1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 bio_endio(bio); 304 } 305 306 static void raid_end_bio_io(struct r1bio *r1_bio) 307 { 308 struct bio *bio = r1_bio->master_bio; 309 struct r1conf *conf = r1_bio->mddev->private; 310 311 /* if nobody has done the final endio yet, do it now */ 312 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 313 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 314 (bio_data_dir(bio) == WRITE) ? "write" : "read", 315 (unsigned long long) bio->bi_iter.bi_sector, 316 (unsigned long long) bio_end_sector(bio) - 1); 317 318 call_bio_endio(r1_bio); 319 } 320 /* 321 * Wake up any possible resync thread that waits for the device 322 * to go idle. All I/Os, even write-behind writes, are done. 323 */ 324 allow_barrier(conf, r1_bio->sector); 325 326 free_r1bio(r1_bio); 327 } 328 329 /* 330 * Update disk head position estimator based on IRQ completion info. 331 */ 332 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 333 { 334 struct r1conf *conf = r1_bio->mddev->private; 335 336 conf->mirrors[disk].head_position = 337 r1_bio->sector + (r1_bio->sectors); 338 } 339 340 /* 341 * Find the disk number which triggered given bio 342 */ 343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 344 { 345 int mirror; 346 struct r1conf *conf = r1_bio->mddev->private; 347 int raid_disks = conf->raid_disks; 348 349 for (mirror = 0; mirror < raid_disks * 2; mirror++) 350 if (r1_bio->bios[mirror] == bio) 351 break; 352 353 BUG_ON(mirror == raid_disks * 2); 354 update_head_pos(mirror, r1_bio); 355 356 return mirror; 357 } 358 359 static void raid1_end_read_request(struct bio *bio) 360 { 361 int uptodate = !bio->bi_status; 362 struct r1bio *r1_bio = bio->bi_private; 363 struct r1conf *conf = r1_bio->mddev->private; 364 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 365 366 /* 367 * this branch is our 'one mirror IO has finished' event handler: 368 */ 369 update_head_pos(r1_bio->read_disk, r1_bio); 370 371 if (uptodate) 372 set_bit(R1BIO_Uptodate, &r1_bio->state); 373 else if (test_bit(FailFast, &rdev->flags) && 374 test_bit(R1BIO_FailFast, &r1_bio->state)) 375 /* This was a fail-fast read so we definitely 376 * want to retry */ 377 ; 378 else { 379 /* If all other devices have failed, we want to return 380 * the error upwards rather than fail the last device. 381 * Here we redefine "uptodate" to mean "Don't want to retry" 382 */ 383 unsigned long flags; 384 spin_lock_irqsave(&conf->device_lock, flags); 385 if (r1_bio->mddev->degraded == conf->raid_disks || 386 (r1_bio->mddev->degraded == conf->raid_disks-1 && 387 test_bit(In_sync, &rdev->flags))) 388 uptodate = 1; 389 spin_unlock_irqrestore(&conf->device_lock, flags); 390 } 391 392 if (uptodate) { 393 raid_end_bio_io(r1_bio); 394 rdev_dec_pending(rdev, conf->mddev); 395 } else { 396 /* 397 * oops, read error: 398 */ 399 char b[BDEVNAME_SIZE]; 400 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 401 mdname(conf->mddev), 402 bdevname(rdev->bdev, b), 403 (unsigned long long)r1_bio->sector); 404 set_bit(R1BIO_ReadError, &r1_bio->state); 405 reschedule_retry(r1_bio); 406 /* don't drop the reference on read_disk yet */ 407 } 408 } 409 410 static void close_write(struct r1bio *r1_bio) 411 { 412 /* it really is the end of this request */ 413 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 414 bio_free_pages(r1_bio->behind_master_bio); 415 bio_put(r1_bio->behind_master_bio); 416 r1_bio->behind_master_bio = NULL; 417 } 418 /* clear the bitmap if all writes complete successfully */ 419 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 420 r1_bio->sectors, 421 !test_bit(R1BIO_Degraded, &r1_bio->state), 422 test_bit(R1BIO_BehindIO, &r1_bio->state)); 423 md_write_end(r1_bio->mddev); 424 } 425 426 static void r1_bio_write_done(struct r1bio *r1_bio) 427 { 428 if (!atomic_dec_and_test(&r1_bio->remaining)) 429 return; 430 431 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 432 reschedule_retry(r1_bio); 433 else { 434 close_write(r1_bio); 435 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else 438 raid_end_bio_io(r1_bio); 439 } 440 } 441 442 static void raid1_end_write_request(struct bio *bio) 443 { 444 struct r1bio *r1_bio = bio->bi_private; 445 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 446 struct r1conf *conf = r1_bio->mddev->private; 447 struct bio *to_put = NULL; 448 int mirror = find_bio_disk(r1_bio, bio); 449 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 450 bool discard_error; 451 sector_t lo = r1_bio->sector; 452 sector_t hi = r1_bio->sector + r1_bio->sectors; 453 454 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 455 456 /* 457 * 'one mirror IO has finished' event handler: 458 */ 459 if (bio->bi_status && !discard_error) { 460 set_bit(WriteErrorSeen, &rdev->flags); 461 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 462 set_bit(MD_RECOVERY_NEEDED, & 463 conf->mddev->recovery); 464 465 if (test_bit(FailFast, &rdev->flags) && 466 (bio->bi_opf & MD_FAILFAST) && 467 /* We never try FailFast to WriteMostly devices */ 468 !test_bit(WriteMostly, &rdev->flags)) { 469 md_error(r1_bio->mddev, rdev); 470 } 471 472 /* 473 * When the device is faulty, it is not necessary to 474 * handle write error. 475 * For failfast, this is the only remaining device, 476 * We need to retry the write without FailFast. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Fail the request */ 482 set_bit(R1BIO_Degraded, &r1_bio->state); 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 sector_t first_bad; 499 int bad_sectors; 500 501 r1_bio->bios[mirror] = NULL; 502 to_put = bio; 503 /* 504 * Do not set R1BIO_Uptodate if the current device is 505 * rebuilding or Faulty. This is because we cannot use 506 * such device for properly reading the data back (we could 507 * potentially use it, if the current write would have felt 508 * before rdev->recovery_offset, but for simplicity we don't 509 * check this here. 510 */ 511 if (test_bit(In_sync, &rdev->flags) && 512 !test_bit(Faulty, &rdev->flags)) 513 set_bit(R1BIO_Uptodate, &r1_bio->state); 514 515 /* Maybe we can clear some bad blocks. */ 516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 517 &first_bad, &bad_sectors) && !discard_error) { 518 r1_bio->bios[mirror] = IO_MADE_GOOD; 519 set_bit(R1BIO_MadeGood, &r1_bio->state); 520 } 521 } 522 523 if (behind) { 524 if (test_bit(CollisionCheck, &rdev->flags)) 525 remove_serial(rdev, lo, hi); 526 if (test_bit(WriteMostly, &rdev->flags)) 527 atomic_dec(&r1_bio->behind_remaining); 528 529 /* 530 * In behind mode, we ACK the master bio once the I/O 531 * has safely reached all non-writemostly 532 * disks. Setting the Returned bit ensures that this 533 * gets done only once -- we don't ever want to return 534 * -EIO here, instead we'll wait 535 */ 536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 537 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 538 /* Maybe we can return now */ 539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 540 struct bio *mbio = r1_bio->master_bio; 541 pr_debug("raid1: behind end write sectors" 542 " %llu-%llu\n", 543 (unsigned long long) mbio->bi_iter.bi_sector, 544 (unsigned long long) bio_end_sector(mbio) - 1); 545 call_bio_endio(r1_bio); 546 } 547 } 548 } else if (rdev->mddev->serialize_policy) 549 remove_serial(rdev, lo, hi); 550 if (r1_bio->bios[mirror] == NULL) 551 rdev_dec_pending(rdev, conf->mddev); 552 553 /* 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 r1_bio_write_done(r1_bio); 558 559 if (to_put) 560 bio_put(to_put); 561 } 562 563 static sector_t align_to_barrier_unit_end(sector_t start_sector, 564 sector_t sectors) 565 { 566 sector_t len; 567 568 WARN_ON(sectors == 0); 569 /* 570 * len is the number of sectors from start_sector to end of the 571 * barrier unit which start_sector belongs to. 572 */ 573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 574 start_sector; 575 576 if (len > sectors) 577 len = sectors; 578 579 return len; 580 } 581 582 /* 583 * This routine returns the disk from which the requested read should 584 * be done. There is a per-array 'next expected sequential IO' sector 585 * number - if this matches on the next IO then we use the last disk. 586 * There is also a per-disk 'last know head position' sector that is 587 * maintained from IRQ contexts, both the normal and the resync IO 588 * completion handlers update this position correctly. If there is no 589 * perfect sequential match then we pick the disk whose head is closest. 590 * 591 * If there are 2 mirrors in the same 2 devices, performance degrades 592 * because position is mirror, not device based. 593 * 594 * The rdev for the device selected will have nr_pending incremented. 595 */ 596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 597 { 598 const sector_t this_sector = r1_bio->sector; 599 int sectors; 600 int best_good_sectors; 601 int best_disk, best_dist_disk, best_pending_disk; 602 int has_nonrot_disk; 603 int disk; 604 sector_t best_dist; 605 unsigned int min_pending; 606 struct md_rdev *rdev; 607 int choose_first; 608 int choose_next_idle; 609 610 rcu_read_lock(); 611 /* 612 * Check if we can balance. We can balance on the whole 613 * device if no resync is going on, or below the resync window. 614 * We take the first readable disk when above the resync window. 615 */ 616 retry: 617 sectors = r1_bio->sectors; 618 best_disk = -1; 619 best_dist_disk = -1; 620 best_dist = MaxSector; 621 best_pending_disk = -1; 622 min_pending = UINT_MAX; 623 best_good_sectors = 0; 624 has_nonrot_disk = 0; 625 choose_next_idle = 0; 626 clear_bit(R1BIO_FailFast, &r1_bio->state); 627 628 if ((conf->mddev->recovery_cp < this_sector + sectors) || 629 (mddev_is_clustered(conf->mddev) && 630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 631 this_sector + sectors))) 632 choose_first = 1; 633 else 634 choose_first = 0; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 sector_t dist; 638 sector_t first_bad; 639 int bad_sectors; 640 unsigned int pending; 641 bool nonrot; 642 643 rdev = rcu_dereference(conf->mirrors[disk].rdev); 644 if (r1_bio->bios[disk] == IO_BLOCKED 645 || rdev == NULL 646 || test_bit(Faulty, &rdev->flags)) 647 continue; 648 if (!test_bit(In_sync, &rdev->flags) && 649 rdev->recovery_offset < this_sector + sectors) 650 continue; 651 if (test_bit(WriteMostly, &rdev->flags)) { 652 /* Don't balance among write-mostly, just 653 * use the first as a last resort */ 654 if (best_dist_disk < 0) { 655 if (is_badblock(rdev, this_sector, sectors, 656 &first_bad, &bad_sectors)) { 657 if (first_bad <= this_sector) 658 /* Cannot use this */ 659 continue; 660 best_good_sectors = first_bad - this_sector; 661 } else 662 best_good_sectors = sectors; 663 best_dist_disk = disk; 664 best_pending_disk = disk; 665 } 666 continue; 667 } 668 /* This is a reasonable device to use. It might 669 * even be best. 670 */ 671 if (is_badblock(rdev, this_sector, sectors, 672 &first_bad, &bad_sectors)) { 673 if (best_dist < MaxSector) 674 /* already have a better device */ 675 continue; 676 if (first_bad <= this_sector) { 677 /* cannot read here. If this is the 'primary' 678 * device, then we must not read beyond 679 * bad_sectors from another device.. 