1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void allow_barrier(conf_t *conf); 56 static void lower_barrier(conf_t *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 r1bio_t *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < pi->raid_disks ) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 r1bio_t *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (*bio && *bio != IO_BLOCKED) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(r1bio_t *r1_bio) 176 { 177 conf_t *conf = r1_bio->mddev->private; 178 179 /* 180 * Wake up any possible resync thread that waits for the device 181 * to go idle. 182 */ 183 allow_barrier(conf); 184 185 put_all_bios(conf, r1_bio); 186 mempool_free(r1_bio, conf->r1bio_pool); 187 } 188 189 static void put_buf(r1bio_t *r1_bio) 190 { 191 conf_t *conf = r1_bio->mddev->private; 192 int i; 193 194 for (i=0; i<conf->raid_disks; i++) { 195 struct bio *bio = r1_bio->bios[i]; 196 if (bio->bi_end_io) 197 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 198 } 199 200 mempool_free(r1_bio, conf->r1buf_pool); 201 202 lower_barrier(conf); 203 } 204 205 static void reschedule_retry(r1bio_t *r1_bio) 206 { 207 unsigned long flags; 208 mddev_t *mddev = r1_bio->mddev; 209 conf_t *conf = mddev->private; 210 211 spin_lock_irqsave(&conf->device_lock, flags); 212 list_add(&r1_bio->retry_list, &conf->retry_list); 213 conf->nr_queued ++; 214 spin_unlock_irqrestore(&conf->device_lock, flags); 215 216 wake_up(&conf->wait_barrier); 217 md_wakeup_thread(mddev->thread); 218 } 219 220 /* 221 * raid_end_bio_io() is called when we have finished servicing a mirrored 222 * operation and are ready to return a success/failure code to the buffer 223 * cache layer. 224 */ 225 static void raid_end_bio_io(r1bio_t *r1_bio) 226 { 227 struct bio *bio = r1_bio->master_bio; 228 229 /* if nobody has done the final endio yet, do it now */ 230 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 231 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 232 (bio_data_dir(bio) == WRITE) ? "write" : "read", 233 (unsigned long long) bio->bi_sector, 234 (unsigned long long) bio->bi_sector + 235 (bio->bi_size >> 9) - 1); 236 237 bio_endio(bio, 238 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 239 } 240 free_r1bio(r1_bio); 241 } 242 243 /* 244 * Update disk head position estimator based on IRQ completion info. 245 */ 246 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 247 { 248 conf_t *conf = r1_bio->mddev->private; 249 250 conf->mirrors[disk].head_position = 251 r1_bio->sector + (r1_bio->sectors); 252 } 253 254 static void raid1_end_read_request(struct bio *bio, int error) 255 { 256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 257 r1bio_t *r1_bio = bio->bi_private; 258 int mirror; 259 conf_t *conf = r1_bio->mddev->private; 260 261 mirror = r1_bio->read_disk; 262 /* 263 * this branch is our 'one mirror IO has finished' event handler: 264 */ 265 update_head_pos(mirror, r1_bio); 266 267 if (uptodate) 268 set_bit(R1BIO_Uptodate, &r1_bio->state); 269 else { 270 /* If all other devices have failed, we want to return 271 * the error upwards rather than fail the last device. 272 * Here we redefine "uptodate" to mean "Don't want to retry" 273 */ 274 unsigned long flags; 275 spin_lock_irqsave(&conf->device_lock, flags); 276 if (r1_bio->mddev->degraded == conf->raid_disks || 277 (r1_bio->mddev->degraded == conf->raid_disks-1 && 278 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 279 uptodate = 1; 280 spin_unlock_irqrestore(&conf->device_lock, flags); 281 } 282 283 if (uptodate) 284 raid_end_bio_io(r1_bio); 285 else { 286 /* 287 * oops, read error: 288 */ 289 char b[BDEVNAME_SIZE]; 290 if (printk_ratelimit()) 291 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 292 mdname(conf->mddev), 293 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 294 reschedule_retry(r1_bio); 295 } 296 297 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 298 } 299 300 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv, 301 int behind) 302 { 303 if (atomic_dec_and_test(&r1_bio->remaining)) 304 { 305 /* it really is the end of this request */ 306 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 307 /* free extra copy of the data pages */ 308 int i = vcnt; 309 while (i--) 310 safe_put_page(bv[i].bv_page); 311 } 312 /* clear the bitmap if all writes complete successfully */ 313 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 314 r1_bio->sectors, 315 !test_bit(R1BIO_Degraded, &r1_bio->state), 316 behind); 317 md_write_end(r1_bio->mddev); 318 raid_end_bio_io(r1_bio); 319 } 320 } 321 322 static void raid1_end_write_request(struct bio *bio, int error) 323 { 324 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 325 r1bio_t *r1_bio = bio->bi_private; 326 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 327 conf_t *conf = r1_bio->mddev->private; 328 struct bio *to_put = NULL; 329 330 331 for (mirror = 0; mirror < conf->raid_disks; mirror++) 332 if (r1_bio->bios[mirror] == bio) 333 break; 334 335 /* 336 * 'one mirror IO has finished' event handler: 337 */ 338 r1_bio->bios[mirror] = NULL; 339 to_put = bio; 340 if (!uptodate) { 341 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 342 /* an I/O failed, we can't clear the bitmap */ 343 set_bit(R1BIO_Degraded, &r1_bio->state); 344 } else 345 /* 346 * Set R1BIO_Uptodate in our master bio, so that we 347 * will return a good error code for to the higher 348 * levels even if IO on some other mirrored buffer 349 * fails. 350 * 351 * The 'master' represents the composite IO operation 352 * to user-side. So if something waits for IO, then it 353 * will wait for the 'master' bio. 354 */ 355 set_bit(R1BIO_Uptodate, &r1_bio->state); 356 357 update_head_pos(mirror, r1_bio); 358 359 if (behind) { 360 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 361 atomic_dec(&r1_bio->behind_remaining); 362 363 /* 364 * In behind mode, we ACK the master bio once the I/O 365 * has safely reached all non-writemostly 366 * disks. Setting the Returned bit ensures that this 367 * gets done only once -- we don't ever want to return 368 * -EIO here, instead we'll wait 369 */ 370 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 371 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 372 /* Maybe we can return now */ 373 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 374 struct bio *mbio = r1_bio->master_bio; 375 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 376 (unsigned long long) mbio->bi_sector, 377 (unsigned long long) mbio->bi_sector + 378 (mbio->bi_size >> 9) - 1); 379 bio_endio(mbio, 0); 380 } 381 } 382 } 383 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 384 385 /* 386 * Let's see if all mirrored write operations have finished 387 * already. 388 */ 389 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind); 390 391 if (to_put) 392 bio_put(to_put); 393 } 394 395 396 /* 397 * This routine returns the disk from which the requested read should 398 * be done. There is a per-array 'next expected sequential IO' sector 399 * number - if this matches on the next IO then we use the last disk. 400 * There is also a per-disk 'last know head position' sector that is 401 * maintained from IRQ contexts, both the normal and the resync IO 402 * completion handlers update this position correctly. If there is no 403 * perfect sequential match then we pick the disk whose head is closest. 404 * 405 * If there are 2 mirrors in the same 2 devices, performance degrades 406 * because position is mirror, not device based. 