1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void unplug_slaves(mddev_t *mddev); 56 57 static void allow_barrier(conf_t *conf); 58 static void lower_barrier(conf_t *conf); 59 60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 61 { 62 struct pool_info *pi = data; 63 r1bio_t *r1_bio; 64 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 65 66 /* allocate a r1bio with room for raid_disks entries in the bios array */ 67 r1_bio = kzalloc(size, gfp_flags); 68 if (!r1_bio && pi->mddev) 69 unplug_slaves(pi->mddev); 70 71 return r1_bio; 72 } 73 74 static void r1bio_pool_free(void *r1_bio, void *data) 75 { 76 kfree(r1_bio); 77 } 78 79 #define RESYNC_BLOCK_SIZE (64*1024) 80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 83 #define RESYNC_WINDOW (2048*1024) 84 85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 86 { 87 struct pool_info *pi = data; 88 struct page *page; 89 r1bio_t *r1_bio; 90 struct bio *bio; 91 int i, j; 92 93 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 94 if (!r1_bio) { 95 unplug_slaves(pi->mddev); 96 return NULL; 97 } 98 99 /* 100 * Allocate bios : 1 for reading, n-1 for writing 101 */ 102 for (j = pi->raid_disks ; j-- ; ) { 103 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 104 if (!bio) 105 goto out_free_bio; 106 r1_bio->bios[j] = bio; 107 } 108 /* 109 * Allocate RESYNC_PAGES data pages and attach them to 110 * the first bio. 111 * If this is a user-requested check/repair, allocate 112 * RESYNC_PAGES for each bio. 113 */ 114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 115 j = pi->raid_disks; 116 else 117 j = 1; 118 while(j--) { 119 bio = r1_bio->bios[j]; 120 for (i = 0; i < RESYNC_PAGES; i++) { 121 page = alloc_page(gfp_flags); 122 if (unlikely(!page)) 123 goto out_free_pages; 124 125 bio->bi_io_vec[i].bv_page = page; 126 bio->bi_vcnt = i+1; 127 } 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_pages: 142 for (j=0 ; j < pi->raid_disks; j++) 143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 145 j = -1; 146 out_free_bio: 147 while ( ++j < pi->raid_disks ) 148 bio_put(r1_bio->bios[j]); 149 r1bio_pool_free(r1_bio, data); 150 return NULL; 151 } 152 153 static void r1buf_pool_free(void *__r1_bio, void *data) 154 { 155 struct pool_info *pi = data; 156 int i,j; 157 r1bio_t *r1bio = __r1_bio; 158 159 for (i = 0; i < RESYNC_PAGES; i++) 160 for (j = pi->raid_disks; j-- ;) { 161 if (j == 0 || 162 r1bio->bios[j]->bi_io_vec[i].bv_page != 163 r1bio->bios[0]->bi_io_vec[i].bv_page) 164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 165 } 166 for (i=0 ; i < pi->raid_disks; i++) 167 bio_put(r1bio->bios[i]); 168 169 r1bio_pool_free(r1bio, data); 170 } 171 172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 173 { 174 int i; 175 176 for (i = 0; i < conf->raid_disks; i++) { 177 struct bio **bio = r1_bio->bios + i; 178 if (*bio && *bio != IO_BLOCKED) 179 bio_put(*bio); 180 *bio = NULL; 181 } 182 } 183 184 static void free_r1bio(r1bio_t *r1_bio) 185 { 186 conf_t *conf = r1_bio->mddev->private; 187 188 /* 189 * Wake up any possible resync thread that waits for the device 190 * to go idle. 191 */ 192 allow_barrier(conf); 193 194 put_all_bios(conf, r1_bio); 195 mempool_free(r1_bio, conf->r1bio_pool); 196 } 197 198 static void put_buf(r1bio_t *r1_bio) 199 { 200 conf_t *conf = r1_bio->mddev->private; 201 int i; 202 203 for (i=0; i<conf->raid_disks; i++) { 204 struct bio *bio = r1_bio->bios[i]; 205 if (bio->bi_end_io) 206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 207 } 208 209 mempool_free(r1_bio, conf->r1buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r1bio_t *r1_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r1_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r1_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 wake_up(&conf->wait_barrier); 226 md_wakeup_thread(mddev->thread); 227 } 228 229 /* 230 * raid_end_bio_io() is called when we have finished servicing a mirrored 231 * operation and are ready to return a success/failure code to the buffer 232 * cache layer. 233 */ 234 static void raid_end_bio_io(r1bio_t *r1_bio) 235 { 236 struct bio *bio = r1_bio->master_bio; 237 238 /* if nobody has done the final endio yet, do it now */ 239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 241 (bio_data_dir(bio) == WRITE) ? "write" : "read", 242 (unsigned long long) bio->bi_sector, 243 (unsigned long long) bio->bi_sector + 244 (bio->bi_size >> 9) - 1); 245 246 bio_endio(bio, 247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 248 } 249 free_r1bio(r1_bio); 250 } 251 252 /* 253 * Update disk head position estimator based on IRQ completion info. 254 */ 255 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 256 { 257 conf_t *conf = r1_bio->mddev->private; 258 259 conf->mirrors[disk].head_position = 260 r1_bio->sector + (r1_bio->sectors); 261 } 262 263 static void raid1_end_read_request(struct bio *bio, int error) 264 { 265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 266 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 267 int mirror; 268 conf_t *conf = r1_bio->mddev->private; 269 270 mirror = r1_bio->read_disk; 271 /* 272 * this branch is our 'one mirror IO has finished' event handler: 273 */ 274 update_head_pos(mirror, r1_bio); 275 276 if (uptodate) 277 set_bit(R1BIO_Uptodate, &r1_bio->state); 278 else { 279 /* If all other devices have failed, we want to return 280 * the error upwards rather than fail the last device. 281 * Here we redefine "uptodate" to mean "Don't want to retry" 282 */ 283 unsigned long flags; 284 spin_lock_irqsave(&conf->device_lock, flags); 285 if (r1_bio->mddev->degraded == conf->raid_disks || 286 (r1_bio->mddev->degraded == conf->raid_disks-1 && 287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 288 uptodate = 1; 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 } 291 292 if (uptodate) 293 raid_end_bio_io(r1_bio); 294 else { 295 /* 296 * oops, read error: 297 */ 298 char b[BDEVNAME_SIZE]; 299 if (printk_ratelimit()) 300 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 301 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 302 reschedule_retry(r1_bio); 303 } 304 305 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 306 } 307 308 static void raid1_end_write_request(struct bio *bio, int error) 309 { 310 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 311 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 312 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 313 conf_t *conf = r1_bio->mddev->private; 314 struct bio *to_put = NULL; 315 316 317 for (mirror = 0; mirror < conf->raid_disks; mirror++) 318 if (r1_bio->bios[mirror] == bio) 319 break; 320 321 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 322 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 323 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 324 r1_bio->mddev->barriers_work = 0; 325 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 326 } else { 327 /* 328 * this branch is our 'one mirror IO has finished' event handler: 329 */ 330 r1_bio->bios[mirror] = NULL; 331 to_put = bio; 332 if (!uptodate) { 333 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 334 /* an I/O failed, we can't clear the bitmap */ 335 set_bit(R1BIO_Degraded, &r1_bio->state); 336 } else 337 /* 338 * Set R1BIO_Uptodate in our master bio, so that 339 * we will return a good error code for to the higher 340 * levels even if IO on some other mirrored buffer fails. 341 * 342 * The 'master' represents the composite IO operation to 343 * user-side. So if something waits for IO, then it will 344 * wait for the 'master' bio. 345 */ 346 set_bit(R1BIO_Uptodate, &r1_bio->state); 347 348 update_head_pos(mirror, r1_bio); 349 350 if (behind) { 351 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 352 atomic_dec(&r1_bio->behind_remaining); 353 354 /* In behind mode, we ACK the master bio once the I/O has safely 355 * reached all non-writemostly disks. Setting the Returned bit 356 * ensures that this gets done only once -- we don't ever want to 357 * return -EIO here, instead we'll wait */ 358 359 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 360 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 361 /* Maybe we can return now */ 362 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 363 struct bio *mbio = r1_bio->master_bio; 364 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 365 (unsigned long long) mbio->bi_sector, 366 (unsigned long long) mbio->bi_sector + 367 (mbio->bi_size >> 9) - 1); 368 bio_endio(mbio, 0); 369 } 370 } 371 } 372 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 373 } 374 /* 375 * 376 * Let's see if all mirrored write operations have finished 377 * already. 