680 */ 681 bad_sectors -= (this_sector - first_bad); 682 if (choose_first && sectors > bad_sectors) 683 sectors = bad_sectors; 684 if (best_good_sectors > sectors) 685 best_good_sectors = sectors; 686 687 } else { 688 sector_t good_sectors = first_bad - this_sector; 689 if (good_sectors > best_good_sectors) { 690 best_good_sectors = good_sectors; 691 best_disk = disk; 692 } 693 if (choose_first) 694 break; 695 } 696 continue; 697 } else { 698 if ((sectors > best_good_sectors) && (best_disk >= 0)) 699 best_disk = -1; 700 best_good_sectors = sectors; 701 } 702 703 if (best_disk >= 0) 704 /* At least two disks to choose from so failfast is OK */ 705 set_bit(R1BIO_FailFast, &r1_bio->state); 706 707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 708 has_nonrot_disk |= nonrot; 709 pending = atomic_read(&rdev->nr_pending); 710 dist = abs(this_sector - conf->mirrors[disk].head_position); 711 if (choose_first) { 712 best_disk = disk; 713 break; 714 } 715 /* Don't change to another disk for sequential reads */ 716 if (conf->mirrors[disk].next_seq_sect == this_sector 717 || dist == 0) { 718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 719 struct raid1_info *mirror = &conf->mirrors[disk]; 720 721 best_disk = disk; 722 /* 723 * If buffered sequential IO size exceeds optimal 724 * iosize, check if there is idle disk. If yes, choose 725 * the idle disk. read_balance could already choose an 726 * idle disk before noticing it's a sequential IO in 727 * this disk. This doesn't matter because this disk 728 * will idle, next time it will be utilized after the 729 * first disk has IO size exceeds optimal iosize. In 730 * this way, iosize of the first disk will be optimal 731 * iosize at least. iosize of the second disk might be 732 * small, but not a big deal since when the second disk 733 * starts IO, the first disk is likely still busy. 734 */ 735 if (nonrot && opt_iosize > 0 && 736 mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= 739 mirror->seq_start) { 740 choose_next_idle = 1; 741 continue; 742 } 743 break; 744 } 745 746 if (choose_next_idle) 747 continue; 748 749 if (min_pending > pending) { 750 min_pending = pending; 751 best_pending_disk = disk; 752 } 753 754 if (dist < best_dist) { 755 best_dist = dist; 756 best_dist_disk = disk; 757 } 758 } 759 760 /* 761 * If all disks are rotational, choose the closest disk. If any disk is 762 * non-rotational, choose the disk with less pending request even the 763 * disk is rotational, which might/might not be optimal for raids with 764 * mixed ratation/non-rotational disks depending on workload. 765 */ 766 if (best_disk == -1) { 767 if (has_nonrot_disk || min_pending == 0) 768 best_disk = best_pending_disk; 769 else 770 best_disk = best_dist_disk; 771 } 772 773 if (best_disk >= 0) { 774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 775 if (!rdev) 776 goto retry; 777 atomic_inc(&rdev->nr_pending); 778 sectors = best_good_sectors; 779 780 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 781 conf->mirrors[best_disk].seq_start = this_sector; 782 783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 784 } 785 rcu_read_unlock(); 786 *max_sectors = sectors; 787 788 return best_disk; 789 } 790 791 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 792 { 793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 794 md_bitmap_unplug(conf->mddev->bitmap); 795 wake_up(&conf->wait_barrier); 796 797 while (bio) { /* submit pending writes */ 798 struct bio *next = bio->bi_next; 799 struct md_rdev *rdev = (void *)bio->bi_bdev; 800 bio->bi_next = NULL; 801 bio_set_dev(bio, rdev->bdev); 802 if (test_bit(Faulty, &rdev->flags)) { 803 bio_io_error(bio); 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 806 /* Just ignore it */ 807 bio_endio(bio); 808 else 809 submit_bio_noacct(bio); 810 bio = next; 811 cond_resched(); 812 } 813 } 814 815 static void flush_pending_writes(struct r1conf *conf) 816 { 817 /* Any writes that have been queued but are awaiting 818 * bitmap updates get flushed here. 819 */ 820 spin_lock_irq(&conf->device_lock); 821 822 if (conf->pending_bio_list.head) { 823 struct blk_plug plug; 824 struct bio *bio; 825 826 bio = bio_list_get(&conf->pending_bio_list); 827 conf->pending_count = 0; 828 spin_unlock_irq(&conf->device_lock); 829 830 /* 831 * As this is called in a wait_event() loop (see freeze_array), 832 * current->state might be TASK_UNINTERRUPTIBLE which will 833 * cause a warning when we prepare to wait again. As it is 834 * rare that this path is taken, it is perfectly safe to force 835 * us to go around the wait_event() loop again, so the warning 836 * is a false-positive. Silence the warning by resetting 837 * thread state 838 */ 839 __set_current_state(TASK_RUNNING); 840 blk_start_plug(&plug); 841 flush_bio_list(conf, bio); 842 blk_finish_plug(&plug); 843 } else 844 spin_unlock_irq(&conf->device_lock); 845 } 846 847 /* Barriers.... 848 * Sometimes we need to suspend IO while we do something else, 849 * either some resync/recovery, or reconfigure the array. 850 * To do this we raise a 'barrier'. 851 * The 'barrier' is a counter that can be raised multiple times 852 * to count how many activities are happening which preclude 853 * normal IO. 854 * We can only raise the barrier if there is no pending IO. 855 * i.e. if nr_pending == 0. 856 * We choose only to raise the barrier if no-one is waiting for the 857 * barrier to go down. This means that as soon as an IO request 858 * is ready, no other operations which require a barrier will start 859 * until the IO request has had a chance. 860 * 861 * So: regular IO calls 'wait_barrier'. When that returns there 862 * is no backgroup IO happening, It must arrange to call 863 * allow_barrier when it has finished its IO. 864 * backgroup IO calls must call raise_barrier. Once that returns 865 * there is no normal IO happeing. It must arrange to call 866 * lower_barrier when the particular background IO completes. 867 * 868 * If resync/recovery is interrupted, returns -EINTR; 869 * Otherwise, returns 0. 870 */ 871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 872 { 873 int idx = sector_to_idx(sector_nr); 874 875 spin_lock_irq(&conf->resync_lock); 876 877 /* Wait until no block IO is waiting */ 878 wait_event_lock_irq(conf->wait_barrier, 879 !atomic_read(&conf->nr_waiting[idx]), 880 conf->resync_lock); 881 882 /* block any new IO from starting */ 883 atomic_inc(&conf->barrier[idx]); 884 /* 885 * In raise_barrier() we firstly increase conf->barrier[idx] then 886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 887 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 888 * A memory barrier here to make sure conf->nr_pending[idx] won't 889 * be fetched before conf->barrier[idx] is increased. Otherwise 890 * there will be a race between raise_barrier() and _wait_barrier(). 891 */ 892 smp_mb__after_atomic(); 893 894 /* For these conditions we must wait: 895 * A: while the array is in frozen state 896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 897 * existing in corresponding I/O barrier bucket. 898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 899 * max resync count which allowed on current I/O barrier bucket. 900 */ 901 wait_event_lock_irq(conf->wait_barrier, 902 (!conf->array_frozen && 903 !atomic_read(&conf->nr_pending[idx]) && 904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 906 conf->resync_lock); 907 908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 909 atomic_dec(&conf->barrier[idx]); 910 spin_unlock_irq(&conf->resync_lock); 911 wake_up(&conf->wait_barrier); 912 return -EINTR; 913 } 914 915 atomic_inc(&conf->nr_sync_pending); 916 spin_unlock_irq(&conf->resync_lock); 917 918 return 0; 919 } 920 921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 922 { 923 int idx = sector_to_idx(sector_nr); 924 925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 926 927 atomic_dec(&conf->barrier[idx]); 928 atomic_dec(&conf->nr_sync_pending); 929 wake_up(&conf->wait_barrier); 930 } 931 932 static void _wait_barrier(struct r1conf *conf, int idx) 933 { 934 /* 935 * We need to increase conf->nr_pending[idx] very early here, 936 * then raise_barrier() can be blocked when it waits for 937 * conf->nr_pending[idx] to be 0. Then we can avoid holding 938 * conf->resync_lock when there is no barrier raised in same 939 * barrier unit bucket. Also if the array is frozen, I/O 940 * should be blocked until array is unfrozen. 941 */ 942 atomic_inc(&conf->nr_pending[idx]); 943 /* 944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 945 * check conf->barrier[idx]. In raise_barrier() we firstly increase 946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 947 * barrier is necessary here to make sure conf->barrier[idx] won't be 948 * fetched before conf->nr_pending[idx] is increased. Otherwise there 949 * will be a race between _wait_barrier() and raise_barrier(). 950 */ 951 smp_mb__after_atomic(); 952 953 /* 954 * Don't worry about checking two atomic_t variables at same time 955 * here. If during we check conf->barrier[idx], the array is 956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 957 * 0, it is safe to return and make the I/O continue. Because the 958 * array is frozen, all I/O returned here will eventually complete 959 * or be queued, no race will happen. See code comment in 960 * frozen_array(). 961 */ 962 if (!READ_ONCE(conf->array_frozen) && 963 !atomic_read(&conf->barrier[idx])) 964 return; 965 966 /* 967 * After holding conf->resync_lock, conf->nr_pending[idx] 968 * should be decreased before waiting for barrier to drop. 969 * Otherwise, we may encounter a race condition because 970 * raise_barrer() might be waiting for conf->nr_pending[idx] 971 * to be 0 at same time. 972 */ 973 spin_lock_irq(&conf->resync_lock); 974 atomic_inc(&conf->nr_waiting[idx]); 975 atomic_dec(&conf->nr_pending[idx]); 976 /* 977 * In case freeze_array() is waiting for 978 * get_unqueued_pending() == extra 979 */ 980 wake_up(&conf->wait_barrier); 981 /* Wait for the barrier in same barrier unit bucket to drop. */ 982 wait_event_lock_irq(conf->wait_barrier, 983 !conf->array_frozen && 984 !atomic_read(&conf->barrier[idx]), 985 conf->resync_lock); 986 atomic_inc(&conf->nr_pending[idx]); 987 atomic_dec(&conf->nr_waiting[idx]); 988 spin_unlock_irq(&conf->resync_lock); 989 } 990 991 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 992 { 993 int idx = sector_to_idx(sector_nr); 994 995 /* 996 * Very similar to _wait_barrier(). The difference is, for read 997 * I/O we don't need wait for sync I/O, but if the whole array 998 * is frozen, the read I/O still has to wait until the array is 999 * unfrozen. Since there is no ordering requirement with 1000 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1001 */ 1002 atomic_inc(&conf->nr_pending[idx]); 1003 1004 if (!READ_ONCE(conf->array_frozen)) 1005 return; 1006 1007 spin_lock_irq(&conf->resync_lock); 1008 atomic_inc(&conf->nr_waiting[idx]); 1009 atomic_dec(&conf->nr_pending[idx]); 1010 /* 1011 * In case freeze_array() is waiting for 1012 * get_unqueued_pending() == extra 1013 */ 1014 wake_up(&conf->wait_barrier); 1015 /* Wait for array to be unfrozen */ 1016 wait_event_lock_irq(conf->wait_barrier, 1017 !conf->array_frozen, 1018 conf->resync_lock); 1019 atomic_inc(&conf->nr_pending[idx]); 1020 atomic_dec(&conf->nr_waiting[idx]); 1021 spin_unlock_irq(&conf->resync_lock); 1022 } 1023 1024 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 1025 { 1026 int idx = sector_to_idx(sector_nr); 1027 1028 _wait_barrier(conf, idx); 1029 } 1030 1031 static void _allow_barrier(struct r1conf *conf, int idx) 1032 { 1033 atomic_dec(&conf->nr_pending[idx]); 1034 wake_up(&conf->wait_barrier); 1035 } 1036 1037 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1038 { 1039 int idx = sector_to_idx(sector_nr); 1040 1041 _allow_barrier(conf, idx); 1042 } 1043 1044 /* conf->resync_lock should be held */ 1045 static int get_unqueued_pending(struct r1conf *conf) 1046 { 1047 int idx, ret; 1048 1049 ret = atomic_read(&conf->nr_sync_pending); 1050 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1051 ret += atomic_read(&conf->nr_pending[idx]) - 1052 atomic_read(&conf->nr_queued[idx]); 1053 1054 return ret; 1055 } 1056 1057 static void freeze_array(struct r1conf *conf, int extra) 1058 { 1059 /* Stop sync I/O and normal I/O and wait for everything to 1060 * go quiet. 