1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* When there are this many requests queue to be written by 50 * the raid1 thread, we become 'congested' to provide back-pressure 51 * for writeback. 52 */ 53 static int max_queued_requests = 1024; 54 55 static void allow_barrier(struct r1conf *conf); 56 static void lower_barrier(struct r1conf *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 struct r1bio *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while (++j < pi->raid_disks) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 struct r1bio *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks * 2; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (!BIO_SPECIAL(*bio)) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(struct r1bio *r1_bio) 176 { 177 struct r1conf *conf = r1_bio->mddev->private; 178 179 put_all_bios(conf, r1_bio); 180 mempool_free(r1_bio, conf->r1bio_pool); 181 } 182 183 static void put_buf(struct r1bio *r1_bio) 184 { 185 struct r1conf *conf = r1_bio->mddev->private; 186 int i; 187 188 for (i = 0; i < conf->raid_disks * 2; i++) { 189 struct bio *bio = r1_bio->bios[i]; 190 if (bio->bi_end_io) 191 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 192 } 193 194 mempool_free(r1_bio, conf->r1buf_pool); 195 196 lower_barrier(conf); 197 } 198 199 static void reschedule_retry(struct r1bio *r1_bio) 200 { 201 unsigned long flags; 202 struct mddev *mddev = r1_bio->mddev; 203 struct r1conf *conf = mddev->private; 204 205 spin_lock_irqsave(&conf->device_lock, flags); 206 list_add(&r1_bio->retry_list, &conf->retry_list); 207 conf->nr_queued ++; 208 spin_unlock_irqrestore(&conf->device_lock, flags); 209 210 wake_up(&conf->wait_barrier); 211 md_wakeup_thread(mddev->thread); 212 } 213 214 /* 215 * raid_end_bio_io() is called when we have finished servicing a mirrored 216 * operation and are ready to return a success/failure code to the buffer 217 * cache layer. 218 */ 219 static void call_bio_endio(struct r1bio *r1_bio) 220 { 221 struct bio *bio = r1_bio->master_bio; 222 int done; 223 struct r1conf *conf = r1_bio->mddev->private; 224 225 if (bio->bi_phys_segments) { 226 unsigned long flags; 227 spin_lock_irqsave(&conf->device_lock, flags); 228 bio->bi_phys_segments--; 229 done = (bio->bi_phys_segments == 0); 230 spin_unlock_irqrestore(&conf->device_lock, flags); 231 } else 232 done = 1; 233 234 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 235 clear_bit(BIO_UPTODATE, &bio->bi_flags); 236 if (done) { 237 bio_endio(bio, 0); 238 /* 239 * Wake up any possible resync thread that waits for the device 240 * to go idle. 241 */ 242 allow_barrier(conf); 243 } 244 } 245 246 static void raid_end_bio_io(struct r1bio *r1_bio) 247 { 248 struct bio *bio = r1_bio->master_bio; 249 250 /* if nobody has done the final endio yet, do it now */ 251 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 252 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 253 (bio_data_dir(bio) == WRITE) ? "write" : "read", 254 (unsigned long long) bio->bi_sector, 255 (unsigned long long) bio->bi_sector + 256 (bio->bi_size >> 9) - 1); 257 258 call_bio_endio(r1_bio); 259 } 260 free_r1bio(r1_bio); 261 } 262 263 /* 264 * Update disk head position estimator based on IRQ completion info. 265 */ 266 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 267 { 268 struct r1conf *conf = r1_bio->mddev->private; 269 270 conf->mirrors[disk].head_position = 271 r1_bio->sector + (r1_bio->sectors); 272 } 273 274 /* 275 * Find the disk number which triggered given bio 276 */ 277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 278 { 279 int mirror; 280 struct r1conf *conf = r1_bio->mddev->private; 281 int raid_disks = conf->raid_disks; 282 283 for (mirror = 0; mirror < raid_disks * 2; mirror++) 284 if (r1_bio->bios[mirror] == bio) 285 break; 286 287 BUG_ON(mirror == raid_disks * 2); 288 update_head_pos(mirror, r1_bio); 289 290 return mirror; 291 } 292 293 static void raid1_end_read_request(struct bio *bio, int error) 294 { 295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 296 struct r1bio *r1_bio = bio->bi_private; 297 int mirror; 298 struct r1conf *conf = r1_bio->mddev->private; 299 300 mirror = r1_bio->read_disk; 301 /* 302 * this branch is our 'one mirror IO has finished' event handler: 303 */ 304 update_head_pos(mirror, r1_bio); 305 306 if (uptodate) 307 set_bit(R1BIO_Uptodate, &r1_bio->state); 308 else { 309 /* If all other devices have failed, we want to return 310 * the error upwards rather than fail the last device. 311 * Here we redefine "uptodate" to mean "Don't want to retry" 312 */ 313 unsigned long flags; 314 spin_lock_irqsave(&conf->device_lock, flags); 315 if (r1_bio->mddev->degraded == conf->raid_disks || 316 (r1_bio->mddev->degraded == conf->raid_disks-1 && 317 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 318 uptodate = 1; 319 spin_unlock_irqrestore(&conf->device_lock, flags); 320 } 321 322 if (uptodate) 323 raid_end_bio_io(r1_bio); 324 else { 325 /* 326 * oops, read error: 327 */ 328 char b[BDEVNAME_SIZE]; 329 printk_ratelimited( 330 KERN_ERR "md/raid1:%s: %s: " 331 "rescheduling sector %llu\n", 332 mdname(conf->mddev), 333 bdevname(conf->mirrors[mirror].rdev->bdev, 334 b), 335 (unsigned long long)r1_bio->sector); 336 set_bit(R1BIO_ReadError, &r1_bio->state); 337 reschedule_retry(r1_bio); 338 } 339 340 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 341 } 342 343 static void close_write(struct r1bio *r1_bio) 344 { 345 /* it really is the end of this request */ 346 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 347 /* free extra copy of the data pages */ 348 int i = r1_bio->behind_page_count; 349 while (i--) 350 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 351 kfree(r1_bio->behind_bvecs); 352 r1_bio->behind_bvecs = NULL; 353 } 354 /* clear the bitmap if all writes complete successfully */ 355 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 356 r1_bio->sectors, 357 !test_bit(R1BIO_Degraded, &r1_bio->state), 358 test_bit(R1BIO_BehindIO, &r1_bio->state)); 359 md_write_end(r1_bio->mddev); 360 } 361 362 static void r1_bio_write_done(struct r1bio *r1_bio) 363 { 364 if (!atomic_dec_and_test(&r1_bio->remaining)) 365 return; 366 367 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 368 reschedule_retry(r1_bio); 369 else { 370 close_write(r1_bio); 371 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 372 reschedule_retry(r1_bio); 373 else 374 raid_end_bio_io(r1_bio); 375 } 376 } 377 378 static void raid1_end_write_request(struct bio *bio, int error) 379 { 380 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 381 struct r1bio *r1_bio = bio->bi_private; 382 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 383 struct r1conf *conf = r1_bio->mddev->private; 384 struct bio *to_put = NULL; 385 386 mirror = find_bio_disk(r1_bio, bio); 387 388 /* 389 * 'one mirror IO has finished' event handler: 390 */ 391 if (!uptodate) { 392 set_bit(WriteErrorSeen, 393 &conf->mirrors[mirror].rdev->flags); 394 if (!test_and_set_bit(WantReplacement, 395 &conf->mirrors[mirror].rdev->flags)) 396 set_bit(MD_RECOVERY_NEEDED, & 397 conf->mddev->recovery); 398 399 set_bit(R1BIO_WriteError, &r1_bio->state); 400 } else { 401 /* 402 * Set R1BIO_Uptodate in our master bio, so that we 403 * will return a good error code for to the higher 404 * levels even if IO on some other mirrored buffer 405 * fails. 406 * 407 * The 'master' represents the composite IO operation 408 * to user-side. So if something waits for IO, then it 409 * will wait for the 'master' bio. 410 */ 411 sector_t first_bad; 412 int bad_sectors; 413 414 r1_bio->bios[mirror] = NULL; 415 to_put = bio; 416 set_bit(R1BIO_Uptodate, &r1_bio->state); 417 418 /* Maybe we can clear some bad blocks. */ 419 if (is_badblock(conf->mirrors[mirror].rdev, 420 r1_bio->sector, r1_bio->sectors, 421 &first_bad, &bad_sectors)) { 422 r1_bio->bios[mirror] = IO_MADE_GOOD; 423 set_bit(R1BIO_MadeGood, &r1_bio->state); 424 } 425 } 426 427 if (behind) { 428 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 429 atomic_dec(&r1_bio->behind_remaining); 430 431 /* 432 * In behind mode, we ACK the master bio once the I/O 433 * has safely reached all non-writemostly 434 * disks. Setting the Returned bit ensures that this 435 * gets done only once -- we don't ever want to return 436 * -EIO here, instead we'll wait 437 */ 438 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 439 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 440 /* Maybe we can return now */ 441 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 442 struct bio *mbio = r1_bio->master_bio; 443 pr_debug("raid1: behind end write sectors" 444 " %llu-%llu\n", 445 (unsigned long long) mbio->bi_sector, 446 (unsigned long long) mbio->bi_sector + 447 (mbio->bi_size >> 9) - 1); 448 call_bio_endio(r1_bio); 449 } 450 } 451 } 452 if (r1_bio->bios[mirror] == NULL) 453 rdev_dec_pending(conf->mirrors[mirror].rdev, 454 conf->mddev); 455 456 /* 457 * Let's see if all mirrored write operations have finished 458 * already. 459 */ 460 r1_bio_write_done(r1_bio); 461 462 if (to_put) 463 bio_put(to_put); 464 } 465 466 467 /* 468 * This routine returns the disk from which the requested read should 469 * be done. There is a per-array 'next expected sequential IO' sector 470 * number - if this matches on the next IO then we use the last disk. 471 * There is also a per-disk 'last know head position' sector that is 472 * maintained from IRQ contexts, both the normal and the resync IO 473 * completion handlers update this position correctly. If there is no 474 * perfect sequential match then we pick the disk whose head is closest. 475 * 476 * If there are 2 mirrors in the same 2 devices, performance degrades 477 * because position is mirror, not device based. 478 * 479 * The rdev for the device selected will have nr_pending incremented. 480 */ 481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 482 { 483 const sector_t this_sector = r1_bio->sector; 484 int sectors; 485 int best_good_sectors; 486 int start_disk; 487 int best_disk; 488 int i; 489 sector_t best_dist; 490 struct md_rdev *rdev; 491 int choose_first; 492 493 rcu_read_lock(); 494 /* 495 * Check if we can balance. We can balance on the whole 496 * device if no resync is going on, or below the resync window. 