378 */ 379 if (atomic_dec_and_test(&r1_bio->remaining)) { 380 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 381 reschedule_retry(r1_bio); 382 else { 383 /* it really is the end of this request */ 384 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 385 /* free extra copy of the data pages */ 386 int i = bio->bi_vcnt; 387 while (i--) 388 safe_put_page(bio->bi_io_vec[i].bv_page); 389 } 390 /* clear the bitmap if all writes complete successfully */ 391 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 392 r1_bio->sectors, 393 !test_bit(R1BIO_Degraded, &r1_bio->state), 394 behind); 395 md_write_end(r1_bio->mddev); 396 raid_end_bio_io(r1_bio); 397 } 398 } 399 400 if (to_put) 401 bio_put(to_put); 402 } 403 404 405 /* 406 * This routine returns the disk from which the requested read should 407 * be done. There is a per-array 'next expected sequential IO' sector 408 * number - if this matches on the next IO then we use the last disk. 409 * There is also a per-disk 'last know head position' sector that is 410 * maintained from IRQ contexts, both the normal and the resync IO 411 * completion handlers update this position correctly. If there is no 412 * perfect sequential match then we pick the disk whose head is closest. 413 * 414 * If there are 2 mirrors in the same 2 devices, performance degrades 415 * because position is mirror, not device based. 416 * 417 * The rdev for the device selected will have nr_pending incremented. 418 */ 419 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 420 { 421 const unsigned long this_sector = r1_bio->sector; 422 int new_disk = conf->last_used, disk = new_disk; 423 int wonly_disk = -1; 424 const int sectors = r1_bio->sectors; 425 sector_t new_distance, current_distance; 426 mdk_rdev_t *rdev; 427 428 rcu_read_lock(); 429 /* 430 * Check if we can balance. We can balance on the whole 431 * device if no resync is going on, or below the resync window. 432 * We take the first readable disk when above the resync window. 433 */ 434 retry: 435 if (conf->mddev->recovery_cp < MaxSector && 436 (this_sector + sectors >= conf->next_resync)) { 437 /* Choose the first operation device, for consistancy */ 438 new_disk = 0; 439 440 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 441 r1_bio->bios[new_disk] == IO_BLOCKED || 442 !rdev || !test_bit(In_sync, &rdev->flags) 443 || test_bit(WriteMostly, &rdev->flags); 444 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 445 446 if (rdev && test_bit(In_sync, &rdev->flags) && 447 r1_bio->bios[new_disk] != IO_BLOCKED) 448 wonly_disk = new_disk; 449 450 if (new_disk == conf->raid_disks - 1) { 451 new_disk = wonly_disk; 452 break; 453 } 454 } 455 goto rb_out; 456 } 457 458 459 /* make sure the disk is operational */ 460 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 461 r1_bio->bios[new_disk] == IO_BLOCKED || 462 !rdev || !test_bit(In_sync, &rdev->flags) || 463 test_bit(WriteMostly, &rdev->flags); 464 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 465 466 if (rdev && test_bit(In_sync, &rdev->flags) && 467 r1_bio->bios[new_disk] != IO_BLOCKED) 468 wonly_disk = new_disk; 469 470 if (new_disk <= 0) 471 new_disk = conf->raid_disks; 472 new_disk--; 473 if (new_disk == disk) { 474 new_disk = wonly_disk; 475 break; 476 } 477 } 478 479 if (new_disk < 0) 480 goto rb_out; 481 482 disk = new_disk; 483 /* now disk == new_disk == starting point for search */ 484 485 /* 486 * Don't change to another disk for sequential reads: 487 */ 488 if (conf->next_seq_sect == this_sector) 489 goto rb_out; 490 if (this_sector == conf->mirrors[new_disk].head_position) 491 goto rb_out; 492 493 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 494 495 /* Find the disk whose head is closest */ 496 497 do { 498 if (disk <= 0) 499 disk = conf->raid_disks; 500 disk--; 501 502 rdev = rcu_dereference(conf->mirrors[disk].rdev); 503 504 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 505 !test_bit(In_sync, &rdev->flags) || 506 test_bit(WriteMostly, &rdev->flags)) 507 continue; 508 509 if (!atomic_read(&rdev->nr_pending)) { 510 new_disk = disk; 511 break; 512 } 513 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 514 if (new_distance < current_distance) { 515 current_distance = new_distance; 516 new_disk = disk; 517 } 518 } while (disk != conf->last_used); 519 520 rb_out: 521 522 523 if (new_disk >= 0) { 524 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 525 if (!rdev) 526 goto retry; 527 atomic_inc(&rdev->nr_pending); 528 if (!test_bit(In_sync, &rdev->flags)) { 529 /* cannot risk returning a device that failed 530 * before we inc'ed nr_pending 531 */ 532 rdev_dec_pending(rdev, conf->mddev); 533 goto retry; 534 } 535 conf->next_seq_sect = this_sector + sectors; 536 conf->last_used = new_disk; 537 } 538 rcu_read_unlock(); 539 540 return new_disk; 541 } 542 543 static void unplug_slaves(mddev_t *mddev) 544 { 545 conf_t *conf = mddev->private; 546 int i; 547 548 rcu_read_lock(); 549 for (i=0; i<mddev->raid_disks; i++) { 550 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 551 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 552 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 553 554 atomic_inc(&rdev->nr_pending); 555 rcu_read_unlock(); 556 557 blk_unplug(r_queue); 558 559 rdev_dec_pending(rdev, mddev); 560 rcu_read_lock(); 561 } 562 } 563 rcu_read_unlock(); 564 } 565 566 static void raid1_unplug(struct request_queue *q) 567 { 568 mddev_t *mddev = q->queuedata; 569 570 unplug_slaves(mddev); 571 md_wakeup_thread(mddev->thread); 572 } 573 574 static int raid1_congested(void *data, int bits) 575 { 576 mddev_t *mddev = data; 577 conf_t *conf = mddev->private; 578 int i, ret = 0; 579 580 if (mddev_congested(mddev, bits)) 581 return 1; 582 583 rcu_read_lock(); 584 for (i = 0; i < mddev->raid_disks; i++) { 585 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 586 if (rdev && !test_bit(Faulty, &rdev->flags)) { 587 struct request_queue *q = bdev_get_queue(rdev->bdev); 588 589 /* Note the '|| 1' - when read_balance prefers 590 * non-congested targets, it can be removed 591 */ 592 if ((bits & (1<<BDI_async_congested)) || 1) 593 ret |= bdi_congested(&q->backing_dev_info, bits); 594 else 595 ret &= bdi_congested(&q->backing_dev_info, bits); 596 } 597 } 598 rcu_read_unlock(); 599 return ret; 600 } 601 602 603 static int flush_pending_writes(conf_t *conf) 604 { 605 /* Any writes that have been queued but are awaiting 606 * bitmap updates get flushed here. 607 * We return 1 if any requests were actually submitted. 608 */ 609 int rv = 0; 610 611 spin_lock_irq(&conf->device_lock); 612 613 if (conf->pending_bio_list.head) { 614 struct bio *bio; 615 bio = bio_list_get(&conf->pending_bio_list); 616 blk_remove_plug(conf->mddev->queue); 617 spin_unlock_irq(&conf->device_lock); 618 /* flush any pending bitmap writes to 619 * disk before proceeding w/ I/O */ 620 bitmap_unplug(conf->mddev->bitmap); 621 622 while (bio) { /* submit pending writes */ 623 struct bio *next = bio->bi_next; 624 bio->bi_next = NULL; 625 generic_make_request(bio); 626 bio = next; 627 } 628 rv = 1; 629 } else 630 spin_unlock_irq(&conf->device_lock); 631 return rv; 632 } 633 634 /* Barriers.... 635 * Sometimes we need to suspend IO while we do something else, 636 * either some resync/recovery, or reconfigure the array. 637 * To do this we raise a 'barrier'. 638 * The 'barrier' is a counter that can be raised multiple times 639 * to count how many activities are happening which preclude 640 * normal IO. 641 * We can only raise the barrier if there is no pending IO. 642 * i.e. if nr_pending == 0. 643 * We choose only to raise the barrier if no-one is waiting for the 644 * barrier to go down. This means that as soon as an IO request 645 * is ready, no other operations which require a barrier will start 646 * until the IO request has had a chance. 