1061 * This is called in two situations: 1062 * 1) management command handlers (reshape, remove disk, quiesce). 1063 * 2) one normal I/O request failed. 1064 1065 * After array_frozen is set to 1, new sync IO will be blocked at 1066 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1067 * or wait_read_barrier(). The flying I/Os will either complete or be 1068 * queued. When everything goes quite, there are only queued I/Os left. 1069 1070 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1071 * barrier bucket index which this I/O request hits. When all sync and 1072 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1073 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1074 * in handle_read_error(), we may call freeze_array() before trying to 1075 * fix the read error. In this case, the error read I/O is not queued, 1076 * so get_unqueued_pending() == 1. 1077 * 1078 * Therefore before this function returns, we need to wait until 1079 * get_unqueued_pendings(conf) gets equal to extra. For 1080 * normal I/O context, extra is 1, in rested situations extra is 0. 1081 */ 1082 spin_lock_irq(&conf->resync_lock); 1083 conf->array_frozen = 1; 1084 raid1_log(conf->mddev, "wait freeze"); 1085 wait_event_lock_irq_cmd( 1086 conf->wait_barrier, 1087 get_unqueued_pending(conf) == extra, 1088 conf->resync_lock, 1089 flush_pending_writes(conf)); 1090 spin_unlock_irq(&conf->resync_lock); 1091 } 1092 static void unfreeze_array(struct r1conf *conf) 1093 { 1094 /* reverse the effect of the freeze */ 1095 spin_lock_irq(&conf->resync_lock); 1096 conf->array_frozen = 0; 1097 spin_unlock_irq(&conf->resync_lock); 1098 wake_up(&conf->wait_barrier); 1099 } 1100 1101 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1102 struct bio *bio) 1103 { 1104 int size = bio->bi_iter.bi_size; 1105 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1106 int i = 0; 1107 struct bio *behind_bio = NULL; 1108 1109 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set); 1110 if (!behind_bio) 1111 return; 1112 1113 /* discard op, we don't support writezero/writesame yet */ 1114 if (!bio_has_data(bio)) { 1115 behind_bio->bi_iter.bi_size = size; 1116 goto skip_copy; 1117 } 1118 1119 behind_bio->bi_write_hint = bio->bi_write_hint; 1120 1121 while (i < vcnt && size) { 1122 struct page *page; 1123 int len = min_t(int, PAGE_SIZE, size); 1124 1125 page = alloc_page(GFP_NOIO); 1126 if (unlikely(!page)) 1127 goto free_pages; 1128 1129 bio_add_page(behind_bio, page, len, 0); 1130 1131 size -= len; 1132 i++; 1133 } 1134 1135 bio_copy_data(behind_bio, bio); 1136 skip_copy: 1137 r1_bio->behind_master_bio = behind_bio; 1138 set_bit(R1BIO_BehindIO, &r1_bio->state); 1139 1140 return; 1141 1142 free_pages: 1143 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1144 bio->bi_iter.bi_size); 1145 bio_free_pages(behind_bio); 1146 bio_put(behind_bio); 1147 } 1148 1149 struct raid1_plug_cb { 1150 struct blk_plug_cb cb; 1151 struct bio_list pending; 1152 int pending_cnt; 1153 }; 1154 1155 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1156 { 1157 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1158 cb); 1159 struct mddev *mddev = plug->cb.data; 1160 struct r1conf *conf = mddev->private; 1161 struct bio *bio; 1162 1163 if (from_schedule || current->bio_list) { 1164 spin_lock_irq(&conf->device_lock); 1165 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1166 conf->pending_count += plug->pending_cnt; 1167 spin_unlock_irq(&conf->device_lock); 1168 wake_up(&conf->wait_barrier); 1169 md_wakeup_thread(mddev->thread); 1170 kfree(plug); 1171 return; 1172 } 1173 1174 /* we aren't scheduling, so we can do the write-out directly. */ 1175 bio = bio_list_get(&plug->pending); 1176 flush_bio_list(conf, bio); 1177 kfree(plug); 1178 } 1179 1180 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1181 { 1182 r1_bio->master_bio = bio; 1183 r1_bio->sectors = bio_sectors(bio); 1184 r1_bio->state = 0; 1185 r1_bio->mddev = mddev; 1186 r1_bio->sector = bio->bi_iter.bi_sector; 1187 } 1188 1189 static inline struct r1bio * 1190 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1191 { 1192 struct r1conf *conf = mddev->private; 1193 struct r1bio *r1_bio; 1194 1195 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1196 /* Ensure no bio records IO_BLOCKED */ 1197 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1198 init_r1bio(r1_bio, mddev, bio); 1199 return r1_bio; 1200 } 1201 1202 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1203 int max_read_sectors, struct r1bio *r1_bio) 1204 { 1205 struct r1conf *conf = mddev->private; 1206 struct raid1_info *mirror; 1207 struct bio *read_bio; 1208 struct bitmap *bitmap = mddev->bitmap; 1209 const int op = bio_op(bio); 1210 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1211 int max_sectors; 1212 int rdisk; 1213 bool print_msg = !!r1_bio; 1214 char b[BDEVNAME_SIZE]; 1215 1216 /* 1217 * If r1_bio is set, we are blocking the raid1d thread 1218 * so there is a tiny risk of deadlock. So ask for 1219 * emergency memory if needed. 1220 */ 1221 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1222 1223 if (print_msg) { 1224 /* Need to get the block device name carefully */ 1225 struct md_rdev *rdev; 1226 rcu_read_lock(); 1227 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1228 if (rdev) 1229 bdevname(rdev->bdev, b); 1230 else 1231 strcpy(b, "???"); 1232 rcu_read_unlock(); 1233 } 1234 1235 /* 1236 * Still need barrier for READ in case that whole 1237 * array is frozen. 1238 */ 1239 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1240 1241 if (!r1_bio) 1242 r1_bio = alloc_r1bio(mddev, bio); 1243 else 1244 init_r1bio(r1_bio, mddev, bio); 1245 r1_bio->sectors = max_read_sectors; 1246 1247 /* 1248 * make_request() can abort the operation when read-ahead is being 1249 * used and no empty request is available. 1250 */ 1251 rdisk = read_balance(conf, r1_bio, &max_sectors); 1252 1253 if (rdisk < 0) { 1254 /* couldn't find anywhere to read from */ 1255 if (print_msg) { 1256 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1257 mdname(mddev), 1258 b, 1259 (unsigned long long)r1_bio->sector); 1260 } 1261 raid_end_bio_io(r1_bio); 1262 return; 1263 } 1264 mirror = conf->mirrors + rdisk; 1265 1266 if (print_msg) 1267 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1268 mdname(mddev), 1269 (unsigned long long)r1_bio->sector, 1270 bdevname(mirror->rdev->bdev, b)); 1271 1272 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1273 bitmap) { 1274 /* 1275 * Reading from a write-mostly device must take care not to 1276 * over-take any writes that are 'behind' 1277 */ 1278 raid1_log(mddev, "wait behind writes"); 1279 wait_event(bitmap->behind_wait, 1280 atomic_read(&bitmap->behind_writes) == 0); 1281 } 1282 1283 if (max_sectors < bio_sectors(bio)) { 1284 struct bio *split = bio_split(bio, max_sectors, 1285 gfp, &conf->bio_split); 1286 bio_chain(split, bio); 1287 submit_bio_noacct(bio); 1288 bio = split; 1289 r1_bio->master_bio = bio; 1290 r1_bio->sectors = max_sectors; 1291 } 1292 1293 r1_bio->read_disk = rdisk; 1294 1295 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1296 1297 r1_bio->bios[rdisk] = read_bio; 1298 1299 read_bio->bi_iter.bi_sector = r1_bio->sector + 1300 mirror->rdev->data_offset; 1301 bio_set_dev(read_bio, mirror->rdev->bdev); 1302 read_bio->bi_end_io = raid1_end_read_request; 1303 bio_set_op_attrs(read_bio, op, do_sync); 1304 if (test_bit(FailFast, &mirror->rdev->flags) && 1305 test_bit(R1BIO_FailFast, &r1_bio->state)) 1306 read_bio->bi_opf |= MD_FAILFAST; 1307 read_bio->bi_private = r1_bio; 1308 1309 if (mddev->gendisk) 1310 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1311 r1_bio->sector); 1312 1313 submit_bio_noacct(read_bio); 1314 } 1315 1316 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1317 int max_write_sectors) 1318 { 1319 struct r1conf *conf = mddev->private; 1320 struct r1bio *r1_bio; 1321 int i, disks; 1322 struct bitmap *bitmap = mddev->bitmap; 1323 unsigned long flags; 1324 struct md_rdev *blocked_rdev; 1325 struct blk_plug_cb *cb; 1326 struct raid1_plug_cb *plug = NULL; 1327 int first_clone; 1328 int max_sectors; 1329 1330 if (mddev_is_clustered(mddev) && 1331 md_cluster_ops->area_resyncing(mddev, WRITE, 1332 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1333 1334 DEFINE_WAIT(w); 1335 for (;;) { 1336 prepare_to_wait(&conf->wait_barrier, 1337 &w, TASK_IDLE); 1338 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1339 bio->bi_iter.bi_sector, 1340 bio_end_sector(bio))) 1341 break; 1342 schedule(); 1343 } 1344 finish_wait(&conf->wait_barrier, &w); 1345 } 1346 1347 /* 1348 * Register the new request and wait if the reconstruction 1349 * thread has put up a bar for new requests. 1350 * Continue immediately if no resync is active currently. 1351 */ 1352 wait_barrier(conf, bio->bi_iter.bi_sector); 1353 1354 r1_bio = alloc_r1bio(mddev, bio); 1355 r1_bio->sectors = max_write_sectors; 1356 1357 if (conf->pending_count >= max_queued_requests) { 1358 md_wakeup_thread(mddev->thread); 1359 raid1_log(mddev, "wait queued"); 1360 wait_event(conf->wait_barrier, 1361 conf->pending_count < max_queued_requests); 1362 } 1363 /* first select target devices under rcu_lock and 1364 * inc refcount on their rdev. Record them by setting 1365 * bios[x] to bio 1366 * If there are known/acknowledged bad blocks on any device on 1367 * which we have seen a write error, we want to avoid writing those 1368 * blocks. 1369 * This potentially requires several writes to write around 1370 * the bad blocks. Each set of writes gets it's own r1bio 1371 * with a set of bios attached. 1372 */ 1373 1374 disks = conf->raid_disks * 2; 1375 retry_write: 1376 blocked_rdev = NULL; 1377 rcu_read_lock(); 1378 max_sectors = r1_bio->sectors; 1379 for (i = 0; i < disks; i++) { 1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1381 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1382 atomic_inc(&rdev->nr_pending); 1383 blocked_rdev = rdev; 1384 break; 1385 } 1386 r1_bio->bios[i] = NULL; 1387 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1388 if (i < conf->raid_disks) 1389 set_bit(R1BIO_Degraded, &r1_bio->state); 1390 continue; 1391 } 1392 1393 atomic_inc(&rdev->nr_pending); 1394 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1395 sector_t first_bad; 1396 int bad_sectors; 1397 int is_bad; 1398 1399 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1400 &first_bad, &bad_sectors); 1401 if (is_bad < 0) { 1402 /* mustn't write here until the bad block is 1403 * acknowledged*/ 1404 set_bit(BlockedBadBlocks, &rdev->flags); 1405 blocked_rdev = rdev; 1406 break; 1407 } 1408 if (is_bad && first_bad <= r1_bio->sector) { 1409 /* Cannot write here at all */ 1410 bad_sectors -= (r1_bio->sector - first_bad); 1411 if (bad_sectors < max_sectors) 1412 /* mustn't write more than bad_sectors 1413 * to other devices yet 1414 */ 1415 max_sectors = bad_sectors; 1416 rdev_dec_pending(rdev, mddev); 1417 /* We don't set R1BIO_Degraded as that 1418 * only applies if the disk is 1419 * missing, so it might be re-added, 1420 * and we want to know to recover this 1421 * chunk. 