1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 #include "md-cluster.h" 40 41 #define UNSUPPORTED_MDDEV_FLAGS \ 42 ((1L << MD_HAS_JOURNAL) | \ 43 (1L << MD_JOURNAL_CLEAN) | \ 44 (1L << MD_HAS_PPL) | \ 45 (1L << MD_HAS_MULTIPLE_PPLS)) 46 47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 49 static void raid1_free(struct mddev *mddev, void *priv); 50 51 #define RAID_1_10_NAME "raid1" 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void *r1bio_pool_alloc(gfp_t gfp_flags, struct r1conf *conf) 131 { 132 int size = offsetof(struct r1bio, bios[conf->raid_disks * 2]); 133 134 /* allocate a r1bio with room for raid_disks entries in the bios array */ 135 return kzalloc(size, gfp_flags); 136 } 137 138 #define RESYNC_DEPTH 32 139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 140 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 141 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 142 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 143 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 144 145 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 146 { 147 struct r1conf *conf = data; 148 struct r1bio *r1_bio; 149 struct bio *bio; 150 int need_pages; 151 int j; 152 struct resync_pages *rps; 153 154 r1_bio = r1bio_pool_alloc(gfp_flags, conf); 155 if (!r1_bio) 156 return NULL; 157 158 rps = kmalloc_objs(struct resync_pages, conf->raid_disks * 2, gfp_flags); 159 if (!rps) 160 goto out_free_r1bio; 161 162 /* 163 * Allocate bios : 1 for reading, n-1 for writing 164 */ 165 for (j = conf->raid_disks * 2; j-- ; ) { 166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 167 if (!bio) 168 goto out_free_bio; 169 bio_init_inline(bio, NULL, RESYNC_PAGES, 0); 170 r1_bio->bios[j] = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them to 174 * the first bio. 175 * If this is a user-requested check/repair, allocate 176 * RESYNC_PAGES for each bio. 177 */ 178 if (test_bit(MD_RECOVERY_REQUESTED, &conf->mddev->recovery)) 179 need_pages = conf->raid_disks * 2; 180 else 181 need_pages = 1; 182 for (j = 0; j < conf->raid_disks * 2; j++) { 183 struct resync_pages *rp = &rps[j]; 184 185 bio = r1_bio->bios[j]; 186 187 if (j < need_pages) { 188 if (resync_alloc_pages(rp, gfp_flags)) 189 goto out_free_pages; 190 } else { 191 memcpy(rp, &rps[0], sizeof(*rp)); 192 resync_get_all_pages(rp); 193 } 194 195 rp->raid_bio = r1_bio; 196 bio->bi_private = rp; 197 } 198 199 r1_bio->master_bio = NULL; 200 201 return r1_bio; 202 203 out_free_pages: 204 while (--j >= 0) 205 resync_free_pages(&rps[j]); 206 207 out_free_bio: 208 while (++j < conf->raid_disks * 2) { 209 bio_uninit(r1_bio->bios[j]); 210 kfree(r1_bio->bios[j]); 211 } 212 kfree(rps); 213 214 out_free_r1bio: 215 rbio_pool_free(r1_bio, data); 216 return NULL; 217 } 218 219 static void r1buf_pool_free(void *__r1_bio, void *data) 220 { 221 struct r1conf *conf = data; 222 int i; 223 struct r1bio *r1bio = __r1_bio; 224 struct resync_pages *rp = NULL; 225 226 for (i = conf->raid_disks * 2; i--; ) { 227 rp = get_resync_pages(r1bio->bios[i]); 228 resync_free_pages(rp); 229 bio_uninit(r1bio->bios[i]); 230 kfree(r1bio->bios[i]); 231 } 232 233 /* resync pages array stored in the 1st bio's .bi_private */ 234 kfree(rp); 235 236 rbio_pool_free(r1bio, data); 237 } 238 239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 240 { 241 int i; 242 243 for (i = 0; i < conf->raid_disks * 2; i++) { 244 struct bio **bio = r1_bio->bios + i; 245 if (!BIO_SPECIAL(*bio)) 246 bio_put(*bio); 247 *bio = NULL; 248 } 249 } 250 251 static void free_r1bio(struct r1bio *r1_bio) 252 { 253 struct r1conf *conf = r1_bio->mddev->private; 254 255 put_all_bios(conf, r1_bio); 256 mempool_free(r1_bio, conf->r1bio_pool); 257 } 258 259 static void put_buf(struct r1bio *r1_bio) 260 { 261 struct r1conf *conf = r1_bio->mddev->private; 262 sector_t sect = r1_bio->sector; 263 int i; 264 265 for (i = 0; i < conf->raid_disks * 2; i++) { 266 struct bio *bio = r1_bio->bios[i]; 267 if (bio->bi_end_io) 268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 269 } 270 271 mempool_free(r1_bio, &conf->r1buf_pool); 272 273 lower_barrier(conf, sect); 274 } 275 276 static void reschedule_retry(struct r1bio *r1_bio) 277 { 278 unsigned long flags; 279 struct mddev *mddev = r1_bio->mddev; 280 struct r1conf *conf = mddev->private; 281 int idx; 282 283 idx = sector_to_idx(r1_bio->sector); 284 spin_lock_irqsave(&conf->device_lock, flags); 285 list_add(&r1_bio->retry_list, &conf->retry_list); 286 atomic_inc(&conf->nr_queued[idx]); 287 spin_unlock_irqrestore(&conf->device_lock, flags); 288 289 wake_up(&conf->wait_barrier); 290 md_wakeup_thread(mddev->thread); 291 } 292 293 /* 294 * raid_end_bio_io() is called when we have finished servicing a mirrored 295 * operation and are ready to return a success/failure code to the buffer 296 * cache layer. 297 */ 298 static void call_bio_endio(struct r1bio *r1_bio) 299 { 300 struct bio *bio = r1_bio->master_bio; 301 302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 303 bio->bi_status = BLK_STS_IOERR; 304 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 sector_t sector = r1_bio->sector; 313 314 /* if nobody has done the final endio yet, do it now */ 315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 317 (bio_data_dir(bio) == WRITE) ? "write" : "read", 318 (unsigned long long) bio->bi_iter.bi_sector, 319 (unsigned long long) bio_end_sector(bio) - 1); 320 321 call_bio_endio(r1_bio); 322 } 323 324 free_r1bio(r1_bio); 325 /* 326 * Wake up any possible resync thread that waits for the device 327 * to go idle. All I/Os, even write-behind writes, are done. 328 */ 329 allow_barrier(conf, sector); 330 } 331 332 /* 333 * Update disk head position estimator based on IRQ completion info. 334 */ 335 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 336 { 337 struct r1conf *conf = r1_bio->mddev->private; 338 339 conf->mirrors[disk].head_position = 340 r1_bio->sector + (r1_bio->sectors); 341 } 342 343 /* 344 * Find the disk number which triggered given bio 345 */ 346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 347 { 348 int mirror; 349 struct r1conf *conf = r1_bio->mddev->private; 350 int raid_disks = conf->raid_disks; 351 352 for (mirror = 0; mirror < raid_disks * 2; mirror++) 353 if (r1_bio->bios[mirror] == bio) 354 break; 355 356 BUG_ON(mirror == raid_disks * 2); 357 update_head_pos(mirror, r1_bio); 358 359 return mirror; 360 } 361 362 static void raid1_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_status; 365 struct r1bio *r1_bio = bio->bi_private; 366 struct r1conf *conf = r1_bio->mddev->private; 367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 368 369 /* 370 * this branch is our 'one mirror IO has finished' event handler: 371 */ 372 update_head_pos(r1_bio->read_disk, r1_bio); 373 374 if (uptodate) { 375 set_bit(R1BIO_Uptodate, &r1_bio->state); 376 } else if (test_bit(FailFast, &rdev->flags) && 377 test_bit(R1BIO_FailFast, &r1_bio->state)) { 378 /* This was a fail-fast read so we definitely 379 * want to retry */ 380 ; 381 } else if (!raid1_should_handle_error(bio)) { 382 uptodate = 1; 383 } else { 384 /* If all other devices have failed, we want to return 385 * the error upwards rather than fail the last device. 386 * Here we redefine "uptodate" to mean "Don't want to retry" 387 */ 388 unsigned long flags; 389 spin_lock_irqsave(&conf->device_lock, flags); 390 if (r1_bio->mddev->degraded == conf->raid_disks || 391 (r1_bio->mddev->degraded == conf->raid_disks-1 && 392 test_bit(In_sync, &rdev->flags))) 393 uptodate = 1; 394 spin_unlock_irqrestore(&conf->device_lock, flags); 395 } 396 397 if (uptodate) { 398 raid_end_bio_io(r1_bio); 399 rdev_dec_pending(rdev, conf->mddev); 400 } else { 401 /* 402 * oops, read error: 403 */ 404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 405 mdname(conf->mddev), 406 rdev->bdev, 407 (unsigned long long)r1_bio->sector); 408 set_bit(R1BIO_ReadError, &r1_bio->state); 409 reschedule_retry(r1_bio); 410 /* don't drop the reference on read_disk yet */ 411 } 412 } 413 414 static void close_write(struct r1bio *r1_bio) 415 { 416 struct mddev *mddev = r1_bio->mddev; 417 418 /* it really is the end of this request */ 419 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 420 bio_free_pages(r1_bio->behind_master_bio); 421 bio_put(r1_bio->behind_master_bio); 422 r1_bio->behind_master_bio = NULL; 423 } 424 425 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 426 mddev->bitmap_ops->end_behind_write(mddev); 427 md_write_end(mddev); 428 } 429 430 static void r1_bio_write_done(struct r1bio *r1_bio) 431 { 432 if (!atomic_dec_and_test(&r1_bio->remaining)) 433 return; 434 435 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else { 438 close_write(r1_bio); 439 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 440 reschedule_retry(r1_bio); 441 else 442 raid_end_bio_io(r1_bio); 443 } 444 } 445 446 static void raid1_end_write_request(struct bio *bio) 447 { 448 struct r1bio *r1_bio = bio->bi_private; 449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 450 struct r1conf *conf = r1_bio->mddev->private; 451 struct bio *to_put = NULL; 452 int mirror = find_bio_disk(r1_bio, bio); 453 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 454 sector_t lo = r1_bio->sector; 455 sector_t hi = r1_bio->sector + r1_bio->sectors; 456 bool ignore_error = !raid1_should_handle_error(bio) || 457 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD); 458 459 /* 460 * 'one mirror IO has finished' event handler: 461 */ 462 if (bio->bi_status && !ignore_error) { 463 set_bit(WriteErrorSeen, &rdev->flags); 464 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 465 set_bit(MD_RECOVERY_NEEDED, & 466 conf->mddev->recovery); 467 468 if (test_bit(FailFast, &rdev->flags) && 469 (bio->bi_opf & MD_FAILFAST) && 470 /* We never try FailFast to WriteMostly devices */ 471 !test_bit(WriteMostly, &rdev->flags)) { 472 md_error(r1_bio->mddev, rdev); 473 } 474 475 /* 476 * When the device is faulty, it is not necessary to 477 * handle write error. 478 */ 479 if (!test_bit(Faulty, &rdev->flags)) 480 set_bit(R1BIO_WriteError, &r1_bio->state); 481 else { 482 /* Finished with this branch */ 483 r1_bio->bios[mirror] = NULL; 484 to_put = bio; 485 } 486 } else { 487 /* 488 * Set R1BIO_Uptodate in our master bio, so that we 489 * will return a good error code for to the higher 490 * levels even if IO on some other mirrored buffer 491 * fails. 492 * 493 * The 'master' represents the composite IO operation 494 * to user-side. So if something waits for IO, then it 495 * will wait for the 'master' bio. 496 */ 497 r1_bio->bios[mirror] = NULL; 498 to_put = bio; 499 /* 500 * Do not set R1BIO_Uptodate if the current device is 501 * rebuilding or Faulty. This is because we cannot use 502 * such device for properly reading the data back (we could 503 * potentially use it, if the current write would have felt 504 * before rdev->recovery_offset, but for simplicity we don't 505 * check this here. 506 */ 507 if (test_bit(In_sync, &rdev->flags) && 508 !test_bit(Faulty, &rdev->flags)) 509 set_bit(R1BIO_Uptodate, &r1_bio->state); 510 511 /* Maybe we can clear some bad blocks. */ 512 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 513 !ignore_error) { 514 r1_bio->bios[mirror] = IO_MADE_GOOD; 515 set_bit(R1BIO_MadeGood, &r1_bio->state); 516 } 517 } 518 519 if (behind) { 520 if (test_bit(CollisionCheck, &rdev->flags)) 521 remove_serial(rdev, lo, hi); 522 if (test_bit(WriteMostly, &rdev->flags)) 523 atomic_dec(&r1_bio->behind_remaining); 524 525 /* 526 * In behind mode, we ACK the master bio once the I/O 527 * has safely reached all non-writemostly 528 * disks. Setting the Returned bit ensures that this 529 * gets done only once -- we don't ever want to return 530 * -EIO here, instead we'll wait 531 */ 532 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 533 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 534 /* Maybe we can return now */ 535 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 536 struct bio *mbio = r1_bio->master_bio; 537 pr_debug("raid1: behind end write sectors" 538 " %llu-%llu\n", 539 (unsigned long long) mbio->bi_iter.bi_sector, 540 (unsigned long long) bio_end_sector(mbio) - 1); 541 call_bio_endio(r1_bio); 542 } 543 } 544 } else if (test_bit(MD_SERIALIZE_POLICY, &rdev->mddev->flags)) 545 remove_serial(rdev, lo, hi); 546 if (r1_bio->bios[mirror] == NULL) 547 rdev_dec_pending(rdev, conf->mddev); 548 549 /* 550 * Let's see if all mirrored write operations have finished 551 * already. 