xref: /linux/drivers/md/raid1.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* When there are this many requests queue to be written by
50  * the raid1 thread, we become 'congested' to provide back-pressure
51  * for writeback.
52  */
53 static int max_queued_requests = 1024;
54 
55 static void allow_barrier(struct r1conf *conf);
56 static void lower_barrier(struct r1conf *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	struct r1bio *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while (++j < pi->raid_disks)
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	struct r1bio *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks * 2; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (!BIO_SPECIAL(*bio))
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(struct r1bio *r1_bio)
176 {
177 	struct r1conf *conf = r1_bio->mddev->private;
178 
179 	put_all_bios(conf, r1_bio);
180 	mempool_free(r1_bio, conf->r1bio_pool);
181 }
182 
183 static void put_buf(struct r1bio *r1_bio)
184 {
185 	struct r1conf *conf = r1_bio->mddev->private;
186 	int i;
187 
188 	for (i = 0; i < conf->raid_disks * 2; i++) {
189 		struct bio *bio = r1_bio->bios[i];
190 		if (bio->bi_end_io)
191 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
192 	}
193 
194 	mempool_free(r1_bio, conf->r1buf_pool);
195 
196 	lower_barrier(conf);
197 }
198 
199 static void reschedule_retry(struct r1bio *r1_bio)
200 {
201 	unsigned long flags;
202 	struct mddev *mddev = r1_bio->mddev;
203 	struct r1conf *conf = mddev->private;
204 
205 	spin_lock_irqsave(&conf->device_lock, flags);
206 	list_add(&r1_bio->retry_list, &conf->retry_list);
207 	conf->nr_queued ++;
208 	spin_unlock_irqrestore(&conf->device_lock, flags);
209 
210 	wake_up(&conf->wait_barrier);
211 	md_wakeup_thread(mddev->thread);
212 }
213 
214 /*
215  * raid_end_bio_io() is called when we have finished servicing a mirrored
216  * operation and are ready to return a success/failure code to the buffer
217  * cache layer.
218  */
219 static void call_bio_endio(struct r1bio *r1_bio)
220 {
221 	struct bio *bio = r1_bio->master_bio;
222 	int done;
223 	struct r1conf *conf = r1_bio->mddev->private;
224 
225 	if (bio->bi_phys_segments) {
226 		unsigned long flags;
227 		spin_lock_irqsave(&conf->device_lock, flags);
228 		bio->bi_phys_segments--;
229 		done = (bio->bi_phys_segments == 0);
230 		spin_unlock_irqrestore(&conf->device_lock, flags);
231 	} else
232 		done = 1;
233 
234 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
235 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
236 	if (done) {
237 		bio_endio(bio, 0);
238 		/*
239 		 * Wake up any possible resync thread that waits for the device
240 		 * to go idle.
241 		 */
242 		allow_barrier(conf);
243 	}
244 }
245 
246 static void raid_end_bio_io(struct r1bio *r1_bio)
247 {
248 	struct bio *bio = r1_bio->master_bio;
249 
250 	/* if nobody has done the final endio yet, do it now */
251 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
252 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
253 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
254 			 (unsigned long long) bio->bi_sector,
255 			 (unsigned long long) bio->bi_sector +
256 			 (bio->bi_size >> 9) - 1);
257 
258 		call_bio_endio(r1_bio);
259 	}
260 	free_r1bio(r1_bio);
261 }
262 
263 /*
264  * Update disk head position estimator based on IRQ completion info.
265  */
266 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
267 {
268 	struct r1conf *conf = r1_bio->mddev->private;
269 
270 	conf->mirrors[disk].head_position =
271 		r1_bio->sector + (r1_bio->sectors);
272 }
273 
274 /*
275  * Find the disk number which triggered given bio
276  */
277 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
278 {
279 	int mirror;
280 	struct r1conf *conf = r1_bio->mddev->private;
281 	int raid_disks = conf->raid_disks;
282 
283 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
284 		if (r1_bio->bios[mirror] == bio)
285 			break;
286 
287 	BUG_ON(mirror == raid_disks * 2);
288 	update_head_pos(mirror, r1_bio);
289 
290 	return mirror;
291 }
292 
293 static void raid1_end_read_request(struct bio *bio, int error)
294 {
295 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 	struct r1bio *r1_bio = bio->bi_private;
297 	int mirror;
298 	struct r1conf *conf = r1_bio->mddev->private;
299 
300 	mirror = r1_bio->read_disk;
301 	/*
302 	 * this branch is our 'one mirror IO has finished' event handler:
303 	 */
304 	update_head_pos(mirror, r1_bio);
305 
306 	if (uptodate)
307 		set_bit(R1BIO_Uptodate, &r1_bio->state);
308 	else {
309 		/* If all other devices have failed, we want to return
310 		 * the error upwards rather than fail the last device.
311 		 * Here we redefine "uptodate" to mean "Don't want to retry"
312 		 */
313 		unsigned long flags;
314 		spin_lock_irqsave(&conf->device_lock, flags);
315 		if (r1_bio->mddev->degraded == conf->raid_disks ||
316 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
317 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
318 			uptodate = 1;
319 		spin_unlock_irqrestore(&conf->device_lock, flags);
320 	}
321 
322 	if (uptodate)
323 		raid_end_bio_io(r1_bio);
324 	else {
325 		/*
326 		 * oops, read error:
327 		 */
328 		char b[BDEVNAME_SIZE];
329 		printk_ratelimited(
330 			KERN_ERR "md/raid1:%s: %s: "
331 			"rescheduling sector %llu\n",
332 			mdname(conf->mddev),
333 			bdevname(conf->mirrors[mirror].rdev->bdev,
334 				 b),
335 			(unsigned long long)r1_bio->sector);
336 		set_bit(R1BIO_ReadError, &r1_bio->state);
337 		reschedule_retry(r1_bio);
338 	}
339 
340 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341 }
342 
343 static void close_write(struct r1bio *r1_bio)
344 {
345 	/* it really is the end of this request */
346 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
347 		/* free extra copy of the data pages */
348 		int i = r1_bio->behind_page_count;
349 		while (i--)
350 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
351 		kfree(r1_bio->behind_bvecs);
352 		r1_bio->behind_bvecs = NULL;
353 	}
354 	/* clear the bitmap if all writes complete successfully */
355 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356 			r1_bio->sectors,
357 			!test_bit(R1BIO_Degraded, &r1_bio->state),
358 			test_bit(R1BIO_BehindIO, &r1_bio->state));
359 	md_write_end(r1_bio->mddev);
360 }
361 
362 static void r1_bio_write_done(struct r1bio *r1_bio)
363 {
364 	if (!atomic_dec_and_test(&r1_bio->remaining))
365 		return;
366 
367 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
368 		reschedule_retry(r1_bio);
369 	else {
370 		close_write(r1_bio);
371 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372 			reschedule_retry(r1_bio);
373 		else
374 			raid_end_bio_io(r1_bio);
375 	}
376 }
377 
378 static void raid1_end_write_request(struct bio *bio, int error)
379 {
380 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
381 	struct r1bio *r1_bio = bio->bi_private;
382 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
383 	struct r1conf *conf = r1_bio->mddev->private;
384 	struct bio *to_put = NULL;
385 
386 	mirror = find_bio_disk(r1_bio, bio);
387 
388 	/*
389 	 * 'one mirror IO has finished' event handler:
390 	 */
391 	if (!uptodate) {
392 		set_bit(WriteErrorSeen,
393 			&conf->mirrors[mirror].rdev->flags);
394 		if (!test_and_set_bit(WantReplacement,
395 				      &conf->mirrors[mirror].rdev->flags))
396 			set_bit(MD_RECOVERY_NEEDED, &
397 				conf->mddev->recovery);
398 
399 		set_bit(R1BIO_WriteError, &r1_bio->state);
400 	} else {
401 		/*
402 		 * Set R1BIO_Uptodate in our master bio, so that we
403 		 * will return a good error code for to the higher
404 		 * levels even if IO on some other mirrored buffer
405 		 * fails.
406 		 *
407 		 * The 'master' represents the composite IO operation
408 		 * to user-side. So if something waits for IO, then it
409 		 * will wait for the 'master' bio.
410 		 */
411 		sector_t first_bad;
412 		int bad_sectors;
413 
414 		r1_bio->bios[mirror] = NULL;
415 		to_put = bio;
416 		set_bit(R1BIO_Uptodate, &r1_bio->state);
417 
418 		/* Maybe we can clear some bad blocks. */
419 		if (is_badblock(conf->mirrors[mirror].rdev,
420 				r1_bio->sector, r1_bio->sectors,
421 				&first_bad, &bad_sectors)) {
422 			r1_bio->bios[mirror] = IO_MADE_GOOD;
423 			set_bit(R1BIO_MadeGood, &r1_bio->state);
424 		}
425 	}
426 
427 	if (behind) {
428 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
429 			atomic_dec(&r1_bio->behind_remaining);
430 
431 		/*
432 		 * In behind mode, we ACK the master bio once the I/O
433 		 * has safely reached all non-writemostly
434 		 * disks. Setting the Returned bit ensures that this
435 		 * gets done only once -- we don't ever want to return
436 		 * -EIO here, instead we'll wait
437 		 */
438 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
439 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
440 			/* Maybe we can return now */
441 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
442 				struct bio *mbio = r1_bio->master_bio;
443 				pr_debug("raid1: behind end write sectors"
444 					 " %llu-%llu\n",
445 					 (unsigned long long) mbio->bi_sector,
446 					 (unsigned long long) mbio->bi_sector +
447 					 (mbio->bi_size >> 9) - 1);
448 				call_bio_endio(r1_bio);
449 			}
450 		}
451 	}
452 	if (r1_bio->bios[mirror] == NULL)
453 		rdev_dec_pending(conf->mirrors[mirror].rdev,
454 				 conf->mddev);
455 
456 	/*
457 	 * Let's see if all mirrored write operations have finished
458 	 * already.
459 	 */
460 	r1_bio_write_done(r1_bio);
461 
462 	if (to_put)
463 		bio_put(to_put);
464 }
465 
466 
467 /*
468  * This routine returns the disk from which the requested read should
469  * be done. There is a per-array 'next expected sequential IO' sector
470  * number - if this matches on the next IO then we use the last disk.
471  * There is also a per-disk 'last know head position' sector that is
472  * maintained from IRQ contexts, both the normal and the resync IO
473  * completion handlers update this position correctly. If there is no
474  * perfect sequential match then we pick the disk whose head is closest.
475  *
476  * If there are 2 mirrors in the same 2 devices, performance degrades
477  * because position is mirror, not device based.
478  *
479  * The rdev for the device selected will have nr_pending incremented.
480  */
481 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
482 {
483 	const sector_t this_sector = r1_bio->sector;
484 	int sectors;
485 	int best_good_sectors;
486 	int start_disk;
487 	int best_disk;
488 	int i;
489 	sector_t best_dist;
490 	struct md_rdev *rdev;
491 	int choose_first;
492 
493 	rcu_read_lock();
494 	/*
495 	 * Check if we can balance. We can balance on the whole
496 	 * device if no resync is going on, or below the resync window.
497 	 * We take the first readable disk when above the resync window.
