1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 304 bio_end_io_acct(bio, r1_bio->start_time); 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 /* if nobody has done the final endio yet, do it now */ 314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 316 (bio_data_dir(bio) == WRITE) ? "write" : "read", 317 (unsigned long long) bio->bi_iter.bi_sector, 318 (unsigned long long) bio_end_sector(bio) - 1); 319 320 call_bio_endio(r1_bio); 321 } 322 /* 323 * Wake up any possible resync thread that waits for the device 324 * to go idle. All I/Os, even write-behind writes, are done. 325 */ 326 allow_barrier(conf, r1_bio->sector); 327 328 free_r1bio(r1_bio); 329 } 330 331 /* 332 * Update disk head position estimator based on IRQ completion info. 333 */ 334 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 335 { 336 struct r1conf *conf = r1_bio->mddev->private; 337 338 conf->mirrors[disk].head_position = 339 r1_bio->sector + (r1_bio->sectors); 340 } 341 342 /* 343 * Find the disk number which triggered given bio 344 */ 345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 346 { 347 int mirror; 348 struct r1conf *conf = r1_bio->mddev->private; 349 int raid_disks = conf->raid_disks; 350 351 for (mirror = 0; mirror < raid_disks * 2; mirror++) 352 if (r1_bio->bios[mirror] == bio) 353 break; 354 355 BUG_ON(mirror == raid_disks * 2); 356 update_head_pos(mirror, r1_bio); 357 358 return mirror; 359 } 360 361 static void raid1_end_read_request(struct bio *bio) 362 { 363 int uptodate = !bio->bi_status; 364 struct r1bio *r1_bio = bio->bi_private; 365 struct r1conf *conf = r1_bio->mddev->private; 366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 367 368 /* 369 * this branch is our 'one mirror IO has finished' event handler: 370 */ 371 update_head_pos(r1_bio->read_disk, r1_bio); 372 373 if (uptodate) 374 set_bit(R1BIO_Uptodate, &r1_bio->state); 375 else if (test_bit(FailFast, &rdev->flags) && 376 test_bit(R1BIO_FailFast, &r1_bio->state)) 377 /* This was a fail-fast read so we definitely 378 * want to retry */ 379 ; 380 else { 381 /* If all other devices have failed, we want to return 382 * the error upwards rather than fail the last device. 383 * Here we redefine "uptodate" to mean "Don't want to retry" 384 */ 385 unsigned long flags; 386 spin_lock_irqsave(&conf->device_lock, flags); 387 if (r1_bio->mddev->degraded == conf->raid_disks || 388 (r1_bio->mddev->degraded == conf->raid_disks-1 && 389 test_bit(In_sync, &rdev->flags))) 390 uptodate = 1; 391 spin_unlock_irqrestore(&conf->device_lock, flags); 392 } 393 394 if (uptodate) { 395 raid_end_bio_io(r1_bio); 396 rdev_dec_pending(rdev, conf->mddev); 397 } else { 398 /* 399 * oops, read error: 400 */ 401 char b[BDEVNAME_SIZE]; 402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 bdevname(rdev->bdev, b), 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 /* it really is the end of this request */ 415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 416 bio_free_pages(r1_bio->behind_master_bio); 417 bio_put(r1_bio->behind_master_bio); 418 r1_bio->behind_master_bio = NULL; 419 } 420 /* clear the bitmap if all writes complete successfully */ 421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 422 r1_bio->sectors, 423 !test_bit(R1BIO_Degraded, &r1_bio->state), 424 test_bit(R1BIO_BehindIO, &r1_bio->state)); 425 md_write_end(r1_bio->mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Fail the request */ 482 set_bit(R1BIO_Degraded, &r1_bio->state); 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 sector_t first_bad; 499 int bad_sectors; 500 501 r1_bio->bios[mirror] = NULL; 502 to_put = bio; 503 /* 504 * Do not set R1BIO_Uptodate if the current device is 505 * rebuilding or Faulty. This is because we cannot use 506 * such device for properly reading the data back (we could 507 * potentially use it, if the current write would have felt 508 * before rdev->recovery_offset, but for simplicity we don't 509 * check this here. 510 */ 511 if (test_bit(In_sync, &rdev->flags) && 512 !test_bit(Faulty, &rdev->flags)) 513 set_bit(R1BIO_Uptodate, &r1_bio->state); 514 515 /* Maybe we can clear some bad blocks. */ 516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 517 &first_bad, &bad_sectors) && !discard_error) { 518 r1_bio->bios[mirror] = IO_MADE_GOOD; 519 set_bit(R1BIO_MadeGood, &r1_bio->state); 520 } 521 } 522 523 if (behind) { 524 if (test_bit(CollisionCheck, &rdev->flags)) 525 remove_serial(rdev, lo, hi); 526 if (test_bit(WriteMostly, &rdev->flags)) 527 atomic_dec(&r1_bio->behind_remaining); 528 529 /* 530 * In behind mode, we ACK the master bio once the I/O 531 * has safely reached all non-writemostly 532 * disks. Setting the Returned bit ensures that this 533 * gets done only once -- we don't ever want to return 534 * -EIO here, instead we'll wait 535 */ 536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 537 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 538 /* Maybe we can return now */ 539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 540 struct bio *mbio = r1_bio->master_bio; 541 pr_debug("raid1: behind end write sectors" 542 " %llu-%llu\n", 543 (unsigned long long) mbio->bi_iter.bi_sector, 544 (unsigned long long) bio_end_sector(mbio) - 1); 545 call_bio_endio(r1_bio); 546 } 547 } 548 } else if (rdev->mddev->serialize_policy) 549 remove_serial(rdev, lo, hi); 550 if (r1_bio->bios[mirror] == NULL) 551 rdev_dec_pending(rdev, conf->mddev); 552 553 /* 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 r1_bio_write_done(r1_bio); 558 559 if (to_put) 560 bio_put(to_put); 561 } 562 563 static sector_t align_to_barrier_unit_end(sector_t start_sector, 564 sector_t sectors) 565 { 566 sector_t len; 567 568 WARN_ON(sectors == 0); 569 /* 570 * len is the number of sectors from start_sector to end of the 571 * barrier unit which start_sector belongs to. 572 */ 573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 574 start_sector; 575 576 if (len > sectors) 577 len = sectors; 578 579 return len; 580 } 581 582 /* 583 * This routine returns the disk from which the requested read should 584 * be done. There is a per-array 'next expected sequential IO' sector 585 * number - if this matches on the next IO then we use the last disk. 586 * There is also a per-disk 'last know head position' sector that is 587 * maintained from IRQ contexts, both the normal and the resync IO 588 * completion handlers update this position correctly. If there is no 589 * perfect sequential match then we pick the disk whose head is closest. 590 * 591 * If there are 2 mirrors in the same 2 devices, performance degrades 592 * because position is mirror, not device based. 593 * 594 * The rdev for the device selected will have nr_pending incremented. 595 */ 596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 597 { 598 const sector_t this_sector = r1_bio->sector; 599 int sectors; 600 int best_good_sectors; 601 int best_disk, best_dist_disk, best_pending_disk; 602 int has_nonrot_disk; 603 int disk; 604 sector_t best_dist; 605 unsigned int min_pending; 606 struct md_rdev *rdev; 607 int choose_first; 608 int choose_next_idle; 609 610 rcu_read_lock(); 611 /* 612 * Check if we can balance. We can balance on the whole 613 * device if no resync is going on, or below the resync window. 614 * We take the first readable disk when above the resync window. 615 */ 616 retry: 617 sectors = r1_bio->sectors; 618 best_disk = -1; 619 best_dist_disk = -1; 620 best_dist = MaxSector; 621 best_pending_disk = -1; 622 min_pending = UINT_MAX; 623 best_good_sectors = 0; 624 has_nonrot_disk = 0; 625 choose_next_idle = 0; 626 clear_bit(R1BIO_FailFast, &r1_bio->state); 627 628 if ((conf->mddev->recovery_cp < this_sector + sectors) || 629 (mddev_is_clustered(conf->mddev) && 630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 631 this_sector + sectors))) 632 choose_first = 1; 633 else 634 choose_first = 0; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 sector_t dist; 638 sector_t first_bad; 639 int bad_sectors; 640 unsigned int pending; 641 bool nonrot; 642 643 rdev = rcu_dereference(conf->mirrors[disk].rdev); 644 if (r1_bio->bios[disk] == IO_BLOCKED 645 || rdev == NULL 646 || test_bit(Faulty, &rdev->flags)) 647 continue; 648 if (!test_bit(In_sync, &rdev->flags) && 649 rdev->recovery_offset < this_sector + sectors) 650 continue; 651 if (test_bit(WriteMostly, &rdev->flags)) { 652 /* Don't balance among write-mostly, just 653 * use the first as a last resort */ 654 if (best_dist_disk < 0) { 655 if (is_badblock(rdev, this_sector, sectors, 656 &first_bad, &bad_sectors)) { 657 if (first_bad <= this_sector) 658 /* Cannot use this */ 659 continue; 660 best_good_sectors = first_bad - this_sector; 661 } else 662 best_good_sectors = sectors; 663 best_dist_disk = disk; 664 best_pending_disk = disk; 665 } 666 continue; 667 } 668 /* This is a reasonable device to use. It might 669 * even be best. 670 */ 671 if (is_badblock(rdev, this_sector, sectors, 672 &first_bad, &bad_sectors)) { 673 if (best_dist < MaxSector) 674 /* already have a better device */ 675 continue; 676 if (first_bad <= this_sector) { 677 /* cannot read here. If this is the 'primary' 678 * device, then we must not read beyond 679 * bad_sectors from another device.. 680 */ 681 bad_sectors -= (this_sector - first_bad); 682 if (choose_first && sectors > bad_sectors) 683 sectors = bad_sectors; 684 if (best_good_sectors > sectors) 685 best_good_sectors = sectors; 686 687 } else { 688 sector_t good_sectors = first_bad - this_sector; 689 if (good_sectors > best_good_sectors) { 690 best_good_sectors = good_sectors; 691 best_disk = disk; 692 } 693 if (choose_first) 694 break; 695 } 696 continue; 697 } else { 698 if ((sectors > best_good_sectors) && (best_disk >= 0)) 699 best_disk = -1; 700 best_good_sectors = sectors; 701 } 702 703 if (best_disk >= 0) 704 /* At least two disks to choose from so failfast is OK */ 705 set_bit(R1BIO_FailFast, &r1_bio->state); 706 707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 708 has_nonrot_disk |= nonrot; 709 pending = atomic_read(&rdev->nr_pending); 710 dist = abs(this_sector - conf->mirrors[disk].head_position); 711 if (choose_first) { 712 best_disk = disk; 713 break; 714 } 715 /* Don't change to another disk for sequential reads */ 716 if (conf->mirrors[disk].next_seq_sect == this_sector 717 || dist == 0) { 718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 719 struct raid1_info *mirror = &conf->mirrors[disk]; 720 721 best_disk = disk; 722 /* 723 * If buffered sequential IO size exceeds optimal 724 * iosize, check if there is idle disk. If yes, choose 725 * the idle disk. read_balance could already choose an 726 * idle disk before noticing it's a sequential IO in 727 * this disk. This doesn't matter because this disk 728 * will idle, next time it will be utilized after the 729 * first disk has IO size exceeds optimal iosize. In 730 * this way, iosize of the first disk will be optimal 731 * iosize at least. iosize of the second disk might be 732 * small, but not a big deal since when the second disk 733 * starts IO, the first disk is likely still busy. 734 */ 735 if (nonrot && opt_iosize > 0 && 736 mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= 739 mirror->seq_start) { 740 choose_next_idle = 1; 741 continue; 742 } 743 break; 744 } 745 746 if (choose_next_idle) 747 continue; 748 749 if (min_pending > pending) { 750 min_pending = pending; 751 best_pending_disk = disk; 752 } 753 754 if (dist < best_dist) { 755 best_dist = dist; 756 best_dist_disk = disk; 757 } 758 } 759 760 /* 761 * If all disks are rotational, choose the closest disk. If any disk is 762 * non-rotational, choose the disk with less pending request even the 763 * disk is rotational, which might/might not be optimal for raids with 764 * mixed ratation/non-rotational disks depending on workload. 