647 * 648 * So: regular IO calls 'wait_barrier'. When that returns there 649 * is no backgroup IO happening, It must arrange to call 650 * allow_barrier when it has finished its IO. 651 * backgroup IO calls must call raise_barrier. Once that returns 652 * there is no normal IO happeing. It must arrange to call 653 * lower_barrier when the particular background IO completes. 654 */ 655 #define RESYNC_DEPTH 32 656 657 static void raise_barrier(conf_t *conf) 658 { 659 spin_lock_irq(&conf->resync_lock); 660 661 /* Wait until no block IO is waiting */ 662 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 663 conf->resync_lock, 664 raid1_unplug(conf->mddev->queue)); 665 666 /* block any new IO from starting */ 667 conf->barrier++; 668 669 /* No wait for all pending IO to complete */ 670 wait_event_lock_irq(conf->wait_barrier, 671 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 672 conf->resync_lock, 673 raid1_unplug(conf->mddev->queue)); 674 675 spin_unlock_irq(&conf->resync_lock); 676 } 677 678 static void lower_barrier(conf_t *conf) 679 { 680 unsigned long flags; 681 BUG_ON(conf->barrier <= 0); 682 spin_lock_irqsave(&conf->resync_lock, flags); 683 conf->barrier--; 684 spin_unlock_irqrestore(&conf->resync_lock, flags); 685 wake_up(&conf->wait_barrier); 686 } 687 688 static void wait_barrier(conf_t *conf) 689 { 690 spin_lock_irq(&conf->resync_lock); 691 if (conf->barrier) { 692 conf->nr_waiting++; 693 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 694 conf->resync_lock, 695 raid1_unplug(conf->mddev->queue)); 696 conf->nr_waiting--; 697 } 698 conf->nr_pending++; 699 spin_unlock_irq(&conf->resync_lock); 700 } 701 702 static void allow_barrier(conf_t *conf) 703 { 704 unsigned long flags; 705 spin_lock_irqsave(&conf->resync_lock, flags); 706 conf->nr_pending--; 707 spin_unlock_irqrestore(&conf->resync_lock, flags); 708 wake_up(&conf->wait_barrier); 709 } 710 711 static void freeze_array(conf_t *conf) 712 { 713 /* stop syncio and normal IO and wait for everything to 714 * go quite. 715 * We increment barrier and nr_waiting, and then 716 * wait until nr_pending match nr_queued+1 717 * This is called in the context of one normal IO request 718 * that has failed. Thus any sync request that might be pending 719 * will be blocked by nr_pending, and we need to wait for 720 * pending IO requests to complete or be queued for re-try. 721 * Thus the number queued (nr_queued) plus this request (1) 722 * must match the number of pending IOs (nr_pending) before 723 * we continue. 724 */ 725 spin_lock_irq(&conf->resync_lock); 726 conf->barrier++; 727 conf->nr_waiting++; 728 wait_event_lock_irq(conf->wait_barrier, 729 conf->nr_pending == conf->nr_queued+1, 730 conf->resync_lock, 731 ({ flush_pending_writes(conf); 732 raid1_unplug(conf->mddev->queue); })); 733 spin_unlock_irq(&conf->resync_lock); 734 } 735 static void unfreeze_array(conf_t *conf) 736 { 737 /* reverse the effect of the freeze */ 738 spin_lock_irq(&conf->resync_lock); 739 conf->barrier--; 740 conf->nr_waiting--; 741 wake_up(&conf->wait_barrier); 742 spin_unlock_irq(&conf->resync_lock); 743 } 744 745 746 /* duplicate the data pages for behind I/O */ 747 static struct page **alloc_behind_pages(struct bio *bio) 748 { 749 int i; 750 struct bio_vec *bvec; 751 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 752 GFP_NOIO); 753 if (unlikely(!pages)) 754 goto do_sync_io; 755 756 bio_for_each_segment(bvec, bio, i) { 757 pages[i] = alloc_page(GFP_NOIO); 758 if (unlikely(!pages[i])) 759 goto do_sync_io; 760 memcpy(kmap(pages[i]) + bvec->bv_offset, 761 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 762 kunmap(pages[i]); 763 kunmap(bvec->bv_page); 764 } 765 766 return pages; 767 768 do_sync_io: 769 if (pages) 770 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 771 put_page(pages[i]); 772 kfree(pages); 773 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 774 return NULL; 775 } 776 777 static int make_request(struct request_queue *q, struct bio * bio) 778 { 779 mddev_t *mddev = q->queuedata; 780 conf_t *conf = mddev->private; 781 mirror_info_t *mirror; 782 r1bio_t *r1_bio; 783 struct bio *read_bio; 784 int i, targets = 0, disks; 785 struct bitmap *bitmap; 786 unsigned long flags; 787 struct bio_list bl; 788 struct page **behind_pages = NULL; 789 const int rw = bio_data_dir(bio); 790 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 791 int cpu; 792 bool do_barriers; 793 mdk_rdev_t *blocked_rdev; 794 795 /* 796 * Register the new request and wait if the reconstruction 797 * thread has put up a bar for new requests. 798 * Continue immediately if no resync is active currently. 799 * We test barriers_work *after* md_write_start as md_write_start 800 * may cause the first superblock write, and that will check out 801 * if barriers work. 802 */ 803 804 md_write_start(mddev, bio); /* wait on superblock update early */ 805 806 if (bio_data_dir(bio) == WRITE && 807 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 808 bio->bi_sector < mddev->suspend_hi) { 809 /* As the suspend_* range is controlled by 810 * userspace, we want an interruptible 811 * wait. 812 */ 813 DEFINE_WAIT(w); 814 for (;;) { 815 flush_signals(current); 816 prepare_to_wait(&conf->wait_barrier, 817 &w, TASK_INTERRUPTIBLE); 818 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 819 bio->bi_sector >= mddev->suspend_hi) 820 break; 821 schedule(); 822 } 823 finish_wait(&conf->wait_barrier, &w); 824 } 825 if (unlikely(!mddev->barriers_work && 826 bio_rw_flagged(bio, BIO_RW_BARRIER))) { 827 if (rw == WRITE) 828 md_write_end(mddev); 829 bio_endio(bio, -EOPNOTSUPP); 830 return 0; 831 } 832 833 wait_barrier(conf); 834 835 bitmap = mddev->bitmap; 836 837 cpu = part_stat_lock(); 838 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 839 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 840 bio_sectors(bio)); 841 part_stat_unlock(); 842 843 /* 844 * make_request() can abort the operation when READA is being 845 * used and no empty request is available. 846 * 847 */ 848 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 849 850 r1_bio->master_bio = bio; 851 r1_bio->sectors = bio->bi_size >> 9; 852 r1_bio->state = 0; 853 r1_bio->mddev = mddev; 854 r1_bio->sector = bio->bi_sector; 855 856 if (rw == READ) { 857 /* 858 * read balancing logic: 859 */ 860 int rdisk = read_balance(conf, r1_bio); 861 862 if (rdisk < 0) { 863 /* couldn't find anywhere to read from */ 864 raid_end_bio_io(r1_bio); 865 return 0; 866 } 867 mirror = conf->mirrors + rdisk; 868 869 r1_bio->read_disk = rdisk; 870 871 read_bio = bio_clone(bio, GFP_NOIO); 872 873 r1_bio->bios[rdisk] = read_bio; 874 875 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 876 read_bio->bi_bdev = mirror->rdev->bdev; 877 read_bio->bi_end_io = raid1_end_read_request; 878 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 879 read_bio->bi_private = r1_bio; 880 881 generic_make_request(read_bio); 882 return 0; 883 } 884 885 /* 886 * WRITE: 887 */ 888 /* first select target devices under spinlock and 889 * inc refcount on their rdev. Record them by setting 890 * bios[x] to bio 891 */ 892 disks = conf->raid_disks; 893 #if 0 894 { static int first=1; 895 if (first) printk("First Write sector %llu disks %d\n", 896 (unsigned long long)r1_bio->sector, disks); 897 first = 0; 898 } 899 #endif 900 retry_write: 901 blocked_rdev = NULL; 902 rcu_read_lock(); 903 for (i = 0; i < disks; i++) { 904 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 905 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 906 atomic_inc(&rdev->nr_pending); 907 blocked_rdev = rdev; 908 break; 909 } 910 if (rdev && !test_bit(Faulty, &rdev->flags)) { 911 atomic_inc(&rdev->nr_pending); 912 if (test_bit(Faulty, &rdev->flags)) { 913 rdev_dec_pending(rdev, mddev); 914 r1_bio->bios[i] = NULL; 915 } else 916 r1_bio->bios[i] = bio; 917 targets++; 918 } else 919 r1_bio->bios[i] = NULL; 920 } 921 rcu_read_unlock(); 922 923 if (unlikely(blocked_rdev)) { 924 /* Wait for this device to become unblocked */ 925 int j; 926 927 for (j = 0; j < i; j++) 928 if (r1_bio->bios[j]) 929 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 930 931 allow_barrier(conf); 932 md_wait_for_blocked_rdev(blocked_rdev, mddev); 933 wait_barrier(conf); 934 goto retry_write; 935 } 936 937 BUG_ON(targets == 0); /* we never fail the last device */ 938 939 if (targets < conf->raid_disks) { 940 /* array is degraded, we will not clear the bitmap 941 * on I/O completion (see raid1_end_write_request) */ 