407 * 408 * The rdev for the device selected will have nr_pending incremented. 409 */ 410 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 411 { 412 const sector_t this_sector = r1_bio->sector; 413 const int sectors = r1_bio->sectors; 414 int new_disk = -1; 415 int start_disk; 416 int i; 417 sector_t new_distance, current_distance; 418 mdk_rdev_t *rdev; 419 int choose_first; 420 421 rcu_read_lock(); 422 /* 423 * Check if we can balance. We can balance on the whole 424 * device if no resync is going on, or below the resync window. 425 * We take the first readable disk when above the resync window. 426 */ 427 retry: 428 if (conf->mddev->recovery_cp < MaxSector && 429 (this_sector + sectors >= conf->next_resync)) { 430 choose_first = 1; 431 start_disk = 0; 432 } else { 433 choose_first = 0; 434 start_disk = conf->last_used; 435 } 436 437 /* make sure the disk is operational */ 438 for (i = 0 ; i < conf->raid_disks ; i++) { 439 int disk = start_disk + i; 440 if (disk >= conf->raid_disks) 441 disk -= conf->raid_disks; 442 443 rdev = rcu_dereference(conf->mirrors[disk].rdev); 444 if (r1_bio->bios[disk] == IO_BLOCKED 445 || rdev == NULL 446 || !test_bit(In_sync, &rdev->flags)) 447 continue; 448 449 new_disk = disk; 450 if (!test_bit(WriteMostly, &rdev->flags)) 451 break; 452 } 453 454 if (new_disk < 0 || choose_first) 455 goto rb_out; 456 457 /* 458 * Don't change to another disk for sequential reads: 459 */ 460 if (conf->next_seq_sect == this_sector) 461 goto rb_out; 462 if (this_sector == conf->mirrors[new_disk].head_position) 463 goto rb_out; 464 465 current_distance = abs(this_sector 466 - conf->mirrors[new_disk].head_position); 467 468 /* look for a better disk - i.e. head is closer */ 469 start_disk = new_disk; 470 for (i = 1; i < conf->raid_disks; i++) { 471 int disk = start_disk + 1; 472 if (disk >= conf->raid_disks) 473 disk -= conf->raid_disks; 474 475 rdev = rcu_dereference(conf->mirrors[disk].rdev); 476 if (r1_bio->bios[disk] == IO_BLOCKED 477 || rdev == NULL 478 || !test_bit(In_sync, &rdev->flags) 479 || test_bit(WriteMostly, &rdev->flags)) 480 continue; 481 482 if (!atomic_read(&rdev->nr_pending)) { 483 new_disk = disk; 484 break; 485 } 486 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 487 if (new_distance < current_distance) { 488 current_distance = new_distance; 489 new_disk = disk; 490 } 491 } 492 493 rb_out: 494 if (new_disk >= 0) { 495 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 496 if (!rdev) 497 goto retry; 498 atomic_inc(&rdev->nr_pending); 499 if (!test_bit(In_sync, &rdev->flags)) { 500 /* cannot risk returning a device that failed 501 * before we inc'ed nr_pending 502 */ 503 rdev_dec_pending(rdev, conf->mddev); 504 goto retry; 505 } 506 conf->next_seq_sect = this_sector + sectors; 507 conf->last_used = new_disk; 508 } 509 rcu_read_unlock(); 510 511 return new_disk; 512 } 513 514 static int raid1_congested(void *data, int bits) 515 { 516 mddev_t *mddev = data; 517 conf_t *conf = mddev->private; 518 int i, ret = 0; 519 520 if (mddev_congested(mddev, bits)) 521 return 1; 522 523 rcu_read_lock(); 524 for (i = 0; i < mddev->raid_disks; i++) { 525 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 526 if (rdev && !test_bit(Faulty, &rdev->flags)) { 527 struct request_queue *q = bdev_get_queue(rdev->bdev); 528 529 /* Note the '|| 1' - when read_balance prefers 530 * non-congested targets, it can be removed 531 */ 532 if ((bits & (1<<BDI_async_congested)) || 1) 533 ret |= bdi_congested(&q->backing_dev_info, bits); 534 else 535 ret &= bdi_congested(&q->backing_dev_info, bits); 536 } 537 } 538 rcu_read_unlock(); 539 return ret; 540 } 541 542 543 static void flush_pending_writes(conf_t *conf) 544 { 545 /* Any writes that have been queued but are awaiting 546 * bitmap updates get flushed here. 547 */ 548 spin_lock_irq(&conf->device_lock); 549 550 if (conf->pending_bio_list.head) { 551 struct bio *bio; 552 bio = bio_list_get(&conf->pending_bio_list); 553 spin_unlock_irq(&conf->device_lock); 554 /* flush any pending bitmap writes to 555 * disk before proceeding w/ I/O */ 556 bitmap_unplug(conf->mddev->bitmap); 557 558 while (bio) { /* submit pending writes */ 559 struct bio *next = bio->bi_next; 560 bio->bi_next = NULL; 561 generic_make_request(bio); 562 bio = next; 563 } 564 } else 565 spin_unlock_irq(&conf->device_lock); 566 } 567 568 /* Barriers.... 569 * Sometimes we need to suspend IO while we do something else, 570 * either some resync/recovery, or reconfigure the array. 571 * To do this we raise a 'barrier'. 572 * The 'barrier' is a counter that can be raised multiple times 573 * to count how many activities are happening which preclude 574 * normal IO. 575 * We can only raise the barrier if there is no pending IO. 576 * i.e. if nr_pending == 0. 577 * We choose only to raise the barrier if no-one is waiting for the 578 * barrier to go down. This means that as soon as an IO request 579 * is ready, no other operations which require a barrier will start 580 * until the IO request has had a chance. 581 * 582 * So: regular IO calls 'wait_barrier'. When that returns there 583 * is no backgroup IO happening, It must arrange to call 584 * allow_barrier when it has finished its IO. 585 * backgroup IO calls must call raise_barrier. Once that returns 586 * there is no normal IO happeing. It must arrange to call 587 * lower_barrier when the particular background IO completes. 588 */ 589 #define RESYNC_DEPTH 32 590 591 static void raise_barrier(conf_t *conf) 592 { 593 spin_lock_irq(&conf->resync_lock); 594 595 /* Wait until no block IO is waiting */ 596 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 597 conf->resync_lock, ); 598 599 /* block any new IO from starting */ 600 conf->barrier++; 601 602 /* Now wait for all pending IO to complete */ 603 wait_event_lock_irq(conf->wait_barrier, 604 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 605 conf->resync_lock, ); 606 607 spin_unlock_irq(&conf->resync_lock); 608 } 609 610 static void lower_barrier(conf_t *conf) 611 { 612 unsigned long flags; 613 BUG_ON(conf->barrier <= 0); 614 spin_lock_irqsave(&conf->resync_lock, flags); 615 conf->barrier--; 616 spin_unlock_irqrestore(&conf->resync_lock, flags); 617 wake_up(&conf->wait_barrier); 618 } 619 620 static void wait_barrier(conf_t *conf) 621 { 622 spin_lock_irq(&conf->resync_lock); 623 if (conf->barrier) { 624 conf->nr_waiting++; 625 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 626 conf->resync_lock, 627 ); 628 conf->nr_waiting--; 629 } 630 conf->nr_pending++; 631 spin_unlock_irq(&conf->resync_lock); 632 } 633 634 static void allow_barrier(conf_t *conf) 635 { 636 unsigned long flags; 637 spin_lock_irqsave(&conf->resync_lock, flags); 638 conf->nr_pending--; 639 spin_unlock_irqrestore(&conf->resync_lock, flags); 640 wake_up(&conf->wait_barrier); 641 } 642 643 static void freeze_array(conf_t *conf) 644 { 645 /* stop syncio and normal IO and wait for everything to 646 * go quite. 647 * We increment barrier and nr_waiting, and then 648 * wait until nr_pending match nr_queued+1 649 * This is called in the context of one normal IO request 650 * that has failed. Thus any sync request that might be pending 651 * will be blocked by nr_pending, and we need to wait for 652 * pending IO requests to complete or be queued for re-try. 653 * Thus the number queued (nr_queued) plus this request (1) 654 * must match the number of pending IOs (nr_pending) before 655 * we continue. 