765 */ 766 if (best_disk == -1) { 767 if (has_nonrot_disk || min_pending == 0) 768 best_disk = best_pending_disk; 769 else 770 best_disk = best_dist_disk; 771 } 772 773 if (best_disk >= 0) { 774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 775 if (!rdev) 776 goto retry; 777 atomic_inc(&rdev->nr_pending); 778 sectors = best_good_sectors; 779 780 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 781 conf->mirrors[best_disk].seq_start = this_sector; 782 783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 784 } 785 rcu_read_unlock(); 786 *max_sectors = sectors; 787 788 return best_disk; 789 } 790 791 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 792 { 793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 794 md_bitmap_unplug(conf->mddev->bitmap); 795 wake_up(&conf->wait_barrier); 796 797 while (bio) { /* submit pending writes */ 798 struct bio *next = bio->bi_next; 799 struct md_rdev *rdev = (void *)bio->bi_bdev; 800 bio->bi_next = NULL; 801 bio_set_dev(bio, rdev->bdev); 802 if (test_bit(Faulty, &rdev->flags)) { 803 bio_io_error(bio); 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 806 /* Just ignore it */ 807 bio_endio(bio); 808 else 809 submit_bio_noacct(bio); 810 bio = next; 811 cond_resched(); 812 } 813 } 814 815 static void flush_pending_writes(struct r1conf *conf) 816 { 817 /* Any writes that have been queued but are awaiting 818 * bitmap updates get flushed here. 819 */ 820 spin_lock_irq(&conf->device_lock); 821 822 if (conf->pending_bio_list.head) { 823 struct blk_plug plug; 824 struct bio *bio; 825 826 bio = bio_list_get(&conf->pending_bio_list); 827 conf->pending_count = 0; 828 spin_unlock_irq(&conf->device_lock); 829 830 /* 831 * As this is called in a wait_event() loop (see freeze_array), 832 * current->state might be TASK_UNINTERRUPTIBLE which will 833 * cause a warning when we prepare to wait again. As it is 834 * rare that this path is taken, it is perfectly safe to force 835 * us to go around the wait_event() loop again, so the warning 836 * is a false-positive. Silence the warning by resetting 837 * thread state 838 */ 839 __set_current_state(TASK_RUNNING); 840 blk_start_plug(&plug); 841 flush_bio_list(conf, bio); 842 blk_finish_plug(&plug); 843 } else 844 spin_unlock_irq(&conf->device_lock); 845 } 846 847 /* Barriers.... 848 * Sometimes we need to suspend IO while we do something else, 849 * either some resync/recovery, or reconfigure the array. 850 * To do this we raise a 'barrier'. 851 * The 'barrier' is a counter that can be raised multiple times 852 * to count how many activities are happening which preclude 853 * normal IO. 854 * We can only raise the barrier if there is no pending IO. 855 * i.e. if nr_pending == 0. 856 * We choose only to raise the barrier if no-one is waiting for the 857 * barrier to go down. This means that as soon as an IO request 858 * is ready, no other operations which require a barrier will start 859 * until the IO request has had a chance. 860 * 861 * So: regular IO calls 'wait_barrier'. When that returns there 862 * is no backgroup IO happening, It must arrange to call 863 * allow_barrier when it has finished its IO. 864 * backgroup IO calls must call raise_barrier. Once that returns 865 * there is no normal IO happeing. It must arrange to call 866 * lower_barrier when the particular background IO completes. 867 * 868 * If resync/recovery is interrupted, returns -EINTR; 869 * Otherwise, returns 0. 870 */ 871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 872 { 873 int idx = sector_to_idx(sector_nr); 874 875 spin_lock_irq(&conf->resync_lock); 876 877 /* Wait until no block IO is waiting */ 878 wait_event_lock_irq(conf->wait_barrier, 879 !atomic_read(&conf->nr_waiting[idx]), 880 conf->resync_lock); 881 882 /* block any new IO from starting */ 883 atomic_inc(&conf->barrier[idx]); 884 /* 885 * In raise_barrier() we firstly increase conf->barrier[idx] then 886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 887 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 888 * A memory barrier here to make sure conf->nr_pending[idx] won't 889 * be fetched before conf->barrier[idx] is increased. Otherwise 890 * there will be a race between raise_barrier() and _wait_barrier(). 891 */ 892 smp_mb__after_atomic(); 893 894 /* For these conditions we must wait: 895 * A: while the array is in frozen state 896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 897 * existing in corresponding I/O barrier bucket. 898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 899 * max resync count which allowed on current I/O barrier bucket. 900 */ 901 wait_event_lock_irq(conf->wait_barrier, 902 (!conf->array_frozen && 903 !atomic_read(&conf->nr_pending[idx]) && 904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 906 conf->resync_lock); 907 908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 909 atomic_dec(&conf->barrier[idx]); 910 spin_unlock_irq(&conf->resync_lock); 911 wake_up(&conf->wait_barrier); 912 return -EINTR; 913 } 914 915 atomic_inc(&conf->nr_sync_pending); 916 spin_unlock_irq(&conf->resync_lock); 917 918 return 0; 919 } 920 921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 922 { 923 int idx = sector_to_idx(sector_nr); 924 925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 926 927 atomic_dec(&conf->barrier[idx]); 928 atomic_dec(&conf->nr_sync_pending); 929 wake_up(&conf->wait_barrier); 930 } 931 932 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 933 { 934 bool ret = true; 935 936 /* 937 * We need to increase conf->nr_pending[idx] very early here, 938 * then raise_barrier() can be blocked when it waits for 939 * conf->nr_pending[idx] to be 0. Then we can avoid holding 940 * conf->resync_lock when there is no barrier raised in same 941 * barrier unit bucket. Also if the array is frozen, I/O 942 * should be blocked until array is unfrozen. 943 */ 944 atomic_inc(&conf->nr_pending[idx]); 945 /* 946 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 947 * check conf->barrier[idx]. In raise_barrier() we firstly increase 948 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 949 * barrier is necessary here to make sure conf->barrier[idx] won't be 950 * fetched before conf->nr_pending[idx] is increased. Otherwise there 951 * will be a race between _wait_barrier() and raise_barrier(). 952 */ 953 smp_mb__after_atomic(); 954 955 /* 956 * Don't worry about checking two atomic_t variables at same time 957 * here. If during we check conf->barrier[idx], the array is 958 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 959 * 0, it is safe to return and make the I/O continue. Because the 960 * array is frozen, all I/O returned here will eventually complete 961 * or be queued, no race will happen. See code comment in 962 * frozen_array(). 963 */ 964 if (!READ_ONCE(conf->array_frozen) && 965 !atomic_read(&conf->barrier[idx])) 966 return ret; 967 968 /* 969 * After holding conf->resync_lock, conf->nr_pending[idx] 970 * should be decreased before waiting for barrier to drop. 971 * Otherwise, we may encounter a race condition because 972 * raise_barrer() might be waiting for conf->nr_pending[idx] 973 * to be 0 at same time. 974 */ 975 spin_lock_irq(&conf->resync_lock); 976 atomic_inc(&conf->nr_waiting[idx]); 977 atomic_dec(&conf->nr_pending[idx]); 978 /* 979 * In case freeze_array() is waiting for 980 * get_unqueued_pending() == extra 981 */ 982 wake_up(&conf->wait_barrier); 983 /* Wait for the barrier in same barrier unit bucket to drop. */ 984 985 /* Return false when nowait flag is set */ 986 if (nowait) { 987 ret = false; 988 } else { 989 wait_event_lock_irq(conf->wait_barrier, 990 !conf->array_frozen && 991 !atomic_read(&conf->barrier[idx]), 992 conf->resync_lock); 993 atomic_inc(&conf->nr_pending[idx]); 994 } 995 996 atomic_dec(&conf->nr_waiting[idx]); 997 spin_unlock_irq(&conf->resync_lock); 998 return ret; 999 } 1000 1001 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1002 { 1003 int idx = sector_to_idx(sector_nr); 1004 bool ret = true; 1005 1006 /* 1007 * Very similar to _wait_barrier(). The difference is, for read 1008 * I/O we don't need wait for sync I/O, but if the whole array 1009 * is frozen, the read I/O still has to wait until the array is 1010 * unfrozen. Since there is no ordering requirement with 1011 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1012 */ 1013 atomic_inc(&conf->nr_pending[idx]); 1014 1015 if (!READ_ONCE(conf->array_frozen)) 1016 return ret; 1017 1018 spin_lock_irq(&conf->resync_lock); 1019 atomic_inc(&conf->nr_waiting[idx]); 1020 atomic_dec(&conf->nr_pending[idx]); 1021 /* 1022 * In case freeze_array() is waiting for 1023 * get_unqueued_pending() == extra 1024 */ 1025 wake_up(&conf->wait_barrier); 1026 /* Wait for array to be unfrozen */ 1027 1028 /* Return false when nowait flag is set */ 1029 if (nowait) { 1030 /* Return false when nowait flag is set */ 1031 ret = false; 1032 } else { 1033 wait_event_lock_irq(conf->wait_barrier, 1034 !conf->array_frozen, 1035 conf->resync_lock); 1036 atomic_inc(&conf->nr_pending[idx]); 1037 } 1038 1039 atomic_dec(&conf->nr_waiting[idx]); 1040 spin_unlock_irq(&conf->resync_lock); 1041 return ret; 1042 } 1043 1044 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1045 { 1046 int idx = sector_to_idx(sector_nr); 1047 1048 return _wait_barrier(conf, idx, nowait); 1049 } 1050 1051 static void _allow_barrier(struct r1conf *conf, int idx) 1052 { 1053 atomic_dec(&conf->nr_pending[idx]); 1054 wake_up(&conf->wait_barrier); 1055 } 1056 1057 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1058 { 1059 int idx = sector_to_idx(sector_nr); 1060 1061 _allow_barrier(conf, idx); 1062 } 1063 1064 /* conf->resync_lock should be held */ 1065 static int get_unqueued_pending(struct r1conf *conf) 1066 { 1067 int idx, ret; 1068 1069 ret = atomic_read(&conf->nr_sync_pending); 1070 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1071 ret += atomic_read(&conf->nr_pending[idx]) - 1072 atomic_read(&conf->nr_queued[idx]); 1073 1074 return ret; 1075 } 1076 1077 static void freeze_array(struct r1conf *conf, int extra) 1078 { 1079 /* Stop sync I/O and normal I/O and wait for everything to 1080 * go quiet. 1081 * This is called in two situations: 1082 * 1) management command handlers (reshape, remove disk, quiesce). 1083 * 2) one normal I/O request failed. 1084 1085 * After array_frozen is set to 1, new sync IO will be blocked at 1086 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1087 * or wait_read_barrier(). The flying I/Os will either complete or be 1088 * queued. When everything goes quite, there are only queued I/Os left. 1089 1090 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1091 * barrier bucket index which this I/O request hits. When all sync and 1092 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1093 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1094 * in handle_read_error(), we may call freeze_array() before trying to 1095 * fix the read error. In this case, the error read I/O is not queued, 1096 * so get_unqueued_pending() == 1. 1097 * 1098 * Therefore before this function returns, we need to wait until 1099 * get_unqueued_pendings(conf) gets equal to extra. For 1100 * normal I/O context, extra is 1, in rested situations extra is 0. 