497 * We take the first readable disk when above the resync window. 498 */ 499 retry: 500 sectors = r1_bio->sectors; 501 best_disk = -1; 502 best_dist = MaxSector; 503 best_good_sectors = 0; 504 505 if (conf->mddev->recovery_cp < MaxSector && 506 (this_sector + sectors >= conf->next_resync)) { 507 choose_first = 1; 508 start_disk = 0; 509 } else { 510 choose_first = 0; 511 start_disk = conf->last_used; 512 } 513 514 for (i = 0 ; i < conf->raid_disks * 2 ; i++) { 515 sector_t dist; 516 sector_t first_bad; 517 int bad_sectors; 518 519 int disk = start_disk + i; 520 if (disk >= conf->raid_disks) 521 disk -= conf->raid_disks; 522 523 rdev = rcu_dereference(conf->mirrors[disk].rdev); 524 if (r1_bio->bios[disk] == IO_BLOCKED 525 || rdev == NULL 526 || test_bit(Faulty, &rdev->flags)) 527 continue; 528 if (!test_bit(In_sync, &rdev->flags) && 529 rdev->recovery_offset < this_sector + sectors) 530 continue; 531 if (test_bit(WriteMostly, &rdev->flags)) { 532 /* Don't balance among write-mostly, just 533 * use the first as a last resort */ 534 if (best_disk < 0) 535 best_disk = disk; 536 continue; 537 } 538 /* This is a reasonable device to use. It might 539 * even be best. 540 */ 541 if (is_badblock(rdev, this_sector, sectors, 542 &first_bad, &bad_sectors)) { 543 if (best_dist < MaxSector) 544 /* already have a better device */ 545 continue; 546 if (first_bad <= this_sector) { 547 /* cannot read here. If this is the 'primary' 548 * device, then we must not read beyond 549 * bad_sectors from another device.. 550 */ 551 bad_sectors -= (this_sector - first_bad); 552 if (choose_first && sectors > bad_sectors) 553 sectors = bad_sectors; 554 if (best_good_sectors > sectors) 555 best_good_sectors = sectors; 556 557 } else { 558 sector_t good_sectors = first_bad - this_sector; 559 if (good_sectors > best_good_sectors) { 560 best_good_sectors = good_sectors; 561 best_disk = disk; 562 } 563 if (choose_first) 564 break; 565 } 566 continue; 567 } else 568 best_good_sectors = sectors; 569 570 dist = abs(this_sector - conf->mirrors[disk].head_position); 571 if (choose_first 572 /* Don't change to another disk for sequential reads */ 573 || conf->next_seq_sect == this_sector 574 || dist == 0 575 /* If device is idle, use it */ 576 || atomic_read(&rdev->nr_pending) == 0) { 577 best_disk = disk; 578 break; 579 } 580 if (dist < best_dist) { 581 best_dist = dist; 582 best_disk = disk; 583 } 584 } 585 586 if (best_disk >= 0) { 587 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 588 if (!rdev) 589 goto retry; 590 atomic_inc(&rdev->nr_pending); 591 if (test_bit(Faulty, &rdev->flags)) { 592 /* cannot risk returning a device that failed 593 * before we inc'ed nr_pending 594 */ 595 rdev_dec_pending(rdev, conf->mddev); 596 goto retry; 597 } 598 sectors = best_good_sectors; 599 conf->next_seq_sect = this_sector + sectors; 600 conf->last_used = best_disk; 601 } 602 rcu_read_unlock(); 603 *max_sectors = sectors; 604 605 return best_disk; 606 } 607 608 int md_raid1_congested(struct mddev *mddev, int bits) 609 { 610 struct r1conf *conf = mddev->private; 611 int i, ret = 0; 612 613 if ((bits & (1 << BDI_async_congested)) && 614 conf->pending_count >= max_queued_requests) 615 return 1; 616 617 rcu_read_lock(); 618 for (i = 0; i < conf->raid_disks; i++) { 619 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 620 if (rdev && !test_bit(Faulty, &rdev->flags)) { 621 struct request_queue *q = bdev_get_queue(rdev->bdev); 622 623 BUG_ON(!q); 624 625 /* Note the '|| 1' - when read_balance prefers 626 * non-congested targets, it can be removed 627 */ 628 if ((bits & (1<<BDI_async_congested)) || 1) 629 ret |= bdi_congested(&q->backing_dev_info, bits); 630 else 631 ret &= bdi_congested(&q->backing_dev_info, bits); 632 } 633 } 634 rcu_read_unlock(); 635 return ret; 636 } 637 EXPORT_SYMBOL_GPL(md_raid1_congested); 638 639 static int raid1_congested(void *data, int bits) 640 { 641 struct mddev *mddev = data; 642 643 return mddev_congested(mddev, bits) || 644 md_raid1_congested(mddev, bits); 645 } 646 647 static void flush_pending_writes(struct r1conf *conf) 648 { 649 /* Any writes that have been queued but are awaiting 650 * bitmap updates get flushed here. 651 */ 652 spin_lock_irq(&conf->device_lock); 653 654 if (conf->pending_bio_list.head) { 655 struct bio *bio; 656 bio = bio_list_get(&conf->pending_bio_list); 657 conf->pending_count = 0; 658 spin_unlock_irq(&conf->device_lock); 659 /* flush any pending bitmap writes to 660 * disk before proceeding w/ I/O */ 661 bitmap_unplug(conf->mddev->bitmap); 662 wake_up(&conf->wait_barrier); 663 664 while (bio) { /* submit pending writes */ 665 struct bio *next = bio->bi_next; 666 bio->bi_next = NULL; 667 generic_make_request(bio); 668 bio = next; 669 } 670 } else 671 spin_unlock_irq(&conf->device_lock); 672 } 673 674 /* Barriers.... 675 * Sometimes we need to suspend IO while we do something else, 676 * either some resync/recovery, or reconfigure the array. 677 * To do this we raise a 'barrier'. 678 * The 'barrier' is a counter that can be raised multiple times 679 * to count how many activities are happening which preclude 680 * normal IO. 681 * We can only raise the barrier if there is no pending IO. 682 * i.e. if nr_pending == 0. 683 * We choose only to raise the barrier if no-one is waiting for the 684 * barrier to go down. This means that as soon as an IO request 685 * is ready, no other operations which require a barrier will start 686 * until the IO request has had a chance. 687 * 688 * So: regular IO calls 'wait_barrier'. When that returns there 689 * is no backgroup IO happening, It must arrange to call 690 * allow_barrier when it has finished its IO. 691 * backgroup IO calls must call raise_barrier. Once that returns 692 * there is no normal IO happeing. It must arrange to call 693 * lower_barrier when the particular background IO completes. 694 */ 695 #define RESYNC_DEPTH 32 696 697 static void raise_barrier(struct r1conf *conf) 698 { 699 spin_lock_irq(&conf->resync_lock); 700 701 /* Wait until no block IO is waiting */ 702 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 703 conf->resync_lock, ); 704 705 /* block any new IO from starting */ 706 conf->barrier++; 707 708 /* Now wait for all pending IO to complete */ 709 wait_event_lock_irq(conf->wait_barrier, 710 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 711 conf->resync_lock, ); 712 713 spin_unlock_irq(&conf->resync_lock); 714 } 715 716 static void lower_barrier(struct r1conf *conf) 717 { 718 unsigned long flags; 719 BUG_ON(conf->barrier <= 0); 720 spin_lock_irqsave(&conf->resync_lock, flags); 721 conf->barrier--; 722 spin_unlock_irqrestore(&conf->resync_lock, flags); 723 wake_up(&conf->wait_barrier); 724 } 725 726 static void wait_barrier(struct r1conf *conf) 727 { 728 spin_lock_irq(&conf->resync_lock); 729 if (conf->barrier) { 730 conf->nr_waiting++; 731 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 732 conf->resync_lock, 733 ); 734 conf->nr_waiting--; 735 } 736 conf->nr_pending++; 737 spin_unlock_irq(&conf->resync_lock); 738 } 739 740 static void allow_barrier(struct r1conf *conf) 741 { 742 unsigned long flags; 743 spin_lock_irqsave(&conf->resync_lock, flags); 744 conf->nr_pending--; 745 spin_unlock_irqrestore(&conf->resync_lock, flags); 746 wake_up(&conf->wait_barrier); 747 } 748 749 static void freeze_array(struct r1conf *conf) 750 { 751 /* stop syncio and normal IO and wait for everything to 752 * go quite. 753 * We increment barrier and nr_waiting, and then 754 * wait until nr_pending match nr_queued+1 755 * This is called in the context of one normal IO request 756 * that has failed. Thus any sync request that might be pending 757 * will be blocked by nr_pending, and we need to wait for 758 * pending IO requests to complete or be queued for re-try. 759 * Thus the number queued (nr_queued) plus this request (1) 760 * must match the number of pending IOs (nr_pending) before 761 * we continue. 762 */ 763 spin_lock_irq(&conf->resync_lock); 764 conf->barrier++; 765 conf->nr_waiting++; 766 wait_event_lock_irq(conf->wait_barrier, 767 conf->nr_pending == conf->nr_queued+1, 768 conf->resync_lock, 769 flush_pending_writes(conf)); 770 spin_unlock_irq(&conf->resync_lock); 771 } 772 static void unfreeze_array(struct r1conf *conf) 773 { 774 /* reverse the effect of the freeze */ 775 spin_lock_irq(&conf->resync_lock); 776 conf->barrier--; 777 conf->nr_waiting--; 778 wake_up(&conf->wait_barrier); 779 spin_unlock_irq(&conf->resync_lock); 780 } 781 782 783 /* duplicate the data pages for behind I/O 784 */ 785 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 786 { 787 int i; 788 struct bio_vec *bvec; 789 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 790 GFP_NOIO); 791 if (unlikely(!bvecs)) 792 return; 793 794 bio_for_each_segment(bvec, bio, i) { 795 bvecs[i] = *bvec; 796 bvecs[i].bv_page = alloc_page(GFP_NOIO); 797 if (unlikely(!bvecs[i].bv_page)) 798 goto do_sync_io; 799 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 800 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 801 kunmap(bvecs[i].bv_page); 802 kunmap(bvec->bv_page); 803 } 804 r1_bio->behind_bvecs = bvecs; 805 r1_bio->behind_page_count = bio->bi_vcnt; 806 set_bit(R1BIO_BehindIO, &r1_bio->state); 807 return; 808 809 do_sync_io: 810 for (i = 0; i < bio->bi_vcnt; i++) 811 if (bvecs[i].bv_page) 812 put_page(bvecs[i].bv_page); 813 kfree(bvecs); 814 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 815 } 816 817 static void make_request(struct mddev *mddev, struct bio * bio) 818 { 819 struct r1conf *conf = mddev->private; 820 struct mirror_info *mirror; 821 struct r1bio *r1_bio; 822 struct bio *read_bio; 823 int i, disks; 824 struct bitmap *bitmap; 825 unsigned long flags; 826 const int rw = bio_data_dir(bio); 827 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 828 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 829 struct md_rdev *blocked_rdev; 830 int plugged; 831 int first_clone; 832 int sectors_handled; 833 int max_sectors; 834 835 /* 836 * Register the new request and wait if the reconstruction 837 * thread has put up a bar for new requests. 