498 	 */
499  retry:
500 	sectors = r1_bio->sectors;
501 	best_disk = -1;
502 	best_dist = MaxSector;
503 	best_good_sectors = 0;
504 
505 	if (conf->mddev->recovery_cp < MaxSector &&
506 	    (this_sector + sectors >= conf->next_resync)) {
507 		choose_first = 1;
508 		start_disk = 0;
509 	} else {
510 		choose_first = 0;
511 		start_disk = conf->last_used;
512 	}
513 
514 	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
515 		sector_t dist;
516 		sector_t first_bad;
517 		int bad_sectors;
518 
519 		int disk = start_disk + i;
520 		if (disk >= conf->raid_disks)
521 			disk -= conf->raid_disks;
522 
523 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
524 		if (r1_bio->bios[disk] == IO_BLOCKED
525 		    || rdev == NULL
526 		    || test_bit(Faulty, &rdev->flags))
527 			continue;
528 		if (!test_bit(In_sync, &rdev->flags) &&
529 		    rdev->recovery_offset < this_sector + sectors)
530 			continue;
531 		if (test_bit(WriteMostly, &rdev->flags)) {
532 			/* Don't balance among write-mostly, just
533 			 * use the first as a last resort */
534 			if (best_disk < 0)
535 				best_disk = disk;
536 			continue;
537 		}
538 		/* This is a reasonable device to use.  It might
539 		 * even be best.
540 		 */
541 		if (is_badblock(rdev, this_sector, sectors,
542 				&first_bad, &bad_sectors)) {
543 			if (best_dist < MaxSector)
544 				/* already have a better device */
545 				continue;
546 			if (first_bad <= this_sector) {
547 				/* cannot read here. If this is the 'primary'
548 				 * device, then we must not read beyond
549 				 * bad_sectors from another device..
550 				 */
551 				bad_sectors -= (this_sector - first_bad);
552 				if (choose_first && sectors > bad_sectors)
553 					sectors = bad_sectors;
554 				if (best_good_sectors > sectors)
555 					best_good_sectors = sectors;
556 
557 			} else {
558 				sector_t good_sectors = first_bad - this_sector;
559 				if (good_sectors > best_good_sectors) {
560 					best_good_sectors = good_sectors;
561 					best_disk = disk;
562 				}
563 				if (choose_first)
564 					break;
565 			}
566 			continue;
567 		} else
568 			best_good_sectors = sectors;
569 
570 		dist = abs(this_sector - conf->mirrors[disk].head_position);
571 		if (choose_first
572 		    /* Don't change to another disk for sequential reads */
573 		    || conf->next_seq_sect == this_sector
574 		    || dist == 0
575 		    /* If device is idle, use it */
576 		    || atomic_read(&rdev->nr_pending) == 0) {
577 			best_disk = disk;
578 			break;
579 		}
580 		if (dist < best_dist) {
581 			best_dist = dist;
582 			best_disk = disk;
583 		}
584 	}
585 
586 	if (best_disk >= 0) {
587 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
588 		if (!rdev)
589 			goto retry;
590 		atomic_inc(&rdev->nr_pending);
591 		if (test_bit(Faulty, &rdev->flags)) {
592 			/* cannot risk returning a device that failed
593 			 * before we inc'ed nr_pending
594 			 */
595 			rdev_dec_pending(rdev, conf->mddev);
596 			goto retry;
597 		}
598 		sectors = best_good_sectors;
599 		conf->next_seq_sect = this_sector + sectors;
600 		conf->last_used = best_disk;
601 	}
602 	rcu_read_unlock();
603 	*max_sectors = sectors;
604 
605 	return best_disk;
606 }
607 
608 int md_raid1_congested(struct mddev *mddev, int bits)
609 {
610 	struct r1conf *conf = mddev->private;
611 	int i, ret = 0;
612 
613 	if ((bits & (1 << BDI_async_congested)) &&
614 	    conf->pending_count >= max_queued_requests)
615 		return 1;
616 
617 	rcu_read_lock();
618 	for (i = 0; i < conf->raid_disks; i++) {
619 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
620 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
621 			struct request_queue *q = bdev_get_queue(rdev->bdev);
622 
623 			BUG_ON(!q);
624 
625 			/* Note the '|| 1' - when read_balance prefers
626 			 * non-congested targets, it can be removed
627 			 */
628 			if ((bits & (1<<BDI_async_congested)) || 1)
629 				ret |= bdi_congested(&q->backing_dev_info, bits);
630 			else
631 				ret &= bdi_congested(&q->backing_dev_info, bits);
632 		}
633 	}
634 	rcu_read_unlock();
635 	return ret;
636 }
637 EXPORT_SYMBOL_GPL(md_raid1_congested);
638 
639 static int raid1_congested(void *data, int bits)
640 {
641 	struct mddev *mddev = data;
642 
643 	return mddev_congested(mddev, bits) ||
644 		md_raid1_congested(mddev, bits);
645 }
646 
647 static void flush_pending_writes(struct r1conf *conf)
648 {
649 	/* Any writes that have been queued but are awaiting
650 	 * bitmap updates get flushed here.
651 	 */
652 	spin_lock_irq(&conf->device_lock);
653 
654 	if (conf->pending_bio_list.head) {
655 		struct bio *bio;
656 		bio = bio_list_get(&conf->pending_bio_list);
657 		conf->pending_count = 0;
658 		spin_unlock_irq(&conf->device_lock);
659 		/* flush any pending bitmap writes to
660 		 * disk before proceeding w/ I/O */
661 		bitmap_unplug(conf->mddev->bitmap);
662 		wake_up(&conf->wait_barrier);
663 
664 		while (bio) { /* submit pending writes */
665 			struct bio *next = bio->bi_next;
666 			bio->bi_next = NULL;
667 			generic_make_request(bio);
668 			bio = next;
669 		}
670 	} else
671 		spin_unlock_irq(&conf->device_lock);
672 }
673 
674 /* Barriers....
675  * Sometimes we need to suspend IO while we do something else,
676  * either some resync/recovery, or reconfigure the array.
677  * To do this we raise a 'barrier'.
678  * The 'barrier' is a counter that can be raised multiple times
679  * to count how many activities are happening which preclude
680  * normal IO.
681  * We can only raise the barrier if there is no pending IO.
682  * i.e. if nr_pending == 0.
683  * We choose only to raise the barrier if no-one is waiting for the
684  * barrier to go down.  This means that as soon as an IO request
685  * is ready, no other operations which require a barrier will start
686  * until the IO request has had a chance.
687  *
688  * So: regular IO calls 'wait_barrier'.  When that returns there
689  *    is no backgroup IO happening,  It must arrange to call
690  *    allow_barrier when it has finished its IO.
691  * backgroup IO calls must call raise_barrier.  Once that returns
692  *    there is no normal IO happeing.  It must arrange to call
693  *    lower_barrier when the particular background IO completes.
694  */
695 #define RESYNC_DEPTH 32
696 
697 static void raise_barrier(struct r1conf *conf)
698 {
699 	spin_lock_irq(&conf->resync_lock);
700 
701 	/* Wait until no block IO is waiting */
702 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
703 			    conf->resync_lock, );
704 
705 	/* block any new IO from starting */
706 	conf->barrier++;
707 
708 	/* Now wait for all pending IO to complete */
709 	wait_event_lock_irq(conf->wait_barrier,
710 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
711 			    conf->resync_lock, );
712 
713 	spin_unlock_irq(&conf->resync_lock);
714 }
715 
716 static void lower_barrier(struct r1conf *conf)
717 {
718 	unsigned long flags;
719 	BUG_ON(conf->barrier <= 0);
720 	spin_lock_irqsave(&conf->resync_lock, flags);
721 	conf->barrier--;
722 	spin_unlock_irqrestore(&conf->resync_lock, flags);
723 	wake_up(&conf->wait_barrier);
724 }
725 
726 static void wait_barrier(struct r1conf *conf)
727 {
728 	spin_lock_irq(&conf->resync_lock);
729 	if (conf->barrier) {
730 		conf->nr_waiting++;
731 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
732 				    conf->resync_lock,
733 				    );
734 		conf->nr_waiting--;
735 	}
736 	conf->nr_pending++;
737 	spin_unlock_irq(&conf->resync_lock);
738 }
739 
740 static void allow_barrier(struct r1conf *conf)
741 {
742 	unsigned long flags;
743 	spin_lock_irqsave(&conf->resync_lock, flags);
744 	conf->nr_pending--;
745 	spin_unlock_irqrestore(&conf->resync_lock, flags);
746 	wake_up(&conf->wait_barrier);
747 }
748 
749 static void freeze_array(struct r1conf *conf)
750 {
751 	/* stop syncio and normal IO and wait for everything to
752 	 * go quite.
753 	 * We increment barrier and nr_waiting, and then
754 	 * wait until nr_pending match nr_queued+1
755 	 * This is called in the context of one normal IO request
756 	 * that has failed. Thus any sync request that might be pending
757 	 * will be blocked by nr_pending, and we need to wait for
758 	 * pending IO requests to complete or be queued for re-try.
759 	 * Thus the number queued (nr_queued) plus this request (1)
760 	 * must match the number of pending IOs (nr_pending) before
761 	 * we continue.
762 	 */
763 	spin_lock_irq(&conf->resync_lock);
764 	conf->barrier++;
765 	conf->nr_waiting++;
766 	wait_event_lock_irq(conf->wait_barrier,
767 			    conf->nr_pending == conf->nr_queued+1,
768 			    conf->resync_lock,
769 			    flush_pending_writes(conf));
770 	spin_unlock_irq(&conf->resync_lock);
771 }
772 static void unfreeze_array(struct r1conf *conf)
773 {
774 	/* reverse the effect of the freeze */
775 	spin_lock_irq(&conf->resync_lock);
776 	conf->barrier--;
777 	conf->nr_waiting--;
778 	wake_up(&conf->wait_barrier);
779 	spin_unlock_irq(&conf->resync_lock);
780 }
781 
782 
783 /* duplicate the data pages for behind I/O
784  */
785 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
786 {
787 	int i;
788 	struct bio_vec *bvec;
789 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
790 					GFP_NOIO);
791 	if (unlikely(!bvecs))
792 		return;
793 
794 	bio_for_each_segment(bvec, bio, i) {
795 		bvecs[i] = *bvec;
796 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
797 		if (unlikely(!bvecs[i].bv_page))
798 			goto do_sync_io;
799 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
800 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
801 		kunmap(bvecs[i].bv_page);
802 		kunmap(bvec->bv_page);
803 	}
804 	r1_bio->behind_bvecs = bvecs;
805 	r1_bio->behind_page_count = bio->bi_vcnt;
806 	set_bit(R1BIO_BehindIO, &r1_bio->state);
807 	return;
808 
809 do_sync_io:
810 	for (i = 0; i < bio->bi_vcnt; i++)
811 		if (bvecs[i].bv_page)
812 			put_page(bvecs[i].bv_page);
813 	kfree(bvecs);
814 	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
815 }
816 
817 static void make_request(struct mddev *mddev, struct bio * bio)
818 {
819 	struct r1conf *conf = mddev->private;
820 	struct mirror_info *mirror;
821 	struct r1bio *r1_bio;
822 	struct bio *read_bio;
823 	int i, disks;
824 	struct bitmap *bitmap;
825 	unsigned long flags;
826 	const int rw = bio_data_dir(bio);
827 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
828 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
829 	struct md_rdev *blocked_rdev;
830 	int plugged;
831 	int first_clone;
832 	int sectors_handled;
833 	int max_sectors;
834 
835 	/*
836 	 * Register the new request and wait if the reconstruction
837 	 * thread has put up a bar for new requests.
838 	 * Continue immediately if no resync is active currently.
839 	 */
840 
841 	md_write_start(mddev, bio); /* wait on superblock update early */
842 
843 	if (bio_data_dir(bio) == WRITE &&
844 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
845 	    bio->bi_sector < mddev->suspend_hi) {
846 		/* As the suspend_* range is controlled by
847 		 * userspace, we want an interruptible
848 		 * wait.