656 */ 657 spin_lock_irq(&conf->resync_lock); 658 conf->barrier++; 659 conf->nr_waiting++; 660 wait_event_lock_irq(conf->wait_barrier, 661 conf->nr_pending == conf->nr_queued+1, 662 conf->resync_lock, 663 flush_pending_writes(conf)); 664 spin_unlock_irq(&conf->resync_lock); 665 } 666 static void unfreeze_array(conf_t *conf) 667 { 668 /* reverse the effect of the freeze */ 669 spin_lock_irq(&conf->resync_lock); 670 conf->barrier--; 671 conf->nr_waiting--; 672 wake_up(&conf->wait_barrier); 673 spin_unlock_irq(&conf->resync_lock); 674 } 675 676 677 /* duplicate the data pages for behind I/O 678 * We return a list of bio_vec rather than just page pointers 679 * as it makes freeing easier 680 */ 681 static struct bio_vec *alloc_behind_pages(struct bio *bio) 682 { 683 int i; 684 struct bio_vec *bvec; 685 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 686 GFP_NOIO); 687 if (unlikely(!pages)) 688 goto do_sync_io; 689 690 bio_for_each_segment(bvec, bio, i) { 691 pages[i].bv_page = alloc_page(GFP_NOIO); 692 if (unlikely(!pages[i].bv_page)) 693 goto do_sync_io; 694 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset, 695 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 696 kunmap(pages[i].bv_page); 697 kunmap(bvec->bv_page); 698 } 699 700 return pages; 701 702 do_sync_io: 703 if (pages) 704 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++) 705 put_page(pages[i].bv_page); 706 kfree(pages); 707 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 708 return NULL; 709 } 710 711 static int make_request(mddev_t *mddev, struct bio * bio) 712 { 713 conf_t *conf = mddev->private; 714 mirror_info_t *mirror; 715 r1bio_t *r1_bio; 716 struct bio *read_bio; 717 int i, targets = 0, disks; 718 struct bitmap *bitmap; 719 unsigned long flags; 720 struct bio_vec *behind_pages = NULL; 721 const int rw = bio_data_dir(bio); 722 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 723 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 724 mdk_rdev_t *blocked_rdev; 725 int plugged; 726 727 /* 728 * Register the new request and wait if the reconstruction 729 * thread has put up a bar for new requests. 730 * Continue immediately if no resync is active currently. 731 */ 732 733 md_write_start(mddev, bio); /* wait on superblock update early */ 734 735 if (bio_data_dir(bio) == WRITE && 736 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 737 bio->bi_sector < mddev->suspend_hi) { 738 /* As the suspend_* range is controlled by 739 * userspace, we want an interruptible 740 * wait. 741 */ 742 DEFINE_WAIT(w); 743 for (;;) { 744 flush_signals(current); 745 prepare_to_wait(&conf->wait_barrier, 746 &w, TASK_INTERRUPTIBLE); 747 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 748 bio->bi_sector >= mddev->suspend_hi) 749 break; 750 schedule(); 751 } 752 finish_wait(&conf->wait_barrier, &w); 753 } 754 755 wait_barrier(conf); 756 757 bitmap = mddev->bitmap; 758 759 /* 760 * make_request() can abort the operation when READA is being 761 * used and no empty request is available. 762 * 763 */ 764 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 765 766 r1_bio->master_bio = bio; 767 r1_bio->sectors = bio->bi_size >> 9; 768 r1_bio->state = 0; 769 r1_bio->mddev = mddev; 770 r1_bio->sector = bio->bi_sector; 771 772 if (rw == READ) { 773 /* 774 * read balancing logic: 775 */ 776 int rdisk = read_balance(conf, r1_bio); 777 778 if (rdisk < 0) { 779 /* couldn't find anywhere to read from */ 780 raid_end_bio_io(r1_bio); 781 return 0; 782 } 783 mirror = conf->mirrors + rdisk; 784 785 if (test_bit(WriteMostly, &mirror->rdev->flags) && 786 bitmap) { 787 /* Reading from a write-mostly device must 788 * take care not to over-take any writes 789 * that are 'behind' 790 */ 791 wait_event(bitmap->behind_wait, 792 atomic_read(&bitmap->behind_writes) == 0); 793 } 794 r1_bio->read_disk = rdisk; 795 796 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 797 798 r1_bio->bios[rdisk] = read_bio; 799 800 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 801 read_bio->bi_bdev = mirror->rdev->bdev; 802 read_bio->bi_end_io = raid1_end_read_request; 803 read_bio->bi_rw = READ | do_sync; 804 read_bio->bi_private = r1_bio; 805 806 generic_make_request(read_bio); 807 return 0; 808 } 809 810 /* 811 * WRITE: 812 */ 813 /* first select target devices under spinlock and 814 * inc refcount on their rdev. Record them by setting 815 * bios[x] to bio 816 */ 817 plugged = mddev_check_plugged(mddev); 818 819 disks = conf->raid_disks; 820 retry_write: 821 blocked_rdev = NULL; 822 rcu_read_lock(); 823 for (i = 0; i < disks; i++) { 824 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 825 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 826 atomic_inc(&rdev->nr_pending); 827 blocked_rdev = rdev; 828 break; 829 } 830 if (rdev && !test_bit(Faulty, &rdev->flags)) { 831 atomic_inc(&rdev->nr_pending); 832 if (test_bit(Faulty, &rdev->flags)) { 833 rdev_dec_pending(rdev, mddev); 834 r1_bio->bios[i] = NULL; 835 } else { 836 r1_bio->bios[i] = bio; 837 targets++; 838 } 839 } else 840 r1_bio->bios[i] = NULL; 841 } 842 rcu_read_unlock(); 843 844 if (unlikely(blocked_rdev)) { 845 /* Wait for this device to become unblocked */ 846 int j; 847 848 for (j = 0; j < i; j++) 849 if (r1_bio->bios[j]) 850 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 851 852 allow_barrier(conf); 853 md_wait_for_blocked_rdev(blocked_rdev, mddev); 854 wait_barrier(conf); 855 goto retry_write; 856 } 857 858 BUG_ON(targets == 0); /* we never fail the last device */ 859 860 if (targets < conf->raid_disks) { 861 /* array is degraded, we will not clear the bitmap 862 * on I/O completion (see raid1_end_write_request) */ 863 set_bit(R1BIO_Degraded, &r1_bio->state); 864 } 865 866 /* do behind I/O ? 867 * Not if there are too many, or cannot allocate memory, 868 * or a reader on WriteMostly is waiting for behind writes 869 * to flush */ 870 if (bitmap && 871 (atomic_read(&bitmap->behind_writes) 872 < mddev->bitmap_info.max_write_behind) && 873 !waitqueue_active(&bitmap->behind_wait) && 874 (behind_pages = alloc_behind_pages(bio)) != NULL) 875 set_bit(R1BIO_BehindIO, &r1_bio->state); 876 877 atomic_set(&r1_bio->remaining, 1); 878 atomic_set(&r1_bio->behind_remaining, 0); 879 880 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 881 test_bit(R1BIO_BehindIO, &r1_bio->state)); 882 for (i = 0; i < disks; i++) { 883 struct bio *mbio; 884 if (!r1_bio->bios[i]) 885 continue; 886 887 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 888 r1_bio->bios[i] = mbio; 889 890 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 891 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 892 mbio->bi_end_io = raid1_end_write_request; 893 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 894 mbio->bi_private = r1_bio; 895 896 if (behind_pages) { 897 struct bio_vec *bvec; 898 int j; 899 900 /* Yes, I really want the '__' version so that 901 * we clear any unused pointer in the io_vec, rather 902 * than leave them unchanged. This is important 903 * because when we come to free the pages, we won't 904 * know the original bi_idx, so we just free 905 * them all 906 */ 907 __bio_for_each_segment(bvec, mbio, j, 0) 908 bvec->bv_page = behind_pages[j].bv_page; 909 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 910 atomic_inc(&r1_bio->behind_remaining); 911 } 912 913 atomic_inc(&r1_bio->remaining); 914 spin_lock_irqsave(&conf->device_lock, flags); 915 bio_list_add(&conf->pending_bio_list, mbio); 916 spin_unlock_irqrestore(&conf->device_lock, flags); 917 } 918 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL); 919 kfree(behind_pages); /* the behind pages are attached to the bios now */ 920 921 /* In case raid1d snuck in to freeze_array */ 922 wake_up(&conf->wait_barrier); 923 924 if (do_sync || !bitmap || !plugged) 925 md_wakeup_thread(mddev->thread); 926 927 return 0; 928 } 929 930 static void status(struct seq_file *seq, mddev_t *mddev) 931 { 932 conf_t *conf = mddev->private; 933 int i; 934 935 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 936 conf->raid_disks - mddev->degraded); 937 rcu_read_lock(); 938 for (i = 0; i < conf->raid_disks; i++) { 939 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 940 seq_printf(seq, "%s", 941 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 942 } 943 rcu_read_unlock(); 944 seq_printf(seq, "]"); 945 } 946 947 948 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 949 { 950 char b[BDEVNAME_SIZE]; 951 conf_t *conf = mddev->private; 952 953 /* 954 * If it is not operational, then we have already marked it as dead 955 * else if it is the last working disks, ignore the error, let the 956 * next level up know. 957 * else mark the drive as failed 958 */ 959 if (test_bit(In_sync, &rdev->flags) 960 && (conf->raid_disks - mddev->degraded) == 1) { 961 /* 962 * Don't fail the drive, act as though we were just a 963 * normal single drive. 964 * However don't try a recovery from this drive as 965 * it is very likely to fail. 966 */ 967 mddev->recovery_disabled = 1; 968 return; 969 } 970 if (test_and_clear_bit(In_sync, &rdev->flags)) { 971 unsigned long flags; 972 spin_lock_irqsave(&conf->device_lock, flags); 973 mddev->degraded++; 974 set_bit(Faulty, &rdev->flags); 975 spin_unlock_irqrestore(&conf->device_lock, flags); 976 /* 977 * if recovery is running, make sure it aborts. 978 */ 979 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 980 } else 981 set_bit(Faulty, &rdev->flags); 982 set_bit(MD_CHANGE_DEVS, &mddev->flags); 983 printk(KERN_ALERT 984 "md/raid1:%s: Disk failure on %s, disabling device.\n" 985 "md/raid1:%s: Operation continuing on %d devices.\n", 986 mdname(mddev), bdevname(rdev->bdev, b), 987 mdname(mddev), conf->raid_disks - mddev->degraded); 988 } 989 990 static void print_conf(conf_t *conf) 991 { 992 int i; 993 994 printk(KERN_DEBUG "RAID1 conf printout:\n"); 995 if (!conf) { 996 printk(KERN_DEBUG "(!conf)\n"); 997 return; 998 } 999 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1000 conf->raid_disks); 1001 1002 rcu_read_lock(); 1003 for (i = 0; i < conf->raid_disks; i++) { 1004 char b[BDEVNAME_SIZE]; 1005 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1006 if (rdev) 1007 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1008 i, !test_bit(In_sync, &rdev->flags), 1009 !test_bit(Faulty, &rdev->flags), 1010 bdevname(rdev->bdev,b)); 1011 } 1012 rcu_read_unlock(); 1013 } 1014 1015 static void close_sync(conf_t *conf) 1016 { 1017 wait_barrier(conf); 1018 allow_barrier(conf); 1019 1020 mempool_destroy(conf->r1buf_pool); 1021 conf->r1buf_pool = NULL; 1022 } 1023 1024 static int raid1_spare_active(mddev_t *mddev) 1025 { 1026 int i; 1027 conf_t *conf = mddev->private; 1028 int count = 0; 1029 unsigned long flags; 1030 1031 /* 1032 * Find all failed disks within the RAID1 configuration 1033 * and mark them readable. 1034 * Called under mddev lock, so rcu protection not needed. 1035 */ 1036 for (i = 0; i < conf->raid_disks; i++) { 1037 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1038 if (rdev 1039 && !test_bit(Faulty, &rdev->flags) 1040 && !test_and_set_bit(In_sync, &rdev->flags)) { 1041 count++; 1042 sysfs_notify_dirent(rdev->sysfs_state); 1043 } 1044 } 1045 spin_lock_irqsave(&conf->device_lock, flags); 1046 mddev->degraded -= count; 1047 spin_unlock_irqrestore(&conf->device_lock, flags); 1048 1049 print_conf(conf); 1050 return count; 1051 } 1052 1053 1054 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1055 { 1056 conf_t *conf = mddev->private; 1057 int err = -EEXIST; 1058 int mirror = 0; 1059 mirror_info_t *p; 1060 int first = 0; 1061 int last = mddev->raid_disks - 1; 1062 1063 if (rdev->raid_disk >= 0) 1064 first = last = rdev->raid_disk; 1065 1066 for (mirror = first; mirror <= last; mirror++) 1067 if ( !(p=conf->mirrors+mirror)->rdev) { 1068 1069 disk_stack_limits(mddev->gendisk, rdev->bdev, 1070 rdev->data_offset << 9); 1071 /* as we don't honour merge_bvec_fn, we must 1072 * never risk violating it, so limit 1073 * ->max_segments to one lying with a single 1074 * page, as a one page request is never in 1075 * violation. 1076 */ 1077 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1078 blk_queue_max_segments(mddev->queue, 1); 1079 blk_queue_segment_boundary(mddev->queue, 1080 PAGE_CACHE_SIZE - 1); 1081 } 1082 1083 p->head_position = 0; 1084 rdev->raid_disk = mirror; 1085 err = 0; 1086 /* As all devices are equivalent, we don't need a full recovery 1087 * if this was recently any drive of the array 1088 */ 1089 if (rdev->saved_raid_disk < 0) 1090 conf->fullsync = 1; 1091 rcu_assign_pointer(p->rdev, rdev); 1092 break; 1093 } 1094 md_integrity_add_rdev(rdev, mddev); 1095 print_conf(conf); 1096 return err; 1097 } 1098 1099 static int raid1_remove_disk(mddev_t *mddev, int number) 1100 { 1101 conf_t *conf = mddev->private; 1102 int err = 0; 1103 mdk_rdev_t *rdev; 1104 mirror_info_t *p = conf->mirrors+ number; 1105 1106 print_conf(conf); 1107 rdev = p->rdev; 1108 if (rdev) { 1109 if (test_bit(In_sync, &rdev->flags) || 1110 atomic_read(&rdev->nr_pending)) { 1111 err = -EBUSY; 1112 goto abort; 1113 } 1114 /* Only remove non-faulty devices if recovery 1115 * is not possible. 1116 */ 1117 if (!test_bit(Faulty, &rdev->flags) && 1118 !mddev->recovery_disabled && 1119 mddev->degraded < conf->raid_disks) { 1120 err = -EBUSY; 1121 goto abort; 1122 } 1123 p->rdev = NULL; 1124 synchronize_rcu(); 1125 if (atomic_read(&rdev->nr_pending)) { 1126 /* lost the race, try later */ 1127 err = -EBUSY; 1128 p->rdev = rdev; 1129 goto abort; 1130 } 1131 err = md_integrity_register(mddev); 1132 } 1133 abort: 1134 1135 print_conf(conf); 1136 return err; 1137 } 1138 1139 1140 static void end_sync_read(struct bio *bio, int error) 1141 { 1142 r1bio_t *r1_bio = bio->bi_private; 1143 int i; 1144 1145 for (i=r1_bio->mddev->raid_disks; i--; ) 1146 if (r1_bio->bios[i] == bio) 1147 break; 1148 BUG_ON(i < 0); 1149 update_head_pos(i, r1_bio); 1150 /* 1151 * we have read a block, now it needs to be re-written, 1152 * or re-read if the read failed. 1153 * We don't do much here, just schedule handling by raid1d 1154 */ 1155 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1156 set_bit(R1BIO_Uptodate, &r1_bio->state); 1157 1158 if (atomic_dec_and_test(&r1_bio->remaining)) 1159 reschedule_retry(r1_bio); 1160 } 1161 1162 static void end_sync_write(struct bio *bio, int error) 1163 { 1164 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1165 r1bio_t *r1_bio = bio->bi_private; 1166 mddev_t *mddev = r1_bio->mddev; 1167 conf_t *conf = mddev->private; 1168 int i; 1169 int mirror=0; 1170 1171 for (i = 0; i < conf->raid_disks; i++) 1172 if (r1_bio->bios[i] == bio) { 1173 mirror = i; 1174 break; 1175 } 1176 if (!uptodate) { 1177 sector_t sync_blocks = 0; 1178 sector_t s = r1_bio->sector; 1179 long sectors_to_go = r1_bio->sectors; 1180 /* make sure these bits doesn't get cleared. */ 1181 do { 1182 bitmap_end_sync(mddev->bitmap, s, 1183 &sync_blocks, 1); 1184 s += sync_blocks; 1185 sectors_to_go -= sync_blocks; 1186 } while (sectors_to_go > 0); 1187 md_error(mddev, conf->mirrors[mirror].rdev); 1188 } 1189 1190 update_head_pos(mirror, r1_bio); 1191 1192 if (atomic_dec_and_test(&r1_bio->remaining)) { 1193 sector_t s = r1_bio->sectors; 1194 put_buf(r1_bio); 1195 md_done_sync(mddev, s, uptodate); 1196 } 1197 } 1198 1199 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1200 { 1201 conf_t *conf = mddev->private; 1202 int i; 1203 int disks = conf->raid_disks; 1204 struct bio *bio, *wbio; 1205 1206 bio = r1_bio->bios[r1_bio->read_disk]; 1207 1208 1209 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1210 /* We have read all readable devices. If we haven't 1211 * got the block, then there is no hope left. 1212 * If we have, then we want to do a comparison 1213 * and skip the write if everything is the same. 1214 * If any blocks failed to read, then we need to 1215 * attempt an over-write 1216 */ 1217 int primary; 1218 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1219 for (i=0; i<mddev->raid_disks; i++) 1220 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1221 md_error(mddev, conf->mirrors[i].rdev); 1222 1223 md_done_sync(mddev, r1_bio->sectors, 1); 1224 put_buf(r1_bio); 1225 return; 1226 } 1227 for (primary=0; primary<mddev->raid_disks; primary++) 1228 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1229 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1230 r1_bio->bios[primary]->bi_end_io = NULL; 1231 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1232 break; 1233 } 1234 r1_bio->read_disk = primary; 1235 for (i=0; i<mddev->raid_disks; i++) 1236 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1237 int j; 1238 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1239 struct bio *pbio = r1_bio->bios[primary]; 1240 struct bio *sbio = r1_bio->bios[i]; 1241 1242 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1243 for (j = vcnt; j-- ; ) { 1244 struct page *p, *s; 1245 p = pbio->bi_io_vec[j].bv_page; 1246 s = sbio->bi_io_vec[j].bv_page; 1247 if (memcmp(page_address(p), 1248 page_address(s), 1249 PAGE_SIZE)) 1250 break; 1251 } 1252 } else 1253 j = 0; 1254 if (j >= 0) 1255 mddev->resync_mismatches += r1_bio->sectors; 1256 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1257 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1258 sbio->bi_end_io = NULL; 1259 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1260 } else { 1261 /* fixup the bio for reuse */ 1262 int size; 1263 sbio->bi_vcnt = vcnt; 1264 sbio->bi_size = r1_bio->sectors << 9; 1265 sbio->bi_idx = 0; 1266 sbio->bi_phys_segments = 0; 1267 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1268 sbio->bi_flags |= 1 << BIO_UPTODATE; 1269 sbio->bi_next = NULL; 1270 sbio->bi_sector = r1_bio->sector + 1271 conf->mirrors[i].rdev->data_offset; 1272 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1273 size = sbio->bi_size; 1274 for (j = 0; j < vcnt ; j++) { 1275 struct bio_vec *bi; 1276 bi = &sbio->bi_io_vec[j]; 1277 bi->bv_offset = 0; 1278 if (size > PAGE_SIZE) 1279 bi->bv_len = PAGE_SIZE; 1280 else 1281 bi->bv_len = size; 1282 size -= PAGE_SIZE; 1283 memcpy(page_address(bi->bv_page), 1284 page_address(pbio->bi_io_vec[j].bv_page), 1285 PAGE_SIZE); 1286 } 1287 1288 } 1289 } 1290 } 1291 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1292 /* ouch - failed to read all of that. 1293 * Try some synchronous reads of other devices to get 1294 * good data, much like with normal read errors. Only 1295 * read into the pages we already have so we don't 1296 * need to re-issue the read request. 1297 * We don't need to freeze the array, because being in an 1298 * active sync request, there is no normal IO, and 1299 * no overlapping syncs. 1300 */ 1301 sector_t sect = r1_bio->sector; 1302 int sectors = r1_bio->sectors; 1303 int idx = 0; 1304 1305 while(sectors) { 1306 int s = sectors; 1307 int d = r1_bio->read_disk; 1308 int success = 0; 1309 mdk_rdev_t *rdev; 1310 1311 if (s > (PAGE_SIZE>>9)) 1312 s = PAGE_SIZE >> 9; 1313 do { 1314 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1315 /* No rcu protection needed here devices 1316 * can only be removed when no resync is 1317 * active, and resync is currently active 1318 */ 1319 rdev = conf->mirrors[d].rdev; 1320 if (sync_page_io(rdev, 1321 sect, 1322 s<<9, 1323 bio->bi_io_vec[idx].bv_page, 1324 READ, false)) { 1325 success = 1; 1326 break; 1327 } 1328 } 1329 d++; 1330 if (d == conf->raid_disks) 1331 d = 0; 1332 } while (!success && d != r1_bio->read_disk); 1333 1334 if (success) { 1335 int start = d; 1336 /* write it back and re-read */ 1337 set_bit(R1BIO_Uptodate, &r1_bio->state); 1338 while (d != r1_bio->read_disk) { 1339 if (d == 0) 1340 d = conf->raid_disks; 1341 d--; 1342 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1343 continue; 1344 rdev = conf->mirrors[d].rdev; 1345 atomic_add(s, &rdev->corrected_errors); 1346 if (sync_page_io(rdev, 1347 sect, 1348 s<<9, 1349 bio->bi_io_vec[idx].bv_page, 1350 WRITE, false) == 0) 1351 md_error(mddev, rdev); 1352 } 1353 d = start; 1354 while (d != r1_bio->read_disk) { 1355 if (d == 0) 1356 d = conf->raid_disks; 1357 d--; 1358 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1359 continue; 1360 rdev = conf->mirrors[d].rdev; 1361 if (sync_page_io(rdev, 1362 sect, 1363 s<<9, 1364 bio->bi_io_vec[idx].bv_page, 1365 READ, false) == 0) 1366 md_error(mddev, rdev); 1367 } 1368 } else { 1369 char b[BDEVNAME_SIZE]; 1370 /* Cannot read from anywhere, array is toast */ 1371 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1372 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1373 " for block %llu\n", 1374 mdname(mddev), 1375 bdevname(bio->bi_bdev, b), 1376 (unsigned long long)r1_bio->sector); 1377 md_done_sync(mddev, r1_bio->sectors, 0); 1378 put_buf(r1_bio); 1379 return; 1380 } 1381 sectors -= s; 1382 sect += s; 1383 idx ++; 1384 } 1385 } 1386 1387 /* 1388 * schedule writes 1389 */ 1390 atomic_set(&r1_bio->remaining, 1); 1391 for (i = 0; i < disks ; i++) { 1392 wbio = r1_bio->bios[i]; 1393 if (wbio->bi_end_io == NULL || 1394 (wbio->bi_end_io == end_sync_read && 1395 (i == r1_bio->read_disk || 1396 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1397 continue; 1398 1399 wbio->bi_rw = WRITE; 1400 wbio->bi_end_io = end_sync_write; 1401 atomic_inc(&r1_bio->remaining); 1402 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1403 1404 generic_make_request(wbio); 1405 } 1406 1407 if (atomic_dec_and_test(&r1_bio->remaining)) { 1408 /* if we're here, all write(s) have completed, so clean up */ 1409 md_done_sync(mddev, r1_bio->sectors, 1); 1410 put_buf(r1_bio); 1411 } 1412 } 1413 1414 /* 1415 * This is a kernel thread which: 1416 * 1417 * 1. Retries failed read operations on working mirrors. 1418 * 2. Updates the raid superblock when problems encounter. 1419 * 3. Performs writes following reads for array syncronising. 1420 */ 1421 1422 static void fix_read_error(conf_t *conf, int read_disk, 1423 sector_t sect, int sectors) 1424 { 1425 mddev_t *mddev = conf->mddev; 1426 while(sectors) { 1427 int s = sectors; 1428 int d = read_disk; 1429 int success = 0; 1430 int start; 1431 mdk_rdev_t *rdev; 1432 1433 if (s > (PAGE_SIZE>>9)) 1434 s = PAGE_SIZE >> 9; 1435 1436 do { 1437 /* Note: no rcu protection needed here 1438 * as this is synchronous in the raid1d thread 1439 * which is the thread that might remove 1440 * a device. If raid1d ever becomes multi-threaded.... 