838 * Continue immediately if no resync is active currently. 839 */ 840 841 md_write_start(mddev, bio); /* wait on superblock update early */ 842 843 if (bio_data_dir(bio) == WRITE && 844 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 845 bio->bi_sector < mddev->suspend_hi) { 846 /* As the suspend_* range is controlled by 847 * userspace, we want an interruptible 848 * wait. 849 */ 850 DEFINE_WAIT(w); 851 for (;;) { 852 flush_signals(current); 853 prepare_to_wait(&conf->wait_barrier, 854 &w, TASK_INTERRUPTIBLE); 855 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 856 bio->bi_sector >= mddev->suspend_hi) 857 break; 858 schedule(); 859 } 860 finish_wait(&conf->wait_barrier, &w); 861 } 862 863 wait_barrier(conf); 864 865 bitmap = mddev->bitmap; 866 867 /* 868 * make_request() can abort the operation when READA is being 869 * used and no empty request is available. 870 * 871 */ 872 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 873 874 r1_bio->master_bio = bio; 875 r1_bio->sectors = bio->bi_size >> 9; 876 r1_bio->state = 0; 877 r1_bio->mddev = mddev; 878 r1_bio->sector = bio->bi_sector; 879 880 /* We might need to issue multiple reads to different 881 * devices if there are bad blocks around, so we keep 882 * track of the number of reads in bio->bi_phys_segments. 883 * If this is 0, there is only one r1_bio and no locking 884 * will be needed when requests complete. If it is 885 * non-zero, then it is the number of not-completed requests. 886 */ 887 bio->bi_phys_segments = 0; 888 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 889 890 if (rw == READ) { 891 /* 892 * read balancing logic: 893 */ 894 int rdisk; 895 896 read_again: 897 rdisk = read_balance(conf, r1_bio, &max_sectors); 898 899 if (rdisk < 0) { 900 /* couldn't find anywhere to read from */ 901 raid_end_bio_io(r1_bio); 902 return; 903 } 904 mirror = conf->mirrors + rdisk; 905 906 if (test_bit(WriteMostly, &mirror->rdev->flags) && 907 bitmap) { 908 /* Reading from a write-mostly device must 909 * take care not to over-take any writes 910 * that are 'behind' 911 */ 912 wait_event(bitmap->behind_wait, 913 atomic_read(&bitmap->behind_writes) == 0); 914 } 915 r1_bio->read_disk = rdisk; 916 917 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 918 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 919 max_sectors); 920 921 r1_bio->bios[rdisk] = read_bio; 922 923 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 924 read_bio->bi_bdev = mirror->rdev->bdev; 925 read_bio->bi_end_io = raid1_end_read_request; 926 read_bio->bi_rw = READ | do_sync; 927 read_bio->bi_private = r1_bio; 928 929 if (max_sectors < r1_bio->sectors) { 930 /* could not read all from this device, so we will 931 * need another r1_bio. 932 */ 933 934 sectors_handled = (r1_bio->sector + max_sectors 935 - bio->bi_sector); 936 r1_bio->sectors = max_sectors; 937 spin_lock_irq(&conf->device_lock); 938 if (bio->bi_phys_segments == 0) 939 bio->bi_phys_segments = 2; 940 else 941 bio->bi_phys_segments++; 942 spin_unlock_irq(&conf->device_lock); 943 /* Cannot call generic_make_request directly 944 * as that will be queued in __make_request 945 * and subsequent mempool_alloc might block waiting 946 * for it. So hand bio over to raid1d. 947 */ 948 reschedule_retry(r1_bio); 949 950 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 951 952 r1_bio->master_bio = bio; 953 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 954 r1_bio->state = 0; 955 r1_bio->mddev = mddev; 956 r1_bio->sector = bio->bi_sector + sectors_handled; 957 goto read_again; 958 } else 959 generic_make_request(read_bio); 960 return; 961 } 962 963 /* 964 * WRITE: 965 */ 966 if (conf->pending_count >= max_queued_requests) { 967 md_wakeup_thread(mddev->thread); 968 wait_event(conf->wait_barrier, 969 conf->pending_count < max_queued_requests); 970 } 971 /* first select target devices under rcu_lock and 972 * inc refcount on their rdev. Record them by setting 973 * bios[x] to bio 974 * If there are known/acknowledged bad blocks on any device on 975 * which we have seen a write error, we want to avoid writing those 976 * blocks. 977 * This potentially requires several writes to write around 978 * the bad blocks. Each set of writes gets it's own r1bio 979 * with a set of bios attached. 980 */ 981 plugged = mddev_check_plugged(mddev); 982 983 disks = conf->raid_disks * 2; 984 retry_write: 985 blocked_rdev = NULL; 986 rcu_read_lock(); 987 max_sectors = r1_bio->sectors; 988 for (i = 0; i < disks; i++) { 989 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 990 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 991 atomic_inc(&rdev->nr_pending); 992 blocked_rdev = rdev; 993 break; 994 } 995 r1_bio->bios[i] = NULL; 996 if (!rdev || test_bit(Faulty, &rdev->flags)) { 997 if (i < conf->raid_disks) 998 set_bit(R1BIO_Degraded, &r1_bio->state); 999 continue; 1000 } 1001 1002 atomic_inc(&rdev->nr_pending); 1003 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1004 sector_t first_bad; 1005 int bad_sectors; 1006 int is_bad; 1007 1008 is_bad = is_badblock(rdev, r1_bio->sector, 1009 max_sectors, 1010 &first_bad, &bad_sectors); 1011 if (is_bad < 0) { 1012 /* mustn't write here until the bad block is 1013 * acknowledged*/ 1014 set_bit(BlockedBadBlocks, &rdev->flags); 1015 blocked_rdev = rdev; 1016 break; 1017 } 1018 if (is_bad && first_bad <= r1_bio->sector) { 1019 /* Cannot write here at all */ 1020 bad_sectors -= (r1_bio->sector - first_bad); 1021 if (bad_sectors < max_sectors) 1022 /* mustn't write more than bad_sectors 1023 * to other devices yet 1024 */ 1025 max_sectors = bad_sectors; 1026 rdev_dec_pending(rdev, mddev); 1027 /* We don't set R1BIO_Degraded as that 1028 * only applies if the disk is 1029 * missing, so it might be re-added, 1030 * and we want to know to recover this 1031 * chunk. 1032 * In this case the device is here, 1033 * and the fact that this chunk is not 1034 * in-sync is recorded in the bad 1035 * block log 1036 */ 1037 continue; 1038 } 1039 if (is_bad) { 1040 int good_sectors = first_bad - r1_bio->sector; 1041 if (good_sectors < max_sectors) 1042 max_sectors = good_sectors; 1043 } 1044 } 1045 r1_bio->bios[i] = bio; 1046 } 1047 rcu_read_unlock(); 1048 1049 if (unlikely(blocked_rdev)) { 1050 /* Wait for this device to become unblocked */ 1051 int j; 1052 1053 for (j = 0; j < i; j++) 1054 if (r1_bio->bios[j]) 1055 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1056 r1_bio->state = 0; 1057 allow_barrier(conf); 1058 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1059 wait_barrier(conf); 1060 goto retry_write; 1061 } 1062 1063 if (max_sectors < r1_bio->sectors) { 1064 /* We are splitting this write into multiple parts, so 1065 * we need to prepare for allocating another r1_bio. 1066 */ 1067 r1_bio->sectors = max_sectors; 1068 spin_lock_irq(&conf->device_lock); 1069 if (bio->bi_phys_segments == 0) 1070 bio->bi_phys_segments = 2; 1071 else 1072 bio->bi_phys_segments++; 1073 spin_unlock_irq(&conf->device_lock); 1074 } 1075 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1076 1077 atomic_set(&r1_bio->remaining, 1); 1078 atomic_set(&r1_bio->behind_remaining, 0); 1079 1080 first_clone = 1; 1081 for (i = 0; i < disks; i++) { 1082 struct bio *mbio; 1083 if (!r1_bio->bios[i]) 1084 continue; 1085 1086 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1087 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1088 1089 if (first_clone) { 1090 /* do behind I/O ? 1091 * Not if there are too many, or cannot 1092 * allocate memory, or a reader on WriteMostly 1093 * is waiting for behind writes to flush */ 1094 if (bitmap && 1095 (atomic_read(&bitmap->behind_writes) 1096 < mddev->bitmap_info.max_write_behind) && 1097 !waitqueue_active(&bitmap->behind_wait)) 1098 alloc_behind_pages(mbio, r1_bio); 1099 1100 bitmap_startwrite(bitmap, r1_bio->sector, 1101 r1_bio->sectors, 1102 test_bit(R1BIO_BehindIO, 1103 &r1_bio->state)); 1104 first_clone = 0; 1105 } 1106 if (r1_bio->behind_bvecs) { 1107 struct bio_vec *bvec; 1108 int j; 1109 1110 /* Yes, I really want the '__' version so that 1111 * we clear any unused pointer in the io_vec, rather 1112 * than leave them unchanged. This is important 1113 * because when we come to free the pages, we won't 1114 * know the original bi_idx, so we just free 1115 * them all 1116 */ 1117 __bio_for_each_segment(bvec, mbio, j, 0) 1118 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1119 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1120 atomic_inc(&r1_bio->behind_remaining); 1121 } 1122 1123 r1_bio->bios[i] = mbio; 1124 1125 mbio->bi_sector = (r1_bio->sector + 1126 conf->mirrors[i].rdev->data_offset); 1127 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1128 mbio->bi_end_io = raid1_end_write_request; 1129 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 1130 mbio->bi_private = r1_bio; 1131 1132 atomic_inc(&r1_bio->remaining); 1133 spin_lock_irqsave(&conf->device_lock, flags); 1134 bio_list_add(&conf->pending_bio_list, mbio); 1135 conf->pending_count++; 1136 spin_unlock_irqrestore(&conf->device_lock, flags); 1137 } 1138 /* Mustn't call r1_bio_write_done before this next test, 1139 * as it could result in the bio being freed. 