();
561 		}
562 	}
563 	rcu_read_unlock();
564 }
565 
566 static void raid1_unplug(struct request_queue *q)
567 {
568 	mddev_t *mddev = q->queuedata;
569 
570 	unplug_slaves(mddev);
571 	md_wakeup_thread(mddev->thread);
572 }
573 
574 static int raid1_congested(void *data, int bits)
575 {
576 	mddev_t *mddev = data;
577 	conf_t *conf = mddev->private;
578 	int i, ret = 0;
579 
580 	if (mddev_congested(mddev, bits))
581 		return 1;
582 
583 	rcu_read_lock();
584 	for (i = 0; i < mddev->raid_disks; i++) {
585 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
587 			struct request_queue *q = bdev_get_queue(rdev->bdev);
588 
589 			/* Note the '|| 1' - when read_balance prefers
590 			 * non-congested targets, it can be removed
591 			 */
592 			if ((bits & (1<<BDI_async_congested)) || 1)
593 				ret |= bdi_congested(&q->backing_dev_info, bits);
594 			else
595 				ret &= bdi_congested(&q->backing_dev_info, bits);
596 		}
597 	}
598 	rcu_read_unlock();
599 	return ret;
600 }
601 
602 
603 static int flush_pending_writes(conf_t *conf)
604 {
605 	/* Any writes that have been queued but are awaiting
606 	 * bitmap updates get flushed here.
607 	 * We return 1 if any requests were actually submitted.
608 	 */
609 	int rv = 0;
610 
611 	spin_lock_irq(&conf->device_lock);
612 
613 	if (conf->pending_bio_list.head) {
614 		struct bio *bio;
615 		bio = bio_list_get(&conf->pending_bio_list);
616 		blk_remove_plug(conf->mddev->queue);
617 		spin_unlock_irq(&conf->device_lock);
618 		/* flush any pending bitmap writes to
619 		 * disk before proceeding w/ I/O */
620 		bitmap_unplug(conf->mddev->bitmap);
621 
622 		while (bio) { /* submit pending writes */
623 			struct bio *next = bio->bi_next;
624 			bio->bi_next = NULL;
625 			generic_make_request(bio);
626 			bio = next;
627 		}
628 		rv = 1;
629 	} else
630 		spin_unlock_irq(&conf->device_lock);
631 	return rv;
632 }
633 
634 /* Barriers....
635  * Sometimes we need to suspend IO while we do something else,
636  * either some resync/recovery, or reconfigure the array.
637  * To do this we raise a 'barrier'.
638  * The 'barrier' is a counter that can be raised multiple times
639  * to count how many activities are happening which preclude
640  * normal IO.
641  * We can only raise the barrier if there is no pending IO.
642  * i.e. if nr_pending == 0.
643  * We choose only to raise the barrier if no-one is waiting for the
644  * barrier to go down.  This means that as soon as an IO request
645  * is ready, no other operations which require a barrier will start
646  * until the IO request has had a chance.
647  *
648  * So: regular IO calls 'wait_barrier'.  When that returns there
649  *    is no backgroup IO happening,  It must arrange to call
650  *    allow_barrier when it has finished its IO.
651  * backgroup IO calls must call raise_barrier.  Once that returns
652  *    there is no normal IO happeing.  It must arrange to call
653  *    lower_barrier when the particular background IO completes.
654  */
655 #define RESYNC_DEPTH 32
656 
657 static void raise_barrier(conf_t *conf)
658 {
659 	spin_lock_irq(&conf->resync_lock);
660 
661 	/* Wait until no block IO is waiting */
662 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
663 			    conf->resync_lock,
664 			    raid1_unplug(conf->mddev->queue));
665 
666 	/* block any new IO from starting */
667 	conf->barrier++;
668 
669 	/* No wait for all pending IO to complete */
670 	wait_event_lock_irq(conf->wait_barrier,
671 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
672 			    conf->resync_lock,
673 			    raid1_unplug(conf->mddev->queue));
674 
675 	spin_unlock_irq(&conf->resync_lock);
676 }
677 
678 static void lower_barrier(conf_t *conf)
679 {
680 	unsigned long flags;
681 	BUG_ON(conf->barrier <= 0);
682 	spin_lock_irqsave(&conf->resync_lock, flags);
683 	conf->barrier--;
684 	spin_unlock_irqrestore(&conf->resync_lock, flags);
685 	wake_up(&conf->wait_barrier);
686 }
687 
688 static void wait_barrier(conf_t *conf)
689 {
690 	spin_lock_irq(&conf->resync_lock);
691 	if (conf->barrier) {
692 		conf->nr_waiting++;
693 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
694 				    conf->resync_lock,
695 				    raid1_unplug(conf->mddev->queue));
696 		conf->nr_waiting--;
697 	}
698 	conf->nr_pending++;
699 	spin_unlock_irq(&conf->resync_lock);
700 }
701 
702 static void allow_barrier(conf_t *conf)
703 {
704 	unsigned long flags;
705 	spin_lock_irqsave(&conf->resync_lock, flags);
706 	conf->nr_pending--;
707 	spin_unlock_irqrestore(&conf->resync_lock, flags);
708 	wake_up(&conf->wait_barrier);
709 }
710 
711 static void freeze_array(conf_t *conf)
712 {
713 	/* stop syncio and normal IO and wait for everything to
714 	 * go quite.
715 	 * We increment barrier and nr_waiting, and then
716 	 * wait until nr_pending match nr_queued+1
717 	 * This is called in the context of one normal IO request
718 	 * that has failed. Thus any sync request that might be pending
719 	 * will be blocked by nr_pending, and we need to wait for
720 	 * pending IO requests to complete or be queued for re-try.
721 	 * Thus the number queued (nr_queued) plus this request (1)
722 	 * must match the number of pending IOs (nr_pending) before
723 	 * we continue.
724 	 */
725 	spin_lock_irq(&conf->resync_lock);
726 	conf->barrier++;
727 	conf->nr_waiting++;
728 	wait_event_lock_irq(conf->wait_barrier,
729 			    conf->nr_pending == conf->nr_queued+1,
730 			    conf->resync_lock,
731 			    ({ flush_pending_writes(conf);
732 			       raid1_unplug(conf->mddev->queue); }));
733 	spin_unlock_irq(&conf->resync_lock);
734 }
735 static void unfreeze_array(conf_t *conf)
736 {
737 	/* reverse the effect of the freeze */
738 	spin_lock_irq(&conf->resync_lock);
739 	conf->barrier--;
740 	conf->nr_waiting--;
741 	wake_up(&conf->wait_barrier);
742 	spin_unlock_irq(&conf->resync_lock);
743 }
744 
745 
746 /* duplicate the data pages for behind I/O */
747 static struct page **alloc_behind_pages(struct bio *bio)
748 {
749 	int i;
750 	struct bio_vec *bvec;
751 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
752 					GFP_NOIO);
753 	if (unlikely(!pages))
754 		goto do_sync_io;
755 
756 	bio_for_each_segment(bvec, bio, i) {
757 		pages[i] = alloc_page(GFP_NOIO);
758 		if (unlikely(!pages[i]))
759 			goto do_sync_io;
760 		memcpy(kmap(pages[i]) + bvec->bv_offset,
761 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
762 		kunmap(pages[i]);
763 		kunmap(bvec->bv_page);
764 	}
765 
766 	return pages;
767 
768 do_sync_io:
769 	if (pages)
770 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
771 			put_page(pages[i]);
772 	kfree(pages);
773 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
774 	return NULL;
775 }
776 
777 static int make_request(struct request_queue *q, struct bio * bio)
778 {
779 	mddev_t *mddev = q->queuedata;
780 	conf_t *conf = mddev->private;
781 	mirror_info_t *mirror;
782 	r1bio_t *r1_bio;
783 	struct bio *read_bio;
784 	int i, targets = 0, disks;
785 	struct bitmap *bitmap;
786 	unsigned long flags;
787 	struct bio_list bl;
788 	struct page **behind_pages = NULL;
789 	const int rw = bio_data_dir(bio);
790 	const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
791 	int cpu;
792 	bool do_barriers;
793 	mdk_rdev_t *blocked_rdev;
794 
795 	/*
796 	 * Register the new request and wait if the reconstruction
797 	 * thread has put up a bar for new requests.