1101 */ 1102 spin_lock_irq(&conf->resync_lock); 1103 conf->array_frozen = 1; 1104 raid1_log(conf->mddev, "wait freeze"); 1105 wait_event_lock_irq_cmd( 1106 conf->wait_barrier, 1107 get_unqueued_pending(conf) == extra, 1108 conf->resync_lock, 1109 flush_pending_writes(conf)); 1110 spin_unlock_irq(&conf->resync_lock); 1111 } 1112 static void unfreeze_array(struct r1conf *conf) 1113 { 1114 /* reverse the effect of the freeze */ 1115 spin_lock_irq(&conf->resync_lock); 1116 conf->array_frozen = 0; 1117 spin_unlock_irq(&conf->resync_lock); 1118 wake_up(&conf->wait_barrier); 1119 } 1120 1121 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1122 struct bio *bio) 1123 { 1124 int size = bio->bi_iter.bi_size; 1125 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1126 int i = 0; 1127 struct bio *behind_bio = NULL; 1128 1129 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set); 1130 if (!behind_bio) 1131 return; 1132 1133 /* discard op, we don't support writezero/writesame yet */ 1134 if (!bio_has_data(bio)) { 1135 behind_bio->bi_iter.bi_size = size; 1136 goto skip_copy; 1137 } 1138 1139 behind_bio->bi_write_hint = bio->bi_write_hint; 1140 1141 while (i < vcnt && size) { 1142 struct page *page; 1143 int len = min_t(int, PAGE_SIZE, size); 1144 1145 page = alloc_page(GFP_NOIO); 1146 if (unlikely(!page)) 1147 goto free_pages; 1148 1149 bio_add_page(behind_bio, page, len, 0); 1150 1151 size -= len; 1152 i++; 1153 } 1154 1155 bio_copy_data(behind_bio, bio); 1156 skip_copy: 1157 r1_bio->behind_master_bio = behind_bio; 1158 set_bit(R1BIO_BehindIO, &r1_bio->state); 1159 1160 return; 1161 1162 free_pages: 1163 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1164 bio->bi_iter.bi_size); 1165 bio_free_pages(behind_bio); 1166 bio_put(behind_bio); 1167 } 1168 1169 struct raid1_plug_cb { 1170 struct blk_plug_cb cb; 1171 struct bio_list pending; 1172 int pending_cnt; 1173 }; 1174 1175 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1176 { 1177 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1178 cb); 1179 struct mddev *mddev = plug->cb.data; 1180 struct r1conf *conf = mddev->private; 1181 struct bio *bio; 1182 1183 if (from_schedule || current->bio_list) { 1184 spin_lock_irq(&conf->device_lock); 1185 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1186 conf->pending_count += plug->pending_cnt; 1187 spin_unlock_irq(&conf->device_lock); 1188 wake_up(&conf->wait_barrier); 1189 md_wakeup_thread(mddev->thread); 1190 kfree(plug); 1191 return; 1192 } 1193 1194 /* we aren't scheduling, so we can do the write-out directly. */ 1195 bio = bio_list_get(&plug->pending); 1196 flush_bio_list(conf, bio); 1197 kfree(plug); 1198 } 1199 1200 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1201 { 1202 r1_bio->master_bio = bio; 1203 r1_bio->sectors = bio_sectors(bio); 1204 r1_bio->state = 0; 1205 r1_bio->mddev = mddev; 1206 r1_bio->sector = bio->bi_iter.bi_sector; 1207 } 1208 1209 static inline struct r1bio * 1210 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1211 { 1212 struct r1conf *conf = mddev->private; 1213 struct r1bio *r1_bio; 1214 1215 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1216 /* Ensure no bio records IO_BLOCKED */ 1217 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1218 init_r1bio(r1_bio, mddev, bio); 1219 return r1_bio; 1220 } 1221 1222 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1223 int max_read_sectors, struct r1bio *r1_bio) 1224 { 1225 struct r1conf *conf = mddev->private; 1226 struct raid1_info *mirror; 1227 struct bio *read_bio; 1228 struct bitmap *bitmap = mddev->bitmap; 1229 const int op = bio_op(bio); 1230 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1231 int max_sectors; 1232 int rdisk; 1233 bool r1bio_existed = !!r1_bio; 1234 char b[BDEVNAME_SIZE]; 1235 1236 /* 1237 * If r1_bio is set, we are blocking the raid1d thread 1238 * so there is a tiny risk of deadlock. So ask for 1239 * emergency memory if needed. 1240 */ 1241 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1242 1243 if (r1bio_existed) { 1244 /* Need to get the block device name carefully */ 1245 struct md_rdev *rdev; 1246 rcu_read_lock(); 1247 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1248 if (rdev) 1249 bdevname(rdev->bdev, b); 1250 else 1251 strcpy(b, "???"); 1252 rcu_read_unlock(); 1253 } 1254 1255 /* 1256 * Still need barrier for READ in case that whole 1257 * array is frozen. 1258 */ 1259 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1260 bio->bi_opf & REQ_NOWAIT)) { 1261 bio_wouldblock_error(bio); 1262 return; 1263 } 1264 1265 if (!r1_bio) 1266 r1_bio = alloc_r1bio(mddev, bio); 1267 else 1268 init_r1bio(r1_bio, mddev, bio); 1269 r1_bio->sectors = max_read_sectors; 1270 1271 /* 1272 * make_request() can abort the operation when read-ahead is being 1273 * used and no empty request is available. 1274 */ 1275 rdisk = read_balance(conf, r1_bio, &max_sectors); 1276 1277 if (rdisk < 0) { 1278 /* couldn't find anywhere to read from */ 1279 if (r1bio_existed) { 1280 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1281 mdname(mddev), 1282 b, 1283 (unsigned long long)r1_bio->sector); 1284 } 1285 raid_end_bio_io(r1_bio); 1286 return; 1287 } 1288 mirror = conf->mirrors + rdisk; 1289 1290 if (r1bio_existed) 1291 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1292 mdname(mddev), 1293 (unsigned long long)r1_bio->sector, 1294 bdevname(mirror->rdev->bdev, b)); 1295 1296 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1297 bitmap) { 1298 /* 1299 * Reading from a write-mostly device must take care not to 1300 * over-take any writes that are 'behind' 1301 */ 1302 raid1_log(mddev, "wait behind writes"); 1303 wait_event(bitmap->behind_wait, 1304 atomic_read(&bitmap->behind_writes) == 0); 1305 } 1306 1307 if (max_sectors < bio_sectors(bio)) { 1308 struct bio *split = bio_split(bio, max_sectors, 1309 gfp, &conf->bio_split); 1310 bio_chain(split, bio); 1311 submit_bio_noacct(bio); 1312 bio = split; 1313 r1_bio->master_bio = bio; 1314 r1_bio->sectors = max_sectors; 1315 } 1316 1317 r1_bio->read_disk = rdisk; 1318 1319 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1320 r1_bio->start_time = bio_start_io_acct(bio); 1321 1322 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set); 1323 1324 r1_bio->bios[rdisk] = read_bio; 1325 1326 read_bio->bi_iter.bi_sector = r1_bio->sector + 1327 mirror->rdev->data_offset; 1328 bio_set_dev(read_bio, mirror->rdev->bdev); 1329 read_bio->bi_end_io = raid1_end_read_request; 1330 bio_set_op_attrs(read_bio, op, do_sync); 1331 if (test_bit(FailFast, &mirror->rdev->flags) && 1332 test_bit(R1BIO_FailFast, &r1_bio->state)) 1333 read_bio->bi_opf |= MD_FAILFAST; 1334 read_bio->bi_private = r1_bio; 1335 1336 if (mddev->gendisk) 1337 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1338 r1_bio->sector); 1339 1340 submit_bio_noacct(read_bio); 1341 } 1342 1343 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1344 int max_write_sectors) 1345 { 1346 struct r1conf *conf = mddev->private; 1347 struct r1bio *r1_bio; 1348 int i, disks; 1349 struct bitmap *bitmap = mddev->bitmap; 1350 unsigned long flags; 1351 struct md_rdev *blocked_rdev; 1352 struct blk_plug_cb *cb; 1353 struct raid1_plug_cb *plug = NULL; 1354 int first_clone; 1355 int max_sectors; 1356 bool write_behind = false; 1357 1358 if (mddev_is_clustered(mddev) && 1359 md_cluster_ops->area_resyncing(mddev, WRITE, 1360 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1361 1362 DEFINE_WAIT(w); 1363 if (bio->bi_opf & REQ_NOWAIT) { 1364 bio_wouldblock_error(bio); 1365 return; 1366 } 1367 for (;;) { 1368 prepare_to_wait(&conf->wait_barrier, 1369 &w, TASK_IDLE); 1370 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1371 bio->bi_iter.bi_sector, 1372 bio_end_sector(bio))) 1373 break; 1374 schedule(); 1375 } 1376 finish_wait(&conf->wait_barrier, &w); 1377 } 1378 1379 /* 1380 * Register the new request and wait if the reconstruction 1381 * thread has put up a bar for new requests. 1382 * Continue immediately if no resync is active currently. 1383 */ 1384 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1385 bio->bi_opf & REQ_NOWAIT)) { 1386 bio_wouldblock_error(bio); 1387 return; 1388 } 1389 1390 r1_bio = alloc_r1bio(mddev, bio); 1391 r1_bio->sectors = max_write_sectors; 1392 1393 /* first select target devices under rcu_lock and 1394 * inc refcount on their rdev. Record them by setting 1395 * bios[x] to bio 1396 * If there are known/acknowledged bad blocks on any device on 1397 * which we have seen a write error, we want to avoid writing those 1398 * blocks. 1399 * This potentially requires several writes to write around 1400 * the bad blocks. Each set of writes gets it's own r1bio 1401 * with a set of bios attached. 1402 */ 1403 1404 disks = conf->raid_disks * 2; 1405 retry_write: 1406 blocked_rdev = NULL; 1407 rcu_read_lock(); 1408 max_sectors = r1_bio->sectors; 1409 for (i = 0; i < disks; i++) { 1410 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1411 1412 /* 1413 * The write-behind io is only attempted on drives marked as 1414 * write-mostly, which means we could allocate write behind 1415 * bio later. 1416 */ 1417 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1418 write_behind = true; 1419 1420 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1421 atomic_inc(&rdev->nr_pending); 1422 blocked_rdev = rdev; 1423 break; 1424 } 1425 r1_bio->bios[i] = NULL; 1426 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1427 if (i < conf->raid_disks) 1428 set_bit(R1BIO_Degraded, &r1_bio->state); 1429 continue; 1430 } 1431 1432 atomic_inc(&rdev->nr_pending); 1433 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1434 sector_t first_bad; 1435 int bad_sectors; 1436 int is_bad; 1437 1438 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1439 &first_bad, &bad_sectors); 1440 if (is_bad < 0) { 1441 /* mustn't write here until the bad block is 1442 * acknowledged*/ 1443 set_bit(BlockedBadBlocks, &rdev->flags); 1444 blocked_rdev = rdev; 1445 break; 1446 } 1447 if (is_bad && first_bad <= r1_bio->sector) { 1448 /* Cannot write here at all */ 1449 bad_sectors -= (r1_bio->sector - first_bad); 1450 if (bad_sectors < max_sectors) 1451 /* mustn't write more than bad_sectors 1452 * to other devices yet 1453 */ 1454 max_sectors = bad_sectors; 1455 rdev_dec_pending(rdev, mddev); 1456 /* We don't set R1BIO_Degraded as that 1457 * only applies if the disk is 1458 * missing, so it might be re-added, 1459 * and we want to know to recover this 1460 * chunk. 1461 * In this case the device is here, 1462 * and the fact that this chunk is not 1463 * in-sync is recorded in the bad 1464 * block log 1465 */ 1466 continue; 1467 } 1468 if (is_bad) { 1469 int good_sectors = first_bad - r1_bio->sector; 1470 if (good_sectors < max_sectors) 1471 max_sectors = good_sectors; 1472 } 1473 } 1474 r1_bio->bios[i] = bio; 1475 } 1476 rcu_read_unlock(); 1477 1478 if (unlikely(blocked_rdev)) { 1479 /* Wait for this device to become unblocked */ 1480 int j; 1481 1482 for (j = 0; j < i; j++) 1483 if (r1_bio->bios[j]) 1484 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1485 r1_bio->state = 0; 1486 allow_barrier(conf, bio->bi_iter.bi_sector); 1487 1488 if (bio->bi_opf & REQ_NOWAIT) { 1489 bio_wouldblock_error(bio); 1490 return; 1491 } 1492 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1493 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1494 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1495 goto retry_write; 1496 } 1497 1498 /* 1499 * When using a bitmap, we may call alloc_behind_master_bio below. 