1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 304 bio_end_io_acct(bio, r1_bio->start_time); 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 /* if nobody has done the final endio yet, do it now */ 314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 316 (bio_data_dir(bio) == WRITE) ? "write" : "read", 317 (unsigned long long) bio->bi_iter.bi_sector, 318 (unsigned long long) bio_end_sector(bio) - 1); 319 320 call_bio_endio(r1_bio); 321 } 322 /* 323 * Wake up any possible resync thread that waits for the device 324 * to go idle. All I/Os, even write-behind writes, are done. 325 */ 326 allow_barrier(conf, r1_bio->sector); 327 328 free_r1bio(r1_bio); 329 } 330 331 /* 332 * Update disk head position estimator based on IRQ completion info. 333 */ 334 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 335 { 336 struct r1conf *conf = r1_bio->mddev->private; 337 338 conf->mirrors[disk].head_position = 339 r1_bio->sector + (r1_bio->sectors); 340 } 341 342 /* 343 * Find the disk number which triggered given bio 344 */ 345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 346 { 347 int mirror; 348 struct r1conf *conf = r1_bio->mddev->private; 349 int raid_disks = conf->raid_disks; 350 351 for (mirror = 0; mirror < raid_disks * 2; mirror++) 352 if (r1_bio->bios[mirror] == bio) 353 break; 354 355 BUG_ON(mirror == raid_disks * 2); 356 update_head_pos(mirror, r1_bio); 357 358 return mirror; 359 } 360 361 static void raid1_end_read_request(struct bio *bio) 362 { 363 int uptodate = !bio->bi_status; 364 struct r1bio *r1_bio = bio->bi_private; 365 struct r1conf *conf = r1_bio->mddev->private; 366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 367 368 /* 369 * this branch is our 'one mirror IO has finished' event handler: 370 */ 371 update_head_pos(r1_bio->read_disk, r1_bio); 372 373 if (uptodate) 374 set_bit(R1BIO_Uptodate, &r1_bio->state); 375 else if (test_bit(FailFast, &rdev->flags) && 376 test_bit(R1BIO_FailFast, &r1_bio->state)) 377 /* This was a fail-fast read so we definitely 378 * want to retry */ 379 ; 380 else { 381 /* If all other devices have failed, we want to return 382 * the error upwards rather than fail the last device. 383 * Here we redefine "uptodate" to mean "Don't want to retry" 384 */ 385 unsigned long flags; 386 spin_lock_irqsave(&conf->device_lock, flags); 387 if (r1_bio->mddev->degraded == conf->raid_disks || 388 (r1_bio->mddev->degraded == conf->raid_disks-1 && 389 test_bit(In_sync, &rdev->flags))) 390 uptodate = 1; 391 spin_unlock_irqrestore(&conf->device_lock, flags); 392 } 393 394 if (uptodate) { 395 raid_end_bio_io(r1_bio); 396 rdev_dec_pending(rdev, conf->mddev); 397 } else { 398 /* 399 * oops, read error: 400 */ 401 char b[BDEVNAME_SIZE]; 402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 bdevname(rdev->bdev, b), 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 /* it really is the end of this request */ 415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 416 bio_free_pages(r1_bio->behind_master_bio); 417 bio_put(r1_bio->behind_master_bio); 418 r1_bio->behind_master_bio = NULL; 419 } 420 /* clear the bitmap if all writes complete successfully */ 421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 422 r1_bio->sectors, 423 !test_bit(R1BIO_Degraded, &r1_bio->state), 424 test_bit(R1BIO_BehindIO, &r1_bio->state)); 425 md_write_end(r1_bio->mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Fail the request */ 482 set_bit(R1BIO_Degraded, &r1_bio->state); 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 sector_t first_bad; 499 int bad_sectors; 500 501 r1_bio->bios[mirror] = NULL; 502 to_put = bio; 503 /* 504 * Do not set R1BIO_Uptodate if the current device is 505 * rebuilding or Faulty. This is because we cannot use 506 * such device for properly reading the data back (we could 507 * potentially use it, if the current write would have felt 508 * before rdev->recovery_offset, but for simplicity we don't 509 * check this here. 510 */ 511 if (test_bit(In_sync, &rdev->flags) && 512 !test_bit(Faulty, &rdev->flags)) 513 set_bit(R1BIO_Uptodate, &r1_bio->state); 514 515 /* Maybe we can clear some bad blocks. */ 516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 517 &first_bad, &bad_sectors) && !discard_error) { 518 r1_bio->bios[mirror] = IO_MADE_GOOD; 519 set_bit(R1BIO_MadeGood, &r1_bio->state); 520 } 521 } 522 523 if (behind) { 524 if (test_bit(CollisionCheck, &rdev->flags)) 525 remove_serial(rdev, lo, hi); 526 if (test_bit(WriteMostly, &rdev->flags)) 527 atomic_dec(&r1_bio->behind_remaining); 528 529 /* 530 * In behind mode, we ACK the master bio once the I/O 531 * has safely reached all non-writemostly 532 * disks. Setting the Returned bit ensures that this 533 * gets done only once -- we don't ever want to return 534 * -EIO here, instead we'll wait 535 */ 536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 537 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 538 /* Maybe we can return now */ 539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 540 struct bio *mbio = r1_bio->master_bio; 541 pr_debug("raid1: behind end write sectors" 542 " %llu-%llu\n", 543 (unsigned long long) mbio->bi_iter.bi_sector, 544 (unsigned long long) bio_end_sector(mbio) - 1); 545 call_bio_endio(r1_bio); 546 } 547 } 548 } else if (rdev->mddev->serialize_policy) 549 remove_serial(rdev, lo, hi); 550 if (r1_bio->bios[mirror] == NULL) 551 rdev_dec_pending(rdev, conf->mddev); 552 553 /* 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 r1_bio_write_done(r1_bio); 558 559 if (to_put) 560 bio_put(to_put); 561 } 562 563 static sector_t align_to_barrier_unit_end(sector_t start_sector, 564 sector_t sectors) 565 { 566 sector_t len; 567 568 WARN_ON(sectors == 0); 569 /* 570 * len is the number of sectors from start_sector to end of the 571 * barrier unit which start_sector belongs to. 572 */ 573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 574 start_sector; 575 576 if (len > sectors) 577 len = sectors; 578 579 return len; 580 } 581 582 /* 583 * This routine returns the disk from which the requested read should 584 * be done. There is a per-array 'next expected sequential IO' sector 585 * number - if this matches on the next IO then we use the last disk. 586 * There is also a per-disk 'last know head position' sector that is 587 * maintained from IRQ contexts, both the normal and the resync IO 588 * completion handlers update this position correctly. If there is no 589 * perfect sequential match then we pick the disk whose head is closest. 590 * 591 * If there are 2 mirrors in the same 2 devices, performance degrades 592 * because position is mirror, not device based. 593 * 594 * The rdev for the device selected will have nr_pending incremented. 595 */ 596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 597 { 598 const sector_t this_sector = r1_bio->sector; 599 int sectors; 600 int best_good_sectors; 601 int best_disk, best_dist_disk, best_pending_disk; 602 int has_nonrot_disk; 603 int disk; 604 sector_t best_dist; 605 unsigned int min_pending; 606 struct md_rdev *rdev; 607 int choose_first; 608 int choose_next_idle; 609 610 rcu_read_lock(); 611 /* 612 * Check if we can balance. We can balance on the whole 613 * device if no resync is going on, or below the resync window. 614 * We take the first readable disk when above the resync window. 615 */ 616 retry: 617 sectors = r1_bio->sectors; 618 best_disk = -1; 619 best_dist_disk = -1; 620 best_dist = MaxSector; 621 best_pending_disk = -1; 622 min_pending = UINT_MAX; 623 best_good_sectors = 0; 624 has_nonrot_disk = 0; 625 choose_next_idle = 0; 626 clear_bit(R1BIO_FailFast, &r1_bio->state); 627 628 if ((conf->mddev->recovery_cp < this_sector + sectors) || 629 (mddev_is_clustered(conf->mddev) && 630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 631 this_sector + sectors))) 632 choose_first = 1; 633 else 634 choose_first = 0; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 sector_t dist; 638 sector_t first_bad; 639 int bad_sectors; 640 unsigned int pending; 641 bool nonrot; 642 643 rdev = rcu_dereference(conf->mirrors[disk].rdev); 644 if (r1_bio->bios[disk] == IO_BLOCKED 645 || rdev == NULL 646 || test_bit(Faulty, &rdev->flags)) 647 continue; 648 if (!test_bit(In_sync, &rdev->flags) && 649 rdev->recovery_offset < this_sector + sectors) 650 continue; 651 if (test_bit(WriteMostly, &rdev->flags)) { 652 /* Don't balance among write-mostly, just 653 * use the first as a last resort */ 654 if (best_dist_disk < 0) { 655 if (is_badblock(rdev, this_sector, sectors, 656 &first_bad, &bad_sectors)) { 657 if (first_bad <= this_sector) 658 /* Cannot use this */ 659 continue; 660 best_good_sectors = first_bad - this_sector; 661 } else 662 best_good_sectors = sectors; 663 best_dist_disk = disk; 664 best_pending_disk = disk; 665 } 666 continue; 667 } 668 /* This is a reasonable device to use. It might 669 * even be best. 670 */ 671 if (is_badblock(rdev, this_sector, sectors, 672 &first_bad, &bad_sectors)) { 673 if (best_dist < MaxSector) 674 /* already have a better device */ 675 continue; 676 if (first_bad <= this_sector) { 677 /* cannot read here. If this is the 'primary' 678 * device, then we must not read beyond 679 * bad_sectors from another device.. 