1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf); 70 static void lower_barrier(struct r1conf *conf); 71 72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 73 { 74 struct pool_info *pi = data; 75 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 76 77 /* allocate a r1bio with room for raid_disks entries in the bios array */ 78 return kzalloc(size, gfp_flags); 79 } 80 81 static void r1bio_pool_free(void *r1_bio, void *data) 82 { 83 kfree(r1_bio); 84 } 85 86 #define RESYNC_BLOCK_SIZE (64*1024) 87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 90 #define RESYNC_WINDOW (2048*1024) 91 92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 93 { 94 struct pool_info *pi = data; 95 struct r1bio *r1_bio; 96 struct bio *bio; 97 int i, j; 98 99 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 100 if (!r1_bio) 101 return NULL; 102 103 /* 104 * Allocate bios : 1 for reading, n-1 for writing 105 */ 106 for (j = pi->raid_disks ; j-- ; ) { 107 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 108 if (!bio) 109 goto out_free_bio; 110 r1_bio->bios[j] = bio; 111 } 112 /* 113 * Allocate RESYNC_PAGES data pages and attach them to 114 * the first bio. 115 * If this is a user-requested check/repair, allocate 116 * RESYNC_PAGES for each bio. 117 */ 118 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 119 j = pi->raid_disks; 120 else 121 j = 1; 122 while(j--) { 123 bio = r1_bio->bios[j]; 124 bio->bi_vcnt = RESYNC_PAGES; 125 126 if (bio_alloc_pages(bio, gfp_flags)) 127 goto out_free_bio; 128 } 129 /* If not user-requests, copy the page pointers to all bios */ 130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 131 for (i=0; i<RESYNC_PAGES ; i++) 132 for (j=1; j<pi->raid_disks; j++) 133 r1_bio->bios[j]->bi_io_vec[i].bv_page = 134 r1_bio->bios[0]->bi_io_vec[i].bv_page; 135 } 136 137 r1_bio->master_bio = NULL; 138 139 return r1_bio; 140 141 out_free_bio: 142 while (++j < pi->raid_disks) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 struct r1bio *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks * 2; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (!BIO_SPECIAL(*bio)) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(struct r1bio *r1_bio) 180 { 181 struct r1conf *conf = r1_bio->mddev->private; 182 183 put_all_bios(conf, r1_bio); 184 mempool_free(r1_bio, conf->r1bio_pool); 185 } 186 187 static void put_buf(struct r1bio *r1_bio) 188 { 189 struct r1conf *conf = r1_bio->mddev->private; 190 int i; 191 192 for (i = 0; i < conf->raid_disks * 2; i++) { 193 struct bio *bio = r1_bio->bios[i]; 194 if (bio->bi_end_io) 195 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 196 } 197 198 mempool_free(r1_bio, conf->r1buf_pool); 199 200 lower_barrier(conf); 201 } 202 203 static void reschedule_retry(struct r1bio *r1_bio) 204 { 205 unsigned long flags; 206 struct mddev *mddev = r1_bio->mddev; 207 struct r1conf *conf = mddev->private; 208 209 spin_lock_irqsave(&conf->device_lock, flags); 210 list_add(&r1_bio->retry_list, &conf->retry_list); 211 conf->nr_queued ++; 212 spin_unlock_irqrestore(&conf->device_lock, flags); 213 214 wake_up(&conf->wait_barrier); 215 md_wakeup_thread(mddev->thread); 216 } 217 218 /* 219 * raid_end_bio_io() is called when we have finished servicing a mirrored 220 * operation and are ready to return a success/failure code to the buffer 221 * cache layer. 222 */ 223 static void call_bio_endio(struct r1bio *r1_bio) 224 { 225 struct bio *bio = r1_bio->master_bio; 226 int done; 227 struct r1conf *conf = r1_bio->mddev->private; 228 229 if (bio->bi_phys_segments) { 230 unsigned long flags; 231 spin_lock_irqsave(&conf->device_lock, flags); 232 bio->bi_phys_segments--; 233 done = (bio->bi_phys_segments == 0); 234 spin_unlock_irqrestore(&conf->device_lock, flags); 235 } else 236 done = 1; 237 238 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 239 clear_bit(BIO_UPTODATE, &bio->bi_flags); 240 if (done) { 241 bio_endio(bio, 0); 242 /* 243 * Wake up any possible resync thread that waits for the device 244 * to go idle. 245 */ 246 allow_barrier(conf); 247 } 248 } 249 250 static void raid_end_bio_io(struct r1bio *r1_bio) 251 { 252 struct bio *bio = r1_bio->master_bio; 253 254 /* if nobody has done the final endio yet, do it now */ 255 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 256 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 257 (bio_data_dir(bio) == WRITE) ? "write" : "read", 258 (unsigned long long) bio->bi_sector, 259 (unsigned long long) bio->bi_sector + 260 bio_sectors(bio) - 1); 261 262 call_bio_endio(r1_bio); 263 } 264 free_r1bio(r1_bio); 265 } 266 267 /* 268 * Update disk head position estimator based on IRQ completion info. 269 */ 270 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 271 { 272 struct r1conf *conf = r1_bio->mddev->private; 273 274 conf->mirrors[disk].head_position = 275 r1_bio->sector + (r1_bio->sectors); 276 } 277 278 /* 279 * Find the disk number which triggered given bio 280 */ 281 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 282 { 283 int mirror; 284 struct r1conf *conf = r1_bio->mddev->private; 285 int raid_disks = conf->raid_disks; 286 287 for (mirror = 0; mirror < raid_disks * 2; mirror++) 288 if (r1_bio->bios[mirror] == bio) 289 break; 290 291 BUG_ON(mirror == raid_disks * 2); 292 update_head_pos(mirror, r1_bio); 293 294 return mirror; 295 } 296 297 static void raid1_end_read_request(struct bio *bio, int error) 298 { 299 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 300 struct r1bio *r1_bio = bio->bi_private; 301 int mirror; 302 struct r1conf *conf = r1_bio->mddev->private; 303 304 mirror = r1_bio->read_disk; 305 /* 306 * this branch is our 'one mirror IO has finished' event handler: 307 */ 308 update_head_pos(mirror, r1_bio); 309 310 if (uptodate) 311 set_bit(R1BIO_Uptodate, &r1_bio->state); 312 else { 313 /* If all other devices have failed, we want to return 314 * the error upwards rather than fail the last device. 315 * Here we redefine "uptodate" to mean "Don't want to retry" 316 */ 317 unsigned long flags; 318 spin_lock_irqsave(&conf->device_lock, flags); 319 if (r1_bio->mddev->degraded == conf->raid_disks || 320 (r1_bio->mddev->degraded == conf->raid_disks-1 && 321 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 322 uptodate = 1; 323 spin_unlock_irqrestore(&conf->device_lock, flags); 324 } 325 326 if (uptodate) { 327 raid_end_bio_io(r1_bio); 328 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 329 } else { 330 /* 331 * oops, read error: 332 */ 333 char b[BDEVNAME_SIZE]; 334 printk_ratelimited( 335 KERN_ERR "md/raid1:%s: %s: " 336 "rescheduling sector %llu\n", 337 mdname(conf->mddev), 338 bdevname(conf->mirrors[mirror].rdev->bdev, 339 b), 340 (unsigned long long)r1_bio->sector); 341 set_bit(R1BIO_ReadError, &r1_bio->state); 342 reschedule_retry(r1_bio); 343 /* don't drop the reference on read_disk yet */ 344 } 345 } 346 347 static void close_write(struct r1bio *r1_bio) 348 { 349 /* it really is the end of this request */ 350 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 351 /* free extra copy of the data pages */ 352 int i = r1_bio->behind_page_count; 353 while (i--) 354 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 355 kfree(r1_bio->behind_bvecs); 356 r1_bio->behind_bvecs = NULL; 357 } 358 /* clear the bitmap if all writes complete successfully */ 359 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 360 r1_bio->sectors, 361 !test_bit(R1BIO_Degraded, &r1_bio->state), 362 test_bit(R1BIO_BehindIO, &r1_bio->state)); 363 md_write_end(r1_bio->mddev); 364 } 365 366 static void r1_bio_write_done(struct r1bio *r1_bio) 367 { 368 if (!atomic_dec_and_test(&r1_bio->remaining)) 369 return; 370 371 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 372 reschedule_retry(r1_bio); 373 else { 374 close_write(r1_bio); 375 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else 378 raid_end_bio_io(r1_bio); 379 } 380 } 381 382 static void raid1_end_write_request(struct bio *bio, int error) 383 { 384 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 385 struct r1bio *r1_bio = bio->bi_private; 386 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 387 struct r1conf *conf = r1_bio->mddev->private; 388 struct bio *to_put = NULL; 389 390 mirror = find_bio_disk(r1_bio, bio); 391 392 /* 393 * 'one mirror IO has finished' event handler: 394 */ 395 if (!uptodate) { 396 set_bit(WriteErrorSeen, 397 &conf->mirrors[mirror].rdev->flags); 398 if (!test_and_set_bit(WantReplacement, 399 &conf->mirrors[mirror].rdev->flags)) 400 set_bit(MD_RECOVERY_NEEDED, & 401 conf->mddev->recovery); 402 403 set_bit(R1BIO_WriteError, &r1_bio->state); 404 } else { 405 /* 406 * Set R1BIO_Uptodate in our master bio, so that we 407 * will return a good error code for to the higher 408 * levels even if IO on some other mirrored buffer 409 * fails. 410 * 411 * The 'master' represents the composite IO operation 412 * to user-side. So if something waits for IO, then it 413 * will wait for the 'master' bio. 414 */ 415 sector_t first_bad; 416 int bad_sectors; 417 418 r1_bio->bios[mirror] = NULL; 419 to_put = bio; 420 /* 421 * Do not set R1BIO_Uptodate if the current device is 422 * rebuilding or Faulty. This is because we cannot use 423 * such device for properly reading the data back (we could 424 * potentially use it, if the current write would have felt 425 * before rdev->recovery_offset, but for simplicity we don't 426 * check this here. 427 */ 428 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 429 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 430 set_bit(R1BIO_Uptodate, &r1_bio->state); 431 432 /* Maybe we can clear some bad blocks. */ 433 if (is_badblock(conf->mirrors[mirror].rdev, 434 r1_bio->sector, r1_bio->sectors, 435 &first_bad, &bad_sectors)) { 436 r1_bio->bios[mirror] = IO_MADE_GOOD; 437 set_bit(R1BIO_MadeGood, &r1_bio->state); 438 } 439 } 440 441 if (behind) { 442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 443 atomic_dec(&r1_bio->behind_remaining); 444 445 /* 446 * In behind mode, we ACK the master bio once the I/O 447 * has safely reached all non-writemostly 448 * disks. Setting the Returned bit ensures that this 449 * gets done only once -- we don't ever want to return 450 * -EIO here, instead we'll wait 451 */ 452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 453 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 454 /* Maybe we can return now */ 455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 456 struct bio *mbio = r1_bio->master_bio; 457 pr_debug("raid1: behind end write sectors" 458 " %llu-%llu\n", 459 (unsigned long long) mbio->bi_sector, 460 (unsigned long long) mbio->bi_sector + 461 bio_sectors(mbio) - 1); 462 call_bio_endio(r1_bio); 463 } 464 } 465 } 466 if (r1_bio->bios[mirror] == NULL) 467 rdev_dec_pending(conf->mirrors[mirror].rdev, 468 conf->mddev); 469 470 /* 471 * Let's see if all mirrored write operations have finished 472 * already. 