xref: /linux/drivers/md/raid1.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2, or (at your option)
18  * any later version.
19  *
20  * You should have received a copy of the GNU General Public License
21  * (for example /usr/src/linux/COPYING); if not, write to the Free
22  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/raid/raid1.h>
26 
27 /*
28  * Number of guaranteed r1bios in case of extreme VM load:
29  */
30 #define	NR_RAID1_BIOS 256
31 
32 static mdk_personality_t raid1_personality;
33 
34 static void unplug_slaves(mddev_t *mddev);
35 
36 
37 static void * r1bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
38 {
39 	struct pool_info *pi = data;
40 	r1bio_t *r1_bio;
41 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
42 
43 	/* allocate a r1bio with room for raid_disks entries in the bios array */
44 	r1_bio = kmalloc(size, gfp_flags);
45 	if (r1_bio)
46 		memset(r1_bio, 0, size);
47 	else
48 		unplug_slaves(pi->mddev);
49 
50 	return r1_bio;
51 }
52 
53 static void r1bio_pool_free(void *r1_bio, void *data)
54 {
55 	kfree(r1_bio);
56 }
57 
58 #define RESYNC_BLOCK_SIZE (64*1024)
59 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
60 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
61 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
62 #define RESYNC_WINDOW (2048*1024)
63 
64 static void * r1buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
65 {
66 	struct pool_info *pi = data;
67 	struct page *page;
68 	r1bio_t *r1_bio;
69 	struct bio *bio;
70 	int i, j;
71 
72 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
73 	if (!r1_bio) {
74 		unplug_slaves(pi->mddev);
75 		return NULL;
76 	}
77 
78 	/*
79 	 * Allocate bios : 1 for reading, n-1 for writing
80 	 */
81 	for (j = pi->raid_disks ; j-- ; ) {
82 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
83 		if (!bio)
84 			goto out_free_bio;
85 		r1_bio->bios[j] = bio;
86 	}
87 	/*
88 	 * Allocate RESYNC_PAGES data pages and attach them to
89 	 * the first bio;
90 	 */
91 	bio = r1_bio->bios[0];
92 	for (i = 0; i < RESYNC_PAGES; i++) {
93 		page = alloc_page(gfp_flags);
94 		if (unlikely(!page))
95 			goto out_free_pages;
96 
97 		bio->bi_io_vec[i].bv_page = page;
98 	}
99 
100 	r1_bio->master_bio = NULL;
101 
102 	return r1_bio;
103 
104 out_free_pages:
105 	for ( ; i > 0 ; i--)
106 		__free_page(bio->bi_io_vec[i-1].bv_page);
107 out_free_bio:
108 	while ( ++j < pi->raid_disks )
109 		bio_put(r1_bio->bios[j]);
110 	r1bio_pool_free(r1_bio, data);
111 	return NULL;
112 }
113 
114 static void r1buf_pool_free(void *__r1_bio, void *data)
115 {
116 	struct pool_info *pi = data;
117 	int i;
118 	r1bio_t *r1bio = __r1_bio;
119 	struct bio *bio = r1bio->bios[0];
120 
121 	for (i = 0; i < RESYNC_PAGES; i++) {
122 		__free_page(bio->bi_io_vec[i].bv_page);
123 		bio->bi_io_vec[i].bv_page = NULL;
124 	}
125 	for (i=0 ; i < pi->raid_disks; i++)
126 		bio_put(r1bio->bios[i]);
127 
128 	r1bio_pool_free(r1bio, data);
129 }
130 
131 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
132 {
133 	int i;
134 
135 	for (i = 0; i < conf->raid_disks; i++) {
136 		struct bio **bio = r1_bio->bios + i;
137 		if (*bio)
138 			bio_put(*bio);
139 		*bio = NULL;
140 	}
141 }
142 
143 static inline void free_r1bio(r1bio_t *r1_bio)
144 {
145 	unsigned long flags;
146 
147 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
148 
149 	/*
150 	 * Wake up any possible resync thread that waits for the device
151 	 * to go idle.
152 	 */
153 	spin_lock_irqsave(&conf->resync_lock, flags);
154 	if (!--conf->nr_pending) {
155 		wake_up(&conf->wait_idle);
156 		wake_up(&conf->wait_resume);
157 	}
158 	spin_unlock_irqrestore(&conf->resync_lock, flags);
159 
160 	put_all_bios(conf, r1_bio);
161 	mempool_free(r1_bio, conf->r1bio_pool);
162 }
163 
164 static inline void put_buf(r1bio_t *r1_bio)
165 {
166 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
167 	unsigned long flags;
168 
169 	mempool_free(r1_bio, conf->r1buf_pool);
170 
171 	spin_lock_irqsave(&conf->resync_lock, flags);
172 	if (!conf->barrier)
173 		BUG();
174 	--conf->barrier;
175 	wake_up(&conf->wait_resume);
176 	wake_up(&conf->wait_idle);
177 
178 	if (!--conf->nr_pending) {
179 		wake_up(&conf->wait_idle);
180 		wake_up(&conf->wait_resume);
181 	}
182 	spin_unlock_irqrestore(&conf->resync_lock, flags);
183 }
184 
185 static void reschedule_retry(r1bio_t *r1_bio)
186 {
187 	unsigned long flags;
188 	mddev_t *mddev = r1_bio->mddev;
189 	conf_t *conf = mddev_to_conf(mddev);
190 
191 	spin_lock_irqsave(&conf->device_lock, flags);
192 	list_add(&r1_bio->retry_list, &conf->retry_list);
193 	spin_unlock_irqrestore(&conf->device_lock, flags);
194 
195 	md_wakeup_thread(mddev->thread);
196 }
197 
198 /*
199  * raid_end_bio_io() is called when we have finished servicing a mirrored
200  * operation and are ready to return a success/failure code to the buffer
201  * cache layer.