1500 * alloc_behind_master_bio allocates a copy of the data payload a page 1501 * at a time and thus needs a new bio that can fit the whole payload 1502 * this bio in page sized chunks. 1503 */ 1504 if (write_behind && bitmap) 1505 max_sectors = min_t(int, max_sectors, 1506 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1507 if (max_sectors < bio_sectors(bio)) { 1508 struct bio *split = bio_split(bio, max_sectors, 1509 GFP_NOIO, &conf->bio_split); 1510 bio_chain(split, bio); 1511 submit_bio_noacct(bio); 1512 bio = split; 1513 r1_bio->master_bio = bio; 1514 r1_bio->sectors = max_sectors; 1515 } 1516 1517 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1518 r1_bio->start_time = bio_start_io_acct(bio); 1519 atomic_set(&r1_bio->remaining, 1); 1520 atomic_set(&r1_bio->behind_remaining, 0); 1521 1522 first_clone = 1; 1523 1524 for (i = 0; i < disks; i++) { 1525 struct bio *mbio = NULL; 1526 struct md_rdev *rdev = conf->mirrors[i].rdev; 1527 if (!r1_bio->bios[i]) 1528 continue; 1529 1530 if (first_clone) { 1531 /* do behind I/O ? 1532 * Not if there are too many, or cannot 1533 * allocate memory, or a reader on WriteMostly 1534 * is waiting for behind writes to flush */ 1535 if (bitmap && 1536 test_bit(WriteMostly, &rdev->flags) && 1537 (atomic_read(&bitmap->behind_writes) 1538 < mddev->bitmap_info.max_write_behind) && 1539 !waitqueue_active(&bitmap->behind_wait)) { 1540 alloc_behind_master_bio(r1_bio, bio); 1541 } 1542 1543 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1544 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1545 first_clone = 0; 1546 } 1547 1548 if (r1_bio->behind_master_bio) 1549 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1550 GFP_NOIO, &mddev->bio_set); 1551 else 1552 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set); 1553 1554 if (r1_bio->behind_master_bio) { 1555 if (test_bit(CollisionCheck, &rdev->flags)) 1556 wait_for_serialization(rdev, r1_bio); 1557 if (test_bit(WriteMostly, &rdev->flags)) 1558 atomic_inc(&r1_bio->behind_remaining); 1559 } else if (mddev->serialize_policy) 1560 wait_for_serialization(rdev, r1_bio); 1561 1562 r1_bio->bios[i] = mbio; 1563 1564 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1565 bio_set_dev(mbio, rdev->bdev); 1566 mbio->bi_end_io = raid1_end_write_request; 1567 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1568 if (test_bit(FailFast, &rdev->flags) && 1569 !test_bit(WriteMostly, &rdev->flags) && 1570 conf->raid_disks - mddev->degraded > 1) 1571 mbio->bi_opf |= MD_FAILFAST; 1572 mbio->bi_private = r1_bio; 1573 1574 atomic_inc(&r1_bio->remaining); 1575 1576 if (mddev->gendisk) 1577 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1578 r1_bio->sector); 1579 /* flush_pending_writes() needs access to the rdev so...*/ 1580 mbio->bi_bdev = (void *)rdev; 1581 1582 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1583 if (cb) 1584 plug = container_of(cb, struct raid1_plug_cb, cb); 1585 else 1586 plug = NULL; 1587 if (plug) { 1588 bio_list_add(&plug->pending, mbio); 1589 plug->pending_cnt++; 1590 } else { 1591 spin_lock_irqsave(&conf->device_lock, flags); 1592 bio_list_add(&conf->pending_bio_list, mbio); 1593 conf->pending_count++; 1594 spin_unlock_irqrestore(&conf->device_lock, flags); 1595 md_wakeup_thread(mddev->thread); 1596 } 1597 } 1598 1599 r1_bio_write_done(r1_bio); 1600 1601 /* In case raid1d snuck in to freeze_array */ 1602 wake_up(&conf->wait_barrier); 1603 } 1604 1605 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1606 { 1607 sector_t sectors; 1608 1609 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1610 && md_flush_request(mddev, bio)) 1611 return true; 1612 1613 /* 1614 * There is a limit to the maximum size, but 1615 * the read/write handler might find a lower limit 1616 * due to bad blocks. To avoid multiple splits, 1617 * we pass the maximum number of sectors down 1618 * and let the lower level perform the split. 1619 */ 1620 sectors = align_to_barrier_unit_end( 1621 bio->bi_iter.bi_sector, bio_sectors(bio)); 1622 1623 if (bio_data_dir(bio) == READ) 1624 raid1_read_request(mddev, bio, sectors, NULL); 1625 else { 1626 if (!md_write_start(mddev,bio)) 1627 return false; 1628 raid1_write_request(mddev, bio, sectors); 1629 } 1630 return true; 1631 } 1632 1633 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1634 { 1635 struct r1conf *conf = mddev->private; 1636 int i; 1637 1638 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1639 conf->raid_disks - mddev->degraded); 1640 rcu_read_lock(); 1641 for (i = 0; i < conf->raid_disks; i++) { 1642 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1643 seq_printf(seq, "%s", 1644 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1645 } 1646 rcu_read_unlock(); 1647 seq_printf(seq, "]"); 1648 } 1649 1650 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1651 { 1652 char b[BDEVNAME_SIZE]; 1653 struct r1conf *conf = mddev->private; 1654 unsigned long flags; 1655 1656 /* 1657 * If it is not operational, then we have already marked it as dead 1658 * else if it is the last working disks with "fail_last_dev == false", 1659 * ignore the error, let the next level up know. 1660 * else mark the drive as failed 1661 */ 1662 spin_lock_irqsave(&conf->device_lock, flags); 1663 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1664 && (conf->raid_disks - mddev->degraded) == 1) { 1665 /* 1666 * Don't fail the drive, act as though we were just a 1667 * normal single drive. 1668 * However don't try a recovery from this drive as 1669 * it is very likely to fail. 1670 */ 1671 conf->recovery_disabled = mddev->recovery_disabled; 1672 spin_unlock_irqrestore(&conf->device_lock, flags); 1673 return; 1674 } 1675 set_bit(Blocked, &rdev->flags); 1676 if (test_and_clear_bit(In_sync, &rdev->flags)) 1677 mddev->degraded++; 1678 set_bit(Faulty, &rdev->flags); 1679 spin_unlock_irqrestore(&conf->device_lock, flags); 1680 /* 1681 * if recovery is running, make sure it aborts. 1682 */ 1683 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1684 set_mask_bits(&mddev->sb_flags, 0, 1685 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1686 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1687 "md/raid1:%s: Operation continuing on %d devices.\n", 1688 mdname(mddev), bdevname(rdev->bdev, b), 1689 mdname(mddev), conf->raid_disks - mddev->degraded); 1690 } 1691 1692 static void print_conf(struct r1conf *conf) 1693 { 1694 int i; 1695 1696 pr_debug("RAID1 conf printout:\n"); 1697 if (!conf) { 1698 pr_debug("(!conf)\n"); 1699 return; 1700 } 1701 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1702 conf->raid_disks); 1703 1704 rcu_read_lock(); 1705 for (i = 0; i < conf->raid_disks; i++) { 1706 char b[BDEVNAME_SIZE]; 1707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1708 if (rdev) 1709 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1710 i, !test_bit(In_sync, &rdev->flags), 1711 !test_bit(Faulty, &rdev->flags), 1712 bdevname(rdev->bdev,b)); 1713 } 1714 rcu_read_unlock(); 1715 } 1716 1717 static void close_sync(struct r1conf *conf) 1718 { 1719 int idx; 1720 1721 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1722 _wait_barrier(conf, idx, false); 1723 _allow_barrier(conf, idx); 1724 } 1725 1726 mempool_exit(&conf->r1buf_pool); 1727 } 1728 1729 static int raid1_spare_active(struct mddev *mddev) 1730 { 1731 int i; 1732 struct r1conf *conf = mddev->private; 1733 int count = 0; 1734 unsigned long flags; 1735 1736 /* 1737 * Find all failed disks within the RAID1 configuration 1738 * and mark them readable. 1739 * Called under mddev lock, so rcu protection not needed. 1740 * device_lock used to avoid races with raid1_end_read_request 1741 * which expects 'In_sync' flags and ->degraded to be consistent. 1742 */ 1743 spin_lock_irqsave(&conf->device_lock, flags); 1744 for (i = 0; i < conf->raid_disks; i++) { 1745 struct md_rdev *rdev = conf->mirrors[i].rdev; 1746 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1747 if (repl 1748 && !test_bit(Candidate, &repl->flags) 1749 && repl->recovery_offset == MaxSector 1750 && !test_bit(Faulty, &repl->flags) 1751 && !test_and_set_bit(In_sync, &repl->flags)) { 1752 /* replacement has just become active */ 1753 if (!rdev || 1754 !test_and_clear_bit(In_sync, &rdev->flags)) 1755 count++; 1756 if (rdev) { 1757 /* Replaced device not technically 1758 * faulty, but we need to be sure 1759 * it gets removed and never re-added 1760 */ 1761 set_bit(Faulty, &rdev->flags); 1762 sysfs_notify_dirent_safe( 1763 rdev->sysfs_state); 1764 } 1765 } 1766 if (rdev 1767 && rdev->recovery_offset == MaxSector 1768 && !test_bit(Faulty, &rdev->flags) 1769 && !test_and_set_bit(In_sync, &rdev->flags)) { 1770 count++; 1771 sysfs_notify_dirent_safe(rdev->sysfs_state); 1772 } 1773 } 1774 mddev->degraded -= count; 1775 spin_unlock_irqrestore(&conf->device_lock, flags); 1776 1777 print_conf(conf); 1778 return count; 1779 } 1780 1781 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1782 { 1783 struct r1conf *conf = mddev->private; 1784 int err = -EEXIST; 1785 int mirror = 0; 1786 struct raid1_info *p; 1787 int first = 0; 1788 int last = conf->raid_disks - 1; 1789 1790 if (mddev->recovery_disabled == conf->recovery_disabled) 1791 return -EBUSY; 1792 1793 if (md_integrity_add_rdev(rdev, mddev)) 1794 return -ENXIO; 1795 1796 if (rdev->raid_disk >= 0) 1797 first = last = rdev->raid_disk; 1798 1799 /* 1800 * find the disk ... but prefer rdev->saved_raid_disk 1801 * if possible. 1802 */ 1803 if (rdev->saved_raid_disk >= 0 && 1804 rdev->saved_raid_disk >= first && 1805 rdev->saved_raid_disk < conf->raid_disks && 1806 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1807 first = last = rdev->saved_raid_disk; 1808 1809 for (mirror = first; mirror <= last; mirror++) { 1810 p = conf->mirrors + mirror; 1811 if (!p->rdev) { 1812 if (mddev->gendisk) 1813 disk_stack_limits(mddev->gendisk, rdev->bdev, 1814 rdev->data_offset << 9); 1815 1816 p->head_position = 0; 1817 rdev->raid_disk = mirror; 1818 err = 0; 1819 /* As all devices are equivalent, we don't need a full recovery 1820 * if this was recently any drive of the array 1821 */ 1822 if (rdev->saved_raid_disk < 0) 1823 conf->fullsync = 1; 1824 rcu_assign_pointer(p->rdev, rdev); 1825 break; 1826 } 1827 if (test_bit(WantReplacement, &p->rdev->flags) && 1828 p[conf->raid_disks].rdev == NULL) { 1829 /* Add this device as a replacement */ 1830 clear_bit(In_sync, &rdev->flags); 1831 set_bit(Replacement, &rdev->flags); 1832 rdev->raid_disk = mirror; 1833 err = 0; 1834 conf->fullsync = 1; 1835 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1836 break; 1837 } 1838 } 1839 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1840 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1841 print_conf(conf); 1842 return err; 1843 } 1844 1845 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1846 { 1847 struct r1conf *conf = mddev->private; 1848 int err = 0; 1849 int number = rdev->raid_disk; 1850 struct raid1_info *p = conf->mirrors + number; 1851 1852 if (rdev != p->rdev) 1853 p = conf->mirrors + conf->raid_disks + number; 1854 1855 print_conf(conf); 1856 if (rdev == p->rdev) { 1857 if (test_bit(In_sync, &rdev->flags) || 1858 atomic_read(&rdev->nr_pending)) { 1859 err = -EBUSY; 1860 goto abort; 1861 } 1862 /* Only remove non-faulty devices if recovery 1863 * is not possible. 1864 */ 1865 if (!test_bit(Faulty, &rdev->flags) && 1866 mddev->recovery_disabled != conf->recovery_disabled && 1867 mddev->degraded < conf->raid_disks) { 1868 err = -EBUSY; 1869 goto abort; 1870 } 1871 p->rdev = NULL; 1872 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1873 synchronize_rcu(); 1874 if (atomic_read(&rdev->nr_pending)) { 1875 /* lost the race, try later */ 1876 err = -EBUSY; 1877 p->rdev = rdev; 1878 goto abort; 1879 } 1880 } 1881 if (conf->mirrors[conf->raid_disks + number].rdev) { 1882 /* We just removed a device that is being replaced. 