849 		 */
850 		DEFINE_WAIT(w);
851 		for (;;) {
852 			flush_signals(current);
853 			prepare_to_wait(&conf->wait_barrier,
854 					&w, TASK_INTERRUPTIBLE);
855 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
856 			    bio->bi_sector >= mddev->suspend_hi)
857 				break;
858 			schedule();
859 		}
860 		finish_wait(&conf->wait_barrier, &w);
861 	}
862 
863 	wait_barrier(conf);
864 
865 	bitmap = mddev->bitmap;
866 
867 	/*
868 	 * make_request() can abort the operation when READA is being
869 	 * used and no empty request is available.
870 	 *
871 	 */
872 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
873 
874 	r1_bio->master_bio = bio;
875 	r1_bio->sectors = bio->bi_size >> 9;
876 	r1_bio->state = 0;
877 	r1_bio->mddev = mddev;
878 	r1_bio->sector = bio->bi_sector;
879 
880 	/* We might need to issue multiple reads to different
881 	 * devices if there are bad blocks around, so we keep
882 	 * track of the number of reads in bio->bi_phys_segments.
883 	 * If this is 0, there is only one r1_bio and no locking
884 	 * will be needed when requests complete.  If it is
885 	 * non-zero, then it is the number of not-completed requests.
886 	 */
887 	bio->bi_phys_segments = 0;
888 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
889 
890 	if (rw == READ) {
891 		/*
892 		 * read balancing logic:
893 		 */
894 		int rdisk;
895 
896 read_again:
897 		rdisk = read_balance(conf, r1_bio, &max_sectors);
898 
899 		if (rdisk < 0) {
900 			/* couldn't find anywhere to read from */
901 			raid_end_bio_io(r1_bio);
902 			return;
903 		}
904 		mirror = conf->mirrors + rdisk;
905 
906 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
907 		    bitmap) {
908 			/* Reading from a write-mostly device must
909 			 * take care not to over-take any writes
910 			 * that are 'behind'
911 			 */
912 			wait_event(bitmap->behind_wait,
913 				   atomic_read(&bitmap->behind_writes) == 0);
914 		}
915 		r1_bio->read_disk = rdisk;
916 
917 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
918 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
919 			    max_sectors);
920 
921 		r1_bio->bios[rdisk] = read_bio;
922 
923 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
924 		read_bio->bi_bdev = mirror->rdev->bdev;
925 		read_bio->bi_end_io = raid1_end_read_request;
926 		read_bio->bi_rw = READ | do_sync;
927 		read_bio->bi_private = r1_bio;
928 
929 		if (max_sectors < r1_bio->sectors) {
930 			/* could not read all from this device, so we will
931 			 * need another r1_bio.
932 			 */
933 
934 			sectors_handled = (r1_bio->sector + max_sectors
935 					   - bio->bi_sector);
936 			r1_bio->sectors = max_sectors;
937 			spin_lock_irq(&conf->device_lock);
938 			if (bio->bi_phys_segments == 0)
939 				bio->bi_phys_segments = 2;
940 			else
941 				bio->bi_phys_segments++;
942 			spin_unlock_irq(&conf->device_lock);
943 			/* Cannot call generic_make_request directly
944 			 * as that will be queued in __make_request
945 			 * and subsequent mempool_alloc might block waiting
946 			 * for it.  So hand bio over to raid1d.
947 			 */
948 			reschedule_retry(r1_bio);
949 
950 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
951 
952 			r1_bio->master_bio = bio;
953 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
954 			r1_bio->state = 0;
955 			r1_bio->mddev = mddev;
956 			r1_bio->sector = bio->bi_sector + sectors_handled;
957 			goto read_again;
958 		} else
959 			generic_make_request(read_bio);
960 		return;
961 	}
962 
963 	/*
964 	 * WRITE:
965 	 */
966 	if (conf->pending_count >= max_queued_requests) {
967 		md_wakeup_thread(mddev->thread);
968 		wait_event(conf->wait_barrier,
969 			   conf->pending_count < max_queued_requests);
970 	}
971 	/* first select target devices under rcu_lock and
972 	 * inc refcount on their rdev.  Record them by setting
973 	 * bios[x] to bio
974 	 * If there are known/acknowledged bad blocks on any device on
975 	 * which we have seen a write error, we want to avoid writing those
976 	 * blocks.
977 	 * This potentially requires several writes to write around
978 	 * the bad blocks.  Each set of writes gets it's own r1bio
979 	 * with a set of bios attached.
980 	 */
981 	plugged = mddev_check_plugged(mddev);
982 
983 	disks = conf->raid_disks * 2;
984  retry_write:
985 	blocked_rdev = NULL;
986 	rcu_read_lock();
987 	max_sectors = r1_bio->sectors;
988 	for (i = 0;  i < disks; i++) {
989 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
990 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
991 			atomic_inc(&rdev->nr_pending);
992 			blocked_rdev = rdev;
993 			break;
994 		}
995 		r1_bio->bios[i] = NULL;
996 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
997 			if (i < conf->raid_disks)
998 				set_bit(R1BIO_Degraded, &r1_bio->state);
999 			continue;
1000 		}
1001 
1002 		atomic_inc(&rdev->nr_pending);
1003 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1004 			sector_t first_bad;
1005 			int bad_sectors;
1006 			int is_bad;
1007 
1008 			is_bad = is_badblock(rdev, r1_bio->sector,
1009 					     max_sectors,
1010 					     &first_bad, &bad_sectors);
1011 			if (is_bad < 0) {
1012 				/* mustn't write here until the bad block is
1013 				 * acknowledged*/
1014 				set_bit(BlockedBadBlocks, &rdev->flags);
1015 				blocked_rdev = rdev;
1016 				break;
1017 			}
1018 			if (is_bad && first_bad <= r1_bio->sector) {
1019 				/* Cannot write here at all */
1020 				bad_sectors -= (r1_bio->sector - first_bad);
1021 				if (bad_sectors < max_sectors)
1022 					/* mustn't write more than bad_sectors
1023 					 * to other devices yet
1024 					 */
1025 					max_sectors = bad_sectors;
1026 				rdev_dec_pending(rdev, mddev);
1027 				/* We don't set R1BIO_Degraded as that
1028 				 * only applies if the disk is
1029 				 * missing, so it might be re-added,
1030 				 * and we want to know to recover this
1031 				 * chunk.
1032 				 * In this case the device is here,
1033 				 * and the fact that this chunk is not
1034 				 * in-sync is recorded in the bad
1035 				 * block log
1036 				 */
1037 				continue;
1038 			}
1039 			if (is_bad) {
1040 				int good_sectors = first_bad - r1_bio->sector;
1041 				if (good_sectors < max_sectors)
1042 					max_sectors = good_sectors;
1043 			}
1044 		}
1045 		r1_bio->bios[i] = bio;
1046 	}
1047 	rcu_read_unlock();
1048 
1049 	if (unlikely(blocked_rdev)) {
1050 		/* Wait for this device to become unblocked */
1051 		int j;
1052 
1053 		for (j = 0; j < i; j++)
1054 			if (r1_bio->bios[j])
1055 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1056 		r1_bio->state = 0;
1057 		allow_barrier(conf);
1058 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1059 		wait_barrier(conf);
1060 		goto retry_write;
1061 	}
1062 
1063 	if (max_sectors < r1_bio->sectors) {
1064 		/* We are splitting this write into multiple parts, so
1065 		 * we need to prepare for allocating another r1_bio.
1066 		 */
1067 		r1_bio->sectors = max_sectors;
1068 		spin_lock_irq(&conf->device_lock);
1069 		if (bio->bi_phys_segments == 0)
1070 			bio->bi_phys_segments = 2;
1071 		else
1072 			bio->bi_phys_segments++;
1073 		spin_unlock_irq(&conf->device_lock);
1074 	}
1075 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1076 
1077 	atomic_set(&r1_bio->remaining, 1);
1078 	atomic_set(&r1_bio->behind_remaining, 0);
1079 
1080 	first_clone = 1;
1081 	for (i = 0; i < disks; i++) {
1082 		struct bio *mbio;
1083 		if (!r1_bio->bios[i])
1084 			continue;
1085 
1086 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1087 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1088 
1089 		if (first_clone) {
1090 			/* do behind I/O ?
1091 			 * Not if there are too many, or cannot
1092 			 * allocate memory, or a reader on WriteMostly
1093 			 * is waiting for behind writes to flush */
1094 			if (bitmap &&
1095 			    (atomic_read(&bitmap->behind_writes)
1096 			     < mddev->bitmap_info.max_write_behind) &&
1097 			    !waitqueue_active(&bitmap->behind_wait))
1098 				alloc_behind_pages(mbio, r1_bio);
1099 
1100 			bitmap_startwrite(bitmap, r1_bio->sector,
1101 					  r1_bio->sectors,
1102 					  test_bit(R1BIO_BehindIO,
1103 						   &r1_bio->state));
1104 			first_clone = 0;
1105 		}
1106 		if (r1_bio->behind_bvecs) {
1107 			struct bio_vec *bvec;
1108 			int j;
1109 
1110 			/* Yes, I really want the '__' version so that
1111 			 * we clear any unused pointer in the io_vec, rather
1112 			 * than leave them unchanged.  This is important
1113 			 * because when we come to free the pages, we won't
1114 			 * know the original bi_idx, so we just free
1115 			 * them all
1116 			 */
1117 			__bio_for_each_segment(bvec, mbio, j, 0)
1118 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1119 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1120 				atomic_inc(&r1_bio->behind_remaining);
1121 		}
1122 
1123 		r1_bio->bios[i] = mbio;
1124 
1125 		mbio->bi_sector	= (r1_bio->sector +
1126 				   conf->mirrors[i].rdev->data_offset);
1127 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1128 		mbio->bi_end_io	= raid1_end_write_request;
1129 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1130 		mbio->bi_private = r1_bio;
1131 
1132 		atomic_inc(&r1_bio->remaining);
1133 		spin_lock_irqsave(&conf->device_lock, flags);
1134 		bio_list_add(&conf->pending_bio_list, mbio);
1135 		conf->pending_count++;
1136 		spin_unlock_irqrestore(&conf->device_lock, flags);
1137 	}
1138 	/* Mustn't call r1_bio_write_done before this next test,
1139 	 * as it could result in the bio being freed.
1140 	 */
1141 	if (sectors_handled < (bio->bi_size >> 9)) {
1142 		r1_bio_write_done(r1_bio);
1143 		/* We need another r1_bio.  It has already been counted
1144 		 * in bio->bi_phys_segments
1145 		 */
1146 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1147 		r1_bio->master_bio = bio;
1148 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1149 		r1_bio->state = 0;
1150 		r1_bio->mddev = mddev;
1151 		r1_bio->sector = bio->bi_sector + sectors_handled;
1152 		goto retry_write;
1153 	}
1154 
1155 	r1_bio_write_done(r1_bio);
1156 
1157 	/* In case raid1d snuck in to freeze_array */
1158 	wake_up(&conf->wait_barrier);
1159 
1160 	if (do_sync || !bitmap || !plugged)
1161 		md_wakeup_thread(mddev->thread);
1162 }
1163 
1164 static void status(struct seq_file *seq, struct mddev *mddev)
1165 {
1166 	struct r1conf *conf = mddev->private;
1167 	int i;
1168 
1169 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1170 		   conf->raid_disks - mddev->degraded);
1171 	rcu_read_lock();
1172 	for (i = 0; i < conf->raid_disks; i++) {
1173 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1174 		seq_printf(seq, "%s",
1175 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1176 	}
1177 	rcu_read_unlock();
1178 	seq_printf(seq, "]");
1179 }
1180 
1181 
1182 static void error(struct mddev *mddev, struct md_rdev *rdev)
1183 {
1184 	char b[BDEVNAME_SIZE];
1185 	struct r1conf *conf = mddev->private;
1186 
1187 	/*
1188 	 * If it is not operational, then we have already marked it as dead
1189 	 * else if it is the last working disks, ignore the error, let the
1190 	 * next level up know.