552 */ 553 r1_bio_write_done(r1_bio); 554 555 if (to_put) 556 bio_put(to_put); 557 } 558 559 static sector_t align_to_barrier_unit_end(sector_t start_sector, 560 sector_t sectors) 561 { 562 sector_t len; 563 564 WARN_ON(sectors == 0); 565 /* 566 * len is the number of sectors from start_sector to end of the 567 * barrier unit which start_sector belongs to. 568 */ 569 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 570 start_sector; 571 572 if (len > sectors) 573 len = sectors; 574 575 return len; 576 } 577 578 static void update_read_sectors(struct r1conf *conf, int disk, 579 sector_t this_sector, int len) 580 { 581 struct raid1_info *info = &conf->mirrors[disk]; 582 583 atomic_inc(&info->rdev->nr_pending); 584 if (info->next_seq_sect != this_sector) 585 info->seq_start = this_sector; 586 info->next_seq_sect = this_sector + len; 587 } 588 589 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 590 int *max_sectors) 591 { 592 sector_t this_sector = r1_bio->sector; 593 int len = r1_bio->sectors; 594 int disk; 595 596 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 597 struct md_rdev *rdev; 598 int read_len; 599 600 if (r1_bio->bios[disk] == IO_BLOCKED) 601 continue; 602 603 rdev = conf->mirrors[disk].rdev; 604 if (!rdev || test_bit(Faulty, &rdev->flags)) 605 continue; 606 607 /* choose the first disk even if it has some bad blocks. */ 608 read_len = raid1_check_read_range(rdev, this_sector, &len); 609 if (read_len > 0) { 610 update_read_sectors(conf, disk, this_sector, read_len); 611 *max_sectors = read_len; 612 return disk; 613 } 614 } 615 616 return -1; 617 } 618 619 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) 620 { 621 return !test_bit(In_sync, &rdev->flags) && 622 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; 623 } 624 625 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 626 int *max_sectors) 627 { 628 sector_t this_sector = r1_bio->sector; 629 int best_disk = -1; 630 int best_len = 0; 631 int disk; 632 633 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 634 struct md_rdev *rdev; 635 int len; 636 int read_len; 637 638 if (r1_bio->bios[disk] == IO_BLOCKED) 639 continue; 640 641 rdev = conf->mirrors[disk].rdev; 642 if (!rdev || test_bit(Faulty, &rdev->flags) || 643 rdev_in_recovery(rdev, r1_bio) || 644 test_bit(WriteMostly, &rdev->flags)) 645 continue; 646 647 /* keep track of the disk with the most readable sectors. */ 648 len = r1_bio->sectors; 649 read_len = raid1_check_read_range(rdev, this_sector, &len); 650 if (read_len > best_len) { 651 best_disk = disk; 652 best_len = read_len; 653 } 654 } 655 656 if (best_disk != -1) { 657 *max_sectors = best_len; 658 update_read_sectors(conf, best_disk, this_sector, best_len); 659 } 660 661 return best_disk; 662 } 663 664 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 665 int *max_sectors) 666 { 667 sector_t this_sector = r1_bio->sector; 668 int bb_disk = -1; 669 int bb_read_len = 0; 670 int disk; 671 672 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 673 struct md_rdev *rdev; 674 int len; 675 int read_len; 676 677 if (r1_bio->bios[disk] == IO_BLOCKED) 678 continue; 679 680 rdev = conf->mirrors[disk].rdev; 681 if (!rdev || test_bit(Faulty, &rdev->flags) || 682 !test_bit(WriteMostly, &rdev->flags) || 683 rdev_in_recovery(rdev, r1_bio)) 684 continue; 685 686 /* there are no bad blocks, we can use this disk */ 687 len = r1_bio->sectors; 688 read_len = raid1_check_read_range(rdev, this_sector, &len); 689 if (read_len == r1_bio->sectors) { 690 *max_sectors = read_len; 691 update_read_sectors(conf, disk, this_sector, read_len); 692 return disk; 693 } 694 695 /* 696 * there are partial bad blocks, choose the rdev with largest 697 * read length. 698 */ 699 if (read_len > bb_read_len) { 700 bb_disk = disk; 701 bb_read_len = read_len; 702 } 703 } 704 705 if (bb_disk != -1) { 706 *max_sectors = bb_read_len; 707 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 708 } 709 710 return bb_disk; 711 } 712 713 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 714 { 715 /* TODO: address issues with this check and concurrency. */ 716 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 717 conf->mirrors[disk].head_position == r1_bio->sector; 718 } 719 720 /* 721 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 722 * disk. If yes, choose the idle disk. 723 */ 724 static bool should_choose_next(struct r1conf *conf, int disk) 725 { 726 struct raid1_info *mirror = &conf->mirrors[disk]; 727 int opt_iosize; 728 729 if (!test_bit(Nonrot, &mirror->rdev->flags)) 730 return false; 731 732 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 733 return opt_iosize > 0 && mirror->seq_start != MaxSector && 734 mirror->next_seq_sect > opt_iosize && 735 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 736 } 737 738 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 739 { 740 if (!rdev || test_bit(Faulty, &rdev->flags)) 741 return false; 742 743 if (rdev_in_recovery(rdev, r1_bio)) 744 return false; 745 746 /* don't read from slow disk unless have to */ 747 if (test_bit(WriteMostly, &rdev->flags)) 748 return false; 749 750 /* don't split IO for bad blocks unless have to */ 751 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 752 return false; 753 754 return true; 755 } 756 757 struct read_balance_ctl { 758 sector_t closest_dist; 759 int closest_dist_disk; 760 int min_pending; 761 int min_pending_disk; 762 int sequential_disk; 763 int readable_disks; 764 }; 765 766 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 767 { 768 int disk; 769 struct read_balance_ctl ctl = { 770 .closest_dist_disk = -1, 771 .closest_dist = MaxSector, 772 .min_pending_disk = -1, 773 .min_pending = UINT_MAX, 774 .sequential_disk = -1, 775 }; 776 777 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 778 struct md_rdev *rdev; 779 sector_t dist; 780 unsigned int pending; 781 782 if (r1_bio->bios[disk] == IO_BLOCKED) 783 continue; 784 785 rdev = conf->mirrors[disk].rdev; 786 if (!rdev_readable(rdev, r1_bio)) 787 continue; 788 789 /* At least two disks to choose from so failfast is OK */ 790 if (ctl.readable_disks++ == 1) 791 set_bit(R1BIO_FailFast, &r1_bio->state); 792 793 pending = atomic_read(&rdev->nr_pending); 794 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 795 796 /* Don't change to another disk for sequential reads */ 797 if (is_sequential(conf, disk, r1_bio)) { 798 if (!should_choose_next(conf, disk)) 799 return disk; 800 801 /* 802 * Add 'pending' to avoid choosing this disk if 803 * there is other idle disk. 804 */ 805 pending++; 806 /* 807 * If there is no other idle disk, this disk 808 * will be chosen. 809 */ 810 ctl.sequential_disk = disk; 811 } 812 813 if (ctl.min_pending > pending) { 814 ctl.min_pending = pending; 815 ctl.min_pending_disk = disk; 816 } 817 818 if (ctl.closest_dist > dist) { 819 ctl.closest_dist = dist; 820 ctl.closest_dist_disk = disk; 821 } 822 } 823 824 /* 825 * sequential IO size exceeds optimal iosize, however, there is no other 826 * idle disk, so choose the sequential disk. 827 */ 828 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 829 return ctl.sequential_disk; 830 831 /* 832 * If all disks are rotational, choose the closest disk. If any disk is 833 * non-rotational, choose the disk with less pending request even the 834 * disk is rotational, which might/might not be optimal for raids with 835 * mixed ratation/non-rotational disks depending on workload. 836 */ 837 if (ctl.min_pending_disk != -1 && 838 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 839 return ctl.min_pending_disk; 840 else 841 return ctl.closest_dist_disk; 842 } 843 844 /* 845 * This routine returns the disk from which the requested read should be done. 846 * 847 * 1) If resync is in progress, find the first usable disk and use it even if it 848 * has some bad blocks. 849 * 850 * 2) Now that there is no resync, loop through all disks and skipping slow 851 * disks and disks with bad blocks for now. Only pay attention to key disk 852 * choice. 853 * 854 * 3) If we've made it this far, now look for disks with bad blocks and choose 855 * the one with most number of sectors. 856 * 857 * 4) If we are all the way at the end, we have no choice but to use a disk even 858 * if it is write mostly. 859 * 860 * The rdev for the device selected will have nr_pending incremented. 861 */ 862 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 863 int *max_sectors) 864 { 865 int disk; 866 867 clear_bit(R1BIO_FailFast, &r1_bio->state); 868 869 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 870 r1_bio->sectors)) 871 return choose_first_rdev(conf, r1_bio, max_sectors); 872 873 disk = choose_best_rdev(conf, r1_bio); 874 if (disk >= 0) { 875 *max_sectors = r1_bio->sectors; 876 update_read_sectors(conf, disk, r1_bio->sector, 877 r1_bio->sectors); 878 return disk; 879 } 880 881 /* 882 * If we are here it means we didn't find a perfectly good disk so 883 * now spend a bit more time trying to find one with the most good 884 * sectors. 885 */ 886 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 887 if (disk >= 0) 888 return disk; 889 890 return choose_slow_rdev(conf, r1_bio, max_sectors); 891 } 892 893 static void wake_up_barrier(struct r1conf *conf) 894 { 895 if (wq_has_sleeper(&conf->wait_barrier)) 896 wake_up(&conf->wait_barrier); 897 } 898 899 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 900 { 901 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 902 raid1_prepare_flush_writes(conf->mddev); 903 wake_up_barrier(conf); 904 905 while (bio) { /* submit pending writes */ 906 struct bio *next = bio->bi_next; 907 908 raid1_submit_write(bio); 909 bio = next; 910 cond_resched(); 911 } 912 } 913 914 static void flush_pending_writes(struct r1conf *conf) 915 { 916 /* Any writes that have been queued but are awaiting 917 * bitmap updates get flushed here. 918 */ 919 spin_lock_irq(&conf->device_lock); 920 921 if (conf->pending_bio_list.head) { 922 struct blk_plug plug; 923 struct bio *bio; 924 925 bio = bio_list_get(&conf->pending_bio_list); 926 spin_unlock_irq(&conf->device_lock); 927 928 /* 929 * As this is called in a wait_event() loop (see freeze_array), 930 * current->state might be TASK_UNINTERRUPTIBLE which will 931 * cause a warning when we prepare to wait again. As it is 932 * rare that this path is taken, it is perfectly safe to force 933 * us to go around the wait_event() loop again, so the warning 934 * is a false-positive. Silence the warning by resetting 935 * thread state 936 */ 937 __set_current_state(TASK_RUNNING); 938 blk_start_plug(&plug); 939 flush_bio_list(conf, bio); 940 blk_finish_plug(&plug); 941 } else 942 spin_unlock_irq(&conf->device_lock); 943 } 944 945 /* Barriers.... 946 * Sometimes we need to suspend IO while we do something else, 947 * either some resync/recovery, or reconfigure the array. 948 * To do this we raise a 'barrier'. 949 * The 'barrier' is a counter that can be raised multiple times 950 * to count how many activities are happening which preclude 951 * normal IO. 952 * We can only raise the barrier if there is no pending IO. 953 * i.e. if nr_pending == 0. 954 * We choose only to raise the barrier if no-one is waiting for the 955 * barrier to go down. This means that as soon as an IO request 956 * is ready, no other operations which require a barrier will start 957 * until the IO request has had a chance. 958 * 959 * So: regular IO calls 'wait_barrier'. When that returns there 960 * is no backgroup IO happening, It must arrange to call 961 * allow_barrier when it has finished its IO. 962 * backgroup IO calls must call raise_barrier. Once that returns 963 * there is no normal IO happeing. It must arrange to call 964 * lower_barrier when the particular background IO completes. 965 * 966 * If resync/recovery is interrupted, returns -EINTR; 967 * Otherwise, returns 0. 968 */ 969 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 970 { 971 int idx = sector_to_idx(sector_nr); 972 973 spin_lock_irq(&conf->resync_lock); 974 975 /* Wait until no block IO is waiting */ 976 wait_event_lock_irq(conf->wait_barrier, 977 !atomic_read(&conf->nr_waiting[idx]), 978 conf->resync_lock); 979 980 /* block any new IO from starting */ 981 atomic_inc(&conf->barrier[idx]); 982 /* 983 * In raise_barrier() we firstly increase conf->barrier[idx] then 984 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 985 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 986 * A memory barrier here to make sure conf->nr_pending[idx] won't 987 * be fetched before conf->barrier[idx] is increased. Otherwise 988 * there will be a race between raise_barrier() and _wait_barrier(). 