202  */
203 static void raid_end_bio_io(r1bio_t *r1_bio)
204 {
205 	struct bio *bio = r1_bio->master_bio;
206 
207 	bio_endio(bio, bio->bi_size,
208 		test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
209 	free_r1bio(r1_bio);
210 }
211 
212 /*
213  * Update disk head position estimator based on IRQ completion info.
214  */
215 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
216 {
217 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
218 
219 	conf->mirrors[disk].head_position =
220 		r1_bio->sector + (r1_bio->sectors);
221 }
222 
223 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
224 {
225 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
226 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
227 	int mirror;
228 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
229 
230 	if (bio->bi_size)
231 		return 1;
232 
233 	mirror = r1_bio->read_disk;
234 	/*
235 	 * this branch is our 'one mirror IO has finished' event handler:
236 	 */
237 	if (!uptodate)
238 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
239 	else
240 		/*
241 		 * Set R1BIO_Uptodate in our master bio, so that
242 		 * we will return a good error code for to the higher
243 		 * levels even if IO on some other mirrored buffer fails.
244 		 *
245 		 * The 'master' represents the composite IO operation to
246 		 * user-side. So if something waits for IO, then it will
247 		 * wait for the 'master' bio.
248 		 */
249 		set_bit(R1BIO_Uptodate, &r1_bio->state);
250 
251 	update_head_pos(mirror, r1_bio);
252 
253 	/*
254 	 * we have only one bio on the read side
255 	 */
256 	if (uptodate)
257 		raid_end_bio_io(r1_bio);
258 	else {
259 		/*
260 		 * oops, read error:
261 		 */
262 		char b[BDEVNAME_SIZE];
263 		if (printk_ratelimit())
264 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
265 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
266 		reschedule_retry(r1_bio);
267 	}
268 
269 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
270 	return 0;
271 }
272 
273 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
274 {
275 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
276 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
277 	int mirror;
278 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
279 
280 	if (bio->bi_size)
281 		return 1;
282 
283 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
284 		if (r1_bio->bios[mirror] == bio)
285 			break;
286 
287 	/*
288 	 * this branch is our 'one mirror IO has finished' event handler:
289 	 */
290 	if (!uptodate)
291 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
292 	else
293 		/*
294 		 * Set R1BIO_Uptodate in our master bio, so that
295 		 * we will return a good error code for to the higher
296 		 * levels even if IO on some other mirrored buffer fails.
297 		 *
298 		 * The 'master' represents the composite IO operation to
299 		 * user-side. So if something waits for IO, then it will
300 		 * wait for the 'master' bio.
301 		 */
302 		set_bit(R1BIO_Uptodate, &r1_bio->state);
303 
304 	update_head_pos(mirror, r1_bio);
305 
306 	/*
307 	 *
308 	 * Let's see if all mirrored write operations have finished
309 	 * already.
310 	 */
311 	if (atomic_dec_and_test(&r1_bio->remaining)) {
312 		md_write_end(r1_bio->mddev);
313 		raid_end_bio_io(r1_bio);
314 	}
315 
316 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
317 	return 0;
318 }
319 
320 
321 /*
322  * This routine returns the disk from which the requested read should
323  * be done. There is a per-array 'next expected sequential IO' sector
324  * number - if this matches on the next IO then we use the last disk.
325  * There is also a per-disk 'last know head position' sector that is
326  * maintained from IRQ contexts, both the normal and the resync IO
327  * completion handlers update this position correctly. If there is no
328  * perfect sequential match then we pick the disk whose head is closest.
329  *
330  * If there are 2 mirrors in the same 2 devices, performance degrades
331  * because position is mirror, not device based.
332  *
333  * The rdev for the device selected will have nr_pending incremented.
334  */
335 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
336 {
337 	const unsigned long this_sector = r1_bio->sector;
338 	int new_disk = conf->last_used, disk = new_disk;
339 	const int sectors = r1_bio->sectors;
340 	sector_t new_distance, current_distance;
341 	mdk_rdev_t *new_rdev, *rdev;
342 
343 	rcu_read_lock();
344 	/*
345 	 * Check if it if we can balance. We can balance on the whole
346 	 * device if no resync is going on, or below the resync window.
347 	 * We take the first readable disk when above the resync window.