942 set_bit(R1BIO_Degraded, &r1_bio->state); 943 } 944 945 /* do behind I/O ? */ 946 if (bitmap && 947 (atomic_read(&bitmap->behind_writes) 948 < mddev->bitmap_info.max_write_behind) && 949 (behind_pages = alloc_behind_pages(bio)) != NULL) 950 set_bit(R1BIO_BehindIO, &r1_bio->state); 951 952 atomic_set(&r1_bio->remaining, 0); 953 atomic_set(&r1_bio->behind_remaining, 0); 954 955 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER); 956 if (do_barriers) 957 set_bit(R1BIO_Barrier, &r1_bio->state); 958 959 bio_list_init(&bl); 960 for (i = 0; i < disks; i++) { 961 struct bio *mbio; 962 if (!r1_bio->bios[i]) 963 continue; 964 965 mbio = bio_clone(bio, GFP_NOIO); 966 r1_bio->bios[i] = mbio; 967 968 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 969 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 970 mbio->bi_end_io = raid1_end_write_request; 971 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) | 972 (do_sync << BIO_RW_SYNCIO); 973 mbio->bi_private = r1_bio; 974 975 if (behind_pages) { 976 struct bio_vec *bvec; 977 int j; 978 979 /* Yes, I really want the '__' version so that 980 * we clear any unused pointer in the io_vec, rather 981 * than leave them unchanged. This is important 982 * because when we come to free the pages, we won't 983 * know the originial bi_idx, so we just free 984 * them all 985 */ 986 __bio_for_each_segment(bvec, mbio, j, 0) 987 bvec->bv_page = behind_pages[j]; 988 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 989 atomic_inc(&r1_bio->behind_remaining); 990 } 991 992 atomic_inc(&r1_bio->remaining); 993 994 bio_list_add(&bl, mbio); 995 } 996 kfree(behind_pages); /* the behind pages are attached to the bios now */ 997 998 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 999 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1000 spin_lock_irqsave(&conf->device_lock, flags); 1001 bio_list_merge(&conf->pending_bio_list, &bl); 1002 bio_list_init(&bl); 1003 1004 blk_plug_device(mddev->queue); 1005 spin_unlock_irqrestore(&conf->device_lock, flags); 1006 1007 /* In case raid1d snuck into freeze_array */ 1008 wake_up(&conf->wait_barrier); 1009 1010 if (do_sync) 1011 md_wakeup_thread(mddev->thread); 1012 #if 0 1013 while ((bio = bio_list_pop(&bl)) != NULL) 1014 generic_make_request(bio); 1015 #endif 1016 1017 return 0; 1018 } 1019 1020 static void status(struct seq_file *seq, mddev_t *mddev) 1021 { 1022 conf_t *conf = mddev->private; 1023 int i; 1024 1025 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1026 conf->raid_disks - mddev->degraded); 1027 rcu_read_lock(); 1028 for (i = 0; i < conf->raid_disks; i++) { 1029 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1030 seq_printf(seq, "%s", 1031 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1032 } 1033 rcu_read_unlock(); 1034 seq_printf(seq, "]"); 1035 } 1036 1037 1038 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1039 { 1040 char b[BDEVNAME_SIZE]; 1041 conf_t *conf = mddev->private; 1042 1043 /* 1044 * If it is not operational, then we have already marked it as dead 1045 * else if it is the last working disks, ignore the error, let the 1046 * next level up know. 1047 * else mark the drive as failed 1048 */ 1049 if (test_bit(In_sync, &rdev->flags) 1050 && (conf->raid_disks - mddev->degraded) == 1) { 1051 /* 1052 * Don't fail the drive, act as though we were just a 1053 * normal single drive. 1054 * However don't try a recovery from this drive as 1055 * it is very likely to fail. 1056 */ 1057 mddev->recovery_disabled = 1; 1058 return; 1059 } 1060 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1061 unsigned long flags; 1062 spin_lock_irqsave(&conf->device_lock, flags); 1063 mddev->degraded++; 1064 set_bit(Faulty, &rdev->flags); 1065 spin_unlock_irqrestore(&conf->device_lock, flags); 1066 /* 1067 * if recovery is running, make sure it aborts. 1068 */ 1069 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1070 } else 1071 set_bit(Faulty, &rdev->flags); 1072 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1073 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n" 1074 "raid1: Operation continuing on %d devices.\n", 1075 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1076 } 1077 1078 static void print_conf(conf_t *conf) 1079 { 1080 int i; 1081 1082 printk("RAID1 conf printout:\n"); 1083 if (!conf) { 1084 printk("(!conf)\n"); 1085 return; 1086 } 1087 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1088 conf->raid_disks); 1089 1090 rcu_read_lock(); 1091 for (i = 0; i < conf->raid_disks; i++) { 1092 char b[BDEVNAME_SIZE]; 1093 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1094 if (rdev) 1095 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1096 i, !test_bit(In_sync, &rdev->flags), 1097 !test_bit(Faulty, &rdev->flags), 1098 bdevname(rdev->bdev,b)); 1099 } 1100 rcu_read_unlock(); 1101 } 1102 1103 static void close_sync(conf_t *conf) 1104 { 1105 wait_barrier(conf); 1106 allow_barrier(conf); 1107 1108 mempool_destroy(conf->r1buf_pool); 1109 conf->r1buf_pool = NULL; 1110 } 1111 1112 static int raid1_spare_active(mddev_t *mddev) 1113 { 1114 int i; 1115 conf_t *conf = mddev->private; 1116 1117 /* 1118 * Find all failed disks within the RAID1 configuration 1119 * and mark them readable. 1120 * Called under mddev lock, so rcu protection not needed. 1121 */ 1122 for (i = 0; i < conf->raid_disks; i++) { 1123 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1124 if (rdev 1125 && !test_bit(Faulty, &rdev->flags) 1126 && !test_and_set_bit(In_sync, &rdev->flags)) { 1127 unsigned long flags; 1128 spin_lock_irqsave(&conf->device_lock, flags); 1129 mddev->degraded--; 1130 spin_unlock_irqrestore(&conf->device_lock, flags); 1131 } 1132 } 1133 1134 print_conf(conf); 1135 return 0; 1136 } 1137 1138 1139 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1140 { 1141 conf_t *conf = mddev->private; 1142 int err = -EEXIST; 1143 int mirror = 0; 1144 mirror_info_t *p; 1145 int first = 0; 1146 int last = mddev->raid_disks - 1; 1147 1148 if (rdev->raid_disk >= 0) 1149 first = last = rdev->raid_disk; 1150 1151 for (mirror = first; mirror <= last; mirror++) 1152 if ( !(p=conf->mirrors+mirror)->rdev) { 1153 1154 disk_stack_limits(mddev->gendisk, rdev->bdev, 1155 rdev->data_offset << 9); 1156 /* as we don't honour merge_bvec_fn, we must 1157 * never risk violating it, so limit 1158 * ->max_segments to one lying with a single 1159 * page, as a one page request is never in 1160 * violation. 1161 */ 1162 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1163 blk_queue_max_segments(mddev->queue, 1); 1164 blk_queue_segment_boundary(mddev->queue, 1165 PAGE_CACHE_SIZE - 1); 1166 } 1167 1168 p->head_position = 0; 1169 rdev->raid_disk = mirror; 1170 err = 0; 1171 /* As all devices are equivalent, we don't need a full recovery 1172 * if this was recently any drive of the array 1173 */ 1174 if (rdev->saved_raid_disk < 0) 1175 conf->fullsync = 1; 1176 rcu_assign_pointer(p->rdev, rdev); 1177 break; 1178 } 1179 md_integrity_add_rdev(rdev, mddev); 1180 print_conf(conf); 1181 return err; 1182 } 1183 1184 static int raid1_remove_disk(mddev_t *mddev, int number) 1185 { 1186 conf_t *conf = mddev->private; 1187 int err = 0; 1188 mdk_rdev_t *rdev; 1189 mirror_info_t *p = conf->mirrors+ number; 1190 1191 print_conf(conf); 1192 rdev = p->rdev; 1193 if (rdev) { 1194 if (test_bit(In_sync, &rdev->flags) || 1195 atomic_read(&rdev->nr_pending)) { 1196 err = -EBUSY; 1197 goto abort; 1198 } 1199 /* Only remove non-faulty devices is recovery 1200 * is not possible. 1201 */ 1202 if (!test_bit(Faulty, &rdev->flags) && 1203 mddev->degraded < conf->raid_disks) { 1204 err = -EBUSY; 1205 goto abort; 1206 } 1207 p->rdev = NULL; 1208 synchronize_rcu(); 1209 if (atomic_read(&rdev->nr_pending)) { 1210 /* lost the race, try later */ 1211 err = -EBUSY; 1212 p->rdev = rdev; 1213 goto abort; 1214 } 1215 md_integrity_register(mddev); 1216 } 1217 abort: 1218 1219 print_conf(conf); 1220 return err; 1221 } 1222 1223 1224 static void end_sync_read(struct bio *bio, int error) 1225 { 1226 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1227 int i; 1228 1229 for (i=r1_bio->mddev->raid_disks; i--; ) 1230 if (r1_bio->bios[i] == bio) 1231 break; 1232 BUG_ON(i < 0); 1233 update_head_pos(i, r1_bio); 1234 /* 1235 * we have read a block, now it needs to be re-written, 1236 * or re-read if the read failed. 