680 */ 681 bad_sectors -= (this_sector - first_bad); 682 if (choose_first && sectors > bad_sectors) 683 sectors = bad_sectors; 684 if (best_good_sectors > sectors) 685 best_good_sectors = sectors; 686 687 } else { 688 sector_t good_sectors = first_bad - this_sector; 689 if (good_sectors > best_good_sectors) { 690 best_good_sectors = good_sectors; 691 best_disk = disk; 692 } 693 if (choose_first) 694 break; 695 } 696 continue; 697 } else { 698 if ((sectors > best_good_sectors) && (best_disk >= 0)) 699 best_disk = -1; 700 best_good_sectors = sectors; 701 } 702 703 if (best_disk >= 0) 704 /* At least two disks to choose from so failfast is OK */ 705 set_bit(R1BIO_FailFast, &r1_bio->state); 706 707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 708 has_nonrot_disk |= nonrot; 709 pending = atomic_read(&rdev->nr_pending); 710 dist = abs(this_sector - conf->mirrors[disk].head_position); 711 if (choose_first) { 712 best_disk = disk; 713 break; 714 } 715 /* Don't change to another disk for sequential reads */ 716 if (conf->mirrors[disk].next_seq_sect == this_sector 717 || dist == 0) { 718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 719 struct raid1_info *mirror = &conf->mirrors[disk]; 720 721 best_disk = disk; 722 /* 723 * If buffered sequential IO size exceeds optimal 724 * iosize, check if there is idle disk. If yes, choose 725 * the idle disk. read_balance could already choose an 726 * idle disk before noticing it's a sequential IO in 727 * this disk. This doesn't matter because this disk 728 * will idle, next time it will be utilized after the 729 * first disk has IO size exceeds optimal iosize. In 730 * this way, iosize of the first disk will be optimal 731 * iosize at least. iosize of the second disk might be 732 * small, but not a big deal since when the second disk 733 * starts IO, the first disk is likely still busy. 734 */ 735 if (nonrot && opt_iosize > 0 && 736 mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= 739 mirror->seq_start) { 740 choose_next_idle = 1; 741 continue; 742 } 743 break; 744 } 745 746 if (choose_next_idle) 747 continue; 748 749 if (min_pending > pending) { 750 min_pending = pending; 751 best_pending_disk = disk; 752 } 753 754 if (dist < best_dist) { 755 best_dist = dist; 756 best_dist_disk = disk; 757 } 758 } 759 760 /* 761 * If all disks are rotational, choose the closest disk. If any disk is 762 * non-rotational, choose the disk with less pending request even the 763 * disk is rotational, which might/might not be optimal for raids with 764 * mixed ratation/non-rotational disks depending on workload. 765 */ 766 if (best_disk == -1) { 767 if (has_nonrot_disk || min_pending == 0) 768 best_disk = best_pending_disk; 769 else 770 best_disk = best_dist_disk; 771 } 772 773 if (best_disk >= 0) { 774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 775 if (!rdev) 776 goto retry; 777 atomic_inc(&rdev->nr_pending); 778 sectors = best_good_sectors; 779 780 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 781 conf->mirrors[best_disk].seq_start = this_sector; 782 783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 784 } 785 rcu_read_unlock(); 786 *max_sectors = sectors; 787 788 return best_disk; 789 } 790 791 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 792 { 793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 794 md_bitmap_unplug(conf->mddev->bitmap); 795 wake_up(&conf->wait_barrier); 796 797 while (bio) { /* submit pending writes */ 798 struct bio *next = bio->bi_next; 799 struct md_rdev *rdev = (void *)bio->bi_bdev; 800 bio->bi_next = NULL; 801 bio_set_dev(bio, rdev->bdev); 802 if (test_bit(Faulty, &rdev->flags)) { 803 bio_io_error(bio); 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 806 /* Just ignore it */ 807 bio_endio(bio); 808 else 809 submit_bio_noacct(bio); 810 bio = next; 811 cond_resched(); 812 } 813 } 814 815 static void flush_pending_writes(struct r1conf *conf) 816 { 817 /* Any writes that have been queued but are awaiting 818 * bitmap updates get flushed here. 819 */ 820 spin_lock_irq(&conf->device_lock); 821 822 if (conf->pending_bio_list.head) { 823 struct blk_plug plug; 824 struct bio *bio; 825 826 bio = bio_list_get(&conf->pending_bio_list); 827 conf->pending_count = 0; 828 spin_unlock_irq(&conf->device_lock); 829 830 /* 831 * As this is called in a wait_event() loop (see freeze_array), 832 * current->state might be TASK_UNINTERRUPTIBLE which will 833 * cause a warning when we prepare to wait again. As it is 834 * rare that this path is taken, it is perfectly safe to force 835 * us to go around the wait_event() loop again, so the warning 836 * is a false-positive. Silence the warning by resetting 837 * thread state 838 */ 839 __set_current_state(TASK_RUNNING); 840 blk_start_plug(&plug); 841 flush_bio_list(conf, bio); 842 blk_finish_plug(&plug); 843 } else 844 spin_unlock_irq(&conf->device_lock); 845 } 846 847 /* Barriers.... 848 * Sometimes we need to suspend IO while we do something else, 849 * either some resync/recovery, or reconfigure the array. 850 * To do this we raise a 'barrier'. 851 * The 'barrier' is a counter that can be raised multiple times 852 * to count how many activities are happening which preclude 853 * normal IO. 854 * We can only raise the barrier if there is no pending IO. 855 * i.e. if nr_pending == 0. 856 * We choose only to raise the barrier if no-one is waiting for the 857 * barrier to go down. This means that as soon as an IO request 858 * is ready, no other operations which require a barrier will start 859 * until the IO request has had a chance. 860 * 861 * So: regular IO calls 'wait_barrier'. When that returns there 862 * is no backgroup IO happening, It must arrange to call 863 * allow_barrier when it has finished its IO. 864 * backgroup IO calls must call raise_barrier. Once that returns 865 * there is no normal IO happeing. It must arrange to call 866 * lower_barrier when the particular background IO completes. 867 * 868 * If resync/recovery is interrupted, returns -EINTR; 869 * Otherwise, returns 0. 870 */ 871 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 872 { 873 int idx = sector_to_idx(sector_nr); 874 875 spin_lock_irq(&conf->resync_lock); 876 877 /* Wait until no block IO is waiting */ 878 wait_event_lock_irq(conf->wait_barrier, 879 !atomic_read(&conf->nr_waiting[idx]), 880 conf->resync_lock); 881 882 /* block any new IO from starting */ 883 atomic_inc(&conf->barrier[idx]); 884 /* 885 * In raise_barrier() we firstly increase conf->barrier[idx] then 886 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 887 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 888 * A memory barrier here to make sure conf->nr_pending[idx] won't 889 * be fetched before conf->barrier[idx] is increased. Otherwise 890 * there will be a race between raise_barrier() and _wait_barrier(). 891 */ 892 smp_mb__after_atomic(); 893 894 /* For these conditions we must wait: 895 * A: while the array is in frozen state 896 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 897 * existing in corresponding I/O barrier bucket. 898 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 899 * max resync count which allowed on current I/O barrier bucket. 900 */ 901 wait_event_lock_irq(conf->wait_barrier, 902 (!conf->array_frozen && 903 !atomic_read(&conf->nr_pending[idx]) && 904 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 905 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 906 conf->resync_lock); 907 908 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 909 atomic_dec(&conf->barrier[idx]); 910 spin_unlock_irq(&conf->resync_lock); 911 wake_up(&conf->wait_barrier); 912 return -EINTR; 913 } 914 915 atomic_inc(&conf->nr_sync_pending); 916 spin_unlock_irq(&conf->resync_lock); 917 918 return 0; 919 } 920 921 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 922 { 923 int idx = sector_to_idx(sector_nr); 924 925 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 926 927 atomic_dec(&conf->barrier[idx]); 928 atomic_dec(&conf->nr_sync_pending); 929 wake_up(&conf->wait_barrier); 930 } 931 932 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 933 { 934 bool ret = true; 935 936 /* 937 * We need to increase conf->nr_pending[idx] very early here, 938 * then raise_barrier() can be blocked when it waits for 939 * conf->nr_pending[idx] to be 0. Then we can avoid holding 940 * conf->resync_lock when there is no barrier raised in same 941 * barrier unit bucket. Also if the array is frozen, I/O 942 * should be blocked until array is unfrozen. 