348 	 */
349  retry:
350 	if (conf->mddev->recovery_cp < MaxSector &&
351 	    (this_sector + sectors >= conf->next_resync)) {
352 		/* Choose the first operation device, for consistancy */
353 		new_disk = 0;
354 
355 		while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL ||
356 		       !new_rdev->in_sync) {
357 			new_disk++;
358 			if (new_disk == conf->raid_disks) {
359 				new_disk = -1;
360 				break;
361 			}
362 		}
363 		goto rb_out;
364 	}
365 
366 
367 	/* make sure the disk is operational */
368 	while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL ||
369 	       !new_rdev->in_sync) {
370 		if (new_disk <= 0)
371 			new_disk = conf->raid_disks;
372 		new_disk--;
373 		if (new_disk == disk) {
374 			new_disk = -1;
375 			goto rb_out;
376 		}
377 	}
378 	disk = new_disk;
379 	/* now disk == new_disk == starting point for search */
380 
381 	/*
382 	 * Don't change to another disk for sequential reads:
383 	 */
384 	if (conf->next_seq_sect == this_sector)
385 		goto rb_out;
386 	if (this_sector == conf->mirrors[new_disk].head_position)
387 		goto rb_out;
388 
389 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
390 
391 	/* Find the disk whose head is closest */
392 
393 	do {
394 		if (disk <= 0)
395 			disk = conf->raid_disks;
396 		disk--;
397 
398 		if ((rdev=conf->mirrors[disk].rdev) == NULL ||
399 		    !rdev->in_sync)
400 			continue;
401 
402 		if (!atomic_read(&rdev->nr_pending)) {
403 			new_disk = disk;
404 			new_rdev = rdev;
405 			break;
406 		}
407 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
408 		if (new_distance < current_distance) {
409 			current_distance = new_distance;
410 			new_disk = disk;
411 			new_rdev = rdev;
412 		}
413 	} while (disk != conf->last_used);
414 
415 rb_out:
416 
417 
418 	if (new_disk >= 0) {
419 		conf->next_seq_sect = this_sector + sectors;
420 		conf->last_used = new_disk;
421 		atomic_inc(&new_rdev->nr_pending);
422 		if (!new_rdev->in_sync) {
423 			/* cannot risk returning a device that failed
424 			 * before we inc'ed nr_pending
425 			 */
426 			atomic_dec(&new_rdev->nr_pending);
427 			goto retry;
428 		}
429 	}
430 	rcu_read_unlock();
431 
432 	return new_disk;
433 }
434 
435 static void unplug_slaves(mddev_t *mddev)
436 {
437 	conf_t *conf = mddev_to_conf(mddev);
438 	int i;
439 
440 	rcu_read_lock();
441 	for (i=0; i<mddev->raid_disks; i++) {
442 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
443 		if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
444 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
445 
446 			atomic_inc(&rdev->nr_pending);
447 			rcu_read_unlock();
448 
449 			if (r_queue->unplug_fn)
450 				r_queue->unplug_fn(r_queue);
451 
452 			rdev_dec_pending(rdev, mddev);
453 			rcu_read_lock();
454 		}
455 	}
456 	rcu_read_unlock();
457 }
458 
459 static void raid1_unplug(request_queue_t *q)
460 {
461 	unplug_slaves(q->queuedata);
462 }
463 
464 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
465 			     sector_t *error_sector)
466 {
467 	mddev_t *mddev = q->queuedata;
468 	conf_t *conf = mddev_to_conf(mddev);
469 	int i, ret = 0;
470 
471 	rcu_read_lock();
472 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
473 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
474 		if (rdev && !rdev->faulty) {
475 			struct block_device *bdev = rdev->bdev;
476 			request_queue_t *r_queue = bdev_get_queue(bdev);
477 
478 			if (!r_queue->issue_flush_fn)
479 				ret = -EOPNOTSUPP;
480 			else {
481 				atomic_inc(&rdev->nr_pending);
482 				rcu_read_unlock();
483 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
484 							      error_sector);
485 				rdev_dec_pending(rdev, mddev);
486 				rcu_read_lock();
487 			}
488 		}
489 	}
490 	rcu_read_unlock();
491 	return ret;
492 }
493 
494 /*
495  * Throttle resync depth, so that we can both get proper overlapping of
496  * requests, but are still able to handle normal requests quickly.
497  */
498 #define RESYNC_DEPTH 32
499 
500 static void device_barrier(conf_t *conf, sector_t sect)
501 {
502 	spin_lock_irq(&conf->resync_lock);
503 	wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
504 			    conf->resync_lock, unplug_slaves(conf->mddev));
505 
506 	if (!conf->barrier++) {
507 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
508 				    conf->resync_lock, unplug_slaves(conf->mddev));
509 		if (conf->nr_pending)
510 			BUG();
511 	}
512 	wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
513 			    conf->resync_lock, unplug_slaves(conf->mddev));
514 	conf->next_resync = sect;
515 	spin_unlock_irq(&conf->resync_lock);
516 }
517 
518 static int make_request(request_queue_t *q, struct bio * bio)
519 {
520 	mddev_t *mddev = q->queuedata;
521 	conf_t *conf = mddev_to_conf(mddev);
522 	mirror_info_t *mirror;
523 	r1bio_t *r1_bio;
524 	struct bio *read_bio;
525 	int i, disks;
526 	mdk_rdev_t *rdev;
527 
528 	/*
529 	 * Register the new request and wait if the reconstruction
530 	 * thread has put up a bar for new requests.
531 	 * Continue immediately if no resync is active currently.
532 	 */
533 	spin_lock_irq(&conf->resync_lock);
534 	wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
535 	conf->nr_pending++;
536 	spin_unlock_irq(&conf->resync_lock);
537 
538 	if (bio_data_dir(bio)==WRITE) {
539 		disk_stat_inc(mddev->gendisk, writes);
540 		disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
541 	} else {
542 		disk_stat_inc(mddev->gendisk, reads);
543 		disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
544 	}
545 
546 	/*
547 	 * make_request() can abort the operation when READA is being
548 	 * used and no empty request is available.