1191 	 * else mark the drive as failed
1192 	 */
1193 	if (test_bit(In_sync, &rdev->flags)
1194 	    && (conf->raid_disks - mddev->degraded) == 1) {
1195 		/*
1196 		 * Don't fail the drive, act as though we were just a
1197 		 * normal single drive.
1198 		 * However don't try a recovery from this drive as
1199 		 * it is very likely to fail.
1200 		 */
1201 		conf->recovery_disabled = mddev->recovery_disabled;
1202 		return;
1203 	}
1204 	set_bit(Blocked, &rdev->flags);
1205 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1206 		unsigned long flags;
1207 		spin_lock_irqsave(&conf->device_lock, flags);
1208 		mddev->degraded++;
1209 		set_bit(Faulty, &rdev->flags);
1210 		spin_unlock_irqrestore(&conf->device_lock, flags);
1211 		/*
1212 		 * if recovery is running, make sure it aborts.
1213 		 */
1214 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1215 	} else
1216 		set_bit(Faulty, &rdev->flags);
1217 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1218 	printk(KERN_ALERT
1219 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1220 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1221 	       mdname(mddev), bdevname(rdev->bdev, b),
1222 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1223 }
1224 
1225 static void print_conf(struct r1conf *conf)
1226 {
1227 	int i;
1228 
1229 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1230 	if (!conf) {
1231 		printk(KERN_DEBUG "(!conf)\n");
1232 		return;
1233 	}
1234 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1235 		conf->raid_disks);
1236 
1237 	rcu_read_lock();
1238 	for (i = 0; i < conf->raid_disks; i++) {
1239 		char b[BDEVNAME_SIZE];
1240 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1241 		if (rdev)
1242 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1243 			       i, !test_bit(In_sync, &rdev->flags),
1244 			       !test_bit(Faulty, &rdev->flags),
1245 			       bdevname(rdev->bdev,b));
1246 	}
1247 	rcu_read_unlock();
1248 }
1249 
1250 static void close_sync(struct r1conf *conf)
1251 {
1252 	wait_barrier(conf);
1253 	allow_barrier(conf);
1254 
1255 	mempool_destroy(conf->r1buf_pool);
1256 	conf->r1buf_pool = NULL;
1257 }
1258 
1259 static int raid1_spare_active(struct mddev *mddev)
1260 {
1261 	int i;
1262 	struct r1conf *conf = mddev->private;
1263 	int count = 0;
1264 	unsigned long flags;
1265 
1266 	/*
1267 	 * Find all failed disks within the RAID1 configuration
1268 	 * and mark them readable.
1269 	 * Called under mddev lock, so rcu protection not needed.
1270 	 */
1271 	for (i = 0; i < conf->raid_disks; i++) {
1272 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1273 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1274 		if (repl
1275 		    && repl->recovery_offset == MaxSector
1276 		    && !test_bit(Faulty, &repl->flags)
1277 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1278 			/* replacement has just become active */
1279 			if (!rdev ||
1280 			    !test_and_clear_bit(In_sync, &rdev->flags))
1281 				count++;
1282 			if (rdev) {
1283 				/* Replaced device not technically
1284 				 * faulty, but we need to be sure
1285 				 * it gets removed and never re-added
1286 				 */
1287 				set_bit(Faulty, &rdev->flags);
1288 				sysfs_notify_dirent_safe(
1289 					rdev->sysfs_state);
1290 			}
1291 		}
1292 		if (rdev
1293 		    && !test_bit(Faulty, &rdev->flags)
1294 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1295 			count++;
1296 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1297 		}
1298 	}
1299 	spin_lock_irqsave(&conf->device_lock, flags);
1300 	mddev->degraded -= count;
1301 	spin_unlock_irqrestore(&conf->device_lock, flags);
1302 
1303 	print_conf(conf);
1304 	return count;
1305 }
1306 
1307 
1308 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1309 {
1310 	struct r1conf *conf = mddev->private;
1311 	int err = -EEXIST;
1312 	int mirror = 0;
1313 	struct mirror_info *p;
1314 	int first = 0;
1315 	int last = conf->raid_disks - 1;
1316 
1317 	if (mddev->recovery_disabled == conf->recovery_disabled)
1318 		return -EBUSY;
1319 
1320 	if (rdev->raid_disk >= 0)
1321 		first = last = rdev->raid_disk;
1322 
1323 	for (mirror = first; mirror <= last; mirror++) {
1324 		p = conf->mirrors+mirror;
1325 		if (!p->rdev) {
1326 
1327 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1328 					  rdev->data_offset << 9);
1329 			/* as we don't honour merge_bvec_fn, we must
1330 			 * never risk violating it, so limit
1331 			 * ->max_segments to one lying with a single
1332 			 * page, as a one page request is never in
1333 			 * violation.
1334 			 */
1335 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1336 				blk_queue_max_segments(mddev->queue, 1);
1337 				blk_queue_segment_boundary(mddev->queue,
1338 							   PAGE_CACHE_SIZE - 1);
1339 			}
1340 
1341 			p->head_position = 0;
1342 			rdev->raid_disk = mirror;
1343 			err = 0;
1344 			/* As all devices are equivalent, we don't need a full recovery
1345 			 * if this was recently any drive of the array
1346 			 */
1347 			if (rdev->saved_raid_disk < 0)
1348 				conf->fullsync = 1;
1349 			rcu_assign_pointer(p->rdev, rdev);
1350 			break;
1351 		}
1352 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1353 		    p[conf->raid_disks].rdev == NULL) {
1354 			/* Add this device as a replacement */
1355 			clear_bit(In_sync, &rdev->flags);
1356 			set_bit(Replacement, &rdev->flags);
1357 			rdev->raid_disk = mirror;
1358 			err = 0;
1359 			conf->fullsync = 1;
1360 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1361 			break;
1362 		}
1363 	}
1364 	md_integrity_add_rdev(rdev, mddev);
1365 	print_conf(conf);
1366 	return err;
1367 }
1368 
1369 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1370 {
1371 	struct r1conf *conf = mddev->private;
1372 	int err = 0;
1373 	int number = rdev->raid_disk;
1374 	struct mirror_info *p = conf->mirrors+ number;
1375 
1376 	if (rdev != p->rdev)
1377 		p = conf->mirrors + conf->raid_disks + number;
1378 
1379 	print_conf(conf);
1380 	if (rdev == p->rdev) {
1381 		if (test_bit(In_sync, &rdev->flags) ||
1382 		    atomic_read(&rdev->nr_pending)) {
1383 			err = -EBUSY;
1384 			goto abort;
1385 		}
1386 		/* Only remove non-faulty devices if recovery
1387 		 * is not possible.
1388 		 */
1389 		if (!test_bit(Faulty, &rdev->flags) &&
1390 		    mddev->recovery_disabled != conf->recovery_disabled &&
1391 		    mddev->degraded < conf->raid_disks) {
1392 			err = -EBUSY;
1393 			goto abort;
1394 		}
1395 		p->rdev = NULL;
1396 		synchronize_rcu();
1397 		if (atomic_read(&rdev->nr_pending)) {
1398 			/* lost the race, try later */
1399 			err = -EBUSY;
1400 			p->rdev = rdev;
1401 			goto abort;
1402 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1403 			/* We just removed a device that is being replaced.
1404 			 * Move down the replacement.  We drain all IO before
1405 			 * doing this to avoid confusion.
1406 			 */
1407 			struct md_rdev *repl =
1408 				conf->mirrors[conf->raid_disks + number].rdev;
1409 			raise_barrier(conf);
1410 			clear_bit(Replacement, &repl->flags);
1411 			p->rdev = repl;
1412 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1413 			lower_barrier(conf);
1414 			clear_bit(WantReplacement, &rdev->flags);
1415 		} else
1416 			clear_bit(WantReplacement, &rdev->flags);
1417 		err = md_integrity_register(mddev);
1418 	}
1419 abort:
1420 
1421 	print_conf(conf);
1422 	return err;
1423 }
1424 
1425 
1426 static void end_sync_read(struct bio *bio, int error)
1427 {
1428 	struct r1bio *r1_bio = bio->bi_private;
1429 
1430 	update_head_pos(r1_bio->read_disk, r1_bio);
1431 
1432 	/*
1433 	 * we have read a block, now it needs to be re-written,
1434 	 * or re-read if the read failed.
1435 	 * We don't do much here, just schedule handling by raid1d
1436 	 */
1437 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1438 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1439 
1440 	if (atomic_dec_and_test(&r1_bio->remaining))
1441 		reschedule_retry(r1_bio);
1442 }
1443 
1444 static void end_sync_write(struct bio *bio, int error)
1445 {
1446 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1447 	struct r1bio *r1_bio = bio->bi_private;
1448 	struct mddev *mddev = r1_bio->mddev;
1449 	struct r1conf *conf = mddev->private;
1450 	int mirror=0;
1451 	sector_t first_bad;
1452 	int bad_sectors;
1453 
1454 	mirror = find_bio_disk(r1_bio, bio);
1455 
1456 	if (!uptodate) {
1457 		sector_t sync_blocks = 0;
1458 		sector_t s = r1_bio->sector;
1459 		long sectors_to_go = r1_bio->sectors;
1460 		/* make sure these bits doesn't get cleared. */
1461 		do {
1462 			bitmap_end_sync(mddev->bitmap, s,
1463 					&sync_blocks, 1);
1464 			s += sync_blocks;
1465 			sectors_to_go -= sync_blocks;
1466 		} while (sectors_to_go > 0);
1467 		set_bit(WriteErrorSeen,
1468 			&conf->mirrors[mirror].rdev->flags);
1469 		if (!test_and_set_bit(WantReplacement,
1470 				      &conf->mirrors[mirror].rdev->flags))
1471 			set_bit(MD_RECOVERY_NEEDED, &
1472 				mddev->recovery);
1473 		set_bit(R1BIO_WriteError, &r1_bio->state);
1474 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1475 			       r1_bio->sector,
1476 			       r1_bio->sectors,
1477 			       &first_bad, &bad_sectors) &&
1478 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1479 				r1_bio->sector,
1480 				r1_bio->sectors,
1481 				&first_bad, &bad_sectors)
1482 		)
1483 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1484 
1485 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1486 		int s = r1_bio->sectors;
1487 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1488 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1489 			reschedule_retry(r1_bio);
1490 		else {
1491 			put_buf(r1_bio);
1492 			md_done_sync(mddev, s, uptodate);
1493 		}
1494 	}
1495 }
1496 
1497 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1498 			    int sectors, struct page *page, int rw)
1499 {
1500 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1501 		/* success */
1502 		return 1;
1503 	if (rw == WRITE) {
1504 		set_bit(WriteErrorSeen, &rdev->flags);
1505 		if (!test_and_set_bit(WantReplacement,
1506 				      &rdev->flags))
1507 			set_bit(MD_RECOVERY_NEEDED, &
1508 				rdev->mddev->recovery);
1509 	}
1510 	/* need to record an error - either for the block or the device */
1511 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1512 		md_error(rdev->mddev, rdev);
1513 	return 0;
1514 }
1515 
1516 static int fix_sync_read_error(struct r1bio *r1_bio)
1517 {
1518 	/* Try some synchronous reads of other devices to get
1519 	 * good data, much like with normal read errors.  Only
1520 	 * read into the pages we already have so we don't
1521 	 * need to re-issue the read request.
1522 	 * We don't need to freeze the array, because being in an
1523 	 * active sync request, there is no normal IO, and
1524 	 * no overlapping syncs.