1422 * In this case the device is here, 1423 * and the fact that this chunk is not 1424 * in-sync is recorded in the bad 1425 * block log 1426 */ 1427 continue; 1428 } 1429 if (is_bad) { 1430 int good_sectors = first_bad - r1_bio->sector; 1431 if (good_sectors < max_sectors) 1432 max_sectors = good_sectors; 1433 } 1434 } 1435 r1_bio->bios[i] = bio; 1436 } 1437 rcu_read_unlock(); 1438 1439 if (unlikely(blocked_rdev)) { 1440 /* Wait for this device to become unblocked */ 1441 int j; 1442 1443 for (j = 0; j < i; j++) 1444 if (r1_bio->bios[j]) 1445 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1446 r1_bio->state = 0; 1447 allow_barrier(conf, bio->bi_iter.bi_sector); 1448 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1449 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1450 wait_barrier(conf, bio->bi_iter.bi_sector); 1451 goto retry_write; 1452 } 1453 1454 if (max_sectors < bio_sectors(bio)) { 1455 struct bio *split = bio_split(bio, max_sectors, 1456 GFP_NOIO, &conf->bio_split); 1457 bio_chain(split, bio); 1458 submit_bio_noacct(bio); 1459 bio = split; 1460 r1_bio->master_bio = bio; 1461 r1_bio->sectors = max_sectors; 1462 } 1463 1464 atomic_set(&r1_bio->remaining, 1); 1465 atomic_set(&r1_bio->behind_remaining, 0); 1466 1467 first_clone = 1; 1468 1469 for (i = 0; i < disks; i++) { 1470 struct bio *mbio = NULL; 1471 struct md_rdev *rdev = conf->mirrors[i].rdev; 1472 if (!r1_bio->bios[i]) 1473 continue; 1474 1475 if (first_clone) { 1476 /* do behind I/O ? 1477 * Not if there are too many, or cannot 1478 * allocate memory, or a reader on WriteMostly 1479 * is waiting for behind writes to flush */ 1480 if (bitmap && 1481 (atomic_read(&bitmap->behind_writes) 1482 < mddev->bitmap_info.max_write_behind) && 1483 !waitqueue_active(&bitmap->behind_wait)) { 1484 alloc_behind_master_bio(r1_bio, bio); 1485 } 1486 1487 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1488 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1489 first_clone = 0; 1490 } 1491 1492 if (r1_bio->behind_master_bio) 1493 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1494 GFP_NOIO, &mddev->bio_set); 1495 else 1496 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1497 1498 if (r1_bio->behind_master_bio) { 1499 if (test_bit(CollisionCheck, &rdev->flags)) 1500 wait_for_serialization(rdev, r1_bio); 1501 if (test_bit(WriteMostly, &rdev->flags)) 1502 atomic_inc(&r1_bio->behind_remaining); 1503 } else if (mddev->serialize_policy) 1504 wait_for_serialization(rdev, r1_bio); 1505 1506 r1_bio->bios[i] = mbio; 1507 1508 mbio->bi_iter.bi_sector = (r1_bio->sector + 1509 conf->mirrors[i].rdev->data_offset); 1510 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1511 mbio->bi_end_io = raid1_end_write_request; 1512 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1513 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1514 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1515 conf->raid_disks - mddev->degraded > 1) 1516 mbio->bi_opf |= MD_FAILFAST; 1517 mbio->bi_private = r1_bio; 1518 1519 atomic_inc(&r1_bio->remaining); 1520 1521 if (mddev->gendisk) 1522 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1523 r1_bio->sector); 1524 /* flush_pending_writes() needs access to the rdev so...*/ 1525 mbio->bi_bdev = (void *)conf->mirrors[i].rdev; 1526 1527 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1528 if (cb) 1529 plug = container_of(cb, struct raid1_plug_cb, cb); 1530 else 1531 plug = NULL; 1532 if (plug) { 1533 bio_list_add(&plug->pending, mbio); 1534 plug->pending_cnt++; 1535 } else { 1536 spin_lock_irqsave(&conf->device_lock, flags); 1537 bio_list_add(&conf->pending_bio_list, mbio); 1538 conf->pending_count++; 1539 spin_unlock_irqrestore(&conf->device_lock, flags); 1540 md_wakeup_thread(mddev->thread); 1541 } 1542 } 1543 1544 r1_bio_write_done(r1_bio); 1545 1546 /* In case raid1d snuck in to freeze_array */ 1547 wake_up(&conf->wait_barrier); 1548 } 1549 1550 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1551 { 1552 sector_t sectors; 1553 1554 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1555 && md_flush_request(mddev, bio)) 1556 return true; 1557 1558 /* 1559 * There is a limit to the maximum size, but 1560 * the read/write handler might find a lower limit 1561 * due to bad blocks. To avoid multiple splits, 1562 * we pass the maximum number of sectors down 1563 * and let the lower level perform the split. 1564 */ 1565 sectors = align_to_barrier_unit_end( 1566 bio->bi_iter.bi_sector, bio_sectors(bio)); 1567 1568 if (bio_data_dir(bio) == READ) 1569 raid1_read_request(mddev, bio, sectors, NULL); 1570 else { 1571 if (!md_write_start(mddev,bio)) 1572 return false; 1573 raid1_write_request(mddev, bio, sectors); 1574 } 1575 return true; 1576 } 1577 1578 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1579 { 1580 struct r1conf *conf = mddev->private; 1581 int i; 1582 1583 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1584 conf->raid_disks - mddev->degraded); 1585 rcu_read_lock(); 1586 for (i = 0; i < conf->raid_disks; i++) { 1587 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1588 seq_printf(seq, "%s", 1589 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1590 } 1591 rcu_read_unlock(); 1592 seq_printf(seq, "]"); 1593 } 1594 1595 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1596 { 1597 char b[BDEVNAME_SIZE]; 1598 struct r1conf *conf = mddev->private; 1599 unsigned long flags; 1600 1601 /* 1602 * If it is not operational, then we have already marked it as dead 1603 * else if it is the last working disks with "fail_last_dev == false", 1604 * ignore the error, let the next level up know. 1605 * else mark the drive as failed 1606 */ 1607 spin_lock_irqsave(&conf->device_lock, flags); 1608 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1609 && (conf->raid_disks - mddev->degraded) == 1) { 1610 /* 1611 * Don't fail the drive, act as though we were just a 1612 * normal single drive. 1613 * However don't try a recovery from this drive as 1614 * it is very likely to fail. 1615 */ 1616 conf->recovery_disabled = mddev->recovery_disabled; 1617 spin_unlock_irqrestore(&conf->device_lock, flags); 1618 return; 1619 } 1620 set_bit(Blocked, &rdev->flags); 1621 if (test_and_clear_bit(In_sync, &rdev->flags)) 1622 mddev->degraded++; 1623 set_bit(Faulty, &rdev->flags); 1624 spin_unlock_irqrestore(&conf->device_lock, flags); 1625 /* 1626 * if recovery is running, make sure it aborts. 1627 */ 1628 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1629 set_mask_bits(&mddev->sb_flags, 0, 1630 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1631 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1632 "md/raid1:%s: Operation continuing on %d devices.\n", 1633 mdname(mddev), bdevname(rdev->bdev, b), 1634 mdname(mddev), conf->raid_disks - mddev->degraded); 1635 } 1636 1637 static void print_conf(struct r1conf *conf) 1638 { 1639 int i; 1640 1641 pr_debug("RAID1 conf printout:\n"); 1642 if (!conf) { 1643 pr_debug("(!conf)\n"); 1644 return; 1645 } 1646 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1647 conf->raid_disks); 1648 1649 rcu_read_lock(); 1650 for (i = 0; i < conf->raid_disks; i++) { 1651 char b[BDEVNAME_SIZE]; 1652 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1653 if (rdev) 1654 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1655 i, !test_bit(In_sync, &rdev->flags), 1656 !test_bit(Faulty, &rdev->flags), 1657 bdevname(rdev->bdev,b)); 1658 } 1659 rcu_read_unlock(); 1660 } 1661 1662 static void close_sync(struct r1conf *conf) 1663 { 1664 int idx; 1665 1666 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1667 _wait_barrier(conf, idx); 1668 _allow_barrier(conf, idx); 1669 } 1670 1671 mempool_exit(&conf->r1buf_pool); 1672 } 1673 1674 static int raid1_spare_active(struct mddev *mddev) 1675 { 1676 int i; 1677 struct r1conf *conf = mddev->private; 1678 int count = 0; 1679 unsigned long flags; 1680 1681 /* 1682 * Find all failed disks within the RAID1 configuration 1683 * and mark them readable. 1684 * Called under mddev lock, so rcu protection not needed. 1685 * device_lock used to avoid races with raid1_end_read_request 1686 * which expects 'In_sync' flags and ->degraded to be consistent. 1687 */ 1688 spin_lock_irqsave(&conf->device_lock, flags); 1689 for (i = 0; i < conf->raid_disks; i++) { 1690 struct md_rdev *rdev = conf->mirrors[i].rdev; 1691 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1692 if (repl 1693 && !test_bit(Candidate, &repl->flags) 1694 && repl->recovery_offset == MaxSector 1695 && !test_bit(Faulty, &repl->flags) 1696 && !test_and_set_bit(In_sync, &repl->flags)) { 1697 /* replacement has just become active */ 1698 if (!rdev || 1699 !test_and_clear_bit(In_sync, &rdev->flags)) 1700 count++; 1701 if (rdev) { 1702 /* Replaced device not technically 1703 * faulty, but we need to be sure 1704 * it gets removed and never re-added 1705 */ 1706 set_bit(Faulty, &rdev->flags); 1707 sysfs_notify_dirent_safe( 1708 rdev->sysfs_state); 1709 } 1710 } 1711 if (rdev 1712 && rdev->recovery_offset == MaxSector 1713 && !test_bit(Faulty, &rdev->flags) 1714 && !test_and_set_bit(In_sync, &rdev->flags)) { 1715 count++; 1716 sysfs_notify_dirent_safe(rdev->sysfs_state); 1717 } 1718 } 1719 mddev->degraded -= count; 1720 spin_unlock_irqrestore(&conf->device_lock, flags); 1721 1722 print_conf(conf); 1723 return count; 1724 } 1725 1726 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1727 { 1728 struct r1conf *conf = mddev->private; 1729 int err = -EEXIST; 1730 int mirror = 0; 1731 struct raid1_info *p; 1732 int first = 0; 1733 int last = conf->raid_disks - 1; 1734 1735 if (mddev->recovery_disabled == conf->recovery_disabled) 1736 return -EBUSY; 1737 1738 if (md_integrity_add_rdev(rdev, mddev)) 1739 return -ENXIO; 1740 1741 if (rdev->raid_disk >= 0) 1742 first = last = rdev->raid_disk; 1743 1744 /* 1745 * find the disk ... but prefer rdev->saved_raid_disk 1746 * if possible. 1747 */ 1748 if (rdev->saved_raid_disk >= 0 && 1749 rdev->saved_raid_disk >= first && 1750 rdev->saved_raid_disk < conf->raid_disks && 1751 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1752 first = last = rdev->saved_raid_disk; 1753 1754 for (mirror = first; mirror <= last; mirror++) { 1755 p = conf->mirrors + mirror; 1756 if (!p->rdev) { 1757 if (mddev->gendisk) 1758 disk_stack_limits(mddev->gendisk, rdev->bdev, 1759 rdev->data_offset << 9); 1760 1761 p->head_position = 0; 1762 rdev->raid_disk = mirror; 1763 err = 0; 1764 /* As all devices are equivalent, we don't need a full recovery 1765 * if this was recently any drive of the array 1766 */ 1767 if (rdev->saved_raid_disk < 0) 1768 conf->fullsync = 1; 1769 rcu_assign_pointer(p->rdev, rdev); 1770 break; 1771 } 1772 if (test_bit(WantReplacement, &p->rdev->flags) && 1773 p[conf->raid_disks].rdev == NULL) { 1774 /* Add this device as a replacement */ 1775 clear_bit(In_sync, &rdev->flags); 1776 set_bit(Replacement, &rdev->flags); 1777 rdev->raid_disk = mirror; 1778 err = 0; 1779 conf->fullsync = 1; 1780 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1781 break; 1782 } 1783 } 1784 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1785 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1786 print_conf(conf); 1787 return err; 1788 } 1789 1790 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1791 { 1792 struct r1conf *conf = mddev->private; 1793 int err = 0; 1794 int number = rdev->raid_disk; 1795 struct raid1_info *p = conf->mirrors + number; 1796 1797 if (rdev != p->rdev) 1798 p = conf->mirrors + conf->raid_disks + number; 1799 1800 print_conf(conf); 1801 if (rdev == p->rdev) { 1802 if (test_bit(In_sync, &rdev->flags) || 1803 atomic_read(&rdev->nr_pending)) { 1804 err = -EBUSY; 1805 goto abort; 1806 } 1807 /* Only remove non-faulty devices if recovery 1808 * is not possible. 