549 	 *
550 	 */
551 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
552 
553 	r1_bio->master_bio = bio;
554 	r1_bio->sectors = bio->bi_size >> 9;
555 
556 	r1_bio->mddev = mddev;
557 	r1_bio->sector = bio->bi_sector;
558 
559 	r1_bio->state = 0;
560 
561 	if (bio_data_dir(bio) == READ) {
562 		/*
563 		 * read balancing logic:
564 		 */
565 		int rdisk = read_balance(conf, r1_bio);
566 
567 		if (rdisk < 0) {
568 			/* couldn't find anywhere to read from */
569 			raid_end_bio_io(r1_bio);
570 			return 0;
571 		}
572 		mirror = conf->mirrors + rdisk;
573 
574 		r1_bio->read_disk = rdisk;
575 
576 		read_bio = bio_clone(bio, GFP_NOIO);
577 
578 		r1_bio->bios[rdisk] = read_bio;
579 
580 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
581 		read_bio->bi_bdev = mirror->rdev->bdev;
582 		read_bio->bi_end_io = raid1_end_read_request;
583 		read_bio->bi_rw = READ;
584 		read_bio->bi_private = r1_bio;
585 
586 		generic_make_request(read_bio);
587 		return 0;
588 	}
589 
590 	/*
591 	 * WRITE:
592 	 */
593 	/* first select target devices under spinlock and
594 	 * inc refcount on their rdev.  Record them by setting
595 	 * bios[x] to bio
596 	 */
597 	disks = conf->raid_disks;
598 	rcu_read_lock();
599 	for (i = 0;  i < disks; i++) {
600 		if ((rdev=conf->mirrors[i].rdev) != NULL &&
601 		    !rdev->faulty) {
602 			atomic_inc(&rdev->nr_pending);
603 			if (rdev->faulty) {
604 				atomic_dec(&rdev->nr_pending);
605 				r1_bio->bios[i] = NULL;
606 			} else
607 				r1_bio->bios[i] = bio;
608 		} else
609 			r1_bio->bios[i] = NULL;
610 	}
611 	rcu_read_unlock();
612 
613 	atomic_set(&r1_bio->remaining, 1);
614 	md_write_start(mddev);
615 	for (i = 0; i < disks; i++) {
616 		struct bio *mbio;
617 		if (!r1_bio->bios[i])
618 			continue;
619 
620 		mbio = bio_clone(bio, GFP_NOIO);
621 		r1_bio->bios[i] = mbio;
622 
623 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
624 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
625 		mbio->bi_end_io	= raid1_end_write_request;
626 		mbio->bi_rw = WRITE;
627 		mbio->bi_private = r1_bio;
628 
629 		atomic_inc(&r1_bio->remaining);
630 		generic_make_request(mbio);
631 	}
632 
633 	if (atomic_dec_and_test(&r1_bio->remaining)) {
634 		md_write_end(mddev);
635 		raid_end_bio_io(r1_bio);
636 	}
637 
638 	return 0;
639 }
640 
641 static void status(struct seq_file *seq, mddev_t *mddev)
642 {
643 	conf_t *conf = mddev_to_conf(mddev);
644 	int i;
645 
646 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
647 						conf->working_disks);
648 	for (i = 0; i < conf->raid_disks; i++)
649 		seq_printf(seq, "%s",
650 			      conf->mirrors[i].rdev &&
651 			      conf->mirrors[i].rdev->in_sync ? "U" : "_");
652 	seq_printf(seq, "]");
653 }
654 
655 
656 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
657 {
658 	char b[BDEVNAME_SIZE];
659 	conf_t *conf = mddev_to_conf(mddev);
660 
661 	/*
662 	 * If it is not operational, then we have already marked it as dead
663 	 * else if it is the last working disks, ignore the error, let the
664 	 * next level up know.
665 	 * else mark the drive as failed
666 	 */
667 	if (rdev->in_sync
668 	    && conf->working_disks == 1)
669 		/*
670 		 * Don't fail the drive, act as though we were just a
671 		 * normal single drive
672 		 */
673 		return;
674 	if (rdev->in_sync) {
675 		mddev->degraded++;
676 		conf->working_disks--;
677 		/*
678 		 * if recovery is running, make sure it aborts.
679 		 */
680 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
681 	}
682 	rdev->in_sync = 0;
683 	rdev->faulty = 1;
684 	mddev->sb_dirty = 1;
685 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
686 		"	Operation continuing on %d devices\n",
687 		bdevname(rdev->bdev,b), conf->working_disks);
688 }
689 
690 static void print_conf(conf_t *conf)
691 {
692 	int i;
693 	mirror_info_t *tmp;
694 
695 	printk("RAID1 conf printout:\n");
696 	if (!conf) {
697 		printk("(!conf)\n");
698 		return;
699 	}
700 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
701 		conf->raid_disks);
702 
703 	for (i = 0; i < conf->raid_disks; i++) {
704 		char b[BDEVNAME_SIZE];
705 		tmp = conf->mirrors + i;
706 		if (tmp->rdev)
707 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
708 				i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
709 				bdevname(tmp->rdev->bdev,b));
710 	}
711 }
712 
713 static void close_sync(conf_t *conf)
714 {
715 	spin_lock_irq(&conf->resync_lock);
716 	wait_event_lock_irq(conf->wait_resume, !conf->barrier,
717 			    conf->resync_lock, 	unplug_slaves(conf->mddev));
718 	spin_unlock_irq(&conf->resync_lock);
719 
720 	if (conf->barrier) BUG();
721 	if (waitqueue_active(&conf->wait_idle)) BUG();
722 
723 	mempool_destroy(conf->r1buf_pool);
724 	conf->r1buf_pool = NULL;
725 }
726 
727 static int raid1_spare_active(mddev_t *mddev)
728 {
729 	int i;
730 	conf_t *conf = mddev->private;
731 	mirror_info_t *tmp;
732 
733 	/*
734 	 * Find all failed disks within the RAID1 configuration
735 	 * and mark them readable
736 	 */
737 	for (i = 0; i < conf->raid_disks; i++) {
738 		tmp = conf->mirrors + i;
739 		if (tmp->rdev
740 		    && !tmp->rdev->faulty
741 		    && !tmp->rdev->in_sync) {
742 			conf->working_disks++;
743 			mddev->degraded--;
744 			tmp->rdev->in_sync = 1;
745 		}
746 	}
747 
748 	print_conf(conf);
749 	return 0;
750 }
751 
752 
753 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
754 {
755 	conf_t *conf = mddev->private;
756 	int found = 0;
757 	int mirror;
758 	mirror_info_t *p;
759 
760 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
761 		if ( !(p=conf->mirrors+mirror)->rdev) {
762 
763 			blk_queue_stack_limits(mddev->queue,
764 					       rdev->bdev->bd_disk->queue);
765 			/* as we don't honour merge_bvec_fn, we must never risk
766 			 * violating it, so limit ->max_sector to one PAGE, as
767 			 * a one page request is never in violation.