798 	 * Continue immediately if no resync is active currently.
799 	 * We test barriers_work *after* md_write_start as md_write_start
800 	 * may cause the first superblock write, and that will check out
801 	 * if barriers work.
802 	 */
803 
804 	md_write_start(mddev, bio); /* wait on superblock update early */
805 
806 	if (bio_data_dir(bio) == WRITE &&
807 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
808 	    bio->bi_sector < mddev->suspend_hi) {
809 		/* As the suspend_* range is controlled by
810 		 * userspace, we want an interruptible
811 		 * wait.
812 		 */
813 		DEFINE_WAIT(w);
814 		for (;;) {
815 			flush_signals(current);
816 			prepare_to_wait(&conf->wait_barrier,
817 					&w, TASK_INTERRUPTIBLE);
818 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
819 			    bio->bi_sector >= mddev->suspend_hi)
820 				break;
821 			schedule();
822 		}
823 		finish_wait(&conf->wait_barrier, &w);
824 	}
825 	if (unlikely(!mddev->barriers_work &&
826 		     bio_rw_flagged(bio, BIO_RW_BARRIER))) {
827 		if (rw == WRITE)
828 			md_write_end(mddev);
829 		bio_endio(bio, -EOPNOTSUPP);
830 		return 0;
831 	}
832 
833 	wait_barrier(conf);
834 
835 	bitmap = mddev->bitmap;
836 
837 	cpu = part_stat_lock();
838 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
839 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
840 		      bio_sectors(bio));
841 	part_stat_unlock();
842 
843 	/*
844 	 * make_request() can abort the operation when READA is being
845 	 * used and no empty request is available.
846 	 *
847 	 */
848 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
849 
850 	r1_bio->master_bio = bio;
851 	r1_bio->sectors = bio->bi_size >> 9;
852 	r1_bio->state = 0;
853 	r1_bio->mddev = mddev;
854 	r1_bio->sector = bio->bi_sector;
855 
856 	if (rw == READ) {
857 		/*
858 		 * read balancing logic:
859 		 */
860 		int rdisk = read_balance(conf, r1_bio);
861 
862 		if (rdisk < 0) {
863 			/* couldn't find anywhere to read from */
864 			raid_end_bio_io(r1_bio);
865 			return 0;
866 		}
867 		mirror = conf->mirrors + rdisk;
868 
869 		r1_bio->read_disk = rdisk;
870 
871 		read_bio = bio_clone(bio, GFP_NOIO);
872 
873 		r1_bio->bios[rdisk] = read_bio;
874 
875 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
876 		read_bio->bi_bdev = mirror->rdev->bdev;
877 		read_bio->bi_end_io = raid1_end_read_request;
878 		read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
879 		read_bio->bi_private = r1_bio;
880 
881 		generic_make_request(read_bio);
882 		return 0;
883 	}
884 
885 	/*
886 	 * WRITE:
887 	 */
888 	/* first select target devices under spinlock and
889 	 * inc refcount on their rdev.  Record them by setting
890 	 * bios[x] to bio
891 	 */
892 	disks = conf->raid_disks;
893 #if 0
894 	{ static int first=1;
895 	if (first) printk("First Write sector %llu disks %d\n",
896 			  (unsigned long long)r1_bio->sector, disks);
897 	first = 0;
898 	}
899 #endif
900  retry_write:
901 	blocked_rdev = NULL;
902 	rcu_read_lock();
903 	for (i = 0;  i < disks; i++) {
904 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
905 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
906 			atomic_inc(&rdev->nr_pending);
907 			blocked_rdev = rdev;
908 			break;
909 		}
910 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
911 			atomic_inc(&rdev->nr_pending);
912 			if (test_bit(Faulty, &rdev->flags)) {
913 				rdev_dec_pending(rdev, mddev);
914 				r1_bio->bios[i] = NULL;
915 			} else
916 				r1_bio->bios[i] = bio;
917 			targets++;
918 		} else
919 			r1_bio->bios[i] = NULL;
920 	}
921 	rcu_read_unlock();
922 
923 	if (unlikely(blocked_rdev)) {
924 		/* Wait for this device to become unblocked */
925 		int j;
926 
927 		for (j = 0; j < i; j++)
928 			if (r1_bio->bios[j])
929 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
930 
931 		allow_barrier(conf);
932 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
933 		wait_barrier(conf);
934 		goto retry_write;
935 	}
936 
937 	BUG_ON(targets == 0); /* we never fail the last device */
938 
939 	if (targets < conf->raid_disks) {
940 		/* array is degraded, we will not clear the bitmap
941 		 * on I/O completion (see raid1_end_write_request) */
942 		set_bit(R1BIO_Degraded, &r1_bio->state);
943 	}
944 
945 	/* do behind I/O ? */
946 	if (bitmap &&
947 	    (atomic_read(&bitmap->behind_writes)
948 	     < mddev->bitmap_info.max_write_behind) &&
949 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
950 		set_bit(R1BIO_BehindIO, &r1_bio->state);
951 
952 	atomic_set(&r1_bio->remaining, 0);
953 	atomic_set(&r1_bio->behind_remaining, 0);
954 
955 	do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
956 	if (do_barriers)
957 		set_bit(R1BIO_Barrier, &r1_bio->state);
958 
959 	bio_list_init(&bl);
960 	for (i = 0; i < disks; i++) {
961 		struct bio *mbio;
962 		if (!r1_bio->bios[i])
963 			continue;
964 
965 		mbio = bio_clone(bio, GFP_NOIO);
966 		r1_bio->bios[i] = mbio;
967 
968 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
969 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
970 		mbio->bi_end_io	= raid1_end_write_request;
971 		mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
972 			(do_sync << BIO_RW_SYNCIO);
973 		mbio->bi_private = r1_bio;
974 
975 		if (behind_pages) {
976 			struct bio_vec *bvec;
977 			int j;
978 
979 			/* Yes, I really want the '__' version so that
980 			 * we clear any unused pointer in the io_vec, rather
981 			 * than leave them unchanged.  This is important
982 			 * because when we come to free the pages, we won't
983 			 * know the originial bi_idx, so we just free
984 			 * them all
985 			 */
986 			__bio_for_each_segment(bvec, mbio, j, 0)
987 				bvec->bv_page = behind_pages[j];
988 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
989 				atomic_inc(&r1_bio->behind_remaining);
990 		}
991 
992 		atomic_inc(&r1_bio->remaining);
993 
994 		bio_list_add(&bl, mbio);
995 	}
996 	kfree(behind_pages); /* the behind pages are attached to the bios now */
997 
998 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
999 				test_bit(R1BIO_BehindIO, &r1_bio->state));
1000 	spin_lock_irqsave(&conf->device_lock, flags);
1001 	bio_list_merge(&conf->pending_bio_list, &bl);
1002 	bio_list_init(&bl);
1003 
1004 	blk_plug_device(mddev->queue);
1005 	spin_unlock_irqrestore(&conf->device_lock, flags);
1006 
1007 	/* In case raid1d snuck into freeze_array */
1008 	wake_up(&conf->wait_barrier);
1009 
1010 	if (do_sync)
1011 		md_wakeup_thread(mddev->thread);
1012 #if 0
1013 	while ((bio = bio_list_pop(&bl)) != NULL)
1014 		generic_make_request(bio);
1015 #endif
1016 
1017 	return 0;
1018 }
1019 
1020 static void status(struct seq_file *seq, mddev_t *mddev)
1021 {
1022 	conf_t *conf = mddev->private;
1023 	int i;
1024 
1025 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1026 		   conf->raid_disks - mddev->degraded);
1027 	rcu_read_lock();
1028 	for (i = 0; i < conf->raid_disks; i++) {
1029 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1030 		seq_printf(seq, "%s",
1031 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1032 	}
1033 	rcu_read_unlock();
1034 	seq_printf(seq, "]");
1035 }
1036 
1037 
1038 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1039 {
1040 	char b[BDEVNAME_SIZE];
1041 	conf_t *conf = mddev->private;
1042 
1043 	/*
1044 	 * If it is not operational, then we have already marked it as dead
1045 	 * else if it is the last working disks, ignore the error, let the
1046 	 * next level up know.