1140 */ 1141 if (sectors_handled < (bio->bi_size >> 9)) { 1142 r1_bio_write_done(r1_bio); 1143 /* We need another r1_bio. It has already been counted 1144 * in bio->bi_phys_segments 1145 */ 1146 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1147 r1_bio->master_bio = bio; 1148 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled; 1149 r1_bio->state = 0; 1150 r1_bio->mddev = mddev; 1151 r1_bio->sector = bio->bi_sector + sectors_handled; 1152 goto retry_write; 1153 } 1154 1155 r1_bio_write_done(r1_bio); 1156 1157 /* In case raid1d snuck in to freeze_array */ 1158 wake_up(&conf->wait_barrier); 1159 1160 if (do_sync || !bitmap || !plugged) 1161 md_wakeup_thread(mddev->thread); 1162 } 1163 1164 static void status(struct seq_file *seq, struct mddev *mddev) 1165 { 1166 struct r1conf *conf = mddev->private; 1167 int i; 1168 1169 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1170 conf->raid_disks - mddev->degraded); 1171 rcu_read_lock(); 1172 for (i = 0; i < conf->raid_disks; i++) { 1173 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1174 seq_printf(seq, "%s", 1175 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1176 } 1177 rcu_read_unlock(); 1178 seq_printf(seq, "]"); 1179 } 1180 1181 1182 static void error(struct mddev *mddev, struct md_rdev *rdev) 1183 { 1184 char b[BDEVNAME_SIZE]; 1185 struct r1conf *conf = mddev->private; 1186 1187 /* 1188 * If it is not operational, then we have already marked it as dead 1189 * else if it is the last working disks, ignore the error, let the 1190 * next level up know. 1191 * else mark the drive as failed 1192 */ 1193 if (test_bit(In_sync, &rdev->flags) 1194 && (conf->raid_disks - mddev->degraded) == 1) { 1195 /* 1196 * Don't fail the drive, act as though we were just a 1197 * normal single drive. 1198 * However don't try a recovery from this drive as 1199 * it is very likely to fail. 1200 */ 1201 conf->recovery_disabled = mddev->recovery_disabled; 1202 return; 1203 } 1204 set_bit(Blocked, &rdev->flags); 1205 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1206 unsigned long flags; 1207 spin_lock_irqsave(&conf->device_lock, flags); 1208 mddev->degraded++; 1209 set_bit(Faulty, &rdev->flags); 1210 spin_unlock_irqrestore(&conf->device_lock, flags); 1211 /* 1212 * if recovery is running, make sure it aborts. 1213 */ 1214 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1215 } else 1216 set_bit(Faulty, &rdev->flags); 1217 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1218 printk(KERN_ALERT 1219 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1220 "md/raid1:%s: Operation continuing on %d devices.\n", 1221 mdname(mddev), bdevname(rdev->bdev, b), 1222 mdname(mddev), conf->raid_disks - mddev->degraded); 1223 } 1224 1225 static void print_conf(struct r1conf *conf) 1226 { 1227 int i; 1228 1229 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1230 if (!conf) { 1231 printk(KERN_DEBUG "(!conf)\n"); 1232 return; 1233 } 1234 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1235 conf->raid_disks); 1236 1237 rcu_read_lock(); 1238 for (i = 0; i < conf->raid_disks; i++) { 1239 char b[BDEVNAME_SIZE]; 1240 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1241 if (rdev) 1242 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1243 i, !test_bit(In_sync, &rdev->flags), 1244 !test_bit(Faulty, &rdev->flags), 1245 bdevname(rdev->bdev,b)); 1246 } 1247 rcu_read_unlock(); 1248 } 1249 1250 static void close_sync(struct r1conf *conf) 1251 { 1252 wait_barrier(conf); 1253 allow_barrier(conf); 1254 1255 mempool_destroy(conf->r1buf_pool); 1256 conf->r1buf_pool = NULL; 1257 } 1258 1259 static int raid1_spare_active(struct mddev *mddev) 1260 { 1261 int i; 1262 struct r1conf *conf = mddev->private; 1263 int count = 0; 1264 unsigned long flags; 1265 1266 /* 1267 * Find all failed disks within the RAID1 configuration 1268 * and mark them readable. 1269 * Called under mddev lock, so rcu protection not needed. 1270 */ 1271 for (i = 0; i < conf->raid_disks; i++) { 1272 struct md_rdev *rdev = conf->mirrors[i].rdev; 1273 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1274 if (repl 1275 && repl->recovery_offset == MaxSector 1276 && !test_bit(Faulty, &repl->flags) 1277 && !test_and_set_bit(In_sync, &repl->flags)) { 1278 /* replacement has just become active */ 1279 if (!rdev || 1280 !test_and_clear_bit(In_sync, &rdev->flags)) 1281 count++; 1282 if (rdev) { 1283 /* Replaced device not technically 1284 * faulty, but we need to be sure 1285 * it gets removed and never re-added 1286 */ 1287 set_bit(Faulty, &rdev->flags); 1288 sysfs_notify_dirent_safe( 1289 rdev->sysfs_state); 1290 } 1291 } 1292 if (rdev 1293 && !test_bit(Faulty, &rdev->flags) 1294 && !test_and_set_bit(In_sync, &rdev->flags)) { 1295 count++; 1296 sysfs_notify_dirent_safe(rdev->sysfs_state); 1297 } 1298 } 1299 spin_lock_irqsave(&conf->device_lock, flags); 1300 mddev->degraded -= count; 1301 spin_unlock_irqrestore(&conf->device_lock, flags); 1302 1303 print_conf(conf); 1304 return count; 1305 } 1306 1307 1308 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1309 { 1310 struct r1conf *conf = mddev->private; 1311 int err = -EEXIST; 1312 int mirror = 0; 1313 struct mirror_info *p; 1314 int first = 0; 1315 int last = conf->raid_disks - 1; 1316 1317 if (mddev->recovery_disabled == conf->recovery_disabled) 1318 return -EBUSY; 1319 1320 if (rdev->raid_disk >= 0) 1321 first = last = rdev->raid_disk; 1322 1323 for (mirror = first; mirror <= last; mirror++) { 1324 p = conf->mirrors+mirror; 1325 if (!p->rdev) { 1326 1327 disk_stack_limits(mddev->gendisk, rdev->bdev, 1328 rdev->data_offset << 9); 1329 /* as we don't honour merge_bvec_fn, we must 1330 * never risk violating it, so limit 1331 * ->max_segments to one lying with a single 1332 * page, as a one page request is never in 1333 * violation. 1334 */ 1335 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1336 blk_queue_max_segments(mddev->queue, 1); 1337 blk_queue_segment_boundary(mddev->queue, 1338 PAGE_CACHE_SIZE - 1); 1339 } 1340 1341 p->head_position = 0; 1342 rdev->raid_disk = mirror; 1343 err = 0; 1344 /* As all devices are equivalent, we don't need a full recovery 1345 * if this was recently any drive of the array 1346 */ 1347 if (rdev->saved_raid_disk < 0) 1348 conf->fullsync = 1; 1349 rcu_assign_pointer(p->rdev, rdev); 1350 break; 1351 } 1352 if (test_bit(WantReplacement, &p->rdev->flags) && 1353 p[conf->raid_disks].rdev == NULL) { 1354 /* Add this device as a replacement */ 1355 clear_bit(In_sync, &rdev->flags); 1356 set_bit(Replacement, &rdev->flags); 1357 rdev->raid_disk = mirror; 1358 err = 0; 1359 conf->fullsync = 1; 1360 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1361 break; 1362 } 1363 } 1364 md_integrity_add_rdev(rdev, mddev); 1365 print_conf(conf); 1366 return err; 1367 } 1368 1369 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1370 { 1371 struct r1conf *conf = mddev->private; 1372 int err = 0; 1373 int number = rdev->raid_disk; 1374 struct mirror_info *p = conf->mirrors+ number; 1375 1376 if (rdev != p->rdev) 1377 p = conf->mirrors + conf->raid_disks + number; 1378 1379 print_conf(conf); 1380 if (rdev == p->rdev) { 1381 if (test_bit(In_sync, &rdev->flags) || 1382 atomic_read(&rdev->nr_pending)) { 1383 err = -EBUSY; 1384 goto abort; 1385 } 1386 /* Only remove non-faulty devices if recovery 1387 * is not possible. 1388 */ 1389 if (!test_bit(Faulty, &rdev->flags) && 1390 mddev->recovery_disabled != conf->recovery_disabled && 1391 mddev->degraded < conf->raid_disks) { 1392 err = -EBUSY; 1393 goto abort; 1394 } 1395 p->rdev = NULL; 1396 synchronize_rcu(); 1397 if (atomic_read(&rdev->nr_pending)) { 1398 /* lost the race, try later */ 1399 err = -EBUSY; 1400 p->rdev = rdev; 1401 goto abort; 1402 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1403 /* We just removed a device that is being replaced. 1404 * Move down the replacement. We drain all IO before 1405 * doing this to avoid confusion. 1406 */ 1407 struct md_rdev *repl = 1408 conf->mirrors[conf->raid_disks + number].rdev; 1409 raise_barrier(conf); 1410 clear_bit(Replacement, &repl->flags); 1411 p->rdev = repl; 1412 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1413 lower_barrier(conf); 1414 clear_bit(WantReplacement, &rdev->flags); 1415 } else 1416 clear_bit(WantReplacement, &rdev->flags); 1417 err = md_integrity_register(mddev); 1418 } 1419 abort: 1420 1421 print_conf(conf); 1422 return err; 1423 } 1424 1425 1426 static void end_sync_read(struct bio *bio, int error) 1427 { 1428 struct r1bio *r1_bio = bio->bi_private; 1429 1430 update_head_pos(r1_bio->read_disk, r1_bio); 1431 1432 /* 1433 * we have read a block, now it needs to be re-written, 1434 * or re-read if the read failed. 1435 * We don't do much here, just schedule handling by raid1d 1436 */ 1437 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1438 set_bit(R1BIO_Uptodate, &r1_bio->state); 1439 1440 if (atomic_dec_and_test(&r1_bio->remaining)) 1441 reschedule_retry(r1_bio); 1442 } 1443 1444 static void end_sync_write(struct bio *bio, int error) 1445 { 1446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1447 struct r1bio *r1_bio = bio->bi_private; 1448 struct mddev *mddev = r1_bio->mddev; 1449 struct r1conf *conf = mddev->private; 1450 int mirror=0; 1451 sector_t first_bad; 1452 int bad_sectors; 1453 1454 mirror = find_bio_disk(r1_bio, bio); 1455 1456 if (!uptodate) { 1457 sector_t sync_blocks = 0; 1458 sector_t s = r1_bio->sector; 1459 long sectors_to_go = r1_bio->sectors; 1460 /* make sure these bits doesn't get cleared. */ 1461 do { 1462 bitmap_end_sync(mddev->bitmap, s, 1463 &sync_blocks, 1); 1464 s += sync_blocks; 1465 sectors_to_go -= sync_blocks; 1466 } while (sectors_to_go > 0); 1467 set_bit(WriteErrorSeen, 1468 &conf->mirrors[mirror].rdev->flags); 1469 if (!test_and_set_bit(WantReplacement, 1470 &conf->mirrors[mirror].rdev->flags)) 1471 set_bit(MD_RECOVERY_NEEDED, & 1472 mddev->recovery); 1473 set_bit(R1BIO_WriteError, &r1_bio->state); 1474 } else if (is_badblock(conf->mirrors[mirror].rdev, 1475 r1_bio->sector, 1476 r1_bio->sectors, 1477 &first_bad, &bad_sectors) && 1478 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1479 r1_bio->sector, 1480 r1_bio->sectors, 1481 &first_bad, &bad_sectors) 1482 ) 1483 set_bit(R1BIO_MadeGood, &r1_bio->state); 1484 1485 if (atomic_dec_and_test(&r1_bio->remaining)) { 1486 int s = r1_bio->sectors; 1487 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1488 test_bit(R1BIO_WriteError, &r1_bio->state)) 1489 reschedule_retry(r1_bio); 1490 else { 1491 put_buf(r1_bio); 1492 md_done_sync(mddev, s, uptodate); 1493 } 1494 } 1495 } 1496 1497 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1498 int sectors, struct page *page, int rw) 1499 { 1500 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1501 /* success */ 1502 return 1; 1503 if (rw == WRITE) { 1504 set_bit(WriteErrorSeen, &rdev->flags); 1505 if (!test_and_set_bit(WantReplacement, 1506 &rdev->flags)) 1507 set_bit(MD_RECOVERY_NEEDED, & 1508 rdev->mddev->recovery); 1509 } 1510 /* need to record an error - either for the block or the device */ 1511 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1512 md_error(rdev->mddev, rdev); 1513 return 0; 1514 } 1515 1516 static int fix_sync_read_error(struct r1bio *r1_bio) 1517 { 1518 /* Try some synchronous reads of other devices to get 1519 * good data, much like with normal read errors. Only 1520 * read into the pages we already have so we don't 1521 * need to re-issue the read request. 