768 			 */
769 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
770 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
771 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
772 
773 			p->head_position = 0;
774 			rdev->raid_disk = mirror;
775 			found = 1;
776 			p->rdev = rdev;
777 			break;
778 		}
779 
780 	print_conf(conf);
781 	return found;
782 }
783 
784 static int raid1_remove_disk(mddev_t *mddev, int number)
785 {
786 	conf_t *conf = mddev->private;
787 	int err = 0;
788 	mdk_rdev_t *rdev;
789 	mirror_info_t *p = conf->mirrors+ number;
790 
791 	print_conf(conf);
792 	rdev = p->rdev;
793 	if (rdev) {
794 		if (rdev->in_sync ||
795 		    atomic_read(&rdev->nr_pending)) {
796 			err = -EBUSY;
797 			goto abort;
798 		}
799 		p->rdev = NULL;
800 		synchronize_rcu();
801 		if (atomic_read(&rdev->nr_pending)) {
802 			/* lost the race, try later */
803 			err = -EBUSY;
804 			p->rdev = rdev;
805 		}
806 	}
807 abort:
808 
809 	print_conf(conf);
810 	return err;
811 }
812 
813 
814 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
815 {
816 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
817 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
818 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
819 
820 	if (bio->bi_size)
821 		return 1;
822 
823 	if (r1_bio->bios[r1_bio->read_disk] != bio)
824 		BUG();
825 	update_head_pos(r1_bio->read_disk, r1_bio);
826 	/*
827 	 * we have read a block, now it needs to be re-written,
828 	 * or re-read if the read failed.
829 	 * We don't do much here, just schedule handling by raid1d
830 	 */
831 	if (!uptodate)
832 		md_error(r1_bio->mddev,
833 			 conf->mirrors[r1_bio->read_disk].rdev);
834 	else
835 		set_bit(R1BIO_Uptodate, &r1_bio->state);
836 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
837 	reschedule_retry(r1_bio);
838 	return 0;
839 }
840 
841 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
842 {
843 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
844 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
845 	mddev_t *mddev = r1_bio->mddev;
846 	conf_t *conf = mddev_to_conf(mddev);
847 	int i;
848 	int mirror=0;
849 
850 	if (bio->bi_size)
851 		return 1;
852 
853 	for (i = 0; i < conf->raid_disks; i++)
854 		if (r1_bio->bios[i] == bio) {
855 			mirror = i;
856 			break;
857 		}
858 	if (!uptodate)
859 		md_error(mddev, conf->mirrors[mirror].rdev);
860 	update_head_pos(mirror, r1_bio);
861 
862 	if (atomic_dec_and_test(&r1_bio->remaining)) {
863 		md_done_sync(mddev, r1_bio->sectors, uptodate);
864 		put_buf(r1_bio);
865 	}
866 	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
867 	return 0;
868 }
869 
870 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
871 {
872 	conf_t *conf = mddev_to_conf(mddev);
873 	int i;
874 	int disks = conf->raid_disks;
875 	struct bio *bio, *wbio;
876 
877 	bio = r1_bio->bios[r1_bio->read_disk];
878 
879 	/*
880 	 * schedule writes
881 	 */
882 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
883 		/*
884 		 * There is no point trying a read-for-reconstruct as
885 		 * reconstruct is about to be aborted
886 		 */
887 		char b[BDEVNAME_SIZE];
888 		printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
889 			" for block %llu\n",
890 			bdevname(bio->bi_bdev,b),
891 			(unsigned long long)r1_bio->sector);
892 		md_done_sync(mddev, r1_bio->sectors, 0);
893 		put_buf(r1_bio);
894 		return;
895 	}
896 
897 	atomic_set(&r1_bio->remaining, 1);
898 	for (i = 0; i < disks ; i++) {
899 		wbio = r1_bio->bios[i];
900 		if (wbio->bi_end_io != end_sync_write)
901 			continue;
902 
903 		atomic_inc(&conf->mirrors[i].rdev->nr_pending);
904 		atomic_inc(&r1_bio->remaining);
905 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
906 		generic_make_request(wbio);
907 	}
908 
909 	if (atomic_dec_and_test(&r1_bio->remaining)) {
910 		md_done_sync(mddev, r1_bio->sectors, 1);
911 		put_buf(r1_bio);
912 	}
913 }
914 
915 /*
916  * This is a kernel thread which:
917  *
918  *	1.	Retries failed read operations on working mirrors.
919  *	2.	Updates the raid superblock when problems encounter.
920  *	3.	Performs writes following reads for array syncronising.