943 */ 944 atomic_inc(&conf->nr_pending[idx]); 945 /* 946 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 947 * check conf->barrier[idx]. In raise_barrier() we firstly increase 948 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 949 * barrier is necessary here to make sure conf->barrier[idx] won't be 950 * fetched before conf->nr_pending[idx] is increased. Otherwise there 951 * will be a race between _wait_barrier() and raise_barrier(). 952 */ 953 smp_mb__after_atomic(); 954 955 /* 956 * Don't worry about checking two atomic_t variables at same time 957 * here. If during we check conf->barrier[idx], the array is 958 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 959 * 0, it is safe to return and make the I/O continue. Because the 960 * array is frozen, all I/O returned here will eventually complete 961 * or be queued, no race will happen. See code comment in 962 * frozen_array(). 963 */ 964 if (!READ_ONCE(conf->array_frozen) && 965 !atomic_read(&conf->barrier[idx])) 966 return ret; 967 968 /* 969 * After holding conf->resync_lock, conf->nr_pending[idx] 970 * should be decreased before waiting for barrier to drop. 971 * Otherwise, we may encounter a race condition because 972 * raise_barrer() might be waiting for conf->nr_pending[idx] 973 * to be 0 at same time. 974 */ 975 spin_lock_irq(&conf->resync_lock); 976 atomic_inc(&conf->nr_waiting[idx]); 977 atomic_dec(&conf->nr_pending[idx]); 978 /* 979 * In case freeze_array() is waiting for 980 * get_unqueued_pending() == extra 981 */ 982 wake_up(&conf->wait_barrier); 983 /* Wait for the barrier in same barrier unit bucket to drop. */ 984 985 /* Return false when nowait flag is set */ 986 if (nowait) { 987 ret = false; 988 } else { 989 wait_event_lock_irq(conf->wait_barrier, 990 !conf->array_frozen && 991 !atomic_read(&conf->barrier[idx]), 992 conf->resync_lock); 993 atomic_inc(&conf->nr_pending[idx]); 994 } 995 996 atomic_dec(&conf->nr_waiting[idx]); 997 spin_unlock_irq(&conf->resync_lock); 998 return ret; 999 } 1000 1001 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1002 { 1003 int idx = sector_to_idx(sector_nr); 1004 bool ret = true; 1005 1006 /* 1007 * Very similar to _wait_barrier(). The difference is, for read 1008 * I/O we don't need wait for sync I/O, but if the whole array 1009 * is frozen, the read I/O still has to wait until the array is 1010 * unfrozen. Since there is no ordering requirement with 1011 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1012 */ 1013 atomic_inc(&conf->nr_pending[idx]); 1014 1015 if (!READ_ONCE(conf->array_frozen)) 1016 return ret; 1017 1018 spin_lock_irq(&conf->resync_lock); 1019 atomic_inc(&conf->nr_waiting[idx]); 1020 atomic_dec(&conf->nr_pending[idx]); 1021 /* 1022 * In case freeze_array() is waiting for 1023 * get_unqueued_pending() == extra 1024 */ 1025 wake_up(&conf->wait_barrier); 1026 /* Wait for array to be unfrozen */ 1027 1028 /* Return false when nowait flag is set */ 1029 if (nowait) { 1030 /* Return false when nowait flag is set */ 1031 ret = false; 1032 } else { 1033 wait_event_lock_irq(conf->wait_barrier, 1034 !conf->array_frozen, 1035 conf->resync_lock); 1036 atomic_inc(&conf->nr_pending[idx]); 1037 } 1038 1039 atomic_dec(&conf->nr_waiting[idx]); 1040 spin_unlock_irq(&conf->resync_lock); 1041 return ret; 1042 } 1043 1044 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1045 { 1046 int idx = sector_to_idx(sector_nr); 1047 1048 return _wait_barrier(conf, idx, nowait); 1049 } 1050 1051 static void _allow_barrier(struct r1conf *conf, int idx) 1052 { 1053 atomic_dec(&conf->nr_pending[idx]); 1054 wake_up(&conf->wait_barrier); 1055 } 1056 1057 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1058 { 1059 int idx = sector_to_idx(sector_nr); 1060 1061 _allow_barrier(conf, idx); 1062 } 1063 1064 /* conf->resync_lock should be held */ 1065 static int get_unqueued_pending(struct r1conf *conf) 1066 { 1067 int idx, ret; 1068 1069 ret = atomic_read(&conf->nr_sync_pending); 1070 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1071 ret += atomic_read(&conf->nr_pending[idx]) - 1072 atomic_read(&conf->nr_queued[idx]); 1073 1074 return ret; 1075 } 1076 1077 static void freeze_array(struct r1conf *conf, int extra) 1078 { 1079 /* Stop sync I/O and normal I/O and wait for everything to 1080 * go quiet. 1081 * This is called in two situations: 1082 * 1) management command handlers (reshape, remove disk, quiesce). 1083 * 2) one normal I/O request failed. 1084 1085 * After array_frozen is set to 1, new sync IO will be blocked at 1086 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1087 * or wait_read_barrier(). The flying I/Os will either complete or be 1088 * queued. When everything goes quite, there are only queued I/Os left. 1089 1090 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1091 * barrier bucket index which this I/O request hits. When all sync and 1092 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1093 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1094 * in handle_read_error(), we may call freeze_array() before trying to 1095 * fix the read error. In this case, the error read I/O is not queued, 1096 * so get_unqueued_pending() == 1. 1097 * 1098 * Therefore before this function returns, we need to wait until 1099 * get_unqueued_pendings(conf) gets equal to extra. For 1100 * normal I/O context, extra is 1, in rested situations extra is 0. 1101 */ 1102 spin_lock_irq(&conf->resync_lock); 1103 conf->array_frozen = 1; 1104 raid1_log(conf->mddev, "wait freeze"); 1105 wait_event_lock_irq_cmd( 1106 conf->wait_barrier, 1107 get_unqueued_pending(conf) == extra, 1108 conf->resync_lock, 1109 flush_pending_writes(conf)); 1110 spin_unlock_irq(&conf->resync_lock); 1111 } 1112 static void unfreeze_array(struct r1conf *conf) 1113 { 1114 /* reverse the effect of the freeze */ 1115 spin_lock_irq(&conf->resync_lock); 1116 conf->array_frozen = 0; 1117 spin_unlock_irq(&conf->resync_lock); 1118 wake_up(&conf->wait_barrier); 1119 } 1120 1121 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1122 struct bio *bio) 1123 { 1124 int size = bio->bi_iter.bi_size; 1125 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1126 int i = 0; 1127 struct bio *behind_bio = NULL; 1128 1129 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1130 &r1_bio->mddev->bio_set); 1131 if (!behind_bio) 1132 return; 1133 1134 /* discard op, we don't support writezero/writesame yet */ 1135 if (!bio_has_data(bio)) { 1136 behind_bio->bi_iter.bi_size = size; 1137 goto skip_copy; 1138 } 1139 1140 behind_bio->bi_write_hint = bio->bi_write_hint; 1141 1142 while (i < vcnt && size) { 1143 struct page *page; 1144 int len = min_t(int, PAGE_SIZE, size); 1145 1146 page = alloc_page(GFP_NOIO); 1147 if (unlikely(!page)) 1148 goto free_pages; 1149 1150 bio_add_page(behind_bio, page, len, 0); 1151 1152 size -= len; 1153 i++; 1154 } 1155 1156 bio_copy_data(behind_bio, bio); 1157 skip_copy: 1158 r1_bio->behind_master_bio = behind_bio; 1159 set_bit(R1BIO_BehindIO, &r1_bio->state); 1160 1161 return; 1162 1163 free_pages: 1164 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1165 bio->bi_iter.bi_size); 1166 bio_free_pages(behind_bio); 1167 bio_put(behind_bio); 1168 } 1169 1170 struct raid1_plug_cb { 1171 struct blk_plug_cb cb; 1172 struct bio_list pending; 1173 int pending_cnt; 1174 }; 1175 1176 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1177 { 1178 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1179 cb); 1180 struct mddev *mddev = plug->cb.data; 1181 struct r1conf *conf = mddev->private; 1182 struct bio *bio; 1183 1184 if (from_schedule || current->bio_list) { 1185 spin_lock_irq(&conf->device_lock); 1186 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1187 conf->pending_count += plug->pending_cnt; 1188 spin_unlock_irq(&conf->device_lock); 1189 wake_up(&conf->wait_barrier); 1190 md_wakeup_thread(mddev->thread); 1191 kfree(plug); 1192 return; 1193 } 1194 1195 /* we aren't scheduling, so we can do the write-out directly. */ 1196 bio = bio_list_get(&plug->pending); 1197 flush_bio_list(conf, bio); 1198 kfree(plug); 1199 } 1200 1201 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1202 { 1203 r1_bio->master_bio = bio; 1204 r1_bio->sectors = bio_sectors(bio); 1205 r1_bio->state = 0; 1206 r1_bio->mddev = mddev; 1207 r1_bio->sector = bio->bi_iter.bi_sector; 1208 } 1209 1210 static inline struct r1bio * 1211 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1212 { 1213 struct r1conf *conf = mddev->private; 1214 struct r1bio *r1_bio; 1215 1216 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1217 /* Ensure no bio records IO_BLOCKED */ 1218 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1219 init_r1bio(r1_bio, mddev, bio); 1220 return r1_bio; 1221 } 1222 1223 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1224 int max_read_sectors, struct r1bio *r1_bio) 1225 { 1226 struct r1conf *conf = mddev->private; 1227 struct raid1_info *mirror; 1228 struct bio *read_bio; 1229 struct bitmap *bitmap = mddev->bitmap; 1230 const int op = bio_op(bio); 1231 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1232 int max_sectors; 1233 int rdisk; 1234 bool r1bio_existed = !!r1_bio; 1235 char b[BDEVNAME_SIZE]; 1236 1237 /* 1238 * If r1_bio is set, we are blocking the raid1d thread 1239 * so there is a tiny risk of deadlock. So ask for 1240 * emergency memory if needed. 