1522 * We don't need to freeze the array, because being in an 1523 * active sync request, there is no normal IO, and 1524 * no overlapping syncs. 1525 * We don't need to check is_badblock() again as we 1526 * made sure that anything with a bad block in range 1527 * will have bi_end_io clear. 1528 */ 1529 struct mddev *mddev = r1_bio->mddev; 1530 struct r1conf *conf = mddev->private; 1531 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1532 sector_t sect = r1_bio->sector; 1533 int sectors = r1_bio->sectors; 1534 int idx = 0; 1535 1536 while(sectors) { 1537 int s = sectors; 1538 int d = r1_bio->read_disk; 1539 int success = 0; 1540 struct md_rdev *rdev; 1541 int start; 1542 1543 if (s > (PAGE_SIZE>>9)) 1544 s = PAGE_SIZE >> 9; 1545 do { 1546 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1547 /* No rcu protection needed here devices 1548 * can only be removed when no resync is 1549 * active, and resync is currently active 1550 */ 1551 rdev = conf->mirrors[d].rdev; 1552 if (sync_page_io(rdev, sect, s<<9, 1553 bio->bi_io_vec[idx].bv_page, 1554 READ, false)) { 1555 success = 1; 1556 break; 1557 } 1558 } 1559 d++; 1560 if (d == conf->raid_disks * 2) 1561 d = 0; 1562 } while (!success && d != r1_bio->read_disk); 1563 1564 if (!success) { 1565 char b[BDEVNAME_SIZE]; 1566 int abort = 0; 1567 /* Cannot read from anywhere, this block is lost. 1568 * Record a bad block on each device. If that doesn't 1569 * work just disable and interrupt the recovery. 1570 * Don't fail devices as that won't really help. 1571 */ 1572 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1573 " for block %llu\n", 1574 mdname(mddev), 1575 bdevname(bio->bi_bdev, b), 1576 (unsigned long long)r1_bio->sector); 1577 for (d = 0; d < conf->raid_disks * 2; d++) { 1578 rdev = conf->mirrors[d].rdev; 1579 if (!rdev || test_bit(Faulty, &rdev->flags)) 1580 continue; 1581 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1582 abort = 1; 1583 } 1584 if (abort) { 1585 conf->recovery_disabled = 1586 mddev->recovery_disabled; 1587 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1588 md_done_sync(mddev, r1_bio->sectors, 0); 1589 put_buf(r1_bio); 1590 return 0; 1591 } 1592 /* Try next page */ 1593 sectors -= s; 1594 sect += s; 1595 idx++; 1596 continue; 1597 } 1598 1599 start = d; 1600 /* write it back and re-read */ 1601 while (d != r1_bio->read_disk) { 1602 if (d == 0) 1603 d = conf->raid_disks * 2; 1604 d--; 1605 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1606 continue; 1607 rdev = conf->mirrors[d].rdev; 1608 if (r1_sync_page_io(rdev, sect, s, 1609 bio->bi_io_vec[idx].bv_page, 1610 WRITE) == 0) { 1611 r1_bio->bios[d]->bi_end_io = NULL; 1612 rdev_dec_pending(rdev, mddev); 1613 } 1614 } 1615 d = start; 1616 while (d != r1_bio->read_disk) { 1617 if (d == 0) 1618 d = conf->raid_disks * 2; 1619 d--; 1620 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1621 continue; 1622 rdev = conf->mirrors[d].rdev; 1623 if (r1_sync_page_io(rdev, sect, s, 1624 bio->bi_io_vec[idx].bv_page, 1625 READ) != 0) 1626 atomic_add(s, &rdev->corrected_errors); 1627 } 1628 sectors -= s; 1629 sect += s; 1630 idx ++; 1631 } 1632 set_bit(R1BIO_Uptodate, &r1_bio->state); 1633 set_bit(BIO_UPTODATE, &bio->bi_flags); 1634 return 1; 1635 } 1636 1637 static int process_checks(struct r1bio *r1_bio) 1638 { 1639 /* We have read all readable devices. If we haven't 1640 * got the block, then there is no hope left. 1641 * If we have, then we want to do a comparison 1642 * and skip the write if everything is the same. 1643 * If any blocks failed to read, then we need to 1644 * attempt an over-write 1645 */ 1646 struct mddev *mddev = r1_bio->mddev; 1647 struct r1conf *conf = mddev->private; 1648 int primary; 1649 int i; 1650 1651 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1652 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1653 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1654 r1_bio->bios[primary]->bi_end_io = NULL; 1655 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1656 break; 1657 } 1658 r1_bio->read_disk = primary; 1659 for (i = 0; i < conf->raid_disks * 2; i++) { 1660 int j; 1661 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1662 struct bio *pbio = r1_bio->bios[primary]; 1663 struct bio *sbio = r1_bio->bios[i]; 1664 int size; 1665 1666 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1667 continue; 1668 1669 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1670 for (j = vcnt; j-- ; ) { 1671 struct page *p, *s; 1672 p = pbio->bi_io_vec[j].bv_page; 1673 s = sbio->bi_io_vec[j].bv_page; 1674 if (memcmp(page_address(p), 1675 page_address(s), 1676 PAGE_SIZE)) 1677 break; 1678 } 1679 } else 1680 j = 0; 1681 if (j >= 0) 1682 mddev->resync_mismatches += r1_bio->sectors; 1683 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1684 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1685 /* No need to write to this device. */ 1686 sbio->bi_end_io = NULL; 1687 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1688 continue; 1689 } 1690 /* fixup the bio for reuse */ 1691 sbio->bi_vcnt = vcnt; 1692 sbio->bi_size = r1_bio->sectors << 9; 1693 sbio->bi_idx = 0; 1694 sbio->bi_phys_segments = 0; 1695 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1696 sbio->bi_flags |= 1 << BIO_UPTODATE; 1697 sbio->bi_next = NULL; 1698 sbio->bi_sector = r1_bio->sector + 1699 conf->mirrors[i].rdev->data_offset; 1700 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1701 size = sbio->bi_size; 1702 for (j = 0; j < vcnt ; j++) { 1703 struct bio_vec *bi; 1704 bi = &sbio->bi_io_vec[j]; 1705 bi->bv_offset = 0; 1706 if (size > PAGE_SIZE) 1707 bi->bv_len = PAGE_SIZE; 1708 else 1709 bi->bv_len = size; 1710 size -= PAGE_SIZE; 1711 memcpy(page_address(bi->bv_page), 1712 page_address(pbio->bi_io_vec[j].bv_page), 1713 PAGE_SIZE); 1714 } 1715 } 1716 return 0; 1717 } 1718 1719 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1720 { 1721 struct r1conf *conf = mddev->private; 1722 int i; 1723 int disks = conf->raid_disks * 2; 1724 struct bio *bio, *wbio; 1725 1726 bio = r1_bio->bios[r1_bio->read_disk]; 1727 1728 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1729 /* ouch - failed to read all of that. */ 1730 if (!fix_sync_read_error(r1_bio)) 1731 return; 1732 1733 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1734 if (process_checks(r1_bio) < 0) 1735 return; 1736 /* 1737 * schedule writes 1738 */ 1739 atomic_set(&r1_bio->remaining, 1); 1740 for (i = 0; i < disks ; i++) { 1741 wbio = r1_bio->bios[i]; 1742 if (wbio->bi_end_io == NULL || 1743 (wbio->bi_end_io == end_sync_read && 1744 (i == r1_bio->read_disk || 1745 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1746 continue; 1747 1748 wbio->bi_rw = WRITE; 1749 wbio->bi_end_io = end_sync_write; 1750 atomic_inc(&r1_bio->remaining); 1751 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1752 1753 generic_make_request(wbio); 1754 } 1755 1756 if (atomic_dec_and_test(&r1_bio->remaining)) { 1757 /* if we're here, all write(s) have completed, so clean up */ 1758 md_done_sync(mddev, r1_bio->sectors, 1); 1759 put_buf(r1_bio); 1760 } 1761 } 1762 1763 /* 1764 * This is a kernel thread which: 1765 * 1766 * 1. Retries failed read operations on working mirrors. 1767 * 2. Updates the raid superblock when problems encounter. 1768 * 3. Performs writes following reads for array synchronising. 1769 */ 1770 1771 static void fix_read_error(struct r1conf *conf, int read_disk, 1772 sector_t sect, int sectors) 1773 { 1774 struct mddev *mddev = conf->mddev; 1775 while(sectors) { 1776 int s = sectors; 1777 int d = read_disk; 1778 int success = 0; 1779 int start; 1780 struct md_rdev *rdev; 1781 1782 if (s > (PAGE_SIZE>>9)) 1783 s = PAGE_SIZE >> 9; 1784 1785 do { 1786 /* Note: no rcu protection needed here 1787 * as this is synchronous in the raid1d thread 1788 * which is the thread that might remove 1789 * a device. If raid1d ever becomes multi-threaded.... 1790 */ 1791 sector_t first_bad; 1792 int bad_sectors; 1793 1794 rdev = conf->mirrors[d].rdev; 1795 if (rdev && 1796 test_bit(In_sync, &rdev->flags) && 1797 is_badblock(rdev, sect, s, 1798 &first_bad, &bad_sectors) == 0 && 1799 sync_page_io(rdev, sect, s<<9, 1800 conf->tmppage, READ, false)) 1801 success = 1; 1802 else { 1803 d++; 1804 if (d == conf->raid_disks * 2) 1805 d = 0; 1806 } 1807 } while (!success && d != read_disk); 1808 1809 if (!success) { 1810 /* Cannot read from anywhere - mark it bad */ 1811 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 1812 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1813 md_error(mddev, rdev); 1814 break; 1815 } 1816 /* write it back and re-read */ 1817 start = d; 1818 while (d != read_disk) { 1819 if (d==0) 1820 d = conf->raid_disks * 2; 1821 d--; 1822 rdev = conf->mirrors[d].rdev; 1823 if (rdev && 1824 test_bit(In_sync, &rdev->flags)) 1825 r1_sync_page_io(rdev, sect, s, 1826 conf->tmppage, WRITE); 1827 } 1828 d = start; 1829 while (d != read_disk) { 1830 char b[BDEVNAME_SIZE]; 1831 if (d==0) 1832 d = conf->raid_disks * 2; 1833 d--; 1834 rdev = conf->mirrors[d].rdev; 1835 if (rdev && 1836 test_bit(In_sync, &rdev->flags)) { 1837 if (r1_sync_page_io(rdev, sect, s, 1838 conf->tmppage, READ)) { 1839 atomic_add(s, &rdev->corrected_errors); 1840 printk(KERN_INFO 1841 "md/raid1:%s: read error corrected " 1842 "(%d sectors at %llu on %s)\n", 1843 mdname(mddev), s, 1844 (unsigned long long)(sect + 1845 rdev->data_offset), 1846 bdevname(rdev->bdev, b)); 1847 } 1848 } 1849 } 1850 sectors -= s; 1851 sect += s; 1852 } 1853 } 1854 1855 static void bi_complete(struct bio *bio, int error) 1856 { 1857 complete((struct completion *)bio->bi_private); 1858 } 1859 1860 static int submit_bio_wait(int rw, struct bio *bio) 1861 { 1862 struct completion event; 1863 rw |= REQ_SYNC; 1864 1865 init_completion(&event); 1866 bio->bi_private = &event; 1867 bio->bi_end_io = bi_complete; 1868 submit_bio(rw, bio); 1869 wait_for_completion(&event); 1870 1871 return test_bit(BIO_UPTODATE, &bio->bi_flags); 1872 } 1873 1874 static int narrow_write_error(struct r1bio *r1_bio, int i) 1875 { 1876 struct mddev *mddev = r1_bio->mddev; 1877 struct r1conf *conf = mddev->private; 1878 struct md_rdev *rdev = conf->mirrors[i].rdev; 1879 int vcnt, idx; 1880 struct bio_vec *vec; 1881 1882 /* bio has the data to be written to device 'i' where 1883 * we just recently had a write error. 