473 */ 474 r1_bio_write_done(r1_bio); 475 476 if (to_put) 477 bio_put(to_put); 478 } 479 480 481 /* 482 * This routine returns the disk from which the requested read should 483 * be done. There is a per-array 'next expected sequential IO' sector 484 * number - if this matches on the next IO then we use the last disk. 485 * There is also a per-disk 'last know head position' sector that is 486 * maintained from IRQ contexts, both the normal and the resync IO 487 * completion handlers update this position correctly. If there is no 488 * perfect sequential match then we pick the disk whose head is closest. 489 * 490 * If there are 2 mirrors in the same 2 devices, performance degrades 491 * because position is mirror, not device based. 492 * 493 * The rdev for the device selected will have nr_pending incremented. 494 */ 495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 496 { 497 const sector_t this_sector = r1_bio->sector; 498 int sectors; 499 int best_good_sectors; 500 int best_disk, best_dist_disk, best_pending_disk; 501 int has_nonrot_disk; 502 int disk; 503 sector_t best_dist; 504 unsigned int min_pending; 505 struct md_rdev *rdev; 506 int choose_first; 507 int choose_next_idle; 508 509 rcu_read_lock(); 510 /* 511 * Check if we can balance. We can balance on the whole 512 * device if no resync is going on, or below the resync window. 513 * We take the first readable disk when above the resync window. 514 */ 515 retry: 516 sectors = r1_bio->sectors; 517 best_disk = -1; 518 best_dist_disk = -1; 519 best_dist = MaxSector; 520 best_pending_disk = -1; 521 min_pending = UINT_MAX; 522 best_good_sectors = 0; 523 has_nonrot_disk = 0; 524 choose_next_idle = 0; 525 526 if (conf->mddev->recovery_cp < MaxSector && 527 (this_sector + sectors >= conf->next_resync)) 528 choose_first = 1; 529 else 530 choose_first = 0; 531 532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 533 sector_t dist; 534 sector_t first_bad; 535 int bad_sectors; 536 unsigned int pending; 537 bool nonrot; 538 539 rdev = rcu_dereference(conf->mirrors[disk].rdev); 540 if (r1_bio->bios[disk] == IO_BLOCKED 541 || rdev == NULL 542 || test_bit(Unmerged, &rdev->flags) 543 || test_bit(Faulty, &rdev->flags)) 544 continue; 545 if (!test_bit(In_sync, &rdev->flags) && 546 rdev->recovery_offset < this_sector + sectors) 547 continue; 548 if (test_bit(WriteMostly, &rdev->flags)) { 549 /* Don't balance among write-mostly, just 550 * use the first as a last resort */ 551 if (best_disk < 0) { 552 if (is_badblock(rdev, this_sector, sectors, 553 &first_bad, &bad_sectors)) { 554 if (first_bad < this_sector) 555 /* Cannot use this */ 556 continue; 557 best_good_sectors = first_bad - this_sector; 558 } else 559 best_good_sectors = sectors; 560 best_disk = disk; 561 } 562 continue; 563 } 564 /* This is a reasonable device to use. It might 565 * even be best. 566 */ 567 if (is_badblock(rdev, this_sector, sectors, 568 &first_bad, &bad_sectors)) { 569 if (best_dist < MaxSector) 570 /* already have a better device */ 571 continue; 572 if (first_bad <= this_sector) { 573 /* cannot read here. If this is the 'primary' 574 * device, then we must not read beyond 575 * bad_sectors from another device.. 576 */ 577 bad_sectors -= (this_sector - first_bad); 578 if (choose_first && sectors > bad_sectors) 579 sectors = bad_sectors; 580 if (best_good_sectors > sectors) 581 best_good_sectors = sectors; 582 583 } else { 584 sector_t good_sectors = first_bad - this_sector; 585 if (good_sectors > best_good_sectors) { 586 best_good_sectors = good_sectors; 587 best_disk = disk; 588 } 589 if (choose_first) 590 break; 591 } 592 continue; 593 } else 594 best_good_sectors = sectors; 595 596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 597 has_nonrot_disk |= nonrot; 598 pending = atomic_read(&rdev->nr_pending); 599 dist = abs(this_sector - conf->mirrors[disk].head_position); 600 if (choose_first) { 601 best_disk = disk; 602 break; 603 } 604 /* Don't change to another disk for sequential reads */ 605 if (conf->mirrors[disk].next_seq_sect == this_sector 606 || dist == 0) { 607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 608 struct raid1_info *mirror = &conf->mirrors[disk]; 609 610 best_disk = disk; 611 /* 612 * If buffered sequential IO size exceeds optimal 613 * iosize, check if there is idle disk. If yes, choose 614 * the idle disk. read_balance could already choose an 615 * idle disk before noticing it's a sequential IO in 616 * this disk. This doesn't matter because this disk 617 * will idle, next time it will be utilized after the 618 * first disk has IO size exceeds optimal iosize. In 619 * this way, iosize of the first disk will be optimal 620 * iosize at least. iosize of the second disk might be 621 * small, but not a big deal since when the second disk 622 * starts IO, the first disk is likely still busy. 623 */ 624 if (nonrot && opt_iosize > 0 && 625 mirror->seq_start != MaxSector && 626 mirror->next_seq_sect > opt_iosize && 627 mirror->next_seq_sect - opt_iosize >= 628 mirror->seq_start) { 629 choose_next_idle = 1; 630 continue; 631 } 632 break; 633 } 634 /* If device is idle, use it */ 635 if (pending == 0) { 636 best_disk = disk; 637 break; 638 } 639 640 if (choose_next_idle) 641 continue; 642 643 if (min_pending > pending) { 644 min_pending = pending; 645 best_pending_disk = disk; 646 } 647 648 if (dist < best_dist) { 649 best_dist = dist; 650 best_dist_disk = disk; 651 } 652 } 653 654 /* 655 * If all disks are rotational, choose the closest disk. If any disk is 656 * non-rotational, choose the disk with less pending request even the 657 * disk is rotational, which might/might not be optimal for raids with 658 * mixed ratation/non-rotational disks depending on workload. 659 */ 660 if (best_disk == -1) { 661 if (has_nonrot_disk) 662 best_disk = best_pending_disk; 663 else 664 best_disk = best_dist_disk; 665 } 666 667 if (best_disk >= 0) { 668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 669 if (!rdev) 670 goto retry; 671 atomic_inc(&rdev->nr_pending); 672 if (test_bit(Faulty, &rdev->flags)) { 673 /* cannot risk returning a device that failed 674 * before we inc'ed nr_pending 675 */ 676 rdev_dec_pending(rdev, conf->mddev); 677 goto retry; 678 } 679 sectors = best_good_sectors; 680 681 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 682 conf->mirrors[best_disk].seq_start = this_sector; 683 684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 685 } 686 rcu_read_unlock(); 687 *max_sectors = sectors; 688 689 return best_disk; 690 } 691 692 static int raid1_mergeable_bvec(struct request_queue *q, 693 struct bvec_merge_data *bvm, 694 struct bio_vec *biovec) 695 { 696 struct mddev *mddev = q->queuedata; 697 struct r1conf *conf = mddev->private; 698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 699 int max = biovec->bv_len; 700 701 if (mddev->merge_check_needed) { 702 int disk; 703 rcu_read_lock(); 704 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 705 struct md_rdev *rdev = rcu_dereference( 706 conf->mirrors[disk].rdev); 707 if (rdev && !test_bit(Faulty, &rdev->flags)) { 708 struct request_queue *q = 709 bdev_get_queue(rdev->bdev); 710 if (q->merge_bvec_fn) { 711 bvm->bi_sector = sector + 712 rdev->data_offset; 713 bvm->bi_bdev = rdev->bdev; 714 max = min(max, q->merge_bvec_fn( 715 q, bvm, biovec)); 716 } 717 } 718 } 719 rcu_read_unlock(); 720 } 721 return max; 722 723 } 724 725 int md_raid1_congested(struct mddev *mddev, int bits) 726 { 727 struct r1conf *conf = mddev->private; 728 int i, ret = 0; 729 730 if ((bits & (1 << BDI_async_congested)) && 731 conf->pending_count >= max_queued_requests) 732 return 1; 733 734 rcu_read_lock(); 735 for (i = 0; i < conf->raid_disks * 2; i++) { 736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 737 if (rdev && !test_bit(Faulty, &rdev->flags)) { 738 struct request_queue *q = bdev_get_queue(rdev->bdev); 739 740 BUG_ON(!q); 741 742 /* Note the '|| 1' - when read_balance prefers 743 * non-congested targets, it can be removed 744 */ 745 if ((bits & (1<<BDI_async_congested)) || 1) 746 ret |= bdi_congested(&q->backing_dev_info, bits); 747 else 748 ret &= bdi_congested(&q->backing_dev_info, bits); 749 } 750 } 751 rcu_read_unlock(); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(md_raid1_congested); 755 756 static int raid1_congested(void *data, int bits) 757 { 758 struct mddev *mddev = data; 759 760 return mddev_congested(mddev, bits) || 761 md_raid1_congested(mddev, bits); 762 } 763 764 static void flush_pending_writes(struct r1conf *conf) 765 { 766 /* Any writes that have been queued but are awaiting 767 * bitmap updates get flushed here. 768 */ 769 spin_lock_irq(&conf->device_lock); 770 771 if (conf->pending_bio_list.head) { 772 struct bio *bio; 773 bio = bio_list_get(&conf->pending_bio_list); 774 conf->pending_count = 0; 775 spin_unlock_irq(&conf->device_lock); 776 /* flush any pending bitmap writes to 777 * disk before proceeding w/ I/O */ 778 bitmap_unplug(conf->mddev->bitmap); 779 wake_up(&conf->wait_barrier); 780 781 while (bio) { /* submit pending writes */ 782 struct bio *next = bio->bi_next; 783 bio->bi_next = NULL; 784 if (unlikely((bio->bi_rw & REQ_DISCARD) && 785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 786 /* Just ignore it */ 787 bio_endio(bio, 0); 788 else 789 generic_make_request(bio); 790 bio = next; 791 } 792 } else 793 spin_unlock_irq(&conf->device_lock); 794 } 795 796 /* Barriers.... 797 * Sometimes we need to suspend IO while we do something else, 798 * either some resync/recovery, or reconfigure the array. 799 * To do this we raise a 'barrier'. 800 * The 'barrier' is a counter that can be raised multiple times 801 * to count how many activities are happening which preclude 802 * normal IO. 803 * We can only raise the barrier if there is no pending IO. 804 * i.e. if nr_pending == 0. 805 * We choose only to raise the barrier if no-one is waiting for the 806 * barrier to go down. This means that as soon as an IO request 807 * is ready, no other operations which require a barrier will start 808 * until the IO request has had a chance. 809 * 810 * So: regular IO calls 'wait_barrier'. When that returns there 811 * is no backgroup IO happening, It must arrange to call 812 * allow_barrier when it has finished its IO. 813 * backgroup IO calls must call raise_barrier. Once that returns 814 * there is no normal IO happeing. It must arrange to call 815 * lower_barrier when the particular background IO completes. 