1441 */ 1442 rdev = conf->mirrors[d].rdev; 1443 if (rdev && 1444 test_bit(In_sync, &rdev->flags) && 1445 sync_page_io(rdev, sect, s<<9, 1446 conf->tmppage, READ, false)) 1447 success = 1; 1448 else { 1449 d++; 1450 if (d == conf->raid_disks) 1451 d = 0; 1452 } 1453 } while (!success && d != read_disk); 1454 1455 if (!success) { 1456 /* Cannot read from anywhere -- bye bye array */ 1457 md_error(mddev, conf->mirrors[read_disk].rdev); 1458 break; 1459 } 1460 /* write it back and re-read */ 1461 start = d; 1462 while (d != read_disk) { 1463 if (d==0) 1464 d = conf->raid_disks; 1465 d--; 1466 rdev = conf->mirrors[d].rdev; 1467 if (rdev && 1468 test_bit(In_sync, &rdev->flags)) { 1469 if (sync_page_io(rdev, sect, s<<9, 1470 conf->tmppage, WRITE, false) 1471 == 0) 1472 /* Well, this device is dead */ 1473 md_error(mddev, rdev); 1474 } 1475 } 1476 d = start; 1477 while (d != read_disk) { 1478 char b[BDEVNAME_SIZE]; 1479 if (d==0) 1480 d = conf->raid_disks; 1481 d--; 1482 rdev = conf->mirrors[d].rdev; 1483 if (rdev && 1484 test_bit(In_sync, &rdev->flags)) { 1485 if (sync_page_io(rdev, sect, s<<9, 1486 conf->tmppage, READ, false) 1487 == 0) 1488 /* Well, this device is dead */ 1489 md_error(mddev, rdev); 1490 else { 1491 atomic_add(s, &rdev->corrected_errors); 1492 printk(KERN_INFO 1493 "md/raid1:%s: read error corrected " 1494 "(%d sectors at %llu on %s)\n", 1495 mdname(mddev), s, 1496 (unsigned long long)(sect + 1497 rdev->data_offset), 1498 bdevname(rdev->bdev, b)); 1499 } 1500 } 1501 } 1502 sectors -= s; 1503 sect += s; 1504 } 1505 } 1506 1507 static void raid1d(mddev_t *mddev) 1508 { 1509 r1bio_t *r1_bio; 1510 struct bio *bio; 1511 unsigned long flags; 1512 conf_t *conf = mddev->private; 1513 struct list_head *head = &conf->retry_list; 1514 mdk_rdev_t *rdev; 1515 struct blk_plug plug; 1516 1517 md_check_recovery(mddev); 1518 1519 blk_start_plug(&plug); 1520 for (;;) { 1521 char b[BDEVNAME_SIZE]; 1522 1523 if (atomic_read(&mddev->plug_cnt) == 0) 1524 flush_pending_writes(conf); 1525 1526 spin_lock_irqsave(&conf->device_lock, flags); 1527 if (list_empty(head)) { 1528 spin_unlock_irqrestore(&conf->device_lock, flags); 1529 break; 1530 } 1531 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1532 list_del(head->prev); 1533 conf->nr_queued--; 1534 spin_unlock_irqrestore(&conf->device_lock, flags); 1535 1536 mddev = r1_bio->mddev; 1537 conf = mddev->private; 1538 if (test_bit(R1BIO_IsSync, &r1_bio->state)) 1539 sync_request_write(mddev, r1_bio); 1540 else { 1541 int disk; 1542 1543 /* we got a read error. Maybe the drive is bad. Maybe just 1544 * the block and we can fix it. 1545 * We freeze all other IO, and try reading the block from 1546 * other devices. When we find one, we re-write 1547 * and check it that fixes the read error. 1548 * This is all done synchronously while the array is 1549 * frozen 1550 */ 1551 if (mddev->ro == 0) { 1552 freeze_array(conf); 1553 fix_read_error(conf, r1_bio->read_disk, 1554 r1_bio->sector, 1555 r1_bio->sectors); 1556 unfreeze_array(conf); 1557 } else 1558 md_error(mddev, 1559 conf->mirrors[r1_bio->read_disk].rdev); 1560 1561 bio = r1_bio->bios[r1_bio->read_disk]; 1562 if ((disk=read_balance(conf, r1_bio)) == -1) { 1563 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1564 " read error for block %llu\n", 1565 mdname(mddev), 1566 bdevname(bio->bi_bdev,b), 1567 (unsigned long long)r1_bio->sector); 1568 raid_end_bio_io(r1_bio); 1569 } else { 1570 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1571 r1_bio->bios[r1_bio->read_disk] = 1572 mddev->ro ? IO_BLOCKED : NULL; 1573 r1_bio->read_disk = disk; 1574 bio_put(bio); 1575 bio = bio_clone_mddev(r1_bio->master_bio, 1576 GFP_NOIO, mddev); 1577 r1_bio->bios[r1_bio->read_disk] = bio; 1578 rdev = conf->mirrors[disk].rdev; 1579 if (printk_ratelimit()) 1580 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1581 " other mirror: %s\n", 1582 mdname(mddev), 1583 (unsigned long long)r1_bio->sector, 1584 bdevname(rdev->bdev,b)); 1585 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1586 bio->bi_bdev = rdev->bdev; 1587 bio->bi_end_io = raid1_end_read_request; 1588 bio->bi_rw = READ | do_sync; 1589 bio->bi_private = r1_bio; 1590 generic_make_request(bio); 1591 } 1592 } 1593 cond_resched(); 1594 } 1595 blk_finish_plug(&plug); 1596 } 1597 1598 1599 static int init_resync(conf_t *conf) 1600 { 1601 int buffs; 1602 1603 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1604 BUG_ON(conf->r1buf_pool); 1605 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1606 conf->poolinfo); 1607 if (!conf->r1buf_pool) 1608 return -ENOMEM; 1609 conf->next_resync = 0; 1610 return 0; 1611 } 1612 1613 /* 1614 * perform a "sync" on one "block" 1615 * 1616 * We need to make sure that no normal I/O request - particularly write 1617 * requests - conflict with active sync requests. 1618 * 1619 * This is achieved by tracking pending requests and a 'barrier' concept 1620 * that can be installed to exclude normal IO requests. 1621 */ 1622 1623 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1624 { 1625 conf_t *conf = mddev->private; 1626 r1bio_t *r1_bio; 1627 struct bio *bio; 1628 sector_t max_sector, nr_sectors; 1629 int disk = -1; 1630 int i; 1631 int wonly = -1; 1632 int write_targets = 0, read_targets = 0; 1633 sector_t sync_blocks; 1634 int still_degraded = 0; 1635 1636 if (!conf->r1buf_pool) 1637 if (init_resync(conf)) 1638 return 0; 1639 1640 max_sector = mddev->dev_sectors; 1641 if (sector_nr >= max_sector) { 1642 /* If we aborted, we need to abort the 1643 * sync on the 'current' bitmap chunk (there will 1644 * only be one in raid1 resync. 1645 * We can find the current addess in mddev->curr_resync 1646 */ 1647 if (mddev->curr_resync < max_sector) /* aborted */ 1648 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1649 &sync_blocks, 1); 1650 else /* completed sync */ 1651 conf->fullsync = 0; 1652 1653 bitmap_close_sync(mddev->bitmap); 1654 close_sync(conf); 1655 return 0; 1656 } 1657 1658 if (mddev->bitmap == NULL && 1659 mddev->recovery_cp == MaxSector && 1660 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1661 conf->fullsync == 0) { 1662 *skipped = 1; 1663 return max_sector - sector_nr; 1664 } 1665 /* before building a request, check if we can skip these blocks.. 1666 * This call the bitmap_start_sync doesn't actually record anything 1667 */ 1668 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1669 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1670 /* We can skip this block, and probably several more */ 1671 *skipped = 1; 1672 return sync_blocks; 1673 } 1674 /* 1675 * If there is non-resync activity waiting for a turn, 1676 * and resync is going fast enough, 1677 * then let it though before starting on this new sync request. 1678 */ 1679 if (!go_faster && conf->nr_waiting) 1680 msleep_interruptible(1000); 1681 1682 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1683 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1684 raise_barrier(conf); 1685 1686 conf->next_resync = sector_nr; 1687 1688 rcu_read_lock(); 1689 /* 1690 * If we get a correctably read error during resync or recovery, 1691 * we might want to read from a different device. So we 1692 * flag all drives that could conceivably be read from for READ, 1693 * and any others (which will be non-In_sync devices) for WRITE. 