1884 * We repeatedly clone the bio and trim down to one block, 1885 * then try the write. Where the write fails we record 1886 * a bad block. 1887 * It is conceivable that the bio doesn't exactly align with 1888 * blocks. We must handle this somehow. 1889 * 1890 * We currently own a reference on the rdev. 1891 */ 1892 1893 int block_sectors; 1894 sector_t sector; 1895 int sectors; 1896 int sect_to_write = r1_bio->sectors; 1897 int ok = 1; 1898 1899 if (rdev->badblocks.shift < 0) 1900 return 0; 1901 1902 block_sectors = 1 << rdev->badblocks.shift; 1903 sector = r1_bio->sector; 1904 sectors = ((sector + block_sectors) 1905 & ~(sector_t)(block_sectors - 1)) 1906 - sector; 1907 1908 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 1909 vcnt = r1_bio->behind_page_count; 1910 vec = r1_bio->behind_bvecs; 1911 idx = 0; 1912 while (vec[idx].bv_page == NULL) 1913 idx++; 1914 } else { 1915 vcnt = r1_bio->master_bio->bi_vcnt; 1916 vec = r1_bio->master_bio->bi_io_vec; 1917 idx = r1_bio->master_bio->bi_idx; 1918 } 1919 while (sect_to_write) { 1920 struct bio *wbio; 1921 if (sectors > sect_to_write) 1922 sectors = sect_to_write; 1923 /* Write at 'sector' for 'sectors'*/ 1924 1925 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 1926 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 1927 wbio->bi_sector = r1_bio->sector; 1928 wbio->bi_rw = WRITE; 1929 wbio->bi_vcnt = vcnt; 1930 wbio->bi_size = r1_bio->sectors << 9; 1931 wbio->bi_idx = idx; 1932 1933 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 1934 wbio->bi_sector += rdev->data_offset; 1935 wbio->bi_bdev = rdev->bdev; 1936 if (submit_bio_wait(WRITE, wbio) == 0) 1937 /* failure! */ 1938 ok = rdev_set_badblocks(rdev, sector, 1939 sectors, 0) 1940 && ok; 1941 1942 bio_put(wbio); 1943 sect_to_write -= sectors; 1944 sector += sectors; 1945 sectors = block_sectors; 1946 } 1947 return ok; 1948 } 1949 1950 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1951 { 1952 int m; 1953 int s = r1_bio->sectors; 1954 for (m = 0; m < conf->raid_disks * 2 ; m++) { 1955 struct md_rdev *rdev = conf->mirrors[m].rdev; 1956 struct bio *bio = r1_bio->bios[m]; 1957 if (bio->bi_end_io == NULL) 1958 continue; 1959 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 1960 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 1961 rdev_clear_badblocks(rdev, r1_bio->sector, s); 1962 } 1963 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 1964 test_bit(R1BIO_WriteError, &r1_bio->state)) { 1965 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 1966 md_error(conf->mddev, rdev); 1967 } 1968 } 1969 put_buf(r1_bio); 1970 md_done_sync(conf->mddev, s, 1); 1971 } 1972 1973 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 1974 { 1975 int m; 1976 for (m = 0; m < conf->raid_disks * 2 ; m++) 1977 if (r1_bio->bios[m] == IO_MADE_GOOD) { 1978 struct md_rdev *rdev = conf->mirrors[m].rdev; 1979 rdev_clear_badblocks(rdev, 1980 r1_bio->sector, 1981 r1_bio->sectors); 1982 rdev_dec_pending(rdev, conf->mddev); 1983 } else if (r1_bio->bios[m] != NULL) { 1984 /* This drive got a write error. We need to 1985 * narrow down and record precise write 1986 * errors. 1987 */ 1988 if (!narrow_write_error(r1_bio, m)) { 1989 md_error(conf->mddev, 1990 conf->mirrors[m].rdev); 1991 /* an I/O failed, we can't clear the bitmap */ 1992 set_bit(R1BIO_Degraded, &r1_bio->state); 1993 } 1994 rdev_dec_pending(conf->mirrors[m].rdev, 1995 conf->mddev); 1996 } 1997 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 1998 close_write(r1_bio); 1999 raid_end_bio_io(r1_bio); 2000 } 2001 2002 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2003 { 2004 int disk; 2005 int max_sectors; 2006 struct mddev *mddev = conf->mddev; 2007 struct bio *bio; 2008 char b[BDEVNAME_SIZE]; 2009 struct md_rdev *rdev; 2010 2011 clear_bit(R1BIO_ReadError, &r1_bio->state); 2012 /* we got a read error. Maybe the drive is bad. Maybe just 2013 * the block and we can fix it. 2014 * We freeze all other IO, and try reading the block from 2015 * other devices. When we find one, we re-write 2016 * and check it that fixes the read error. 2017 * This is all done synchronously while the array is 2018 * frozen 2019 */ 2020 if (mddev->ro == 0) { 2021 freeze_array(conf); 2022 fix_read_error(conf, r1_bio->read_disk, 2023 r1_bio->sector, r1_bio->sectors); 2024 unfreeze_array(conf); 2025 } else 2026 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2027 2028 bio = r1_bio->bios[r1_bio->read_disk]; 2029 bdevname(bio->bi_bdev, b); 2030 read_more: 2031 disk = read_balance(conf, r1_bio, &max_sectors); 2032 if (disk == -1) { 2033 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2034 " read error for block %llu\n", 2035 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2036 raid_end_bio_io(r1_bio); 2037 } else { 2038 const unsigned long do_sync 2039 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2040 if (bio) { 2041 r1_bio->bios[r1_bio->read_disk] = 2042 mddev->ro ? IO_BLOCKED : NULL; 2043 bio_put(bio); 2044 } 2045 r1_bio->read_disk = disk; 2046 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2047 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2048 r1_bio->bios[r1_bio->read_disk] = bio; 2049 rdev = conf->mirrors[disk].rdev; 2050 printk_ratelimited(KERN_ERR 2051 "md/raid1:%s: redirecting sector %llu" 2052 " to other mirror: %s\n", 2053 mdname(mddev), 2054 (unsigned long long)r1_bio->sector, 2055 bdevname(rdev->bdev, b)); 2056 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2057 bio->bi_bdev = rdev->bdev; 2058 bio->bi_end_io = raid1_end_read_request; 2059 bio->bi_rw = READ | do_sync; 2060 bio->bi_private = r1_bio; 2061 if (max_sectors < r1_bio->sectors) { 2062 /* Drat - have to split this up more */ 2063 struct bio *mbio = r1_bio->master_bio; 2064 int sectors_handled = (r1_bio->sector + max_sectors 2065 - mbio->bi_sector); 2066 r1_bio->sectors = max_sectors; 2067 spin_lock_irq(&conf->device_lock); 2068 if (mbio->bi_phys_segments == 0) 2069 mbio->bi_phys_segments = 2; 2070 else 2071 mbio->bi_phys_segments++; 2072 spin_unlock_irq(&conf->device_lock); 2073 generic_make_request(bio); 2074 bio = NULL; 2075 2076 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2077 2078 r1_bio->master_bio = mbio; 2079 r1_bio->sectors = (mbio->bi_size >> 9) 2080 - sectors_handled; 2081 r1_bio->state = 0; 2082 set_bit(R1BIO_ReadError, &r1_bio->state); 2083 r1_bio->mddev = mddev; 2084 r1_bio->sector = mbio->bi_sector + sectors_handled; 2085 2086 goto read_more; 2087 } else 2088 generic_make_request(bio); 2089 } 2090 } 2091 2092 static void raid1d(struct mddev *mddev) 2093 { 2094 struct r1bio *r1_bio; 2095 unsigned long flags; 2096 struct r1conf *conf = mddev->private; 2097 struct list_head *head = &conf->retry_list; 2098 struct blk_plug plug; 2099 2100 md_check_recovery(mddev); 2101 2102 blk_start_plug(&plug); 2103 for (;;) { 2104 2105 if (atomic_read(&mddev->plug_cnt) == 0) 2106 flush_pending_writes(conf); 2107 2108 spin_lock_irqsave(&conf->device_lock, flags); 2109 if (list_empty(head)) { 2110 spin_unlock_irqrestore(&conf->device_lock, flags); 2111 break; 2112 } 2113 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2114 list_del(head->prev); 2115 conf->nr_queued--; 2116 spin_unlock_irqrestore(&conf->device_lock, flags); 2117 2118 mddev = r1_bio->mddev; 2119 conf = mddev->private; 2120 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2121 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2122 test_bit(R1BIO_WriteError, &r1_bio->state)) 2123 handle_sync_write_finished(conf, r1_bio); 2124 else 2125 sync_request_write(mddev, r1_bio); 2126 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2127 test_bit(R1BIO_WriteError, &r1_bio->state)) 2128 handle_write_finished(conf, r1_bio); 2129 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2130 handle_read_error(conf, r1_bio); 2131 else 2132 /* just a partial read to be scheduled from separate 2133 * context 2134 */ 2135 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2136 2137 cond_resched(); 2138 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2139 md_check_recovery(mddev); 2140 } 2141 blk_finish_plug(&plug); 2142 } 2143 2144 2145 static int init_resync(struct r1conf *conf) 2146 { 2147 int buffs; 2148 2149 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2150 BUG_ON(conf->r1buf_pool); 2151 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2152 conf->poolinfo); 2153 if (!conf->r1buf_pool) 2154 return -ENOMEM; 2155 conf->next_resync = 0; 2156 return 0; 2157 } 2158 2159 /* 2160 * perform a "sync" on one "block" 2161 * 2162 * We need to make sure that no normal I/O request - particularly write 2163 * requests - conflict with active sync requests. 2164 * 2165 * This is achieved by tracking pending requests and a 'barrier' concept 2166 * that can be installed to exclude normal IO requests. 2167 */ 2168 2169 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2170 { 2171 struct r1conf *conf = mddev->private; 2172 struct r1bio *r1_bio; 2173 struct bio *bio; 2174 sector_t max_sector, nr_sectors; 2175 int disk = -1; 2176 int i; 2177 int wonly = -1; 2178 int write_targets = 0, read_targets = 0; 2179 sector_t sync_blocks; 2180 int still_degraded = 0; 2181 int good_sectors = RESYNC_SECTORS; 2182 int min_bad = 0; /* number of sectors that are bad in all devices */ 2183 2184 if (!conf->r1buf_pool) 2185 if (init_resync(conf)) 2186 return 0; 2187 2188 max_sector = mddev->dev_sectors; 2189 if (sector_nr >= max_sector) { 2190 /* If we aborted, we need to abort the 2191 * sync on the 'current' bitmap chunk (there will 2192 * only be one in raid1 resync. 