816 */ 817 #define RESYNC_DEPTH 32 818 819 static void raise_barrier(struct r1conf *conf) 820 { 821 spin_lock_irq(&conf->resync_lock); 822 823 /* Wait until no block IO is waiting */ 824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 825 conf->resync_lock); 826 827 /* block any new IO from starting */ 828 conf->barrier++; 829 830 /* Now wait for all pending IO to complete */ 831 wait_event_lock_irq(conf->wait_barrier, 832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 833 conf->resync_lock); 834 835 spin_unlock_irq(&conf->resync_lock); 836 } 837 838 static void lower_barrier(struct r1conf *conf) 839 { 840 unsigned long flags; 841 BUG_ON(conf->barrier <= 0); 842 spin_lock_irqsave(&conf->resync_lock, flags); 843 conf->barrier--; 844 spin_unlock_irqrestore(&conf->resync_lock, flags); 845 wake_up(&conf->wait_barrier); 846 } 847 848 static void wait_barrier(struct r1conf *conf) 849 { 850 spin_lock_irq(&conf->resync_lock); 851 if (conf->barrier) { 852 conf->nr_waiting++; 853 /* Wait for the barrier to drop. 854 * However if there are already pending 855 * requests (preventing the barrier from 856 * rising completely), and the 857 * pre-process bio queue isn't empty, 858 * then don't wait, as we need to empty 859 * that queue to get the nr_pending 860 * count down. 861 */ 862 wait_event_lock_irq(conf->wait_barrier, 863 !conf->barrier || 864 (conf->nr_pending && 865 current->bio_list && 866 !bio_list_empty(current->bio_list)), 867 conf->resync_lock); 868 conf->nr_waiting--; 869 } 870 conf->nr_pending++; 871 spin_unlock_irq(&conf->resync_lock); 872 } 873 874 static void allow_barrier(struct r1conf *conf) 875 { 876 unsigned long flags; 877 spin_lock_irqsave(&conf->resync_lock, flags); 878 conf->nr_pending--; 879 spin_unlock_irqrestore(&conf->resync_lock, flags); 880 wake_up(&conf->wait_barrier); 881 } 882 883 static void freeze_array(struct r1conf *conf, int extra) 884 { 885 /* stop syncio and normal IO and wait for everything to 886 * go quite. 887 * We increment barrier and nr_waiting, and then 888 * wait until nr_pending match nr_queued+extra 889 * This is called in the context of one normal IO request 890 * that has failed. Thus any sync request that might be pending 891 * will be blocked by nr_pending, and we need to wait for 892 * pending IO requests to complete or be queued for re-try. 893 * Thus the number queued (nr_queued) plus this request (extra) 894 * must match the number of pending IOs (nr_pending) before 895 * we continue. 896 */ 897 spin_lock_irq(&conf->resync_lock); 898 conf->barrier++; 899 conf->nr_waiting++; 900 wait_event_lock_irq_cmd(conf->wait_barrier, 901 conf->nr_pending == conf->nr_queued+extra, 902 conf->resync_lock, 903 flush_pending_writes(conf)); 904 spin_unlock_irq(&conf->resync_lock); 905 } 906 static void unfreeze_array(struct r1conf *conf) 907 { 908 /* reverse the effect of the freeze */ 909 spin_lock_irq(&conf->resync_lock); 910 conf->barrier--; 911 conf->nr_waiting--; 912 wake_up(&conf->wait_barrier); 913 spin_unlock_irq(&conf->resync_lock); 914 } 915 916 917 /* duplicate the data pages for behind I/O 918 */ 919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 920 { 921 int i; 922 struct bio_vec *bvec; 923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 924 GFP_NOIO); 925 if (unlikely(!bvecs)) 926 return; 927 928 bio_for_each_segment_all(bvec, bio, i) { 929 bvecs[i] = *bvec; 930 bvecs[i].bv_page = alloc_page(GFP_NOIO); 931 if (unlikely(!bvecs[i].bv_page)) 932 goto do_sync_io; 933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 935 kunmap(bvecs[i].bv_page); 936 kunmap(bvec->bv_page); 937 } 938 r1_bio->behind_bvecs = bvecs; 939 r1_bio->behind_page_count = bio->bi_vcnt; 940 set_bit(R1BIO_BehindIO, &r1_bio->state); 941 return; 942 943 do_sync_io: 944 for (i = 0; i < bio->bi_vcnt; i++) 945 if (bvecs[i].bv_page) 946 put_page(bvecs[i].bv_page); 947 kfree(bvecs); 948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 949 } 950 951 struct raid1_plug_cb { 952 struct blk_plug_cb cb; 953 struct bio_list pending; 954 int pending_cnt; 955 }; 956 957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 958 { 959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 960 cb); 961 struct mddev *mddev = plug->cb.data; 962 struct r1conf *conf = mddev->private; 963 struct bio *bio; 964 965 if (from_schedule || current->bio_list) { 966 spin_lock_irq(&conf->device_lock); 967 bio_list_merge(&conf->pending_bio_list, &plug->pending); 968 conf->pending_count += plug->pending_cnt; 969 spin_unlock_irq(&conf->device_lock); 970 wake_up(&conf->wait_barrier); 971 md_wakeup_thread(mddev->thread); 972 kfree(plug); 973 return; 974 } 975 976 /* we aren't scheduling, so we can do the write-out directly. */ 977 bio = bio_list_get(&plug->pending); 978 bitmap_unplug(mddev->bitmap); 979 wake_up(&conf->wait_barrier); 980 981 while (bio) { /* submit pending writes */ 982 struct bio *next = bio->bi_next; 983 bio->bi_next = NULL; 984 if (unlikely((bio->bi_rw & REQ_DISCARD) && 985 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 986 /* Just ignore it */ 987 bio_endio(bio, 0); 988 else 989 generic_make_request(bio); 990 bio = next; 991 } 992 kfree(plug); 993 } 994 995 static void make_request(struct mddev *mddev, struct bio * bio) 996 { 997 struct r1conf *conf = mddev->private; 998 struct raid1_info *mirror; 999 struct r1bio *r1_bio; 1000 struct bio *read_bio; 1001 int i, disks; 1002 struct bitmap *bitmap; 1003 unsigned long flags; 1004 const int rw = bio_data_dir(bio); 1005 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1006 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1007 const unsigned long do_discard = (bio->bi_rw 1008 & (REQ_DISCARD | REQ_SECURE)); 1009 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1010 struct md_rdev *blocked_rdev; 1011 struct blk_plug_cb *cb; 1012 struct raid1_plug_cb *plug = NULL; 1013 int first_clone; 1014 int sectors_handled; 1015 int max_sectors; 1016 1017 /* 1018 * Register the new request and wait if the reconstruction 1019 * thread has put up a bar for new requests. 1020 * Continue immediately if no resync is active currently. 1021 */ 1022 1023 md_write_start(mddev, bio); /* wait on superblock update early */ 1024 1025 if (bio_data_dir(bio) == WRITE && 1026 bio_end_sector(bio) > mddev->suspend_lo && 1027 bio->bi_sector < mddev->suspend_hi) { 1028 /* As the suspend_* range is controlled by 1029 * userspace, we want an interruptible 1030 * wait. 1031 */ 1032 DEFINE_WAIT(w); 1033 for (;;) { 1034 flush_signals(current); 1035 prepare_to_wait(&conf->wait_barrier, 1036 &w, TASK_INTERRUPTIBLE); 1037 if (bio_end_sector(bio) <= mddev->suspend_lo || 1038 bio->bi_sector >= mddev->suspend_hi) 1039 break; 1040 schedule(); 1041 } 1042 finish_wait(&conf->wait_barrier, &w); 1043 } 1044 1045 wait_barrier(conf); 1046 1047 bitmap = mddev->bitmap; 1048 1049 /* 1050 * make_request() can abort the operation when READA is being 1051 * used and no empty request is available. 1052 * 1053 */ 1054 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1055 1056 r1_bio->master_bio = bio; 1057 r1_bio->sectors = bio_sectors(bio); 1058 r1_bio->state = 0; 1059 r1_bio->mddev = mddev; 1060 r1_bio->sector = bio->bi_sector; 1061 1062 /* We might need to issue multiple reads to different 1063 * devices if there are bad blocks around, so we keep 1064 * track of the number of reads in bio->bi_phys_segments. 1065 * If this is 0, there is only one r1_bio and no locking 1066 * will be needed when requests complete. If it is 1067 * non-zero, then it is the number of not-completed requests. 1068 */ 1069 bio->bi_phys_segments = 0; 1070 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1071 1072 if (rw == READ) { 1073 /* 1074 * read balancing logic: 1075 */ 1076 int rdisk; 1077 1078 read_again: 1079 rdisk = read_balance(conf, r1_bio, &max_sectors); 1080 1081 if (rdisk < 0) { 1082 /* couldn't find anywhere to read from */ 1083 raid_end_bio_io(r1_bio); 1084 return; 1085 } 1086 mirror = conf->mirrors + rdisk; 1087 1088 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1089 bitmap) { 1090 /* Reading from a write-mostly device must 1091 * take care not to over-take any writes 1092 * that are 'behind' 1093 */ 1094 wait_event(bitmap->behind_wait, 1095 atomic_read(&bitmap->behind_writes) == 0); 1096 } 1097 r1_bio->read_disk = rdisk; 1098 1099 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1100 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector, 1101 max_sectors); 1102 1103 r1_bio->bios[rdisk] = read_bio; 1104 1105 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 1106 read_bio->bi_bdev = mirror->rdev->bdev; 1107 read_bio->bi_end_io = raid1_end_read_request; 1108 read_bio->bi_rw = READ | do_sync; 1109 read_bio->bi_private = r1_bio; 1110 1111 if (max_sectors < r1_bio->sectors) { 1112 /* could not read all from this device, so we will 1113 * need another r1_bio. 1114 */ 1115 1116 sectors_handled = (r1_bio->sector + max_sectors 1117 - bio->bi_sector); 1118 r1_bio->sectors = max_sectors; 1119 spin_lock_irq(&conf->device_lock); 1120 if (bio->bi_phys_segments == 0) 1121 bio->bi_phys_segments = 2; 1122 else 1123 bio->bi_phys_segments++; 1124 spin_unlock_irq(&conf->device_lock); 1125 /* Cannot call generic_make_request directly 1126 * as that will be queued in __make_request 1127 * and subsequent mempool_alloc might block waiting 1128 * for it. So hand bio over to raid1d. 1129 */ 1130 reschedule_retry(r1_bio); 1131 1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1133 1134 r1_bio->master_bio = bio; 1135 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1136 r1_bio->state = 0; 1137 r1_bio->mddev = mddev; 1138 r1_bio->sector = bio->bi_sector + sectors_handled; 1139 goto read_again; 1140 } else 1141 generic_make_request(read_bio); 1142 return; 1143 } 1144 1145 /* 1146 * WRITE: 1147 */ 1148 if (conf->pending_count >= max_queued_requests) { 1149 md_wakeup_thread(mddev->thread); 1150 wait_event(conf->wait_barrier, 1151 conf->pending_count < max_queued_requests); 1152 } 1153 /* first select target devices under rcu_lock and 1154 * inc refcount on their rdev. Record them by setting 1155 * bios[x] to bio 1156 * If there are known/acknowledged bad blocks on any device on 1157 * which we have seen a write error, we want to avoid writing those 1158 * blocks. 1159 * This potentially requires several writes to write around 1160 * the bad blocks. Each set of writes gets it's own r1bio 1161 * with a set of bios attached. 1162 */ 1163 1164 disks = conf->raid_disks * 2; 1165 retry_write: 1166 blocked_rdev = NULL; 1167 rcu_read_lock(); 1168 max_sectors = r1_bio->sectors; 1169 for (i = 0; i < disks; i++) { 1170 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1171 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1172 atomic_inc(&rdev->nr_pending); 1173 blocked_rdev = rdev; 1174 break; 1175 } 1176 r1_bio->bios[i] = NULL; 1177 if (!rdev || test_bit(Faulty, &rdev->flags) 1178 || test_bit(Unmerged, &rdev->flags)) { 1179 if (i < conf->raid_disks) 1180 set_bit(R1BIO_Degraded, &r1_bio->state); 1181 continue; 1182 } 1183 1184 atomic_inc(&rdev->nr_pending); 1185 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1186 sector_t first_bad; 1187 int bad_sectors; 1188 int is_bad; 1189 1190 is_bad = is_badblock(rdev, r1_bio->sector, 1191 max_sectors, 1192 &first_bad, &bad_sectors); 1193 if (is_bad < 0) { 1194 /* mustn't write here until the bad block is 1195 * acknowledged*/ 1196 set_bit(BlockedBadBlocks, &rdev->flags); 1197 blocked_rdev = rdev; 1198 break; 1199 } 1200 if (is_bad && first_bad <= r1_bio->sector) { 1201 /* Cannot write here at all */ 1202 bad_sectors -= (r1_bio->sector - first_bad); 1203 if (bad_sectors < max_sectors) 1204 /* mustn't write more than bad_sectors 1205 * to other devices yet 1206 */ 1207 max_sectors = bad_sectors; 1208 rdev_dec_pending(rdev, mddev); 1209 /* We don't set R1BIO_Degraded as that 1210 * only applies if the disk is 1211 * missing, so it might be re-added, 1212 * and we want to know to recover this 1213 * chunk. 