1525 	 * We don't need to check is_badblock() again as we
1526 	 * made sure that anything with a bad block in range
1527 	 * will have bi_end_io clear.
1528 	 */
1529 	struct mddev *mddev = r1_bio->mddev;
1530 	struct r1conf *conf = mddev->private;
1531 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1532 	sector_t sect = r1_bio->sector;
1533 	int sectors = r1_bio->sectors;
1534 	int idx = 0;
1535 
1536 	while(sectors) {
1537 		int s = sectors;
1538 		int d = r1_bio->read_disk;
1539 		int success = 0;
1540 		struct md_rdev *rdev;
1541 		int start;
1542 
1543 		if (s > (PAGE_SIZE>>9))
1544 			s = PAGE_SIZE >> 9;
1545 		do {
1546 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1547 				/* No rcu protection needed here devices
1548 				 * can only be removed when no resync is
1549 				 * active, and resync is currently active
1550 				 */
1551 				rdev = conf->mirrors[d].rdev;
1552 				if (sync_page_io(rdev, sect, s<<9,
1553 						 bio->bi_io_vec[idx].bv_page,
1554 						 READ, false)) {
1555 					success = 1;
1556 					break;
1557 				}
1558 			}
1559 			d++;
1560 			if (d == conf->raid_disks * 2)
1561 				d = 0;
1562 		} while (!success && d != r1_bio->read_disk);
1563 
1564 		if (!success) {
1565 			char b[BDEVNAME_SIZE];
1566 			int abort = 0;
1567 			/* Cannot read from anywhere, this block is lost.
1568 			 * Record a bad block on each device.  If that doesn't
1569 			 * work just disable and interrupt the recovery.
1570 			 * Don't fail devices as that won't really help.
1571 			 */
1572 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1573 			       " for block %llu\n",
1574 			       mdname(mddev),
1575 			       bdevname(bio->bi_bdev, b),
1576 			       (unsigned long long)r1_bio->sector);
1577 			for (d = 0; d < conf->raid_disks * 2; d++) {
1578 				rdev = conf->mirrors[d].rdev;
1579 				if (!rdev || test_bit(Faulty, &rdev->flags))
1580 					continue;
1581 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1582 					abort = 1;
1583 			}
1584 			if (abort) {
1585 				conf->recovery_disabled =
1586 					mddev->recovery_disabled;
1587 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1588 				md_done_sync(mddev, r1_bio->sectors, 0);
1589 				put_buf(r1_bio);
1590 				return 0;
1591 			}
1592 			/* Try next page */
1593 			sectors -= s;
1594 			sect += s;
1595 			idx++;
1596 			continue;
1597 		}
1598 
1599 		start = d;
1600 		/* write it back and re-read */
1601 		while (d != r1_bio->read_disk) {
1602 			if (d == 0)
1603 				d = conf->raid_disks * 2;
1604 			d--;
1605 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1606 				continue;
1607 			rdev = conf->mirrors[d].rdev;
1608 			if (r1_sync_page_io(rdev, sect, s,
1609 					    bio->bi_io_vec[idx].bv_page,
1610 					    WRITE) == 0) {
1611 				r1_bio->bios[d]->bi_end_io = NULL;
1612 				rdev_dec_pending(rdev, mddev);
1613 			}
1614 		}
1615 		d = start;
1616 		while (d != r1_bio->read_disk) {
1617 			if (d == 0)
1618 				d = conf->raid_disks * 2;
1619 			d--;
1620 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1621 				continue;
1622 			rdev = conf->mirrors[d].rdev;
1623 			if (r1_sync_page_io(rdev, sect, s,
1624 					    bio->bi_io_vec[idx].bv_page,
1625 					    READ) != 0)
1626 				atomic_add(s, &rdev->corrected_errors);
1627 		}
1628 		sectors -= s;
1629 		sect += s;
1630 		idx ++;
1631 	}
1632 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1633 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1634 	return 1;
1635 }
1636 
1637 static int process_checks(struct r1bio *r1_bio)
1638 {
1639 	/* We have read all readable devices.  If we haven't
1640 	 * got the block, then there is no hope left.
1641 	 * If we have, then we want to do a comparison
1642 	 * and skip the write if everything is the same.
1643 	 * If any blocks failed to read, then we need to
1644 	 * attempt an over-write
1645 	 */
1646 	struct mddev *mddev = r1_bio->mddev;
1647 	struct r1conf *conf = mddev->private;
1648 	int primary;
1649 	int i;
1650 
1651 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1652 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1653 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1654 			r1_bio->bios[primary]->bi_end_io = NULL;
1655 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1656 			break;
1657 		}
1658 	r1_bio->read_disk = primary;
1659 	for (i = 0; i < conf->raid_disks * 2; i++) {
1660 		int j;
1661 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1662 		struct bio *pbio = r1_bio->bios[primary];
1663 		struct bio *sbio = r1_bio->bios[i];
1664 		int size;
1665 
1666 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1667 			continue;
1668 
1669 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1670 			for (j = vcnt; j-- ; ) {
1671 				struct page *p, *s;
1672 				p = pbio->bi_io_vec[j].bv_page;
1673 				s = sbio->bi_io_vec[j].bv_page;
1674 				if (memcmp(page_address(p),
1675 					   page_address(s),
1676 					   PAGE_SIZE))
1677 					break;
1678 			}
1679 		} else
1680 			j = 0;
1681 		if (j >= 0)
1682 			mddev->resync_mismatches += r1_bio->sectors;
1683 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1684 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1685 			/* No need to write to this device. */
1686 			sbio->bi_end_io = NULL;
1687 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1688 			continue;
1689 		}
1690 		/* fixup the bio for reuse */
1691 		sbio->bi_vcnt = vcnt;
1692 		sbio->bi_size = r1_bio->sectors << 9;
1693 		sbio->bi_idx = 0;
1694 		sbio->bi_phys_segments = 0;
1695 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1696 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1697 		sbio->bi_next = NULL;
1698 		sbio->bi_sector = r1_bio->sector +
1699 			conf->mirrors[i].rdev->data_offset;
1700 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1701 		size = sbio->bi_size;
1702 		for (j = 0; j < vcnt ; j++) {
1703 			struct bio_vec *bi;
1704 			bi = &sbio->bi_io_vec[j];
1705 			bi->bv_offset = 0;
1706 			if (size > PAGE_SIZE)
1707 				bi->bv_len = PAGE_SIZE;
1708 			else
1709 				bi->bv_len = size;
1710 			size -= PAGE_SIZE;
1711 			memcpy(page_address(bi->bv_page),
1712 			       page_address(pbio->bi_io_vec[j].bv_page),
1713 			       PAGE_SIZE);
1714 		}
1715 	}
1716 	return 0;
1717 }
1718 
1719 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1720 {
1721 	struct r1conf *conf = mddev->private;
1722 	int i;
1723 	int disks = conf->raid_disks * 2;
1724 	struct bio *bio, *wbio;
1725 
1726 	bio = r1_bio->bios[r1_bio->read_disk];
1727 
1728 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1729 		/* ouch - failed to read all of that. */
1730 		if (!fix_sync_read_error(r1_bio))
1731 			return;
1732 
1733 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1734 		if (process_checks(r1_bio) < 0)
1735 			return;
1736 	/*
1737 	 * schedule writes
1738 	 */
1739 	atomic_set(&r1_bio->remaining, 1);
1740 	for (i = 0; i < disks ; i++) {
1741 		wbio = r1_bio->bios[i];
1742 		if (wbio->bi_end_io == NULL ||
1743 		    (wbio->bi_end_io == end_sync_read &&
1744 		     (i == r1_bio->read_disk ||
1745 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1746 			continue;
1747 
1748 		wbio->bi_rw = WRITE;
1749 		wbio->bi_end_io = end_sync_write;
1750 		atomic_inc(&r1_bio->remaining);
1751 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1752 
1753 		generic_make_request(wbio);
1754 	}
1755 
1756 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1757 		/* if we're here, all write(s) have completed, so clean up */
1758 		md_done_sync(mddev, r1_bio->sectors, 1);
1759 		put_buf(r1_bio);
1760 	}
1761 }
1762 
1763 /*
1764  * This is a kernel thread which:
1765  *
1766  *	1.	Retries failed read operations on working mirrors.
1767  *	2.	Updates the raid superblock when problems encounter.
1768  *	3.	Performs writes following reads for array synchronising.
1769  */
1770 
1771 static void fix_read_error(struct r1conf *conf, int read_disk,
1772 			   sector_t sect, int sectors)
1773 {
1774 	struct mddev *mddev = conf->mddev;
1775 	while(sectors) {
1776 		int s = sectors;
1777 		int d = read_disk;
1778 		int success = 0;
1779 		int start;
1780 		struct md_rdev *rdev;
1781 
1782 		if (s > (PAGE_SIZE>>9))
1783 			s = PAGE_SIZE >> 9;
1784 
1785 		do {
1786 			/* Note: no rcu protection needed here
1787 			 * as this is synchronous in the raid1d thread
1788 			 * which is the thread that might remove
1789 			 * a device.  If raid1d ever becomes multi-threaded....
1790 			 */
1791 			sector_t first_bad;
1792 			int bad_sectors;
1793 
1794 			rdev = conf->mirrors[d].rdev;
1795 			if (rdev &&
1796 			    test_bit(In_sync, &rdev->flags) &&
1797 			    is_badblock(rdev, sect, s,
1798 					&first_bad, &bad_sectors) == 0 &&
1799 			    sync_page_io(rdev, sect, s<<9,
1800 					 conf->tmppage, READ, false))
1801 				success = 1;
1802 			else {
1803 				d++;
1804 				if (d == conf->raid_disks * 2)
1805 					d = 0;
1806 			}
1807 		} while (!success && d != read_disk);
1808 
1809 		if (!success) {
1810 			/* Cannot read from anywhere - mark it bad */
1811 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1812 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1813 				md_error(mddev, rdev);
1814 			break;
1815 		}
1816 		/* write it back and re-read */
1817 		start = d;
1818 		while (d != read_disk) {
1819 			if (d==0)
1820 				d = conf->raid_disks * 2;
1821 			d--;
1822 			rdev = conf->mirrors[d].rdev;
1823 			if (rdev &&
1824 			    test_bit(In_sync, &rdev->flags))
1825 				r1_sync_page_io(rdev, sect, s,
1826 						conf->tmppage, WRITE);
1827 		}
1828 		d = start;
1829 		while (d != read_disk) {
1830 			char b[BDEVNAME_SIZE];
1831 			if (d==0)
1832 				d = conf->raid_disks * 2;
1833 			d--;
1834 			rdev = conf->mirrors[d].rdev;
1835 			if (rdev &&
1836 			    test_bit(In_sync, &rdev->flags)) {
1837 				if (r1_sync_page_io(rdev, sect, s,
1838 						    conf->tmppage, READ)) {
1839 					atomic_add(s, &rdev->corrected_errors);
1840 					printk(KERN_INFO
1841 					       "md/raid1:%s: read error corrected "
1842 					       "(%d sectors at %llu on %s)\n",
1843 					       mdname(mddev), s,
1844 					       (unsigned long long)(sect +
1845 					           rdev->data_offset),
1846 					       bdevname(rdev->bdev, b));
1847 				}
1848 			}
1849 		}
1850 		sectors -= s;
1851 		sect += s;
1852 	}
1853 }
1854 
1855 static void bi_complete(struct bio *bio, int error)
1856 {
1857 	complete((struct completion *)bio->bi_private);
1858 }
1859 
1860 static int submit_bio_wait(int rw, struct bio *bio)
1861 {
1862 	struct completion event;
1863 	rw |= REQ_SYNC;
1864 
1865 	init_completion(&event);
1866 	bio->bi_private = &event;
1867 	bio->bi_end_io = bi_complete;
1868 	submit_bio(rw, bio);
1869 	wait_for_completion(&event);
1870 
1871 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1872 }
1873 
1874 static int narrow_write_error(struct r1bio *r1_bio, int i)
1875 {
1876 	struct mddev *mddev = r1_bio->mddev;
1877 	struct r1conf *conf = mddev->private;
1878 	struct md_rdev *rdev = conf->mirrors[i].rdev;
1879 	int vcnt, idx;
1880 	struct bio_vec *vec;
1881 
1882 	/* bio has the data to be written to device 'i' where
1883 	 * we just recently had a write error.