2193 * We can find the current addess in mddev->curr_resync 2194 */ 2195 if (mddev->curr_resync < max_sector) /* aborted */ 2196 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2197 &sync_blocks, 1); 2198 else /* completed sync */ 2199 conf->fullsync = 0; 2200 2201 bitmap_close_sync(mddev->bitmap); 2202 close_sync(conf); 2203 return 0; 2204 } 2205 2206 if (mddev->bitmap == NULL && 2207 mddev->recovery_cp == MaxSector && 2208 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2209 conf->fullsync == 0) { 2210 *skipped = 1; 2211 return max_sector - sector_nr; 2212 } 2213 /* before building a request, check if we can skip these blocks.. 2214 * This call the bitmap_start_sync doesn't actually record anything 2215 */ 2216 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2217 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2218 /* We can skip this block, and probably several more */ 2219 *skipped = 1; 2220 return sync_blocks; 2221 } 2222 /* 2223 * If there is non-resync activity waiting for a turn, 2224 * and resync is going fast enough, 2225 * then let it though before starting on this new sync request. 2226 */ 2227 if (!go_faster && conf->nr_waiting) 2228 msleep_interruptible(1000); 2229 2230 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2231 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2232 raise_barrier(conf); 2233 2234 conf->next_resync = sector_nr; 2235 2236 rcu_read_lock(); 2237 /* 2238 * If we get a correctably read error during resync or recovery, 2239 * we might want to read from a different device. So we 2240 * flag all drives that could conceivably be read from for READ, 2241 * and any others (which will be non-In_sync devices) for WRITE. 2242 * If a read fails, we try reading from something else for which READ 2243 * is OK. 2244 */ 2245 2246 r1_bio->mddev = mddev; 2247 r1_bio->sector = sector_nr; 2248 r1_bio->state = 0; 2249 set_bit(R1BIO_IsSync, &r1_bio->state); 2250 2251 for (i = 0; i < conf->raid_disks * 2; i++) { 2252 struct md_rdev *rdev; 2253 bio = r1_bio->bios[i]; 2254 2255 /* take from bio_init */ 2256 bio->bi_next = NULL; 2257 bio->bi_flags &= ~(BIO_POOL_MASK-1); 2258 bio->bi_flags |= 1 << BIO_UPTODATE; 2259 bio->bi_rw = READ; 2260 bio->bi_vcnt = 0; 2261 bio->bi_idx = 0; 2262 bio->bi_phys_segments = 0; 2263 bio->bi_size = 0; 2264 bio->bi_end_io = NULL; 2265 bio->bi_private = NULL; 2266 2267 rdev = rcu_dereference(conf->mirrors[i].rdev); 2268 if (rdev == NULL || 2269 test_bit(Faulty, &rdev->flags)) { 2270 if (i < conf->raid_disks) 2271 still_degraded = 1; 2272 } else if (!test_bit(In_sync, &rdev->flags)) { 2273 bio->bi_rw = WRITE; 2274 bio->bi_end_io = end_sync_write; 2275 write_targets ++; 2276 } else { 2277 /* may need to read from here */ 2278 sector_t first_bad = MaxSector; 2279 int bad_sectors; 2280 2281 if (is_badblock(rdev, sector_nr, good_sectors, 2282 &first_bad, &bad_sectors)) { 2283 if (first_bad > sector_nr) 2284 good_sectors = first_bad - sector_nr; 2285 else { 2286 bad_sectors -= (sector_nr - first_bad); 2287 if (min_bad == 0 || 2288 min_bad > bad_sectors) 2289 min_bad = bad_sectors; 2290 } 2291 } 2292 if (sector_nr < first_bad) { 2293 if (test_bit(WriteMostly, &rdev->flags)) { 2294 if (wonly < 0) 2295 wonly = i; 2296 } else { 2297 if (disk < 0) 2298 disk = i; 2299 } 2300 bio->bi_rw = READ; 2301 bio->bi_end_io = end_sync_read; 2302 read_targets++; 2303 } 2304 } 2305 if (bio->bi_end_io) { 2306 atomic_inc(&rdev->nr_pending); 2307 bio->bi_sector = sector_nr + rdev->data_offset; 2308 bio->bi_bdev = rdev->bdev; 2309 bio->bi_private = r1_bio; 2310 } 2311 } 2312 rcu_read_unlock(); 2313 if (disk < 0) 2314 disk = wonly; 2315 r1_bio->read_disk = disk; 2316 2317 if (read_targets == 0 && min_bad > 0) { 2318 /* These sectors are bad on all InSync devices, so we 2319 * need to mark them bad on all write targets 2320 */ 2321 int ok = 1; 2322 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2323 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2324 struct md_rdev *rdev = 2325 rcu_dereference(conf->mirrors[i].rdev); 2326 ok = rdev_set_badblocks(rdev, sector_nr, 2327 min_bad, 0 2328 ) && ok; 2329 } 2330 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2331 *skipped = 1; 2332 put_buf(r1_bio); 2333 2334 if (!ok) { 2335 /* Cannot record the badblocks, so need to 2336 * abort the resync. 2337 * If there are multiple read targets, could just 2338 * fail the really bad ones ??? 2339 */ 2340 conf->recovery_disabled = mddev->recovery_disabled; 2341 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2342 return 0; 2343 } else 2344 return min_bad; 2345 2346 } 2347 if (min_bad > 0 && min_bad < good_sectors) { 2348 /* only resync enough to reach the next bad->good 2349 * transition */ 2350 good_sectors = min_bad; 2351 } 2352 2353 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2354 /* extra read targets are also write targets */ 2355 write_targets += read_targets-1; 2356 2357 if (write_targets == 0 || read_targets == 0) { 2358 /* There is nowhere to write, so all non-sync 2359 * drives must be failed - so we are finished 2360 */ 2361 sector_t rv = max_sector - sector_nr; 2362 *skipped = 1; 2363 put_buf(r1_bio); 2364 return rv; 2365 } 2366 2367 if (max_sector > mddev->resync_max) 2368 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2369 if (max_sector > sector_nr + good_sectors) 2370 max_sector = sector_nr + good_sectors; 2371 nr_sectors = 0; 2372 sync_blocks = 0; 2373 do { 2374 struct page *page; 2375 int len = PAGE_SIZE; 2376 if (sector_nr + (len>>9) > max_sector) 2377 len = (max_sector - sector_nr) << 9; 2378 if (len == 0) 2379 break; 2380 if (sync_blocks == 0) { 2381 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2382 &sync_blocks, still_degraded) && 2383 !conf->fullsync && 2384 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2385 break; 2386 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2387 if ((len >> 9) > sync_blocks) 2388 len = sync_blocks<<9; 2389 } 2390 2391 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2392 bio = r1_bio->bios[i]; 2393 if (bio->bi_end_io) { 2394 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2395 if (bio_add_page(bio, page, len, 0) == 0) { 2396 /* stop here */ 2397 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2398 while (i > 0) { 2399 i--; 2400 bio = r1_bio->bios[i]; 2401 if (bio->bi_end_io==NULL) 2402 continue; 2403 /* remove last page from this bio */ 2404 bio->bi_vcnt--; 2405 bio->bi_size -= len; 2406 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2407 } 2408 goto bio_full; 2409 } 2410 } 2411 } 2412 nr_sectors += len>>9; 2413 sector_nr += len>>9; 2414 sync_blocks -= (len>>9); 2415 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2416 bio_full: 2417 r1_bio->sectors = nr_sectors; 2418 2419 /* For a user-requested sync, we read all readable devices and do a 2420 * compare 2421 */ 2422 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2423 atomic_set(&r1_bio->remaining, read_targets); 2424 for (i = 0; i < conf->raid_disks * 2; i++) { 2425 bio = r1_bio->bios[i]; 2426 if (bio->bi_end_io == end_sync_read) { 2427 md_sync_acct(bio->bi_bdev, nr_sectors); 2428 generic_make_request(bio); 2429 } 2430 } 2431 } else { 2432 atomic_set(&r1_bio->remaining, 1); 2433 bio = r1_bio->bios[r1_bio->read_disk]; 2434 md_sync_acct(bio->bi_bdev, nr_sectors); 2435 generic_make_request(bio); 2436 2437 } 2438 return nr_sectors; 2439 } 2440 2441 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2442 { 2443 if (sectors) 2444 return sectors; 2445 2446 return mddev->dev_sectors; 2447 } 2448 2449 static struct r1conf *setup_conf(struct mddev *mddev) 2450 { 2451 struct r1conf *conf; 2452 int i; 2453 struct mirror_info *disk; 2454 struct md_rdev *rdev; 2455 int err = -ENOMEM; 2456 2457 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2458 if (!conf) 2459 goto abort; 2460 2461 conf->mirrors = kzalloc(sizeof(struct mirror_info) 2462 * mddev->raid_disks * 2, 2463 GFP_KERNEL); 2464 if (!conf->mirrors) 2465 goto abort; 2466 2467 conf->tmppage = alloc_page(GFP_KERNEL); 2468 if (!conf->tmppage) 2469 goto abort; 2470 2471 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2472 if (!conf->poolinfo) 2473 goto abort; 2474 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2475 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2476 r1bio_pool_free, 2477 conf->poolinfo); 2478 if (!conf->r1bio_pool) 2479 goto abort; 2480 2481 conf->poolinfo->mddev = mddev; 2482 2483 err = -EINVAL; 2484 spin_lock_init(&conf->device_lock); 2485 list_for_each_entry(rdev, &mddev->disks, same_set) { 2486 int disk_idx = rdev->raid_disk; 2487 if (disk_idx >= mddev->raid_disks 2488 || disk_idx < 0) 2489 continue; 2490 if (test_bit(Replacement, &rdev->flags)) 2491 disk = conf->mirrors + conf->raid_disks + disk_idx; 2492 else 2493 disk = conf->mirrors + disk_idx; 2494 2495 if (disk->rdev) 2496 goto abort; 2497 disk->rdev = rdev; 2498 2499 disk->head_position = 0; 2500 } 2501 conf->raid_disks = mddev->raid_disks; 2502 conf->mddev = mddev; 2503 INIT_LIST_HEAD(&conf->retry_list); 2504 2505 spin_lock_init(&conf->resync_lock); 2506 init_waitqueue_head(&conf->wait_barrier); 2507 2508 bio_list_init(&conf->pending_bio_list); 2509 conf->pending_count = 0; 2510 conf->recovery_disabled = mddev->recovery_disabled - 1; 2511 2512 err = -EIO; 2513 conf->last_used = -1; 2514 for (i = 0; i < conf->raid_disks * 2; i++) { 2515 2516 disk = conf->mirrors + i; 2517 2518 if (i < conf->raid_disks && 2519 disk[conf->raid_disks].rdev) { 2520 /* This slot has a replacement. */ 2521 if (!disk->rdev) { 2522 /* No original, just make the replacement 2523 * a recovering spare 2524 */ 2525 disk->rdev = 2526 disk[conf->raid_disks].rdev; 2527 disk[conf->raid_disks].rdev = NULL; 2528 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2529 /* Original is not in_sync - bad */ 2530 goto abort; 2531 } 2532 2533 if (!disk->rdev || 2534 !test_bit(In_sync, &disk->rdev->flags)) { 2535 disk->head_position = 0; 2536 if (disk->rdev) 2537 conf->fullsync = 1; 2538 } else if (conf->last_used < 0) 2539 /* 2540 * The first working device is used as a 2541 * starting point to read balancing. 