1214 * In this case the device is here, 1215 * and the fact that this chunk is not 1216 * in-sync is recorded in the bad 1217 * block log 1218 */ 1219 continue; 1220 } 1221 if (is_bad) { 1222 int good_sectors = first_bad - r1_bio->sector; 1223 if (good_sectors < max_sectors) 1224 max_sectors = good_sectors; 1225 } 1226 } 1227 r1_bio->bios[i] = bio; 1228 } 1229 rcu_read_unlock(); 1230 1231 if (unlikely(blocked_rdev)) { 1232 /* Wait for this device to become unblocked */ 1233 int j; 1234 1235 for (j = 0; j < i; j++) 1236 if (r1_bio->bios[j]) 1237 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1238 r1_bio->state = 0; 1239 allow_barrier(conf); 1240 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1241 wait_barrier(conf); 1242 goto retry_write; 1243 } 1244 1245 if (max_sectors < r1_bio->sectors) { 1246 /* We are splitting this write into multiple parts, so 1247 * we need to prepare for allocating another r1_bio. 1248 */ 1249 r1_bio->sectors = max_sectors; 1250 spin_lock_irq(&conf->device_lock); 1251 if (bio->bi_phys_segments == 0) 1252 bio->bi_phys_segments = 2; 1253 else 1254 bio->bi_phys_segments++; 1255 spin_unlock_irq(&conf->device_lock); 1256 } 1257 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector; 1258 1259 atomic_set(&r1_bio->remaining, 1); 1260 atomic_set(&r1_bio->behind_remaining, 0); 1261 1262 first_clone = 1; 1263 for (i = 0; i < disks; i++) { 1264 struct bio *mbio; 1265 if (!r1_bio->bios[i]) 1266 continue; 1267 1268 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1269 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors); 1270 1271 if (first_clone) { 1272 /* do behind I/O ? 1273 * Not if there are too many, or cannot 1274 * allocate memory, or a reader on WriteMostly 1275 * is waiting for behind writes to flush */ 1276 if (bitmap && 1277 (atomic_read(&bitmap->behind_writes) 1278 < mddev->bitmap_info.max_write_behind) && 1279 !waitqueue_active(&bitmap->behind_wait)) 1280 alloc_behind_pages(mbio, r1_bio); 1281 1282 bitmap_startwrite(bitmap, r1_bio->sector, 1283 r1_bio->sectors, 1284 test_bit(R1BIO_BehindIO, 1285 &r1_bio->state)); 1286 first_clone = 0; 1287 } 1288 if (r1_bio->behind_bvecs) { 1289 struct bio_vec *bvec; 1290 int j; 1291 1292 /* 1293 * We trimmed the bio, so _all is legit 1294 */ 1295 bio_for_each_segment_all(bvec, mbio, j) 1296 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1297 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1298 atomic_inc(&r1_bio->behind_remaining); 1299 } 1300 1301 r1_bio->bios[i] = mbio; 1302 1303 mbio->bi_sector = (r1_bio->sector + 1304 conf->mirrors[i].rdev->data_offset); 1305 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1306 mbio->bi_end_io = raid1_end_write_request; 1307 mbio->bi_rw = 1308 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1309 mbio->bi_private = r1_bio; 1310 1311 atomic_inc(&r1_bio->remaining); 1312 1313 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1314 if (cb) 1315 plug = container_of(cb, struct raid1_plug_cb, cb); 1316 else 1317 plug = NULL; 1318 spin_lock_irqsave(&conf->device_lock, flags); 1319 if (plug) { 1320 bio_list_add(&plug->pending, mbio); 1321 plug->pending_cnt++; 1322 } else { 1323 bio_list_add(&conf->pending_bio_list, mbio); 1324 conf->pending_count++; 1325 } 1326 spin_unlock_irqrestore(&conf->device_lock, flags); 1327 if (!plug) 1328 md_wakeup_thread(mddev->thread); 1329 } 1330 /* Mustn't call r1_bio_write_done before this next test, 1331 * as it could result in the bio being freed. 1332 */ 1333 if (sectors_handled < bio_sectors(bio)) { 1334 r1_bio_write_done(r1_bio); 1335 /* We need another r1_bio. It has already been counted 1336 * in bio->bi_phys_segments 1337 */ 1338 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1339 r1_bio->master_bio = bio; 1340 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1341 r1_bio->state = 0; 1342 r1_bio->mddev = mddev; 1343 r1_bio->sector = bio->bi_sector + sectors_handled; 1344 goto retry_write; 1345 } 1346 1347 r1_bio_write_done(r1_bio); 1348 1349 /* In case raid1d snuck in to freeze_array */ 1350 wake_up(&conf->wait_barrier); 1351 } 1352 1353 static void status(struct seq_file *seq, struct mddev *mddev) 1354 { 1355 struct r1conf *conf = mddev->private; 1356 int i; 1357 1358 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1359 conf->raid_disks - mddev->degraded); 1360 rcu_read_lock(); 1361 for (i = 0; i < conf->raid_disks; i++) { 1362 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1363 seq_printf(seq, "%s", 1364 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1365 } 1366 rcu_read_unlock(); 1367 seq_printf(seq, "]"); 1368 } 1369 1370 1371 static void error(struct mddev *mddev, struct md_rdev *rdev) 1372 { 1373 char b[BDEVNAME_SIZE]; 1374 struct r1conf *conf = mddev->private; 1375 1376 /* 1377 * If it is not operational, then we have already marked it as dead 1378 * else if it is the last working disks, ignore the error, let the 1379 * next level up know. 1380 * else mark the drive as failed 1381 */ 1382 if (test_bit(In_sync, &rdev->flags) 1383 && (conf->raid_disks - mddev->degraded) == 1) { 1384 /* 1385 * Don't fail the drive, act as though we were just a 1386 * normal single drive. 1387 * However don't try a recovery from this drive as 1388 * it is very likely to fail. 1389 */ 1390 conf->recovery_disabled = mddev->recovery_disabled; 1391 return; 1392 } 1393 set_bit(Blocked, &rdev->flags); 1394 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1395 unsigned long flags; 1396 spin_lock_irqsave(&conf->device_lock, flags); 1397 mddev->degraded++; 1398 set_bit(Faulty, &rdev->flags); 1399 spin_unlock_irqrestore(&conf->device_lock, flags); 1400 /* 1401 * if recovery is running, make sure it aborts. 1402 */ 1403 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1404 } else 1405 set_bit(Faulty, &rdev->flags); 1406 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1407 printk(KERN_ALERT 1408 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1409 "md/raid1:%s: Operation continuing on %d devices.\n", 1410 mdname(mddev), bdevname(rdev->bdev, b), 1411 mdname(mddev), conf->raid_disks - mddev->degraded); 1412 } 1413 1414 static void print_conf(struct r1conf *conf) 1415 { 1416 int i; 1417 1418 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1419 if (!conf) { 1420 printk(KERN_DEBUG "(!conf)\n"); 1421 return; 1422 } 1423 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1424 conf->raid_disks); 1425 1426 rcu_read_lock(); 1427 for (i = 0; i < conf->raid_disks; i++) { 1428 char b[BDEVNAME_SIZE]; 1429 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1430 if (rdev) 1431 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1432 i, !test_bit(In_sync, &rdev->flags), 1433 !test_bit(Faulty, &rdev->flags), 1434 bdevname(rdev->bdev,b)); 1435 } 1436 rcu_read_unlock(); 1437 } 1438 1439 static void close_sync(struct r1conf *conf) 1440 { 1441 wait_barrier(conf); 1442 allow_barrier(conf); 1443 1444 mempool_destroy(conf->r1buf_pool); 1445 conf->r1buf_pool = NULL; 1446 } 1447 1448 static int raid1_spare_active(struct mddev *mddev) 1449 { 1450 int i; 1451 struct r1conf *conf = mddev->private; 1452 int count = 0; 1453 unsigned long flags; 1454 1455 /* 1456 * Find all failed disks within the RAID1 configuration 1457 * and mark them readable. 1458 * Called under mddev lock, so rcu protection not needed. 1459 */ 1460 for (i = 0; i < conf->raid_disks; i++) { 1461 struct md_rdev *rdev = conf->mirrors[i].rdev; 1462 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1463 if (repl 1464 && repl->recovery_offset == MaxSector 1465 && !test_bit(Faulty, &repl->flags) 1466 && !test_and_set_bit(In_sync, &repl->flags)) { 1467 /* replacement has just become active */ 1468 if (!rdev || 1469 !test_and_clear_bit(In_sync, &rdev->flags)) 1470 count++; 1471 if (rdev) { 1472 /* Replaced device not technically 1473 * faulty, but we need to be sure 1474 * it gets removed and never re-added 1475 */ 1476 set_bit(Faulty, &rdev->flags); 1477 sysfs_notify_dirent_safe( 1478 rdev->sysfs_state); 1479 } 1480 } 1481 if (rdev 1482 && !test_bit(Faulty, &rdev->flags) 1483 && !test_and_set_bit(In_sync, &rdev->flags)) { 1484 count++; 1485 sysfs_notify_dirent_safe(rdev->sysfs_state); 1486 } 1487 } 1488 spin_lock_irqsave(&conf->device_lock, flags); 1489 mddev->degraded -= count; 1490 spin_unlock_irqrestore(&conf->device_lock, flags); 1491 1492 print_conf(conf); 1493 return count; 1494 } 1495 1496 1497 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1498 { 1499 struct r1conf *conf = mddev->private; 1500 int err = -EEXIST; 1501 int mirror = 0; 1502 struct raid1_info *p; 1503 int first = 0; 1504 int last = conf->raid_disks - 1; 1505 struct request_queue *q = bdev_get_queue(rdev->bdev); 1506 1507 if (mddev->recovery_disabled == conf->recovery_disabled) 1508 return -EBUSY; 1509 1510 if (rdev->raid_disk >= 0) 1511 first = last = rdev->raid_disk; 1512 1513 if (q->merge_bvec_fn) { 1514 set_bit(Unmerged, &rdev->flags); 1515 mddev->merge_check_needed = 1; 1516 } 1517 1518 for (mirror = first; mirror <= last; mirror++) { 1519 p = conf->mirrors+mirror; 1520 if (!p->rdev) { 1521 1522 disk_stack_limits(mddev->gendisk, rdev->bdev, 1523 rdev->data_offset << 9); 1524 1525 p->head_position = 0; 1526 rdev->raid_disk = mirror; 1527 err = 0; 1528 /* As all devices are equivalent, we don't need a full recovery 1529 * if this was recently any drive of the array 1530 */ 1531 if (rdev->saved_raid_disk < 0) 1532 conf->fullsync = 1; 1533 rcu_assign_pointer(p->rdev, rdev); 1534 break; 1535 } 1536 if (test_bit(WantReplacement, &p->rdev->flags) && 1537 p[conf->raid_disks].rdev == NULL) { 1538 /* Add this device as a replacement */ 1539 clear_bit(In_sync, &rdev->flags); 1540 set_bit(Replacement, &rdev->flags); 1541 rdev->raid_disk = mirror; 1542 err = 0; 1543 conf->fullsync = 1; 1544 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1545 break; 1546 } 1547 } 1548 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1549 /* Some requests might not have seen this new 1550 * merge_bvec_fn. We must wait for them to complete 1551 * before merging the device fully. 1552 * First we make sure any code which has tested 1553 * our function has submitted the request, then 1554 * we wait for all outstanding requests to complete. 1555 */ 1556 synchronize_sched(); 1557 freeze_array(conf, 0); 1558 unfreeze_array(conf); 1559 clear_bit(Unmerged, &rdev->flags); 1560 } 1561 md_integrity_add_rdev(rdev, mddev); 1562 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 1563 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1564 print_conf(conf); 1565 return err; 1566 } 1567 1568 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1569 { 1570 struct r1conf *conf = mddev->private; 1571 int err = 0; 1572 int number = rdev->raid_disk; 1573 struct raid1_info *p = conf->mirrors + number; 1574 1575 if (rdev != p->rdev) 1576 p = conf->mirrors + conf->raid_disks + number; 1577 1578 print_conf(conf); 1579 if (rdev == p->rdev) { 1580 if (test_bit(In_sync, &rdev->flags) || 1581 atomic_read(&rdev->nr_pending)) { 1582 err = -EBUSY; 1583 goto abort; 1584 } 1585 /* Only remove non-faulty devices if recovery 1586 * is not possible. 