1241 */ 1242 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1243 1244 if (r1bio_existed) { 1245 /* Need to get the block device name carefully */ 1246 struct md_rdev *rdev; 1247 rcu_read_lock(); 1248 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1249 if (rdev) 1250 bdevname(rdev->bdev, b); 1251 else 1252 strcpy(b, "???"); 1253 rcu_read_unlock(); 1254 } 1255 1256 /* 1257 * Still need barrier for READ in case that whole 1258 * array is frozen. 1259 */ 1260 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1261 bio->bi_opf & REQ_NOWAIT)) { 1262 bio_wouldblock_error(bio); 1263 return; 1264 } 1265 1266 if (!r1_bio) 1267 r1_bio = alloc_r1bio(mddev, bio); 1268 else 1269 init_r1bio(r1_bio, mddev, bio); 1270 r1_bio->sectors = max_read_sectors; 1271 1272 /* 1273 * make_request() can abort the operation when read-ahead is being 1274 * used and no empty request is available. 1275 */ 1276 rdisk = read_balance(conf, r1_bio, &max_sectors); 1277 1278 if (rdisk < 0) { 1279 /* couldn't find anywhere to read from */ 1280 if (r1bio_existed) { 1281 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1282 mdname(mddev), 1283 b, 1284 (unsigned long long)r1_bio->sector); 1285 } 1286 raid_end_bio_io(r1_bio); 1287 return; 1288 } 1289 mirror = conf->mirrors + rdisk; 1290 1291 if (r1bio_existed) 1292 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1293 mdname(mddev), 1294 (unsigned long long)r1_bio->sector, 1295 bdevname(mirror->rdev->bdev, b)); 1296 1297 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1298 bitmap) { 1299 /* 1300 * Reading from a write-mostly device must take care not to 1301 * over-take any writes that are 'behind' 1302 */ 1303 raid1_log(mddev, "wait behind writes"); 1304 wait_event(bitmap->behind_wait, 1305 atomic_read(&bitmap->behind_writes) == 0); 1306 } 1307 1308 if (max_sectors < bio_sectors(bio)) { 1309 struct bio *split = bio_split(bio, max_sectors, 1310 gfp, &conf->bio_split); 1311 bio_chain(split, bio); 1312 submit_bio_noacct(bio); 1313 bio = split; 1314 r1_bio->master_bio = bio; 1315 r1_bio->sectors = max_sectors; 1316 } 1317 1318 r1_bio->read_disk = rdisk; 1319 1320 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1321 r1_bio->start_time = bio_start_io_acct(bio); 1322 1323 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1324 &mddev->bio_set); 1325 1326 r1_bio->bios[rdisk] = read_bio; 1327 1328 read_bio->bi_iter.bi_sector = r1_bio->sector + 1329 mirror->rdev->data_offset; 1330 read_bio->bi_end_io = raid1_end_read_request; 1331 bio_set_op_attrs(read_bio, op, do_sync); 1332 if (test_bit(FailFast, &mirror->rdev->flags) && 1333 test_bit(R1BIO_FailFast, &r1_bio->state)) 1334 read_bio->bi_opf |= MD_FAILFAST; 1335 read_bio->bi_private = r1_bio; 1336 1337 if (mddev->gendisk) 1338 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1339 r1_bio->sector); 1340 1341 submit_bio_noacct(read_bio); 1342 } 1343 1344 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1345 int max_write_sectors) 1346 { 1347 struct r1conf *conf = mddev->private; 1348 struct r1bio *r1_bio; 1349 int i, disks; 1350 struct bitmap *bitmap = mddev->bitmap; 1351 unsigned long flags; 1352 struct md_rdev *blocked_rdev; 1353 struct blk_plug_cb *cb; 1354 struct raid1_plug_cb *plug = NULL; 1355 int first_clone; 1356 int max_sectors; 1357 bool write_behind = false; 1358 1359 if (mddev_is_clustered(mddev) && 1360 md_cluster_ops->area_resyncing(mddev, WRITE, 1361 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1362 1363 DEFINE_WAIT(w); 1364 if (bio->bi_opf & REQ_NOWAIT) { 1365 bio_wouldblock_error(bio); 1366 return; 1367 } 1368 for (;;) { 1369 prepare_to_wait(&conf->wait_barrier, 1370 &w, TASK_IDLE); 1371 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1372 bio->bi_iter.bi_sector, 1373 bio_end_sector(bio))) 1374 break; 1375 schedule(); 1376 } 1377 finish_wait(&conf->wait_barrier, &w); 1378 } 1379 1380 /* 1381 * Register the new request and wait if the reconstruction 1382 * thread has put up a bar for new requests. 1383 * Continue immediately if no resync is active currently. 1384 */ 1385 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1386 bio->bi_opf & REQ_NOWAIT)) { 1387 bio_wouldblock_error(bio); 1388 return; 1389 } 1390 1391 r1_bio = alloc_r1bio(mddev, bio); 1392 r1_bio->sectors = max_write_sectors; 1393 1394 /* first select target devices under rcu_lock and 1395 * inc refcount on their rdev. Record them by setting 1396 * bios[x] to bio 1397 * If there are known/acknowledged bad blocks on any device on 1398 * which we have seen a write error, we want to avoid writing those 1399 * blocks. 1400 * This potentially requires several writes to write around 1401 * the bad blocks. Each set of writes gets it's own r1bio 1402 * with a set of bios attached. 1403 */ 1404 1405 disks = conf->raid_disks * 2; 1406 retry_write: 1407 blocked_rdev = NULL; 1408 rcu_read_lock(); 1409 max_sectors = r1_bio->sectors; 1410 for (i = 0; i < disks; i++) { 1411 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1412 1413 /* 1414 * The write-behind io is only attempted on drives marked as 1415 * write-mostly, which means we could allocate write behind 1416 * bio later. 1417 */ 1418 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1419 write_behind = true; 1420 1421 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1422 atomic_inc(&rdev->nr_pending); 1423 blocked_rdev = rdev; 1424 break; 1425 } 1426 r1_bio->bios[i] = NULL; 1427 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1428 if (i < conf->raid_disks) 1429 set_bit(R1BIO_Degraded, &r1_bio->state); 1430 continue; 1431 } 1432 1433 atomic_inc(&rdev->nr_pending); 1434 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1435 sector_t first_bad; 1436 int bad_sectors; 1437 int is_bad; 1438 1439 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1440 &first_bad, &bad_sectors); 1441 if (is_bad < 0) { 1442 /* mustn't write here until the bad block is 1443 * acknowledged*/ 1444 set_bit(BlockedBadBlocks, &rdev->flags); 1445 blocked_rdev = rdev; 1446 break; 1447 } 1448 if (is_bad && first_bad <= r1_bio->sector) { 1449 /* Cannot write here at all */ 1450 bad_sectors -= (r1_bio->sector - first_bad); 1451 if (bad_sectors < max_sectors) 1452 /* mustn't write more than bad_sectors 1453 * to other devices yet 1454 */ 1455 max_sectors = bad_sectors; 1456 rdev_dec_pending(rdev, mddev); 1457 /* We don't set R1BIO_Degraded as that 1458 * only applies if the disk is 1459 * missing, so it might be re-added, 1460 * and we want to know to recover this 1461 * chunk. 1462 * In this case the device is here, 1463 * and the fact that this chunk is not 1464 * in-sync is recorded in the bad 1465 * block log 1466 */ 1467 continue; 1468 } 1469 if (is_bad) { 1470 int good_sectors = first_bad - r1_bio->sector; 1471 if (good_sectors < max_sectors) 1472 max_sectors = good_sectors; 1473 } 1474 } 1475 r1_bio->bios[i] = bio; 1476 } 1477 rcu_read_unlock(); 1478 1479 if (unlikely(blocked_rdev)) { 1480 /* Wait for this device to become unblocked */ 1481 int j; 1482 1483 for (j = 0; j < i; j++) 1484 if (r1_bio->bios[j]) 1485 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1486 r1_bio->state = 0; 1487 allow_barrier(conf, bio->bi_iter.bi_sector); 1488 1489 if (bio->bi_opf & REQ_NOWAIT) { 1490 bio_wouldblock_error(bio); 1491 return; 1492 } 1493 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1494 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1495 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1496 goto retry_write; 1497 } 1498 1499 /* 1500 * When using a bitmap, we may call alloc_behind_master_bio below. 1501 * alloc_behind_master_bio allocates a copy of the data payload a page 1502 * at a time and thus needs a new bio that can fit the whole payload 1503 * this bio in page sized chunks. 1504 */ 1505 if (write_behind && bitmap) 1506 max_sectors = min_t(int, max_sectors, 1507 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1508 if (max_sectors < bio_sectors(bio)) { 1509 struct bio *split = bio_split(bio, max_sectors, 1510 GFP_NOIO, &conf->bio_split); 1511 bio_chain(split, bio); 1512 submit_bio_noacct(bio); 1513 bio = split; 1514 r1_bio->master_bio = bio; 1515 r1_bio->sectors = max_sectors; 1516 } 1517 1518 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1519 r1_bio->start_time = bio_start_io_acct(bio); 1520 atomic_set(&r1_bio->remaining, 1); 1521 atomic_set(&r1_bio->behind_remaining, 0); 1522 1523 first_clone = 1; 1524 1525 for (i = 0; i < disks; i++) { 1526 struct bio *mbio = NULL; 1527 struct md_rdev *rdev = conf->mirrors[i].rdev; 1528 if (!r1_bio->bios[i]) 1529 continue; 1530 1531 if (first_clone) { 1532 /* do behind I/O ? 