2542 */ 2543 conf->last_used = i; 2544 } 2545 2546 if (conf->last_used < 0) { 2547 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 2548 mdname(mddev)); 2549 goto abort; 2550 } 2551 err = -ENOMEM; 2552 conf->thread = md_register_thread(raid1d, mddev, NULL); 2553 if (!conf->thread) { 2554 printk(KERN_ERR 2555 "md/raid1:%s: couldn't allocate thread\n", 2556 mdname(mddev)); 2557 goto abort; 2558 } 2559 2560 return conf; 2561 2562 abort: 2563 if (conf) { 2564 if (conf->r1bio_pool) 2565 mempool_destroy(conf->r1bio_pool); 2566 kfree(conf->mirrors); 2567 safe_put_page(conf->tmppage); 2568 kfree(conf->poolinfo); 2569 kfree(conf); 2570 } 2571 return ERR_PTR(err); 2572 } 2573 2574 static int run(struct mddev *mddev) 2575 { 2576 struct r1conf *conf; 2577 int i; 2578 struct md_rdev *rdev; 2579 2580 if (mddev->level != 1) { 2581 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2582 mdname(mddev), mddev->level); 2583 return -EIO; 2584 } 2585 if (mddev->reshape_position != MaxSector) { 2586 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2587 mdname(mddev)); 2588 return -EIO; 2589 } 2590 /* 2591 * copy the already verified devices into our private RAID1 2592 * bookkeeping area. [whatever we allocate in run(), 2593 * should be freed in stop()] 2594 */ 2595 if (mddev->private == NULL) 2596 conf = setup_conf(mddev); 2597 else 2598 conf = mddev->private; 2599 2600 if (IS_ERR(conf)) 2601 return PTR_ERR(conf); 2602 2603 list_for_each_entry(rdev, &mddev->disks, same_set) { 2604 if (!mddev->gendisk) 2605 continue; 2606 disk_stack_limits(mddev->gendisk, rdev->bdev, 2607 rdev->data_offset << 9); 2608 /* as we don't honour merge_bvec_fn, we must never risk 2609 * violating it, so limit ->max_segments to 1 lying within 2610 * a single page, as a one page request is never in violation. 2611 */ 2612 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2613 blk_queue_max_segments(mddev->queue, 1); 2614 blk_queue_segment_boundary(mddev->queue, 2615 PAGE_CACHE_SIZE - 1); 2616 } 2617 } 2618 2619 mddev->degraded = 0; 2620 for (i=0; i < conf->raid_disks; i++) 2621 if (conf->mirrors[i].rdev == NULL || 2622 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2623 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2624 mddev->degraded++; 2625 2626 if (conf->raid_disks - mddev->degraded == 1) 2627 mddev->recovery_cp = MaxSector; 2628 2629 if (mddev->recovery_cp != MaxSector) 2630 printk(KERN_NOTICE "md/raid1:%s: not clean" 2631 " -- starting background reconstruction\n", 2632 mdname(mddev)); 2633 printk(KERN_INFO 2634 "md/raid1:%s: active with %d out of %d mirrors\n", 2635 mdname(mddev), mddev->raid_disks - mddev->degraded, 2636 mddev->raid_disks); 2637 2638 /* 2639 * Ok, everything is just fine now 2640 */ 2641 mddev->thread = conf->thread; 2642 conf->thread = NULL; 2643 mddev->private = conf; 2644 2645 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2646 2647 if (mddev->queue) { 2648 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2649 mddev->queue->backing_dev_info.congested_data = mddev; 2650 } 2651 return md_integrity_register(mddev); 2652 } 2653 2654 static int stop(struct mddev *mddev) 2655 { 2656 struct r1conf *conf = mddev->private; 2657 struct bitmap *bitmap = mddev->bitmap; 2658 2659 /* wait for behind writes to complete */ 2660 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2661 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2662 mdname(mddev)); 2663 /* need to kick something here to make sure I/O goes? */ 2664 wait_event(bitmap->behind_wait, 2665 atomic_read(&bitmap->behind_writes) == 0); 2666 } 2667 2668 raise_barrier(conf); 2669 lower_barrier(conf); 2670 2671 md_unregister_thread(&mddev->thread); 2672 if (conf->r1bio_pool) 2673 mempool_destroy(conf->r1bio_pool); 2674 kfree(conf->mirrors); 2675 kfree(conf->poolinfo); 2676 kfree(conf); 2677 mddev->private = NULL; 2678 return 0; 2679 } 2680 2681 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2682 { 2683 /* no resync is happening, and there is enough space 2684 * on all devices, so we can resize. 2685 * We need to make sure resync covers any new space. 2686 * If the array is shrinking we should possibly wait until 2687 * any io in the removed space completes, but it hardly seems 2688 * worth it. 2689 */ 2690 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2691 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2692 return -EINVAL; 2693 set_capacity(mddev->gendisk, mddev->array_sectors); 2694 revalidate_disk(mddev->gendisk); 2695 if (sectors > mddev->dev_sectors && 2696 mddev->recovery_cp > mddev->dev_sectors) { 2697 mddev->recovery_cp = mddev->dev_sectors; 2698 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2699 } 2700 mddev->dev_sectors = sectors; 2701 mddev->resync_max_sectors = sectors; 2702 return 0; 2703 } 2704 2705 static int raid1_reshape(struct mddev *mddev) 2706 { 2707 /* We need to: 2708 * 1/ resize the r1bio_pool 2709 * 2/ resize conf->mirrors 2710 * 2711 * We allocate a new r1bio_pool if we can. 2712 * Then raise a device barrier and wait until all IO stops. 2713 * Then resize conf->mirrors and swap in the new r1bio pool. 2714 * 2715 * At the same time, we "pack" the devices so that all the missing 2716 * devices have the higher raid_disk numbers. 2717 */ 2718 mempool_t *newpool, *oldpool; 2719 struct pool_info *newpoolinfo; 2720 struct mirror_info *newmirrors; 2721 struct r1conf *conf = mddev->private; 2722 int cnt, raid_disks; 2723 unsigned long flags; 2724 int d, d2, err; 2725 2726 /* Cannot change chunk_size, layout, or level */ 2727 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2728 mddev->layout != mddev->new_layout || 2729 mddev->level != mddev->new_level) { 2730 mddev->new_chunk_sectors = mddev->chunk_sectors; 2731 mddev->new_layout = mddev->layout; 2732 mddev->new_level = mddev->level; 2733 return -EINVAL; 2734 } 2735 2736 err = md_allow_write(mddev); 2737 if (err) 2738 return err; 2739 2740 raid_disks = mddev->raid_disks + mddev->delta_disks; 2741 2742 if (raid_disks < conf->raid_disks) { 2743 cnt=0; 2744 for (d= 0; d < conf->raid_disks; d++) 2745 if (conf->mirrors[d].rdev) 2746 cnt++; 2747 if (cnt > raid_disks) 2748 return -EBUSY; 2749 } 2750 2751 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2752 if (!newpoolinfo) 2753 return -ENOMEM; 2754 newpoolinfo->mddev = mddev; 2755 newpoolinfo->raid_disks = raid_disks * 2; 2756 2757 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2758 r1bio_pool_free, newpoolinfo); 2759 if (!newpool) { 2760 kfree(newpoolinfo); 2761 return -ENOMEM; 2762 } 2763 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2, 2764 GFP_KERNEL); 2765 if (!newmirrors) { 2766 kfree(newpoolinfo); 2767 mempool_destroy(newpool); 2768 return -ENOMEM; 2769 } 2770 2771 raise_barrier(conf); 2772 2773 /* ok, everything is stopped */ 2774 oldpool = conf->r1bio_pool; 2775 conf->r1bio_pool = newpool; 2776 2777 for (d = d2 = 0; d < conf->raid_disks; d++) { 2778 struct md_rdev *rdev = conf->mirrors[d].rdev; 2779 if (rdev && rdev->raid_disk != d2) { 2780 sysfs_unlink_rdev(mddev, rdev); 2781 rdev->raid_disk = d2; 2782 sysfs_unlink_rdev(mddev, rdev); 2783 if (sysfs_link_rdev(mddev, rdev)) 2784 printk(KERN_WARNING 2785 "md/raid1:%s: cannot register rd%d\n", 2786 mdname(mddev), rdev->raid_disk); 2787 } 2788 if (rdev) 2789 newmirrors[d2++].rdev = rdev; 2790 } 2791 kfree(conf->mirrors); 2792 conf->mirrors = newmirrors; 2793 kfree(conf->poolinfo); 2794 conf->poolinfo = newpoolinfo; 2795 2796 spin_lock_irqsave(&conf->device_lock, flags); 2797 mddev->degraded += (raid_disks - conf->raid_disks); 2798 spin_unlock_irqrestore(&conf->device_lock, flags); 2799 conf->raid_disks = mddev->raid_disks = raid_disks; 2800 mddev->delta_disks = 0; 2801 2802 conf->last_used = 0; /* just make sure it is in-range */ 2803 lower_barrier(conf); 2804 2805 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2806 md_wakeup_thread(mddev->thread); 2807 2808 mempool_destroy(oldpool); 2809 return 0; 2810 } 2811 2812 static void raid1_quiesce(struct mddev *mddev, int state) 2813 { 2814 struct r1conf *conf = mddev->private; 2815 2816 switch(state) { 2817 case 2: /* wake for suspend */ 2818 wake_up(&conf->wait_barrier); 2819 break; 2820 case 1: 2821 raise_barrier(conf); 2822 break; 2823 case 0: 2824 lower_barrier(conf); 2825 break; 2826 } 2827 } 2828 2829 static void *raid1_takeover(struct mddev *mddev) 2830 { 2831 /* raid1 can take over: 2832 * raid5 with 2 devices, any layout or chunk size 2833 */ 2834 if (mddev->level == 5 && mddev->raid_disks == 2) { 2835 struct r1conf *conf; 2836 mddev->new_level = 1; 2837 mddev->new_layout = 0; 2838 mddev->new_chunk_sectors = 0; 2839 conf = setup_conf(mddev); 2840 if (!IS_ERR(conf)) 2841 conf->barrier = 1; 2842 return conf; 2843 } 2844 return ERR_PTR(-EINVAL); 2845 } 2846 2847 static struct md_personality raid1_personality = 2848 { 2849 .name = "raid1", 2850 .level = 1, 2851 .owner = THIS_MODULE, 2852 .make_request = make_request, 2853 .run = run, 2854 .stop = stop, 2855 .status = status, 2856 .error_handler = error, 2857 .hot_add_disk = raid1_add_disk, 2858 .hot_remove_disk= raid1_remove_disk, 2859 .spare_active = raid1_spare_active, 2860 .sync_request = sync_request, 2861 .resize = raid1_resize, 2862 .size = raid1_size, 2863 .check_reshape = raid1_reshape, 2864 .quiesce = raid1_quiesce, 2865 .takeover = raid1_takeover, 2866 }; 2867 2868 static int __init raid_init(void) 2869 { 2870 return register_md_personality(&raid1_personality); 2871 } 2872 2873 static void raid_exit(void) 2874 { 2875 unregister_md_personality(&raid1_personality); 2876 } 2877 2878 module_init(raid_init); 2879 module_exit(raid_exit); 2880 MODULE_LICENSE("GPL"); 2881 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2882 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2883 MODULE_ALIAS("md-raid1"); 2884 MODULE_ALIAS("md-level-1"); 2885 2886 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 2887