1237 * We don't do much here, just schedule handling by raid1d 1238 */ 1239 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1240 set_bit(R1BIO_Uptodate, &r1_bio->state); 1241 1242 if (atomic_dec_and_test(&r1_bio->remaining)) 1243 reschedule_retry(r1_bio); 1244 } 1245 1246 static void end_sync_write(struct bio *bio, int error) 1247 { 1248 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1249 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1250 mddev_t *mddev = r1_bio->mddev; 1251 conf_t *conf = mddev->private; 1252 int i; 1253 int mirror=0; 1254 1255 for (i = 0; i < conf->raid_disks; i++) 1256 if (r1_bio->bios[i] == bio) { 1257 mirror = i; 1258 break; 1259 } 1260 if (!uptodate) { 1261 int sync_blocks = 0; 1262 sector_t s = r1_bio->sector; 1263 long sectors_to_go = r1_bio->sectors; 1264 /* make sure these bits doesn't get cleared. */ 1265 do { 1266 bitmap_end_sync(mddev->bitmap, s, 1267 &sync_blocks, 1); 1268 s += sync_blocks; 1269 sectors_to_go -= sync_blocks; 1270 } while (sectors_to_go > 0); 1271 md_error(mddev, conf->mirrors[mirror].rdev); 1272 } 1273 1274 update_head_pos(mirror, r1_bio); 1275 1276 if (atomic_dec_and_test(&r1_bio->remaining)) { 1277 sector_t s = r1_bio->sectors; 1278 put_buf(r1_bio); 1279 md_done_sync(mddev, s, uptodate); 1280 } 1281 } 1282 1283 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1284 { 1285 conf_t *conf = mddev->private; 1286 int i; 1287 int disks = conf->raid_disks; 1288 struct bio *bio, *wbio; 1289 1290 bio = r1_bio->bios[r1_bio->read_disk]; 1291 1292 1293 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1294 /* We have read all readable devices. If we haven't 1295 * got the block, then there is no hope left. 1296 * If we have, then we want to do a comparison 1297 * and skip the write if everything is the same. 1298 * If any blocks failed to read, then we need to 1299 * attempt an over-write 1300 */ 1301 int primary; 1302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1303 for (i=0; i<mddev->raid_disks; i++) 1304 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1305 md_error(mddev, conf->mirrors[i].rdev); 1306 1307 md_done_sync(mddev, r1_bio->sectors, 1); 1308 put_buf(r1_bio); 1309 return; 1310 } 1311 for (primary=0; primary<mddev->raid_disks; primary++) 1312 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1313 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1314 r1_bio->bios[primary]->bi_end_io = NULL; 1315 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1316 break; 1317 } 1318 r1_bio->read_disk = primary; 1319 for (i=0; i<mddev->raid_disks; i++) 1320 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1321 int j; 1322 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1323 struct bio *pbio = r1_bio->bios[primary]; 1324 struct bio *sbio = r1_bio->bios[i]; 1325 1326 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1327 for (j = vcnt; j-- ; ) { 1328 struct page *p, *s; 1329 p = pbio->bi_io_vec[j].bv_page; 1330 s = sbio->bi_io_vec[j].bv_page; 1331 if (memcmp(page_address(p), 1332 page_address(s), 1333 PAGE_SIZE)) 1334 break; 1335 } 1336 } else 1337 j = 0; 1338 if (j >= 0) 1339 mddev->resync_mismatches += r1_bio->sectors; 1340 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1341 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1342 sbio->bi_end_io = NULL; 1343 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1344 } else { 1345 /* fixup the bio for reuse */ 1346 int size; 1347 sbio->bi_vcnt = vcnt; 1348 sbio->bi_size = r1_bio->sectors << 9; 1349 sbio->bi_idx = 0; 1350 sbio->bi_phys_segments = 0; 1351 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1352 sbio->bi_flags |= 1 << BIO_UPTODATE; 1353 sbio->bi_next = NULL; 1354 sbio->bi_sector = r1_bio->sector + 1355 conf->mirrors[i].rdev->data_offset; 1356 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1357 size = sbio->bi_size; 1358 for (j = 0; j < vcnt ; j++) { 1359 struct bio_vec *bi; 1360 bi = &sbio->bi_io_vec[j]; 1361 bi->bv_offset = 0; 1362 if (size > PAGE_SIZE) 1363 bi->bv_len = PAGE_SIZE; 1364 else 1365 bi->bv_len = size; 1366 size -= PAGE_SIZE; 1367 memcpy(page_address(bi->bv_page), 1368 page_address(pbio->bi_io_vec[j].bv_page), 1369 PAGE_SIZE); 1370 } 1371 1372 } 1373 } 1374 } 1375 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1376 /* ouch - failed to read all of that. 1377 * Try some synchronous reads of other devices to get 1378 * good data, much like with normal read errors. Only 1379 * read into the pages we already have so we don't 1380 * need to re-issue the read request. 1381 * We don't need to freeze the array, because being in an 1382 * active sync request, there is no normal IO, and 1383 * no overlapping syncs. 1384 */ 1385 sector_t sect = r1_bio->sector; 1386 int sectors = r1_bio->sectors; 1387 int idx = 0; 1388 1389 while(sectors) { 1390 int s = sectors; 1391 int d = r1_bio->read_disk; 1392 int success = 0; 1393 mdk_rdev_t *rdev; 1394 1395 if (s > (PAGE_SIZE>>9)) 1396 s = PAGE_SIZE >> 9; 1397 do { 1398 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1399 /* No rcu protection needed here devices 1400 * can only be removed when no resync is 1401 * active, and resync is currently active 1402 */ 1403 rdev = conf->mirrors[d].rdev; 1404 if (sync_page_io(rdev->bdev, 1405 sect + rdev->data_offset, 1406 s<<9, 1407 bio->bi_io_vec[idx].bv_page, 1408 READ)) { 1409 success = 1; 1410 break; 1411 } 1412 } 1413 d++; 1414 if (d == conf->raid_disks) 1415 d = 0; 1416 } while (!success && d != r1_bio->read_disk); 1417 1418 if (success) { 1419 int start = d; 1420 /* write it back and re-read */ 1421 set_bit(R1BIO_Uptodate, &r1_bio->state); 1422 while (d != r1_bio->read_disk) { 1423 if (d == 0) 1424 d = conf->raid_disks; 1425 d--; 1426 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1427 continue; 1428 rdev = conf->mirrors[d].rdev; 1429 atomic_add(s, &rdev->corrected_errors); 1430 if (sync_page_io(rdev->bdev, 1431 sect + rdev->data_offset, 1432 s<<9, 1433 bio->bi_io_vec[idx].bv_page, 1434 WRITE) == 0) 1435 md_error(mddev, rdev); 1436 } 1437 d = start; 1438 while (d != r1_bio->read_disk) { 1439 if (d == 0) 1440 d = conf->raid_disks; 1441 d--; 1442 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1443 continue; 1444 rdev = conf->mirrors[d].rdev; 1445 if (sync_page_io(rdev->bdev, 1446 sect + rdev->data_offset, 1447 s<<9, 1448 bio->bi_io_vec[idx].bv_page, 1449 READ) == 0) 1450 md_error(mddev, rdev); 1451 } 1452 } else { 1453 char b[BDEVNAME_SIZE]; 1454 /* Cannot read from anywhere, array is toast */ 1455 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1456 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1457 " for block %llu\n", 1458 bdevname(bio->bi_bdev,b), 1459 (unsigned long long)r1_bio->sector); 1460 md_done_sync(mddev, r1_bio->sectors, 0); 1461 put_buf(r1_bio); 1462 return; 1463 } 1464 sectors -= s; 1465 sect += s; 1466 idx ++; 1467 } 1468 } 1469 1470 /* 1471 * schedule writes 1472 */ 1473 atomic_set(&r1_bio->remaining, 1); 1474 for (i = 0; i < disks ; i++) { 1475 wbio = r1_bio->bios[i]; 1476 if (wbio->bi_end_io == NULL || 1477 (wbio->bi_end_io == end_sync_read && 1478 (i == r1_bio->read_disk || 1479 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1480 continue; 1481 1482 wbio->bi_rw = WRITE; 1483 wbio->bi_end_io = end_sync_write; 1484 atomic_inc(&r1_bio->remaining); 1485 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1486 1487 generic_make_request(wbio); 1488 } 1489 1490 if (atomic_dec_and_test(&r1_bio->remaining)) { 1491 /* if we're here, all write(s) have completed, so clean up */ 1492 md_done_sync(mddev, r1_bio->sectors, 1); 1493 put_buf(r1_bio); 1494 } 1495 } 1496 1497 /* 1498 * This is a kernel thread which: 1499 * 1500 * 1. Retries failed read operations on working mirrors. 1501 * 2. Updates the raid superblock when problems encounter. 1502 * 3. Performs writes following reads for array syncronising. 1503 */ 1504 1505 static void fix_read_error(conf_t *conf, int read_disk, 1506 sector_t sect, int sectors) 1507 { 1508 mddev_t *mddev = conf->mddev; 1509 while(sectors) { 1510 int s = sectors; 1511 int d = read_disk; 1512 int success = 0; 1513 int start; 1514 mdk_rdev_t *rdev; 1515 1516 if (s > (PAGE_SIZE>>9)) 1517 s = PAGE_SIZE >> 9; 1518 1519 do { 1520 /* Note: no rcu protection needed here 1521 * as this is synchronous in the raid1d thread 1522 * which is the thread that might remove 1523 * a device. If raid1d ever becomes multi-threaded.... 