1533 * Not if there are too many, or cannot 1534 * allocate memory, or a reader on WriteMostly 1535 * is waiting for behind writes to flush */ 1536 if (bitmap && 1537 test_bit(WriteMostly, &rdev->flags) && 1538 (atomic_read(&bitmap->behind_writes) 1539 < mddev->bitmap_info.max_write_behind) && 1540 !waitqueue_active(&bitmap->behind_wait)) { 1541 alloc_behind_master_bio(r1_bio, bio); 1542 } 1543 1544 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1545 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1546 first_clone = 0; 1547 } 1548 1549 if (r1_bio->behind_master_bio) { 1550 mbio = bio_alloc_clone(rdev->bdev, 1551 r1_bio->behind_master_bio, 1552 GFP_NOIO, &mddev->bio_set); 1553 if (test_bit(CollisionCheck, &rdev->flags)) 1554 wait_for_serialization(rdev, r1_bio); 1555 if (test_bit(WriteMostly, &rdev->flags)) 1556 atomic_inc(&r1_bio->behind_remaining); 1557 } else { 1558 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1559 &mddev->bio_set); 1560 1561 if (mddev->serialize_policy) 1562 wait_for_serialization(rdev, r1_bio); 1563 } 1564 1565 r1_bio->bios[i] = mbio; 1566 1567 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1568 mbio->bi_end_io = raid1_end_write_request; 1569 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1570 if (test_bit(FailFast, &rdev->flags) && 1571 !test_bit(WriteMostly, &rdev->flags) && 1572 conf->raid_disks - mddev->degraded > 1) 1573 mbio->bi_opf |= MD_FAILFAST; 1574 mbio->bi_private = r1_bio; 1575 1576 atomic_inc(&r1_bio->remaining); 1577 1578 if (mddev->gendisk) 1579 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1580 r1_bio->sector); 1581 /* flush_pending_writes() needs access to the rdev so...*/ 1582 mbio->bi_bdev = (void *)rdev; 1583 1584 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1585 if (cb) 1586 plug = container_of(cb, struct raid1_plug_cb, cb); 1587 else 1588 plug = NULL; 1589 if (plug) { 1590 bio_list_add(&plug->pending, mbio); 1591 plug->pending_cnt++; 1592 } else { 1593 spin_lock_irqsave(&conf->device_lock, flags); 1594 bio_list_add(&conf->pending_bio_list, mbio); 1595 conf->pending_count++; 1596 spin_unlock_irqrestore(&conf->device_lock, flags); 1597 md_wakeup_thread(mddev->thread); 1598 } 1599 } 1600 1601 r1_bio_write_done(r1_bio); 1602 1603 /* In case raid1d snuck in to freeze_array */ 1604 wake_up(&conf->wait_barrier); 1605 } 1606 1607 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1608 { 1609 sector_t sectors; 1610 1611 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1612 && md_flush_request(mddev, bio)) 1613 return true; 1614 1615 /* 1616 * There is a limit to the maximum size, but 1617 * the read/write handler might find a lower limit 1618 * due to bad blocks. To avoid multiple splits, 1619 * we pass the maximum number of sectors down 1620 * and let the lower level perform the split. 1621 */ 1622 sectors = align_to_barrier_unit_end( 1623 bio->bi_iter.bi_sector, bio_sectors(bio)); 1624 1625 if (bio_data_dir(bio) == READ) 1626 raid1_read_request(mddev, bio, sectors, NULL); 1627 else { 1628 if (!md_write_start(mddev,bio)) 1629 return false; 1630 raid1_write_request(mddev, bio, sectors); 1631 } 1632 return true; 1633 } 1634 1635 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1636 { 1637 struct r1conf *conf = mddev->private; 1638 int i; 1639 1640 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1641 conf->raid_disks - mddev->degraded); 1642 rcu_read_lock(); 1643 for (i = 0; i < conf->raid_disks; i++) { 1644 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1645 seq_printf(seq, "%s", 1646 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1647 } 1648 rcu_read_unlock(); 1649 seq_printf(seq, "]"); 1650 } 1651 1652 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1653 { 1654 char b[BDEVNAME_SIZE]; 1655 struct r1conf *conf = mddev->private; 1656 unsigned long flags; 1657 1658 /* 1659 * If it is not operational, then we have already marked it as dead 1660 * else if it is the last working disks with "fail_last_dev == false", 1661 * ignore the error, let the next level up know. 1662 * else mark the drive as failed 1663 */ 1664 spin_lock_irqsave(&conf->device_lock, flags); 1665 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1666 && (conf->raid_disks - mddev->degraded) == 1) { 1667 /* 1668 * Don't fail the drive, act as though we were just a 1669 * normal single drive. 1670 * However don't try a recovery from this drive as 1671 * it is very likely to fail. 1672 */ 1673 conf->recovery_disabled = mddev->recovery_disabled; 1674 spin_unlock_irqrestore(&conf->device_lock, flags); 1675 return; 1676 } 1677 set_bit(Blocked, &rdev->flags); 1678 if (test_and_clear_bit(In_sync, &rdev->flags)) 1679 mddev->degraded++; 1680 set_bit(Faulty, &rdev->flags); 1681 spin_unlock_irqrestore(&conf->device_lock, flags); 1682 /* 1683 * if recovery is running, make sure it aborts. 1684 */ 1685 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1686 set_mask_bits(&mddev->sb_flags, 0, 1687 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1688 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1689 "md/raid1:%s: Operation continuing on %d devices.\n", 1690 mdname(mddev), bdevname(rdev->bdev, b), 1691 mdname(mddev), conf->raid_disks - mddev->degraded); 1692 } 1693 1694 static void print_conf(struct r1conf *conf) 1695 { 1696 int i; 1697 1698 pr_debug("RAID1 conf printout:\n"); 1699 if (!conf) { 1700 pr_debug("(!conf)\n"); 1701 return; 1702 } 1703 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1704 conf->raid_disks); 1705 1706 rcu_read_lock(); 1707 for (i = 0; i < conf->raid_disks; i++) { 1708 char b[BDEVNAME_SIZE]; 1709 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1710 if (rdev) 1711 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1712 i, !test_bit(In_sync, &rdev->flags), 1713 !test_bit(Faulty, &rdev->flags), 1714 bdevname(rdev->bdev,b)); 1715 } 1716 rcu_read_unlock(); 1717 } 1718 1719 static void close_sync(struct r1conf *conf) 1720 { 1721 int idx; 1722 1723 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1724 _wait_barrier(conf, idx, false); 1725 _allow_barrier(conf, idx); 1726 } 1727 1728 mempool_exit(&conf->r1buf_pool); 1729 } 1730 1731 static int raid1_spare_active(struct mddev *mddev) 1732 { 1733 int i; 1734 struct r1conf *conf = mddev->private; 1735 int count = 0; 1736 unsigned long flags; 1737 1738 /* 1739 * Find all failed disks within the RAID1 configuration 1740 * and mark them readable. 1741 * Called under mddev lock, so rcu protection not needed. 1742 * device_lock used to avoid races with raid1_end_read_request 1743 * which expects 'In_sync' flags and ->degraded to be consistent. 1744 */ 1745 spin_lock_irqsave(&conf->device_lock, flags); 1746 for (i = 0; i < conf->raid_disks; i++) { 1747 struct md_rdev *rdev = conf->mirrors[i].rdev; 1748 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1749 if (repl 1750 && !test_bit(Candidate, &repl->flags) 1751 && repl->recovery_offset == MaxSector 1752 && !test_bit(Faulty, &repl->flags) 1753 && !test_and_set_bit(In_sync, &repl->flags)) { 1754 /* replacement has just become active */ 1755 if (!rdev || 1756 !test_and_clear_bit(In_sync, &rdev->flags)) 1757 count++; 1758 if (rdev) { 1759 /* Replaced device not technically 1760 * faulty, but we need to be sure 1761 * it gets removed and never re-added 1762 */ 1763 set_bit(Faulty, &rdev->flags); 1764 sysfs_notify_dirent_safe( 1765 rdev->sysfs_state); 1766 } 1767 } 1768 if (rdev 1769 && rdev->recovery_offset == MaxSector 1770 && !test_bit(Faulty, &rdev->flags) 1771 && !test_and_set_bit(In_sync, &rdev->flags)) { 1772 count++; 1773 sysfs_notify_dirent_safe(rdev->sysfs_state); 1774 } 1775 } 1776 mddev->degraded -= count; 1777 spin_unlock_irqrestore(&conf->device_lock, flags); 1778 1779 print_conf(conf); 1780 return count; 1781 } 1782 1783 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1784 { 1785 struct r1conf *conf = mddev->private; 1786 int err = -EEXIST; 1787 int mirror = 0; 1788 struct raid1_info *p; 1789 int first = 0; 1790 int last = conf->raid_disks - 1; 1791 1792 if (mddev->recovery_disabled == conf->recovery_disabled) 1793 return -EBUSY; 1794 1795 if (md_integrity_add_rdev(rdev, mddev)) 1796 return -ENXIO; 1797 1798 if (rdev->raid_disk >= 0) 1799 first = last = rdev->raid_disk; 1800 1801 /* 1802 * find the disk ... but prefer rdev->saved_raid_disk 1803 * if possible. 