1047 	 * else mark the drive as failed
1048 	 */
1049 	if (test_bit(In_sync, &rdev->flags)
1050 	    && (conf->raid_disks - mddev->degraded) == 1) {
1051 		/*
1052 		 * Don't fail the drive, act as though we were just a
1053 		 * normal single drive.
1054 		 * However don't try a recovery from this drive as
1055 		 * it is very likely to fail.
1056 		 */
1057 		mddev->recovery_disabled = 1;
1058 		return;
1059 	}
1060 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1061 		unsigned long flags;
1062 		spin_lock_irqsave(&conf->device_lock, flags);
1063 		mddev->degraded++;
1064 		set_bit(Faulty, &rdev->flags);
1065 		spin_unlock_irqrestore(&conf->device_lock, flags);
1066 		/*
1067 		 * if recovery is running, make sure it aborts.
1068 		 */
1069 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1070 	} else
1071 		set_bit(Faulty, &rdev->flags);
1072 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1073 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1074 		"raid1: Operation continuing on %d devices.\n",
1075 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1076 }
1077 
1078 static void print_conf(conf_t *conf)
1079 {
1080 	int i;
1081 
1082 	printk("RAID1 conf printout:\n");
1083 	if (!conf) {
1084 		printk("(!conf)\n");
1085 		return;
1086 	}
1087 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1088 		conf->raid_disks);
1089 
1090 	rcu_read_lock();
1091 	for (i = 0; i < conf->raid_disks; i++) {
1092 		char b[BDEVNAME_SIZE];
1093 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1094 		if (rdev)
1095 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1096 			       i, !test_bit(In_sync, &rdev->flags),
1097 			       !test_bit(Faulty, &rdev->flags),
1098 			       bdevname(rdev->bdev,b));
1099 	}
1100 	rcu_read_unlock();
1101 }
1102 
1103 static void close_sync(conf_t *conf)
1104 {
1105 	wait_barrier(conf);
1106 	allow_barrier(conf);
1107 
1108 	mempool_destroy(conf->r1buf_pool);
1109 	conf->r1buf_pool = NULL;
1110 }
1111 
1112 static int raid1_spare_active(mddev_t *mddev)
1113 {
1114 	int i;
1115 	conf_t *conf = mddev->private;
1116 
1117 	/*
1118 	 * Find all failed disks within the RAID1 configuration
1119 	 * and mark them readable.
1120 	 * Called under mddev lock, so rcu protection not needed.
1121 	 */
1122 	for (i = 0; i < conf->raid_disks; i++) {
1123 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1124 		if (rdev
1125 		    && !test_bit(Faulty, &rdev->flags)
1126 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1127 			unsigned long flags;
1128 			spin_lock_irqsave(&conf->device_lock, flags);
1129 			mddev->degraded--;
1130 			spin_unlock_irqrestore(&conf->device_lock, flags);
1131 		}
1132 	}
1133 
1134 	print_conf(conf);
1135 	return 0;
1136 }
1137 
1138 
1139 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1140 {
1141 	conf_t *conf = mddev->private;
1142 	int err = -EEXIST;
1143 	int mirror = 0;
1144 	mirror_info_t *p;
1145 	int first = 0;
1146 	int last = mddev->raid_disks - 1;
1147 
1148 	if (rdev->raid_disk >= 0)
1149 		first = last = rdev->raid_disk;
1150 
1151 	for (mirror = first; mirror <= last; mirror++)
1152 		if ( !(p=conf->mirrors+mirror)->rdev) {
1153 
1154 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1155 					  rdev->data_offset << 9);
1156 			/* as we don't honour merge_bvec_fn, we must
1157 			 * never risk violating it, so limit
1158 			 * ->max_segments to one lying with a single
1159 			 * page, as a one page request is never in
1160 			 * violation.
1161 			 */
1162 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1163 				blk_queue_max_segments(mddev->queue, 1);
1164 				blk_queue_segment_boundary(mddev->queue,
1165 							   PAGE_CACHE_SIZE - 1);
1166 			}
1167 
1168 			p->head_position = 0;
1169 			rdev->raid_disk = mirror;
1170 			err = 0;
1171 			/* As all devices are equivalent, we don't need a full recovery
1172 			 * if this was recently any drive of the array
1173 			 */
1174 			if (rdev->saved_raid_disk < 0)
1175 				conf->fullsync = 1;
1176 			rcu_assign_pointer(p->rdev, rdev);
1177 			break;
1178 		}
1179 	md_integrity_add_rdev(rdev, mddev);
1180 	print_conf(conf);
1181 	return err;
1182 }
1183 
1184 static int raid1_remove_disk(mddev_t *mddev, int number)
1185 {
1186 	conf_t *conf = mddev->private;
1187 	int err = 0;
1188 	mdk_rdev_t *rdev;
1189 	mirror_info_t *p = conf->mirrors+ number;
1190 
1191 	print_conf(conf);
1192 	rdev = p->rdev;
1193 	if (rdev) {
1194 		if (test_bit(In_sync, &rdev->flags) ||
1195 		    atomic_read(&rdev->nr_pending)) {
1196 			err = -EBUSY;
1197 			goto abort;
1198 		}
1199 		/* Only remove non-faulty devices is recovery
1200 		 * is not possible.
1201 		 */
1202 		if (!test_bit(Faulty, &rdev->flags) &&
1203 		    mddev->degraded < conf->raid_disks) {
1204 			err = -EBUSY;
1205 			goto abort;
1206 		}
1207 		p->rdev = NULL;
1208 		synchronize_rcu();
1209 		if (atomic_read(&rdev->nr_pending)) {
1210 			/* lost the race, try later */
1211 			err = -EBUSY;
1212 			p->rdev = rdev;
1213 			goto abort;
1214 		}
1215 		md_integrity_register(mddev);
1216 	}
1217 abort:
1218 
1219 	print_conf(conf);
1220 	return err;
1221 }
1222 
1223 
1224 static void end_sync_read(struct bio *bio, int error)
1225 {
1226 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1227 	int i;
1228 
1229 	for (i=r1_bio->mddev->raid_disks; i--; )
1230 		if (r1_bio->bios[i] == bio)
1231 			break;
1232 	BUG_ON(i < 0);
1233 	update_head_pos(i, r1_bio);
1234 	/*
1235 	 * we have read a block, now it needs to be re-written,
1236 	 * or re-read if the read failed.