1883 * Move down the replacement. We drain all IO before 1884 * doing this to avoid confusion. 1885 */ 1886 struct md_rdev *repl = 1887 conf->mirrors[conf->raid_disks + number].rdev; 1888 freeze_array(conf, 0); 1889 if (atomic_read(&repl->nr_pending)) { 1890 /* It means that some queued IO of retry_list 1891 * hold repl. Thus, we cannot set replacement 1892 * as NULL, avoiding rdev NULL pointer 1893 * dereference in sync_request_write and 1894 * handle_write_finished. 1895 */ 1896 err = -EBUSY; 1897 unfreeze_array(conf); 1898 goto abort; 1899 } 1900 clear_bit(Replacement, &repl->flags); 1901 p->rdev = repl; 1902 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1903 unfreeze_array(conf); 1904 } 1905 1906 clear_bit(WantReplacement, &rdev->flags); 1907 err = md_integrity_register(mddev); 1908 } 1909 abort: 1910 1911 print_conf(conf); 1912 return err; 1913 } 1914 1915 static void end_sync_read(struct bio *bio) 1916 { 1917 struct r1bio *r1_bio = get_resync_r1bio(bio); 1918 1919 update_head_pos(r1_bio->read_disk, r1_bio); 1920 1921 /* 1922 * we have read a block, now it needs to be re-written, 1923 * or re-read if the read failed. 1924 * We don't do much here, just schedule handling by raid1d 1925 */ 1926 if (!bio->bi_status) 1927 set_bit(R1BIO_Uptodate, &r1_bio->state); 1928 1929 if (atomic_dec_and_test(&r1_bio->remaining)) 1930 reschedule_retry(r1_bio); 1931 } 1932 1933 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1934 { 1935 sector_t sync_blocks = 0; 1936 sector_t s = r1_bio->sector; 1937 long sectors_to_go = r1_bio->sectors; 1938 1939 /* make sure these bits don't get cleared. */ 1940 do { 1941 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1942 s += sync_blocks; 1943 sectors_to_go -= sync_blocks; 1944 } while (sectors_to_go > 0); 1945 } 1946 1947 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1948 { 1949 if (atomic_dec_and_test(&r1_bio->remaining)) { 1950 struct mddev *mddev = r1_bio->mddev; 1951 int s = r1_bio->sectors; 1952 1953 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1954 test_bit(R1BIO_WriteError, &r1_bio->state)) 1955 reschedule_retry(r1_bio); 1956 else { 1957 put_buf(r1_bio); 1958 md_done_sync(mddev, s, uptodate); 1959 } 1960 } 1961 } 1962 1963 static void end_sync_write(struct bio *bio) 1964 { 1965 int uptodate = !bio->bi_status; 1966 struct r1bio *r1_bio = get_resync_r1bio(bio); 1967 struct mddev *mddev = r1_bio->mddev; 1968 struct r1conf *conf = mddev->private; 1969 sector_t first_bad; 1970 int bad_sectors; 1971 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1972 1973 if (!uptodate) { 1974 abort_sync_write(mddev, r1_bio); 1975 set_bit(WriteErrorSeen, &rdev->flags); 1976 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1977 set_bit(MD_RECOVERY_NEEDED, & 1978 mddev->recovery); 1979 set_bit(R1BIO_WriteError, &r1_bio->state); 1980 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1981 &first_bad, &bad_sectors) && 1982 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1983 r1_bio->sector, 1984 r1_bio->sectors, 1985 &first_bad, &bad_sectors) 1986 ) 1987 set_bit(R1BIO_MadeGood, &r1_bio->state); 1988 1989 put_sync_write_buf(r1_bio, uptodate); 1990 } 1991 1992 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1993 int sectors, struct page *page, int rw) 1994 { 1995 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1996 /* success */ 1997 return 1; 1998 if (rw == WRITE) { 1999 set_bit(WriteErrorSeen, &rdev->flags); 2000 if (!test_and_set_bit(WantReplacement, 2001 &rdev->flags)) 2002 set_bit(MD_RECOVERY_NEEDED, & 2003 rdev->mddev->recovery); 2004 } 2005 /* need to record an error - either for the block or the device */ 2006 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2007 md_error(rdev->mddev, rdev); 2008 return 0; 2009 } 2010 2011 static int fix_sync_read_error(struct r1bio *r1_bio) 2012 { 2013 /* Try some synchronous reads of other devices to get 2014 * good data, much like with normal read errors. Only 2015 * read into the pages we already have so we don't 2016 * need to re-issue the read request. 2017 * We don't need to freeze the array, because being in an 2018 * active sync request, there is no normal IO, and 2019 * no overlapping syncs. 2020 * We don't need to check is_badblock() again as we 2021 * made sure that anything with a bad block in range 2022 * will have bi_end_io clear. 2023 */ 2024 struct mddev *mddev = r1_bio->mddev; 2025 struct r1conf *conf = mddev->private; 2026 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2027 struct page **pages = get_resync_pages(bio)->pages; 2028 sector_t sect = r1_bio->sector; 2029 int sectors = r1_bio->sectors; 2030 int idx = 0; 2031 struct md_rdev *rdev; 2032 2033 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2034 if (test_bit(FailFast, &rdev->flags)) { 2035 /* Don't try recovering from here - just fail it 2036 * ... unless it is the last working device of course */ 2037 md_error(mddev, rdev); 2038 if (test_bit(Faulty, &rdev->flags)) 2039 /* Don't try to read from here, but make sure 2040 * put_buf does it's thing 2041 */ 2042 bio->bi_end_io = end_sync_write; 2043 } 2044 2045 while(sectors) { 2046 int s = sectors; 2047 int d = r1_bio->read_disk; 2048 int success = 0; 2049 int start; 2050 2051 if (s > (PAGE_SIZE>>9)) 2052 s = PAGE_SIZE >> 9; 2053 do { 2054 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2055 /* No rcu protection needed here devices 2056 * can only be removed when no resync is 2057 * active, and resync is currently active 2058 */ 2059 rdev = conf->mirrors[d].rdev; 2060 if (sync_page_io(rdev, sect, s<<9, 2061 pages[idx], 2062 REQ_OP_READ, 0, false)) { 2063 success = 1; 2064 break; 2065 } 2066 } 2067 d++; 2068 if (d == conf->raid_disks * 2) 2069 d = 0; 2070 } while (!success && d != r1_bio->read_disk); 2071 2072 if (!success) { 2073 char b[BDEVNAME_SIZE]; 2074 int abort = 0; 2075 /* Cannot read from anywhere, this block is lost. 2076 * Record a bad block on each device. If that doesn't 2077 * work just disable and interrupt the recovery. 2078 * Don't fail devices as that won't really help. 2079 */ 2080 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 2081 mdname(mddev), bio_devname(bio, b), 2082 (unsigned long long)r1_bio->sector); 2083 for (d = 0; d < conf->raid_disks * 2; d++) { 2084 rdev = conf->mirrors[d].rdev; 2085 if (!rdev || test_bit(Faulty, &rdev->flags)) 2086 continue; 2087 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2088 abort = 1; 2089 } 2090 if (abort) { 2091 conf->recovery_disabled = 2092 mddev->recovery_disabled; 2093 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2094 md_done_sync(mddev, r1_bio->sectors, 0); 2095 put_buf(r1_bio); 2096 return 0; 2097 } 2098 /* Try next page */ 2099 sectors -= s; 2100 sect += s; 2101 idx++; 2102 continue; 2103 } 2104 2105 start = d; 2106 /* write it back and re-read */ 2107 while (d != r1_bio->read_disk) { 2108 if (d == 0) 2109 d = conf->raid_disks * 2; 2110 d--; 2111 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2112 continue; 2113 rdev = conf->mirrors[d].rdev; 2114 if (r1_sync_page_io(rdev, sect, s, 2115 pages[idx], 2116 WRITE) == 0) { 2117 r1_bio->bios[d]->bi_end_io = NULL; 2118 rdev_dec_pending(rdev, mddev); 2119 } 2120 } 2121 d = start; 2122 while (d != r1_bio->read_disk) { 2123 if (d == 0) 2124 d = conf->raid_disks * 2; 2125 d--; 2126 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2127 continue; 2128 rdev = conf->mirrors[d].rdev; 2129 if (r1_sync_page_io(rdev, sect, s, 2130 pages[idx], 2131 READ) != 0) 2132 atomic_add(s, &rdev->corrected_errors); 2133 } 2134 sectors -= s; 2135 sect += s; 2136 idx ++; 2137 } 2138 set_bit(R1BIO_Uptodate, &r1_bio->state); 2139 bio->bi_status = 0; 2140 return 1; 2141 } 2142 2143 static void process_checks(struct r1bio *r1_bio) 2144 { 2145 /* We have read all readable devices. If we haven't 2146 * got the block, then there is no hope left. 2147 * If we have, then we want to do a comparison 2148 * and skip the write if everything is the same. 2149 * If any blocks failed to read, then we need to 2150 * attempt an over-write 2151 */ 2152 struct mddev *mddev = r1_bio->mddev; 2153 struct r1conf *conf = mddev->private; 2154 int primary; 2155 int i; 2156 int vcnt; 2157 2158 /* Fix variable parts of all bios */ 2159 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2160 for (i = 0; i < conf->raid_disks * 2; i++) { 2161 blk_status_t status; 2162 struct bio *b = r1_bio->bios[i]; 2163 struct resync_pages *rp = get_resync_pages(b); 2164 if (b->bi_end_io != end_sync_read) 2165 continue; 2166 /* fixup the bio for reuse, but preserve errno */ 2167 status = b->bi_status; 2168 bio_reset(b); 2169 b->bi_status = status; 2170 b->bi_iter.bi_sector = r1_bio->sector + 2171 conf->mirrors[i].rdev->data_offset; 2172 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2173 b->bi_end_io = end_sync_read; 2174 rp->raid_bio = r1_bio; 2175 b->bi_private = rp; 2176 2177 /* initialize bvec table again */ 2178 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2179 } 2180 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2181 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2182 !r1_bio->bios[primary]->bi_status) { 2183 r1_bio->bios[primary]->bi_end_io = NULL; 2184 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2185 break; 2186 } 2187 r1_bio->read_disk = primary; 2188 for (i = 0; i < conf->raid_disks * 2; i++) { 2189 int j = 0; 2190 struct bio *pbio = r1_bio->bios[primary]; 2191 struct bio *sbio = r1_bio->bios[i]; 2192 blk_status_t status = sbio->bi_status; 2193 struct page **ppages = get_resync_pages(pbio)->pages; 2194 struct page **spages = get_resync_pages(sbio)->pages; 2195 struct bio_vec *bi; 2196 int page_len[RESYNC_PAGES] = { 0 }; 2197 struct bvec_iter_all iter_all; 2198 2199 if (sbio->bi_end_io != end_sync_read) 2200 continue; 2201 /* Now we can 'fixup' the error value */ 2202 sbio->bi_status = 0; 2203 2204 bio_for_each_segment_all(bi, sbio, iter_all) 2205 page_len[j++] = bi->bv_len; 2206 2207 if (!status) { 2208 for (j = vcnt; j-- ; ) { 2209 if (memcmp(page_address(ppages[j]), 2210 page_address(spages[j]), 2211 page_len[j])) 2212 break; 2213 } 2214 } else 2215 j = 0; 2216 if (j >= 0) 2217 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2218 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2219 && !status)) { 2220 /* No need to write to this device. */ 2221 sbio->bi_end_io = NULL; 2222 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2223 continue; 2224 } 2225 2226 bio_copy_data(sbio, pbio); 2227 } 2228 } 2229 2230 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2231 { 2232 struct r1conf *conf = mddev->private; 2233 int i; 2234 int disks = conf->raid_disks * 2; 2235 struct bio *wbio; 2236 2237 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2238 /* ouch - failed to read all of that. */ 2239 if (!fix_sync_read_error(r1_bio)) 2240 return; 2241 2242 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2243 process_checks(r1_bio); 2244 2245 /* 2246 * schedule writes 2247 */ 2248 atomic_set(&r1_bio->remaining, 1); 2249 for (i = 0; i < disks ; i++) { 2250 wbio = r1_bio->bios[i]; 2251 if (wbio->bi_end_io == NULL || 2252 (wbio->bi_end_io == end_sync_read && 2253 (i == r1_bio->read_disk || 2254 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2255 continue; 2256 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2257 abort_sync_write(mddev, r1_bio); 2258 continue; 2259 } 2260 2261 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2262 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2263 wbio->bi_opf |= MD_FAILFAST; 2264 2265 wbio->bi_end_io = end_sync_write; 2266 atomic_inc(&r1_bio->remaining); 2267 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2268 2269 submit_bio_noacct(wbio); 2270 } 2271 2272 put_sync_write_buf(r1_bio, 1); 2273 } 2274 2275 /* 2276 * This is a kernel thread which: 2277 * 2278 * 1. Retries failed read operations on working mirrors. 