1804 */ 1805 if (rdev->saved_raid_disk >= 0 && 1806 rdev->saved_raid_disk >= first && 1807 rdev->saved_raid_disk < conf->raid_disks && 1808 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1809 first = last = rdev->saved_raid_disk; 1810 1811 for (mirror = first; mirror <= last; mirror++) { 1812 p = conf->mirrors + mirror; 1813 if (!p->rdev) { 1814 if (mddev->gendisk) 1815 disk_stack_limits(mddev->gendisk, rdev->bdev, 1816 rdev->data_offset << 9); 1817 1818 p->head_position = 0; 1819 rdev->raid_disk = mirror; 1820 err = 0; 1821 /* As all devices are equivalent, we don't need a full recovery 1822 * if this was recently any drive of the array 1823 */ 1824 if (rdev->saved_raid_disk < 0) 1825 conf->fullsync = 1; 1826 rcu_assign_pointer(p->rdev, rdev); 1827 break; 1828 } 1829 if (test_bit(WantReplacement, &p->rdev->flags) && 1830 p[conf->raid_disks].rdev == NULL) { 1831 /* Add this device as a replacement */ 1832 clear_bit(In_sync, &rdev->flags); 1833 set_bit(Replacement, &rdev->flags); 1834 rdev->raid_disk = mirror; 1835 err = 0; 1836 conf->fullsync = 1; 1837 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1838 break; 1839 } 1840 } 1841 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1842 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1843 print_conf(conf); 1844 return err; 1845 } 1846 1847 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1848 { 1849 struct r1conf *conf = mddev->private; 1850 int err = 0; 1851 int number = rdev->raid_disk; 1852 struct raid1_info *p = conf->mirrors + number; 1853 1854 if (rdev != p->rdev) 1855 p = conf->mirrors + conf->raid_disks + number; 1856 1857 print_conf(conf); 1858 if (rdev == p->rdev) { 1859 if (test_bit(In_sync, &rdev->flags) || 1860 atomic_read(&rdev->nr_pending)) { 1861 err = -EBUSY; 1862 goto abort; 1863 } 1864 /* Only remove non-faulty devices if recovery 1865 * is not possible. 1866 */ 1867 if (!test_bit(Faulty, &rdev->flags) && 1868 mddev->recovery_disabled != conf->recovery_disabled && 1869 mddev->degraded < conf->raid_disks) { 1870 err = -EBUSY; 1871 goto abort; 1872 } 1873 p->rdev = NULL; 1874 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1875 synchronize_rcu(); 1876 if (atomic_read(&rdev->nr_pending)) { 1877 /* lost the race, try later */ 1878 err = -EBUSY; 1879 p->rdev = rdev; 1880 goto abort; 1881 } 1882 } 1883 if (conf->mirrors[conf->raid_disks + number].rdev) { 1884 /* We just removed a device that is being replaced. 1885 * Move down the replacement. We drain all IO before 1886 * doing this to avoid confusion. 1887 */ 1888 struct md_rdev *repl = 1889 conf->mirrors[conf->raid_disks + number].rdev; 1890 freeze_array(conf, 0); 1891 if (atomic_read(&repl->nr_pending)) { 1892 /* It means that some queued IO of retry_list 1893 * hold repl. Thus, we cannot set replacement 1894 * as NULL, avoiding rdev NULL pointer 1895 * dereference in sync_request_write and 1896 * handle_write_finished. 1897 */ 1898 err = -EBUSY; 1899 unfreeze_array(conf); 1900 goto abort; 1901 } 1902 clear_bit(Replacement, &repl->flags); 1903 p->rdev = repl; 1904 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1905 unfreeze_array(conf); 1906 } 1907 1908 clear_bit(WantReplacement, &rdev->flags); 1909 err = md_integrity_register(mddev); 1910 } 1911 abort: 1912 1913 print_conf(conf); 1914 return err; 1915 } 1916 1917 static void end_sync_read(struct bio *bio) 1918 { 1919 struct r1bio *r1_bio = get_resync_r1bio(bio); 1920 1921 update_head_pos(r1_bio->read_disk, r1_bio); 1922 1923 /* 1924 * we have read a block, now it needs to be re-written, 1925 * or re-read if the read failed. 1926 * We don't do much here, just schedule handling by raid1d 1927 */ 1928 if (!bio->bi_status) 1929 set_bit(R1BIO_Uptodate, &r1_bio->state); 1930 1931 if (atomic_dec_and_test(&r1_bio->remaining)) 1932 reschedule_retry(r1_bio); 1933 } 1934 1935 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1936 { 1937 sector_t sync_blocks = 0; 1938 sector_t s = r1_bio->sector; 1939 long sectors_to_go = r1_bio->sectors; 1940 1941 /* make sure these bits don't get cleared. */ 1942 do { 1943 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1944 s += sync_blocks; 1945 sectors_to_go -= sync_blocks; 1946 } while (sectors_to_go > 0); 1947 } 1948 1949 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1950 { 1951 if (atomic_dec_and_test(&r1_bio->remaining)) { 1952 struct mddev *mddev = r1_bio->mddev; 1953 int s = r1_bio->sectors; 1954 1955 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1956 test_bit(R1BIO_WriteError, &r1_bio->state)) 1957 reschedule_retry(r1_bio); 1958 else { 1959 put_buf(r1_bio); 1960 md_done_sync(mddev, s, uptodate); 1961 } 1962 } 1963 } 1964 1965 static void end_sync_write(struct bio *bio) 1966 { 1967 int uptodate = !bio->bi_status; 1968 struct r1bio *r1_bio = get_resync_r1bio(bio); 1969 struct mddev *mddev = r1_bio->mddev; 1970 struct r1conf *conf = mddev->private; 1971 sector_t first_bad; 1972 int bad_sectors; 1973 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1974 1975 if (!uptodate) { 1976 abort_sync_write(mddev, r1_bio); 1977 set_bit(WriteErrorSeen, &rdev->flags); 1978 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1979 set_bit(MD_RECOVERY_NEEDED, & 1980 mddev->recovery); 1981 set_bit(R1BIO_WriteError, &r1_bio->state); 1982 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1983 &first_bad, &bad_sectors) && 1984 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1985 r1_bio->sector, 1986 r1_bio->sectors, 1987 &first_bad, &bad_sectors) 1988 ) 1989 set_bit(R1BIO_MadeGood, &r1_bio->state); 1990 1991 put_sync_write_buf(r1_bio, uptodate); 1992 } 1993 1994 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1995 int sectors, struct page *page, int rw) 1996 { 1997 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1998 /* success */ 1999 return 1; 2000 if (rw == WRITE) { 2001 set_bit(WriteErrorSeen, &rdev->flags); 2002 if (!test_and_set_bit(WantReplacement, 2003 &rdev->flags)) 2004 set_bit(MD_RECOVERY_NEEDED, & 2005 rdev->mddev->recovery); 2006 } 2007 /* need to record an error - either for the block or the device */ 2008 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2009 md_error(rdev->mddev, rdev); 2010 return 0; 2011 } 2012 2013 static int fix_sync_read_error(struct r1bio *r1_bio) 2014 { 2015 /* Try some synchronous reads of other devices to get 2016 * good data, much like with normal read errors. Only 2017 * read into the pages we already have so we don't 2018 * need to re-issue the read request. 2019 * We don't need to freeze the array, because being in an 2020 * active sync request, there is no normal IO, and 2021 * no overlapping syncs. 2022 * We don't need to check is_badblock() again as we 2023 * made sure that anything with a bad block in range 2024 * will have bi_end_io clear. 2025 */ 2026 struct mddev *mddev = r1_bio->mddev; 2027 struct r1conf *conf = mddev->private; 2028 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2029 struct page **pages = get_resync_pages(bio)->pages; 2030 sector_t sect = r1_bio->sector; 2031 int sectors = r1_bio->sectors; 2032 int idx = 0; 2033 struct md_rdev *rdev; 2034 2035 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2036 if (test_bit(FailFast, &rdev->flags)) { 2037 /* Don't try recovering from here - just fail it 2038 * ... unless it is the last working device of course */ 2039 md_error(mddev, rdev); 2040 if (test_bit(Faulty, &rdev->flags)) 2041 /* Don't try to read from here, but make sure 2042 * put_buf does it's thing 2043 */ 2044 bio->bi_end_io = end_sync_write; 2045 } 2046 2047 while(sectors) { 2048 int s = sectors; 2049 int d = r1_bio->read_disk; 2050 int success = 0; 2051 int start; 2052 2053 if (s > (PAGE_SIZE>>9)) 2054 s = PAGE_SIZE >> 9; 2055 do { 2056 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2057 /* No rcu protection needed here devices 2058 * can only be removed when no resync is 2059 * active, and resync is currently active 2060 */ 2061 rdev = conf->mirrors[d].rdev; 2062 if (sync_page_io(rdev, sect, s<<9, 2063 pages[idx], 2064 REQ_OP_READ, 0, false)) { 2065 success = 1; 2066 break; 2067 } 2068 } 2069 d++; 2070 if (d == conf->raid_disks * 2) 2071 d = 0; 2072 } while (!success && d != r1_bio->read_disk); 2073 2074 if (!success) { 2075 int abort = 0; 2076 /* Cannot read from anywhere, this block is lost. 2077 * Record a bad block on each device. If that doesn't 2078 * work just disable and interrupt the recovery. 