1237 	 * We don't do much here, just schedule handling by raid1d
1238 	 */
1239 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1240 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1241 
1242 	if (atomic_dec_and_test(&r1_bio->remaining))
1243 		reschedule_retry(r1_bio);
1244 }
1245 
1246 static void end_sync_write(struct bio *bio, int error)
1247 {
1248 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1249 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1250 	mddev_t *mddev = r1_bio->mddev;
1251 	conf_t *conf = mddev->private;
1252 	int i;
1253 	int mirror=0;
1254 
1255 	for (i = 0; i < conf->raid_disks; i++)
1256 		if (r1_bio->bios[i] == bio) {
1257 			mirror = i;
1258 			break;
1259 		}
1260 	if (!uptodate) {
1261 		int sync_blocks = 0;
1262 		sector_t s = r1_bio->sector;
1263 		long sectors_to_go = r1_bio->sectors;
1264 		/* make sure these bits doesn't get cleared. */
1265 		do {
1266 			bitmap_end_sync(mddev->bitmap, s,
1267 					&sync_blocks, 1);
1268 			s += sync_blocks;
1269 			sectors_to_go -= sync_blocks;
1270 		} while (sectors_to_go > 0);
1271 		md_error(mddev, conf->mirrors[mirror].rdev);
1272 	}
1273 
1274 	update_head_pos(mirror, r1_bio);
1275 
1276 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1277 		sector_t s = r1_bio->sectors;
1278 		put_buf(r1_bio);
1279 		md_done_sync(mddev, s, uptodate);
1280 	}
1281 }
1282 
1283 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1284 {
1285 	conf_t *conf = mddev->private;
1286 	int i;
1287 	int disks = conf->raid_disks;
1288 	struct bio *bio, *wbio;
1289 
1290 	bio = r1_bio->bios[r1_bio->read_disk];
1291 
1292 
1293 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1294 		/* We have read all readable devices.  If we haven't
1295 		 * got the block, then there is no hope left.
1296 		 * If we have, then we want to do a comparison
1297 		 * and skip the write if everything is the same.
1298 		 * If any blocks failed to read, then we need to
1299 		 * attempt an over-write
1300 		 */
1301 		int primary;
1302 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1303 			for (i=0; i<mddev->raid_disks; i++)
1304 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1305 					md_error(mddev, conf->mirrors[i].rdev);
1306 
1307 			md_done_sync(mddev, r1_bio->sectors, 1);
1308 			put_buf(r1_bio);
1309 			return;
1310 		}
1311 		for (primary=0; primary<mddev->raid_disks; primary++)
1312 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1313 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1314 				r1_bio->bios[primary]->bi_end_io = NULL;
1315 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1316 				break;
1317 			}
1318 		r1_bio->read_disk = primary;
1319 		for (i=0; i<mddev->raid_disks; i++)
1320 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1321 				int j;
1322 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1323 				struct bio *pbio = r1_bio->bios[primary];
1324 				struct bio *sbio = r1_bio->bios[i];
1325 
1326 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1327 					for (j = vcnt; j-- ; ) {
1328 						struct page *p, *s;
1329 						p = pbio->bi_io_vec[j].bv_page;
1330 						s = sbio->bi_io_vec[j].bv_page;
1331 						if (memcmp(page_address(p),
1332 							   page_address(s),
1333 							   PAGE_SIZE))
1334 							break;
1335 					}
1336 				} else
1337 					j = 0;
1338 				if (j >= 0)
1339 					mddev->resync_mismatches += r1_bio->sectors;
1340 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1341 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1342 					sbio->bi_end_io = NULL;
1343 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1344 				} else {
1345 					/* fixup the bio for reuse */
1346 					int size;
1347 					sbio->bi_vcnt = vcnt;
1348 					sbio->bi_size = r1_bio->sectors << 9;
1349 					sbio->bi_idx = 0;
1350 					sbio->bi_phys_segments = 0;
1351 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1352 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1353 					sbio->bi_next = NULL;
1354 					sbio->bi_sector = r1_bio->sector +
1355 						conf->mirrors[i].rdev->data_offset;
1356 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1357 					size = sbio->bi_size;
1358 					for (j = 0; j < vcnt ; j++) {
1359 						struct bio_vec *bi;
1360 						bi = &sbio->bi_io_vec[j];
1361 						bi->bv_offset = 0;
1362 						if (size > PAGE_SIZE)
1363 							bi->bv_len = PAGE_SIZE;
1364 						else
1365 							bi->bv_len = size;
1366 						size -= PAGE_SIZE;
1367 						memcpy(page_address(bi->bv_page),
1368 						       page_address(pbio->bi_io_vec[j].bv_page),
1369 						       PAGE_SIZE);
1370 					}
1371 
1372 				}
1373 			}
1374 	}
1375 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1376 		/* ouch - failed to read all of that.
1377 		 * Try some synchronous reads of other devices to get
1378 		 * good data, much like with normal read errors.  Only
1379 		 * read into the pages we already have so we don't
1380 		 * need to re-issue the read request.
1381 		 * We don't need to freeze the array, because being in an
1382 		 * active sync request, there is no normal IO, and
1383 		 * no overlapping syncs.
1384 		 */
1385 		sector_t sect = r1_bio->sector;
1386 		int sectors = r1_bio->sectors;
1387 		int idx = 0;
1388 
1389 		while(sectors) {
1390 			int s = sectors;
1391 			int d = r1_bio->read_disk;
1392 			int success = 0;
1393 			mdk_rdev_t *rdev;
1394 
1395 			if (s > (PAGE_SIZE>>9))
1396 				s = PAGE_SIZE >> 9;
1397 			do {
1398 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1399 					/* No rcu protection needed here devices
1400 					 * can only be removed when no resync is
1401 					 * active, and resync is currently active
1402 					 */
1403 					rdev = conf->mirrors[d].rdev;
1404 					if (sync_page_io(rdev->bdev,
1405 							 sect + rdev->data_offset,
1406 							 s<<9,
1407 							 bio->bi_io_vec[idx].bv_page,
1408 							 READ)) {
1409 						success = 1;
1410 						break;
1411 					}
1412 				}
1413 				d++;
1414 				if (d == conf->raid_disks)
1415 					d = 0;
1416 			} while (!success && d != r1_bio->read_disk);
1417 
1418 			if (success) {
1419 				int start = d;
1420 				/* write it back and re-read */
1421 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1422 				while (d != r1_bio->read_disk) {
1423 					if (d == 0)
1424 						d = conf->raid_disks;
1425 					d--;
1426 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1427 						continue;
1428 					rdev = conf->mirrors[d].rdev;
1429 					atomic_add(s, &rdev->corrected_errors);
1430 					if (sync_page_io(rdev->bdev,
1431 							 sect + rdev->data_offset,
1432 							 s<<9,
1433 							 bio->bi_io_vec[idx].bv_page,
1434 							 WRITE) == 0)
1435 						md_error(mddev, rdev);
1436 				}
1437 				d = start;
1438 				while (d != r1_bio->read_disk) {
1439 					if (d == 0)
1440 						d = conf->raid_disks;
1441 					d--;
1442 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1443 						continue;
1444 					rdev = conf->mirrors[d].rdev;
1445 					if (sync_page_io(rdev->bdev,
1446 							 sect + rdev->data_offset,
1447 							 s<<9,
1448 							 bio->bi_io_vec[idx].bv_page,
1449 							 READ) == 0)
1450 						md_error(mddev, rdev);
1451 				}
1452 			} else {
1453 				char b[BDEVNAME_SIZE];
1454 				/* Cannot read from anywhere, array is toast */
1455 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1456 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1457 				       " for block %llu\n",
1458 				       bdevname(bio->bi_bdev,b),
1459 				       (unsigned long long)r1_bio->sector);
1460 				md_done_sync(mddev, r1_bio->sectors, 0);
1461 				put_buf(r1_bio);
1462 				return;
1463 			}
1464 			sectors -= s;
1465 			sect += s;
1466 			idx ++;
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * schedule writes
1472 	 */
1473 	atomic_set(&r1_bio->remaining, 1);
1474 	for (i = 0; i < disks ; i++) {
1475 		wbio = r1_bio->bios[i];
1476 		if (wbio->bi_end_io == NULL ||
1477 		    (wbio->bi_end_io == end_sync_read &&
1478 		     (i == r1_bio->read_disk ||
1479 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1480 			continue;
1481 
1482 		wbio->bi_rw = WRITE;
1483 		wbio->bi_end_io = end_sync_write;
1484 		atomic_inc(&r1_bio->remaining);
1485 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1486 
1487 		generic_make_request(wbio);
1488 	}
1489 
1490 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1491 		/* if we're here, all write(s) have completed, so clean up */
1492 		md_done_sync(mddev, r1_bio->sectors, 1);
1493 		put_buf(r1_bio);
1494 	}
1495 }
1496 
1497 /*
1498  * This is a kernel thread which:
1499  *
1500  *	1.	Retries failed read operations on working mirrors.