1884 	 * We repeatedly clone the bio and trim down to one block,
1885 	 * then try the write.  Where the write fails we record
1886 	 * a bad block.
1887 	 * It is conceivable that the bio doesn't exactly align with
1888 	 * blocks.  We must handle this somehow.
1889 	 *
1890 	 * We currently own a reference on the rdev.
1891 	 */
1892 
1893 	int block_sectors;
1894 	sector_t sector;
1895 	int sectors;
1896 	int sect_to_write = r1_bio->sectors;
1897 	int ok = 1;
1898 
1899 	if (rdev->badblocks.shift < 0)
1900 		return 0;
1901 
1902 	block_sectors = 1 << rdev->badblocks.shift;
1903 	sector = r1_bio->sector;
1904 	sectors = ((sector + block_sectors)
1905 		   & ~(sector_t)(block_sectors - 1))
1906 		- sector;
1907 
1908 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1909 		vcnt = r1_bio->behind_page_count;
1910 		vec = r1_bio->behind_bvecs;
1911 		idx = 0;
1912 		while (vec[idx].bv_page == NULL)
1913 			idx++;
1914 	} else {
1915 		vcnt = r1_bio->master_bio->bi_vcnt;
1916 		vec = r1_bio->master_bio->bi_io_vec;
1917 		idx = r1_bio->master_bio->bi_idx;
1918 	}
1919 	while (sect_to_write) {
1920 		struct bio *wbio;
1921 		if (sectors > sect_to_write)
1922 			sectors = sect_to_write;
1923 		/* Write at 'sector' for 'sectors'*/
1924 
1925 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1926 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1927 		wbio->bi_sector = r1_bio->sector;
1928 		wbio->bi_rw = WRITE;
1929 		wbio->bi_vcnt = vcnt;
1930 		wbio->bi_size = r1_bio->sectors << 9;
1931 		wbio->bi_idx = idx;
1932 
1933 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1934 		wbio->bi_sector += rdev->data_offset;
1935 		wbio->bi_bdev = rdev->bdev;
1936 		if (submit_bio_wait(WRITE, wbio) == 0)
1937 			/* failure! */
1938 			ok = rdev_set_badblocks(rdev, sector,
1939 						sectors, 0)
1940 				&& ok;
1941 
1942 		bio_put(wbio);
1943 		sect_to_write -= sectors;
1944 		sector += sectors;
1945 		sectors = block_sectors;
1946 	}
1947 	return ok;
1948 }
1949 
1950 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1951 {
1952 	int m;
1953 	int s = r1_bio->sectors;
1954 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
1955 		struct md_rdev *rdev = conf->mirrors[m].rdev;
1956 		struct bio *bio = r1_bio->bios[m];
1957 		if (bio->bi_end_io == NULL)
1958 			continue;
1959 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1960 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1961 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1962 		}
1963 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1964 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1965 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1966 				md_error(conf->mddev, rdev);
1967 		}
1968 	}
1969 	put_buf(r1_bio);
1970 	md_done_sync(conf->mddev, s, 1);
1971 }
1972 
1973 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
1974 {
1975 	int m;
1976 	for (m = 0; m < conf->raid_disks * 2 ; m++)
1977 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1978 			struct md_rdev *rdev = conf->mirrors[m].rdev;
1979 			rdev_clear_badblocks(rdev,
1980 					     r1_bio->sector,
1981 					     r1_bio->sectors);
1982 			rdev_dec_pending(rdev, conf->mddev);
1983 		} else if (r1_bio->bios[m] != NULL) {
1984 			/* This drive got a write error.  We need to
1985 			 * narrow down and record precise write
1986 			 * errors.
1987 			 */
1988 			if (!narrow_write_error(r1_bio, m)) {
1989 				md_error(conf->mddev,
1990 					 conf->mirrors[m].rdev);
1991 				/* an I/O failed, we can't clear the bitmap */
1992 				set_bit(R1BIO_Degraded, &r1_bio->state);
1993 			}
1994 			rdev_dec_pending(conf->mirrors[m].rdev,
1995 					 conf->mddev);
1996 		}
1997 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1998 		close_write(r1_bio);
1999 	raid_end_bio_io(r1_bio);
2000 }
2001 
2002 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2003 {
2004 	int disk;
2005 	int max_sectors;
2006 	struct mddev *mddev = conf->mddev;
2007 	struct bio *bio;
2008 	char b[BDEVNAME_SIZE];
2009 	struct md_rdev *rdev;
2010 
2011 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2012 	/* we got a read error. Maybe the drive is bad.  Maybe just
2013 	 * the block and we can fix it.
2014 	 * We freeze all other IO, and try reading the block from
2015 	 * other devices.  When we find one, we re-write
2016 	 * and check it that fixes the read error.
2017 	 * This is all done synchronously while the array is
2018 	 * frozen
2019 	 */
2020 	if (mddev->ro == 0) {
2021 		freeze_array(conf);
2022 		fix_read_error(conf, r1_bio->read_disk,
2023 			       r1_bio->sector, r1_bio->sectors);
2024 		unfreeze_array(conf);
2025 	} else
2026 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2027 
2028 	bio = r1_bio->bios[r1_bio->read_disk];
2029 	bdevname(bio->bi_bdev, b);
2030 read_more:
2031 	disk = read_balance(conf, r1_bio, &max_sectors);
2032 	if (disk == -1) {
2033 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2034 		       " read error for block %llu\n",
2035 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2036 		raid_end_bio_io(r1_bio);
2037 	} else {
2038 		const unsigned long do_sync
2039 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2040 		if (bio) {
2041 			r1_bio->bios[r1_bio->read_disk] =
2042 				mddev->ro ? IO_BLOCKED : NULL;
2043 			bio_put(bio);
2044 		}
2045 		r1_bio->read_disk = disk;
2046 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2047 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2048 		r1_bio->bios[r1_bio->read_disk] = bio;
2049 		rdev = conf->mirrors[disk].rdev;
2050 		printk_ratelimited(KERN_ERR
2051 				   "md/raid1:%s: redirecting sector %llu"
2052 				   " to other mirror: %s\n",
2053 				   mdname(mddev),
2054 				   (unsigned long long)r1_bio->sector,
2055 				   bdevname(rdev->bdev, b));
2056 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
2057 		bio->bi_bdev = rdev->bdev;
2058 		bio->bi_end_io = raid1_end_read_request;
2059 		bio->bi_rw = READ | do_sync;
2060 		bio->bi_private = r1_bio;
2061 		if (max_sectors < r1_bio->sectors) {
2062 			/* Drat - have to split this up more */
2063 			struct bio *mbio = r1_bio->master_bio;
2064 			int sectors_handled = (r1_bio->sector + max_sectors
2065 					       - mbio->bi_sector);
2066 			r1_bio->sectors = max_sectors;
2067 			spin_lock_irq(&conf->device_lock);
2068 			if (mbio->bi_phys_segments == 0)
2069 				mbio->bi_phys_segments = 2;
2070 			else
2071 				mbio->bi_phys_segments++;
2072 			spin_unlock_irq(&conf->device_lock);
2073 			generic_make_request(bio);
2074 			bio = NULL;
2075 
2076 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2077 
2078 			r1_bio->master_bio = mbio;
2079 			r1_bio->sectors = (mbio->bi_size >> 9)
2080 					  - sectors_handled;
2081 			r1_bio->state = 0;
2082 			set_bit(R1BIO_ReadError, &r1_bio->state);
2083 			r1_bio->mddev = mddev;
2084 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2085 
2086 			goto read_more;
2087 		} else
2088 			generic_make_request(bio);
2089 	}
2090 }
2091 
2092 static void raid1d(struct mddev *mddev)
2093 {
2094 	struct r1bio *r1_bio;
2095 	unsigned long flags;
2096 	struct r1conf *conf = mddev->private;
2097 	struct list_head *head = &conf->retry_list;
2098 	struct blk_plug plug;
2099 
2100 	md_check_recovery(mddev);
2101 
2102 	blk_start_plug(&plug);
2103 	for (;;) {
2104 
2105 		if (atomic_read(&mddev->plug_cnt) == 0)
2106 			flush_pending_writes(conf);
2107 
2108 		spin_lock_irqsave(&conf->device_lock, flags);
2109 		if (list_empty(head)) {
2110 			spin_unlock_irqrestore(&conf->device_lock, flags);
2111 			break;
2112 		}
2113 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2114 		list_del(head->prev);
2115 		conf->nr_queued--;
2116 		spin_unlock_irqrestore(&conf->device_lock, flags);
2117 
2118 		mddev = r1_bio->mddev;
2119 		conf = mddev->private;
2120 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2121 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2122 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2123 				handle_sync_write_finished(conf, r1_bio);
2124 			else
2125 				sync_request_write(mddev, r1_bio);
2126 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2127 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2128 			handle_write_finished(conf, r1_bio);
2129 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2130 			handle_read_error(conf, r1_bio);
2131 		else
2132 			/* just a partial read to be scheduled from separate
2133 			 * context
2134 			 */
2135 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2136 
2137 		cond_resched();
2138 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2139 			md_check_recovery(mddev);
2140 	}
2141 	blk_finish_plug(&plug);
2142 }
2143 
2144 
2145 static int init_resync(struct r1conf *conf)
2146 {
2147 	int buffs;
2148 
2149 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2150 	BUG_ON(conf->r1buf_pool);
2151 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2152 					  conf->poolinfo);
2153 	if (!conf->r1buf_pool)
2154 		return -ENOMEM;
2155 	conf->next_resync = 0;
2156 	return 0;
2157 }
2158 
2159 /*
2160  * perform a "sync" on one "block"
2161  *
2162  * We need to make sure that no normal I/O request - particularly write
2163  * requests - conflict with active sync requests.
2164  *
2165  * This is achieved by tracking pending requests and a 'barrier' concept
2166  * that can be installed to exclude normal IO requests.
2167  */
2168 
2169 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2170 {
2171 	struct r1conf *conf = mddev->private;
2172 	struct r1bio *r1_bio;
2173 	struct bio *bio;
2174 	sector_t max_sector, nr_sectors;
2175 	int disk = -1;
2176 	int i;
2177 	int wonly = -1;
2178 	int write_targets = 0, read_targets = 0;
2179 	sector_t sync_blocks;
2180 	int still_degraded = 0;
2181 	int good_sectors = RESYNC_SECTORS;
2182 	int min_bad = 0; /* number of sectors that are bad in all devices */
2183 
2184 	if (!conf->r1buf_pool)
2185 		if (init_resync(conf))
2186 			return 0;
2187 
2188 	max_sector = mddev->dev_sectors;
2189 	if (sector_nr >= max_sector) {
2190 		/* If we aborted, we need to abort the
2191 		 * sync on the 'current' bitmap chunk (there will
2192 		 * only be one in raid1 resync.