1524 */ 1525 rdev = conf->mirrors[d].rdev; 1526 if (rdev && 1527 test_bit(In_sync, &rdev->flags) && 1528 sync_page_io(rdev->bdev, 1529 sect + rdev->data_offset, 1530 s<<9, 1531 conf->tmppage, READ)) 1532 success = 1; 1533 else { 1534 d++; 1535 if (d == conf->raid_disks) 1536 d = 0; 1537 } 1538 } while (!success && d != read_disk); 1539 1540 if (!success) { 1541 /* Cannot read from anywhere -- bye bye array */ 1542 md_error(mddev, conf->mirrors[read_disk].rdev); 1543 break; 1544 } 1545 /* write it back and re-read */ 1546 start = d; 1547 while (d != read_disk) { 1548 if (d==0) 1549 d = conf->raid_disks; 1550 d--; 1551 rdev = conf->mirrors[d].rdev; 1552 if (rdev && 1553 test_bit(In_sync, &rdev->flags)) { 1554 if (sync_page_io(rdev->bdev, 1555 sect + rdev->data_offset, 1556 s<<9, conf->tmppage, WRITE) 1557 == 0) 1558 /* Well, this device is dead */ 1559 md_error(mddev, rdev); 1560 } 1561 } 1562 d = start; 1563 while (d != read_disk) { 1564 char b[BDEVNAME_SIZE]; 1565 if (d==0) 1566 d = conf->raid_disks; 1567 d--; 1568 rdev = conf->mirrors[d].rdev; 1569 if (rdev && 1570 test_bit(In_sync, &rdev->flags)) { 1571 if (sync_page_io(rdev->bdev, 1572 sect + rdev->data_offset, 1573 s<<9, conf->tmppage, READ) 1574 == 0) 1575 /* Well, this device is dead */ 1576 md_error(mddev, rdev); 1577 else { 1578 atomic_add(s, &rdev->corrected_errors); 1579 printk(KERN_INFO 1580 "raid1:%s: read error corrected " 1581 "(%d sectors at %llu on %s)\n", 1582 mdname(mddev), s, 1583 (unsigned long long)(sect + 1584 rdev->data_offset), 1585 bdevname(rdev->bdev, b)); 1586 } 1587 } 1588 } 1589 sectors -= s; 1590 sect += s; 1591 } 1592 } 1593 1594 static void raid1d(mddev_t *mddev) 1595 { 1596 r1bio_t *r1_bio; 1597 struct bio *bio; 1598 unsigned long flags; 1599 conf_t *conf = mddev->private; 1600 struct list_head *head = &conf->retry_list; 1601 int unplug=0; 1602 mdk_rdev_t *rdev; 1603 1604 md_check_recovery(mddev); 1605 1606 for (;;) { 1607 char b[BDEVNAME_SIZE]; 1608 1609 unplug += flush_pending_writes(conf); 1610 1611 spin_lock_irqsave(&conf->device_lock, flags); 1612 if (list_empty(head)) { 1613 spin_unlock_irqrestore(&conf->device_lock, flags); 1614 break; 1615 } 1616 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1617 list_del(head->prev); 1618 conf->nr_queued--; 1619 spin_unlock_irqrestore(&conf->device_lock, flags); 1620 1621 mddev = r1_bio->mddev; 1622 conf = mddev->private; 1623 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1624 sync_request_write(mddev, r1_bio); 1625 unplug = 1; 1626 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1627 /* some requests in the r1bio were BIO_RW_BARRIER 1628 * requests which failed with -EOPNOTSUPP. Hohumm.. 1629 * Better resubmit without the barrier. 1630 * We know which devices to resubmit for, because 1631 * all others have had their bios[] entry cleared. 1632 * We already have a nr_pending reference on these rdevs. 1633 */ 1634 int i; 1635 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1636 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1637 clear_bit(R1BIO_Barrier, &r1_bio->state); 1638 for (i=0; i < conf->raid_disks; i++) 1639 if (r1_bio->bios[i]) 1640 atomic_inc(&r1_bio->remaining); 1641 for (i=0; i < conf->raid_disks; i++) 1642 if (r1_bio->bios[i]) { 1643 struct bio_vec *bvec; 1644 int j; 1645 1646 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1647 /* copy pages from the failed bio, as 1648 * this might be a write-behind device */ 1649 __bio_for_each_segment(bvec, bio, j, 0) 1650 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1651 bio_put(r1_bio->bios[i]); 1652 bio->bi_sector = r1_bio->sector + 1653 conf->mirrors[i].rdev->data_offset; 1654 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1655 bio->bi_end_io = raid1_end_write_request; 1656 bio->bi_rw = WRITE | 1657 (do_sync << BIO_RW_SYNCIO); 1658 bio->bi_private = r1_bio; 1659 r1_bio->bios[i] = bio; 1660 generic_make_request(bio); 1661 } 1662 } else { 1663 int disk; 1664 1665 /* we got a read error. Maybe the drive is bad. Maybe just 1666 * the block and we can fix it. 1667 * We freeze all other IO, and try reading the block from 1668 * other devices. When we find one, we re-write 1669 * and check it that fixes the read error. 1670 * This is all done synchronously while the array is 1671 * frozen 1672 */ 1673 if (mddev->ro == 0) { 1674 freeze_array(conf); 1675 fix_read_error(conf, r1_bio->read_disk, 1676 r1_bio->sector, 1677 r1_bio->sectors); 1678 unfreeze_array(conf); 1679 } else 1680 md_error(mddev, 1681 conf->mirrors[r1_bio->read_disk].rdev); 1682 1683 bio = r1_bio->bios[r1_bio->read_disk]; 1684 if ((disk=read_balance(conf, r1_bio)) == -1) { 1685 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1686 " read error for block %llu\n", 1687 bdevname(bio->bi_bdev,b), 1688 (unsigned long long)r1_bio->sector); 1689 raid_end_bio_io(r1_bio); 1690 } else { 1691 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO); 1692 r1_bio->bios[r1_bio->read_disk] = 1693 mddev->ro ? IO_BLOCKED : NULL; 1694 r1_bio->read_disk = disk; 1695 bio_put(bio); 1696 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1697 r1_bio->bios[r1_bio->read_disk] = bio; 1698 rdev = conf->mirrors[disk].rdev; 1699 if (printk_ratelimit()) 1700 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1701 " another mirror\n", 1702 bdevname(rdev->bdev,b), 1703 (unsigned long long)r1_bio->sector); 1704 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1705 bio->bi_bdev = rdev->bdev; 1706 bio->bi_end_io = raid1_end_read_request; 1707 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1708 bio->bi_private = r1_bio; 1709 unplug = 1; 1710 generic_make_request(bio); 1711 } 1712 } 1713 cond_resched(); 1714 } 1715 if (unplug) 1716 unplug_slaves(mddev); 1717 } 1718 1719 1720 static int init_resync(conf_t *conf) 1721 { 1722 int buffs; 1723 1724 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1725 BUG_ON(conf->r1buf_pool); 1726 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1727 conf->poolinfo); 1728 if (!conf->r1buf_pool) 1729 return -ENOMEM; 1730 conf->next_resync = 0; 1731 return 0; 1732 } 1733 1734 /* 1735 * perform a "sync" on one "block" 1736 * 1737 * We need to make sure that no normal I/O request - particularly write 1738 * requests - conflict with active sync requests. 1739 * 1740 * This is achieved by tracking pending requests and a 'barrier' concept 1741 * that can be installed to exclude normal IO requests. 1742 */ 1743 1744 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1745 { 1746 conf_t *conf = mddev->private; 1747 r1bio_t *r1_bio; 1748 struct bio *bio; 1749 sector_t max_sector, nr_sectors; 1750 int disk = -1; 1751 int i; 1752 int wonly = -1; 1753 int write_targets = 0, read_targets = 0; 1754 int sync_blocks; 1755 int still_degraded = 0; 1756 1757 if (!conf->r1buf_pool) 1758 { 1759 /* 1760 printk("sync start - bitmap %p\n", mddev->bitmap); 1761 */ 1762 if (init_resync(conf)) 1763 return 0; 1764 } 1765 1766 max_sector = mddev->dev_sectors; 1767 if (sector_nr >= max_sector) { 1768 /* If we aborted, we need to abort the 1769 * sync on the 'current' bitmap chunk (there will 1770 * only be one in raid1 resync. 1771 * We can find the current addess in mddev->curr_resync 1772 */ 1773 if (mddev->curr_resync < max_sector) /* aborted */ 1774 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1775 &sync_blocks, 1); 1776 else /* completed sync */ 1777 conf->fullsync = 0; 1778 1779 bitmap_close_sync(mddev->bitmap); 1780 close_sync(conf); 1781 return 0; 1782 } 1783 1784 if (mddev->bitmap == NULL && 1785 mddev->recovery_cp == MaxSector && 1786 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1787 conf->fullsync == 0) { 1788 *skipped = 1; 1789 return max_sector - sector_nr; 1790 } 1791 /* before building a request, check if we can skip these blocks.. 1792 * This call the bitmap_start_sync doesn't actually record anything 1793 */ 1794 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1795 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1796 /* We can skip this block, and probably several more */ 1797 *skipped = 1; 1798 return sync_blocks; 1799 } 1800 /* 1801 * If there is non-resync activity waiting for a turn, 1802 * and resync is going fast enough, 1803 * then let it though before starting on this new sync request. 