1501  *	2.	Updates the raid superblock when problems encounter.
1502  *	3.	Performs writes following reads for array syncronising.
1503  */
1504 
1505 static void fix_read_error(conf_t *conf, int read_disk,
1506 			   sector_t sect, int sectors)
1507 {
1508 	mddev_t *mddev = conf->mddev;
1509 	while(sectors) {
1510 		int s = sectors;
1511 		int d = read_disk;
1512 		int success = 0;
1513 		int start;
1514 		mdk_rdev_t *rdev;
1515 
1516 		if (s > (PAGE_SIZE>>9))
1517 			s = PAGE_SIZE >> 9;
1518 
1519 		do {
1520 			/* Note: no rcu protection needed here
1521 			 * as this is synchronous in the raid1d thread
1522 			 * which is the thread that might remove
1523 			 * a device.  If raid1d ever becomes multi-threaded....
1524 			 */
1525 			rdev = conf->mirrors[d].rdev;
1526 			if (rdev &&
1527 			    test_bit(In_sync, &rdev->flags) &&
1528 			    sync_page_io(rdev->bdev,
1529 					 sect + rdev->data_offset,
1530 					 s<<9,
1531 					 conf->tmppage, READ))
1532 				success = 1;
1533 			else {
1534 				d++;
1535 				if (d == conf->raid_disks)
1536 					d = 0;
1537 			}
1538 		} while (!success && d != read_disk);
1539 
1540 		if (!success) {
1541 			/* Cannot read from anywhere -- bye bye array */
1542 			md_error(mddev, conf->mirrors[read_disk].rdev);
1543 			break;
1544 		}
1545 		/* write it back and re-read */
1546 		start = d;
1547 		while (d != read_disk) {
1548 			if (d==0)
1549 				d = conf->raid_disks;
1550 			d--;
1551 			rdev = conf->mirrors[d].rdev;
1552 			if (rdev &&
1553 			    test_bit(In_sync, &rdev->flags)) {
1554 				if (sync_page_io(rdev->bdev,
1555 						 sect + rdev->data_offset,
1556 						 s<<9, conf->tmppage, WRITE)
1557 				    == 0)
1558 					/* Well, this device is dead */
1559 					md_error(mddev, rdev);
1560 			}
1561 		}
1562 		d = start;
1563 		while (d != read_disk) {
1564 			char b[BDEVNAME_SIZE];
1565 			if (d==0)
1566 				d = conf->raid_disks;
1567 			d--;
1568 			rdev = conf->mirrors[d].rdev;
1569 			if (rdev &&
1570 			    test_bit(In_sync, &rdev->flags)) {
1571 				if (sync_page_io(rdev->bdev,
1572 						 sect + rdev->data_offset,
1573 						 s<<9, conf->tmppage, READ)
1574 				    == 0)
1575 					/* Well, this device is dead */
1576 					md_error(mddev, rdev);
1577 				else {
1578 					atomic_add(s, &rdev->corrected_errors);
1579 					printk(KERN_INFO
1580 					       "raid1:%s: read error corrected "
1581 					       "(%d sectors at %llu on %s)\n",
1582 					       mdname(mddev), s,
1583 					       (unsigned long long)(sect +
1584 					           rdev->data_offset),
1585 					       bdevname(rdev->bdev, b));
1586 				}
1587 			}
1588 		}
1589 		sectors -= s;
1590 		sect += s;
1591 	}
1592 }
1593 
1594 static void raid1d(mddev_t *mddev)
1595 {
1596 	r1bio_t *r1_bio;
1597 	struct bio *bio;
1598 	unsigned long flags;
1599 	conf_t *conf = mddev->private;
1600 	struct list_head *head = &conf->retry_list;
1601 	int unplug=0;
1602 	mdk_rdev_t *rdev;
1603 
1604 	md_check_recovery(mddev);
1605 
1606 	for (;;) {
1607 		char b[BDEVNAME_SIZE];
1608 
1609 		unplug += flush_pending_writes(conf);
1610 
1611 		spin_lock_irqsave(&conf->device_lock, flags);
1612 		if (list_empty(head)) {
1613 			spin_unlock_irqrestore(&conf->device_lock, flags);
1614 			break;
1615 		}
1616 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1617 		list_del(head->prev);
1618 		conf->nr_queued--;
1619 		spin_unlock_irqrestore(&conf->device_lock, flags);
1620 
1621 		mddev = r1_bio->mddev;
1622 		conf = mddev->private;
1623 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1624 			sync_request_write(mddev, r1_bio);
1625 			unplug = 1;
1626 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1627 			/* some requests in the r1bio were BIO_RW_BARRIER
1628 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1629 			 * Better resubmit without the barrier.
1630 			 * We know which devices to resubmit for, because
1631 			 * all others have had their bios[] entry cleared.
1632 			 * We already have a nr_pending reference on these rdevs.
1633 			 */
1634 			int i;
1635 			const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1636 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1637 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1638 			for (i=0; i < conf->raid_disks; i++)
1639 				if (r1_bio->bios[i])
1640 					atomic_inc(&r1_bio->remaining);
1641 			for (i=0; i < conf->raid_disks; i++)
1642 				if (r1_bio->bios[i]) {
1643 					struct bio_vec *bvec;
1644 					int j;
1645 
1646 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1647 					/* copy pages from the failed bio, as
1648 					 * this might be a write-behind device */
1649 					__bio_for_each_segment(bvec, bio, j, 0)
1650 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1651 					bio_put(r1_bio->bios[i]);
1652 					bio->bi_sector = r1_bio->sector +
1653 						conf->mirrors[i].rdev->data_offset;
1654 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1655 					bio->bi_end_io = raid1_end_write_request;
1656 					bio->bi_rw = WRITE |
1657 						(do_sync << BIO_RW_SYNCIO);
1658 					bio->bi_private = r1_bio;
1659 					r1_bio->bios[i] = bio;
1660 					generic_make_request(bio);
1661 				}
1662 		} else {
1663 			int disk;
1664 
1665 			/* we got a read error. Maybe the drive is bad.  Maybe just
1666 			 * the block and we can fix it.
1667 			 * We freeze all other IO, and try reading the block from
1668 			 * other devices.  When we find one, we re-write
1669 			 * and check it that fixes the read error.
1670 			 * This is all done synchronously while the array is
1671 			 * frozen
1672 			 */
1673 			if (mddev->ro == 0) {
1674 				freeze_array(conf);
1675 				fix_read_error(conf, r1_bio->read_disk,
1676 					       r1_bio->sector,
1677 					       r1_bio->sectors);
1678 				unfreeze_array(conf);
1679 			} else
1680 				md_error(mddev,
1681 					 conf->mirrors[r1_bio->read_disk].rdev);
1682 
1683 			bio = r1_bio->bios[r1_bio->read_disk];
1684 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1685 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1686 				       " read error for block %llu\n",
1687 				       bdevname(bio->bi_bdev,b),
1688 				       (unsigned long long)r1_bio->sector);
1689 				raid_end_bio_io(r1_bio);
1690 			} else {
1691 				const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1692 				r1_bio->bios[r1_bio->read_disk] =
1693 					mddev->ro ? IO_BLOCKED : NULL;
1694 				r1_bio->read_disk = disk;
1695 				bio_put(bio);
1696 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1697 				r1_bio->bios[r1_bio->read_disk] = bio;
1698 				rdev = conf->mirrors[disk].rdev;
1699 				if (printk_ratelimit())
1700 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1701 					       " another mirror\n",
1702 					       bdevname(rdev->bdev,b),
1703 					       (unsigned long long)r1_bio->sector);
1704 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1705 				bio->bi_bdev = rdev->bdev;
1706 				bio->bi_end_io = raid1_end_read_request;
1707 				bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1708 				bio->bi_private = r1_bio;
1709 				unplug = 1;
1710 				generic_make_request(bio);
1711 			}
1712 		}
1713 		cond_resched();
1714 	}
1715 	if (unplug)
1716 		unplug_slaves(mddev);
1717 }
1718 
1719 
1720 static int init_resync(conf_t *conf)
1721 {
1722 	int buffs;
1723 
1724 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1725 	BUG_ON(conf->r1buf_pool);
1726 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1727 					  conf->poolinfo);
1728 	if (!conf->r1buf_pool)
1729 		return -ENOMEM;
1730 	conf->next_resync = 0;
1731 	return 0;
1732 }
1733 
1734 /*
1735  * perform a "sync" on one "block"
1736  *
1737  * We need to make sure that no normal I/O request - particularly write
1738  * requests - conflict with active sync requests.