1809 */ 1810 if (!test_bit(Faulty, &rdev->flags) && 1811 mddev->recovery_disabled != conf->recovery_disabled && 1812 mddev->degraded < conf->raid_disks) { 1813 err = -EBUSY; 1814 goto abort; 1815 } 1816 p->rdev = NULL; 1817 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1818 synchronize_rcu(); 1819 if (atomic_read(&rdev->nr_pending)) { 1820 /* lost the race, try later */ 1821 err = -EBUSY; 1822 p->rdev = rdev; 1823 goto abort; 1824 } 1825 } 1826 if (conf->mirrors[conf->raid_disks + number].rdev) { 1827 /* We just removed a device that is being replaced. 1828 * Move down the replacement. We drain all IO before 1829 * doing this to avoid confusion. 1830 */ 1831 struct md_rdev *repl = 1832 conf->mirrors[conf->raid_disks + number].rdev; 1833 freeze_array(conf, 0); 1834 if (atomic_read(&repl->nr_pending)) { 1835 /* It means that some queued IO of retry_list 1836 * hold repl. Thus, we cannot set replacement 1837 * as NULL, avoiding rdev NULL pointer 1838 * dereference in sync_request_write and 1839 * handle_write_finished. 1840 */ 1841 err = -EBUSY; 1842 unfreeze_array(conf); 1843 goto abort; 1844 } 1845 clear_bit(Replacement, &repl->flags); 1846 p->rdev = repl; 1847 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1848 unfreeze_array(conf); 1849 } 1850 1851 clear_bit(WantReplacement, &rdev->flags); 1852 err = md_integrity_register(mddev); 1853 } 1854 abort: 1855 1856 print_conf(conf); 1857 return err; 1858 } 1859 1860 static void end_sync_read(struct bio *bio) 1861 { 1862 struct r1bio *r1_bio = get_resync_r1bio(bio); 1863 1864 update_head_pos(r1_bio->read_disk, r1_bio); 1865 1866 /* 1867 * we have read a block, now it needs to be re-written, 1868 * or re-read if the read failed. 1869 * We don't do much here, just schedule handling by raid1d 1870 */ 1871 if (!bio->bi_status) 1872 set_bit(R1BIO_Uptodate, &r1_bio->state); 1873 1874 if (atomic_dec_and_test(&r1_bio->remaining)) 1875 reschedule_retry(r1_bio); 1876 } 1877 1878 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1879 { 1880 sector_t sync_blocks = 0; 1881 sector_t s = r1_bio->sector; 1882 long sectors_to_go = r1_bio->sectors; 1883 1884 /* make sure these bits don't get cleared. */ 1885 do { 1886 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1887 s += sync_blocks; 1888 sectors_to_go -= sync_blocks; 1889 } while (sectors_to_go > 0); 1890 } 1891 1892 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1893 { 1894 if (atomic_dec_and_test(&r1_bio->remaining)) { 1895 struct mddev *mddev = r1_bio->mddev; 1896 int s = r1_bio->sectors; 1897 1898 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1899 test_bit(R1BIO_WriteError, &r1_bio->state)) 1900 reschedule_retry(r1_bio); 1901 else { 1902 put_buf(r1_bio); 1903 md_done_sync(mddev, s, uptodate); 1904 } 1905 } 1906 } 1907 1908 static void end_sync_write(struct bio *bio) 1909 { 1910 int uptodate = !bio->bi_status; 1911 struct r1bio *r1_bio = get_resync_r1bio(bio); 1912 struct mddev *mddev = r1_bio->mddev; 1913 struct r1conf *conf = mddev->private; 1914 sector_t first_bad; 1915 int bad_sectors; 1916 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1917 1918 if (!uptodate) { 1919 abort_sync_write(mddev, r1_bio); 1920 set_bit(WriteErrorSeen, &rdev->flags); 1921 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1922 set_bit(MD_RECOVERY_NEEDED, & 1923 mddev->recovery); 1924 set_bit(R1BIO_WriteError, &r1_bio->state); 1925 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1926 &first_bad, &bad_sectors) && 1927 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1928 r1_bio->sector, 1929 r1_bio->sectors, 1930 &first_bad, &bad_sectors) 1931 ) 1932 set_bit(R1BIO_MadeGood, &r1_bio->state); 1933 1934 put_sync_write_buf(r1_bio, uptodate); 1935 } 1936 1937 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1938 int sectors, struct page *page, int rw) 1939 { 1940 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1941 /* success */ 1942 return 1; 1943 if (rw == WRITE) { 1944 set_bit(WriteErrorSeen, &rdev->flags); 1945 if (!test_and_set_bit(WantReplacement, 1946 &rdev->flags)) 1947 set_bit(MD_RECOVERY_NEEDED, & 1948 rdev->mddev->recovery); 1949 } 1950 /* need to record an error - either for the block or the device */ 1951 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1952 md_error(rdev->mddev, rdev); 1953 return 0; 1954 } 1955 1956 static int fix_sync_read_error(struct r1bio *r1_bio) 1957 { 1958 /* Try some synchronous reads of other devices to get 1959 * good data, much like with normal read errors. Only 1960 * read into the pages we already have so we don't 1961 * need to re-issue the read request. 1962 * We don't need to freeze the array, because being in an 1963 * active sync request, there is no normal IO, and 1964 * no overlapping syncs. 1965 * We don't need to check is_badblock() again as we 1966 * made sure that anything with a bad block in range 1967 * will have bi_end_io clear. 1968 */ 1969 struct mddev *mddev = r1_bio->mddev; 1970 struct r1conf *conf = mddev->private; 1971 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1972 struct page **pages = get_resync_pages(bio)->pages; 1973 sector_t sect = r1_bio->sector; 1974 int sectors = r1_bio->sectors; 1975 int idx = 0; 1976 struct md_rdev *rdev; 1977 1978 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1979 if (test_bit(FailFast, &rdev->flags)) { 1980 /* Don't try recovering from here - just fail it 1981 * ... unless it is the last working device of course */ 1982 md_error(mddev, rdev); 1983 if (test_bit(Faulty, &rdev->flags)) 1984 /* Don't try to read from here, but make sure 1985 * put_buf does it's thing 1986 */ 1987 bio->bi_end_io = end_sync_write; 1988 } 1989 1990 while(sectors) { 1991 int s = sectors; 1992 int d = r1_bio->read_disk; 1993 int success = 0; 1994 int start; 1995 1996 if (s > (PAGE_SIZE>>9)) 1997 s = PAGE_SIZE >> 9; 1998 do { 1999 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2000 /* No rcu protection needed here devices 2001 * can only be removed when no resync is 2002 * active, and resync is currently active 2003 */ 2004 rdev = conf->mirrors[d].rdev; 2005 if (sync_page_io(rdev, sect, s<<9, 2006 pages[idx], 2007 REQ_OP_READ, 0, false)) { 2008 success = 1; 2009 break; 2010 } 2011 } 2012 d++; 2013 if (d == conf->raid_disks * 2) 2014 d = 0; 2015 } while (!success && d != r1_bio->read_disk); 2016 2017 if (!success) { 2018 char b[BDEVNAME_SIZE]; 2019 int abort = 0; 2020 /* Cannot read from anywhere, this block is lost. 2021 * Record a bad block on each device. If that doesn't 2022 * work just disable and interrupt the recovery. 2023 * Don't fail devices as that won't really help. 2024 */ 2025 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2026 mdname(mddev), bio_devname(bio, b), 2027 (unsigned long long)r1_bio->sector); 2028 for (d = 0; d < conf->raid_disks * 2; d++) { 2029 rdev = conf->mirrors[d].rdev; 2030 if (!rdev || test_bit(Faulty, &rdev->flags)) 2031 continue; 2032 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2033 abort = 1; 2034 } 2035 if (abort) { 2036 conf->recovery_disabled = 2037 mddev->recovery_disabled; 2038 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2039 md_done_sync(mddev, r1_bio->sectors, 0); 2040 put_buf(r1_bio); 2041 return 0; 2042 } 2043 /* Try next page */ 2044 sectors -= s; 2045 sect += s; 2046 idx++; 2047 continue; 2048 } 2049 2050 start = d; 2051 /* write it back and re-read */ 2052 while (d != r1_bio->read_disk) { 2053 if (d == 0) 2054 d = conf->raid_disks * 2; 2055 d--; 2056 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2057 continue; 2058 rdev = conf->mirrors[d].rdev; 2059 if (r1_sync_page_io(rdev, sect, s, 2060 pages[idx], 2061 WRITE) == 0) { 2062 r1_bio->bios[d]->bi_end_io = NULL; 2063 rdev_dec_pending(rdev, mddev); 2064 } 2065 } 2066 d = start; 2067 while (d != r1_bio->read_disk) { 2068 if (d == 0) 2069 d = conf->raid_disks * 2; 2070 d--; 2071 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2072 continue; 2073 rdev = conf->mirrors[d].rdev; 2074 if (r1_sync_page_io(rdev, sect, s, 2075 pages[idx], 2076 READ) != 0) 2077 atomic_add(s, &rdev->corrected_errors); 2078 } 2079 sectors -= s; 2080 sect += s; 2081 idx ++; 2082 } 2083 set_bit(R1BIO_Uptodate, &r1_bio->state); 2084 bio->bi_status = 0; 2085 return 1; 2086 } 2087 2088 static void process_checks(struct r1bio *r1_bio) 2089 { 2090 /* We have read all readable devices. If we haven't 2091 * got the block, then there is no hope left. 2092 * If we have, then we want to do a comparison 2093 * and skip the write if everything is the same. 2094 * If any blocks failed to read, then we need to 2095 * attempt an over-write 2096 */ 2097 struct mddev *mddev = r1_bio->mddev; 2098 struct r1conf *conf = mddev->private; 2099 int primary; 2100 int i; 2101 int vcnt; 2102 2103 /* Fix variable parts of all bios */ 2104 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2105 for (i = 0; i < conf->raid_disks * 2; i++) { 2106 blk_status_t status; 2107 struct bio *b = r1_bio->bios[i]; 2108 struct resync_pages *rp = get_resync_pages(b); 2109 if (b->bi_end_io != end_sync_read) 2110 continue; 2111 /* fixup the bio for reuse, but preserve errno */ 2112 status = b->bi_status; 2113 bio_reset(b); 2114 b->bi_status = status; 2115 b->bi_iter.bi_sector = r1_bio->sector + 2116 conf->mirrors[i].rdev->data_offset; 2117 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2118 b->bi_end_io = end_sync_read; 2119 rp->raid_bio = r1_bio; 2120 b->bi_private = rp; 2121 2122 /* initialize bvec table again */ 2123 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2124 } 2125 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2126 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2127 !r1_bio->bios[primary]->bi_status) { 2128 r1_bio->bios[primary]->bi_end_io = NULL; 2129 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2130 break; 2131 } 2132 r1_bio->read_disk = primary; 2133 for (i = 0; i < conf->raid_disks * 2; i++) { 2134 int j = 0; 2135 struct bio *pbio = r1_bio->bios[primary]; 2136 struct bio *sbio = r1_bio->bios[i]; 2137 blk_status_t status = sbio->bi_status; 2138 struct page **ppages = get_resync_pages(pbio)->pages; 2139 struct page **spages = get_resync_pages(sbio)->pages; 2140 struct bio_vec *bi; 2141 int page_len[RESYNC_PAGES] = { 0 }; 2142 struct bvec_iter_all iter_all; 2143 2144 if (sbio->bi_end_io != end_sync_read) 2145 continue; 2146 /* Now we can 'fixup' the error value */ 2147 sbio->bi_status = 0; 2148 2149 bio_for_each_segment_all(bi, sbio, iter_all) 2150 page_len[j++] = bi->bv_len; 2151 2152 if (!status) { 2153 for (j = vcnt; j-- ; ) { 2154 if (memcmp(page_address(ppages[j]), 2155 page_address(spages[j]), 2156 page_len[j])) 2157 break; 2158 } 2159 } else 2160 j = 0; 2161 if (j >= 0) 2162 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2163 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2164 && !status)) { 2165 /* No need to write to this device. */ 2166 sbio->bi_end_io = NULL; 2167 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2168 continue; 2169 } 2170 2171 bio_copy_data(sbio, pbio); 2172 } 2173 } 2174 2175 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2176 { 2177 struct r1conf *conf = mddev->private; 2178 int i; 2179 int disks = conf->raid_disks * 2; 2180 struct bio *wbio; 2181 2182 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2183 /* ouch - failed to read all of that. */ 2184 if (!fix_sync_read_error(r1_bio)) 2185 return; 2186 2187 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2188 process_checks(r1_bio); 2189 2190 /* 2191 * schedule writes 2192 */ 2193 atomic_set(&r1_bio->remaining, 1); 2194 for (i = 0; i < disks ; i++) { 2195 wbio = r1_bio->bios[i]; 2196 if (wbio->bi_end_io == NULL || 2197 (wbio->bi_end_io == end_sync_read && 2198 (i == r1_bio->read_disk || 2199 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2200 continue; 2201 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2202 abort_sync_write(mddev, r1_bio); 2203 continue; 2204 } 2205 2206 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2207 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2208 wbio->bi_opf |= MD_FAILFAST; 2209 2210 wbio->bi_end_io = end_sync_write; 2211 atomic_inc(&r1_bio->remaining); 2212 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2213 2214 submit_bio_noacct(wbio); 2215 } 2216 2217 put_sync_write_buf(r1_bio, 1); 2218 } 2219 2220 /* 2221 * This is a kernel thread which: 2222 * 2223 * 1. Retries failed read operations on working mirrors. 