921  */
922 
923 static void raid1d(mddev_t *mddev)
924 {
925 	r1bio_t *r1_bio;
926 	struct bio *bio;
927 	unsigned long flags;
928 	conf_t *conf = mddev_to_conf(mddev);
929 	struct list_head *head = &conf->retry_list;
930 	int unplug=0;
931 	mdk_rdev_t *rdev;
932 
933 	md_check_recovery(mddev);
934 	md_handle_safemode(mddev);
935 
936 	for (;;) {
937 		char b[BDEVNAME_SIZE];
938 		spin_lock_irqsave(&conf->device_lock, flags);
939 		if (list_empty(head))
940 			break;
941 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
942 		list_del(head->prev);
943 		spin_unlock_irqrestore(&conf->device_lock, flags);
944 
945 		mddev = r1_bio->mddev;
946 		conf = mddev_to_conf(mddev);
947 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
948 			sync_request_write(mddev, r1_bio);
949 			unplug = 1;
950 		} else {
951 			int disk;
952 			bio = r1_bio->bios[r1_bio->read_disk];
953 			if ((disk=read_balance(conf, r1_bio)) == -1) {
954 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
955 				       " read error for block %llu\n",
956 				       bdevname(bio->bi_bdev,b),
957 				       (unsigned long long)r1_bio->sector);
958 				raid_end_bio_io(r1_bio);
959 			} else {
960 				r1_bio->bios[r1_bio->read_disk] = NULL;
961 				r1_bio->read_disk = disk;
962 				bio_put(bio);
963 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
964 				r1_bio->bios[r1_bio->read_disk] = bio;
965 				rdev = conf->mirrors[disk].rdev;
966 				if (printk_ratelimit())
967 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
968 					       " another mirror\n",
969 					       bdevname(rdev->bdev,b),
970 					       (unsigned long long)r1_bio->sector);
971 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
972 				bio->bi_bdev = rdev->bdev;
973 				bio->bi_end_io = raid1_end_read_request;
974 				bio->bi_rw = READ;
975 				bio->bi_private = r1_bio;
976 				unplug = 1;
977 				generic_make_request(bio);
978 			}
979 		}
980 	}
981 	spin_unlock_irqrestore(&conf->device_lock, flags);
982 	if (unplug)
983 		unplug_slaves(mddev);
984 }
985 
986 
987 static int init_resync(conf_t *conf)
988 {
989 	int buffs;
990 
991 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
992 	if (conf->r1buf_pool)
993 		BUG();
994 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
995 					  conf->poolinfo);
996 	if (!conf->r1buf_pool)
997 		return -ENOMEM;
998 	conf->next_resync = 0;
999 	return 0;
1000 }
1001 
1002 /*
1003  * perform a "sync" on one "block"
1004  *
1005  * We need to make sure that no normal I/O request - particularly write
1006  * requests - conflict with active sync requests.
1007  *
1008  * This is achieved by tracking pending requests and a 'barrier' concept
1009  * that can be installed to exclude normal IO requests.
1010  */
1011 
1012 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster)
1013 {
1014 	conf_t *conf = mddev_to_conf(mddev);
1015 	mirror_info_t *mirror;
1016 	r1bio_t *r1_bio;
1017 	struct bio *bio;
1018 	sector_t max_sector, nr_sectors;
1019 	int disk;
1020 	int i;
1021 	int write_targets = 0;
1022 
1023 	if (!conf->r1buf_pool)
1024 		if (init_resync(conf))
1025 			return -ENOMEM;
1026 
1027 	max_sector = mddev->size << 1;
1028 	if (sector_nr >= max_sector) {
1029 		close_sync(conf);
1030 		return 0;
1031 	}
1032 
1033 	/*
1034 	 * If there is non-resync activity waiting for us then
1035 	 * put in a delay to throttle resync.
1036 	 */
1037 	if (!go_faster && waitqueue_active(&conf->wait_resume))
1038 		msleep_interruptible(1000);
1039 	device_barrier(conf, sector_nr + RESYNC_SECTORS);
1040 
1041 	/*
1042 	 * If reconstructing, and >1 working disc,
1043 	 * could dedicate one to rebuild and others to
1044 	 * service read requests ..
1045 	 */
1046 	disk = conf->last_used;
1047 	/* make sure disk is operational */
1048 
1049 	while (conf->mirrors[disk].rdev == NULL ||
1050 	       !conf->mirrors[disk].rdev->in_sync) {
1051 		if (disk <= 0)
1052 			disk = conf->raid_disks;
1053 		disk--;
1054 		if (disk == conf->last_used)
1055 			break;
1056 	}
1057 	conf->last_used = disk;
1058 	atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1059 
1060 
1061 	mirror = conf->mirrors + disk;
1062 
1063 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1064 
1065 	spin_lock_irq(&conf->resync_lock);
1066 	conf->nr_pending++;
1067 	spin_unlock_irq(&conf->resync_lock);
1068 
1069 	r1_bio->mddev = mddev;
1070 	r1_bio->sector = sector_nr;
1071 	set_bit(R1BIO_IsSync, &r1_bio->state);
1072 	r1_bio->read_disk = disk;
1073 
1074 	for (i=0; i < conf->raid_disks; i++) {
1075 		bio = r1_bio->bios[i];
1076 
1077 		/* take from bio_init */
1078 		bio->bi_next = NULL;
1079 		bio->bi_flags |= 1 << BIO_UPTODATE;
1080 		bio->bi_rw = 0;
1081 		bio->bi_vcnt = 0;
1082 		bio->bi_idx = 0;
1083 		bio->bi_phys_segments = 0;
1084 		bio->bi_hw_segments = 0;
1085 		bio->bi_size = 0;
1086 		bio->bi_end_io = NULL;
1087 		bio->bi_private = NULL;
1088 
1089 		if (i == disk) {
1090 			bio->bi_rw = READ;
1091 			bio->bi_end_io = end_sync_read;
1092 		} else if (conf->mirrors[i].rdev &&