1587 */ 1588 if (!test_bit(Faulty, &rdev->flags) && 1589 mddev->recovery_disabled != conf->recovery_disabled && 1590 mddev->degraded < conf->raid_disks) { 1591 err = -EBUSY; 1592 goto abort; 1593 } 1594 p->rdev = NULL; 1595 synchronize_rcu(); 1596 if (atomic_read(&rdev->nr_pending)) { 1597 /* lost the race, try later */ 1598 err = -EBUSY; 1599 p->rdev = rdev; 1600 goto abort; 1601 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1602 /* We just removed a device that is being replaced. 1603 * Move down the replacement. We drain all IO before 1604 * doing this to avoid confusion. 1605 */ 1606 struct md_rdev *repl = 1607 conf->mirrors[conf->raid_disks + number].rdev; 1608 freeze_array(conf, 0); 1609 clear_bit(Replacement, &repl->flags); 1610 p->rdev = repl; 1611 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1612 unfreeze_array(conf); 1613 clear_bit(WantReplacement, &rdev->flags); 1614 } else 1615 clear_bit(WantReplacement, &rdev->flags); 1616 err = md_integrity_register(mddev); 1617 } 1618 abort: 1619 1620 print_conf(conf); 1621 return err; 1622 } 1623 1624 1625 static void end_sync_read(struct bio *bio, int error) 1626 { 1627 struct r1bio *r1_bio = bio->bi_private; 1628 1629 update_head_pos(r1_bio->read_disk, r1_bio); 1630 1631 /* 1632 * we have read a block, now it needs to be re-written, 1633 * or re-read if the read failed. 1634 * We don't do much here, just schedule handling by raid1d 1635 */ 1636 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1637 set_bit(R1BIO_Uptodate, &r1_bio->state); 1638 1639 if (atomic_dec_and_test(&r1_bio->remaining)) 1640 reschedule_retry(r1_bio); 1641 } 1642 1643 static void end_sync_write(struct bio *bio, int error) 1644 { 1645 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1646 struct r1bio *r1_bio = bio->bi_private; 1647 struct mddev *mddev = r1_bio->mddev; 1648 struct r1conf *conf = mddev->private; 1649 int mirror=0; 1650 sector_t first_bad; 1651 int bad_sectors; 1652 1653 mirror = find_bio_disk(r1_bio, bio); 1654 1655 if (!uptodate) { 1656 sector_t sync_blocks = 0; 1657 sector_t s = r1_bio->sector; 1658 long sectors_to_go = r1_bio->sectors; 1659 /* make sure these bits doesn't get cleared. */ 1660 do { 1661 bitmap_end_sync(mddev->bitmap, s, 1662 &sync_blocks, 1); 1663 s += sync_blocks; 1664 sectors_to_go -= sync_blocks; 1665 } while (sectors_to_go > 0); 1666 set_bit(WriteErrorSeen, 1667 &conf->mirrors[mirror].rdev->flags); 1668 if (!test_and_set_bit(WantReplacement, 1669 &conf->mirrors[mirror].rdev->flags)) 1670 set_bit(MD_RECOVERY_NEEDED, & 1671 mddev->recovery); 1672 set_bit(R1BIO_WriteError, &r1_bio->state); 1673 } else if (is_badblock(conf->mirrors[mirror].rdev, 1674 r1_bio->sector, 1675 r1_bio->sectors, 1676 &first_bad, &bad_sectors) && 1677 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1678 r1_bio->sector, 1679 r1_bio->sectors, 1680 &first_bad, &bad_sectors) 1681 ) 1682 set_bit(R1BIO_MadeGood, &r1_bio->state); 1683 1684 if (atomic_dec_and_test(&r1_bio->remaining)) { 1685 int s = r1_bio->sectors; 1686 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1687 test_bit(R1BIO_WriteError, &r1_bio->state)) 1688 reschedule_retry(r1_bio); 1689 else { 1690 put_buf(r1_bio); 1691 md_done_sync(mddev, s, uptodate); 1692 } 1693 } 1694 } 1695 1696 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1697 int sectors, struct page *page, int rw) 1698 { 1699 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1700 /* success */ 1701 return 1; 1702 if (rw == WRITE) { 1703 set_bit(WriteErrorSeen, &rdev->flags); 1704 if (!test_and_set_bit(WantReplacement, 1705 &rdev->flags)) 1706 set_bit(MD_RECOVERY_NEEDED, & 1707 rdev->mddev->recovery); 1708 } 1709 /* need to record an error - either for the block or the device */ 1710 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1711 md_error(rdev->mddev, rdev); 1712 return 0; 1713 } 1714 1715 static int fix_sync_read_error(struct r1bio *r1_bio) 1716 { 1717 /* Try some synchronous reads of other devices to get 1718 * good data, much like with normal read errors. Only 1719 * read into the pages we already have so we don't 1720 * need to re-issue the read request. 1721 * We don't need to freeze the array, because being in an 1722 * active sync request, there is no normal IO, and 1723 * no overlapping syncs. 1724 * We don't need to check is_badblock() again as we 1725 * made sure that anything with a bad block in range 1726 * will have bi_end_io clear. 1727 */ 1728 struct mddev *mddev = r1_bio->mddev; 1729 struct r1conf *conf = mddev->private; 1730 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1731 sector_t sect = r1_bio->sector; 1732 int sectors = r1_bio->sectors; 1733 int idx = 0; 1734 1735 while(sectors) { 1736 int s = sectors; 1737 int d = r1_bio->read_disk; 1738 int success = 0; 1739 struct md_rdev *rdev; 1740 int start; 1741 1742 if (s > (PAGE_SIZE>>9)) 1743 s = PAGE_SIZE >> 9; 1744 do { 1745 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1746 /* No rcu protection needed here devices 1747 * can only be removed when no resync is 1748 * active, and resync is currently active 1749 */ 1750 rdev = conf->mirrors[d].rdev; 1751 if (sync_page_io(rdev, sect, s<<9, 1752 bio->bi_io_vec[idx].bv_page, 1753 READ, false)) { 1754 success = 1; 1755 break; 1756 } 1757 } 1758 d++; 1759 if (d == conf->raid_disks * 2) 1760 d = 0; 1761 } while (!success && d != r1_bio->read_disk); 1762 1763 if (!success) { 1764 char b[BDEVNAME_SIZE]; 1765 int abort = 0; 1766 /* Cannot read from anywhere, this block is lost. 1767 * Record a bad block on each device. If that doesn't 1768 * work just disable and interrupt the recovery. 1769 * Don't fail devices as that won't really help. 1770 */ 1771 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1772 " for block %llu\n", 1773 mdname(mddev), 1774 bdevname(bio->bi_bdev, b), 1775 (unsigned long long)r1_bio->sector); 1776 for (d = 0; d < conf->raid_disks * 2; d++) { 1777 rdev = conf->mirrors[d].rdev; 1778 if (!rdev || test_bit(Faulty, &rdev->flags)) 1779 continue; 1780 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1781 abort = 1; 1782 } 1783 if (abort) { 1784 conf->recovery_disabled = 1785 mddev->recovery_disabled; 1786 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1787 md_done_sync(mddev, r1_bio->sectors, 0); 1788 put_buf(r1_bio); 1789 return 0; 1790 } 1791 /* Try next page */ 1792 sectors -= s; 1793 sect += s; 1794 idx++; 1795 continue; 1796 } 1797 1798 start = d; 1799 /* write it back and re-read */ 1800 while (d != r1_bio->read_disk) { 1801 if (d == 0) 1802 d = conf->raid_disks * 2; 1803 d--; 1804 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1805 continue; 1806 rdev = conf->mirrors[d].rdev; 1807 if (r1_sync_page_io(rdev, sect, s, 1808 bio->bi_io_vec[idx].bv_page, 1809 WRITE) == 0) { 1810 r1_bio->bios[d]->bi_end_io = NULL; 1811 rdev_dec_pending(rdev, mddev); 1812 } 1813 } 1814 d = start; 1815 while (d != r1_bio->read_disk) { 1816 if (d == 0) 1817 d = conf->raid_disks * 2; 1818 d--; 1819 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1820 continue; 1821 rdev = conf->mirrors[d].rdev; 1822 if (r1_sync_page_io(rdev, sect, s, 1823 bio->bi_io_vec[idx].bv_page, 1824 READ) != 0) 1825 atomic_add(s, &rdev->corrected_errors); 1826 } 1827 sectors -= s; 1828 sect += s; 1829 idx ++; 1830 } 1831 set_bit(R1BIO_Uptodate, &r1_bio->state); 1832 set_bit(BIO_UPTODATE, &bio->bi_flags); 1833 return 1; 1834 } 1835 1836 static int process_checks(struct r1bio *r1_bio) 1837 { 1838 /* We have read all readable devices. If we haven't 1839 * got the block, then there is no hope left. 1840 * If we have, then we want to do a comparison 1841 * and skip the write if everything is the same. 1842 * If any blocks failed to read, then we need to 1843 * attempt an over-write 1844 */ 1845 struct mddev *mddev = r1_bio->mddev; 1846 struct r1conf *conf = mddev->private; 1847 int primary; 1848 int i; 1849 int vcnt; 1850 1851 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1852 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1853 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1854 r1_bio->bios[primary]->bi_end_io = NULL; 1855 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1856 break; 1857 } 1858 r1_bio->read_disk = primary; 1859 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1860 for (i = 0; i < conf->raid_disks * 2; i++) { 1861 int j; 1862 struct bio *pbio = r1_bio->bios[primary]; 1863 struct bio *sbio = r1_bio->bios[i]; 1864 int size; 1865 1866 if (sbio->bi_end_io != end_sync_read) 1867 continue; 1868 1869 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1870 for (j = vcnt; j-- ; ) { 1871 struct page *p, *s; 1872 p = pbio->bi_io_vec[j].bv_page; 1873 s = sbio->bi_io_vec[j].bv_page; 1874 if (memcmp(page_address(p), 1875 page_address(s), 1876 sbio->bi_io_vec[j].bv_len)) 1877 break; 1878 } 1879 } else 1880 j = 0; 1881 if (j >= 0) 1882 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 1883 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1884 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1885 /* No need to write to this device. */ 1886 sbio->bi_end_io = NULL; 1887 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1888 continue; 1889 } 1890 /* fixup the bio for reuse */ 1891 bio_reset(sbio); 1892 sbio->bi_vcnt = vcnt; 1893 sbio->bi_size = r1_bio->sectors << 9; 1894 sbio->bi_sector = r1_bio->sector + 1895 conf->mirrors[i].rdev->data_offset; 1896 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1897 sbio->bi_end_io = end_sync_read; 1898 sbio->bi_private = r1_bio; 1899 1900 size = sbio->bi_size; 1901 for (j = 0; j < vcnt ; j++) { 1902 struct bio_vec *bi; 1903 bi = &sbio->bi_io_vec[j]; 1904 bi->bv_offset = 0; 1905 if (size > PAGE_SIZE) 1906 bi->bv_len = PAGE_SIZE; 1907 else 1908 bi->bv_len = size; 1909 size -= PAGE_SIZE; 1910 } 1911 1912 bio_copy_data(sbio, pbio); 1913 } 1914 return 0; 1915 } 1916 1917 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 1918 { 1919 struct r1conf *conf = mddev->private; 1920 int i; 1921 int disks = conf->raid_disks * 2; 1922 struct bio *bio, *wbio; 1923 1924 bio = r1_bio->bios[r1_bio->read_disk]; 1925 1926 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1927 /* ouch - failed to read all of that. */ 1928 if (!fix_sync_read_error(r1_bio)) 1929 return; 1930 1931 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1932 if (process_checks(r1_bio) < 0) 1933 return; 1934 /* 1935 * schedule writes 1936 */ 1937 atomic_set(&r1_bio->remaining, 1); 1938 for (i = 0; i < disks ; i++) { 1939 wbio = r1_bio->bios[i]; 1940 if (wbio->bi_end_io == NULL || 1941 (wbio->bi_end_io == end_sync_read && 1942 (i == r1_bio->read_disk || 1943 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1944 continue; 1945 1946 wbio->bi_rw = WRITE; 1947 wbio->bi_end_io = end_sync_write; 1948 atomic_inc(&r1_bio->remaining); 1949 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 1950 1951 generic_make_request(wbio); 1952 } 1953 1954 if (atomic_dec_and_test(&r1_bio->remaining)) { 1955 /* if we're here, all write(s) have completed, so clean up */ 1956 int s = r1_bio->sectors; 1957 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1958 test_bit(R1BIO_WriteError, &r1_bio->state)) 1959 reschedule_retry(r1_bio); 1960 else { 1961 put_buf(r1_bio); 1962 md_done_sync(mddev, s, 1); 1963 } 1964 } 1965 } 1966 1967 /* 1968 * This is a kernel thread which: 1969 * 1970 * 1. Retries failed read operations on working mirrors. 