2224 * 2. Updates the raid superblock when problems encounter. 2225 * 3. Performs writes following reads for array synchronising. 2226 */ 2227 2228 static void fix_read_error(struct r1conf *conf, int read_disk, 2229 sector_t sect, int sectors) 2230 { 2231 struct mddev *mddev = conf->mddev; 2232 while(sectors) { 2233 int s = sectors; 2234 int d = read_disk; 2235 int success = 0; 2236 int start; 2237 struct md_rdev *rdev; 2238 2239 if (s > (PAGE_SIZE>>9)) 2240 s = PAGE_SIZE >> 9; 2241 2242 do { 2243 sector_t first_bad; 2244 int bad_sectors; 2245 2246 rcu_read_lock(); 2247 rdev = rcu_dereference(conf->mirrors[d].rdev); 2248 if (rdev && 2249 (test_bit(In_sync, &rdev->flags) || 2250 (!test_bit(Faulty, &rdev->flags) && 2251 rdev->recovery_offset >= sect + s)) && 2252 is_badblock(rdev, sect, s, 2253 &first_bad, &bad_sectors) == 0) { 2254 atomic_inc(&rdev->nr_pending); 2255 rcu_read_unlock(); 2256 if (sync_page_io(rdev, sect, s<<9, 2257 conf->tmppage, REQ_OP_READ, 0, false)) 2258 success = 1; 2259 rdev_dec_pending(rdev, mddev); 2260 if (success) 2261 break; 2262 } else 2263 rcu_read_unlock(); 2264 d++; 2265 if (d == conf->raid_disks * 2) 2266 d = 0; 2267 } while (!success && d != read_disk); 2268 2269 if (!success) { 2270 /* Cannot read from anywhere - mark it bad */ 2271 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2272 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2273 md_error(mddev, rdev); 2274 break; 2275 } 2276 /* write it back and re-read */ 2277 start = d; 2278 while (d != read_disk) { 2279 if (d==0) 2280 d = conf->raid_disks * 2; 2281 d--; 2282 rcu_read_lock(); 2283 rdev = rcu_dereference(conf->mirrors[d].rdev); 2284 if (rdev && 2285 !test_bit(Faulty, &rdev->flags)) { 2286 atomic_inc(&rdev->nr_pending); 2287 rcu_read_unlock(); 2288 r1_sync_page_io(rdev, sect, s, 2289 conf->tmppage, WRITE); 2290 rdev_dec_pending(rdev, mddev); 2291 } else 2292 rcu_read_unlock(); 2293 } 2294 d = start; 2295 while (d != read_disk) { 2296 char b[BDEVNAME_SIZE]; 2297 if (d==0) 2298 d = conf->raid_disks * 2; 2299 d--; 2300 rcu_read_lock(); 2301 rdev = rcu_dereference(conf->mirrors[d].rdev); 2302 if (rdev && 2303 !test_bit(Faulty, &rdev->flags)) { 2304 atomic_inc(&rdev->nr_pending); 2305 rcu_read_unlock(); 2306 if (r1_sync_page_io(rdev, sect, s, 2307 conf->tmppage, READ)) { 2308 atomic_add(s, &rdev->corrected_errors); 2309 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2310 mdname(mddev), s, 2311 (unsigned long long)(sect + 2312 rdev->data_offset), 2313 bdevname(rdev->bdev, b)); 2314 } 2315 rdev_dec_pending(rdev, mddev); 2316 } else 2317 rcu_read_unlock(); 2318 } 2319 sectors -= s; 2320 sect += s; 2321 } 2322 } 2323 2324 static int narrow_write_error(struct r1bio *r1_bio, int i) 2325 { 2326 struct mddev *mddev = r1_bio->mddev; 2327 struct r1conf *conf = mddev->private; 2328 struct md_rdev *rdev = conf->mirrors[i].rdev; 2329 2330 /* bio has the data to be written to device 'i' where 2331 * we just recently had a write error. 2332 * We repeatedly clone the bio and trim down to one block, 2333 * then try the write. Where the write fails we record 2334 * a bad block. 2335 * It is conceivable that the bio doesn't exactly align with 2336 * blocks. We must handle this somehow. 2337 * 2338 * We currently own a reference on the rdev. 2339 */ 2340 2341 int block_sectors; 2342 sector_t sector; 2343 int sectors; 2344 int sect_to_write = r1_bio->sectors; 2345 int ok = 1; 2346 2347 if (rdev->badblocks.shift < 0) 2348 return 0; 2349 2350 block_sectors = roundup(1 << rdev->badblocks.shift, 2351 bdev_logical_block_size(rdev->bdev) >> 9); 2352 sector = r1_bio->sector; 2353 sectors = ((sector + block_sectors) 2354 & ~(sector_t)(block_sectors - 1)) 2355 - sector; 2356 2357 while (sect_to_write) { 2358 struct bio *wbio; 2359 if (sectors > sect_to_write) 2360 sectors = sect_to_write; 2361 /* Write at 'sector' for 'sectors'*/ 2362 2363 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2364 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2365 GFP_NOIO, 2366 &mddev->bio_set); 2367 } else { 2368 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2369 &mddev->bio_set); 2370 } 2371 2372 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2373 wbio->bi_iter.bi_sector = r1_bio->sector; 2374 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2375 2376 bio_trim(wbio, sector - r1_bio->sector, sectors); 2377 wbio->bi_iter.bi_sector += rdev->data_offset; 2378 bio_set_dev(wbio, rdev->bdev); 2379 2380 if (submit_bio_wait(wbio) < 0) 2381 /* failure! */ 2382 ok = rdev_set_badblocks(rdev, sector, 2383 sectors, 0) 2384 && ok; 2385 2386 bio_put(wbio); 2387 sect_to_write -= sectors; 2388 sector += sectors; 2389 sectors = block_sectors; 2390 } 2391 return ok; 2392 } 2393 2394 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2395 { 2396 int m; 2397 int s = r1_bio->sectors; 2398 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2399 struct md_rdev *rdev = conf->mirrors[m].rdev; 2400 struct bio *bio = r1_bio->bios[m]; 2401 if (bio->bi_end_io == NULL) 2402 continue; 2403 if (!bio->bi_status && 2404 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2405 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2406 } 2407 if (bio->bi_status && 2408 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2409 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2410 md_error(conf->mddev, rdev); 2411 } 2412 } 2413 put_buf(r1_bio); 2414 md_done_sync(conf->mddev, s, 1); 2415 } 2416 2417 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2418 { 2419 int m, idx; 2420 bool fail = false; 2421 2422 for (m = 0; m < conf->raid_disks * 2 ; m++) 2423 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2424 struct md_rdev *rdev = conf->mirrors[m].rdev; 2425 rdev_clear_badblocks(rdev, 2426 r1_bio->sector, 2427 r1_bio->sectors, 0); 2428 rdev_dec_pending(rdev, conf->mddev); 2429 } else if (r1_bio->bios[m] != NULL) { 2430 /* This drive got a write error. We need to 2431 * narrow down and record precise write 2432 * errors. 2433 */ 2434 fail = true; 2435 if (!narrow_write_error(r1_bio, m)) { 2436 md_error(conf->mddev, 2437 conf->mirrors[m].rdev); 2438 /* an I/O failed, we can't clear the bitmap */ 2439 set_bit(R1BIO_Degraded, &r1_bio->state); 2440 } 2441 rdev_dec_pending(conf->mirrors[m].rdev, 2442 conf->mddev); 2443 } 2444 if (fail) { 2445 spin_lock_irq(&conf->device_lock); 2446 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2447 idx = sector_to_idx(r1_bio->sector); 2448 atomic_inc(&conf->nr_queued[idx]); 2449 spin_unlock_irq(&conf->device_lock); 2450 /* 2451 * In case freeze_array() is waiting for condition 2452 * get_unqueued_pending() == extra to be true. 2453 */ 2454 wake_up(&conf->wait_barrier); 2455 md_wakeup_thread(conf->mddev->thread); 2456 } else { 2457 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2458 close_write(r1_bio); 2459 raid_end_bio_io(r1_bio); 2460 } 2461 } 2462 2463 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2464 { 2465 struct mddev *mddev = conf->mddev; 2466 struct bio *bio; 2467 struct md_rdev *rdev; 2468 2469 clear_bit(R1BIO_ReadError, &r1_bio->state); 2470 /* we got a read error. Maybe the drive is bad. Maybe just 2471 * the block and we can fix it. 2472 * We freeze all other IO, and try reading the block from 2473 * other devices. When we find one, we re-write 2474 * and check it that fixes the read error. 2475 * This is all done synchronously while the array is 2476 * frozen 2477 */ 2478 2479 bio = r1_bio->bios[r1_bio->read_disk]; 2480 bio_put(bio); 2481 r1_bio->bios[r1_bio->read_disk] = NULL; 2482 2483 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2484 if (mddev->ro == 0 2485 && !test_bit(FailFast, &rdev->flags)) { 2486 freeze_array(conf, 1); 2487 fix_read_error(conf, r1_bio->read_disk, 2488 r1_bio->sector, r1_bio->sectors); 2489 unfreeze_array(conf); 2490 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2491 md_error(mddev, rdev); 2492 } else { 2493 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2494 } 2495 2496 rdev_dec_pending(rdev, conf->mddev); 2497 allow_barrier(conf, r1_bio->sector); 2498 bio = r1_bio->master_bio; 2499 2500 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2501 r1_bio->state = 0; 2502 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2503 } 2504 2505 static void raid1d(struct md_thread *thread) 2506 { 2507 struct mddev *mddev = thread->mddev; 2508 struct r1bio *r1_bio; 2509 unsigned long flags; 2510 struct r1conf *conf = mddev->private; 2511 struct list_head *head = &conf->retry_list; 2512 struct blk_plug plug; 2513 int idx; 2514 2515 md_check_recovery(mddev); 2516 2517 if (!list_empty_careful(&conf->bio_end_io_list) && 2518 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2519 LIST_HEAD(tmp); 2520 spin_lock_irqsave(&conf->device_lock, flags); 2521 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2522 list_splice_init(&conf->bio_end_io_list, &tmp); 2523 spin_unlock_irqrestore(&conf->device_lock, flags); 2524 while (!list_empty(&tmp)) { 2525 r1_bio = list_first_entry(&tmp, struct r1bio, 2526 retry_list); 2527 list_del(&r1_bio->retry_list); 2528 idx = sector_to_idx(r1_bio->sector); 2529 atomic_dec(&conf->nr_queued[idx]); 2530 if (mddev->degraded) 2531 set_bit(R1BIO_Degraded, &r1_bio->state); 2532 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2533 close_write(r1_bio); 2534 raid_end_bio_io(r1_bio); 2535 } 2536 } 2537 2538 blk_start_plug(&plug); 2539 for (;;) { 2540 2541 flush_pending_writes(conf); 2542 2543 spin_lock_irqsave(&conf->device_lock, flags); 2544 if (list_empty(head)) { 2545 spin_unlock_irqrestore(&conf->device_lock, flags); 2546 break; 2547 } 2548 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2549 list_del(head->prev); 2550 idx = sector_to_idx(r1_bio->sector); 2551 atomic_dec(&conf->nr_queued[idx]); 2552 spin_unlock_irqrestore(&conf->device_lock, flags); 2553 2554 mddev = r1_bio->mddev; 2555 conf = mddev->private; 2556 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2557 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2558 test_bit(R1BIO_WriteError, &r1_bio->state)) 2559 handle_sync_write_finished(conf, r1_bio); 2560 else 2561 sync_request_write(mddev, r1_bio); 2562 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2563 test_bit(R1BIO_WriteError, &r1_bio->state)) 2564 handle_write_finished(conf, r1_bio); 2565 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2566 handle_read_error(conf, r1_bio); 2567 else 2568 WARN_ON_ONCE(1); 2569 2570 cond_resched(); 2571 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2572 md_check_recovery(mddev); 2573 } 2574 blk_finish_plug(&plug); 2575 } 2576 2577 static int init_resync(struct r1conf *conf) 2578 { 2579 int buffs; 2580 2581 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2582 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2583 2584 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2585 r1buf_pool_free, conf->poolinfo); 2586 } 2587 2588 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2589 { 2590 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2591 struct resync_pages *rps; 2592 struct bio *bio; 2593 int i; 2594 2595 for (i = conf->poolinfo->raid_disks; i--; ) { 2596 bio = r1bio->bios[i]; 2597 rps = bio->bi_private; 2598 bio_reset(bio); 2599 bio->bi_private = rps; 2600 } 2601 r1bio->master_bio = NULL; 2602 return r1bio; 2603 } 2604 2605 /* 2606 * perform a "sync" on one "block" 2607 * 2608 * We need to make sure that no normal I/O request - particularly write 2609 * requests - conflict with active sync requests. 