989 */ 990 smp_mb__after_atomic(); 991 992 /* For these conditions we must wait: 993 * A: while the array is in frozen state 994 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 995 * existing in corresponding I/O barrier bucket. 996 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 997 * max resync count which allowed on current I/O barrier bucket. 998 */ 999 wait_event_lock_irq(conf->wait_barrier, 1000 (!conf->array_frozen && 1001 !atomic_read(&conf->nr_pending[idx]) && 1002 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 1003 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 1004 conf->resync_lock); 1005 1006 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1007 atomic_dec(&conf->barrier[idx]); 1008 spin_unlock_irq(&conf->resync_lock); 1009 wake_up(&conf->wait_barrier); 1010 return -EINTR; 1011 } 1012 1013 atomic_inc(&conf->nr_sync_pending); 1014 spin_unlock_irq(&conf->resync_lock); 1015 1016 return 0; 1017 } 1018 1019 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1020 { 1021 int idx = sector_to_idx(sector_nr); 1022 1023 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1024 1025 atomic_dec(&conf->barrier[idx]); 1026 atomic_dec(&conf->nr_sync_pending); 1027 wake_up(&conf->wait_barrier); 1028 } 1029 1030 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1031 { 1032 bool ret = true; 1033 1034 /* 1035 * We need to increase conf->nr_pending[idx] very early here, 1036 * then raise_barrier() can be blocked when it waits for 1037 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1038 * conf->resync_lock when there is no barrier raised in same 1039 * barrier unit bucket. Also if the array is frozen, I/O 1040 * should be blocked until array is unfrozen. 1041 */ 1042 atomic_inc(&conf->nr_pending[idx]); 1043 /* 1044 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1045 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1046 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1047 * barrier is necessary here to make sure conf->barrier[idx] won't be 1048 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1049 * will be a race between _wait_barrier() and raise_barrier(). 1050 */ 1051 smp_mb__after_atomic(); 1052 1053 /* 1054 * Don't worry about checking two atomic_t variables at same time 1055 * here. If during we check conf->barrier[idx], the array is 1056 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1057 * 0, it is safe to return and make the I/O continue. Because the 1058 * array is frozen, all I/O returned here will eventually complete 1059 * or be queued, no race will happen. See code comment in 1060 * frozen_array(). 1061 */ 1062 if (!READ_ONCE(conf->array_frozen) && 1063 !atomic_read(&conf->barrier[idx])) 1064 return ret; 1065 1066 /* 1067 * After holding conf->resync_lock, conf->nr_pending[idx] 1068 * should be decreased before waiting for barrier to drop. 1069 * Otherwise, we may encounter a race condition because 1070 * raise_barrer() might be waiting for conf->nr_pending[idx] 1071 * to be 0 at same time. 1072 */ 1073 spin_lock_irq(&conf->resync_lock); 1074 atomic_inc(&conf->nr_waiting[idx]); 1075 atomic_dec(&conf->nr_pending[idx]); 1076 /* 1077 * In case freeze_array() is waiting for 1078 * get_unqueued_pending() == extra 1079 */ 1080 wake_up_barrier(conf); 1081 /* Wait for the barrier in same barrier unit bucket to drop. */ 1082 1083 /* Return false when nowait flag is set */ 1084 if (nowait) { 1085 ret = false; 1086 } else { 1087 wait_event_lock_irq(conf->wait_barrier, 1088 !conf->array_frozen && 1089 !atomic_read(&conf->barrier[idx]), 1090 conf->resync_lock); 1091 atomic_inc(&conf->nr_pending[idx]); 1092 } 1093 1094 atomic_dec(&conf->nr_waiting[idx]); 1095 spin_unlock_irq(&conf->resync_lock); 1096 return ret; 1097 } 1098 1099 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1100 { 1101 int idx = sector_to_idx(sector_nr); 1102 bool ret = true; 1103 1104 /* 1105 * Very similar to _wait_barrier(). The difference is, for read 1106 * I/O we don't need wait for sync I/O, but if the whole array 1107 * is frozen, the read I/O still has to wait until the array is 1108 * unfrozen. Since there is no ordering requirement with 1109 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1110 */ 1111 atomic_inc(&conf->nr_pending[idx]); 1112 1113 if (!READ_ONCE(conf->array_frozen)) 1114 return ret; 1115 1116 spin_lock_irq(&conf->resync_lock); 1117 atomic_inc(&conf->nr_waiting[idx]); 1118 atomic_dec(&conf->nr_pending[idx]); 1119 /* 1120 * In case freeze_array() is waiting for 1121 * get_unqueued_pending() == extra 1122 */ 1123 wake_up_barrier(conf); 1124 /* Wait for array to be unfrozen */ 1125 1126 /* Return false when nowait flag is set */ 1127 if (nowait) { 1128 /* Return false when nowait flag is set */ 1129 ret = false; 1130 } else { 1131 wait_event_lock_irq(conf->wait_barrier, 1132 !conf->array_frozen, 1133 conf->resync_lock); 1134 atomic_inc(&conf->nr_pending[idx]); 1135 } 1136 1137 atomic_dec(&conf->nr_waiting[idx]); 1138 spin_unlock_irq(&conf->resync_lock); 1139 return ret; 1140 } 1141 1142 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1143 { 1144 int idx = sector_to_idx(sector_nr); 1145 1146 return _wait_barrier(conf, idx, nowait); 1147 } 1148 1149 static void _allow_barrier(struct r1conf *conf, int idx) 1150 { 1151 atomic_dec(&conf->nr_pending[idx]); 1152 wake_up_barrier(conf); 1153 } 1154 1155 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1156 { 1157 int idx = sector_to_idx(sector_nr); 1158 1159 _allow_barrier(conf, idx); 1160 } 1161 1162 /* conf->resync_lock should be held */ 1163 static int get_unqueued_pending(struct r1conf *conf) 1164 { 1165 int idx, ret; 1166 1167 ret = atomic_read(&conf->nr_sync_pending); 1168 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1169 ret += atomic_read(&conf->nr_pending[idx]) - 1170 atomic_read(&conf->nr_queued[idx]); 1171 1172 return ret; 1173 } 1174 1175 static void freeze_array(struct r1conf *conf, int extra) 1176 { 1177 /* Stop sync I/O and normal I/O and wait for everything to 1178 * go quiet. 1179 * This is called in two situations: 1180 * 1) management command handlers (reshape, remove disk, quiesce). 1181 * 2) one normal I/O request failed. 1182 1183 * After array_frozen is set to 1, new sync IO will be blocked at 1184 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1185 * or wait_read_barrier(). The flying I/Os will either complete or be 1186 * queued. When everything goes quite, there are only queued I/Os left. 1187 1188 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1189 * barrier bucket index which this I/O request hits. When all sync and 1190 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1191 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1192 * in handle_read_error(), we may call freeze_array() before trying to 1193 * fix the read error. In this case, the error read I/O is not queued, 1194 * so get_unqueued_pending() == 1. 1195 * 1196 * Therefore before this function returns, we need to wait until 1197 * get_unqueued_pendings(conf) gets equal to extra. For 1198 * normal I/O context, extra is 1, in rested situations extra is 0. 1199 */ 1200 spin_lock_irq(&conf->resync_lock); 1201 conf->array_frozen = 1; 1202 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1203 wait_event_lock_irq_cmd( 1204 conf->wait_barrier, 1205 get_unqueued_pending(conf) == extra, 1206 conf->resync_lock, 1207 flush_pending_writes(conf)); 1208 spin_unlock_irq(&conf->resync_lock); 1209 } 1210 static void unfreeze_array(struct r1conf *conf) 1211 { 1212 /* reverse the effect of the freeze */ 1213 spin_lock_irq(&conf->resync_lock); 1214 conf->array_frozen = 0; 1215 spin_unlock_irq(&conf->resync_lock); 1216 wake_up(&conf->wait_barrier); 1217 } 1218 1219 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1220 struct bio *bio) 1221 { 1222 int size = bio->bi_iter.bi_size; 1223 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1224 int i = 0; 1225 struct bio *behind_bio = NULL; 1226 1227 behind_bio = bio_alloc_bioset(NULL, vcnt, bio->bi_opf, GFP_NOIO, 1228 &r1_bio->mddev->bio_set); 1229 1230 /* discard op, we don't support writezero/writesame yet */ 1231 if (!bio_has_data(bio)) { 1232 behind_bio->bi_iter.bi_size = size; 1233 goto skip_copy; 1234 } 1235 1236 while (i < vcnt && size) { 1237 struct page *page; 1238 int len = min_t(int, PAGE_SIZE, size); 1239 1240 page = alloc_page(GFP_NOIO); 1241 if (unlikely(!page)) 1242 goto free_pages; 1243 1244 if (!bio_add_page(behind_bio, page, len, 0)) { 1245 put_page(page); 1246 goto free_pages; 1247 } 1248 1249 size -= len; 1250 i++; 1251 } 1252 1253 bio_copy_data(behind_bio, bio); 1254 skip_copy: 1255 r1_bio->behind_master_bio = behind_bio; 1256 set_bit(R1BIO_BehindIO, &r1_bio->state); 1257 1258 return; 1259 1260 free_pages: 1261 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1262 bio->bi_iter.bi_size); 1263 bio_free_pages(behind_bio); 1264 bio_put(behind_bio); 1265 } 1266 1267 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1268 { 1269 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1270 cb); 1271 struct mddev *mddev = plug->cb.data; 1272 struct r1conf *conf = mddev->private; 1273 struct bio *bio; 1274 1275 if (from_schedule) { 1276 spin_lock_irq(&conf->device_lock); 1277 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1278 spin_unlock_irq(&conf->device_lock); 1279 wake_up_barrier(conf); 1280 md_wakeup_thread(mddev->thread); 1281 kfree(plug); 1282 return; 1283 } 1284 1285 /* we aren't scheduling, so we can do the write-out directly. */ 1286 bio = bio_list_get(&plug->pending); 1287 flush_bio_list(conf, bio); 1288 kfree(plug); 1289 } 1290 1291 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1292 { 1293 r1_bio->master_bio = bio; 1294 r1_bio->sectors = bio_sectors(bio); 1295 r1_bio->state = 0; 1296 r1_bio->mddev = mddev; 1297 r1_bio->sector = bio->bi_iter.bi_sector; 1298 } 1299 1300 static inline struct r1bio * 1301 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1302 { 1303 struct r1conf *conf = mddev->private; 1304 struct r1bio *r1_bio; 1305 1306 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1307 memset(r1_bio, 0, offsetof(struct r1bio, bios[conf->raid_disks * 2])); 1308 init_r1bio(r1_bio, mddev, bio); 1309 return r1_bio; 1310 } 1311 1312 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1313 int max_read_sectors, struct r1bio *r1_bio) 1314 { 1315 struct r1conf *conf = mddev->private; 1316 struct raid1_info *mirror; 1317 struct bio *read_bio; 1318 int max_sectors; 1319 int rdisk; 1320 bool r1bio_existed = !!r1_bio; 1321 1322 /* 1323 * If r1_bio is set, we are blocking the raid1d thread 1324 * so there is a tiny risk of deadlock. So ask for 1325 * emergency memory if needed. 1326 */ 1327 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1328 1329 /* 1330 * Still need barrier for READ in case that whole 1331 * array is frozen. 1332 */ 1333 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1334 bio->bi_opf & REQ_NOWAIT)) { 1335 bio_wouldblock_error(bio); 1336 return; 1337 } 1338 1339 if (!r1_bio) 1340 r1_bio = alloc_r1bio(mddev, bio); 1341 else 1342 init_r1bio(r1_bio, mddev, bio); 1343 r1_bio->sectors = max_read_sectors; 1344 1345 /* 1346 * make_request() can abort the operation when read-ahead is being 1347 * used and no empty request is available. 