1093 			   !conf->mirrors[i].rdev->faulty &&
1094 			   (!conf->mirrors[i].rdev->in_sync ||
1095 			    sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) {
1096 			bio->bi_rw = WRITE;
1097 			bio->bi_end_io = end_sync_write;
1098 			write_targets ++;
1099 		} else
1100 			continue;
1101 		bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1102 		bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1103 		bio->bi_private = r1_bio;
1104 	}
1105 	if (write_targets == 0) {
1106 		/* There is nowhere to write, so all non-sync
1107 		 * drives must be failed - so we are finished
1108 		 */
1109 		int rv = max_sector - sector_nr;
1110 		md_done_sync(mddev, rv, 1);
1111 		put_buf(r1_bio);
1112 		rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1113 		return rv;
1114 	}
1115 
1116 	nr_sectors = 0;
1117 	do {
1118 		struct page *page;
1119 		int len = PAGE_SIZE;
1120 		if (sector_nr + (len>>9) > max_sector)
1121 			len = (max_sector - sector_nr) << 9;
1122 		if (len == 0)
1123 			break;
1124 		for (i=0 ; i < conf->raid_disks; i++) {
1125 			bio = r1_bio->bios[i];
1126 			if (bio->bi_end_io) {
1127 				page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1128 				if (bio_add_page(bio, page, len, 0) == 0) {
1129 					/* stop here */
1130 					r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1131 					while (i > 0) {
1132 						i--;
1133 						bio = r1_bio->bios[i];
1134 						if (bio->bi_end_io==NULL) continue;
1135 						/* remove last page from this bio */
1136 						bio->bi_vcnt--;
1137 						bio->bi_size -= len;
1138 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1139 					}
1140 					goto bio_full;
1141 				}
1142 			}
1143 		}
1144 		nr_sectors += len>>9;
1145 		sector_nr += len>>9;
1146 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1147  bio_full:
1148 	bio = r1_bio->bios[disk];
1149 	r1_bio->sectors = nr_sectors;
1150 
1151 	md_sync_acct(mirror->rdev->bdev, nr_sectors);
1152 
1153 	generic_make_request(bio);
1154 
1155 	return nr_sectors;
1156 }
1157 
1158 static int run(mddev_t *mddev)
1159 {
1160 	conf_t *conf;
1161 	int i, j, disk_idx;
1162 	mirror_info_t *disk;
1163 	mdk_rdev_t *rdev;
1164 	struct list_head *tmp;
1165 
1166 	if (mddev->level != 1) {
1167 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1168 		       mdname(mddev), mddev->level);
1169 		goto out;
1170 	}
1171 	/*
1172 	 * copy the already verified devices into our private RAID1
1173 	 * bookkeeping area. [whatever we allocate in run(),
1174 	 * should be freed in stop()]
1175 	 */
1176 	conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1177 	mddev->private = conf;
1178 	if (!conf)
1179 		goto out_no_mem;
1180 
1181 	memset(conf, 0, sizeof(*conf));
1182 	conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1183 				 GFP_KERNEL);
1184 	if (!conf->mirrors)
1185 		goto out_no_mem;
1186 
1187 	memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1188 
1189 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1190 	if (!conf->poolinfo)
1191 		goto out_no_mem;
1192 	conf->poolinfo->mddev = mddev;
1193 	conf->poolinfo->raid_disks = mddev->raid_disks;
1194 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1195 					  r1bio_pool_free,
1196 					  conf->poolinfo);
1197 	if (!conf->r1bio_pool)
1198 		goto out_no_mem;
1199 
1200 	mddev->queue->unplug_fn = raid1_unplug;
1201 
1202 	mddev->queue->issue_flush_fn = raid1_issue_flush;
1203 
1204 	ITERATE_RDEV(mddev, rdev, tmp) {
1205 		disk_idx = rdev->raid_disk;
1206 		if (disk_idx >= mddev->raid_disks
1207 		    || disk_idx < 0)
1208 			continue;
1209 		disk = conf->mirrors + disk_idx;
1210 
1211 		disk->rdev = rdev;
1212 
1213 		blk_queue_stack_limits(mddev->queue,
1214 				       rdev->bdev->bd_disk->queue);
1215 		/* as we don't honour merge_bvec_fn, we must never risk
1216 		 * violating it, so limit ->max_sector to one PAGE, as
1217 		 * a one page request is never in violation.
1218 		 */
1219 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1220 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1221 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1222 
1223 		disk->head_position = 0;
1224 		if (!rdev->faulty && rdev->in_sync)
1225 			conf->working_disks++;
1226 	}
1227 	conf->raid_disks = mddev->raid_disks;
1228 	conf->mddev = mddev;
1229 	spin_lock_init(&conf->device_lock);
1230 	INIT_LIST_HEAD(&conf->retry_list);
1231 	if (conf->working_disks == 1)
1232 		mddev->recovery_cp = MaxSector;
1233 
1234 	spin_lock_init(&conf->resync_lock);
1235 	init_waitqueue_head(&conf->wait_idle);
1236 	init_waitqueue_head(&conf->wait_resume);
1237 
1238 	if (!conf->working_disks) {
1239 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1240 			mdname(mddev));
1241 		goto out_free_conf;
1242 	}
1243 
1244 	mddev->degraded = 0;
1245 	for (i = 0; i < conf->raid_disks; i++) {
1246 
1247 		disk = conf->mirrors + i;
1248 
1249 		if (!disk->rdev) {
1250 			disk->head_position = 0;
1251 			mddev->degraded++;
1252 		}
1253 	}
1254 
1255 	/*
1256 	 * find the first working one and use it as a starting point
1257 	 * to read balancing.