1804 */ 1805 if (!go_faster && conf->nr_waiting) 1806 msleep_interruptible(1000); 1807 1808 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1809 raise_barrier(conf); 1810 1811 conf->next_resync = sector_nr; 1812 1813 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1814 rcu_read_lock(); 1815 /* 1816 * If we get a correctably read error during resync or recovery, 1817 * we might want to read from a different device. So we 1818 * flag all drives that could conceivably be read from for READ, 1819 * and any others (which will be non-In_sync devices) for WRITE. 1820 * If a read fails, we try reading from something else for which READ 1821 * is OK. 1822 */ 1823 1824 r1_bio->mddev = mddev; 1825 r1_bio->sector = sector_nr; 1826 r1_bio->state = 0; 1827 set_bit(R1BIO_IsSync, &r1_bio->state); 1828 1829 for (i=0; i < conf->raid_disks; i++) { 1830 mdk_rdev_t *rdev; 1831 bio = r1_bio->bios[i]; 1832 1833 /* take from bio_init */ 1834 bio->bi_next = NULL; 1835 bio->bi_flags |= 1 << BIO_UPTODATE; 1836 bio->bi_rw = READ; 1837 bio->bi_vcnt = 0; 1838 bio->bi_idx = 0; 1839 bio->bi_phys_segments = 0; 1840 bio->bi_size = 0; 1841 bio->bi_end_io = NULL; 1842 bio->bi_private = NULL; 1843 1844 rdev = rcu_dereference(conf->mirrors[i].rdev); 1845 if (rdev == NULL || 1846 test_bit(Faulty, &rdev->flags)) { 1847 still_degraded = 1; 1848 continue; 1849 } else if (!test_bit(In_sync, &rdev->flags)) { 1850 bio->bi_rw = WRITE; 1851 bio->bi_end_io = end_sync_write; 1852 write_targets ++; 1853 } else { 1854 /* may need to read from here */ 1855 bio->bi_rw = READ; 1856 bio->bi_end_io = end_sync_read; 1857 if (test_bit(WriteMostly, &rdev->flags)) { 1858 if (wonly < 0) 1859 wonly = i; 1860 } else { 1861 if (disk < 0) 1862 disk = i; 1863 } 1864 read_targets++; 1865 } 1866 atomic_inc(&rdev->nr_pending); 1867 bio->bi_sector = sector_nr + rdev->data_offset; 1868 bio->bi_bdev = rdev->bdev; 1869 bio->bi_private = r1_bio; 1870 } 1871 rcu_read_unlock(); 1872 if (disk < 0) 1873 disk = wonly; 1874 r1_bio->read_disk = disk; 1875 1876 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1877 /* extra read targets are also write targets */ 1878 write_targets += read_targets-1; 1879 1880 if (write_targets == 0 || read_targets == 0) { 1881 /* There is nowhere to write, so all non-sync 1882 * drives must be failed - so we are finished 1883 */ 1884 sector_t rv = max_sector - sector_nr; 1885 *skipped = 1; 1886 put_buf(r1_bio); 1887 return rv; 1888 } 1889 1890 if (max_sector > mddev->resync_max) 1891 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1892 nr_sectors = 0; 1893 sync_blocks = 0; 1894 do { 1895 struct page *page; 1896 int len = PAGE_SIZE; 1897 if (sector_nr + (len>>9) > max_sector) 1898 len = (max_sector - sector_nr) << 9; 1899 if (len == 0) 1900 break; 1901 if (sync_blocks == 0) { 1902 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1903 &sync_blocks, still_degraded) && 1904 !conf->fullsync && 1905 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1906 break; 1907 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1908 if (len > (sync_blocks<<9)) 1909 len = sync_blocks<<9; 1910 } 1911 1912 for (i=0 ; i < conf->raid_disks; i++) { 1913 bio = r1_bio->bios[i]; 1914 if (bio->bi_end_io) { 1915 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1916 if (bio_add_page(bio, page, len, 0) == 0) { 1917 /* stop here */ 1918 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1919 while (i > 0) { 1920 i--; 1921 bio = r1_bio->bios[i]; 1922 if (bio->bi_end_io==NULL) 1923 continue; 1924 /* remove last page from this bio */ 1925 bio->bi_vcnt--; 1926 bio->bi_size -= len; 1927 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1928 } 1929 goto bio_full; 1930 } 1931 } 1932 } 1933 nr_sectors += len>>9; 1934 sector_nr += len>>9; 1935 sync_blocks -= (len>>9); 1936 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1937 bio_full: 1938 r1_bio->sectors = nr_sectors; 1939 1940 /* For a user-requested sync, we read all readable devices and do a 1941 * compare 1942 */ 1943 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1944 atomic_set(&r1_bio->remaining, read_targets); 1945 for (i=0; i<conf->raid_disks; i++) { 1946 bio = r1_bio->bios[i]; 1947 if (bio->bi_end_io == end_sync_read) { 1948 md_sync_acct(bio->bi_bdev, nr_sectors); 1949 generic_make_request(bio); 1950 } 1951 } 1952 } else { 1953 atomic_set(&r1_bio->remaining, 1); 1954 bio = r1_bio->bios[r1_bio->read_disk]; 1955 md_sync_acct(bio->bi_bdev, nr_sectors); 1956 generic_make_request(bio); 1957 1958 } 1959 return nr_sectors; 1960 } 1961 1962 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1963 { 1964 if (sectors) 1965 return sectors; 1966 1967 return mddev->dev_sectors; 1968 } 1969 1970 static conf_t *setup_conf(mddev_t *mddev) 1971 { 1972 conf_t *conf; 1973 int i; 1974 mirror_info_t *disk; 1975 mdk_rdev_t *rdev; 1976 int err = -ENOMEM; 1977 1978 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1979 if (!conf) 1980 goto abort; 1981 1982 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1983 GFP_KERNEL); 1984 if (!conf->mirrors) 1985 goto abort; 1986 1987 conf->tmppage = alloc_page(GFP_KERNEL); 1988 if (!conf->tmppage) 1989 goto abort; 1990 1991 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1992 if (!conf->poolinfo) 1993 goto abort; 1994 conf->poolinfo->raid_disks = mddev->raid_disks; 1995 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1996 r1bio_pool_free, 1997 conf->poolinfo); 1998 if (!conf->r1bio_pool) 1999 goto abort; 2000 2001 conf->poolinfo->mddev = mddev; 2002 2003 spin_lock_init(&conf->device_lock); 2004 list_for_each_entry(rdev, &mddev->disks, same_set) { 2005 int disk_idx = rdev->raid_disk; 2006 if (disk_idx >= mddev->raid_disks 2007 || disk_idx < 0) 2008 continue; 2009 disk = conf->mirrors + disk_idx; 2010 2011 disk->rdev = rdev; 2012 2013 disk->head_position = 0; 2014 } 2015 conf->raid_disks = mddev->raid_disks; 2016 conf->mddev = mddev; 2017 INIT_LIST_HEAD(&conf->retry_list); 2018 2019 spin_lock_init(&conf->resync_lock); 2020 init_waitqueue_head(&conf->wait_barrier); 2021 2022 bio_list_init(&conf->pending_bio_list); 2023 bio_list_init(&conf->flushing_bio_list); 2024 2025 conf->last_used = -1; 2026 for (i = 0; i < conf->raid_disks; i++) { 2027 2028 disk = conf->mirrors + i; 2029 2030 if (!disk->rdev || 2031 !test_bit(In_sync, &disk->rdev->flags)) { 2032 disk->head_position = 0; 2033 if (disk->rdev) 2034 conf->fullsync = 1; 2035 } else if (conf->last_used < 0) 2036 /* 2037 * The first working device is used as a 2038 * starting point to read balancing. 2039 */ 2040 conf->last_used = i; 2041 } 2042 2043 err = -EIO; 2044 if (conf->last_used < 0) { 2045 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 2046 mdname(mddev)); 2047 goto abort; 2048 } 2049 err = -ENOMEM; 2050 conf->thread = md_register_thread(raid1d, mddev, NULL); 2051 if (!conf->thread) { 2052 printk(KERN_ERR 2053 "raid1: couldn't allocate thread for %s\n", 2054 mdname(mddev)); 2055 goto abort; 2056 } 2057 2058 return conf; 2059 2060 abort: 2061 if (conf) { 2062 if (conf->r1bio_pool) 2063 mempool_destroy(conf->r1bio_pool); 2064 kfree(conf->mirrors); 2065 safe_put_page(conf->tmppage); 2066 kfree(conf->poolinfo); 2067 kfree(conf); 2068 } 2069 return ERR_PTR(err); 2070 } 2071 2072 static int run(mddev_t *mddev) 2073 { 2074 conf_t *conf; 2075 int i; 2076 mdk_rdev_t *rdev; 2077 2078 if (mddev->level != 1) { 2079 printk("raid1: %s: raid level not set to mirroring (%d)\n", 2080 mdname(mddev), mddev->level); 2081 return -EIO; 2082 } 2083 if (mddev->reshape_position != MaxSector) { 2084 printk("raid1: %s: reshape_position set but not supported\n", 2085 mdname(mddev)); 2086 return -EIO; 2087 } 2088 /* 2089 * copy the already verified devices into our private RAID1 2090 * bookkeeping area. [whatever we allocate in run(), 2091 * should be freed in stop()] 2092 */ 2093 if (mddev->private == NULL) 2094 conf = setup_conf(mddev); 2095 else 2096 conf = mddev->private; 2097 2098 if (IS_ERR(conf)) 2099 return PTR_ERR(conf); 2100 2101 mddev->queue->queue_lock = &conf->device_lock; 2102 list_for_each_entry(rdev, &mddev->disks, same_set) { 2103 disk_stack_limits(mddev->gendisk, rdev->bdev, 2104 rdev->data_offset << 9); 2105 /* as we don't honour merge_bvec_fn, we must never risk 2106 * violating it, so limit ->max_segments to 1 lying within 2107 * a single page, as a one page request is never in violation. 