2610 * 2611 * This is achieved by tracking pending requests and a 'barrier' concept 2612 * that can be installed to exclude normal IO requests. 2613 */ 2614 2615 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2616 int *skipped) 2617 { 2618 struct r1conf *conf = mddev->private; 2619 struct r1bio *r1_bio; 2620 struct bio *bio; 2621 sector_t max_sector, nr_sectors; 2622 int disk = -1; 2623 int i; 2624 int wonly = -1; 2625 int write_targets = 0, read_targets = 0; 2626 sector_t sync_blocks; 2627 int still_degraded = 0; 2628 int good_sectors = RESYNC_SECTORS; 2629 int min_bad = 0; /* number of sectors that are bad in all devices */ 2630 int idx = sector_to_idx(sector_nr); 2631 int page_idx = 0; 2632 2633 if (!mempool_initialized(&conf->r1buf_pool)) 2634 if (init_resync(conf)) 2635 return 0; 2636 2637 max_sector = mddev->dev_sectors; 2638 if (sector_nr >= max_sector) { 2639 /* If we aborted, we need to abort the 2640 * sync on the 'current' bitmap chunk (there will 2641 * only be one in raid1 resync. 2642 * We can find the current addess in mddev->curr_resync 2643 */ 2644 if (mddev->curr_resync < max_sector) /* aborted */ 2645 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2646 &sync_blocks, 1); 2647 else /* completed sync */ 2648 conf->fullsync = 0; 2649 2650 md_bitmap_close_sync(mddev->bitmap); 2651 close_sync(conf); 2652 2653 if (mddev_is_clustered(mddev)) { 2654 conf->cluster_sync_low = 0; 2655 conf->cluster_sync_high = 0; 2656 } 2657 return 0; 2658 } 2659 2660 if (mddev->bitmap == NULL && 2661 mddev->recovery_cp == MaxSector && 2662 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2663 conf->fullsync == 0) { 2664 *skipped = 1; 2665 return max_sector - sector_nr; 2666 } 2667 /* before building a request, check if we can skip these blocks.. 2668 * This call the bitmap_start_sync doesn't actually record anything 2669 */ 2670 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2671 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2672 /* We can skip this block, and probably several more */ 2673 *skipped = 1; 2674 return sync_blocks; 2675 } 2676 2677 /* 2678 * If there is non-resync activity waiting for a turn, then let it 2679 * though before starting on this new sync request. 2680 */ 2681 if (atomic_read(&conf->nr_waiting[idx])) 2682 schedule_timeout_uninterruptible(1); 2683 2684 /* we are incrementing sector_nr below. To be safe, we check against 2685 * sector_nr + two times RESYNC_SECTORS 2686 */ 2687 2688 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2689 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2690 2691 2692 if (raise_barrier(conf, sector_nr)) 2693 return 0; 2694 2695 r1_bio = raid1_alloc_init_r1buf(conf); 2696 2697 rcu_read_lock(); 2698 /* 2699 * If we get a correctably read error during resync or recovery, 2700 * we might want to read from a different device. So we 2701 * flag all drives that could conceivably be read from for READ, 2702 * and any others (which will be non-In_sync devices) for WRITE. 2703 * If a read fails, we try reading from something else for which READ 2704 * is OK. 2705 */ 2706 2707 r1_bio->mddev = mddev; 2708 r1_bio->sector = sector_nr; 2709 r1_bio->state = 0; 2710 set_bit(R1BIO_IsSync, &r1_bio->state); 2711 /* make sure good_sectors won't go across barrier unit boundary */ 2712 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2713 2714 for (i = 0; i < conf->raid_disks * 2; i++) { 2715 struct md_rdev *rdev; 2716 bio = r1_bio->bios[i]; 2717 2718 rdev = rcu_dereference(conf->mirrors[i].rdev); 2719 if (rdev == NULL || 2720 test_bit(Faulty, &rdev->flags)) { 2721 if (i < conf->raid_disks) 2722 still_degraded = 1; 2723 } else if (!test_bit(In_sync, &rdev->flags)) { 2724 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2725 bio->bi_end_io = end_sync_write; 2726 write_targets ++; 2727 } else { 2728 /* may need to read from here */ 2729 sector_t first_bad = MaxSector; 2730 int bad_sectors; 2731 2732 if (is_badblock(rdev, sector_nr, good_sectors, 2733 &first_bad, &bad_sectors)) { 2734 if (first_bad > sector_nr) 2735 good_sectors = first_bad - sector_nr; 2736 else { 2737 bad_sectors -= (sector_nr - first_bad); 2738 if (min_bad == 0 || 2739 min_bad > bad_sectors) 2740 min_bad = bad_sectors; 2741 } 2742 } 2743 if (sector_nr < first_bad) { 2744 if (test_bit(WriteMostly, &rdev->flags)) { 2745 if (wonly < 0) 2746 wonly = i; 2747 } else { 2748 if (disk < 0) 2749 disk = i; 2750 } 2751 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2752 bio->bi_end_io = end_sync_read; 2753 read_targets++; 2754 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2755 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2756 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2757 /* 2758 * The device is suitable for reading (InSync), 2759 * but has bad block(s) here. Let's try to correct them, 2760 * if we are doing resync or repair. Otherwise, leave 2761 * this device alone for this sync request. 2762 */ 2763 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2764 bio->bi_end_io = end_sync_write; 2765 write_targets++; 2766 } 2767 } 2768 if (rdev && bio->bi_end_io) { 2769 atomic_inc(&rdev->nr_pending); 2770 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2771 bio_set_dev(bio, rdev->bdev); 2772 if (test_bit(FailFast, &rdev->flags)) 2773 bio->bi_opf |= MD_FAILFAST; 2774 } 2775 } 2776 rcu_read_unlock(); 2777 if (disk < 0) 2778 disk = wonly; 2779 r1_bio->read_disk = disk; 2780 2781 if (read_targets == 0 && min_bad > 0) { 2782 /* These sectors are bad on all InSync devices, so we 2783 * need to mark them bad on all write targets 2784 */ 2785 int ok = 1; 2786 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2787 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2788 struct md_rdev *rdev = conf->mirrors[i].rdev; 2789 ok = rdev_set_badblocks(rdev, sector_nr, 2790 min_bad, 0 2791 ) && ok; 2792 } 2793 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2794 *skipped = 1; 2795 put_buf(r1_bio); 2796 2797 if (!ok) { 2798 /* Cannot record the badblocks, so need to 2799 * abort the resync. 2800 * If there are multiple read targets, could just 2801 * fail the really bad ones ??? 2802 */ 2803 conf->recovery_disabled = mddev->recovery_disabled; 2804 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2805 return 0; 2806 } else 2807 return min_bad; 2808 2809 } 2810 if (min_bad > 0 && min_bad < good_sectors) { 2811 /* only resync enough to reach the next bad->good 2812 * transition */ 2813 good_sectors = min_bad; 2814 } 2815 2816 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2817 /* extra read targets are also write targets */ 2818 write_targets += read_targets-1; 2819 2820 if (write_targets == 0 || read_targets == 0) { 2821 /* There is nowhere to write, so all non-sync 2822 * drives must be failed - so we are finished 2823 */ 2824 sector_t rv; 2825 if (min_bad > 0) 2826 max_sector = sector_nr + min_bad; 2827 rv = max_sector - sector_nr; 2828 *skipped = 1; 2829 put_buf(r1_bio); 2830 return rv; 2831 } 2832 2833 if (max_sector > mddev->resync_max) 2834 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2835 if (max_sector > sector_nr + good_sectors) 2836 max_sector = sector_nr + good_sectors; 2837 nr_sectors = 0; 2838 sync_blocks = 0; 2839 do { 2840 struct page *page; 2841 int len = PAGE_SIZE; 2842 if (sector_nr + (len>>9) > max_sector) 2843 len = (max_sector - sector_nr) << 9; 2844 if (len == 0) 2845 break; 2846 if (sync_blocks == 0) { 2847 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2848 &sync_blocks, still_degraded) && 2849 !conf->fullsync && 2850 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2851 break; 2852 if ((len >> 9) > sync_blocks) 2853 len = sync_blocks<<9; 2854 } 2855 2856 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2857 struct resync_pages *rp; 2858 2859 bio = r1_bio->bios[i]; 2860 rp = get_resync_pages(bio); 2861 if (bio->bi_end_io) { 2862 page = resync_fetch_page(rp, page_idx); 2863 2864 /* 2865 * won't fail because the vec table is big 2866 * enough to hold all these pages 2867 */ 2868 bio_add_page(bio, page, len, 0); 2869 } 2870 } 2871 nr_sectors += len>>9; 2872 sector_nr += len>>9; 2873 sync_blocks -= (len>>9); 2874 } while (++page_idx < RESYNC_PAGES); 2875 2876 r1_bio->sectors = nr_sectors; 2877 2878 if (mddev_is_clustered(mddev) && 2879 conf->cluster_sync_high < sector_nr + nr_sectors) { 2880 conf->cluster_sync_low = mddev->curr_resync_completed; 2881 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2882 /* Send resync message */ 2883 md_cluster_ops->resync_info_update(mddev, 2884 conf->cluster_sync_low, 2885 conf->cluster_sync_high); 2886 } 2887 2888 /* For a user-requested sync, we read all readable devices and do a 2889 * compare 2890 */ 2891 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2892 atomic_set(&r1_bio->remaining, read_targets); 2893 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2894 bio = r1_bio->bios[i]; 2895 if (bio->bi_end_io == end_sync_read) { 2896 read_targets--; 2897 md_sync_acct_bio(bio, nr_sectors); 2898 if (read_targets == 1) 2899 bio->bi_opf &= ~MD_FAILFAST; 2900 submit_bio_noacct(bio); 2901 } 2902 } 2903 } else { 2904 atomic_set(&r1_bio->remaining, 1); 2905 bio = r1_bio->bios[r1_bio->read_disk]; 2906 md_sync_acct_bio(bio, nr_sectors); 2907 if (read_targets == 1) 2908 bio->bi_opf &= ~MD_FAILFAST; 2909 submit_bio_noacct(bio); 2910 } 2911 return nr_sectors; 2912 } 2913 2914 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2915 { 2916 if (sectors) 2917 return sectors; 2918 2919 return mddev->dev_sectors; 2920 } 2921 2922 static struct r1conf *setup_conf(struct mddev *mddev) 2923 { 2924 struct r1conf *conf; 2925 int i; 2926 struct raid1_info *disk; 2927 struct md_rdev *rdev; 2928 int err = -ENOMEM; 2929 2930 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2931 if (!conf) 2932 goto abort; 2933 2934 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2935 sizeof(atomic_t), GFP_KERNEL); 2936 if (!conf->nr_pending) 2937 goto abort; 2938 2939 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2940 sizeof(atomic_t), GFP_KERNEL); 2941 if (!conf->nr_waiting) 2942 goto abort; 2943 2944 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2945 sizeof(atomic_t), GFP_KERNEL); 2946 if (!conf->nr_queued) 2947 goto abort; 2948 2949 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2950 sizeof(atomic_t), GFP_KERNEL); 2951 if (!conf->barrier) 2952 goto abort; 2953 2954 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2955 mddev->raid_disks, 2), 2956 GFP_KERNEL); 2957 if (!conf->mirrors) 2958 goto abort; 2959 2960 conf->tmppage = alloc_page(GFP_KERNEL); 2961 if (!conf->tmppage) 2962 goto abort; 2963 2964 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2965 if (!conf->poolinfo) 2966 goto abort; 2967 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2968 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2969 rbio_pool_free, conf->poolinfo); 2970 if (err) 2971 goto abort; 2972 2973 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 2974 if (err) 2975 goto abort; 2976 2977 conf->poolinfo->mddev = mddev; 