2193 		 * We can find the current addess in mddev->curr_resync
2194 		 */
2195 		if (mddev->curr_resync < max_sector) /* aborted */
2196 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2197 						&sync_blocks, 1);
2198 		else /* completed sync */
2199 			conf->fullsync = 0;
2200 
2201 		bitmap_close_sync(mddev->bitmap);
2202 		close_sync(conf);
2203 		return 0;
2204 	}
2205 
2206 	if (mddev->bitmap == NULL &&
2207 	    mddev->recovery_cp == MaxSector &&
2208 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2209 	    conf->fullsync == 0) {
2210 		*skipped = 1;
2211 		return max_sector - sector_nr;
2212 	}
2213 	/* before building a request, check if we can skip these blocks..
2214 	 * This call the bitmap_start_sync doesn't actually record anything
2215 	 */
2216 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2217 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2218 		/* We can skip this block, and probably several more */
2219 		*skipped = 1;
2220 		return sync_blocks;
2221 	}
2222 	/*
2223 	 * If there is non-resync activity waiting for a turn,
2224 	 * and resync is going fast enough,
2225 	 * then let it though before starting on this new sync request.
2226 	 */
2227 	if (!go_faster && conf->nr_waiting)
2228 		msleep_interruptible(1000);
2229 
2230 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2231 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2232 	raise_barrier(conf);
2233 
2234 	conf->next_resync = sector_nr;
2235 
2236 	rcu_read_lock();
2237 	/*
2238 	 * If we get a correctably read error during resync or recovery,
2239 	 * we might want to read from a different device.  So we
2240 	 * flag all drives that could conceivably be read from for READ,
2241 	 * and any others (which will be non-In_sync devices) for WRITE.
2242 	 * If a read fails, we try reading from something else for which READ
2243 	 * is OK.
2244 	 */
2245 
2246 	r1_bio->mddev = mddev;
2247 	r1_bio->sector = sector_nr;
2248 	r1_bio->state = 0;
2249 	set_bit(R1BIO_IsSync, &r1_bio->state);
2250 
2251 	for (i = 0; i < conf->raid_disks * 2; i++) {
2252 		struct md_rdev *rdev;
2253 		bio = r1_bio->bios[i];
2254 
2255 		/* take from bio_init */
2256 		bio->bi_next = NULL;
2257 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2258 		bio->bi_flags |= 1 << BIO_UPTODATE;
2259 		bio->bi_rw = READ;
2260 		bio->bi_vcnt = 0;
2261 		bio->bi_idx = 0;
2262 		bio->bi_phys_segments = 0;
2263 		bio->bi_size = 0;
2264 		bio->bi_end_io = NULL;
2265 		bio->bi_private = NULL;
2266 
2267 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2268 		if (rdev == NULL ||
2269 		    test_bit(Faulty, &rdev->flags)) {
2270 			if (i < conf->raid_disks)
2271 				still_degraded = 1;
2272 		} else if (!test_bit(In_sync, &rdev->flags)) {
2273 			bio->bi_rw = WRITE;
2274 			bio->bi_end_io = end_sync_write;
2275 			write_targets ++;
2276 		} else {
2277 			/* may need to read from here */
2278 			sector_t first_bad = MaxSector;
2279 			int bad_sectors;
2280 
2281 			if (is_badblock(rdev, sector_nr, good_sectors,
2282 					&first_bad, &bad_sectors)) {
2283 				if (first_bad > sector_nr)
2284 					good_sectors = first_bad - sector_nr;
2285 				else {
2286 					bad_sectors -= (sector_nr - first_bad);
2287 					if (min_bad == 0 ||
2288 					    min_bad > bad_sectors)
2289 						min_bad = bad_sectors;
2290 				}
2291 			}
2292 			if (sector_nr < first_bad) {
2293 				if (test_bit(WriteMostly, &rdev->flags)) {
2294 					if (wonly < 0)
2295 						wonly = i;
2296 				} else {
2297 					if (disk < 0)
2298 						disk = i;
2299 				}
2300 				bio->bi_rw = READ;
2301 				bio->bi_end_io = end_sync_read;
2302 				read_targets++;
2303 			}
2304 		}
2305 		if (bio->bi_end_io) {
2306 			atomic_inc(&rdev->nr_pending);
2307 			bio->bi_sector = sector_nr + rdev->data_offset;
2308 			bio->bi_bdev = rdev->bdev;
2309 			bio->bi_private = r1_bio;
2310 		}
2311 	}
2312 	rcu_read_unlock();
2313 	if (disk < 0)
2314 		disk = wonly;
2315 	r1_bio->read_disk = disk;
2316 
2317 	if (read_targets == 0 && min_bad > 0) {
2318 		/* These sectors are bad on all InSync devices, so we
2319 		 * need to mark them bad on all write targets
2320 		 */
2321 		int ok = 1;
2322 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2323 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2324 				struct md_rdev *rdev =
2325 					rcu_dereference(conf->mirrors[i].rdev);
2326 				ok = rdev_set_badblocks(rdev, sector_nr,
2327 							min_bad, 0
2328 					) && ok;
2329 			}
2330 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2331 		*skipped = 1;
2332 		put_buf(r1_bio);
2333 
2334 		if (!ok) {
2335 			/* Cannot record the badblocks, so need to
2336 			 * abort the resync.
2337 			 * If there are multiple read targets, could just
2338 			 * fail the really bad ones ???
2339 			 */
2340 			conf->recovery_disabled = mddev->recovery_disabled;
2341 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2342 			return 0;
2343 		} else
2344 			return min_bad;
2345 
2346 	}
2347 	if (min_bad > 0 && min_bad < good_sectors) {
2348 		/* only resync enough to reach the next bad->good
2349 		 * transition */
2350 		good_sectors = min_bad;
2351 	}
2352 
2353 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2354 		/* extra read targets are also write targets */
2355 		write_targets += read_targets-1;
2356 
2357 	if (write_targets == 0 || read_targets == 0) {
2358 		/* There is nowhere to write, so all non-sync
2359 		 * drives must be failed - so we are finished
2360 		 */
2361 		sector_t rv = max_sector - sector_nr;
2362 		*skipped = 1;
2363 		put_buf(r1_bio);
2364 		return rv;
2365 	}
2366 
2367 	if (max_sector > mddev->resync_max)
2368 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2369 	if (max_sector > sector_nr + good_sectors)
2370 		max_sector = sector_nr + good_sectors;
2371 	nr_sectors = 0;
2372 	sync_blocks = 0;
2373 	do {
2374 		struct page *page;
2375 		int len = PAGE_SIZE;
2376 		if (sector_nr + (len>>9) > max_sector)
2377 			len = (max_sector - sector_nr) << 9;
2378 		if (len == 0)
2379 			break;
2380 		if (sync_blocks == 0) {
2381 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2382 					       &sync_blocks, still_degraded) &&
2383 			    !conf->fullsync &&
2384 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2385 				break;
2386 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2387 			if ((len >> 9) > sync_blocks)
2388 				len = sync_blocks<<9;
2389 		}
2390 
2391 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2392 			bio = r1_bio->bios[i];
2393 			if (bio->bi_end_io) {
2394 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2395 				if (bio_add_page(bio, page, len, 0) == 0) {
2396 					/* stop here */
2397 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2398 					while (i > 0) {
2399 						i--;
2400 						bio = r1_bio->bios[i];
2401 						if (bio->bi_end_io==NULL)
2402 							continue;
2403 						/* remove last page from this bio */
2404 						bio->bi_vcnt--;
2405 						bio->bi_size -= len;
2406 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2407 					}
2408 					goto bio_full;
2409 				}
2410 			}
2411 		}
2412 		nr_sectors += len>>9;
2413 		sector_nr += len>>9;
2414 		sync_blocks -= (len>>9);
2415 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2416  bio_full:
2417 	r1_bio->sectors = nr_sectors;
2418 
2419 	/* For a user-requested sync, we read all readable devices and do a
2420 	 * compare
2421 	 */
2422 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2423 		atomic_set(&r1_bio->remaining, read_targets);
2424 		for (i = 0; i < conf->raid_disks * 2; i++) {
2425 			bio = r1_bio->bios[i];
2426 			if (bio->bi_end_io == end_sync_read) {
2427 				md_sync_acct(bio->bi_bdev, nr_sectors);
2428 				generic_make_request(bio);
2429 			}
2430 		}
2431 	} else {
2432 		atomic_set(&r1_bio->remaining, 1);
2433 		bio = r1_bio->bios[r1_bio->read_disk];
2434 		md_sync_acct(bio->bi_bdev, nr_sectors);
2435 		generic_make_request(bio);
2436 
2437 	}
2438 	return nr_sectors;
2439 }
2440 
2441 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2442 {
2443 	if (sectors)
2444 		return sectors;
2445 
2446 	return mddev->dev_sectors;
2447 }
2448 
2449 static struct r1conf *setup_conf(struct mddev *mddev)
2450 {
2451 	struct r1conf *conf;
2452 	int i;
2453 	struct mirror_info *disk;
2454 	struct md_rdev *rdev;
2455 	int err = -ENOMEM;
2456 
2457 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2458 	if (!conf)
2459 		goto abort;
2460 
2461 	conf->mirrors = kzalloc(sizeof(struct mirror_info)
2462 				* mddev->raid_disks * 2,
2463 				 GFP_KERNEL);
2464 	if (!conf->mirrors)
2465 		goto abort;
2466 
2467 	conf->tmppage = alloc_page(GFP_KERNEL);
2468 	if (!conf->tmppage)
2469 		goto abort;
2470 
2471 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2472 	if (!conf->poolinfo)
2473 		goto abort;
2474 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2475 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2476 					  r1bio_pool_free,
2477 					  conf->poolinfo);
2478 	if (!conf->r1bio_pool)
2479 		goto abort;
2480 
2481 	conf->poolinfo->mddev = mddev;
2482 
2483 	err = -EINVAL;
2484 	spin_lock_init(&conf->device_lock);
2485 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2486 		int disk_idx = rdev->raid_disk;
2487 		if (disk_idx >= mddev->raid_disks
2488 		    || disk_idx < 0)
2489 			continue;
2490 		if (test_bit(Replacement, &rdev->flags))
2491 			disk = conf->mirrors + conf->raid_disks + disk_idx;
2492 		else
2493 			disk = conf->mirrors + disk_idx;
2494 
2495 		if (disk->rdev)
2496 			goto abort;
2497 		disk->rdev = rdev;
2498 
2499 		disk->head_position = 0;
2500 	}
2501 	conf->raid_disks = mddev->raid_disks;
2502 	conf->mddev = mddev;
2503 	INIT_LIST_HEAD(&conf->retry_list);
2504 
2505 	spin_lock_init(&conf->resync_lock);
2506 	init_waitqueue_head(&conf->wait_barrier);
2507 
2508 	bio_list_init(&conf->pending_bio_list);
2509 	conf->pending_count = 0;
2510 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2511 
2512 	err = -EIO;
2513 	conf->last_used = -1;
2514 	for (i = 0; i < conf->raid_disks * 2; i++) {
2515 
2516 		disk = conf->mirrors + i;
2517 
2518 		if (i < conf->raid_disks &&
2519 		    disk[conf->raid_disks].rdev) {
2520 			/* This slot has a replacement. */
2521 			if (!disk->rdev) {
2522 				/* No original, just make the replacement
2523 				 * a recovering spare
2524 				 */
2525 				disk->rdev =
2526 					disk[conf->raid_disks].rdev;
2527 				disk[conf->raid_disks].rdev = NULL;
2528 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2529 				/* Original is not in_sync - bad */
2530 				goto abort;
2531 		}
2532 
2533 		if (!disk->rdev ||
2534 		    !test_bit(In_sync, &disk->rdev->flags)) {
2535 			disk->head_position = 0;
2536 			if (disk->rdev)
2537 				conf->fullsync = 1;
2538 		} else if (conf->last_used < 0)
2539 			/*
2540 			 * The first working device is used as a
2541 			 * starting point to read balancing.