1739  *
1740  * This is achieved by tracking pending requests and a 'barrier' concept
1741  * that can be installed to exclude normal IO requests.
1742  */
1743 
1744 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1745 {
1746 	conf_t *conf = mddev->private;
1747 	r1bio_t *r1_bio;
1748 	struct bio *bio;
1749 	sector_t max_sector, nr_sectors;
1750 	int disk = -1;
1751 	int i;
1752 	int wonly = -1;
1753 	int write_targets = 0, read_targets = 0;
1754 	int sync_blocks;
1755 	int still_degraded = 0;
1756 
1757 	if (!conf->r1buf_pool)
1758 	{
1759 /*
1760 		printk("sync start - bitmap %p\n", mddev->bitmap);
1761 */
1762 		if (init_resync(conf))
1763 			return 0;
1764 	}
1765 
1766 	max_sector = mddev->dev_sectors;
1767 	if (sector_nr >= max_sector) {
1768 		/* If we aborted, we need to abort the
1769 		 * sync on the 'current' bitmap chunk (there will
1770 		 * only be one in raid1 resync.
1771 		 * We can find the current addess in mddev->curr_resync
1772 		 */
1773 		if (mddev->curr_resync < max_sector) /* aborted */
1774 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1775 						&sync_blocks, 1);
1776 		else /* completed sync */
1777 			conf->fullsync = 0;
1778 
1779 		bitmap_close_sync(mddev->bitmap);
1780 		close_sync(conf);
1781 		return 0;
1782 	}
1783 
1784 	if (mddev->bitmap == NULL &&
1785 	    mddev->recovery_cp == MaxSector &&
1786 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1787 	    conf->fullsync == 0) {
1788 		*skipped = 1;
1789 		return max_sector - sector_nr;
1790 	}
1791 	/* before building a request, check if we can skip these blocks..
1792 	 * This call the bitmap_start_sync doesn't actually record anything
1793 	 */
1794 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1795 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1796 		/* We can skip this block, and probably several more */
1797 		*skipped = 1;
1798 		return sync_blocks;
1799 	}
1800 	/*
1801 	 * If there is non-resync activity waiting for a turn,
1802 	 * and resync is going fast enough,
1803 	 * then let it though before starting on this new sync request.
1804 	 */
1805 	if (!go_faster && conf->nr_waiting)
1806 		msleep_interruptible(1000);
1807 
1808 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1809 	raise_barrier(conf);
1810 
1811 	conf->next_resync = sector_nr;
1812 
1813 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1814 	rcu_read_lock();
1815 	/*
1816 	 * If we get a correctably read error during resync or recovery,
1817 	 * we might want to read from a different device.  So we
1818 	 * flag all drives that could conceivably be read from for READ,
1819 	 * and any others (which will be non-In_sync devices) for WRITE.
1820 	 * If a read fails, we try reading from something else for which READ
1821 	 * is OK.
1822 	 */
1823 
1824 	r1_bio->mddev = mddev;
1825 	r1_bio->sector = sector_nr;
1826 	r1_bio->state = 0;
1827 	set_bit(R1BIO_IsSync, &r1_bio->state);
1828 
1829 	for (i=0; i < conf->raid_disks; i++) {
1830 		mdk_rdev_t *rdev;
1831 		bio = r1_bio->bios[i];
1832 
1833 		/* take from bio_init */
1834 		bio->bi_next = NULL;
1835 		bio->bi_flags |= 1 << BIO_UPTODATE;
1836 		bio->bi_rw = READ;
1837 		bio->bi_vcnt = 0;
1838 		bio->bi_idx = 0;
1839 		bio->bi_phys_segments = 0;
1840 		bio->bi_size = 0;
1841 		bio->bi_end_io = NULL;
1842 		bio->bi_private = NULL;
1843 
1844 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1845 		if (rdev == NULL ||
1846 			   test_bit(Faulty, &rdev->flags)) {
1847 			still_degraded = 1;
1848 			continue;
1849 		} else if (!test_bit(In_sync, &rdev->flags)) {
1850 			bio->bi_rw = WRITE;
1851 			bio->bi_end_io = end_sync_write;
1852 			write_targets ++;
1853 		} else {
1854 			/* may need to read from here */
1855 			bio->bi_rw = READ;
1856 			bio->bi_end_io = end_sync_read;
1857 			if (test_bit(WriteMostly, &rdev->flags)) {
1858 				if (wonly < 0)
1859 					wonly = i;
1860 			} else {
1861 				if (disk < 0)
1862 					disk = i;
1863 			}
1864 			read_targets++;
1865 		}
1866 		atomic_inc(&rdev->nr_pending);
1867 		bio->bi_sector = sector_nr + rdev->data_offset;
1868 		bio->bi_bdev = rdev->bdev;
1869 		bio->bi_private = r1_bio;
1870 	}
1871 	rcu_read_unlock();
1872 	if (disk < 0)
1873 		disk = wonly;
1874 	r1_bio->read_disk = disk;
1875 
1876 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1877 		/* extra read targets are also write targets */
1878 		write_targets += read_targets-1;
1879 
1880 	if (write_targets == 0 || read_targets == 0) {
1881 		/* There is nowhere to write, so all non-sync
1882 		 * drives must be failed - so we are finished
1883 		 */
1884 		sector_t rv = max_sector - sector_nr;
1885 		*skipped = 1;
1886 		put_buf(r1_bio);
1887 		return rv;
1888 	}
1889 
1890 	if (max_sector > mddev->resync_max)
1891 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1892 	nr_sectors = 0;
1893 	sync_blocks = 0;
1894 	do {
1895 		struct page *page;
1896 		int len = PAGE_SIZE;
1897 		if (sector_nr + (len>>9) > max_sector)
1898 			len = (max_sector - sector_nr) << 9;
1899 		if (len == 0)
1900 			break;
1901 		if (sync_blocks == 0) {
1902 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1903 					       &sync_blocks, still_degraded) &&
1904 			    !conf->fullsync &&
1905 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1906 				break;
1907 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1908 			if (len > (sync_blocks<<9))
1909 				len = sync_blocks<<9;
1910 		}
1911 
1912 		for (i=0 ; i < conf->raid_disks; i++) {
1913 			bio = r1_bio->bios[i];
1914 			if (bio->bi_end_io) {
1915 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1916 				if (bio_add_page(bio, page, len, 0) == 0) {
1917 					/* stop here */
1918 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1919 					while (i > 0) {
1920 						i--;
1921 						bio = r1_bio->bios[i];
1922 						if (bio->bi_end_io==NULL)
1923 							continue;
1924 						/* remove last page from this bio */
1925 						bio->bi_vcnt--;
1926 						bio->bi_size -= len;
1927 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1928 					}
1929 					goto bio_full;
1930 				}
1931 			}
1932 		}
1933 		nr_sectors += len>>9;
1934 		sector_nr += len>>9;
1935 		sync_blocks -= (len>>9);
1936 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1937  bio_full:
1938 	r1_bio->sectors = nr_sectors;
1939 
1940 	/* For a user-requested sync, we read all readable devices and do a
1941 	 * compare
1942 	 */
1943 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1944 		atomic_set(&r1_bio->remaining, read_targets);
1945 		for (i=0; i<conf->raid_disks; i++) {
1946 			bio = r1_bio->bios[i];
1947 			if (bio->bi_end_io == end_sync_read) {
1948 				md_sync_acct(bio->bi_bdev, nr_sectors);
1949 				generic_make_request(bio);
1950 			}
1951 		}
1952 	} else {