2279 * 2. Updates the raid superblock when problems encounter. 2280 * 3. Performs writes following reads for array synchronising. 2281 */ 2282 2283 static void fix_read_error(struct r1conf *conf, int read_disk, 2284 sector_t sect, int sectors) 2285 { 2286 struct mddev *mddev = conf->mddev; 2287 while(sectors) { 2288 int s = sectors; 2289 int d = read_disk; 2290 int success = 0; 2291 int start; 2292 struct md_rdev *rdev; 2293 2294 if (s > (PAGE_SIZE>>9)) 2295 s = PAGE_SIZE >> 9; 2296 2297 do { 2298 sector_t first_bad; 2299 int bad_sectors; 2300 2301 rcu_read_lock(); 2302 rdev = rcu_dereference(conf->mirrors[d].rdev); 2303 if (rdev && 2304 (test_bit(In_sync, &rdev->flags) || 2305 (!test_bit(Faulty, &rdev->flags) && 2306 rdev->recovery_offset >= sect + s)) && 2307 is_badblock(rdev, sect, s, 2308 &first_bad, &bad_sectors) == 0) { 2309 atomic_inc(&rdev->nr_pending); 2310 rcu_read_unlock(); 2311 if (sync_page_io(rdev, sect, s<<9, 2312 conf->tmppage, REQ_OP_READ, 0, false)) 2313 success = 1; 2314 rdev_dec_pending(rdev, mddev); 2315 if (success) 2316 break; 2317 } else 2318 rcu_read_unlock(); 2319 d++; 2320 if (d == conf->raid_disks * 2) 2321 d = 0; 2322 } while (!success && d != read_disk); 2323 2324 if (!success) { 2325 /* Cannot read from anywhere - mark it bad */ 2326 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2327 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2328 md_error(mddev, rdev); 2329 break; 2330 } 2331 /* write it back and re-read */ 2332 start = d; 2333 while (d != read_disk) { 2334 if (d==0) 2335 d = conf->raid_disks * 2; 2336 d--; 2337 rcu_read_lock(); 2338 rdev = rcu_dereference(conf->mirrors[d].rdev); 2339 if (rdev && 2340 !test_bit(Faulty, &rdev->flags)) { 2341 atomic_inc(&rdev->nr_pending); 2342 rcu_read_unlock(); 2343 r1_sync_page_io(rdev, sect, s, 2344 conf->tmppage, WRITE); 2345 rdev_dec_pending(rdev, mddev); 2346 } else 2347 rcu_read_unlock(); 2348 } 2349 d = start; 2350 while (d != read_disk) { 2351 char b[BDEVNAME_SIZE]; 2352 if (d==0) 2353 d = conf->raid_disks * 2; 2354 d--; 2355 rcu_read_lock(); 2356 rdev = rcu_dereference(conf->mirrors[d].rdev); 2357 if (rdev && 2358 !test_bit(Faulty, &rdev->flags)) { 2359 atomic_inc(&rdev->nr_pending); 2360 rcu_read_unlock(); 2361 if (r1_sync_page_io(rdev, sect, s, 2362 conf->tmppage, READ)) { 2363 atomic_add(s, &rdev->corrected_errors); 2364 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2365 mdname(mddev), s, 2366 (unsigned long long)(sect + 2367 rdev->data_offset), 2368 bdevname(rdev->bdev, b)); 2369 } 2370 rdev_dec_pending(rdev, mddev); 2371 } else 2372 rcu_read_unlock(); 2373 } 2374 sectors -= s; 2375 sect += s; 2376 } 2377 } 2378 2379 static int narrow_write_error(struct r1bio *r1_bio, int i) 2380 { 2381 struct mddev *mddev = r1_bio->mddev; 2382 struct r1conf *conf = mddev->private; 2383 struct md_rdev *rdev = conf->mirrors[i].rdev; 2384 2385 /* bio has the data to be written to device 'i' where 2386 * we just recently had a write error. 2387 * We repeatedly clone the bio and trim down to one block, 2388 * then try the write. Where the write fails we record 2389 * a bad block. 2390 * It is conceivable that the bio doesn't exactly align with 2391 * blocks. We must handle this somehow. 2392 * 2393 * We currently own a reference on the rdev. 2394 */ 2395 2396 int block_sectors; 2397 sector_t sector; 2398 int sectors; 2399 int sect_to_write = r1_bio->sectors; 2400 int ok = 1; 2401 2402 if (rdev->badblocks.shift < 0) 2403 return 0; 2404 2405 block_sectors = roundup(1 << rdev->badblocks.shift, 2406 bdev_logical_block_size(rdev->bdev) >> 9); 2407 sector = r1_bio->sector; 2408 sectors = ((sector + block_sectors) 2409 & ~(sector_t)(block_sectors - 1)) 2410 - sector; 2411 2412 while (sect_to_write) { 2413 struct bio *wbio; 2414 if (sectors > sect_to_write) 2415 sectors = sect_to_write; 2416 /* Write at 'sector' for 'sectors'*/ 2417 2418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2419 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2420 GFP_NOIO, 2421 &mddev->bio_set); 2422 } else { 2423 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2424 &mddev->bio_set); 2425 } 2426 2427 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2428 wbio->bi_iter.bi_sector = r1_bio->sector; 2429 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2430 2431 bio_trim(wbio, sector - r1_bio->sector, sectors); 2432 wbio->bi_iter.bi_sector += rdev->data_offset; 2433 bio_set_dev(wbio, rdev->bdev); 2434 2435 if (submit_bio_wait(wbio) < 0) 2436 /* failure! */ 2437 ok = rdev_set_badblocks(rdev, sector, 2438 sectors, 0) 2439 && ok; 2440 2441 bio_put(wbio); 2442 sect_to_write -= sectors; 2443 sector += sectors; 2444 sectors = block_sectors; 2445 } 2446 return ok; 2447 } 2448 2449 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2450 { 2451 int m; 2452 int s = r1_bio->sectors; 2453 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2454 struct md_rdev *rdev = conf->mirrors[m].rdev; 2455 struct bio *bio = r1_bio->bios[m]; 2456 if (bio->bi_end_io == NULL) 2457 continue; 2458 if (!bio->bi_status && 2459 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2460 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2461 } 2462 if (bio->bi_status && 2463 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2464 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2465 md_error(conf->mddev, rdev); 2466 } 2467 } 2468 put_buf(r1_bio); 2469 md_done_sync(conf->mddev, s, 1); 2470 } 2471 2472 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2473 { 2474 int m, idx; 2475 bool fail = false; 2476 2477 for (m = 0; m < conf->raid_disks * 2 ; m++) 2478 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2479 struct md_rdev *rdev = conf->mirrors[m].rdev; 2480 rdev_clear_badblocks(rdev, 2481 r1_bio->sector, 2482 r1_bio->sectors, 0); 2483 rdev_dec_pending(rdev, conf->mddev); 2484 } else if (r1_bio->bios[m] != NULL) { 2485 /* This drive got a write error. We need to 2486 * narrow down and record precise write 2487 * errors. 2488 */ 2489 fail = true; 2490 if (!narrow_write_error(r1_bio, m)) { 2491 md_error(conf->mddev, 2492 conf->mirrors[m].rdev); 2493 /* an I/O failed, we can't clear the bitmap */ 2494 set_bit(R1BIO_Degraded, &r1_bio->state); 2495 } 2496 rdev_dec_pending(conf->mirrors[m].rdev, 2497 conf->mddev); 2498 } 2499 if (fail) { 2500 spin_lock_irq(&conf->device_lock); 2501 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2502 idx = sector_to_idx(r1_bio->sector); 2503 atomic_inc(&conf->nr_queued[idx]); 2504 spin_unlock_irq(&conf->device_lock); 2505 /* 2506 * In case freeze_array() is waiting for condition 2507 * get_unqueued_pending() == extra to be true. 2508 */ 2509 wake_up(&conf->wait_barrier); 2510 md_wakeup_thread(conf->mddev->thread); 2511 } else { 2512 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2513 close_write(r1_bio); 2514 raid_end_bio_io(r1_bio); 2515 } 2516 } 2517 2518 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2519 { 2520 struct mddev *mddev = conf->mddev; 2521 struct bio *bio; 2522 struct md_rdev *rdev; 2523 2524 clear_bit(R1BIO_ReadError, &r1_bio->state); 2525 /* we got a read error. Maybe the drive is bad. Maybe just 2526 * the block and we can fix it. 2527 * We freeze all other IO, and try reading the block from 2528 * other devices. When we find one, we re-write 2529 * and check it that fixes the read error. 2530 * This is all done synchronously while the array is 2531 * frozen 2532 */ 2533 2534 bio = r1_bio->bios[r1_bio->read_disk]; 2535 bio_put(bio); 2536 r1_bio->bios[r1_bio->read_disk] = NULL; 2537 2538 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2539 if (mddev->ro == 0 2540 && !test_bit(FailFast, &rdev->flags)) { 2541 freeze_array(conf, 1); 2542 fix_read_error(conf, r1_bio->read_disk, 2543 r1_bio->sector, r1_bio->sectors); 2544 unfreeze_array(conf); 2545 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2546 md_error(mddev, rdev); 2547 } else { 2548 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2549 } 2550 2551 rdev_dec_pending(rdev, conf->mddev); 2552 allow_barrier(conf, r1_bio->sector); 2553 bio = r1_bio->master_bio; 2554 2555 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2556 r1_bio->state = 0; 2557 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2558 } 2559 2560 static void raid1d(struct md_thread *thread) 2561 { 2562 struct mddev *mddev = thread->mddev; 2563 struct r1bio *r1_bio; 2564 unsigned long flags; 2565 struct r1conf *conf = mddev->private; 2566 struct list_head *head = &conf->retry_list; 2567 struct blk_plug plug; 2568 int idx; 2569 2570 md_check_recovery(mddev); 2571 2572 if (!list_empty_careful(&conf->bio_end_io_list) && 2573 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2574 LIST_HEAD(tmp); 2575 spin_lock_irqsave(&conf->device_lock, flags); 2576 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2577 list_splice_init(&conf->bio_end_io_list, &tmp); 2578 spin_unlock_irqrestore(&conf->device_lock, flags); 2579 while (!list_empty(&tmp)) { 2580 r1_bio = list_first_entry(&tmp, struct r1bio, 2581 retry_list); 2582 list_del(&r1_bio->retry_list); 2583 idx = sector_to_idx(r1_bio->sector); 2584 atomic_dec(&conf->nr_queued[idx]); 2585 if (mddev->degraded) 2586 set_bit(R1BIO_Degraded, &r1_bio->state); 2587 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2588 close_write(r1_bio); 2589 raid_end_bio_io(r1_bio); 2590 } 2591 } 2592 2593 blk_start_plug(&plug); 2594 for (;;) { 2595 2596 flush_pending_writes(conf); 2597 2598 spin_lock_irqsave(&conf->device_lock, flags); 2599 if (list_empty(head)) { 2600 spin_unlock_irqrestore(&conf->device_lock, flags); 2601 break; 2602 } 2603 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2604 list_del(head->prev); 2605 idx = sector_to_idx(r1_bio->sector); 2606 atomic_dec(&conf->nr_queued[idx]); 2607 spin_unlock_irqrestore(&conf->device_lock, flags); 2608 2609 mddev = r1_bio->mddev; 2610 conf = mddev->private; 2611 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2612 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2613 test_bit(R1BIO_WriteError, &r1_bio->state)) 2614 handle_sync_write_finished(conf, r1_bio); 2615 else 2616 sync_request_write(mddev, r1_bio); 2617 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2618 test_bit(R1BIO_WriteError, &r1_bio->state)) 2619 handle_write_finished(conf, r1_bio); 2620 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2621 handle_read_error(conf, r1_bio); 2622 else 2623 WARN_ON_ONCE(1); 2624 2625 cond_resched(); 2626 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2627 md_check_recovery(mddev); 2628 } 2629 blk_finish_plug(&plug); 2630 } 2631 2632 static int init_resync(struct r1conf *conf) 2633 { 2634 int buffs; 2635 2636 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2637 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2638 2639 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2640 r1buf_pool_free, conf->poolinfo); 2641 } 2642 2643 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2644 { 2645 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2646 struct resync_pages *rps; 2647 struct bio *bio; 2648 int i; 2649 2650 for (i = conf->poolinfo->raid_disks; i--; ) { 2651 bio = r1bio->bios[i]; 2652 rps = bio->bi_private; 2653 bio_reset(bio); 2654 bio->bi_private = rps; 2655 } 2656 r1bio->master_bio = NULL; 2657 return r1bio; 2658 } 2659 2660 /* 2661 * perform a "sync" on one "block" 2662 * 2663 * We need to make sure that no normal I/O request - particularly write 2664 * requests - conflict with active sync requests. 