2108 */ 2109 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2110 blk_queue_max_segments(mddev->queue, 1); 2111 blk_queue_segment_boundary(mddev->queue, 2112 PAGE_CACHE_SIZE - 1); 2113 } 2114 } 2115 2116 mddev->degraded = 0; 2117 for (i=0; i < conf->raid_disks; i++) 2118 if (conf->mirrors[i].rdev == NULL || 2119 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2120 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2121 mddev->degraded++; 2122 2123 if (conf->raid_disks - mddev->degraded == 1) 2124 mddev->recovery_cp = MaxSector; 2125 2126 if (mddev->recovery_cp != MaxSector) 2127 printk(KERN_NOTICE "raid1: %s is not clean" 2128 " -- starting background reconstruction\n", 2129 mdname(mddev)); 2130 printk(KERN_INFO 2131 "raid1: raid set %s active with %d out of %d mirrors\n", 2132 mdname(mddev), mddev->raid_disks - mddev->degraded, 2133 mddev->raid_disks); 2134 2135 /* 2136 * Ok, everything is just fine now 2137 */ 2138 mddev->thread = conf->thread; 2139 conf->thread = NULL; 2140 mddev->private = conf; 2141 2142 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2143 2144 mddev->queue->unplug_fn = raid1_unplug; 2145 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2146 mddev->queue->backing_dev_info.congested_data = mddev; 2147 md_integrity_register(mddev); 2148 return 0; 2149 } 2150 2151 static int stop(mddev_t *mddev) 2152 { 2153 conf_t *conf = mddev->private; 2154 struct bitmap *bitmap = mddev->bitmap; 2155 int behind_wait = 0; 2156 2157 /* wait for behind writes to complete */ 2158 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2159 behind_wait++; 2160 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2161 set_current_state(TASK_UNINTERRUPTIBLE); 2162 schedule_timeout(HZ); /* wait a second */ 2163 /* need to kick something here to make sure I/O goes? */ 2164 } 2165 2166 raise_barrier(conf); 2167 lower_barrier(conf); 2168 2169 md_unregister_thread(mddev->thread); 2170 mddev->thread = NULL; 2171 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2172 if (conf->r1bio_pool) 2173 mempool_destroy(conf->r1bio_pool); 2174 kfree(conf->mirrors); 2175 kfree(conf->poolinfo); 2176 kfree(conf); 2177 mddev->private = NULL; 2178 return 0; 2179 } 2180 2181 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2182 { 2183 /* no resync is happening, and there is enough space 2184 * on all devices, so we can resize. 2185 * We need to make sure resync covers any new space. 2186 * If the array is shrinking we should possibly wait until 2187 * any io in the removed space completes, but it hardly seems 2188 * worth it. 2189 */ 2190 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2191 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2192 return -EINVAL; 2193 set_capacity(mddev->gendisk, mddev->array_sectors); 2194 mddev->changed = 1; 2195 revalidate_disk(mddev->gendisk); 2196 if (sectors > mddev->dev_sectors && 2197 mddev->recovery_cp == MaxSector) { 2198 mddev->recovery_cp = mddev->dev_sectors; 2199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2200 } 2201 mddev->dev_sectors = sectors; 2202 mddev->resync_max_sectors = sectors; 2203 return 0; 2204 } 2205 2206 static int raid1_reshape(mddev_t *mddev) 2207 { 2208 /* We need to: 2209 * 1/ resize the r1bio_pool 2210 * 2/ resize conf->mirrors 2211 * 2212 * We allocate a new r1bio_pool if we can. 2213 * Then raise a device barrier and wait until all IO stops. 2214 * Then resize conf->mirrors and swap in the new r1bio pool. 2215 * 2216 * At the same time, we "pack" the devices so that all the missing 2217 * devices have the higher raid_disk numbers. 2218 */ 2219 mempool_t *newpool, *oldpool; 2220 struct pool_info *newpoolinfo; 2221 mirror_info_t *newmirrors; 2222 conf_t *conf = mddev->private; 2223 int cnt, raid_disks; 2224 unsigned long flags; 2225 int d, d2, err; 2226 2227 /* Cannot change chunk_size, layout, or level */ 2228 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2229 mddev->layout != mddev->new_layout || 2230 mddev->level != mddev->new_level) { 2231 mddev->new_chunk_sectors = mddev->chunk_sectors; 2232 mddev->new_layout = mddev->layout; 2233 mddev->new_level = mddev->level; 2234 return -EINVAL; 2235 } 2236 2237 err = md_allow_write(mddev); 2238 if (err) 2239 return err; 2240 2241 raid_disks = mddev->raid_disks + mddev->delta_disks; 2242 2243 if (raid_disks < conf->raid_disks) { 2244 cnt=0; 2245 for (d= 0; d < conf->raid_disks; d++) 2246 if (conf->mirrors[d].rdev) 2247 cnt++; 2248 if (cnt > raid_disks) 2249 return -EBUSY; 2250 } 2251 2252 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2253 if (!newpoolinfo) 2254 return -ENOMEM; 2255 newpoolinfo->mddev = mddev; 2256 newpoolinfo->raid_disks = raid_disks; 2257 2258 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2259 r1bio_pool_free, newpoolinfo); 2260 if (!newpool) { 2261 kfree(newpoolinfo); 2262 return -ENOMEM; 2263 } 2264 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2265 if (!newmirrors) { 2266 kfree(newpoolinfo); 2267 mempool_destroy(newpool); 2268 return -ENOMEM; 2269 } 2270 2271 raise_barrier(conf); 2272 2273 /* ok, everything is stopped */ 2274 oldpool = conf->r1bio_pool; 2275 conf->r1bio_pool = newpool; 2276 2277 for (d = d2 = 0; d < conf->raid_disks; d++) { 2278 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2279 if (rdev && rdev->raid_disk != d2) { 2280 char nm[20]; 2281 sprintf(nm, "rd%d", rdev->raid_disk); 2282 sysfs_remove_link(&mddev->kobj, nm); 2283 rdev->raid_disk = d2; 2284 sprintf(nm, "rd%d", rdev->raid_disk); 2285 sysfs_remove_link(&mddev->kobj, nm); 2286 if (sysfs_create_link(&mddev->kobj, 2287 &rdev->kobj, nm)) 2288 printk(KERN_WARNING 2289 "md/raid1: cannot register " 2290 "%s for %s\n", 2291 nm, mdname(mddev)); 2292 } 2293 if (rdev) 2294 newmirrors[d2++].rdev = rdev; 2295 } 2296 kfree(conf->mirrors); 2297 conf->mirrors = newmirrors; 2298 kfree(conf->poolinfo); 2299 conf->poolinfo = newpoolinfo; 2300 2301 spin_lock_irqsave(&conf->device_lock, flags); 2302 mddev->degraded += (raid_disks - conf->raid_disks); 2303 spin_unlock_irqrestore(&conf->device_lock, flags); 2304 conf->raid_disks = mddev->raid_disks = raid_disks; 2305 mddev->delta_disks = 0; 2306 2307 conf->last_used = 0; /* just make sure it is in-range */ 2308 lower_barrier(conf); 2309 2310 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2311 md_wakeup_thread(mddev->thread); 2312 2313 mempool_destroy(oldpool); 2314 return 0; 2315 } 2316 2317 static void raid1_quiesce(mddev_t *mddev, int state) 2318 { 2319 conf_t *conf = mddev->private; 2320 2321 switch(state) { 2322 case 2: /* wake for suspend */ 2323 wake_up(&conf->wait_barrier); 2324 break; 2325 case 1: 2326 raise_barrier(conf); 2327 break; 2328 case 0: 2329 lower_barrier(conf); 2330 break; 2331 } 2332 } 2333 2334 static void *raid1_takeover(mddev_t *mddev) 2335 { 2336 /* raid1 can take over: 2337 * raid5 with 2 devices, any layout or chunk size 2338 */ 2339 if (mddev->level == 5 && mddev->raid_disks == 2) { 2340 conf_t *conf; 2341 mddev->new_level = 1; 2342 mddev->new_layout = 0; 2343 mddev->new_chunk_sectors = 0; 2344 conf = setup_conf(mddev); 2345 if (!IS_ERR(conf)) 2346 conf->barrier = 1; 2347 return conf; 2348 } 2349 return ERR_PTR(-EINVAL); 2350 } 2351 2352 static struct mdk_personality raid1_personality = 2353 { 2354 .name = "raid1", 2355 .level = 1, 2356 .owner = THIS_MODULE, 2357 .make_request = make_request, 2358 .run = run, 2359 .stop = stop, 2360 .status = status, 2361 .error_handler = error, 2362 .hot_add_disk = raid1_add_disk, 2363 .hot_remove_disk= raid1_remove_disk, 2364 .spare_active = raid1_spare_active, 2365 .sync_request = sync_request, 2366 .resize = raid1_resize, 2367 .size = raid1_size, 2368 .check_reshape = raid1_reshape, 2369 .quiesce = raid1_quiesce, 2370 .takeover = raid1_takeover, 2371 }; 2372 2373 static int __init raid_init(void) 2374 { 2375 return register_md_personality(&raid1_personality); 2376 } 2377 2378 static void raid_exit(void) 2379 { 2380 unregister_md_personality(&raid1_personality); 2381 } 2382 2383 module_init(raid_init); 2384 module_exit(raid_exit); 2385 MODULE_LICENSE("GPL"); 2386 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2387 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2388 MODULE_ALIAS("md-raid1"); 2389 MODULE_ALIAS("md-level-1"); 2390