1348 */ 1349 rdisk = read_balance(conf, r1_bio, &max_sectors); 1350 if (rdisk < 0) { 1351 /* couldn't find anywhere to read from */ 1352 if (r1bio_existed) 1353 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 1354 mdname(mddev), 1355 conf->mirrors[r1_bio->read_disk].rdev->bdev, 1356 r1_bio->sector); 1357 raid_end_bio_io(r1_bio); 1358 return; 1359 } 1360 mirror = conf->mirrors + rdisk; 1361 1362 if (r1bio_existed) 1363 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1364 mdname(mddev), 1365 (unsigned long long)r1_bio->sector, 1366 mirror->rdev->bdev); 1367 1368 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1369 md_bitmap_enabled(mddev, false)) { 1370 /* 1371 * Reading from a write-mostly device must take care not to 1372 * over-take any writes that are 'behind' 1373 */ 1374 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1375 mddev->bitmap_ops->wait_behind_writes(mddev); 1376 } 1377 1378 if (max_sectors < bio_sectors(bio)) { 1379 bio = bio_submit_split_bioset(bio, max_sectors, 1380 &conf->bio_split); 1381 if (!bio) { 1382 set_bit(R1BIO_Returned, &r1_bio->state); 1383 goto err_handle; 1384 } 1385 1386 r1_bio->master_bio = bio; 1387 r1_bio->sectors = max_sectors; 1388 } 1389 1390 r1_bio->read_disk = rdisk; 1391 if (!r1bio_existed) { 1392 md_account_bio(mddev, &bio); 1393 r1_bio->master_bio = bio; 1394 } 1395 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1396 &mddev->bio_set); 1397 read_bio->bi_opf &= ~REQ_NOWAIT; 1398 r1_bio->bios[rdisk] = read_bio; 1399 1400 read_bio->bi_iter.bi_sector = r1_bio->sector + 1401 mirror->rdev->data_offset; 1402 read_bio->bi_end_io = raid1_end_read_request; 1403 if (test_bit(FailFast, &mirror->rdev->flags) && 1404 test_bit(R1BIO_FailFast, &r1_bio->state)) 1405 read_bio->bi_opf |= MD_FAILFAST; 1406 read_bio->bi_private = r1_bio; 1407 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1408 submit_bio_noacct(read_bio); 1409 return; 1410 1411 err_handle: 1412 atomic_dec(&mirror->rdev->nr_pending); 1413 raid_end_bio_io(r1_bio); 1414 } 1415 1416 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio) 1417 { 1418 struct r1conf *conf = mddev->private; 1419 int disks = conf->raid_disks * 2; 1420 int i; 1421 1422 retry: 1423 for (i = 0; i < disks; i++) { 1424 struct md_rdev *rdev = conf->mirrors[i].rdev; 1425 1426 if (!rdev) 1427 continue; 1428 1429 /* don't write here until the bad block is acknowledged */ 1430 if (test_bit(WriteErrorSeen, &rdev->flags) && 1431 rdev_has_badblock(rdev, bio->bi_iter.bi_sector, 1432 bio_sectors(bio)) < 0) 1433 set_bit(BlockedBadBlocks, &rdev->flags); 1434 1435 if (rdev_blocked(rdev)) { 1436 if (bio->bi_opf & REQ_NOWAIT) 1437 return false; 1438 1439 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked", 1440 rdev->raid_disk); 1441 atomic_inc(&rdev->nr_pending); 1442 md_wait_for_blocked_rdev(rdev, rdev->mddev); 1443 goto retry; 1444 } 1445 } 1446 1447 return true; 1448 } 1449 1450 static void raid1_start_write_behind(struct mddev *mddev, struct r1bio *r1_bio, 1451 struct bio *bio) 1452 { 1453 unsigned long max_write_behind = mddev->bitmap_info.max_write_behind; 1454 struct md_bitmap_stats stats; 1455 int err; 1456 1457 /* behind write rely on bitmap, see bitmap_operations */ 1458 if (!md_bitmap_enabled(mddev, false)) 1459 return; 1460 1461 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1462 if (err) 1463 return; 1464 1465 /* Don't do behind IO if reader is waiting, or there are too many. */ 1466 if (!stats.behind_wait && stats.behind_writes < max_write_behind) 1467 alloc_behind_master_bio(r1_bio, bio); 1468 1469 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 1470 mddev->bitmap_ops->start_behind_write(mddev); 1471 1472 } 1473 1474 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1475 int max_write_sectors) 1476 { 1477 struct r1conf *conf = mddev->private; 1478 struct r1bio *r1_bio; 1479 int i, disks, k; 1480 unsigned long flags; 1481 int first_clone; 1482 int max_sectors; 1483 bool write_behind = false; 1484 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1485 1486 if (mddev_is_clustered(mddev) && 1487 mddev->cluster_ops->area_resyncing(mddev, WRITE, 1488 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1489 1490 DEFINE_WAIT(w); 1491 if (bio->bi_opf & REQ_NOWAIT) { 1492 bio_wouldblock_error(bio); 1493 return; 1494 } 1495 for (;;) { 1496 prepare_to_wait(&conf->wait_barrier, 1497 &w, TASK_IDLE); 1498 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE, 1499 bio->bi_iter.bi_sector, 1500 bio_end_sector(bio))) 1501 break; 1502 schedule(); 1503 } 1504 finish_wait(&conf->wait_barrier, &w); 1505 } 1506 1507 /* 1508 * Register the new request and wait if the reconstruction 1509 * thread has put up a bar for new requests. 1510 * Continue immediately if no resync is active currently. 1511 */ 1512 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1513 bio->bi_opf & REQ_NOWAIT)) { 1514 bio_wouldblock_error(bio); 1515 return; 1516 } 1517 1518 if (!wait_blocked_rdev(mddev, bio)) { 1519 bio_wouldblock_error(bio); 1520 return; 1521 } 1522 1523 r1_bio = alloc_r1bio(mddev, bio); 1524 r1_bio->sectors = max_write_sectors; 1525 1526 /* first select target devices under rcu_lock and 1527 * inc refcount on their rdev. Record them by setting 1528 * bios[x] to bio 1529 * If there are known/acknowledged bad blocks on any device on 1530 * which we have seen a write error, we want to avoid writing those 1531 * blocks. 1532 * This potentially requires several writes to write around 1533 * the bad blocks. Each set of writes gets it's own r1bio 1534 * with a set of bios attached. 1535 */ 1536 1537 disks = conf->raid_disks * 2; 1538 max_sectors = r1_bio->sectors; 1539 for (i = 0; i < disks; i++) { 1540 struct md_rdev *rdev = conf->mirrors[i].rdev; 1541 1542 /* 1543 * The write-behind io is only attempted on drives marked as 1544 * write-mostly, which means we could allocate write behind 1545 * bio later. 1546 */ 1547 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1548 write_behind = true; 1549 1550 r1_bio->bios[i] = NULL; 1551 if (!rdev || test_bit(Faulty, &rdev->flags)) 1552 continue; 1553 1554 atomic_inc(&rdev->nr_pending); 1555 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1556 sector_t first_bad; 1557 sector_t bad_sectors; 1558 int is_bad; 1559 1560 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1561 &first_bad, &bad_sectors); 1562 if (is_bad && first_bad <= r1_bio->sector) { 1563 /* Cannot write here at all */ 1564 bad_sectors -= (r1_bio->sector - first_bad); 1565 if (bad_sectors < max_sectors) 1566 /* mustn't write more than bad_sectors 1567 * to other devices yet 1568 */ 1569 max_sectors = bad_sectors; 1570 rdev_dec_pending(rdev, mddev); 1571 continue; 1572 } 1573 if (is_bad) { 1574 int good_sectors; 1575 1576 /* 1577 * We cannot atomically write this, so just 1578 * error in that case. It could be possible to 1579 * atomically write other mirrors, but the 1580 * complexity of supporting that is not worth 1581 * the benefit. 1582 */ 1583 if (bio->bi_opf & REQ_ATOMIC) 1584 goto err_handle; 1585 1586 good_sectors = first_bad - r1_bio->sector; 1587 if (good_sectors < max_sectors) 1588 max_sectors = good_sectors; 1589 } 1590 } 1591 r1_bio->bios[i] = bio; 1592 } 1593 1594 /* 1595 * When using a bitmap, we may call alloc_behind_master_bio below. 1596 * alloc_behind_master_bio allocates a copy of the data payload a page 1597 * at a time and thus needs a new bio that can fit the whole payload 1598 * this bio in page sized chunks. 1599 */ 1600 if (write_behind && mddev->bitmap) 1601 max_sectors = min_t(int, max_sectors, 1602 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1603 if (max_sectors < bio_sectors(bio)) { 1604 bio = bio_submit_split_bioset(bio, max_sectors, 1605 &conf->bio_split); 1606 if (!bio) { 1607 set_bit(R1BIO_Returned, &r1_bio->state); 1608 goto err_handle; 1609 } 1610 1611 r1_bio->master_bio = bio; 1612 r1_bio->sectors = max_sectors; 1613 } 1614 1615 md_account_bio(mddev, &bio); 1616 r1_bio->master_bio = bio; 1617 atomic_set(&r1_bio->remaining, 1); 1618 atomic_set(&r1_bio->behind_remaining, 0); 1619 1620 first_clone = 1; 1621 1622 for (i = 0; i < disks; i++) { 1623 struct bio *mbio = NULL; 1624 struct md_rdev *rdev = conf->mirrors[i].rdev; 1625 if (!r1_bio->bios[i]) 1626 continue; 1627 1628 if (first_clone) { 1629 if (write_behind) 1630 raid1_start_write_behind(mddev, r1_bio, bio); 1631 first_clone = 0; 1632 } 1633 1634 if (r1_bio->behind_master_bio) { 1635 mbio = bio_alloc_clone(rdev->bdev, 1636 r1_bio->behind_master_bio, 1637 GFP_NOIO, &mddev->bio_set); 1638 if (test_bit(CollisionCheck, &rdev->flags)) 1639 wait_for_serialization(rdev, r1_bio); 1640 if (test_bit(WriteMostly, &rdev->flags)) 1641 atomic_inc(&r1_bio->behind_remaining); 1642 } else { 1643 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1644 &mddev->bio_set); 1645 1646 if (test_bit(MD_SERIALIZE_POLICY, &mddev->flags)) 1647 wait_for_serialization(rdev, r1_bio); 1648 } 1649 1650 mbio->bi_opf &= ~REQ_NOWAIT; 1651 r1_bio->bios[i] = mbio; 1652 1653 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1654 mbio->bi_end_io = raid1_end_write_request; 1655 if (test_bit(FailFast, &rdev->flags) && 1656 !test_bit(WriteMostly, &rdev->flags) && 1657 conf->raid_disks - mddev->degraded > 1) 1658 mbio->bi_opf |= MD_FAILFAST; 1659 mbio->bi_private = r1_bio; 1660 1661 atomic_inc(&r1_bio->remaining); 1662 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1663 /* flush_pending_writes() needs access to the rdev so...*/ 1664 mbio->bi_bdev = (void *)rdev; 1665 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 bio_list_add(&conf->pending_bio_list, mbio); 1668 spin_unlock_irqrestore(&conf->device_lock, flags); 1669 md_wakeup_thread(mddev->thread); 1670 } 1671 } 1672 1673 r1_bio_write_done(r1_bio); 1674 1675 /* In case raid1d snuck in to freeze_array */ 1676 wake_up_barrier(conf); 1677 return; 1678 err_handle: 1679 for (k = 0; k < i; k++) { 1680 if (r1_bio->bios[k]) { 1681 rdev_dec_pending(conf->mirrors[k].rdev, mddev); 1682 r1_bio->bios[k] = NULL; 1683 } 1684 } 1685 1686 raid_end_bio_io(r1_bio); 1687 } 1688 1689 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1690 { 1691 sector_t sectors; 1692 1693 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1694 && md_flush_request(mddev, bio)) 1695 return true; 1696 1697 /* 1698 * There is a limit to the maximum size, but 1699 * the read/write handler might find a lower limit 1700 * due to bad blocks. To avoid multiple splits, 1701 * we pass the maximum number of sectors down 1702 * and let the lower level perform the split. 1703 */ 1704 sectors = align_to_barrier_unit_end( 1705 bio->bi_iter.bi_sector, bio_sectors(bio)); 1706 1707 if (bio_data_dir(bio) == READ) 1708 raid1_read_request(mddev, bio, sectors, NULL); 1709 else { 1710 md_write_start(mddev,bio); 1711 raid1_write_request(mddev, bio, sectors); 1712 } 1713 return true; 1714 } 1715 1716 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1717 { 1718 struct r1conf *conf = mddev->private; 1719 int i; 1720 1721 lockdep_assert_held(&mddev->lock); 1722 1723 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1724 conf->raid_disks - mddev->degraded); 1725 for (i = 0; i < conf->raid_disks; i++) { 1726 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1727 1728 seq_printf(seq, "%s", 1729 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1730 } 1731 seq_printf(seq, "]"); 1732 } 1733 1734 /** 1735 * raid1_error() - RAID1 error handler. 1736 * @mddev: affected md device. 1737 * @rdev: member device to fail. 1738 * 1739 * The routine acknowledges &rdev failure and determines new @mddev state. 1740 * If it failed, then: 1741 * - &MD_BROKEN flag is set in &mddev->flags. 1742 * - recovery is disabled. 1743 * Otherwise, it must be degraded: 1744 * - recovery is interrupted. 1745 * - &mddev->degraded is bumped. 1746 * 1747 * @rdev is marked as &Faulty excluding case when array is failed and 1748 * MD_FAILLAST_DEV is not set. 1749 */ 1750 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1751 { 1752 struct r1conf *conf = mddev->private; 1753 unsigned long flags; 1754 1755 spin_lock_irqsave(&conf->device_lock, flags); 1756 1757 if (test_bit(In_sync, &rdev->flags) && 1758 (conf->raid_disks - mddev->degraded) == 1) { 1759 set_bit(MD_BROKEN, &mddev->flags); 1760 1761 if (!test_bit(MD_FAILLAST_DEV, &mddev->flags)) { 1762 spin_unlock_irqrestore(&conf->device_lock, flags); 1763 return; 1764 } 1765 } 1766 set_bit(Blocked, &rdev->flags); 1767 if (test_and_clear_bit(In_sync, &rdev->flags)) 1768 mddev->degraded++; 1769 set_bit(Faulty, &rdev->flags); 1770 spin_unlock_irqrestore(&conf->device_lock, flags); 1771 /* 1772 * if recovery is running, make sure it aborts. 1773 */ 1774 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1775 set_mask_bits(&mddev->sb_flags, 0, 1776 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1777 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1778 "md/raid1:%s: Operation continuing on %d devices.