1971 * 2. Updates the raid superblock when problems encounter. 1972 * 3. Performs writes following reads for array synchronising. 1973 */ 1974 1975 static void fix_read_error(struct r1conf *conf, int read_disk, 1976 sector_t sect, int sectors) 1977 { 1978 struct mddev *mddev = conf->mddev; 1979 while(sectors) { 1980 int s = sectors; 1981 int d = read_disk; 1982 int success = 0; 1983 int start; 1984 struct md_rdev *rdev; 1985 1986 if (s > (PAGE_SIZE>>9)) 1987 s = PAGE_SIZE >> 9; 1988 1989 do { 1990 /* Note: no rcu protection needed here 1991 * as this is synchronous in the raid1d thread 1992 * which is the thread that might remove 1993 * a device. If raid1d ever becomes multi-threaded.... 1994 */ 1995 sector_t first_bad; 1996 int bad_sectors; 1997 1998 rdev = conf->mirrors[d].rdev; 1999 if (rdev && 2000 (test_bit(In_sync, &rdev->flags) || 2001 (!test_bit(Faulty, &rdev->flags) && 2002 rdev->recovery_offset >= sect + s)) && 2003 is_badblock(rdev, sect, s, 2004 &first_bad, &bad_sectors) == 0 && 2005 sync_page_io(rdev, sect, s<<9, 2006 conf->tmppage, READ, false)) 2007 success = 1; 2008 else { 2009 d++; 2010 if (d == conf->raid_disks * 2) 2011 d = 0; 2012 } 2013 } while (!success && d != read_disk); 2014 2015 if (!success) { 2016 /* Cannot read from anywhere - mark it bad */ 2017 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2018 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2019 md_error(mddev, rdev); 2020 break; 2021 } 2022 /* write it back and re-read */ 2023 start = d; 2024 while (d != read_disk) { 2025 if (d==0) 2026 d = conf->raid_disks * 2; 2027 d--; 2028 rdev = conf->mirrors[d].rdev; 2029 if (rdev && 2030 test_bit(In_sync, &rdev->flags)) 2031 r1_sync_page_io(rdev, sect, s, 2032 conf->tmppage, WRITE); 2033 } 2034 d = start; 2035 while (d != read_disk) { 2036 char b[BDEVNAME_SIZE]; 2037 if (d==0) 2038 d = conf->raid_disks * 2; 2039 d--; 2040 rdev = conf->mirrors[d].rdev; 2041 if (rdev && 2042 test_bit(In_sync, &rdev->flags)) { 2043 if (r1_sync_page_io(rdev, sect, s, 2044 conf->tmppage, READ)) { 2045 atomic_add(s, &rdev->corrected_errors); 2046 printk(KERN_INFO 2047 "md/raid1:%s: read error corrected " 2048 "(%d sectors at %llu on %s)\n", 2049 mdname(mddev), s, 2050 (unsigned long long)(sect + 2051 rdev->data_offset), 2052 bdevname(rdev->bdev, b)); 2053 } 2054 } 2055 } 2056 sectors -= s; 2057 sect += s; 2058 } 2059 } 2060 2061 static int narrow_write_error(struct r1bio *r1_bio, int i) 2062 { 2063 struct mddev *mddev = r1_bio->mddev; 2064 struct r1conf *conf = mddev->private; 2065 struct md_rdev *rdev = conf->mirrors[i].rdev; 2066 2067 /* bio has the data to be written to device 'i' where 2068 * we just recently had a write error. 2069 * We repeatedly clone the bio and trim down to one block, 2070 * then try the write. Where the write fails we record 2071 * a bad block. 2072 * It is conceivable that the bio doesn't exactly align with 2073 * blocks. We must handle this somehow. 2074 * 2075 * We currently own a reference on the rdev. 2076 */ 2077 2078 int block_sectors; 2079 sector_t sector; 2080 int sectors; 2081 int sect_to_write = r1_bio->sectors; 2082 int ok = 1; 2083 2084 if (rdev->badblocks.shift < 0) 2085 return 0; 2086 2087 block_sectors = 1 << rdev->badblocks.shift; 2088 sector = r1_bio->sector; 2089 sectors = ((sector + block_sectors) 2090 & ~(sector_t)(block_sectors - 1)) 2091 - sector; 2092 2093 while (sect_to_write) { 2094 struct bio *wbio; 2095 if (sectors > sect_to_write) 2096 sectors = sect_to_write; 2097 /* Write at 'sector' for 'sectors'*/ 2098 2099 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2100 unsigned vcnt = r1_bio->behind_page_count; 2101 struct bio_vec *vec = r1_bio->behind_bvecs; 2102 2103 while (!vec->bv_page) { 2104 vec++; 2105 vcnt--; 2106 } 2107 2108 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2109 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2110 2111 wbio->bi_vcnt = vcnt; 2112 } else { 2113 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2114 } 2115 2116 wbio->bi_rw = WRITE; 2117 wbio->bi_sector = r1_bio->sector; 2118 wbio->bi_size = r1_bio->sectors << 9; 2119 2120 md_trim_bio(wbio, sector - r1_bio->sector, sectors); 2121 wbio->bi_sector += rdev->data_offset; 2122 wbio->bi_bdev = rdev->bdev; 2123 if (submit_bio_wait(WRITE, wbio) == 0) 2124 /* failure! */ 2125 ok = rdev_set_badblocks(rdev, sector, 2126 sectors, 0) 2127 && ok; 2128 2129 bio_put(wbio); 2130 sect_to_write -= sectors; 2131 sector += sectors; 2132 sectors = block_sectors; 2133 } 2134 return ok; 2135 } 2136 2137 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2138 { 2139 int m; 2140 int s = r1_bio->sectors; 2141 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2142 struct md_rdev *rdev = conf->mirrors[m].rdev; 2143 struct bio *bio = r1_bio->bios[m]; 2144 if (bio->bi_end_io == NULL) 2145 continue; 2146 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2147 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2148 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2149 } 2150 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2151 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2152 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2153 md_error(conf->mddev, rdev); 2154 } 2155 } 2156 put_buf(r1_bio); 2157 md_done_sync(conf->mddev, s, 1); 2158 } 2159 2160 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2161 { 2162 int m; 2163 for (m = 0; m < conf->raid_disks * 2 ; m++) 2164 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2165 struct md_rdev *rdev = conf->mirrors[m].rdev; 2166 rdev_clear_badblocks(rdev, 2167 r1_bio->sector, 2168 r1_bio->sectors, 0); 2169 rdev_dec_pending(rdev, conf->mddev); 2170 } else if (r1_bio->bios[m] != NULL) { 2171 /* This drive got a write error. We need to 2172 * narrow down and record precise write 2173 * errors. 2174 */ 2175 if (!narrow_write_error(r1_bio, m)) { 2176 md_error(conf->mddev, 2177 conf->mirrors[m].rdev); 2178 /* an I/O failed, we can't clear the bitmap */ 2179 set_bit(R1BIO_Degraded, &r1_bio->state); 2180 } 2181 rdev_dec_pending(conf->mirrors[m].rdev, 2182 conf->mddev); 2183 } 2184 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2185 close_write(r1_bio); 2186 raid_end_bio_io(r1_bio); 2187 } 2188 2189 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2190 { 2191 int disk; 2192 int max_sectors; 2193 struct mddev *mddev = conf->mddev; 2194 struct bio *bio; 2195 char b[BDEVNAME_SIZE]; 2196 struct md_rdev *rdev; 2197 2198 clear_bit(R1BIO_ReadError, &r1_bio->state); 2199 /* we got a read error. Maybe the drive is bad. Maybe just 2200 * the block and we can fix it. 2201 * We freeze all other IO, and try reading the block from 2202 * other devices. When we find one, we re-write 2203 * and check it that fixes the read error. 2204 * This is all done synchronously while the array is 2205 * frozen 2206 */ 2207 if (mddev->ro == 0) { 2208 freeze_array(conf, 1); 2209 fix_read_error(conf, r1_bio->read_disk, 2210 r1_bio->sector, r1_bio->sectors); 2211 unfreeze_array(conf); 2212 } else 2213 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2214 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2215 2216 bio = r1_bio->bios[r1_bio->read_disk]; 2217 bdevname(bio->bi_bdev, b); 2218 read_more: 2219 disk = read_balance(conf, r1_bio, &max_sectors); 2220 if (disk == -1) { 2221 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2222 " read error for block %llu\n", 2223 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2224 raid_end_bio_io(r1_bio); 2225 } else { 2226 const unsigned long do_sync 2227 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2228 if (bio) { 2229 r1_bio->bios[r1_bio->read_disk] = 2230 mddev->ro ? IO_BLOCKED : NULL; 2231 bio_put(bio); 2232 } 2233 r1_bio->read_disk = disk; 2234 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2235 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors); 2236 r1_bio->bios[r1_bio->read_disk] = bio; 2237 rdev = conf->mirrors[disk].rdev; 2238 printk_ratelimited(KERN_ERR 2239 "md/raid1:%s: redirecting sector %llu" 2240 " to other mirror: %s\n", 2241 mdname(mddev), 2242 (unsigned long long)r1_bio->sector, 2243 bdevname(rdev->bdev, b)); 2244 bio->bi_sector = r1_bio->sector + rdev->data_offset; 2245 bio->bi_bdev = rdev->bdev; 2246 bio->bi_end_io = raid1_end_read_request; 2247 bio->bi_rw = READ | do_sync; 2248 bio->bi_private = r1_bio; 2249 if (max_sectors < r1_bio->sectors) { 2250 /* Drat - have to split this up more */ 2251 struct bio *mbio = r1_bio->master_bio; 2252 int sectors_handled = (r1_bio->sector + max_sectors 2253 - mbio->bi_sector); 2254 r1_bio->sectors = max_sectors; 2255 spin_lock_irq(&conf->device_lock); 2256 if (mbio->bi_phys_segments == 0) 2257 mbio->bi_phys_segments = 2; 2258 else 2259 mbio->bi_phys_segments++; 2260 spin_unlock_irq(&conf->device_lock); 2261 generic_make_request(bio); 2262 bio = NULL; 2263 2264 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2265 2266 r1_bio->master_bio = mbio; 2267 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2268 r1_bio->state = 0; 2269 set_bit(R1BIO_ReadError, &r1_bio->state); 2270 r1_bio->mddev = mddev; 2271 r1_bio->sector = mbio->bi_sector + sectors_handled; 2272 2273 goto read_more; 2274 } else 2275 generic_make_request(bio); 2276 } 2277 } 2278 2279 static void raid1d(struct md_thread *thread) 2280 { 2281 struct mddev *mddev = thread->mddev; 2282 struct r1bio *r1_bio; 2283 unsigned long flags; 2284 struct r1conf *conf = mddev->private; 2285 struct list_head *head = &conf->retry_list; 2286 struct blk_plug plug; 2287 2288 md_check_recovery(mddev); 2289 2290 blk_start_plug(&plug); 2291 for (;;) { 2292 2293 flush_pending_writes(conf); 2294 2295 spin_lock_irqsave(&conf->device_lock, flags); 2296 if (list_empty(head)) { 2297 spin_unlock_irqrestore(&conf->device_lock, flags); 2298 break; 2299 } 2300 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2301 list_del(head->prev); 2302 conf->nr_queued--; 2303 spin_unlock_irqrestore(&conf->device_lock, flags); 2304 2305 mddev = r1_bio->mddev; 2306 conf = mddev->private; 2307 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2308 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2309 test_bit(R1BIO_WriteError, &r1_bio->state)) 2310 handle_sync_write_finished(conf, r1_bio); 2311 else 2312 sync_request_write(mddev, r1_bio); 2313 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2314 test_bit(R1BIO_WriteError, &r1_bio->state)) 2315 handle_write_finished(conf, r1_bio); 2316 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2317 handle_read_error(conf, r1_bio); 2318 else 2319 /* just a partial read to be scheduled from separate 2320 * context 2321 */ 2322 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2323 2324 cond_resched(); 2325 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2326 md_check_recovery(mddev); 2327 } 2328 blk_finish_plug(&plug); 2329 } 2330 2331 2332 static int init_resync(struct r1conf *conf) 2333 { 2334 int buffs; 2335 2336 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2337 BUG_ON(conf->r1buf_pool); 2338 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2339 conf->poolinfo); 2340 if (!conf->r1buf_pool) 2341 return -ENOMEM; 2342 conf->next_resync = 0; 2343 return 0; 2344 } 2345 2346 /* 2347 * perform a "sync" on one "block" 2348 * 2349 * We need to make sure that no normal I/O request - particularly write 2350 * requests - conflict with active sync requests. 