1953 		atomic_set(&r1_bio->remaining, 1);
1954 		bio = r1_bio->bios[r1_bio->read_disk];
1955 		md_sync_acct(bio->bi_bdev, nr_sectors);
1956 		generic_make_request(bio);
1957 
1958 	}
1959 	return nr_sectors;
1960 }
1961 
1962 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1963 {
1964 	if (sectors)
1965 		return sectors;
1966 
1967 	return mddev->dev_sectors;
1968 }
1969 
1970 static conf_t *setup_conf(mddev_t *mddev)
1971 {
1972 	conf_t *conf;
1973 	int i;
1974 	mirror_info_t *disk;
1975 	mdk_rdev_t *rdev;
1976 	int err = -ENOMEM;
1977 
1978 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1979 	if (!conf)
1980 		goto abort;
1981 
1982 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1983 				 GFP_KERNEL);
1984 	if (!conf->mirrors)
1985 		goto abort;
1986 
1987 	conf->tmppage = alloc_page(GFP_KERNEL);
1988 	if (!conf->tmppage)
1989 		goto abort;
1990 
1991 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1992 	if (!conf->poolinfo)
1993 		goto abort;
1994 	conf->poolinfo->raid_disks = mddev->raid_disks;
1995 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1996 					  r1bio_pool_free,
1997 					  conf->poolinfo);
1998 	if (!conf->r1bio_pool)
1999 		goto abort;
2000 
2001 	conf->poolinfo->mddev = mddev;
2002 
2003 	spin_lock_init(&conf->device_lock);
2004 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2005 		int disk_idx = rdev->raid_disk;
2006 		if (disk_idx >= mddev->raid_disks
2007 		    || disk_idx < 0)
2008 			continue;
2009 		disk = conf->mirrors + disk_idx;
2010 
2011 		disk->rdev = rdev;
2012 
2013 		disk->head_position = 0;
2014 	}
2015 	conf->raid_disks = mddev->raid_disks;
2016 	conf->mddev = mddev;
2017 	INIT_LIST_HEAD(&conf->retry_list);
2018 
2019 	spin_lock_init(&conf->resync_lock);
2020 	init_waitqueue_head(&conf->wait_barrier);
2021 
2022 	bio_list_init(&conf->pending_bio_list);
2023 	bio_list_init(&conf->flushing_bio_list);
2024 
2025 	conf->last_used = -1;
2026 	for (i = 0; i < conf->raid_disks; i++) {
2027 
2028 		disk = conf->mirrors + i;
2029 
2030 		if (!disk->rdev ||
2031 		    !test_bit(In_sync, &disk->rdev->flags)) {
2032 			disk->head_position = 0;
2033 			if (disk->rdev)
2034 				conf->fullsync = 1;
2035 		} else if (conf->last_used < 0)
2036 			/*
2037 			 * The first working device is used as a
2038 			 * starting point to read balancing.
2039 			 */
2040 			conf->last_used = i;
2041 	}
2042 
2043 	err = -EIO;
2044 	if (conf->last_used < 0) {
2045 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2046 		       mdname(mddev));
2047 		goto abort;
2048 	}
2049 	err = -ENOMEM;
2050 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2051 	if (!conf->thread) {
2052 		printk(KERN_ERR
2053 		       "raid1: couldn't allocate thread for %s\n",
2054 		       mdname(mddev));
2055 		goto abort;
2056 	}
2057 
2058 	return conf;
2059 
2060  abort:
2061 	if (conf) {
2062 		if (conf->r1bio_pool)
2063 			mempool_destroy(conf->r1bio_pool);
2064 		kfree(conf->mirrors);
2065 		safe_put_page(conf->tmppage);
2066 		kfree(conf->poolinfo);
2067 		kfree(conf);
2068 	}
2069 	return ERR_PTR(err);
2070 }
2071 
2072 static int run(mddev_t *mddev)
2073 {
2074 	conf_t *conf;
2075 	int i;
2076 	mdk_rdev_t *rdev;
2077 
2078 	if (mddev->level != 1) {
2079 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
2080 		       mdname(mddev), mddev->level);
2081 		return -EIO;
2082 	}
2083 	if (mddev->reshape_position != MaxSector) {
2084 		printk("raid1: %s: reshape_position set but not supported\n",
2085 		       mdname(mddev));
2086 		return -EIO;
2087 	}
2088 	/*
2089 	 * copy the already verified devices into our private RAID1
2090 	 * bookkeeping area. [whatever we allocate in run(),
2091 	 * should be freed in stop()]
2092 	 */
2093 	if (mddev->private == NULL)
2094 		conf = setup_conf(mddev);
2095 	else
2096 		conf = mddev->private;
2097 
2098 	if (IS_ERR(conf))
2099 		return PTR_ERR(conf);
2100 
2101 	mddev->queue->queue_lock = &conf->device_lock;
2102 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2103 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2104 				  rdev->data_offset << 9);
2105 		/* as we don't honour merge_bvec_fn, we must never risk
2106 		 * violating it, so limit ->max_segments to 1 lying within
2107 		 * a single page, as a one page request is never in violation.
2108 		 */
2109 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2110 			blk_queue_max_segments(mddev->queue, 1);
2111 			blk_queue_segment_boundary(mddev->queue,
2112 						   PAGE_CACHE_SIZE - 1);
2113 		}
2114 	}
2115 
2116 	mddev->degraded = 0;
2117 	for (i=0; i < conf->raid_disks; i++)
2118 		if (conf->mirrors[i].rdev == NULL ||
2119 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2120 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2121 			mddev->degraded++;
2122 
2123 	if (conf->raid_disks - mddev->degraded == 1)
2124 		mddev->recovery_cp = MaxSector;
2125 
2126 	if (mddev->recovery_cp != MaxSector)
2127 		printk(KERN_NOTICE "raid1: %s is not clean"
2128 		       " -- starting background reconstruction\n",
2129 		       mdname(mddev));
2130 	printk(KERN_INFO
2131 		"raid1: raid set %s active with %d out of %d mirrors\n",
2132 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2133 		mddev->raid_disks);
2134 
2135 	/*
2136 	 * Ok, everything is just fine now
2137 	 */
2138 	mddev->thread = conf->thread;
2139 	conf->thread = NULL;
2140 	mddev->private = conf;
2141 
2142 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2143 
2144 	mddev->queue->unplug_fn = raid1_unplug;
2145 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2146 	mddev->queue->backing_dev_info.congested_data = mddev;
2147 	md_integrity_register(mddev);
2148 	return 0;
2149 }
2150 
2151 static int stop(mddev_t *mddev)
2152 {
2153 	conf_t *conf = mddev->private;
2154 	struct bitmap *bitmap = mddev->bitmap;
2155 	int behind_wait = 0;
2156 
2157 	/* wait for behind writes to complete */
2158 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2159 		behind_wait++;
2160 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2161 		set_current_state(TASK_UNINTERRUPTIBLE);
2162 		schedule_timeout(HZ); /* wait a second */
2163 		/* need to kick something here to make sure I/O goes? */
2164 	}
2165 
2166 	raise_barrier(conf);
2167 	lower_barrier(conf);
2168 
2169 	md_unregister_thread(mddev->thread);
2170 	mddev->thread = NULL;
2171 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2172 	if (conf->r1bio_pool)
2173 		mempool_destroy(conf->r1bio_pool);
2174 	kfree(conf->mirrors);
2175 	kfree(conf->poolinfo);
2176 	kfree(conf);
2177 	mddev->private = NULL;
2178 	return 0;
2179 }
2180 
2181 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2182 {
2183 	/* no resync is happening, and there is enough space
2184 	 * on all devices, so we can resize.