\n", 1779 mdname(mddev), rdev->bdev, 1780 mdname(mddev), conf->raid_disks - mddev->degraded); 1781 } 1782 1783 static void print_conf(struct r1conf *conf) 1784 { 1785 int i; 1786 1787 pr_debug("RAID1 conf printout:\n"); 1788 if (!conf) { 1789 pr_debug("(!conf)\n"); 1790 return; 1791 } 1792 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1793 conf->raid_disks); 1794 1795 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1796 for (i = 0; i < conf->raid_disks; i++) { 1797 struct md_rdev *rdev = conf->mirrors[i].rdev; 1798 if (rdev) 1799 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1800 i, !test_bit(In_sync, &rdev->flags), 1801 !test_bit(Faulty, &rdev->flags), 1802 rdev->bdev); 1803 } 1804 } 1805 1806 static void close_sync(struct r1conf *conf) 1807 { 1808 int idx; 1809 1810 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1811 _wait_barrier(conf, idx, false); 1812 _allow_barrier(conf, idx); 1813 } 1814 1815 mempool_exit(&conf->r1buf_pool); 1816 } 1817 1818 static int raid1_spare_active(struct mddev *mddev) 1819 { 1820 int i; 1821 struct r1conf *conf = mddev->private; 1822 int count = 0; 1823 unsigned long flags; 1824 1825 /* 1826 * Find all failed disks within the RAID1 configuration 1827 * and mark them readable. 1828 * Called under mddev lock, so rcu protection not needed. 1829 * device_lock used to avoid races with raid1_end_read_request 1830 * which expects 'In_sync' flags and ->degraded to be consistent. 1831 */ 1832 spin_lock_irqsave(&conf->device_lock, flags); 1833 for (i = 0; i < conf->raid_disks; i++) { 1834 struct md_rdev *rdev = conf->mirrors[i].rdev; 1835 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1836 if (repl 1837 && !test_bit(Candidate, &repl->flags) 1838 && repl->recovery_offset == MaxSector 1839 && !test_bit(Faulty, &repl->flags) 1840 && !test_and_set_bit(In_sync, &repl->flags)) { 1841 /* replacement has just become active */ 1842 if (!rdev || 1843 !test_and_clear_bit(In_sync, &rdev->flags)) 1844 count++; 1845 if (rdev) { 1846 /* Replaced device not technically 1847 * faulty, but we need to be sure 1848 * it gets removed and never re-added 1849 */ 1850 set_bit(Faulty, &rdev->flags); 1851 sysfs_notify_dirent_safe( 1852 rdev->sysfs_state); 1853 } 1854 } 1855 if (rdev 1856 && rdev->recovery_offset == MaxSector 1857 && !test_bit(Faulty, &rdev->flags) 1858 && !test_and_set_bit(In_sync, &rdev->flags)) { 1859 count++; 1860 sysfs_notify_dirent_safe(rdev->sysfs_state); 1861 } 1862 } 1863 mddev->degraded -= count; 1864 spin_unlock_irqrestore(&conf->device_lock, flags); 1865 1866 print_conf(conf); 1867 return count; 1868 } 1869 1870 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1871 bool replacement) 1872 { 1873 struct raid1_info *info = conf->mirrors + disk; 1874 1875 if (replacement) 1876 info += conf->raid_disks; 1877 1878 if (info->rdev) 1879 return false; 1880 1881 if (bdev_nonrot(rdev->bdev)) { 1882 set_bit(Nonrot, &rdev->flags); 1883 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1884 } 1885 1886 rdev->raid_disk = disk; 1887 info->head_position = 0; 1888 info->seq_start = MaxSector; 1889 WRITE_ONCE(info->rdev, rdev); 1890 1891 return true; 1892 } 1893 1894 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1895 { 1896 struct raid1_info *info = conf->mirrors + disk; 1897 struct md_rdev *rdev = info->rdev; 1898 1899 if (!rdev || test_bit(In_sync, &rdev->flags) || 1900 atomic_read(&rdev->nr_pending)) 1901 return false; 1902 1903 /* Only remove non-faulty devices if recovery is not possible. */ 1904 if (!test_bit(Faulty, &rdev->flags) && 1905 rdev->mddev->degraded < conf->raid_disks) 1906 return false; 1907 1908 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1909 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1910 1911 WRITE_ONCE(info->rdev, NULL); 1912 return true; 1913 } 1914 1915 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1916 { 1917 struct r1conf *conf = mddev->private; 1918 int err = -EEXIST; 1919 int mirror = 0, repl_slot = -1; 1920 struct raid1_info *p; 1921 int first = 0; 1922 int last = conf->raid_disks - 1; 1923 1924 if (rdev->raid_disk >= 0) 1925 first = last = rdev->raid_disk; 1926 1927 /* 1928 * find the disk ... but prefer rdev->saved_raid_disk 1929 * if possible. 1930 */ 1931 if (rdev->saved_raid_disk >= 0 && 1932 rdev->saved_raid_disk >= first && 1933 rdev->saved_raid_disk < conf->raid_disks && 1934 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1935 first = last = rdev->saved_raid_disk; 1936 1937 for (mirror = first; mirror <= last; mirror++) { 1938 p = conf->mirrors + mirror; 1939 if (!p->rdev) { 1940 err = mddev_stack_new_rdev(mddev, rdev); 1941 if (err) 1942 return err; 1943 1944 raid1_add_conf(conf, rdev, mirror, false); 1945 /* As all devices are equivalent, we don't need a full recovery 1946 * if this was recently any drive of the array 1947 */ 1948 if (rdev->saved_raid_disk < 0) 1949 conf->fullsync = 1; 1950 break; 1951 } 1952 if (test_bit(WantReplacement, &p->rdev->flags) && 1953 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1954 repl_slot = mirror; 1955 } 1956 1957 if (err && repl_slot >= 0) { 1958 /* Add this device as a replacement */ 1959 clear_bit(In_sync, &rdev->flags); 1960 set_bit(Replacement, &rdev->flags); 1961 raid1_add_conf(conf, rdev, repl_slot, true); 1962 err = 0; 1963 conf->fullsync = 1; 1964 } 1965 1966 print_conf(conf); 1967 return err; 1968 } 1969 1970 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1971 { 1972 struct r1conf *conf = mddev->private; 1973 int err = 0; 1974 int number = rdev->raid_disk; 1975 struct raid1_info *p = conf->mirrors + number; 1976 1977 if (unlikely(number >= conf->raid_disks)) 1978 goto abort; 1979 1980 if (rdev != p->rdev) { 1981 number += conf->raid_disks; 1982 p = conf->mirrors + number; 1983 } 1984 1985 print_conf(conf); 1986 if (rdev == p->rdev) { 1987 if (!raid1_remove_conf(conf, number)) { 1988 err = -EBUSY; 1989 goto abort; 1990 } 1991 1992 if (number < conf->raid_disks && 1993 conf->mirrors[conf->raid_disks + number].rdev) { 1994 /* We just removed a device that is being replaced. 1995 * Move down the replacement. We drain all IO before 1996 * doing this to avoid confusion. 1997 */ 1998 struct md_rdev *repl = 1999 conf->mirrors[conf->raid_disks + number].rdev; 2000 freeze_array(conf, 0); 2001 if (atomic_read(&repl->nr_pending)) { 2002 /* It means that some queued IO of retry_list 2003 * hold repl. Thus, we cannot set replacement 2004 * as NULL, avoiding rdev NULL pointer 2005 * dereference in sync_request_write and 2006 * handle_write_finished. 2007 */ 2008 err = -EBUSY; 2009 unfreeze_array(conf); 2010 goto abort; 2011 } 2012 clear_bit(Replacement, &repl->flags); 2013 WRITE_ONCE(p->rdev, repl); 2014 conf->mirrors[conf->raid_disks + number].rdev = NULL; 2015 unfreeze_array(conf); 2016 } 2017 2018 clear_bit(WantReplacement, &rdev->flags); 2019 err = md_integrity_register(mddev); 2020 } 2021 abort: 2022 2023 print_conf(conf); 2024 return err; 2025 } 2026 2027 static void end_sync_read(struct bio *bio) 2028 { 2029 struct r1bio *r1_bio = get_resync_r1bio(bio); 2030 2031 update_head_pos(r1_bio->read_disk, r1_bio); 2032 2033 /* 2034 * we have read a block, now it needs to be re-written, 2035 * or re-read if the read failed. 2036 * We don't do much here, just schedule handling by raid1d 2037 */ 2038 if (!bio->bi_status) 2039 set_bit(R1BIO_Uptodate, &r1_bio->state); 2040 2041 if (atomic_dec_and_test(&r1_bio->remaining)) 2042 reschedule_retry(r1_bio); 2043 } 2044 2045 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2046 { 2047 sector_t sync_blocks = 0; 2048 sector_t s = r1_bio->sector; 2049 long sectors_to_go = r1_bio->sectors; 2050 2051 /* make sure these bits don't get cleared. */ 2052 do { 2053 md_bitmap_end_sync(mddev, s, &sync_blocks); 2054 s += sync_blocks; 2055 sectors_to_go -= sync_blocks; 2056 } while (sectors_to_go > 0); 2057 } 2058 2059 static void put_sync_write_buf(struct r1bio *r1_bio) 2060 { 2061 if (atomic_dec_and_test(&r1_bio->remaining)) { 2062 struct mddev *mddev = r1_bio->mddev; 2063 int s = r1_bio->sectors; 2064 2065 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2066 test_bit(R1BIO_WriteError, &r1_bio->state)) 2067 reschedule_retry(r1_bio); 2068 else { 2069 put_buf(r1_bio); 2070 md_done_sync(mddev, s); 2071 } 2072 } 2073 } 2074 2075 static void end_sync_write(struct bio *bio) 2076 { 2077 struct r1bio *r1_bio = get_resync_r1bio(bio); 2078 struct mddev *mddev = r1_bio->mddev; 2079 struct r1conf *conf = mddev->private; 2080 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2081 2082 if (bio->bi_status) { 2083 abort_sync_write(mddev, r1_bio); 2084 set_bit(WriteErrorSeen, &rdev->flags); 2085 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2086 set_bit(MD_RECOVERY_NEEDED, & 2087 mddev->recovery); 2088 set_bit(R1BIO_WriteError, &r1_bio->state); 2089 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2090 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2091 r1_bio->sector, r1_bio->sectors)) { 2092 set_bit(R1BIO_MadeGood, &r1_bio->state); 2093 } 2094 2095 put_sync_write_buf(r1_bio); 2096 } 2097 2098 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2099 int sectors, struct page *page, blk_opf_t rw) 2100 { 2101 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2102 /* success */ 2103 return 1; 2104 if (rw == REQ_OP_WRITE) { 2105 set_bit(WriteErrorSeen, &rdev->flags); 2106 if (!test_and_set_bit(WantReplacement, 2107 &rdev->flags)) 2108 set_bit(MD_RECOVERY_NEEDED, & 2109 rdev->mddev->recovery); 2110 } 2111 /* need to record an error - either for the block or the device */ 2112 rdev_set_badblocks(rdev, sector, sectors, 0); 2113 return 0; 2114 } 2115 2116 static int fix_sync_read_error(struct r1bio *r1_bio) 2117 { 2118 /* Try some synchronous reads of other devices to get 2119 * good data, much like with normal read errors. Only 2120 * read into the pages we already have so we don't 2121 * need to re-issue the read request. 2122 * We don't need to freeze the array, because being in an 2123 * active sync request, there is no normal IO, and 2124 * no overlapping syncs. 2125 * We don't need to check is_badblock() again as we 2126 * made sure that anything with a bad block in range 2127 * will have bi_end_io clear. 2128 */ 2129 struct mddev *mddev = r1_bio->mddev; 2130 struct r1conf *conf = mddev->private; 2131 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2132 struct page **pages = get_resync_pages(bio)->pages; 2133 sector_t sect = r1_bio->sector; 2134 int sectors = r1_bio->sectors; 2135 int idx = 0; 2136 struct md_rdev *rdev; 2137 2138 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2139 if (test_bit(FailFast, &rdev->flags)) { 2140 /* Don't try recovering from here - just fail it 2141 * ... unless it is the last working device of course */ 2142 md_error(mddev, rdev); 2143 if (test_bit(Faulty, &rdev->flags)) 2144 /* Don't try to read from here, but make sure 2145 * put_buf does it's thing 2146 */ 2147 bio->bi_end_io = end_sync_write; 2148 } 2149 2150 while(sectors) { 2151 int s = sectors; 2152 int d = r1_bio->read_disk; 2153 int success = 0; 2154 int start; 2155 2156 if (s > (PAGE_SIZE>>9)) 2157 s = PAGE_SIZE >> 9; 2158 do { 2159 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2160 /* No rcu protection needed here devices 2161 * can only be removed when no resync is 2162 * active, and resync is currently active 2163 */ 2164 rdev = conf->mirrors[d].rdev; 2165 if (sync_page_io(rdev, sect, s<<9, 2166 pages[idx], 2167 REQ_OP_READ, false)) { 2168 success = 1; 2169 break; 2170 } 2171 } 2172 d++; 2173 if (d == conf->raid_disks * 2) 2174 d = 0; 2175 } while (!success && d != r1_bio->read_disk); 2176 2177 if (!success) { 2178 int abort = 0; 2179 /* Cannot read from anywhere, this block is lost. 2180 * Record a bad block on each device. If that doesn't 2181 * work just disable and interrupt the recovery. 