2079 * Don't fail devices as that won't really help. 2080 */ 2081 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2082 mdname(mddev), bio->bi_bdev, 2083 (unsigned long long)r1_bio->sector); 2084 for (d = 0; d < conf->raid_disks * 2; d++) { 2085 rdev = conf->mirrors[d].rdev; 2086 if (!rdev || test_bit(Faulty, &rdev->flags)) 2087 continue; 2088 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2089 abort = 1; 2090 } 2091 if (abort) { 2092 conf->recovery_disabled = 2093 mddev->recovery_disabled; 2094 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2095 md_done_sync(mddev, r1_bio->sectors, 0); 2096 put_buf(r1_bio); 2097 return 0; 2098 } 2099 /* Try next page */ 2100 sectors -= s; 2101 sect += s; 2102 idx++; 2103 continue; 2104 } 2105 2106 start = d; 2107 /* write it back and re-read */ 2108 while (d != r1_bio->read_disk) { 2109 if (d == 0) 2110 d = conf->raid_disks * 2; 2111 d--; 2112 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2113 continue; 2114 rdev = conf->mirrors[d].rdev; 2115 if (r1_sync_page_io(rdev, sect, s, 2116 pages[idx], 2117 WRITE) == 0) { 2118 r1_bio->bios[d]->bi_end_io = NULL; 2119 rdev_dec_pending(rdev, mddev); 2120 } 2121 } 2122 d = start; 2123 while (d != r1_bio->read_disk) { 2124 if (d == 0) 2125 d = conf->raid_disks * 2; 2126 d--; 2127 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2128 continue; 2129 rdev = conf->mirrors[d].rdev; 2130 if (r1_sync_page_io(rdev, sect, s, 2131 pages[idx], 2132 READ) != 0) 2133 atomic_add(s, &rdev->corrected_errors); 2134 } 2135 sectors -= s; 2136 sect += s; 2137 idx ++; 2138 } 2139 set_bit(R1BIO_Uptodate, &r1_bio->state); 2140 bio->bi_status = 0; 2141 return 1; 2142 } 2143 2144 static void process_checks(struct r1bio *r1_bio) 2145 { 2146 /* We have read all readable devices. If we haven't 2147 * got the block, then there is no hope left. 2148 * If we have, then we want to do a comparison 2149 * and skip the write if everything is the same. 2150 * If any blocks failed to read, then we need to 2151 * attempt an over-write 2152 */ 2153 struct mddev *mddev = r1_bio->mddev; 2154 struct r1conf *conf = mddev->private; 2155 int primary; 2156 int i; 2157 int vcnt; 2158 2159 /* Fix variable parts of all bios */ 2160 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2161 for (i = 0; i < conf->raid_disks * 2; i++) { 2162 blk_status_t status; 2163 struct bio *b = r1_bio->bios[i]; 2164 struct resync_pages *rp = get_resync_pages(b); 2165 if (b->bi_end_io != end_sync_read) 2166 continue; 2167 /* fixup the bio for reuse, but preserve errno */ 2168 status = b->bi_status; 2169 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2170 b->bi_status = status; 2171 b->bi_iter.bi_sector = r1_bio->sector + 2172 conf->mirrors[i].rdev->data_offset; 2173 b->bi_end_io = end_sync_read; 2174 rp->raid_bio = r1_bio; 2175 b->bi_private = rp; 2176 2177 /* initialize bvec table again */ 2178 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2179 } 2180 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2181 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2182 !r1_bio->bios[primary]->bi_status) { 2183 r1_bio->bios[primary]->bi_end_io = NULL; 2184 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2185 break; 2186 } 2187 r1_bio->read_disk = primary; 2188 for (i = 0; i < conf->raid_disks * 2; i++) { 2189 int j = 0; 2190 struct bio *pbio = r1_bio->bios[primary]; 2191 struct bio *sbio = r1_bio->bios[i]; 2192 blk_status_t status = sbio->bi_status; 2193 struct page **ppages = get_resync_pages(pbio)->pages; 2194 struct page **spages = get_resync_pages(sbio)->pages; 2195 struct bio_vec *bi; 2196 int page_len[RESYNC_PAGES] = { 0 }; 2197 struct bvec_iter_all iter_all; 2198 2199 if (sbio->bi_end_io != end_sync_read) 2200 continue; 2201 /* Now we can 'fixup' the error value */ 2202 sbio->bi_status = 0; 2203 2204 bio_for_each_segment_all(bi, sbio, iter_all) 2205 page_len[j++] = bi->bv_len; 2206 2207 if (!status) { 2208 for (j = vcnt; j-- ; ) { 2209 if (memcmp(page_address(ppages[j]), 2210 page_address(spages[j]), 2211 page_len[j])) 2212 break; 2213 } 2214 } else 2215 j = 0; 2216 if (j >= 0) 2217 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2218 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2219 && !status)) { 2220 /* No need to write to this device. */ 2221 sbio->bi_end_io = NULL; 2222 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2223 continue; 2224 } 2225 2226 bio_copy_data(sbio, pbio); 2227 } 2228 } 2229 2230 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2231 { 2232 struct r1conf *conf = mddev->private; 2233 int i; 2234 int disks = conf->raid_disks * 2; 2235 struct bio *wbio; 2236 2237 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2238 /* ouch - failed to read all of that. */ 2239 if (!fix_sync_read_error(r1_bio)) 2240 return; 2241 2242 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2243 process_checks(r1_bio); 2244 2245 /* 2246 * schedule writes 2247 */ 2248 atomic_set(&r1_bio->remaining, 1); 2249 for (i = 0; i < disks ; i++) { 2250 wbio = r1_bio->bios[i]; 2251 if (wbio->bi_end_io == NULL || 2252 (wbio->bi_end_io == end_sync_read && 2253 (i == r1_bio->read_disk || 2254 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2255 continue; 2256 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2257 abort_sync_write(mddev, r1_bio); 2258 continue; 2259 } 2260 2261 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2262 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2263 wbio->bi_opf |= MD_FAILFAST; 2264 2265 wbio->bi_end_io = end_sync_write; 2266 atomic_inc(&r1_bio->remaining); 2267 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2268 2269 submit_bio_noacct(wbio); 2270 } 2271 2272 put_sync_write_buf(r1_bio, 1); 2273 } 2274 2275 /* 2276 * This is a kernel thread which: 2277 * 2278 * 1. Retries failed read operations on working mirrors. 2279 * 2. Updates the raid superblock when problems encounter. 2280 * 3. Performs writes following reads for array synchronising. 2281 */ 2282 2283 static void fix_read_error(struct r1conf *conf, int read_disk, 2284 sector_t sect, int sectors) 2285 { 2286 struct mddev *mddev = conf->mddev; 2287 while(sectors) { 2288 int s = sectors; 2289 int d = read_disk; 2290 int success = 0; 2291 int start; 2292 struct md_rdev *rdev; 2293 2294 if (s > (PAGE_SIZE>>9)) 2295 s = PAGE_SIZE >> 9; 2296 2297 do { 2298 sector_t first_bad; 2299 int bad_sectors; 2300 2301 rcu_read_lock(); 2302 rdev = rcu_dereference(conf->mirrors[d].rdev); 2303 if (rdev && 2304 (test_bit(In_sync, &rdev->flags) || 2305 (!test_bit(Faulty, &rdev->flags) && 2306 rdev->recovery_offset >= sect + s)) && 2307 is_badblock(rdev, sect, s, 2308 &first_bad, &bad_sectors) == 0) { 2309 atomic_inc(&rdev->nr_pending); 2310 rcu_read_unlock(); 2311 if (sync_page_io(rdev, sect, s<<9, 2312 conf->tmppage, REQ_OP_READ, 0, false)) 2313 success = 1; 2314 rdev_dec_pending(rdev, mddev); 2315 if (success) 2316 break; 2317 } else 2318 rcu_read_unlock(); 2319 d++; 2320 if (d == conf->raid_disks * 2) 2321 d = 0; 2322 } while (!success && d != read_disk); 2323 2324 if (!success) { 2325 /* Cannot read from anywhere - mark it bad */ 2326 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2327 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2328 md_error(mddev, rdev); 2329 break; 2330 } 2331 /* write it back and re-read */ 2332 start = d; 2333 while (d != read_disk) { 2334 if (d==0) 2335 d = conf->raid_disks * 2; 2336 d--; 2337 rcu_read_lock(); 2338 rdev = rcu_dereference(conf->mirrors[d].rdev); 2339 if (rdev && 2340 !test_bit(Faulty, &rdev->flags)) { 2341 atomic_inc(&rdev->nr_pending); 2342 rcu_read_unlock(); 2343 r1_sync_page_io(rdev, sect, s, 2344 conf->tmppage, WRITE); 2345 rdev_dec_pending(rdev, mddev); 2346 } else 2347 rcu_read_unlock(); 2348 } 2349 d = start; 2350 while (d != read_disk) { 2351 char b[BDEVNAME_SIZE]; 2352 if (d==0) 2353 d = conf->raid_disks * 2; 2354 d--; 2355 rcu_read_lock(); 2356 rdev = rcu_dereference(conf->mirrors[d].rdev); 2357 if (rdev && 2358 !test_bit(Faulty, &rdev->flags)) { 2359 atomic_inc(&rdev->nr_pending); 2360 rcu_read_unlock(); 2361 if (r1_sync_page_io(rdev, sect, s, 2362 conf->tmppage, READ)) { 2363 atomic_add(s, &rdev->corrected_errors); 2364 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2365 mdname(mddev), s, 2366 (unsigned long long)(sect + 2367 rdev->data_offset), 2368 bdevname(rdev->bdev, b)); 2369 } 2370 rdev_dec_pending(rdev, mddev); 2371 } else 2372 rcu_read_unlock(); 2373 } 2374 sectors -= s; 2375 sect += s; 2376 } 2377 } 2378 2379 static int narrow_write_error(struct r1bio *r1_bio, int i) 2380 { 2381 struct mddev *mddev = r1_bio->mddev; 2382 struct r1conf *conf = mddev->private; 2383 struct md_rdev *rdev = conf->mirrors[i].rdev; 2384 2385 /* bio has the data to be written to device 'i' where 2386 * we just recently had a write error. 2387 * We repeatedly clone the bio and trim down to one block, 2388 * then try the write. Where the write fails we record 2389 * a bad block. 2390 * It is conceivable that the bio doesn't exactly align with 2391 * blocks. We must handle this somehow. 