2542 			 */
2543 			conf->last_used = i;
2544 	}
2545 
2546 	if (conf->last_used < 0) {
2547 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2548 		       mdname(mddev));
2549 		goto abort;
2550 	}
2551 	err = -ENOMEM;
2552 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2553 	if (!conf->thread) {
2554 		printk(KERN_ERR
2555 		       "md/raid1:%s: couldn't allocate thread\n",
2556 		       mdname(mddev));
2557 		goto abort;
2558 	}
2559 
2560 	return conf;
2561 
2562  abort:
2563 	if (conf) {
2564 		if (conf->r1bio_pool)
2565 			mempool_destroy(conf->r1bio_pool);
2566 		kfree(conf->mirrors);
2567 		safe_put_page(conf->tmppage);
2568 		kfree(conf->poolinfo);
2569 		kfree(conf);
2570 	}
2571 	return ERR_PTR(err);
2572 }
2573 
2574 static int run(struct mddev *mddev)
2575 {
2576 	struct r1conf *conf;
2577 	int i;
2578 	struct md_rdev *rdev;
2579 
2580 	if (mddev->level != 1) {
2581 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2582 		       mdname(mddev), mddev->level);
2583 		return -EIO;
2584 	}
2585 	if (mddev->reshape_position != MaxSector) {
2586 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2587 		       mdname(mddev));
2588 		return -EIO;
2589 	}
2590 	/*
2591 	 * copy the already verified devices into our private RAID1
2592 	 * bookkeeping area. [whatever we allocate in run(),
2593 	 * should be freed in stop()]
2594 	 */
2595 	if (mddev->private == NULL)
2596 		conf = setup_conf(mddev);
2597 	else
2598 		conf = mddev->private;
2599 
2600 	if (IS_ERR(conf))
2601 		return PTR_ERR(conf);
2602 
2603 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2604 		if (!mddev->gendisk)
2605 			continue;
2606 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2607 				  rdev->data_offset << 9);
2608 		/* as we don't honour merge_bvec_fn, we must never risk
2609 		 * violating it, so limit ->max_segments to 1 lying within
2610 		 * a single page, as a one page request is never in violation.
2611 		 */
2612 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2613 			blk_queue_max_segments(mddev->queue, 1);
2614 			blk_queue_segment_boundary(mddev->queue,
2615 						   PAGE_CACHE_SIZE - 1);
2616 		}
2617 	}
2618 
2619 	mddev->degraded = 0;
2620 	for (i=0; i < conf->raid_disks; i++)
2621 		if (conf->mirrors[i].rdev == NULL ||
2622 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2623 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2624 			mddev->degraded++;
2625 
2626 	if (conf->raid_disks - mddev->degraded == 1)
2627 		mddev->recovery_cp = MaxSector;
2628 
2629 	if (mddev->recovery_cp != MaxSector)
2630 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2631 		       " -- starting background reconstruction\n",
2632 		       mdname(mddev));
2633 	printk(KERN_INFO
2634 		"md/raid1:%s: active with %d out of %d mirrors\n",
2635 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2636 		mddev->raid_disks);
2637 
2638 	/*
2639 	 * Ok, everything is just fine now
2640 	 */
2641 	mddev->thread = conf->thread;
2642 	conf->thread = NULL;
2643 	mddev->private = conf;
2644 
2645 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2646 
2647 	if (mddev->queue) {
2648 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2649 		mddev->queue->backing_dev_info.congested_data = mddev;
2650 	}
2651 	return md_integrity_register(mddev);
2652 }
2653 
2654 static int stop(struct mddev *mddev)
2655 {
2656 	struct r1conf *conf = mddev->private;
2657 	struct bitmap *bitmap = mddev->bitmap;
2658 
2659 	/* wait for behind writes to complete */
2660 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2661 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2662 		       mdname(mddev));
2663 		/* need to kick something here to make sure I/O goes? */
2664 		wait_event(bitmap->behind_wait,
2665 			   atomic_read(&bitmap->behind_writes) == 0);
2666 	}
2667 
2668 	raise_barrier(conf);
2669 	lower_barrier(conf);
2670 
2671 	md_unregister_thread(&mddev->thread);
2672 	if (conf->r1bio_pool)
2673 		mempool_destroy(conf->r1bio_pool);
2674 	kfree(conf->mirrors);
2675 	kfree(conf->poolinfo);
2676 	kfree(conf);
2677 	mddev->private = NULL;
2678 	return 0;
2679 }
2680 
2681 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2682 {
2683 	/* no resync is happening, and there is enough space
2684 	 * on all devices, so we can resize.
2685 	 * We need to make sure resync covers any new space.
2686 	 * If the array is shrinking we should possibly wait until
2687 	 * any io in the removed space completes, but it hardly seems
2688 	 * worth it.
2689 	 */
2690 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2691 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2692 		return -EINVAL;
2693 	set_capacity(mddev->gendisk, mddev->array_sectors);
2694 	revalidate_disk(mddev->gendisk);
2695 	if (sectors > mddev->dev_sectors &&
2696 	    mddev->recovery_cp > mddev->dev_sectors) {
2697 		mddev->recovery_cp = mddev->dev_sectors;
2698 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699 	}
2700 	mddev->dev_sectors = sectors;
2701 	mddev->resync_max_sectors = sectors;
2702 	return 0;
2703 }
2704 
2705 static int raid1_reshape(struct mddev *mddev)
2706 {
2707 	/* We need to:
2708 	 * 1/ resize the r1bio_pool
2709 	 * 2/ resize conf->mirrors
2710 	 *
2711 	 * We allocate a new r1bio_pool if we can.
2712 	 * Then raise a device barrier and wait until all IO stops.
2713 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2714 	 *
2715 	 * At the same time, we "pack" the devices so that all the missing
2716 	 * devices have the higher raid_disk numbers.
2717 	 */
2718 	mempool_t *newpool, *oldpool;
2719 	struct pool_info *newpoolinfo;
2720 	struct mirror_info *newmirrors;
2721 	struct r1conf *conf = mddev->private;
2722 	int cnt, raid_disks;
2723 	unsigned long flags;
2724 	int d, d2, err;
2725 
2726 	/* Cannot change chunk_size, layout, or level */
2727 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2728 	    mddev->layout != mddev->new_layout ||
2729 	    mddev->level != mddev->new_level) {
2730 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2731 		mddev->new_layout = mddev->layout;
2732 		mddev->new_level = mddev->level;
2733 		return -EINVAL;
2734 	}
2735 
2736 	err = md_allow_write(mddev);
2737 	if (err)
2738 		return err;
2739 
2740 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2741 
2742 	if (raid_disks < conf->raid_disks) {
2743 		cnt=0;
2744 		for (d= 0; d < conf->raid_disks; d++)
2745 			if (conf->mirrors[d].rdev)
2746 				cnt++;
2747 		if (cnt > raid_disks)
2748 			return -EBUSY;
2749 	}
2750 
2751 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2752 	if (!newpoolinfo)
2753 		return -ENOMEM;
2754 	newpoolinfo->mddev = mddev;
2755 	newpoolinfo->raid_disks = raid_disks * 2;
2756 
2757 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2758 				 r1bio_pool_free, newpoolinfo);
2759 	if (!newpool) {
2760 		kfree(newpoolinfo);
2761 		return -ENOMEM;
2762 	}
2763 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
2764 			     GFP_KERNEL);
2765 	if (!newmirrors) {
2766 		kfree(newpoolinfo);
2767 		mempool_destroy(newpool);
2768 		return -ENOMEM;
2769 	}
2770 
2771 	raise_barrier(conf);
2772 
2773 	/* ok, everything is stopped */
2774 	oldpool = conf->r1bio_pool;
2775 	conf->r1bio_pool = newpool;
2776 
2777 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2778 		struct md_rdev *rdev = conf->mirrors[d].rdev;
2779 		if (rdev && rdev->raid_disk != d2) {
2780 			sysfs_unlink_rdev(mddev, rdev);
2781 			rdev->raid_disk = d2;
2782 			sysfs_unlink_rdev(mddev, rdev);
2783 			if (sysfs_link_rdev(mddev, rdev))
2784 				printk(KERN_WARNING
2785 				       "md/raid1:%s: cannot register rd%d\n",
2786 				       mdname(mddev), rdev->raid_disk);
2787 		}
2788 		if (rdev)
2789 			newmirrors[d2++].rdev = rdev;
2790 	}
2791 	kfree(conf->mirrors);
2792 	conf->mirrors = newmirrors;
2793 	kfree(conf->poolinfo);
2794 	conf->poolinfo = newpoolinfo;
2795 
2796 	spin_lock_irqsave(&conf->device_lock, flags);
2797 	mddev->degraded += (raid_disks - conf->raid_disks);
2798 	spin_unlock_irqrestore(&conf->device_lock, flags);
2799 	conf->raid_disks = mddev->raid_disks = raid_disks;
2800 	mddev->delta_disks = 0;
2801 
2802 	conf->last_used = 0; /* just make sure it is in-range */
2803 	lower_barrier(conf);
2804 
2805 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2806 	md_wakeup_thread(mddev->thread);
2807 
2808 	mempool_destroy(oldpool);
2809 	return 0;
2810 }
2811 
2812 static void raid1_quiesce(struct mddev *mddev, int state)
2813 {
2814 	struct r1conf *conf = mddev->private;
2815 
2816 	switch(state) {
2817 	case 2: /* wake for suspend */
2818 		wake_up(&conf->wait_barrier);
2819 		break;
2820 	case 1:
2821 		raise_barrier(conf);
2822 		break;
2823 	case 0:
2824 		lower_barrier(conf);
2825 		break;
2826 	}
2827 }
2828 
2829 static void *raid1_takeover(struct mddev *mddev)
2830 {
2831 	/* raid1 can take over:
2832 	 *  raid5 with 2 devices, any layout or chunk size
2833 	 */
2834 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2835 		struct r1conf *conf;
2836 		mddev->new_level = 1;
2837 		mddev->new_layout = 0;
2838 		mddev->new_chunk_sectors = 0;
2839 		conf = setup_conf(mddev);
2840 		if (!IS_ERR(conf))
2841 			conf->barrier = 1;
2842 		return conf;
2843 	}
2844 	return ERR_PTR(-EINVAL);
2845 }
2846 
2847 static struct md_personality raid1_personality =
2848 {
2849 	.name		= "raid1",
2850 	.level		= 1,
2851 	.owner		= THIS_MODULE,
2852 	.make_request	= make_request,
2853 	.run		= run,
2854 	.stop		= stop,
2855 	.status		= status,
2856 	.error_handler	= error,
2857 	.hot_add_disk	= raid1_add_disk,
2858 	.hot_remove_disk= raid1_remove_disk,
2859 	.spare_active	= raid1_spare_active,
2860 	.sync_request	= sync_request,
2861 	.resize		= raid1_resize,
2862 	.size		= raid1_size,
2863 	.check_reshape	= raid1_reshape,
2864 	.quiesce	= raid1_quiesce,
2865 	.takeover	= raid1_takeover,
2866 };
2867 
2868 static int __init raid_init(void)
2869 {
2870 	return register_md_personality(&raid1_personality);
2871 }
2872 
2873 static void raid_exit(void)
2874 {
2875 	unregister_md_personality(&raid1_personality);
2876 }
2877 
2878 module_init(raid_init);
2879 module_exit(raid_exit);
2880 MODULE_LICENSE("GPL");
2881 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2882 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2883 MODULE_ALIAS("md-raid1");
2884 MODULE_ALIAS("md-level-1");
2885 
2886 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
2887