2182 * Don't fail devices as that won't really help. 2183 */ 2184 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2185 mdname(mddev), bio->bi_bdev, 2186 (unsigned long long)r1_bio->sector); 2187 for (d = 0; d < conf->raid_disks * 2; d++) { 2188 rdev = conf->mirrors[d].rdev; 2189 if (!rdev || test_bit(Faulty, &rdev->flags)) 2190 continue; 2191 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2192 abort = 1; 2193 } 2194 if (abort) 2195 return 0; 2196 2197 /* Try next page */ 2198 sectors -= s; 2199 sect += s; 2200 idx++; 2201 continue; 2202 } 2203 2204 start = d; 2205 /* write it back and re-read */ 2206 while (d != r1_bio->read_disk) { 2207 if (d == 0) 2208 d = conf->raid_disks * 2; 2209 d--; 2210 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2211 continue; 2212 rdev = conf->mirrors[d].rdev; 2213 if (r1_sync_page_io(rdev, sect, s, 2214 pages[idx], 2215 REQ_OP_WRITE) == 0) { 2216 r1_bio->bios[d]->bi_end_io = NULL; 2217 rdev_dec_pending(rdev, mddev); 2218 } 2219 } 2220 d = start; 2221 while (d != r1_bio->read_disk) { 2222 if (d == 0) 2223 d = conf->raid_disks * 2; 2224 d--; 2225 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2226 continue; 2227 rdev = conf->mirrors[d].rdev; 2228 if (r1_sync_page_io(rdev, sect, s, 2229 pages[idx], 2230 REQ_OP_READ) != 0) 2231 atomic_add(s, &rdev->corrected_errors); 2232 } 2233 sectors -= s; 2234 sect += s; 2235 idx ++; 2236 } 2237 set_bit(R1BIO_Uptodate, &r1_bio->state); 2238 bio->bi_status = 0; 2239 return 1; 2240 } 2241 2242 static void process_checks(struct r1bio *r1_bio) 2243 { 2244 /* We have read all readable devices. If we haven't 2245 * got the block, then there is no hope left. 2246 * If we have, then we want to do a comparison 2247 * and skip the write if everything is the same. 2248 * If any blocks failed to read, then we need to 2249 * attempt an over-write 2250 */ 2251 struct mddev *mddev = r1_bio->mddev; 2252 struct r1conf *conf = mddev->private; 2253 int primary; 2254 int i; 2255 int vcnt; 2256 2257 /* Fix variable parts of all bios */ 2258 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2259 for (i = 0; i < conf->raid_disks * 2; i++) { 2260 blk_status_t status; 2261 struct bio *b = r1_bio->bios[i]; 2262 struct resync_pages *rp = get_resync_pages(b); 2263 if (b->bi_end_io != end_sync_read) 2264 continue; 2265 /* fixup the bio for reuse, but preserve errno */ 2266 status = b->bi_status; 2267 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2268 b->bi_status = status; 2269 b->bi_iter.bi_sector = r1_bio->sector + 2270 conf->mirrors[i].rdev->data_offset; 2271 b->bi_end_io = end_sync_read; 2272 rp->raid_bio = r1_bio; 2273 b->bi_private = rp; 2274 2275 /* initialize bvec table again */ 2276 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2277 } 2278 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2279 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2280 !r1_bio->bios[primary]->bi_status) { 2281 r1_bio->bios[primary]->bi_end_io = NULL; 2282 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2283 break; 2284 } 2285 r1_bio->read_disk = primary; 2286 for (i = 0; i < conf->raid_disks * 2; i++) { 2287 int j = 0; 2288 struct bio *pbio = r1_bio->bios[primary]; 2289 struct bio *sbio = r1_bio->bios[i]; 2290 blk_status_t status = sbio->bi_status; 2291 struct page **ppages = get_resync_pages(pbio)->pages; 2292 struct page **spages = get_resync_pages(sbio)->pages; 2293 struct bio_vec *bi; 2294 int page_len[RESYNC_PAGES] = { 0 }; 2295 struct bvec_iter_all iter_all; 2296 2297 if (sbio->bi_end_io != end_sync_read) 2298 continue; 2299 /* Now we can 'fixup' the error value */ 2300 sbio->bi_status = 0; 2301 2302 bio_for_each_segment_all(bi, sbio, iter_all) 2303 page_len[j++] = bi->bv_len; 2304 2305 if (!status) { 2306 for (j = vcnt; j-- ; ) { 2307 if (memcmp(page_address(ppages[j]), 2308 page_address(spages[j]), 2309 page_len[j])) 2310 break; 2311 } 2312 } else 2313 j = 0; 2314 if (j >= 0) 2315 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2316 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2317 && !status)) { 2318 /* No need to write to this device. */ 2319 sbio->bi_end_io = NULL; 2320 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2321 continue; 2322 } 2323 2324 bio_copy_data(sbio, pbio); 2325 } 2326 } 2327 2328 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2329 { 2330 struct r1conf *conf = mddev->private; 2331 int i; 2332 int disks = conf->raid_disks * 2; 2333 struct bio *wbio; 2334 2335 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 2336 /* 2337 * ouch - failed to read all of that. 2338 * No need to fix read error for check/repair 2339 * because all member disks are read. 2340 */ 2341 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) || 2342 !fix_sync_read_error(r1_bio)) { 2343 md_done_sync(mddev, r1_bio->sectors); 2344 md_sync_error(mddev); 2345 put_buf(r1_bio); 2346 return; 2347 } 2348 } 2349 2350 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2351 process_checks(r1_bio); 2352 2353 /* 2354 * schedule writes 2355 */ 2356 atomic_set(&r1_bio->remaining, 1); 2357 for (i = 0; i < disks ; i++) { 2358 wbio = r1_bio->bios[i]; 2359 if (wbio->bi_end_io == NULL || 2360 (wbio->bi_end_io == end_sync_read && 2361 (i == r1_bio->read_disk || 2362 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2363 continue; 2364 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2365 abort_sync_write(mddev, r1_bio); 2366 continue; 2367 } 2368 2369 wbio->bi_opf = REQ_OP_WRITE; 2370 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2371 wbio->bi_opf |= MD_FAILFAST; 2372 2373 wbio->bi_end_io = end_sync_write; 2374 atomic_inc(&r1_bio->remaining); 2375 2376 submit_bio_noacct(wbio); 2377 } 2378 2379 put_sync_write_buf(r1_bio); 2380 } 2381 2382 /* 2383 * This is a kernel thread which: 2384 * 2385 * 1. Retries failed read operations on working mirrors. 2386 * 2. Updates the raid superblock when problems encounter. 2387 * 3. Performs writes following reads for array synchronising. 2388 */ 2389 2390 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2391 { 2392 sector_t sect = r1_bio->sector; 2393 int sectors = r1_bio->sectors; 2394 int read_disk = r1_bio->read_disk; 2395 struct mddev *mddev = conf->mddev; 2396 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2397 2398 if (exceed_read_errors(mddev, rdev)) { 2399 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2400 return; 2401 } 2402 2403 while(sectors) { 2404 int s = sectors; 2405 int d = read_disk; 2406 int success = 0; 2407 int start; 2408 2409 if (s > (PAGE_SIZE>>9)) 2410 s = PAGE_SIZE >> 9; 2411 2412 do { 2413 rdev = conf->mirrors[d].rdev; 2414 if (rdev && 2415 (test_bit(In_sync, &rdev->flags) || 2416 (!test_bit(Faulty, &rdev->flags) && 2417 rdev->recovery_offset >= sect + s)) && 2418 rdev_has_badblock(rdev, sect, s) == 0) { 2419 atomic_inc(&rdev->nr_pending); 2420 if (sync_page_io(rdev, sect, s<<9, 2421 conf->tmppage, REQ_OP_READ, false)) 2422 success = 1; 2423 rdev_dec_pending(rdev, mddev); 2424 if (success) 2425 break; 2426 } 2427 2428 d++; 2429 if (d == conf->raid_disks * 2) 2430 d = 0; 2431 } while (d != read_disk); 2432 2433 if (!success) { 2434 /* Cannot read from anywhere - mark it bad */ 2435 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2436 rdev_set_badblocks(rdev, sect, s, 0); 2437 break; 2438 } 2439 /* write it back and re-read */ 2440 start = d; 2441 while (d != read_disk) { 2442 if (d==0) 2443 d = conf->raid_disks * 2; 2444 d--; 2445 rdev = conf->mirrors[d].rdev; 2446 if (rdev && 2447 !test_bit(Faulty, &rdev->flags)) { 2448 atomic_inc(&rdev->nr_pending); 2449 r1_sync_page_io(rdev, sect, s, 2450 conf->tmppage, REQ_OP_WRITE); 2451 rdev_dec_pending(rdev, mddev); 2452 } 2453 } 2454 d = start; 2455 while (d != read_disk) { 2456 if (d==0) 2457 d = conf->raid_disks * 2; 2458 d--; 2459 rdev = conf->mirrors[d].rdev; 2460 if (rdev && 2461 !test_bit(Faulty, &rdev->flags)) { 2462 atomic_inc(&rdev->nr_pending); 2463 if (r1_sync_page_io(rdev, sect, s, 2464 conf->tmppage, REQ_OP_READ)) { 2465 atomic_add(s, &rdev->corrected_errors); 2466 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2467 mdname(mddev), s, 2468 (unsigned long long)(sect + 2469 rdev->data_offset), 2470 rdev->bdev); 2471 } 2472 rdev_dec_pending(rdev, mddev); 2473 } 2474 } 2475 sectors -= s; 2476 sect += s; 2477 } 2478 } 2479 2480 static void narrow_write_error(struct r1bio *r1_bio, int i) 2481 { 2482 struct mddev *mddev = r1_bio->mddev; 2483 struct r1conf *conf = mddev->private; 2484 struct md_rdev *rdev = conf->mirrors[i].rdev; 2485 2486 /* bio has the data to be written to device 'i' where 2487 * we just recently had a write error. 2488 * We repeatedly clone the bio and trim down to one block, 2489 * then try the write. Where the write fails we record 2490 * a bad block. 2491 * It is conceivable that the bio doesn't exactly align with 2492 * blocks. We must handle this somehow. 2493 * 2494 * We currently own a reference on the rdev. 2495 */ 2496 2497 int block_sectors, lbs = bdev_logical_block_size(rdev->bdev) >> 9; 2498 sector_t sector; 2499 int sectors; 2500 int sect_to_write = r1_bio->sectors; 2501 2502 if (rdev->badblocks.shift < 0) 2503 block_sectors = lbs; 2504 else 2505 block_sectors = roundup(1 << rdev->badblocks.shift, lbs); 2506 2507 sector = r1_bio->sector; 2508 sectors = ((sector + block_sectors) 2509 & ~(sector_t)(block_sectors - 1)) 2510 - sector; 2511 2512 while (sect_to_write) { 2513 struct bio *wbio; 2514 if (sectors > sect_to_write) 2515 sectors = sect_to_write; 2516 /* Write at 'sector' for 'sectors'*/ 2517 2518 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2519 wbio = bio_alloc_clone(rdev->bdev, 2520 r1_bio->behind_master_bio, 2521 GFP_NOIO, &mddev->bio_set); 2522 } else { 2523 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2524 GFP_NOIO, &mddev->bio_set); 2525 } 2526 2527 wbio->bi_opf = REQ_OP_WRITE; 2528 wbio->bi_iter.bi_sector = r1_bio->sector; 2529 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2530 2531 bio_trim(wbio, sector - r1_bio->sector, sectors); 2532 wbio->bi_iter.bi_sector += rdev->data_offset; 2533 2534 if (submit_bio_wait(wbio) && 2535 !rdev_set_badblocks(rdev, sector, sectors, 0)) { 2536 /* 2537 * Badblocks set failed, disk marked Faulty. 2538 * No further operations needed. 2539 */ 2540 bio_put(wbio); 2541 break; 2542 } 2543 2544 bio_put(wbio); 2545 sect_to_write -= sectors; 2546 sector += sectors; 2547 sectors = block_sectors; 2548 } 2549 } 2550 2551 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2552 { 2553 int m; 2554 int s = r1_bio->sectors; 2555 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2556 struct md_rdev *rdev = conf->mirrors[m].rdev; 2557 struct bio *bio = r1_bio->bios[m]; 2558 if (bio->bi_end_io == NULL) 2559 continue; 2560 if (!bio->bi_status && 2561 test_bit(R1BIO_MadeGood, &r1_bio->state)) 2562 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2563 if (bio->bi_status && 2564 test_bit(R1BIO_WriteError, &r1_bio->state)) 2565 rdev_set_badblocks(rdev, r1_bio->sector, s, 0); 2566 } 2567 put_buf(r1_bio); 2568 md_done_sync(conf->mddev, s); 2569 } 2570 2571 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2572 { 2573 int m, idx; 2574 bool fail = false; 2575 2576 for (m = 0; m < conf->raid_disks * 2 ; m++) 2577 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2578 struct md_rdev *rdev = conf->mirrors[m].rdev; 2579 rdev_clear_badblocks(rdev, 2580 r1_bio->sector, 2581 r1_bio->sectors, 0); 2582 rdev_dec_pending(rdev, conf->mddev); 2583 } else if (r1_bio->bios[m] != NULL) { 2584 /* This drive got a write error. We need to 2585 * narrow down and record precise write 2586 * errors. 2587 */ 2588 fail = true; 2589 narrow_write_error(r1_bio, m); 2590 rdev_dec_pending(conf->mirrors[m].rdev, 2591 conf->mddev); 2592 } 2593 if (fail) { 2594 spin_lock_irq(&conf->device_lock); 2595 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2596 idx = sector_to_idx(r1_bio->sector); 2597 atomic_inc(&conf->nr_queued[idx]); 2598 spin_unlock_irq(&conf->device_lock); 2599 /* 2600 * In case freeze_array() is waiting for condition 2601 * get_unqueued_pending() == extra to be true. 2602 */ 2603 wake_up(&conf->wait_barrier); 2604 md_wakeup_thread(conf->mddev->thread); 2605 } else { 2606 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2607 close_write(r1_bio); 2608 raid_end_bio_io(r1_bio); 2609 } 2610 } 2611 2612 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2613 { 2614 struct mddev *mddev = conf->mddev; 2615 struct bio *bio; 2616 struct md_rdev *rdev; 2617 sector_t sector; 2618 2619 clear_bit(R1BIO_ReadError, &r1_bio->state); 2620 /* we got a read error. Maybe the drive is bad. Maybe just 2621 * the block and we can fix it. 2622 * We freeze all other IO, and try reading the block from 2623 * other devices. When we find one, we re-write 2624 * and check it that fixes the read error. 