1258 	 */
1259 	for (j = 0; j < conf->raid_disks &&
1260 		     (!conf->mirrors[j].rdev ||
1261 		      !conf->mirrors[j].rdev->in_sync) ; j++)
1262 		/* nothing */;
1263 	conf->last_used = j;
1264 
1265 
1266 
1267 	{
1268 		mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1269 		if (!mddev->thread) {
1270 			printk(KERN_ERR
1271 				"raid1: couldn't allocate thread for %s\n",
1272 				mdname(mddev));
1273 			goto out_free_conf;
1274 		}
1275 	}
1276 	printk(KERN_INFO
1277 		"raid1: raid set %s active with %d out of %d mirrors\n",
1278 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1279 		mddev->raid_disks);
1280 	/*
1281 	 * Ok, everything is just fine now
1282 	 */
1283 	mddev->array_size = mddev->size;
1284 
1285 	return 0;
1286 
1287 out_no_mem:
1288 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1289 	       mdname(mddev));
1290 
1291 out_free_conf:
1292 	if (conf) {
1293 		if (conf->r1bio_pool)
1294 			mempool_destroy(conf->r1bio_pool);
1295 		if (conf->mirrors)
1296 			kfree(conf->mirrors);
1297 		if (conf->poolinfo)
1298 			kfree(conf->poolinfo);
1299 		kfree(conf);
1300 		mddev->private = NULL;
1301 	}
1302 out:
1303 	return -EIO;
1304 }
1305 
1306 static int stop(mddev_t *mddev)
1307 {
1308 	conf_t *conf = mddev_to_conf(mddev);
1309 
1310 	md_unregister_thread(mddev->thread);
1311 	mddev->thread = NULL;
1312 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1313 	if (conf->r1bio_pool)
1314 		mempool_destroy(conf->r1bio_pool);
1315 	if (conf->mirrors)
1316 		kfree(conf->mirrors);
1317 	if (conf->poolinfo)
1318 		kfree(conf->poolinfo);
1319 	kfree(conf);
1320 	mddev->private = NULL;
1321 	return 0;
1322 }
1323 
1324 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1325 {
1326 	/* no resync is happening, and there is enough space
1327 	 * on all devices, so we can resize.
1328 	 * We need to make sure resync covers any new space.
1329 	 * If the array is shrinking we should possibly wait until
1330 	 * any io in the removed space completes, but it hardly seems
1331 	 * worth it.
1332 	 */
1333 	mddev->array_size = sectors>>1;
1334 	set_capacity(mddev->gendisk, mddev->array_size << 1);
1335 	mddev->changed = 1;
1336 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1337 		mddev->recovery_cp = mddev->size << 1;
1338 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1339 	}
1340 	mddev->size = mddev->array_size;
1341 	return 0;
1342 }
1343 
1344 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1345 {
1346 	/* We need to:
1347 	 * 1/ resize the r1bio_pool
1348 	 * 2/ resize conf->mirrors
1349 	 *
1350 	 * We allocate a new r1bio_pool if we can.
1351 	 * Then raise a device barrier and wait until all IO stops.
1352 	 * Then resize conf->mirrors and swap in the new r1bio pool.
1353 	 */
1354 	mempool_t *newpool, *oldpool;
1355 	struct pool_info *newpoolinfo;
1356 	mirror_info_t *newmirrors;
1357 	conf_t *conf = mddev_to_conf(mddev);
1358 
1359 	int d;
1360 
1361 	for (d= raid_disks; d < conf->raid_disks; d++)
1362 		if (conf->mirrors[d].rdev)
1363 			return -EBUSY;
1364 
1365 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1366 	if (!newpoolinfo)
1367 		return -ENOMEM;
1368 	newpoolinfo->mddev = mddev;
1369 	newpoolinfo->raid_disks = raid_disks;
1370 
1371 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1372 				 r1bio_pool_free, newpoolinfo);
1373 	if (!newpool) {
1374 		kfree(newpoolinfo);
1375 		return -ENOMEM;
1376 	}
1377 	newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1378 	if (!newmirrors) {
1379 		kfree(newpoolinfo);
1380 		mempool_destroy(newpool);
1381 		return -ENOMEM;
1382 	}
1383 	memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1384 
1385 	spin_lock_irq(&conf->resync_lock);
1386 	conf->barrier++;
1387 	wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1388 			    conf->resync_lock, unplug_slaves(mddev));
1389 	spin_unlock_irq(&conf->resync_lock);
1390 
1391 	/* ok, everything is stopped */
1392 	oldpool = conf->r1bio_pool;
1393 	conf->r1bio_pool = newpool;
1394 	for (d=0; d < raid_disks && d < conf->raid_disks; d++)
1395 		newmirrors[d] = conf->mirrors[d];
1396 	kfree(conf->mirrors);
1397 	conf->mirrors = newmirrors;
1398 	kfree(conf->poolinfo);
1399 	conf->poolinfo = newpoolinfo;
1400 
1401 	mddev->degraded += (raid_disks - conf->raid_disks);
1402 	conf->raid_disks = mddev->raid_disks = raid_disks;
1403 
1404 	spin_lock_irq(&conf->resync_lock);
1405 	conf->barrier--;
1406 	spin_unlock_irq(&conf->resync_lock);
1407 	wake_up(&conf->wait_resume);
1408 	wake_up(&conf->wait_idle);
1409 
1410 
1411 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1412 	md_wakeup_thread(mddev->thread);
1413 
1414 	mempool_destroy(oldpool);
1415 	return 0;
1416 }
1417 
1418 
1419 static mdk_personality_t raid1_personality =
1420 {
1421 	.name		= "raid1",
1422 	.owner		= THIS_MODULE,
1423 	.make_request	= make_request,
1424 	.run		= run,
1425 	.stop		= stop,
1426 	.status		= status,
1427 	.error_handler	= error,
1428 	.hot_add_disk	= raid1_add_disk,
1429 	.hot_remove_disk= raid1_remove_disk,
1430 	.spare_active	= raid1_spare_active,
1431 	.sync_request	= sync_request,
1432 	.resize		= raid1_resize,
1433 	.reshape	= raid1_reshape,
1434 };
1435 
1436 static int __init raid_init(void)
1437 {
1438 	return register_md_personality(RAID1, &raid1_personality);
1439 }
1440 
1441 static void raid_exit(void)
1442 {
1443 	unregister_md_personality(RAID1);
1444 }
1445 
1446 module_init(raid_init);
1447 module_exit(raid_exit);
1448 MODULE_LICENSE("GPL");
1449 MODULE_ALIAS("md-personality-3"); /* RAID1 */
1450