2351 * 2352 * This is achieved by tracking pending requests and a 'barrier' concept 2353 * that can be installed to exclude normal IO requests. 2354 */ 2355 2356 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster) 2357 { 2358 struct r1conf *conf = mddev->private; 2359 struct r1bio *r1_bio; 2360 struct bio *bio; 2361 sector_t max_sector, nr_sectors; 2362 int disk = -1; 2363 int i; 2364 int wonly = -1; 2365 int write_targets = 0, read_targets = 0; 2366 sector_t sync_blocks; 2367 int still_degraded = 0; 2368 int good_sectors = RESYNC_SECTORS; 2369 int min_bad = 0; /* number of sectors that are bad in all devices */ 2370 2371 if (!conf->r1buf_pool) 2372 if (init_resync(conf)) 2373 return 0; 2374 2375 max_sector = mddev->dev_sectors; 2376 if (sector_nr >= max_sector) { 2377 /* If we aborted, we need to abort the 2378 * sync on the 'current' bitmap chunk (there will 2379 * only be one in raid1 resync. 2380 * We can find the current addess in mddev->curr_resync 2381 */ 2382 if (mddev->curr_resync < max_sector) /* aborted */ 2383 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2384 &sync_blocks, 1); 2385 else /* completed sync */ 2386 conf->fullsync = 0; 2387 2388 bitmap_close_sync(mddev->bitmap); 2389 close_sync(conf); 2390 return 0; 2391 } 2392 2393 if (mddev->bitmap == NULL && 2394 mddev->recovery_cp == MaxSector && 2395 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2396 conf->fullsync == 0) { 2397 *skipped = 1; 2398 return max_sector - sector_nr; 2399 } 2400 /* before building a request, check if we can skip these blocks.. 2401 * This call the bitmap_start_sync doesn't actually record anything 2402 */ 2403 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2404 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2405 /* We can skip this block, and probably several more */ 2406 *skipped = 1; 2407 return sync_blocks; 2408 } 2409 /* 2410 * If there is non-resync activity waiting for a turn, 2411 * and resync is going fast enough, 2412 * then let it though before starting on this new sync request. 2413 */ 2414 if (!go_faster && conf->nr_waiting) 2415 msleep_interruptible(1000); 2416 2417 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2418 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2419 raise_barrier(conf); 2420 2421 conf->next_resync = sector_nr; 2422 2423 rcu_read_lock(); 2424 /* 2425 * If we get a correctably read error during resync or recovery, 2426 * we might want to read from a different device. So we 2427 * flag all drives that could conceivably be read from for READ, 2428 * and any others (which will be non-In_sync devices) for WRITE. 2429 * If a read fails, we try reading from something else for which READ 2430 * is OK. 2431 */ 2432 2433 r1_bio->mddev = mddev; 2434 r1_bio->sector = sector_nr; 2435 r1_bio->state = 0; 2436 set_bit(R1BIO_IsSync, &r1_bio->state); 2437 2438 for (i = 0; i < conf->raid_disks * 2; i++) { 2439 struct md_rdev *rdev; 2440 bio = r1_bio->bios[i]; 2441 bio_reset(bio); 2442 2443 rdev = rcu_dereference(conf->mirrors[i].rdev); 2444 if (rdev == NULL || 2445 test_bit(Faulty, &rdev->flags)) { 2446 if (i < conf->raid_disks) 2447 still_degraded = 1; 2448 } else if (!test_bit(In_sync, &rdev->flags)) { 2449 bio->bi_rw = WRITE; 2450 bio->bi_end_io = end_sync_write; 2451 write_targets ++; 2452 } else { 2453 /* may need to read from here */ 2454 sector_t first_bad = MaxSector; 2455 int bad_sectors; 2456 2457 if (is_badblock(rdev, sector_nr, good_sectors, 2458 &first_bad, &bad_sectors)) { 2459 if (first_bad > sector_nr) 2460 good_sectors = first_bad - sector_nr; 2461 else { 2462 bad_sectors -= (sector_nr - first_bad); 2463 if (min_bad == 0 || 2464 min_bad > bad_sectors) 2465 min_bad = bad_sectors; 2466 } 2467 } 2468 if (sector_nr < first_bad) { 2469 if (test_bit(WriteMostly, &rdev->flags)) { 2470 if (wonly < 0) 2471 wonly = i; 2472 } else { 2473 if (disk < 0) 2474 disk = i; 2475 } 2476 bio->bi_rw = READ; 2477 bio->bi_end_io = end_sync_read; 2478 read_targets++; 2479 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2480 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2481 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2482 /* 2483 * The device is suitable for reading (InSync), 2484 * but has bad block(s) here. Let's try to correct them, 2485 * if we are doing resync or repair. Otherwise, leave 2486 * this device alone for this sync request. 2487 */ 2488 bio->bi_rw = WRITE; 2489 bio->bi_end_io = end_sync_write; 2490 write_targets++; 2491 } 2492 } 2493 if (bio->bi_end_io) { 2494 atomic_inc(&rdev->nr_pending); 2495 bio->bi_sector = sector_nr + rdev->data_offset; 2496 bio->bi_bdev = rdev->bdev; 2497 bio->bi_private = r1_bio; 2498 } 2499 } 2500 rcu_read_unlock(); 2501 if (disk < 0) 2502 disk = wonly; 2503 r1_bio->read_disk = disk; 2504 2505 if (read_targets == 0 && min_bad > 0) { 2506 /* These sectors are bad on all InSync devices, so we 2507 * need to mark them bad on all write targets 2508 */ 2509 int ok = 1; 2510 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2511 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2512 struct md_rdev *rdev = conf->mirrors[i].rdev; 2513 ok = rdev_set_badblocks(rdev, sector_nr, 2514 min_bad, 0 2515 ) && ok; 2516 } 2517 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2518 *skipped = 1; 2519 put_buf(r1_bio); 2520 2521 if (!ok) { 2522 /* Cannot record the badblocks, so need to 2523 * abort the resync. 2524 * If there are multiple read targets, could just 2525 * fail the really bad ones ??? 2526 */ 2527 conf->recovery_disabled = mddev->recovery_disabled; 2528 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2529 return 0; 2530 } else 2531 return min_bad; 2532 2533 } 2534 if (min_bad > 0 && min_bad < good_sectors) { 2535 /* only resync enough to reach the next bad->good 2536 * transition */ 2537 good_sectors = min_bad; 2538 } 2539 2540 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2541 /* extra read targets are also write targets */ 2542 write_targets += read_targets-1; 2543 2544 if (write_targets == 0 || read_targets == 0) { 2545 /* There is nowhere to write, so all non-sync 2546 * drives must be failed - so we are finished 2547 */ 2548 sector_t rv; 2549 if (min_bad > 0) 2550 max_sector = sector_nr + min_bad; 2551 rv = max_sector - sector_nr; 2552 *skipped = 1; 2553 put_buf(r1_bio); 2554 return rv; 2555 } 2556 2557 if (max_sector > mddev->resync_max) 2558 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2559 if (max_sector > sector_nr + good_sectors) 2560 max_sector = sector_nr + good_sectors; 2561 nr_sectors = 0; 2562 sync_blocks = 0; 2563 do { 2564 struct page *page; 2565 int len = PAGE_SIZE; 2566 if (sector_nr + (len>>9) > max_sector) 2567 len = (max_sector - sector_nr) << 9; 2568 if (len == 0) 2569 break; 2570 if (sync_blocks == 0) { 2571 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2572 &sync_blocks, still_degraded) && 2573 !conf->fullsync && 2574 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2575 break; 2576 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2577 if ((len >> 9) > sync_blocks) 2578 len = sync_blocks<<9; 2579 } 2580 2581 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2582 bio = r1_bio->bios[i]; 2583 if (bio->bi_end_io) { 2584 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2585 if (bio_add_page(bio, page, len, 0) == 0) { 2586 /* stop here */ 2587 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2588 while (i > 0) { 2589 i--; 2590 bio = r1_bio->bios[i]; 2591 if (bio->bi_end_io==NULL) 2592 continue; 2593 /* remove last page from this bio */ 2594 bio->bi_vcnt--; 2595 bio->bi_size -= len; 2596 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 2597 } 2598 goto bio_full; 2599 } 2600 } 2601 } 2602 nr_sectors += len>>9; 2603 sector_nr += len>>9; 2604 sync_blocks -= (len>>9); 2605 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2606 bio_full: 2607 r1_bio->sectors = nr_sectors; 2608 2609 /* For a user-requested sync, we read all readable devices and do a 2610 * compare 2611 */ 2612 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2613 atomic_set(&r1_bio->remaining, read_targets); 2614 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2615 bio = r1_bio->bios[i]; 2616 if (bio->bi_end_io == end_sync_read) { 2617 read_targets--; 2618 md_sync_acct(bio->bi_bdev, nr_sectors); 2619 generic_make_request(bio); 2620 } 2621 } 2622 } else { 2623 atomic_set(&r1_bio->remaining, 1); 2624 bio = r1_bio->bios[r1_bio->read_disk]; 2625 md_sync_acct(bio->bi_bdev, nr_sectors); 2626 generic_make_request(bio); 2627 2628 } 2629 return nr_sectors; 2630 } 2631 2632 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2633 { 2634 if (sectors) 2635 return sectors; 2636 2637 return mddev->dev_sectors; 2638 } 2639 2640 static struct r1conf *setup_conf(struct mddev *mddev) 2641 { 2642 struct r1conf *conf; 2643 int i; 2644 struct raid1_info *disk; 2645 struct md_rdev *rdev; 2646 int err = -ENOMEM; 2647 2648 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2649 if (!conf) 2650 goto abort; 2651 2652 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2653 * mddev->raid_disks * 2, 2654 GFP_KERNEL); 2655 if (!conf->mirrors) 2656 goto abort; 2657 2658 conf->tmppage = alloc_page(GFP_KERNEL); 2659 if (!conf->tmppage) 2660 goto abort; 2661 2662 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2663 if (!conf->poolinfo) 2664 goto abort; 2665 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2666 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2667 r1bio_pool_free, 2668 conf->poolinfo); 2669 if (!conf->r1bio_pool) 2670 goto abort; 2671 2672 conf->poolinfo->mddev = mddev; 2673 2674 err = -EINVAL; 2675 spin_lock_init(&conf->device_lock); 2676 rdev_for_each(rdev, mddev) { 2677 struct request_queue *q; 2678 int disk_idx = rdev->raid_disk; 2679 if (disk_idx >= mddev->raid_disks 2680 || disk_idx < 0) 2681 continue; 2682 if (test_bit(Replacement, &rdev->flags)) 2683 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2684 else 2685 disk = conf->mirrors + disk_idx; 2686 2687 if (disk->rdev) 2688 goto abort; 2689 disk->rdev = rdev; 2690 q = bdev_get_queue(rdev->bdev); 2691 if (q->merge_bvec_fn) 2692 mddev->merge_check_needed = 1; 2693 2694 disk->head_position = 0; 2695 disk->seq_start = MaxSector; 2696 } 2697 conf->raid_disks = mddev->raid_disks; 