2625 * This is all done synchronously while the array is 2626 * frozen 2627 */ 2628 2629 bio = r1_bio->bios[r1_bio->read_disk]; 2630 bio_put(bio); 2631 r1_bio->bios[r1_bio->read_disk] = NULL; 2632 2633 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2634 if (mddev->ro == 0 2635 && !test_bit(FailFast, &rdev->flags)) { 2636 freeze_array(conf, 1); 2637 fix_read_error(conf, r1_bio); 2638 unfreeze_array(conf); 2639 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2640 md_error(mddev, rdev); 2641 } else { 2642 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2643 } 2644 2645 rdev_dec_pending(rdev, conf->mddev); 2646 sector = r1_bio->sector; 2647 bio = r1_bio->master_bio; 2648 2649 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2650 r1_bio->state = 0; 2651 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2652 allow_barrier(conf, sector); 2653 } 2654 2655 static void raid1d(struct md_thread *thread) 2656 { 2657 struct mddev *mddev = thread->mddev; 2658 struct r1bio *r1_bio; 2659 unsigned long flags; 2660 struct r1conf *conf = mddev->private; 2661 struct list_head *head = &conf->retry_list; 2662 struct blk_plug plug; 2663 int idx; 2664 2665 md_check_recovery(mddev); 2666 2667 if (!list_empty_careful(&conf->bio_end_io_list) && 2668 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2669 LIST_HEAD(tmp); 2670 spin_lock_irqsave(&conf->device_lock, flags); 2671 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2672 list_splice_init(&conf->bio_end_io_list, &tmp); 2673 spin_unlock_irqrestore(&conf->device_lock, flags); 2674 while (!list_empty(&tmp)) { 2675 r1_bio = list_first_entry(&tmp, struct r1bio, 2676 retry_list); 2677 list_del(&r1_bio->retry_list); 2678 idx = sector_to_idx(r1_bio->sector); 2679 atomic_dec(&conf->nr_queued[idx]); 2680 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2681 close_write(r1_bio); 2682 raid_end_bio_io(r1_bio); 2683 } 2684 } 2685 2686 blk_start_plug(&plug); 2687 for (;;) { 2688 2689 flush_pending_writes(conf); 2690 2691 spin_lock_irqsave(&conf->device_lock, flags); 2692 if (list_empty(head)) { 2693 spin_unlock_irqrestore(&conf->device_lock, flags); 2694 break; 2695 } 2696 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2697 list_del(head->prev); 2698 idx = sector_to_idx(r1_bio->sector); 2699 atomic_dec(&conf->nr_queued[idx]); 2700 spin_unlock_irqrestore(&conf->device_lock, flags); 2701 2702 mddev = r1_bio->mddev; 2703 conf = mddev->private; 2704 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2705 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2706 test_bit(R1BIO_WriteError, &r1_bio->state)) 2707 handle_sync_write_finished(conf, r1_bio); 2708 else 2709 sync_request_write(mddev, r1_bio); 2710 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2711 test_bit(R1BIO_WriteError, &r1_bio->state)) 2712 handle_write_finished(conf, r1_bio); 2713 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2714 handle_read_error(conf, r1_bio); 2715 else 2716 WARN_ON_ONCE(1); 2717 2718 cond_resched(); 2719 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2720 md_check_recovery(mddev); 2721 } 2722 blk_finish_plug(&plug); 2723 } 2724 2725 static int init_resync(struct r1conf *conf) 2726 { 2727 int buffs; 2728 2729 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2730 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2731 2732 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2733 r1buf_pool_free, conf); 2734 } 2735 2736 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2737 { 2738 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2739 struct resync_pages *rps; 2740 struct bio *bio; 2741 int i; 2742 2743 for (i = conf->raid_disks * 2; i--; ) { 2744 bio = r1bio->bios[i]; 2745 rps = bio->bi_private; 2746 bio_reset(bio, NULL, 0); 2747 bio->bi_private = rps; 2748 } 2749 r1bio->master_bio = NULL; 2750 return r1bio; 2751 } 2752 2753 /* 2754 * perform a "sync" on one "block" 2755 * 2756 * We need to make sure that no normal I/O request - particularly write 2757 * requests - conflict with active sync requests. 2758 * 2759 * This is achieved by tracking pending requests and a 'barrier' concept 2760 * that can be installed to exclude normal IO requests. 2761 */ 2762 2763 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2764 sector_t max_sector, int *skipped) 2765 { 2766 struct r1conf *conf = mddev->private; 2767 struct r1bio *r1_bio; 2768 struct bio *bio; 2769 sector_t nr_sectors; 2770 int disk = -1; 2771 int i; 2772 int wonly = -1; 2773 int write_targets = 0, read_targets = 0; 2774 sector_t sync_blocks; 2775 bool still_degraded = false; 2776 int good_sectors = RESYNC_SECTORS; 2777 int min_bad = 0; /* number of sectors that are bad in all devices */ 2778 int idx = sector_to_idx(sector_nr); 2779 int page_idx = 0; 2780 2781 if (!mempool_initialized(&conf->r1buf_pool)) 2782 if (init_resync(conf)) 2783 return 0; 2784 2785 if (sector_nr >= max_sector) { 2786 /* If we aborted, we need to abort the 2787 * sync on the 'current' bitmap chunk (there will 2788 * only be one in raid1 resync. 2789 * We can find the current addess in mddev->curr_resync 2790 */ 2791 if (mddev->curr_resync < max_sector) /* aborted */ 2792 md_bitmap_end_sync(mddev, mddev->curr_resync, 2793 &sync_blocks); 2794 else /* completed sync */ 2795 conf->fullsync = 0; 2796 2797 if (md_bitmap_enabled(mddev, false)) 2798 mddev->bitmap_ops->close_sync(mddev); 2799 close_sync(conf); 2800 2801 if (mddev_is_clustered(mddev)) { 2802 conf->cluster_sync_low = 0; 2803 conf->cluster_sync_high = 0; 2804 } 2805 return 0; 2806 } 2807 2808 if (mddev->bitmap == NULL && 2809 mddev->resync_offset == MaxSector && 2810 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2811 conf->fullsync == 0) { 2812 *skipped = 1; 2813 return max_sector - sector_nr; 2814 } 2815 /* before building a request, check if we can skip these blocks.. 2816 * This call the bitmap_start_sync doesn't actually record anything 2817 */ 2818 if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, true) && 2819 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2820 /* We can skip this block, and probably several more */ 2821 *skipped = 1; 2822 return sync_blocks; 2823 } 2824 2825 /* 2826 * If there is non-resync activity waiting for a turn, then let it 2827 * though before starting on this new sync request. 2828 */ 2829 if (atomic_read(&conf->nr_waiting[idx])) 2830 schedule_timeout_uninterruptible(1); 2831 2832 /* we are incrementing sector_nr below. To be safe, we check against 2833 * sector_nr + two times RESYNC_SECTORS 2834 */ 2835 if (md_bitmap_enabled(mddev, false)) 2836 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 2837 mddev_is_clustered(mddev) && 2838 (sector_nr + 2 * RESYNC_SECTORS > 2839 conf->cluster_sync_high)); 2840 2841 if (raise_barrier(conf, sector_nr)) 2842 return 0; 2843 2844 r1_bio = raid1_alloc_init_r1buf(conf); 2845 2846 /* 2847 * If we get a correctably read error during resync or recovery, 2848 * we might want to read from a different device. So we 2849 * flag all drives that could conceivably be read from for READ, 2850 * and any others (which will be non-In_sync devices) for WRITE. 2851 * If a read fails, we try reading from something else for which READ 2852 * is OK. 2853 */ 2854 2855 r1_bio->mddev = mddev; 2856 r1_bio->sector = sector_nr; 2857 r1_bio->state = 0; 2858 set_bit(R1BIO_IsSync, &r1_bio->state); 2859 /* make sure good_sectors won't go across barrier unit boundary */ 2860 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2861 2862 for (i = 0; i < conf->raid_disks * 2; i++) { 2863 struct md_rdev *rdev; 2864 bio = r1_bio->bios[i]; 2865 2866 rdev = conf->mirrors[i].rdev; 2867 if (rdev == NULL || 2868 test_bit(Faulty, &rdev->flags)) { 2869 if (i < conf->raid_disks) 2870 still_degraded = true; 2871 } else if (!test_bit(In_sync, &rdev->flags)) { 2872 bio->bi_opf = REQ_OP_WRITE; 2873 bio->bi_end_io = end_sync_write; 2874 write_targets ++; 2875 } else { 2876 /* may need to read from here */ 2877 sector_t first_bad = MaxSector; 2878 sector_t bad_sectors; 2879 2880 if (is_badblock(rdev, sector_nr, good_sectors, 2881 &first_bad, &bad_sectors)) { 2882 if (first_bad > sector_nr) 2883 good_sectors = first_bad - sector_nr; 2884 else { 2885 bad_sectors -= (sector_nr - first_bad); 2886 if (min_bad == 0 || 2887 min_bad > bad_sectors) 2888 min_bad = bad_sectors; 2889 } 2890 } 2891 if (sector_nr < first_bad) { 2892 if (test_bit(WriteMostly, &rdev->flags)) { 2893 if (wonly < 0) 2894 wonly = i; 2895 } else { 2896 if (disk < 0) 2897 disk = i; 2898 } 2899 bio->bi_opf = REQ_OP_READ; 2900 bio->bi_end_io = end_sync_read; 2901 read_targets++; 2902 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2903 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2904 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2905 /* 2906 * The device is suitable for reading (InSync), 2907 * but has bad block(s) here. Let's try to correct them, 2908 * if we are doing resync or repair. Otherwise, leave 2909 * this device alone for this sync request. 2910 */ 2911 bio->bi_opf = REQ_OP_WRITE; 2912 bio->bi_end_io = end_sync_write; 2913 write_targets++; 2914 } 2915 } 2916 if (rdev && bio->bi_end_io) { 2917 atomic_inc(&rdev->nr_pending); 2918 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2919 bio_set_dev(bio, rdev->bdev); 2920 if (test_bit(FailFast, &rdev->flags)) 2921 bio->bi_opf |= MD_FAILFAST; 2922 } 2923 } 2924 if (disk < 0) 2925 disk = wonly; 2926 r1_bio->read_disk = disk; 2927 2928 if (read_targets == 0 && min_bad > 0) { 2929 /* These sectors are bad on all InSync devices, so we 2930 * need to mark them bad on all write targets 2931 */ 2932 int ok = 1; 2933 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2934 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2935 struct md_rdev *rdev = conf->mirrors[i].rdev; 2936 ok = rdev_set_badblocks(rdev, sector_nr, 2937 min_bad, 0 2938 ) && ok; 2939 } 2940 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2941 *skipped = 1; 2942 put_buf(r1_bio); 2943 2944 if (!ok) 2945 /* Cannot record the badblocks, md_error has set INTR, 2946 * abort the resync. 2947 */ 2948 return 0; 2949 else 2950 return min_bad; 2951 2952 } 2953 if (min_bad > 0 && min_bad < good_sectors) { 2954 /* only resync enough to reach the next bad->good 2955 * transition */ 2956 good_sectors = min_bad; 2957 } 2958 2959 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2960 /* extra read targets are also write targets */ 2961 write_targets += read_targets-1; 2962 2963 if (write_targets == 0 || read_targets == 0) { 2964 /* There is nowhere to write, so all non-sync 2965 * drives must be failed - so we are finished 2966 */ 2967 sector_t rv; 2968 if (min_bad > 0) 2969 max_sector = sector_nr + min_bad; 2970 rv = max_sector - sector_nr; 2971 *skipped = 1; 2972 put_buf(r1_bio); 2973 return rv; 2974 } 2975 2976 if (max_sector > mddev->resync_max) 2977 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2978 if (max_sector > sector_nr + good_sectors) 2979 max_sector = sector_nr + good_sectors; 2980 nr_sectors = 0; 2981 sync_blocks = 0; 2982 do { 2983 struct page *page; 2984 int len = PAGE_SIZE; 2985 if (sector_nr + (len>>9) > max_sector) 2986 len = (max_sector - sector_nr) << 9; 2987 if (len == 0) 2988 break; 2989 if (sync_blocks == 0) { 2990 if (!md_bitmap_start_sync(mddev, sector_nr, 2991 &sync_blocks, still_degraded) && 2992 !conf->fullsync && 2993 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2994 break; 2995 if ((len >> 9) > sync_blocks) 2996 len = sync_blocks<<9; 2997 } 2998 2999 for (i = 0 ; i < conf->raid_disks * 2; i++) { 3000 struct resync_pages *rp; 3001 3002 bio = r1_bio->bios[i]; 3003 rp = get_resync_pages(bio); 3004 if (bio->bi_end_io) { 3005 page = resync_fetch_page(rp, page_idx); 3006 3007 /* 3008 * won't fail because the vec table is big 3009 * enough to hold all these pages 3010 */ 3011 __bio_add_page(bio, page, len, 0); 3012 } 3013 } 3014 nr_sectors += len>>9; 3015 sector_nr += len>>9; 3016 sync_blocks -= (len>>9); 3017 } while (++page_idx < RESYNC_PAGES); 3018 3019 r1_bio->sectors = nr_sectors; 3020 3021 if (mddev_is_clustered(mddev) && 3022 conf->cluster_sync_high < sector_nr + nr_sectors) { 3023 conf->cluster_sync_low = mddev->curr_resync_completed; 3024 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3025 /* Send resync message */ 3026 mddev->cluster_ops->resync_info_update(mddev, 3027 conf->cluster_sync_low, 3028 conf->cluster_sync_high); 3029 } 3030 3031 /* For a user-requested sync, we read all readable devices and do a 3032 * compare 3033 */ 3034 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3035 atomic_set(&r1_bio->remaining, read_targets); 3036 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3037 bio = r1_bio->bios[i]; 3038 if (bio->bi_end_io == end_sync_read) { 3039 read_targets--; 3040 if (read_targets == 1) 3041 bio->bi_opf &= ~MD_FAILFAST; 3042 submit_bio_noacct(bio); 3043 } 3044 } 3045 } else { 3046 atomic_set(&r1_bio->remaining, 1); 3047 bio = r1_bio->bios[r1_bio->read_disk]; 3048 if (read_targets == 1) 3049 bio->bi_opf &= ~MD_FAILFAST; 3050 submit_bio_noacct(bio); 3051 } 3052 return nr_sectors; 3053 } 3054 3055 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3056 { 3057 if (sectors) 3058 return sectors; 3059 3060 return mddev->dev_sectors; 3061 } 3062 3063 static struct r1conf *setup_conf(struct mddev *mddev) 3064 { 3065 struct r1conf *conf; 3066 int i; 3067 struct raid1_info *disk; 3068 struct md_rdev *rdev; 3069 size_t r1bio_size; 3070 int err = -ENOMEM; 3071 3072 conf = kzalloc_obj(struct r1conf, GFP_KERNEL); 3073 if (!conf) 3074 goto abort; 3075 3076 conf->nr_pending = kzalloc_objs(atomic_t, BARRIER_BUCKETS_NR, 3077 GFP_KERNEL); 3078 if (!conf->nr_pending) 3079 goto abort; 3080 3081 conf->nr_waiting = kzalloc_objs(atomic_t, BARRIER_BUCKETS_NR, 3082 GFP_KERNEL); 3083 if (!conf->nr_waiting) 3084 goto abort; 3085 3086 conf->nr_queued = kzalloc_objs(atomic_t, BARRIER_BUCKETS_NR, GFP_KERNEL); 3087 if (!conf->nr_queued) 3088 goto abort; 3089 3090 conf->barrier = kzalloc_objs(atomic_t, BARRIER_BUCKETS_NR, GFP_KERNEL); 3091 if (!conf->barrier) 3092 goto abort; 3093 3094 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3095 mddev->raid_disks, 2), 3096 GFP_KERNEL); 3097 if (!conf->mirrors) 3098 goto abort; 3099 3100 conf->tmppage = alloc_page(GFP_KERNEL); 3101 if (!conf->tmppage) 3102 goto abort; 3103 3104 r1bio_size = offsetof(struct r1bio, bios[mddev->raid_disks * 2]); 3105 conf->r1bio_pool = mempool_create_kmalloc_pool(NR_RAID_BIOS, r1bio_size); 3106 if (!conf->r1bio_pool) 3107 goto abort; 3108 3109 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3110 if (err) 3111 goto abort; 3112 3113 err = -EINVAL; 3114 spin_lock_init(&conf->device_lock); 3115 conf->raid_disks = mddev->raid_disks; 3116 rdev_for_each(rdev, mddev) { 3117 int disk_idx = rdev->raid_disk; 3118 3119 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3120 continue; 3121 3122 if (!raid1_add_conf(conf, rdev, disk_idx, 3123 test_bit(Replacement, &rdev->flags))) 3124 goto abort; 3125 } 3126 conf->mddev = mddev; 3127 INIT_LIST_HEAD(&conf->retry_list); 3128 INIT_LIST_HEAD(&conf->bio_end_io_list); 3129 3130 spin_lock_init(&conf->resync_lock); 3131 init_waitqueue_head(&conf->wait_barrier); 3132 3133 bio_list_init(&conf->pending_bio_list); 3134 3135 err = -EIO; 3136 for (i = 0; i < conf->raid_disks * 2; i++) { 3137 3138 disk = conf->mirrors + i; 3139 3140 if (i < conf->raid_disks && 3141 disk[conf->raid_disks].rdev) { 3142 /* This slot has a replacement. */ 3143 if (!disk->rdev) { 3144 /* No original, just make the replacement 3145 * a recovering spare 3146 */ 3147 disk->rdev = 3148 disk[conf->raid_disks].rdev; 3149 disk[conf->raid_disks].rdev = NULL; 3150 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3151 /* Original is not in_sync - bad */ 3152 goto abort; 3153 } 3154 3155 if (!disk->rdev || 3156 !test_bit(In_sync, &disk->rdev->flags)) { 3157 disk->head_position = 0; 3158 if (disk->rdev && 3159 (disk->rdev->saved_raid_disk < 0)) 3160 conf->fullsync = 1; 3161 } 3162 } 3163 3164 err = -ENOMEM; 3165 rcu_assign_pointer(conf->thread, 3166 md_register_thread(raid1d, mddev, "raid1")); 3167 if (!conf->thread) 3168 goto abort; 3169 3170 return conf; 3171 3172 abort: 3173 if (conf) { 3174 mempool_destroy(conf->r1bio_pool); 3175 kfree(conf->mirrors); 3176 safe_put_page(conf->tmppage); 3177 kfree(conf->nr_pending); 3178 kfree(conf->nr_waiting); 3179 kfree(conf->nr_queued); 3180 kfree(conf->barrier); 3181 bioset_exit(&conf->bio_split); 3182 kfree(conf); 3183 } 3184 return ERR_PTR(err); 3185 } 3186 3187 static int raid1_set_limits(struct mddev *mddev) 3188 { 3189 struct queue_limits lim; 3190 int err; 3191 3192 md_init_stacking_limits(&lim); 3193 lim.max_write_zeroes_sectors = 0; 3194 lim.max_hw_wzeroes_unmap_sectors = 0; 3195 lim.logical_block_size = mddev->logical_block_size; 3196 lim.features |= BLK_FEAT_ATOMIC_WRITES; 3197 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3198 if (err) 3199 return err; 3200 return queue_limits_set(mddev->gendisk->queue, &lim); 3201 } 3202 3203 static int raid1_run(struct mddev *mddev) 3204 { 3205 struct r1conf *conf; 3206 int i; 3207 int ret; 3208 3209 if (mddev->level != 1) { 3210 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3211 mdname(mddev), mddev->level); 3212 return -EIO; 3213 } 3214 if (mddev->reshape_position != MaxSector) { 3215 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3216 mdname(mddev)); 3217 return -EIO; 3218 } 3219 3220 /* 3221 * copy the already verified devices into our private RAID1 3222 * bookkeeping area. [whatever we allocate in run(), 3223 * should be freed in raid1_free()] 3224 */ 3225 if (mddev->private == NULL) 3226 conf = setup_conf(mddev); 3227 else 3228 conf = mddev->private; 3229 3230 if (IS_ERR(conf)) 3231 return PTR_ERR(conf); 3232 3233 if (!mddev_is_dm(mddev)) { 3234 ret = raid1_set_limits(mddev); 3235 if (ret) { 3236 md_unregister_thread(mddev, &conf->thread); 3237 if (!mddev->private) 3238 raid1_free(mddev, conf); 3239 return ret; 3240 } 3241 } 3242 3243 mddev->degraded = 0; 3244 for (i = 0; i < conf->raid_disks; i++) 3245 if (conf->mirrors[i].rdev == NULL || 3246 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3247 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3248 mddev->degraded++; 3249 /* 3250 * RAID1 needs at least one disk in active 3251 */ 3252 if (conf->raid_disks - mddev->degraded < 1) { 3253 md_unregister_thread(mddev, &conf->thread); 3254 if (!mddev->private) 3255 raid1_free(mddev, conf); 3256 return -EINVAL; 3257 } 3258 3259 if (conf->raid_disks - mddev->degraded == 1) 3260 mddev->resync_offset = MaxSector; 3261 3262 if (mddev->resync_offset != MaxSector) 3263 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3264 mdname(mddev)); 3265 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3266 mdname(mddev), mddev->raid_disks - mddev->degraded, 3267 mddev->raid_disks); 3268 3269 /* 3270 * Ok, everything is just fine now 3271 */ 3272 rcu_assign_pointer(mddev->thread, conf->thread); 3273 rcu_assign_pointer(conf->thread, NULL); 3274 mddev->private = conf; 3275 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3276 3277 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3278 3279 ret = md_integrity_register(mddev); 3280 if (ret) 3281 md_unregister_thread(mddev, &mddev->thread); 3282 return ret; 3283 } 3284 3285 static void raid1_free(struct mddev *mddev, void *priv) 3286 { 3287 struct r1conf *conf = priv; 3288 3289 mempool_destroy(conf->r1bio_pool); 3290 kfree(conf->mirrors); 3291 safe_put_page(conf->tmppage); 3292 kfree(conf->nr_pending); 3293 kfree(conf->nr_waiting); 3294 kfree(conf->nr_queued); 3295 kfree(conf->barrier); 3296 bioset_exit(&conf->bio_split); 3297 kfree(conf); 3298 } 3299 3300 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3301 { 3302 /* no resync is happening, and there is enough space 3303 * on all devices, so we can resize. 3304 * We need to make sure resync covers any new space. 3305 * If the array is shrinking we should possibly wait until 3306 * any io in the removed space completes, but it hardly seems 3307 * worth it. 3308 */ 3309 sector_t newsize = raid1_size(mddev, sectors, 0); 3310 3311 if (mddev->external_size && 3312 mddev->array_sectors > newsize) 3313 return -EINVAL; 3314 3315 if (md_bitmap_enabled(mddev, false)) { 3316 int ret = mddev->bitmap_ops->resize(mddev, newsize, 0); 3317 3318 if (ret) 3319 return ret; 3320 } 3321 3322 md_set_array_sectors(mddev, newsize); 3323 if (sectors > mddev->dev_sectors && 3324 mddev->resync_offset > mddev->dev_sectors) { 3325 mddev->resync_offset = mddev->dev_sectors; 3326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3327 } 3328 mddev->dev_sectors = sectors; 3329 mddev->resync_max_sectors = sectors; 3330 return 0; 3331 } 3332 3333 static int raid1_reshape(struct mddev *mddev) 3334 { 3335 /* We need to: 3336 * 1/ resize the r1bio_pool 3337 * 2/ resize conf->mirrors 3338 * 3339 * We allocate a new r1bio_pool if we can. 3340 * Then raise a device barrier and wait until all IO stops. 3341 * Then resize conf->mirrors and swap in the new r1bio pool. 3342 * 3343 * At the same time, we "pack" the devices so that all the missing 3344 * devices have the higher raid_disk numbers. 3345 */ 3346 mempool_t *newpool, *oldpool; 3347 size_t new_r1bio_size; 3348 struct raid1_info *newmirrors; 3349 struct r1conf *conf = mddev->private; 3350 int cnt, raid_disks; 3351 unsigned long flags; 3352 int d, d2; 3353 3354 /* Cannot change chunk_size, layout, or level */ 3355 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3356 mddev->layout != mddev->new_layout || 3357 mddev->level != mddev->new_level) { 3358 mddev->new_chunk_sectors = mddev->chunk_sectors; 3359 mddev->new_layout = mddev->layout; 3360 mddev->new_level = mddev->level; 3361 return -EINVAL; 3362 } 3363 3364 if (!mddev_is_clustered(mddev)) 3365 md_allow_write(mddev); 3366 3367 raid_disks = mddev->raid_disks + mddev->delta_disks; 3368 3369 if (raid_disks < conf->raid_disks) { 3370 cnt=0; 3371 for (d= 0; d < conf->raid_disks; d++) 3372 if (conf->mirrors[d].rdev) 3373 cnt++; 3374 if (cnt > raid_disks) 3375 return -EBUSY; 3376 } 3377 3378 new_r1bio_size = offsetof(struct r1bio, bios[raid_disks * 2]); 3379 newpool = mempool_create_kmalloc_pool(NR_RAID_BIOS, new_r1bio_size); 3380 if (!newpool) { 3381 return -ENOMEM; 3382 } 3383 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3384 raid_disks, 2), 3385 GFP_KERNEL); 3386 if (!newmirrors) { 3387 mempool_destroy(newpool); 3388 return -ENOMEM; 3389 } 3390 3391 freeze_array(conf, 0); 3392 3393 /* ok, everything is stopped */ 3394 oldpool = conf->r1bio_pool; 3395 conf->r1bio_pool = newpool; 3396 3397 for (d = d2 = 0; d < conf->raid_disks; d++) { 3398 struct md_rdev *rdev = conf->mirrors[d].rdev; 3399 if (rdev && rdev->raid_disk != d2) { 3400 sysfs_unlink_rdev(mddev, rdev); 3401 rdev->raid_disk = d2; 3402 sysfs_unlink_rdev(mddev, rdev); 3403 if (sysfs_link_rdev(mddev, rdev)) 3404 pr_warn("md/raid1:%s: cannot register rd%d\n", 3405 mdname(mddev), rdev->raid_disk); 3406 } 3407 if (rdev) 3408 newmirrors[d2++].rdev = rdev; 3409 } 3410 kfree(conf->mirrors); 3411 conf->mirrors = newmirrors; 3412 3413 spin_lock_irqsave(&conf->device_lock, flags); 3414 mddev->degraded += (raid_disks - conf->raid_disks); 3415 spin_unlock_irqrestore(&conf->device_lock, flags); 3416 conf->raid_disks = mddev->raid_disks = raid_disks; 3417 mddev->delta_disks = 0; 3418 3419 unfreeze_array(conf); 3420 3421 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3422 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3423 md_wakeup_thread(mddev->thread); 3424 3425 mempool_destroy(oldpool); 3426 return 0; 3427 } 3428 3429 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3430 { 3431 struct r1conf *conf = mddev->private; 3432 3433 if (quiesce) 3434 freeze_array(conf, 0); 3435 else 3436 unfreeze_array(conf); 3437 } 3438 3439 static void *raid1_takeover(struct mddev *mddev) 3440 { 3441 /* raid1 can take over: 3442 * raid5 with 2 devices, any layout or chunk size 3443 */ 3444 if (mddev->level == 5 && mddev->raid_disks == 2) { 3445 struct r1conf *conf; 3446 mddev->new_level = 1; 3447 mddev->new_layout = 0; 3448 mddev->new_chunk_sectors = 0; 3449 conf = setup_conf(mddev); 3450 if (!IS_ERR(conf)) { 3451 /* Array must appear to be quiesced */ 3452 conf->array_frozen = 1; 3453 mddev_clear_unsupported_flags(mddev, 3454 UNSUPPORTED_MDDEV_FLAGS); 3455 } 3456 return conf; 3457 } 3458 return ERR_PTR(-EINVAL); 3459 } 3460 3461 static struct md_personality raid1_personality = 3462 { 3463 .head = { 3464 .type = MD_PERSONALITY, 3465 .id = ID_RAID1, 3466 .name = "raid1", 3467 .owner = THIS_MODULE, 3468 }, 3469 3470 .make_request = raid1_make_request, 3471 .run = raid1_run, 3472 .free = raid1_free, 3473 .status = raid1_status, 3474 .error_handler = raid1_error, 3475 .hot_add_disk = raid1_add_disk, 3476 .hot_remove_disk= raid1_remove_disk, 3477 .spare_active = raid1_spare_active, 3478 .sync_request = raid1_sync_request, 3479 .resize = raid1_resize, 3480 .size = raid1_size, 3481 .check_reshape = raid1_reshape, 3482 .quiesce = raid1_quiesce, 3483 .takeover = raid1_takeover, 3484 }; 3485 3486 static int __init raid1_init(void) 3487 { 3488 return register_md_submodule(&raid1_personality.head); 3489 } 3490 3491 static void __exit raid1_exit(void) 3492 { 3493 unregister_md_submodule(&raid1_personality.head); 3494 } 3495 3496 module_init(raid1_init); 3497 module_exit(raid1_exit); 3498 MODULE_LICENSE("GPL"); 3499 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3500 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3501 MODULE_ALIAS("md-raid1"); 3502 MODULE_ALIAS("md-level-1"); 3503