2185 	 * We need to make sure resync covers any new space.
2186 	 * If the array is shrinking we should possibly wait until
2187 	 * any io in the removed space completes, but it hardly seems
2188 	 * worth it.
2189 	 */
2190 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2191 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2192 		return -EINVAL;
2193 	set_capacity(mddev->gendisk, mddev->array_sectors);
2194 	mddev->changed = 1;
2195 	revalidate_disk(mddev->gendisk);
2196 	if (sectors > mddev->dev_sectors &&
2197 	    mddev->recovery_cp == MaxSector) {
2198 		mddev->recovery_cp = mddev->dev_sectors;
2199 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2200 	}
2201 	mddev->dev_sectors = sectors;
2202 	mddev->resync_max_sectors = sectors;
2203 	return 0;
2204 }
2205 
2206 static int raid1_reshape(mddev_t *mddev)
2207 {
2208 	/* We need to:
2209 	 * 1/ resize the r1bio_pool
2210 	 * 2/ resize conf->mirrors
2211 	 *
2212 	 * We allocate a new r1bio_pool if we can.
2213 	 * Then raise a device barrier and wait until all IO stops.
2214 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2215 	 *
2216 	 * At the same time, we "pack" the devices so that all the missing
2217 	 * devices have the higher raid_disk numbers.
2218 	 */
2219 	mempool_t *newpool, *oldpool;
2220 	struct pool_info *newpoolinfo;
2221 	mirror_info_t *newmirrors;
2222 	conf_t *conf = mddev->private;
2223 	int cnt, raid_disks;
2224 	unsigned long flags;
2225 	int d, d2, err;
2226 
2227 	/* Cannot change chunk_size, layout, or level */
2228 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2229 	    mddev->layout != mddev->new_layout ||
2230 	    mddev->level != mddev->new_level) {
2231 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2232 		mddev->new_layout = mddev->layout;
2233 		mddev->new_level = mddev->level;
2234 		return -EINVAL;
2235 	}
2236 
2237 	err = md_allow_write(mddev);
2238 	if (err)
2239 		return err;
2240 
2241 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2242 
2243 	if (raid_disks < conf->raid_disks) {
2244 		cnt=0;
2245 		for (d= 0; d < conf->raid_disks; d++)
2246 			if (conf->mirrors[d].rdev)
2247 				cnt++;
2248 		if (cnt > raid_disks)
2249 			return -EBUSY;
2250 	}
2251 
2252 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2253 	if (!newpoolinfo)
2254 		return -ENOMEM;
2255 	newpoolinfo->mddev = mddev;
2256 	newpoolinfo->raid_disks = raid_disks;
2257 
2258 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2259 				 r1bio_pool_free, newpoolinfo);
2260 	if (!newpool) {
2261 		kfree(newpoolinfo);
2262 		return -ENOMEM;
2263 	}
2264 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2265 	if (!newmirrors) {
2266 		kfree(newpoolinfo);
2267 		mempool_destroy(newpool);
2268 		return -ENOMEM;
2269 	}
2270 
2271 	raise_barrier(conf);
2272 
2273 	/* ok, everything is stopped */
2274 	oldpool = conf->r1bio_pool;
2275 	conf->r1bio_pool = newpool;
2276 
2277 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2278 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2279 		if (rdev && rdev->raid_disk != d2) {
2280 			char nm[20];
2281 			sprintf(nm, "rd%d", rdev->raid_disk);
2282 			sysfs_remove_link(&mddev->kobj, nm);
2283 			rdev->raid_disk = d2;
2284 			sprintf(nm, "rd%d", rdev->raid_disk);
2285 			sysfs_remove_link(&mddev->kobj, nm);
2286 			if (sysfs_create_link(&mddev->kobj,
2287 					      &rdev->kobj, nm))
2288 				printk(KERN_WARNING
2289 				       "md/raid1: cannot register "
2290 				       "%s for %s\n",
2291 				       nm, mdname(mddev));
2292 		}
2293 		if (rdev)
2294 			newmirrors[d2++].rdev = rdev;
2295 	}
2296 	kfree(conf->mirrors);
2297 	conf->mirrors = newmirrors;
2298 	kfree(conf->poolinfo);
2299 	conf->poolinfo = newpoolinfo;
2300 
2301 	spin_lock_irqsave(&conf->device_lock, flags);
2302 	mddev->degraded += (raid_disks - conf->raid_disks);
2303 	spin_unlock_irqrestore(&conf->device_lock, flags);
2304 	conf->raid_disks = mddev->raid_disks = raid_disks;
2305 	mddev->delta_disks = 0;
2306 
2307 	conf->last_used = 0; /* just make sure it is in-range */
2308 	lower_barrier(conf);
2309 
2310 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2311 	md_wakeup_thread(mddev->thread);
2312 
2313 	mempool_destroy(oldpool);
2314 	return 0;
2315 }
2316 
2317 static void raid1_quiesce(mddev_t *mddev, int state)
2318 {
2319 	conf_t *conf = mddev->private;
2320 
2321 	switch(state) {
2322 	case 2: /* wake for suspend */
2323 		wake_up(&conf->wait_barrier);
2324 		break;
2325 	case 1:
2326 		raise_barrier(conf);
2327 		break;
2328 	case 0:
2329 		lower_barrier(conf);
2330 		break;
2331 	}
2332 }
2333 
2334 static void *raid1_takeover(mddev_t *mddev)
2335 {
2336 	/* raid1 can take over:
2337 	 *  raid5 with 2 devices, any layout or chunk size
2338 	 */
2339 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2340 		conf_t *conf;
2341 		mddev->new_level = 1;
2342 		mddev->new_layout = 0;
2343 		mddev->new_chunk_sectors = 0;
2344 		conf = setup_conf(mddev);
2345 		if (!IS_ERR(conf))
2346 			conf->barrier = 1;
2347 		return conf;
2348 	}
2349 	return ERR_PTR(-EINVAL);
2350 }
2351 
2352 static struct mdk_personality raid1_personality =
2353 {
2354 	.name		= "raid1",
2355 	.level		= 1,
2356 	.owner		= THIS_MODULE,
2357 	.make_request	= make_request,
2358 	.run		= run,
2359 	.stop		= stop,
2360 	.status		= status,
2361 	.error_handler	= error,
2362 	.hot_add_disk	= raid1_add_disk,
2363 	.hot_remove_disk= raid1_remove_disk,
2364 	.spare_active	= raid1_spare_active,
2365 	.sync_request	= sync_request,
2366 	.resize		= raid1_resize,
2367 	.size		= raid1_size,
2368 	.check_reshape	= raid1_reshape,
2369 	.quiesce	= raid1_quiesce,
2370 	.takeover	= raid1_takeover,
2371 };
2372 
2373 static int __init raid_init(void)
2374 {
2375 	return register_md_personality(&raid1_personality);
2376 }
2377 
2378 static void raid_exit(void)
2379 {
2380 	unregister_md_personality(&raid1_personality);
2381 }
2382 
2383 module_init(raid_init);
2384 module_exit(raid_exit);
2385 MODULE_LICENSE("GPL");
2386 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2387 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2388 MODULE_ALIAS("md-raid1");
2389 MODULE_ALIAS("md-level-1");
2390