2698 conf->mddev = mddev; 2699 INIT_LIST_HEAD(&conf->retry_list); 2700 2701 spin_lock_init(&conf->resync_lock); 2702 init_waitqueue_head(&conf->wait_barrier); 2703 2704 bio_list_init(&conf->pending_bio_list); 2705 conf->pending_count = 0; 2706 conf->recovery_disabled = mddev->recovery_disabled - 1; 2707 2708 err = -EIO; 2709 for (i = 0; i < conf->raid_disks * 2; i++) { 2710 2711 disk = conf->mirrors + i; 2712 2713 if (i < conf->raid_disks && 2714 disk[conf->raid_disks].rdev) { 2715 /* This slot has a replacement. */ 2716 if (!disk->rdev) { 2717 /* No original, just make the replacement 2718 * a recovering spare 2719 */ 2720 disk->rdev = 2721 disk[conf->raid_disks].rdev; 2722 disk[conf->raid_disks].rdev = NULL; 2723 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2724 /* Original is not in_sync - bad */ 2725 goto abort; 2726 } 2727 2728 if (!disk->rdev || 2729 !test_bit(In_sync, &disk->rdev->flags)) { 2730 disk->head_position = 0; 2731 if (disk->rdev && 2732 (disk->rdev->saved_raid_disk < 0)) 2733 conf->fullsync = 1; 2734 } 2735 } 2736 2737 err = -ENOMEM; 2738 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2739 if (!conf->thread) { 2740 printk(KERN_ERR 2741 "md/raid1:%s: couldn't allocate thread\n", 2742 mdname(mddev)); 2743 goto abort; 2744 } 2745 2746 return conf; 2747 2748 abort: 2749 if (conf) { 2750 if (conf->r1bio_pool) 2751 mempool_destroy(conf->r1bio_pool); 2752 kfree(conf->mirrors); 2753 safe_put_page(conf->tmppage); 2754 kfree(conf->poolinfo); 2755 kfree(conf); 2756 } 2757 return ERR_PTR(err); 2758 } 2759 2760 static int stop(struct mddev *mddev); 2761 static int run(struct mddev *mddev) 2762 { 2763 struct r1conf *conf; 2764 int i; 2765 struct md_rdev *rdev; 2766 int ret; 2767 bool discard_supported = false; 2768 2769 if (mddev->level != 1) { 2770 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2771 mdname(mddev), mddev->level); 2772 return -EIO; 2773 } 2774 if (mddev->reshape_position != MaxSector) { 2775 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2776 mdname(mddev)); 2777 return -EIO; 2778 } 2779 /* 2780 * copy the already verified devices into our private RAID1 2781 * bookkeeping area. [whatever we allocate in run(), 2782 * should be freed in stop()] 2783 */ 2784 if (mddev->private == NULL) 2785 conf = setup_conf(mddev); 2786 else 2787 conf = mddev->private; 2788 2789 if (IS_ERR(conf)) 2790 return PTR_ERR(conf); 2791 2792 if (mddev->queue) 2793 blk_queue_max_write_same_sectors(mddev->queue, 0); 2794 2795 rdev_for_each(rdev, mddev) { 2796 if (!mddev->gendisk) 2797 continue; 2798 disk_stack_limits(mddev->gendisk, rdev->bdev, 2799 rdev->data_offset << 9); 2800 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2801 discard_supported = true; 2802 } 2803 2804 mddev->degraded = 0; 2805 for (i=0; i < conf->raid_disks; i++) 2806 if (conf->mirrors[i].rdev == NULL || 2807 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2808 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2809 mddev->degraded++; 2810 2811 if (conf->raid_disks - mddev->degraded == 1) 2812 mddev->recovery_cp = MaxSector; 2813 2814 if (mddev->recovery_cp != MaxSector) 2815 printk(KERN_NOTICE "md/raid1:%s: not clean" 2816 " -- starting background reconstruction\n", 2817 mdname(mddev)); 2818 printk(KERN_INFO 2819 "md/raid1:%s: active with %d out of %d mirrors\n", 2820 mdname(mddev), mddev->raid_disks - mddev->degraded, 2821 mddev->raid_disks); 2822 2823 /* 2824 * Ok, everything is just fine now 2825 */ 2826 mddev->thread = conf->thread; 2827 conf->thread = NULL; 2828 mddev->private = conf; 2829 2830 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2831 2832 if (mddev->queue) { 2833 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2834 mddev->queue->backing_dev_info.congested_data = mddev; 2835 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec); 2836 2837 if (discard_supported) 2838 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2839 mddev->queue); 2840 else 2841 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2842 mddev->queue); 2843 } 2844 2845 ret = md_integrity_register(mddev); 2846 if (ret) 2847 stop(mddev); 2848 return ret; 2849 } 2850 2851 static int stop(struct mddev *mddev) 2852 { 2853 struct r1conf *conf = mddev->private; 2854 struct bitmap *bitmap = mddev->bitmap; 2855 2856 /* wait for behind writes to complete */ 2857 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2858 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2859 mdname(mddev)); 2860 /* need to kick something here to make sure I/O goes? */ 2861 wait_event(bitmap->behind_wait, 2862 atomic_read(&bitmap->behind_writes) == 0); 2863 } 2864 2865 raise_barrier(conf); 2866 lower_barrier(conf); 2867 2868 md_unregister_thread(&mddev->thread); 2869 if (conf->r1bio_pool) 2870 mempool_destroy(conf->r1bio_pool); 2871 kfree(conf->mirrors); 2872 safe_put_page(conf->tmppage); 2873 kfree(conf->poolinfo); 2874 kfree(conf); 2875 mddev->private = NULL; 2876 return 0; 2877 } 2878 2879 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2880 { 2881 /* no resync is happening, and there is enough space 2882 * on all devices, so we can resize. 2883 * We need to make sure resync covers any new space. 2884 * If the array is shrinking we should possibly wait until 2885 * any io in the removed space completes, but it hardly seems 2886 * worth it. 2887 */ 2888 sector_t newsize = raid1_size(mddev, sectors, 0); 2889 if (mddev->external_size && 2890 mddev->array_sectors > newsize) 2891 return -EINVAL; 2892 if (mddev->bitmap) { 2893 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2894 if (ret) 2895 return ret; 2896 } 2897 md_set_array_sectors(mddev, newsize); 2898 set_capacity(mddev->gendisk, mddev->array_sectors); 2899 revalidate_disk(mddev->gendisk); 2900 if (sectors > mddev->dev_sectors && 2901 mddev->recovery_cp > mddev->dev_sectors) { 2902 mddev->recovery_cp = mddev->dev_sectors; 2903 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2904 } 2905 mddev->dev_sectors = sectors; 2906 mddev->resync_max_sectors = sectors; 2907 return 0; 2908 } 2909 2910 static int raid1_reshape(struct mddev *mddev) 2911 { 2912 /* We need to: 2913 * 1/ resize the r1bio_pool 2914 * 2/ resize conf->mirrors 2915 * 2916 * We allocate a new r1bio_pool if we can. 2917 * Then raise a device barrier and wait until all IO stops. 2918 * Then resize conf->mirrors and swap in the new r1bio pool. 2919 * 2920 * At the same time, we "pack" the devices so that all the missing 2921 * devices have the higher raid_disk numbers. 2922 */ 2923 mempool_t *newpool, *oldpool; 2924 struct pool_info *newpoolinfo; 2925 struct raid1_info *newmirrors; 2926 struct r1conf *conf = mddev->private; 2927 int cnt, raid_disks; 2928 unsigned long flags; 2929 int d, d2, err; 2930 2931 /* Cannot change chunk_size, layout, or level */ 2932 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2933 mddev->layout != mddev->new_layout || 2934 mddev->level != mddev->new_level) { 2935 mddev->new_chunk_sectors = mddev->chunk_sectors; 2936 mddev->new_layout = mddev->layout; 2937 mddev->new_level = mddev->level; 2938 return -EINVAL; 2939 } 2940 2941 err = md_allow_write(mddev); 2942 if (err) 2943 return err; 2944 2945 raid_disks = mddev->raid_disks + mddev->delta_disks; 2946 2947 if (raid_disks < conf->raid_disks) { 2948 cnt=0; 2949 for (d= 0; d < conf->raid_disks; d++) 2950 if (conf->mirrors[d].rdev) 2951 cnt++; 2952 if (cnt > raid_disks) 2953 return -EBUSY; 2954 } 2955 2956 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2957 if (!newpoolinfo) 2958 return -ENOMEM; 2959 newpoolinfo->mddev = mddev; 2960 newpoolinfo->raid_disks = raid_disks * 2; 2961 2962 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2963 r1bio_pool_free, newpoolinfo); 2964 if (!newpool) { 2965 kfree(newpoolinfo); 2966 return -ENOMEM; 2967 } 2968 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 2969 GFP_KERNEL); 2970 if (!newmirrors) { 2971 kfree(newpoolinfo); 2972 mempool_destroy(newpool); 2973 return -ENOMEM; 2974 } 2975 2976 freeze_array(conf, 0); 2977 2978 /* ok, everything is stopped */ 2979 oldpool = conf->r1bio_pool; 2980 conf->r1bio_pool = newpool; 2981 2982 for (d = d2 = 0; d < conf->raid_disks; d++) { 2983 struct md_rdev *rdev = conf->mirrors[d].rdev; 2984 if (rdev && rdev->raid_disk != d2) { 2985 sysfs_unlink_rdev(mddev, rdev); 2986 rdev->raid_disk = d2; 2987 sysfs_unlink_rdev(mddev, rdev); 2988 if (sysfs_link_rdev(mddev, rdev)) 2989 printk(KERN_WARNING 2990 "md/raid1:%s: cannot register rd%d\n", 2991 mdname(mddev), rdev->raid_disk); 2992 } 2993 if (rdev) 2994 newmirrors[d2++].rdev = rdev; 2995 } 2996 kfree(conf->mirrors); 2997 conf->mirrors = newmirrors; 2998 kfree(conf->poolinfo); 2999 conf->poolinfo = newpoolinfo; 3000 3001 spin_lock_irqsave(&conf->device_lock, flags); 3002 mddev->degraded += (raid_disks - conf->raid_disks); 3003 spin_unlock_irqrestore(&conf->device_lock, flags); 3004 conf->raid_disks = mddev->raid_disks = raid_disks; 3005 mddev->delta_disks = 0; 3006 3007 unfreeze_array(conf); 3008 3009 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3010 md_wakeup_thread(mddev->thread); 3011 3012 mempool_destroy(oldpool); 3013 return 0; 3014 } 3015 3016 static void raid1_quiesce(struct mddev *mddev, int state) 3017 { 3018 struct r1conf *conf = mddev->private; 3019 3020 switch(state) { 3021 case 2: /* wake for suspend */ 3022 wake_up(&conf->wait_barrier); 3023 break; 3024 case 1: 3025 raise_barrier(conf); 3026 break; 3027 case 0: 3028 lower_barrier(conf); 3029 break; 3030 } 3031 } 3032 3033 static void *raid1_takeover(struct mddev *mddev) 3034 { 3035 /* raid1 can take over: 3036 * raid5 with 2 devices, any layout or chunk size 3037 */ 3038 if (mddev->level == 5 && mddev->raid_disks == 2) { 3039 struct r1conf *conf; 3040 mddev->new_level = 1; 3041 mddev->new_layout = 0; 3042 mddev->new_chunk_sectors = 0; 3043 conf = setup_conf(mddev); 3044 if (!IS_ERR(conf)) 3045 conf->barrier = 1; 3046 return conf; 3047 } 3048 return ERR_PTR(-EINVAL); 3049 } 3050 3051 static struct md_personality raid1_personality = 3052 { 3053 .name = "raid1", 3054 .level = 1, 3055 .owner = THIS_MODULE, 3056 .make_request = make_request, 3057 .run = run, 3058 .stop = stop, 3059 .status = status, 3060 .error_handler = error, 3061 .hot_add_disk = raid1_add_disk, 3062 .hot_remove_disk= raid1_remove_disk, 3063 .spare_active = raid1_spare_active, 3064 .sync_request = sync_request, 3065 .resize = raid1_resize, 3066 .size = raid1_size, 3067 .check_reshape = raid1_reshape, 3068 .quiesce = raid1_quiesce, 3069 .takeover = raid1_takeover, 3070 }; 3071 3072 static int __init raid_init(void) 3073 { 3074 return register_md_personality(&raid1_personality); 3075 } 3076 3077 static void raid_exit(void) 3078 { 3079 unregister_md_personality(&raid1_personality); 3080 } 3081 3082 module_init(raid_init); 3083 module_exit(raid_exit); 3084 MODULE_LICENSE("GPL"); 3085 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3086 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3087 MODULE_ALIAS("md-raid1"); 3088 MODULE_ALIAS("md-level-1"); 3089 3090 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3091