2665 * 2666 * This is achieved by tracking pending requests and a 'barrier' concept 2667 * that can be installed to exclude normal IO requests. 2668 */ 2669 2670 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2671 int *skipped) 2672 { 2673 struct r1conf *conf = mddev->private; 2674 struct r1bio *r1_bio; 2675 struct bio *bio; 2676 sector_t max_sector, nr_sectors; 2677 int disk = -1; 2678 int i; 2679 int wonly = -1; 2680 int write_targets = 0, read_targets = 0; 2681 sector_t sync_blocks; 2682 int still_degraded = 0; 2683 int good_sectors = RESYNC_SECTORS; 2684 int min_bad = 0; /* number of sectors that are bad in all devices */ 2685 int idx = sector_to_idx(sector_nr); 2686 int page_idx = 0; 2687 2688 if (!mempool_initialized(&conf->r1buf_pool)) 2689 if (init_resync(conf)) 2690 return 0; 2691 2692 max_sector = mddev->dev_sectors; 2693 if (sector_nr >= max_sector) { 2694 /* If we aborted, we need to abort the 2695 * sync on the 'current' bitmap chunk (there will 2696 * only be one in raid1 resync. 2697 * We can find the current addess in mddev->curr_resync 2698 */ 2699 if (mddev->curr_resync < max_sector) /* aborted */ 2700 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2701 &sync_blocks, 1); 2702 else /* completed sync */ 2703 conf->fullsync = 0; 2704 2705 md_bitmap_close_sync(mddev->bitmap); 2706 close_sync(conf); 2707 2708 if (mddev_is_clustered(mddev)) { 2709 conf->cluster_sync_low = 0; 2710 conf->cluster_sync_high = 0; 2711 } 2712 return 0; 2713 } 2714 2715 if (mddev->bitmap == NULL && 2716 mddev->recovery_cp == MaxSector && 2717 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2718 conf->fullsync == 0) { 2719 *skipped = 1; 2720 return max_sector - sector_nr; 2721 } 2722 /* before building a request, check if we can skip these blocks.. 2723 * This call the bitmap_start_sync doesn't actually record anything 2724 */ 2725 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2726 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2727 /* We can skip this block, and probably several more */ 2728 *skipped = 1; 2729 return sync_blocks; 2730 } 2731 2732 /* 2733 * If there is non-resync activity waiting for a turn, then let it 2734 * though before starting on this new sync request. 2735 */ 2736 if (atomic_read(&conf->nr_waiting[idx])) 2737 schedule_timeout_uninterruptible(1); 2738 2739 /* we are incrementing sector_nr below. To be safe, we check against 2740 * sector_nr + two times RESYNC_SECTORS 2741 */ 2742 2743 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2744 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2745 2746 2747 if (raise_barrier(conf, sector_nr)) 2748 return 0; 2749 2750 r1_bio = raid1_alloc_init_r1buf(conf); 2751 2752 rcu_read_lock(); 2753 /* 2754 * If we get a correctably read error during resync or recovery, 2755 * we might want to read from a different device. So we 2756 * flag all drives that could conceivably be read from for READ, 2757 * and any others (which will be non-In_sync devices) for WRITE. 2758 * If a read fails, we try reading from something else for which READ 2759 * is OK. 2760 */ 2761 2762 r1_bio->mddev = mddev; 2763 r1_bio->sector = sector_nr; 2764 r1_bio->state = 0; 2765 set_bit(R1BIO_IsSync, &r1_bio->state); 2766 /* make sure good_sectors won't go across barrier unit boundary */ 2767 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2768 2769 for (i = 0; i < conf->raid_disks * 2; i++) { 2770 struct md_rdev *rdev; 2771 bio = r1_bio->bios[i]; 2772 2773 rdev = rcu_dereference(conf->mirrors[i].rdev); 2774 if (rdev == NULL || 2775 test_bit(Faulty, &rdev->flags)) { 2776 if (i < conf->raid_disks) 2777 still_degraded = 1; 2778 } else if (!test_bit(In_sync, &rdev->flags)) { 2779 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2780 bio->bi_end_io = end_sync_write; 2781 write_targets ++; 2782 } else { 2783 /* may need to read from here */ 2784 sector_t first_bad = MaxSector; 2785 int bad_sectors; 2786 2787 if (is_badblock(rdev, sector_nr, good_sectors, 2788 &first_bad, &bad_sectors)) { 2789 if (first_bad > sector_nr) 2790 good_sectors = first_bad - sector_nr; 2791 else { 2792 bad_sectors -= (sector_nr - first_bad); 2793 if (min_bad == 0 || 2794 min_bad > bad_sectors) 2795 min_bad = bad_sectors; 2796 } 2797 } 2798 if (sector_nr < first_bad) { 2799 if (test_bit(WriteMostly, &rdev->flags)) { 2800 if (wonly < 0) 2801 wonly = i; 2802 } else { 2803 if (disk < 0) 2804 disk = i; 2805 } 2806 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2807 bio->bi_end_io = end_sync_read; 2808 read_targets++; 2809 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2810 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2811 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2812 /* 2813 * The device is suitable for reading (InSync), 2814 * but has bad block(s) here. Let's try to correct them, 2815 * if we are doing resync or repair. Otherwise, leave 2816 * this device alone for this sync request. 2817 */ 2818 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2819 bio->bi_end_io = end_sync_write; 2820 write_targets++; 2821 } 2822 } 2823 if (rdev && bio->bi_end_io) { 2824 atomic_inc(&rdev->nr_pending); 2825 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2826 bio_set_dev(bio, rdev->bdev); 2827 if (test_bit(FailFast, &rdev->flags)) 2828 bio->bi_opf |= MD_FAILFAST; 2829 } 2830 } 2831 rcu_read_unlock(); 2832 if (disk < 0) 2833 disk = wonly; 2834 r1_bio->read_disk = disk; 2835 2836 if (read_targets == 0 && min_bad > 0) { 2837 /* These sectors are bad on all InSync devices, so we 2838 * need to mark them bad on all write targets 2839 */ 2840 int ok = 1; 2841 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2842 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2843 struct md_rdev *rdev = conf->mirrors[i].rdev; 2844 ok = rdev_set_badblocks(rdev, sector_nr, 2845 min_bad, 0 2846 ) && ok; 2847 } 2848 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2849 *skipped = 1; 2850 put_buf(r1_bio); 2851 2852 if (!ok) { 2853 /* Cannot record the badblocks, so need to 2854 * abort the resync. 2855 * If there are multiple read targets, could just 2856 * fail the really bad ones ??? 2857 */ 2858 conf->recovery_disabled = mddev->recovery_disabled; 2859 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2860 return 0; 2861 } else 2862 return min_bad; 2863 2864 } 2865 if (min_bad > 0 && min_bad < good_sectors) { 2866 /* only resync enough to reach the next bad->good 2867 * transition */ 2868 good_sectors = min_bad; 2869 } 2870 2871 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2872 /* extra read targets are also write targets */ 2873 write_targets += read_targets-1; 2874 2875 if (write_targets == 0 || read_targets == 0) { 2876 /* There is nowhere to write, so all non-sync 2877 * drives must be failed - so we are finished 2878 */ 2879 sector_t rv; 2880 if (min_bad > 0) 2881 max_sector = sector_nr + min_bad; 2882 rv = max_sector - sector_nr; 2883 *skipped = 1; 2884 put_buf(r1_bio); 2885 return rv; 2886 } 2887 2888 if (max_sector > mddev->resync_max) 2889 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2890 if (max_sector > sector_nr + good_sectors) 2891 max_sector = sector_nr + good_sectors; 2892 nr_sectors = 0; 2893 sync_blocks = 0; 2894 do { 2895 struct page *page; 2896 int len = PAGE_SIZE; 2897 if (sector_nr + (len>>9) > max_sector) 2898 len = (max_sector - sector_nr) << 9; 2899 if (len == 0) 2900 break; 2901 if (sync_blocks == 0) { 2902 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2903 &sync_blocks, still_degraded) && 2904 !conf->fullsync && 2905 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2906 break; 2907 if ((len >> 9) > sync_blocks) 2908 len = sync_blocks<<9; 2909 } 2910 2911 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2912 struct resync_pages *rp; 2913 2914 bio = r1_bio->bios[i]; 2915 rp = get_resync_pages(bio); 2916 if (bio->bi_end_io) { 2917 page = resync_fetch_page(rp, page_idx); 2918 2919 /* 2920 * won't fail because the vec table is big 2921 * enough to hold all these pages 2922 */ 2923 bio_add_page(bio, page, len, 0); 2924 } 2925 } 2926 nr_sectors += len>>9; 2927 sector_nr += len>>9; 2928 sync_blocks -= (len>>9); 2929 } while (++page_idx < RESYNC_PAGES); 2930 2931 r1_bio->sectors = nr_sectors; 2932 2933 if (mddev_is_clustered(mddev) && 2934 conf->cluster_sync_high < sector_nr + nr_sectors) { 2935 conf->cluster_sync_low = mddev->curr_resync_completed; 2936 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2937 /* Send resync message */ 2938 md_cluster_ops->resync_info_update(mddev, 2939 conf->cluster_sync_low, 2940 conf->cluster_sync_high); 2941 } 2942 2943 /* For a user-requested sync, we read all readable devices and do a 2944 * compare 2945 */ 2946 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2947 atomic_set(&r1_bio->remaining, read_targets); 2948 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2949 bio = r1_bio->bios[i]; 2950 if (bio->bi_end_io == end_sync_read) { 2951 read_targets--; 2952 md_sync_acct_bio(bio, nr_sectors); 2953 if (read_targets == 1) 2954 bio->bi_opf &= ~MD_FAILFAST; 2955 submit_bio_noacct(bio); 2956 } 2957 } 2958 } else { 2959 atomic_set(&r1_bio->remaining, 1); 2960 bio = r1_bio->bios[r1_bio->read_disk]; 2961 md_sync_acct_bio(bio, nr_sectors); 2962 if (read_targets == 1) 2963 bio->bi_opf &= ~MD_FAILFAST; 2964 submit_bio_noacct(bio); 2965 } 2966 return nr_sectors; 2967 } 2968 2969 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2970 { 2971 if (sectors) 2972 return sectors; 2973 2974 return mddev->dev_sectors; 2975 } 2976 2977 static struct r1conf *setup_conf(struct mddev *mddev) 2978 { 2979 struct r1conf *conf; 2980 int i; 2981 struct raid1_info *disk; 2982 struct md_rdev *rdev; 2983 int err = -ENOMEM; 2984 2985 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2986 if (!conf) 2987 goto abort; 2988 2989 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2990 sizeof(atomic_t), GFP_KERNEL); 2991 if (!conf->nr_pending) 2992 goto abort; 2993 2994 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2995 sizeof(atomic_t), GFP_KERNEL); 2996 if (!conf->nr_waiting) 2997 goto abort; 2998 2999 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3000 sizeof(atomic_t), GFP_KERNEL); 3001 if (!conf->nr_queued) 3002 goto abort; 3003 3004 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3005 sizeof(atomic_t), GFP_KERNEL); 3006 if (!conf->barrier) 3007 goto abort; 3008 3009 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3010 mddev->raid_disks, 2), 3011 GFP_KERNEL); 3012 if (!conf->mirrors) 3013 goto abort; 3014 3015 conf->tmppage = alloc_page(GFP_KERNEL); 3016 if (!conf->tmppage) 3017 goto abort; 3018 3019 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3020 if (!conf->poolinfo) 3021 goto abort; 3022 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3023 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3024 rbio_pool_free, conf->poolinfo); 3025 if (err) 3026 goto abort; 3027 3028 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3029 if (err) 3030 goto abort; 3031 3032 conf->poolinfo->mddev = mddev; 3033 3034 