1694 * If a read fails, we try reading from something else for which READ 1695 * is OK. 1696 */ 1697 1698 r1_bio->mddev = mddev; 1699 r1_bio->sector = sector_nr; 1700 r1_bio->state = 0; 1701 set_bit(R1BIO_IsSync, &r1_bio->state); 1702 1703 for (i=0; i < conf->raid_disks; i++) { 1704 mdk_rdev_t *rdev; 1705 bio = r1_bio->bios[i]; 1706 1707 /* take from bio_init */ 1708 bio->bi_next = NULL; 1709 bio->bi_flags &= ~(BIO_POOL_MASK-1); 1710 bio->bi_flags |= 1 << BIO_UPTODATE; 1711 bio->bi_comp_cpu = -1; 1712 bio->bi_rw = READ; 1713 bio->bi_vcnt = 0; 1714 bio->bi_idx = 0; 1715 bio->bi_phys_segments = 0; 1716 bio->bi_size = 0; 1717 bio->bi_end_io = NULL; 1718 bio->bi_private = NULL; 1719 1720 rdev = rcu_dereference(conf->mirrors[i].rdev); 1721 if (rdev == NULL || 1722 test_bit(Faulty, &rdev->flags)) { 1723 still_degraded = 1; 1724 continue; 1725 } else if (!test_bit(In_sync, &rdev->flags)) { 1726 bio->bi_rw = WRITE; 1727 bio->bi_end_io = end_sync_write; 1728 write_targets ++; 1729 } else { 1730 /* may need to read from here */ 1731 bio->bi_rw = READ; 1732 bio->bi_end_io = end_sync_read; 1733 if (test_bit(WriteMostly, &rdev->flags)) { 1734 if (wonly < 0) 1735 wonly = i; 1736 } else { 1737 if (disk < 0) 1738 disk = i; 1739 } 1740 read_targets++; 1741 } 1742 atomic_inc(&rdev->nr_pending); 1743 bio->bi_sector = sector_nr + rdev->data_offset; 1744 bio->bi_bdev = rdev->bdev; 1745 bio->bi_private = r1_bio; 1746 } 1747 rcu_read_unlock(); 1748 if (disk < 0) 1749 disk = wonly; 1750 r1_bio->read_disk = disk; 1751 1752 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1753 /* extra read targets are also write targets */ 1754 write_targets += read_targets-1; 1755 1756 if (write_targets == 0 || read_targets == 0) { 1757 /* There is nowhere to write, so all non-sync 1758 * drives must be failed - so we are finished 1759 */ 1760 sector_t rv = max_sector - sector_nr; 1761 *skipped = 1; 1762 put_buf(r1_bio); 1763 return rv; 1764 } 1765 1766 if (max_sector > mddev->resync_max) 1767 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1768 nr_sectors = 0; 1769 sync_blocks = 0; 1770 do { 1771 struct page *page; 1772 int len = PAGE_SIZE; 1773 if (sector_nr + (len>>9) > max_sector) 1774 len = (max_sector - sector_nr) << 9; 1775 if (len == 0) 1776 break; 1777 if (sync_blocks == 0) { 1778 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1779 &sync_blocks, still_degraded) && 1780 !conf->fullsync && 1781 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1782 break; 1783 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1784 if ((len >> 9) > sync_blocks) 1785 len = sync_blocks<<9; 1786 } 1787 1788 for (i=0 ; i < conf->raid_disks; i++) { 1789 bio = r1_bio->bios[i]; 1790 if (bio->bi_end_io) { 1791 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1792 if (bio_add_page(bio, page, len, 0) == 0) { 1793 /* stop here */ 1794 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1795 while (i > 0) { 1796 i--; 1797 bio = r1_bio->bios[i]; 1798 if (bio->bi_end_io==NULL) 1799 continue; 1800 /* remove last page from this bio */ 1801 bio->bi_vcnt--; 1802 bio->bi_size -= len; 1803 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1804 } 1805 goto bio_full; 1806 } 1807 } 1808 } 1809 nr_sectors += len>>9; 1810 sector_nr += len>>9; 1811 sync_blocks -= (len>>9); 1812 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1813 bio_full: 1814 r1_bio->sectors = nr_sectors; 1815 1816 /* For a user-requested sync, we read all readable devices and do a 1817 * compare 1818 */ 1819 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1820 atomic_set(&r1_bio->remaining, read_targets); 1821 for (i=0; i<conf->raid_disks; i++) { 1822 bio = r1_bio->bios[i]; 1823 if (bio->bi_end_io == end_sync_read) { 1824 md_sync_acct(bio->bi_bdev, nr_sectors); 1825 generic_make_request(bio); 1826 } 1827 } 1828 } else { 1829 atomic_set(&r1_bio->remaining, 1); 1830 bio = r1_bio->bios[r1_bio->read_disk]; 1831 md_sync_acct(bio->bi_bdev, nr_sectors); 1832 generic_make_request(bio); 1833 1834 } 1835 return nr_sectors; 1836 } 1837 1838 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1839 { 1840 if (sectors) 1841 return sectors; 1842 1843 return mddev->dev_sectors; 1844 } 1845 1846 static conf_t *setup_conf(mddev_t *mddev) 1847 { 1848 conf_t *conf; 1849 int i; 1850 mirror_info_t *disk; 1851 mdk_rdev_t *rdev; 1852 int err = -ENOMEM; 1853 1854 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1855 if (!conf) 1856 goto abort; 1857 1858 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1859 GFP_KERNEL); 1860 if (!conf->mirrors) 1861 goto abort; 1862 1863 conf->tmppage = alloc_page(GFP_KERNEL); 1864 if (!conf->tmppage) 1865 goto abort; 1866 1867 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1868 if (!conf->poolinfo) 1869 goto abort; 1870 conf->poolinfo->raid_disks = mddev->raid_disks; 1871 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1872 r1bio_pool_free, 1873 conf->poolinfo); 1874 if (!conf->r1bio_pool) 1875 goto abort; 1876 1877 conf->poolinfo->mddev = mddev; 1878 1879 spin_lock_init(&conf->device_lock); 1880 list_for_each_entry(rdev, &mddev->disks, same_set) { 1881 int disk_idx = rdev->raid_disk; 1882 if (disk_idx >= mddev->raid_disks 1883 || disk_idx < 0) 1884 continue; 1885 disk = conf->mirrors + disk_idx; 1886 1887 disk->rdev = rdev; 1888 1889 disk->head_position = 0; 1890 } 1891 conf->raid_disks = mddev->raid_disks; 1892 conf->mddev = mddev; 1893 INIT_LIST_HEAD(&conf->retry_list); 1894 1895 spin_lock_init(&conf->resync_lock); 1896 init_waitqueue_head(&conf->wait_barrier); 1897 1898 bio_list_init(&conf->pending_bio_list); 1899 1900 conf->last_used = -1; 1901 for (i = 0; i < conf->raid_disks; i++) { 1902 1903 disk = conf->mirrors + i; 1904 1905 if (!disk->rdev || 1906 !test_bit(In_sync, &disk->rdev->flags)) { 1907 disk->head_position = 0; 1908 if (disk->rdev) 1909 conf->fullsync = 1; 1910 } else if (conf->last_used < 0) 1911 /* 1912 * The first working device is used as a 1913 * starting point to read balancing. 1914 */ 1915 conf->last_used = i; 1916 } 1917 1918 err = -EIO; 1919 if (conf->last_used < 0) { 1920 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 1921 mdname(mddev)); 1922 goto abort; 1923 } 1924 err = -ENOMEM; 1925 conf->thread = md_register_thread(raid1d, mddev, NULL); 1926 if (!conf->thread) { 1927 printk(KERN_ERR 1928 "md/raid1:%s: couldn't allocate thread\n", 1929 mdname(mddev)); 1930 goto abort; 1931 } 1932 1933 return conf; 1934 1935 abort: 1936 if (conf) { 1937 if (conf->r1bio_pool) 1938 mempool_destroy(conf->r1bio_pool); 1939 kfree(conf->mirrors); 1940 safe_put_page(conf->tmppage); 1941 kfree(conf->poolinfo); 1942 kfree(conf); 1943 } 1944 return ERR_PTR(err); 1945 } 1946 1947 static int run(mddev_t *mddev) 1948 { 1949 conf_t *conf; 1950 int i; 1951 mdk_rdev_t *rdev; 1952 1953 if (mddev->level != 1) { 1954 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 1955 mdname(mddev), mddev->level); 1956 return -EIO; 1957 } 1958 if (mddev->reshape_position != MaxSector) { 1959 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 1960 mdname(mddev)); 1961 return -EIO; 1962 } 1963 /* 1964 * copy the already verified devices into our private RAID1 1965 * bookkeeping area. [whatever we allocate in run(), 1966 * should be freed in stop()] 1967 */ 1968 if (mddev->private == NULL) 1969 conf = setup_conf(mddev); 1970 else 1971 conf = mddev->private; 1972 1973 if (IS_ERR(conf)) 1974 return PTR_ERR(conf); 1975 1976 list_for_each_entry(rdev, &mddev->disks, same_set) { 1977 disk_stack_limits(mddev->gendisk, rdev->bdev, 1978 rdev->data_offset << 9); 1979 /* as we don't honour merge_bvec_fn, we must never risk 1980 * violating it, so limit ->max_segments to 1 lying within 1981 * a single page, as a one page request is never in violation. 