2978 2979 err = -EINVAL; 2980 spin_lock_init(&conf->device_lock); 2981 rdev_for_each(rdev, mddev) { 2982 int disk_idx = rdev->raid_disk; 2983 if (disk_idx >= mddev->raid_disks 2984 || disk_idx < 0) 2985 continue; 2986 if (test_bit(Replacement, &rdev->flags)) 2987 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2988 else 2989 disk = conf->mirrors + disk_idx; 2990 2991 if (disk->rdev) 2992 goto abort; 2993 disk->rdev = rdev; 2994 disk->head_position = 0; 2995 disk->seq_start = MaxSector; 2996 } 2997 conf->raid_disks = mddev->raid_disks; 2998 conf->mddev = mddev; 2999 INIT_LIST_HEAD(&conf->retry_list); 3000 INIT_LIST_HEAD(&conf->bio_end_io_list); 3001 3002 spin_lock_init(&conf->resync_lock); 3003 init_waitqueue_head(&conf->wait_barrier); 3004 3005 bio_list_init(&conf->pending_bio_list); 3006 conf->pending_count = 0; 3007 conf->recovery_disabled = mddev->recovery_disabled - 1; 3008 3009 err = -EIO; 3010 for (i = 0; i < conf->raid_disks * 2; i++) { 3011 3012 disk = conf->mirrors + i; 3013 3014 if (i < conf->raid_disks && 3015 disk[conf->raid_disks].rdev) { 3016 /* This slot has a replacement. */ 3017 if (!disk->rdev) { 3018 /* No original, just make the replacement 3019 * a recovering spare 3020 */ 3021 disk->rdev = 3022 disk[conf->raid_disks].rdev; 3023 disk[conf->raid_disks].rdev = NULL; 3024 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3025 /* Original is not in_sync - bad */ 3026 goto abort; 3027 } 3028 3029 if (!disk->rdev || 3030 !test_bit(In_sync, &disk->rdev->flags)) { 3031 disk->head_position = 0; 3032 if (disk->rdev && 3033 (disk->rdev->saved_raid_disk < 0)) 3034 conf->fullsync = 1; 3035 } 3036 } 3037 3038 err = -ENOMEM; 3039 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3040 if (!conf->thread) 3041 goto abort; 3042 3043 return conf; 3044 3045 abort: 3046 if (conf) { 3047 mempool_exit(&conf->r1bio_pool); 3048 kfree(conf->mirrors); 3049 safe_put_page(conf->tmppage); 3050 kfree(conf->poolinfo); 3051 kfree(conf->nr_pending); 3052 kfree(conf->nr_waiting); 3053 kfree(conf->nr_queued); 3054 kfree(conf->barrier); 3055 bioset_exit(&conf->bio_split); 3056 kfree(conf); 3057 } 3058 return ERR_PTR(err); 3059 } 3060 3061 static void raid1_free(struct mddev *mddev, void *priv); 3062 static int raid1_run(struct mddev *mddev) 3063 { 3064 struct r1conf *conf; 3065 int i; 3066 struct md_rdev *rdev; 3067 int ret; 3068 bool discard_supported = false; 3069 3070 if (mddev->level != 1) { 3071 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3072 mdname(mddev), mddev->level); 3073 return -EIO; 3074 } 3075 if (mddev->reshape_position != MaxSector) { 3076 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3077 mdname(mddev)); 3078 return -EIO; 3079 } 3080 if (mddev_init_writes_pending(mddev) < 0) 3081 return -ENOMEM; 3082 /* 3083 * copy the already verified devices into our private RAID1 3084 * bookkeeping area. [whatever we allocate in run(), 3085 * should be freed in raid1_free()] 3086 */ 3087 if (mddev->private == NULL) 3088 conf = setup_conf(mddev); 3089 else 3090 conf = mddev->private; 3091 3092 if (IS_ERR(conf)) 3093 return PTR_ERR(conf); 3094 3095 if (mddev->queue) { 3096 blk_queue_max_write_same_sectors(mddev->queue, 0); 3097 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3098 } 3099 3100 rdev_for_each(rdev, mddev) { 3101 if (!mddev->gendisk) 3102 continue; 3103 disk_stack_limits(mddev->gendisk, rdev->bdev, 3104 rdev->data_offset << 9); 3105 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3106 discard_supported = true; 3107 } 3108 3109 mddev->degraded = 0; 3110 for (i = 0; i < conf->raid_disks; i++) 3111 if (conf->mirrors[i].rdev == NULL || 3112 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3113 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3114 mddev->degraded++; 3115 /* 3116 * RAID1 needs at least one disk in active 3117 */ 3118 if (conf->raid_disks - mddev->degraded < 1) { 3119 ret = -EINVAL; 3120 goto abort; 3121 } 3122 3123 if (conf->raid_disks - mddev->degraded == 1) 3124 mddev->recovery_cp = MaxSector; 3125 3126 if (mddev->recovery_cp != MaxSector) 3127 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3128 mdname(mddev)); 3129 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3130 mdname(mddev), mddev->raid_disks - mddev->degraded, 3131 mddev->raid_disks); 3132 3133 /* 3134 * Ok, everything is just fine now 3135 */ 3136 mddev->thread = conf->thread; 3137 conf->thread = NULL; 3138 mddev->private = conf; 3139 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3140 3141 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3142 3143 if (mddev->queue) { 3144 if (discard_supported) 3145 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3146 mddev->queue); 3147 else 3148 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3149 mddev->queue); 3150 } 3151 3152 ret = md_integrity_register(mddev); 3153 if (ret) { 3154 md_unregister_thread(&mddev->thread); 3155 goto abort; 3156 } 3157 return 0; 3158 3159 abort: 3160 raid1_free(mddev, conf); 3161 return ret; 3162 } 3163 3164 static void raid1_free(struct mddev *mddev, void *priv) 3165 { 3166 struct r1conf *conf = priv; 3167 3168 mempool_exit(&conf->r1bio_pool); 3169 kfree(conf->mirrors); 3170 safe_put_page(conf->tmppage); 3171 kfree(conf->poolinfo); 3172 kfree(conf->nr_pending); 3173 kfree(conf->nr_waiting); 3174 kfree(conf->nr_queued); 3175 kfree(conf->barrier); 3176 bioset_exit(&conf->bio_split); 3177 kfree(conf); 3178 } 3179 3180 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3181 { 3182 /* no resync is happening, and there is enough space 3183 * on all devices, so we can resize. 3184 * We need to make sure resync covers any new space. 3185 * If the array is shrinking we should possibly wait until 3186 * any io in the removed space completes, but it hardly seems 3187 * worth it. 3188 */ 3189 sector_t newsize = raid1_size(mddev, sectors, 0); 3190 if (mddev->external_size && 3191 mddev->array_sectors > newsize) 3192 return -EINVAL; 3193 if (mddev->bitmap) { 3194 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3195 if (ret) 3196 return ret; 3197 } 3198 md_set_array_sectors(mddev, newsize); 3199 if (sectors > mddev->dev_sectors && 3200 mddev->recovery_cp > mddev->dev_sectors) { 3201 mddev->recovery_cp = mddev->dev_sectors; 3202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3203 } 3204 mddev->dev_sectors = sectors; 3205 mddev->resync_max_sectors = sectors; 3206 return 0; 3207 } 3208 3209 static int raid1_reshape(struct mddev *mddev) 3210 { 3211 /* We need to: 3212 * 1/ resize the r1bio_pool 3213 * 2/ resize conf->mirrors 3214 * 3215 * We allocate a new r1bio_pool if we can. 3216 * Then raise a device barrier and wait until all IO stops. 3217 * Then resize conf->mirrors and swap in the new r1bio pool. 3218 * 3219 * At the same time, we "pack" the devices so that all the missing 3220 * devices have the higher raid_disk numbers. 3221 */ 3222 mempool_t newpool, oldpool; 3223 struct pool_info *newpoolinfo; 3224 struct raid1_info *newmirrors; 3225 struct r1conf *conf = mddev->private; 3226 int cnt, raid_disks; 3227 unsigned long flags; 3228 int d, d2; 3229 int ret; 3230 3231 memset(&newpool, 0, sizeof(newpool)); 3232 memset(&oldpool, 0, sizeof(oldpool)); 3233 3234 /* Cannot change chunk_size, layout, or level */ 3235 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3236 mddev->layout != mddev->new_layout || 3237 mddev->level != mddev->new_level) { 3238 mddev->new_chunk_sectors = mddev->chunk_sectors; 3239 mddev->new_layout = mddev->layout; 3240 mddev->new_level = mddev->level; 3241 return -EINVAL; 3242 } 3243 3244 if (!mddev_is_clustered(mddev)) 3245 md_allow_write(mddev); 3246 3247 raid_disks = mddev->raid_disks + mddev->delta_disks; 3248 3249 if (raid_disks < conf->raid_disks) { 3250 cnt=0; 3251 for (d= 0; d < conf->raid_disks; d++) 3252 if (conf->mirrors[d].rdev) 3253 cnt++; 3254 if (cnt > raid_disks) 3255 return -EBUSY; 3256 } 3257 3258 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3259 if (!newpoolinfo) 3260 return -ENOMEM; 3261 newpoolinfo->mddev = mddev; 3262 newpoolinfo->raid_disks = raid_disks * 2; 3263 3264 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3265 rbio_pool_free, newpoolinfo); 3266 if (ret) { 3267 kfree(newpoolinfo); 3268 return ret; 3269 } 3270 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3271 raid_disks, 2), 3272 GFP_KERNEL); 3273 if (!newmirrors) { 3274 kfree(newpoolinfo); 3275 mempool_exit(&newpool); 3276 return -ENOMEM; 3277 } 3278 3279 freeze_array(conf, 0); 3280 3281 /* ok, everything is stopped */ 3282 oldpool = conf->r1bio_pool; 3283 conf->r1bio_pool = newpool; 3284 3285 for (d = d2 = 0; d < conf->raid_disks; d++) { 3286 struct md_rdev *rdev = conf->mirrors[d].rdev; 3287 if (rdev && rdev->raid_disk != d2) { 3288 sysfs_unlink_rdev(mddev, rdev); 3289 rdev->raid_disk = d2; 3290 sysfs_unlink_rdev(mddev, rdev); 3291 if (sysfs_link_rdev(mddev, rdev)) 3292 pr_warn("md/raid1:%s: cannot register rd%d\n", 3293 mdname(mddev), rdev->raid_disk); 3294 } 3295 if (rdev) 3296 newmirrors[d2++].rdev = rdev; 3297 } 3298 kfree(conf->mirrors); 3299 conf->mirrors = newmirrors; 3300 kfree(conf->poolinfo); 3301 conf->poolinfo = newpoolinfo; 3302 3303 spin_lock_irqsave(&conf->device_lock, flags); 3304 mddev->degraded += (raid_disks - conf->raid_disks); 3305 spin_unlock_irqrestore(&conf->device_lock, flags); 3306 conf->raid_disks = mddev->raid_disks = raid_disks; 3307 mddev->delta_disks = 0; 3308 3309 unfreeze_array(conf); 3310 3311 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3312 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3313 md_wakeup_thread(mddev->thread); 3314 3315 mempool_exit(&oldpool); 3316 return 0; 3317 } 3318 3319 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3320 { 3321 struct r1conf *conf = mddev->private; 3322 3323 if (quiesce) 3324 freeze_array(conf, 0); 3325 else 3326 unfreeze_array(conf); 3327 } 3328 3329 static void *raid1_takeover(struct mddev *mddev) 3330 { 3331 /* raid1 can take over: 3332 * raid5 with 2 devices, any layout or chunk size 3333 */ 3334 if (mddev->level == 5 && mddev->raid_disks == 2) { 3335 struct r1conf *conf; 3336 mddev->new_level = 1; 3337 mddev->new_layout = 0; 3338 mddev->new_chunk_sectors = 0; 3339 conf = setup_conf(mddev); 3340 if (!IS_ERR(conf)) { 3341 /* Array must appear to be quiesced */ 3342 conf->array_frozen = 1; 3343 mddev_clear_unsupported_flags(mddev, 3344 UNSUPPORTED_MDDEV_FLAGS); 3345 } 3346 return conf; 3347 } 3348 return ERR_PTR(-EINVAL); 3349 } 3350 3351 static struct md_personality raid1_personality = 3352 { 3353 .name = "raid1", 3354 .level = 1, 3355 .owner = THIS_MODULE, 3356 .make_request = raid1_make_request, 3357 .run = raid1_run, 3358 .free = raid1_free, 3359 .status = raid1_status, 3360 .error_handler = raid1_error, 3361 .hot_add_disk = raid1_add_disk, 3362 .hot_remove_disk= raid1_remove_disk, 3363 .spare_active = raid1_spare_active, 3364 .sync_request = raid1_sync_request, 3365 .resize = raid1_resize, 3366 .size = raid1_size, 3367 .check_reshape = raid1_reshape, 3368 .quiesce = raid1_quiesce, 3369 .takeover = raid1_takeover, 3370 }; 3371 3372 static int __init raid_init(void) 3373 { 3374 return register_md_personality(&raid1_personality); 3375 } 3376 3377 static void raid_exit(void) 3378 { 3379 unregister_md_personality(&raid1_personality); 3380 } 3381 3382 module_init(raid_init); 3383 module_exit(raid_exit); 3384 MODULE_LICENSE("GPL"); 3385 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3386 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3387 MODULE_ALIAS("md-raid1"); 3388 MODULE_ALIAS("md-level-1"); 3389 3390 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3391