err = -EINVAL; 3035 spin_lock_init(&conf->device_lock); 3036 rdev_for_each(rdev, mddev) { 3037 int disk_idx = rdev->raid_disk; 3038 if (disk_idx >= mddev->raid_disks 3039 || disk_idx < 0) 3040 continue; 3041 if (test_bit(Replacement, &rdev->flags)) 3042 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3043 else 3044 disk = conf->mirrors + disk_idx; 3045 3046 if (disk->rdev) 3047 goto abort; 3048 disk->rdev = rdev; 3049 disk->head_position = 0; 3050 disk->seq_start = MaxSector; 3051 } 3052 conf->raid_disks = mddev->raid_disks; 3053 conf->mddev = mddev; 3054 INIT_LIST_HEAD(&conf->retry_list); 3055 INIT_LIST_HEAD(&conf->bio_end_io_list); 3056 3057 spin_lock_init(&conf->resync_lock); 3058 init_waitqueue_head(&conf->wait_barrier); 3059 3060 bio_list_init(&conf->pending_bio_list); 3061 conf->pending_count = 0; 3062 conf->recovery_disabled = mddev->recovery_disabled - 1; 3063 3064 err = -EIO; 3065 for (i = 0; i < conf->raid_disks * 2; i++) { 3066 3067 disk = conf->mirrors + i; 3068 3069 if (i < conf->raid_disks && 3070 disk[conf->raid_disks].rdev) { 3071 /* This slot has a replacement. */ 3072 if (!disk->rdev) { 3073 /* No original, just make the replacement 3074 * a recovering spare 3075 */ 3076 disk->rdev = 3077 disk[conf->raid_disks].rdev; 3078 disk[conf->raid_disks].rdev = NULL; 3079 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3080 /* Original is not in_sync - bad */ 3081 goto abort; 3082 } 3083 3084 if (!disk->rdev || 3085 !test_bit(In_sync, &disk->rdev->flags)) { 3086 disk->head_position = 0; 3087 if (disk->rdev && 3088 (disk->rdev->saved_raid_disk < 0)) 3089 conf->fullsync = 1; 3090 } 3091 } 3092 3093 err = -ENOMEM; 3094 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3095 if (!conf->thread) 3096 goto abort; 3097 3098 return conf; 3099 3100 abort: 3101 if (conf) { 3102 mempool_exit(&conf->r1bio_pool); 3103 kfree(conf->mirrors); 3104 safe_put_page(conf->tmppage); 3105 kfree(conf->poolinfo); 3106 kfree(conf->nr_pending); 3107 kfree(conf->nr_waiting); 3108 kfree(conf->nr_queued); 3109 kfree(conf->barrier); 3110 bioset_exit(&conf->bio_split); 3111 kfree(conf); 3112 } 3113 return ERR_PTR(err); 3114 } 3115 3116 static void raid1_free(struct mddev *mddev, void *priv); 3117 static int raid1_run(struct mddev *mddev) 3118 { 3119 struct r1conf *conf; 3120 int i; 3121 struct md_rdev *rdev; 3122 int ret; 3123 bool discard_supported = false; 3124 3125 if (mddev->level != 1) { 3126 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3127 mdname(mddev), mddev->level); 3128 return -EIO; 3129 } 3130 if (mddev->reshape_position != MaxSector) { 3131 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3132 mdname(mddev)); 3133 return -EIO; 3134 } 3135 if (mddev_init_writes_pending(mddev) < 0) 3136 return -ENOMEM; 3137 /* 3138 * copy the already verified devices into our private RAID1 3139 * bookkeeping area. [whatever we allocate in run(), 3140 * should be freed in raid1_free()] 3141 */ 3142 if (mddev->private == NULL) 3143 conf = setup_conf(mddev); 3144 else 3145 conf = mddev->private; 3146 3147 if (IS_ERR(conf)) 3148 return PTR_ERR(conf); 3149 3150 if (mddev->queue) { 3151 blk_queue_max_write_same_sectors(mddev->queue, 0); 3152 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3153 } 3154 3155 rdev_for_each(rdev, mddev) { 3156 if (!mddev->gendisk) 3157 continue; 3158 disk_stack_limits(mddev->gendisk, rdev->bdev, 3159 rdev->data_offset << 9); 3160 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3161 discard_supported = true; 3162 } 3163 3164 mddev->degraded = 0; 3165 for (i = 0; i < conf->raid_disks; i++) 3166 if (conf->mirrors[i].rdev == NULL || 3167 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3168 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3169 mddev->degraded++; 3170 /* 3171 * RAID1 needs at least one disk in active 3172 */ 3173 if (conf->raid_disks - mddev->degraded < 1) { 3174 ret = -EINVAL; 3175 goto abort; 3176 } 3177 3178 if (conf->raid_disks - mddev->degraded == 1) 3179 mddev->recovery_cp = MaxSector; 3180 3181 if (mddev->recovery_cp != MaxSector) 3182 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3183 mdname(mddev)); 3184 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3185 mdname(mddev), mddev->raid_disks - mddev->degraded, 3186 mddev->raid_disks); 3187 3188 /* 3189 * Ok, everything is just fine now 3190 */ 3191 mddev->thread = conf->thread; 3192 conf->thread = NULL; 3193 mddev->private = conf; 3194 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3195 3196 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3197 3198 if (mddev->queue) { 3199 if (discard_supported) 3200 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3201 mddev->queue); 3202 else 3203 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3204 mddev->queue); 3205 } 3206 3207 ret = md_integrity_register(mddev); 3208 if (ret) { 3209 md_unregister_thread(&mddev->thread); 3210 goto abort; 3211 } 3212 return 0; 3213 3214 abort: 3215 raid1_free(mddev, conf); 3216 return ret; 3217 } 3218 3219 static void raid1_free(struct mddev *mddev, void *priv) 3220 { 3221 struct r1conf *conf = priv; 3222 3223 mempool_exit(&conf->r1bio_pool); 3224 kfree(conf->mirrors); 3225 safe_put_page(conf->tmppage); 3226 kfree(conf->poolinfo); 3227 kfree(conf->nr_pending); 3228 kfree(conf->nr_waiting); 3229 kfree(conf->nr_queued); 3230 kfree(conf->barrier); 3231 bioset_exit(&conf->bio_split); 3232 kfree(conf); 3233 } 3234 3235 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3236 { 3237 /* no resync is happening, and there is enough space 3238 * on all devices, so we can resize. 3239 * We need to make sure resync covers any new space. 3240 * If the array is shrinking we should possibly wait until 3241 * any io in the removed space completes, but it hardly seems 3242 * worth it. 3243 */ 3244 sector_t newsize = raid1_size(mddev, sectors, 0); 3245 if (mddev->external_size && 3246 mddev->array_sectors > newsize) 3247 return -EINVAL; 3248 if (mddev->bitmap) { 3249 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3250 if (ret) 3251 return ret; 3252 } 3253 md_set_array_sectors(mddev, newsize); 3254 if (sectors > mddev->dev_sectors && 3255 mddev->recovery_cp > mddev->dev_sectors) { 3256 mddev->recovery_cp = mddev->dev_sectors; 3257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3258 } 3259 mddev->dev_sectors = sectors; 3260 mddev->resync_max_sectors = sectors; 3261 return 0; 3262 } 3263 3264 static int raid1_reshape(struct mddev *mddev) 3265 { 3266 /* We need to: 3267 * 1/ resize the r1bio_pool 3268 * 2/ resize conf->mirrors 3269 * 3270 * We allocate a new r1bio_pool if we can. 3271 * Then raise a device barrier and wait until all IO stops. 3272 * Then resize conf->mirrors and swap in the new r1bio pool. 3273 * 3274 * At the same time, we "pack" the devices so that all the missing 3275 * devices have the higher raid_disk numbers. 3276 */ 3277 mempool_t newpool, oldpool; 3278 struct pool_info *newpoolinfo; 3279 struct raid1_info *newmirrors; 3280 struct r1conf *conf = mddev->private; 3281 int cnt, raid_disks; 3282 unsigned long flags; 3283 int d, d2; 3284 int ret; 3285 3286 memset(&newpool, 0, sizeof(newpool)); 3287 memset(&oldpool, 0, sizeof(oldpool)); 3288 3289 /* Cannot change chunk_size, layout, or level */ 3290 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3291 mddev->layout != mddev->new_layout || 3292 mddev->level != mddev->new_level) { 3293 mddev->new_chunk_sectors = mddev->chunk_sectors; 3294 mddev->new_layout = mddev->layout; 3295 mddev->new_level = mddev->level; 3296 return -EINVAL; 3297 } 3298 3299 if (!mddev_is_clustered(mddev)) 3300 md_allow_write(mddev); 3301 3302 raid_disks = mddev->raid_disks + mddev->delta_disks; 3303 3304 if (raid_disks < conf->raid_disks) { 3305 cnt=0; 3306 for (d= 0; d < conf->raid_disks; d++) 3307 if (conf->mirrors[d].rdev) 3308 cnt++; 3309 if (cnt > raid_disks) 3310 return -EBUSY; 3311 } 3312 3313 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3314 if (!newpoolinfo) 3315 return -ENOMEM; 3316 newpoolinfo->mddev = mddev; 3317 newpoolinfo->raid_disks = raid_disks * 2; 3318 3319 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3320 rbio_pool_free, newpoolinfo); 3321 if (ret) { 3322 kfree(newpoolinfo); 3323 return ret; 3324 } 3325 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3326 raid_disks, 2), 3327 GFP_KERNEL); 3328 if (!newmirrors) { 3329 kfree(newpoolinfo); 3330 mempool_exit(&newpool); 3331 return -ENOMEM; 3332 } 3333 3334 freeze_array(conf, 0); 3335 3336 /* ok, everything is stopped */ 3337 oldpool = conf->r1bio_pool; 3338 conf->r1bio_pool = newpool; 3339 3340 for (d = d2 = 0; d < conf->raid_disks; d++) { 3341 struct md_rdev *rdev = conf->mirrors[d].rdev; 3342 if (rdev && rdev->raid_disk != d2) { 3343 sysfs_unlink_rdev(mddev, rdev); 3344 rdev->raid_disk = d2; 3345 sysfs_unlink_rdev(mddev, rdev); 3346 if (sysfs_link_rdev(mddev, rdev)) 3347 pr_warn("md/raid1:%s: cannot register rd%d\n", 3348 mdname(mddev), rdev->raid_disk); 3349 } 3350 if (rdev) 3351 newmirrors[d2++].rdev = rdev; 3352 } 3353 kfree(conf->mirrors); 3354 conf->mirrors = newmirrors; 3355 kfree(conf->poolinfo); 3356 conf->poolinfo = newpoolinfo; 3357 3358 spin_lock_irqsave(&conf->device_lock, flags); 3359 mddev->degraded += (raid_disks - conf->raid_disks); 3360 spin_unlock_irqrestore(&conf->device_lock, flags); 3361 conf->raid_disks = mddev->raid_disks = raid_disks; 3362 mddev->delta_disks = 0; 3363 3364 unfreeze_array(conf); 3365 3366 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3367 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3368 md_wakeup_thread(mddev->thread); 3369 3370 mempool_exit(&oldpool); 3371 return 0; 3372 } 3373 3374 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3375 { 3376 struct r1conf *conf = mddev->private; 3377 3378 if (quiesce) 3379 freeze_array(conf, 0); 3380 else 3381 unfreeze_array(conf); 3382 } 3383 3384 static void *raid1_takeover(struct mddev *mddev) 3385 { 3386 /* raid1 can take over: 3387 * raid5 with 2 devices, any layout or chunk size 3388 */ 3389 if (mddev->level == 5 && mddev->raid_disks == 2) { 3390 struct r1conf *conf; 3391 mddev->new_level = 1; 3392 mddev->new_layout = 0; 3393 mddev->new_chunk_sectors = 0; 3394 conf = setup_conf(mddev); 3395 if (!IS_ERR(conf)) { 3396 /* Array must appear to be quiesced */ 3397 conf->array_frozen = 1; 3398 mddev_clear_unsupported_flags(mddev, 3399 UNSUPPORTED_MDDEV_FLAGS); 3400 } 3401 return conf; 3402 } 3403 return ERR_PTR(-EINVAL); 3404 } 3405 3406 static struct md_personality raid1_personality = 3407 { 3408 .name = "raid1", 3409 .level = 1, 3410 .owner = THIS_MODULE, 3411 .make_request = raid1_make_request, 3412 .run = raid1_run, 3413 .free = raid1_free, 3414 .status = raid1_status, 3415 .error_handler = raid1_error, 3416 .hot_add_disk = raid1_add_disk, 3417 .hot_remove_disk= raid1_remove_disk, 3418 .spare_active = raid1_spare_active, 3419 .sync_request = raid1_sync_request, 3420 .resize = raid1_resize, 3421 .size = raid1_size, 3422 .check_reshape = raid1_reshape, 3423 .quiesce = raid1_quiesce, 3424 .takeover = raid1_takeover, 3425 }; 3426 3427 static int __init raid_init(void) 3428 { 3429 return register_md_personality(&raid1_personality); 3430 } 3431 3432 static void raid_exit(void) 3433 { 3434 unregister_md_personality(&raid1_personality); 3435 } 3436 3437 module_init(raid_init); 3438 module_exit(raid_exit); 3439 MODULE_LICENSE("GPL"); 3440 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3441 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3442 MODULE_ALIAS("md-raid1"); 3443 MODULE_ALIAS("md-level-1"); 3444