1982 */ 1983 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1984 blk_queue_max_segments(mddev->queue, 1); 1985 blk_queue_segment_boundary(mddev->queue, 1986 PAGE_CACHE_SIZE - 1); 1987 } 1988 } 1989 1990 mddev->degraded = 0; 1991 for (i=0; i < conf->raid_disks; i++) 1992 if (conf->mirrors[i].rdev == NULL || 1993 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 1994 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 1995 mddev->degraded++; 1996 1997 if (conf->raid_disks - mddev->degraded == 1) 1998 mddev->recovery_cp = MaxSector; 1999 2000 if (mddev->recovery_cp != MaxSector) 2001 printk(KERN_NOTICE "md/raid1:%s: not clean" 2002 " -- starting background reconstruction\n", 2003 mdname(mddev)); 2004 printk(KERN_INFO 2005 "md/raid1:%s: active with %d out of %d mirrors\n", 2006 mdname(mddev), mddev->raid_disks - mddev->degraded, 2007 mddev->raid_disks); 2008 2009 /* 2010 * Ok, everything is just fine now 2011 */ 2012 mddev->thread = conf->thread; 2013 conf->thread = NULL; 2014 mddev->private = conf; 2015 2016 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2017 2018 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2019 mddev->queue->backing_dev_info.congested_data = mddev; 2020 return md_integrity_register(mddev); 2021 } 2022 2023 static int stop(mddev_t *mddev) 2024 { 2025 conf_t *conf = mddev->private; 2026 struct bitmap *bitmap = mddev->bitmap; 2027 2028 /* wait for behind writes to complete */ 2029 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2030 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2031 mdname(mddev)); 2032 /* need to kick something here to make sure I/O goes? */ 2033 wait_event(bitmap->behind_wait, 2034 atomic_read(&bitmap->behind_writes) == 0); 2035 } 2036 2037 raise_barrier(conf); 2038 lower_barrier(conf); 2039 2040 md_unregister_thread(mddev->thread); 2041 mddev->thread = NULL; 2042 if (conf->r1bio_pool) 2043 mempool_destroy(conf->r1bio_pool); 2044 kfree(conf->mirrors); 2045 kfree(conf->poolinfo); 2046 kfree(conf); 2047 mddev->private = NULL; 2048 return 0; 2049 } 2050 2051 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2052 { 2053 /* no resync is happening, and there is enough space 2054 * on all devices, so we can resize. 2055 * We need to make sure resync covers any new space. 2056 * If the array is shrinking we should possibly wait until 2057 * any io in the removed space completes, but it hardly seems 2058 * worth it. 2059 */ 2060 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2061 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2062 return -EINVAL; 2063 set_capacity(mddev->gendisk, mddev->array_sectors); 2064 revalidate_disk(mddev->gendisk); 2065 if (sectors > mddev->dev_sectors && 2066 mddev->recovery_cp == MaxSector) { 2067 mddev->recovery_cp = mddev->dev_sectors; 2068 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2069 } 2070 mddev->dev_sectors = sectors; 2071 mddev->resync_max_sectors = sectors; 2072 return 0; 2073 } 2074 2075 static int raid1_reshape(mddev_t *mddev) 2076 { 2077 /* We need to: 2078 * 1/ resize the r1bio_pool 2079 * 2/ resize conf->mirrors 2080 * 2081 * We allocate a new r1bio_pool if we can. 2082 * Then raise a device barrier and wait until all IO stops. 2083 * Then resize conf->mirrors and swap in the new r1bio pool. 2084 * 2085 * At the same time, we "pack" the devices so that all the missing 2086 * devices have the higher raid_disk numbers. 2087 */ 2088 mempool_t *newpool, *oldpool; 2089 struct pool_info *newpoolinfo; 2090 mirror_info_t *newmirrors; 2091 conf_t *conf = mddev->private; 2092 int cnt, raid_disks; 2093 unsigned long flags; 2094 int d, d2, err; 2095 2096 /* Cannot change chunk_size, layout, or level */ 2097 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2098 mddev->layout != mddev->new_layout || 2099 mddev->level != mddev->new_level) { 2100 mddev->new_chunk_sectors = mddev->chunk_sectors; 2101 mddev->new_layout = mddev->layout; 2102 mddev->new_level = mddev->level; 2103 return -EINVAL; 2104 } 2105 2106 err = md_allow_write(mddev); 2107 if (err) 2108 return err; 2109 2110 raid_disks = mddev->raid_disks + mddev->delta_disks; 2111 2112 if (raid_disks < conf->raid_disks) { 2113 cnt=0; 2114 for (d= 0; d < conf->raid_disks; d++) 2115 if (conf->mirrors[d].rdev) 2116 cnt++; 2117 if (cnt > raid_disks) 2118 return -EBUSY; 2119 } 2120 2121 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2122 if (!newpoolinfo) 2123 return -ENOMEM; 2124 newpoolinfo->mddev = mddev; 2125 newpoolinfo->raid_disks = raid_disks; 2126 2127 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2128 r1bio_pool_free, newpoolinfo); 2129 if (!newpool) { 2130 kfree(newpoolinfo); 2131 return -ENOMEM; 2132 } 2133 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2134 if (!newmirrors) { 2135 kfree(newpoolinfo); 2136 mempool_destroy(newpool); 2137 return -ENOMEM; 2138 } 2139 2140 raise_barrier(conf); 2141 2142 /* ok, everything is stopped */ 2143 oldpool = conf->r1bio_pool; 2144 conf->r1bio_pool = newpool; 2145 2146 for (d = d2 = 0; d < conf->raid_disks; d++) { 2147 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2148 if (rdev && rdev->raid_disk != d2) { 2149 char nm[20]; 2150 sprintf(nm, "rd%d", rdev->raid_disk); 2151 sysfs_remove_link(&mddev->kobj, nm); 2152 rdev->raid_disk = d2; 2153 sprintf(nm, "rd%d", rdev->raid_disk); 2154 sysfs_remove_link(&mddev->kobj, nm); 2155 if (sysfs_create_link(&mddev->kobj, 2156 &rdev->kobj, nm)) 2157 printk(KERN_WARNING 2158 "md/raid1:%s: cannot register " 2159 "%s\n", 2160 mdname(mddev), nm); 2161 } 2162 if (rdev) 2163 newmirrors[d2++].rdev = rdev; 2164 } 2165 kfree(conf->mirrors); 2166 conf->mirrors = newmirrors; 2167 kfree(conf->poolinfo); 2168 conf->poolinfo = newpoolinfo; 2169 2170 spin_lock_irqsave(&conf->device_lock, flags); 2171 mddev->degraded += (raid_disks - conf->raid_disks); 2172 spin_unlock_irqrestore(&conf->device_lock, flags); 2173 conf->raid_disks = mddev->raid_disks = raid_disks; 2174 mddev->delta_disks = 0; 2175 2176 conf->last_used = 0; /* just make sure it is in-range */ 2177 lower_barrier(conf); 2178 2179 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2180 md_wakeup_thread(mddev->thread); 2181 2182 mempool_destroy(oldpool); 2183 return 0; 2184 } 2185 2186 static void raid1_quiesce(mddev_t *mddev, int state) 2187 { 2188 conf_t *conf = mddev->private; 2189 2190 switch(state) { 2191 case 2: /* wake for suspend */ 2192 wake_up(&conf->wait_barrier); 2193 break; 2194 case 1: 2195 raise_barrier(conf); 2196 break; 2197 case 0: 2198 lower_barrier(conf); 2199 break; 2200 } 2201 } 2202 2203 static void *raid1_takeover(mddev_t *mddev) 2204 { 2205 /* raid1 can take over: 2206 * raid5 with 2 devices, any layout or chunk size 2207 */ 2208 if (mddev->level == 5 && mddev->raid_disks == 2) { 2209 conf_t *conf; 2210 mddev->new_level = 1; 2211 mddev->new_layout = 0; 2212 mddev->new_chunk_sectors = 0; 2213 conf = setup_conf(mddev); 2214 if (!IS_ERR(conf)) 2215 conf->barrier = 1; 2216 return conf; 2217 } 2218 return ERR_PTR(-EINVAL); 2219 } 2220 2221 static struct mdk_personality raid1_personality = 2222 { 2223 .name = "raid1", 2224 .level = 1, 2225 .owner = THIS_MODULE, 2226 .make_request = make_request, 2227 .run = run, 2228 .stop = stop, 2229 .status = status, 2230 .error_handler = error, 2231 .hot_add_disk = raid1_add_disk, 2232 .hot_remove_disk= raid1_remove_disk, 2233 .spare_active = raid1_spare_active, 2234 .sync_request = sync_request, 2235 .resize = raid1_resize, 2236 .size = raid1_size, 2237 .check_reshape = raid1_reshape, 2238 .quiesce = raid1_quiesce, 2239 .takeover = raid1_takeover, 2240 }; 2241 2242 static int __init raid_init(void) 2243 { 2244 return register_md_personality(&raid1_personality); 2245 } 2246 2247 static void raid_exit(void) 2248 { 2249 unregister_md_personality(&raid1_personality); 2250 } 2251 2252 module_init(raid_init); 2253 module_exit(raid_exit); 2254 MODULE_LICENSE("GPL"); 2255 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2256 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2257 MODULE_ALIAS("md-raid1"); 2258 MODULE_ALIAS("md-level-1"); 2259