2392 * 2393 * We currently own a reference on the rdev. 2394 */ 2395 2396 int block_sectors; 2397 sector_t sector; 2398 int sectors; 2399 int sect_to_write = r1_bio->sectors; 2400 int ok = 1; 2401 2402 if (rdev->badblocks.shift < 0) 2403 return 0; 2404 2405 block_sectors = roundup(1 << rdev->badblocks.shift, 2406 bdev_logical_block_size(rdev->bdev) >> 9); 2407 sector = r1_bio->sector; 2408 sectors = ((sector + block_sectors) 2409 & ~(sector_t)(block_sectors - 1)) 2410 - sector; 2411 2412 while (sect_to_write) { 2413 struct bio *wbio; 2414 if (sectors > sect_to_write) 2415 sectors = sect_to_write; 2416 /* Write at 'sector' for 'sectors'*/ 2417 2418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2419 wbio = bio_alloc_clone(rdev->bdev, 2420 r1_bio->behind_master_bio, 2421 GFP_NOIO, &mddev->bio_set); 2422 } else { 2423 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2424 GFP_NOIO, &mddev->bio_set); 2425 } 2426 2427 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2428 wbio->bi_iter.bi_sector = r1_bio->sector; 2429 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2430 2431 bio_trim(wbio, sector - r1_bio->sector, sectors); 2432 wbio->bi_iter.bi_sector += rdev->data_offset; 2433 2434 if (submit_bio_wait(wbio) < 0) 2435 /* failure! */ 2436 ok = rdev_set_badblocks(rdev, sector, 2437 sectors, 0) 2438 && ok; 2439 2440 bio_put(wbio); 2441 sect_to_write -= sectors; 2442 sector += sectors; 2443 sectors = block_sectors; 2444 } 2445 return ok; 2446 } 2447 2448 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2449 { 2450 int m; 2451 int s = r1_bio->sectors; 2452 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2453 struct md_rdev *rdev = conf->mirrors[m].rdev; 2454 struct bio *bio = r1_bio->bios[m]; 2455 if (bio->bi_end_io == NULL) 2456 continue; 2457 if (!bio->bi_status && 2458 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2459 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2460 } 2461 if (bio->bi_status && 2462 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2463 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2464 md_error(conf->mddev, rdev); 2465 } 2466 } 2467 put_buf(r1_bio); 2468 md_done_sync(conf->mddev, s, 1); 2469 } 2470 2471 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2472 { 2473 int m, idx; 2474 bool fail = false; 2475 2476 for (m = 0; m < conf->raid_disks * 2 ; m++) 2477 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2478 struct md_rdev *rdev = conf->mirrors[m].rdev; 2479 rdev_clear_badblocks(rdev, 2480 r1_bio->sector, 2481 r1_bio->sectors, 0); 2482 rdev_dec_pending(rdev, conf->mddev); 2483 } else if (r1_bio->bios[m] != NULL) { 2484 /* This drive got a write error. We need to 2485 * narrow down and record precise write 2486 * errors. 2487 */ 2488 fail = true; 2489 if (!narrow_write_error(r1_bio, m)) { 2490 md_error(conf->mddev, 2491 conf->mirrors[m].rdev); 2492 /* an I/O failed, we can't clear the bitmap */ 2493 set_bit(R1BIO_Degraded, &r1_bio->state); 2494 } 2495 rdev_dec_pending(conf->mirrors[m].rdev, 2496 conf->mddev); 2497 } 2498 if (fail) { 2499 spin_lock_irq(&conf->device_lock); 2500 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2501 idx = sector_to_idx(r1_bio->sector); 2502 atomic_inc(&conf->nr_queued[idx]); 2503 spin_unlock_irq(&conf->device_lock); 2504 /* 2505 * In case freeze_array() is waiting for condition 2506 * get_unqueued_pending() == extra to be true. 2507 */ 2508 wake_up(&conf->wait_barrier); 2509 md_wakeup_thread(conf->mddev->thread); 2510 } else { 2511 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2512 close_write(r1_bio); 2513 raid_end_bio_io(r1_bio); 2514 } 2515 } 2516 2517 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2518 { 2519 struct mddev *mddev = conf->mddev; 2520 struct bio *bio; 2521 struct md_rdev *rdev; 2522 2523 clear_bit(R1BIO_ReadError, &r1_bio->state); 2524 /* we got a read error. Maybe the drive is bad. Maybe just 2525 * the block and we can fix it. 2526 * We freeze all other IO, and try reading the block from 2527 * other devices. When we find one, we re-write 2528 * and check it that fixes the read error. 2529 * This is all done synchronously while the array is 2530 * frozen 2531 */ 2532 2533 bio = r1_bio->bios[r1_bio->read_disk]; 2534 bio_put(bio); 2535 r1_bio->bios[r1_bio->read_disk] = NULL; 2536 2537 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2538 if (mddev->ro == 0 2539 && !test_bit(FailFast, &rdev->flags)) { 2540 freeze_array(conf, 1); 2541 fix_read_error(conf, r1_bio->read_disk, 2542 r1_bio->sector, r1_bio->sectors); 2543 unfreeze_array(conf); 2544 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2545 md_error(mddev, rdev); 2546 } else { 2547 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2548 } 2549 2550 rdev_dec_pending(rdev, conf->mddev); 2551 allow_barrier(conf, r1_bio->sector); 2552 bio = r1_bio->master_bio; 2553 2554 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2555 r1_bio->state = 0; 2556 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2557 } 2558 2559 static void raid1d(struct md_thread *thread) 2560 { 2561 struct mddev *mddev = thread->mddev; 2562 struct r1bio *r1_bio; 2563 unsigned long flags; 2564 struct r1conf *conf = mddev->private; 2565 struct list_head *head = &conf->retry_list; 2566 struct blk_plug plug; 2567 int idx; 2568 2569 md_check_recovery(mddev); 2570 2571 if (!list_empty_careful(&conf->bio_end_io_list) && 2572 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2573 LIST_HEAD(tmp); 2574 spin_lock_irqsave(&conf->device_lock, flags); 2575 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2576 list_splice_init(&conf->bio_end_io_list, &tmp); 2577 spin_unlock_irqrestore(&conf->device_lock, flags); 2578 while (!list_empty(&tmp)) { 2579 r1_bio = list_first_entry(&tmp, struct r1bio, 2580 retry_list); 2581 list_del(&r1_bio->retry_list); 2582 idx = sector_to_idx(r1_bio->sector); 2583 atomic_dec(&conf->nr_queued[idx]); 2584 if (mddev->degraded) 2585 set_bit(R1BIO_Degraded, &r1_bio->state); 2586 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2587 close_write(r1_bio); 2588 raid_end_bio_io(r1_bio); 2589 } 2590 } 2591 2592 blk_start_plug(&plug); 2593 for (;;) { 2594 2595 flush_pending_writes(conf); 2596 2597 spin_lock_irqsave(&conf->device_lock, flags); 2598 if (list_empty(head)) { 2599 spin_unlock_irqrestore(&conf->device_lock, flags); 2600 break; 2601 } 2602 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2603 list_del(head->prev); 2604 idx = sector_to_idx(r1_bio->sector); 2605 atomic_dec(&conf->nr_queued[idx]); 2606 spin_unlock_irqrestore(&conf->device_lock, flags); 2607 2608 mddev = r1_bio->mddev; 2609 conf = mddev->private; 2610 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2611 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2612 test_bit(R1BIO_WriteError, &r1_bio->state)) 2613 handle_sync_write_finished(conf, r1_bio); 2614 else 2615 sync_request_write(mddev, r1_bio); 2616 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2617 test_bit(R1BIO_WriteError, &r1_bio->state)) 2618 handle_write_finished(conf, r1_bio); 2619 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2620 handle_read_error(conf, r1_bio); 2621 else 2622 WARN_ON_ONCE(1); 2623 2624 cond_resched(); 2625 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2626 md_check_recovery(mddev); 2627 } 2628 blk_finish_plug(&plug); 2629 } 2630 2631 static int init_resync(struct r1conf *conf) 2632 { 2633 int buffs; 2634 2635 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2636 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2637 2638 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2639 r1buf_pool_free, conf->poolinfo); 2640 } 2641 2642 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2643 { 2644 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2645 struct resync_pages *rps; 2646 struct bio *bio; 2647 int i; 2648 2649 for (i = conf->poolinfo->raid_disks; i--; ) { 2650 bio = r1bio->bios[i]; 2651 rps = bio->bi_private; 2652 bio_reset(bio, NULL, 0); 2653 bio->bi_private = rps; 2654 } 2655 r1bio->master_bio = NULL; 2656 return r1bio; 2657 } 2658 2659 /* 2660 * perform a "sync" on one "block" 2661 * 2662 * We need to make sure that no normal I/O request - particularly write 2663 * requests - conflict with active sync requests. 2664 * 2665 * This is achieved by tracking pending requests and a 'barrier' concept 2666 * that can be installed to exclude normal IO requests. 2667 */ 2668 2669 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2670 int *skipped) 2671 { 2672 struct r1conf *conf = mddev->private; 2673 struct r1bio *r1_bio; 2674 struct bio *bio; 2675 sector_t max_sector, nr_sectors; 2676 int disk = -1; 2677 int i; 2678 int wonly = -1; 2679 int write_targets = 0, read_targets = 0; 2680 sector_t sync_blocks; 2681 int still_degraded = 0; 2682 int good_sectors = RESYNC_SECTORS; 2683 int min_bad = 0; /* number of sectors that are bad in all devices */ 2684 int idx = sector_to_idx(sector_nr); 2685 int page_idx = 0; 2686 2687 if (!mempool_initialized(&conf->r1buf_pool)) 2688 if (init_resync(conf)) 2689 return 0; 2690 2691 max_sector = mddev->dev_sectors; 2692 if (sector_nr >= max_sector) { 2693 /* If we aborted, we need to abort the 2694 * sync on the 'current' bitmap chunk (there will 2695 * only be one in raid1 resync. 2696 * We can find the current addess in mddev->curr_resync 2697 */ 2698 if (mddev->curr_resync < max_sector) /* aborted */ 2699 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2700 &sync_blocks, 1); 2701 else /* completed sync */ 2702 conf->fullsync = 0; 2703 2704 md_bitmap_close_sync(mddev->bitmap); 2705 close_sync(conf); 2706 2707 if (mddev_is_clustered(mddev)) { 2708 conf->cluster_sync_low = 0; 2709 conf->cluster_sync_high = 0; 2710 } 2711 return 0; 2712 } 2713 2714 if (mddev->bitmap == NULL && 2715 mddev->recovery_cp == MaxSector && 2716 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2717 conf->fullsync == 0) { 2718 *skipped = 1; 2719 return max_sector - sector_nr; 2720 } 2721 /* before building a request, check if we can skip these blocks.. 2722 * This call the bitmap_start_sync doesn't actually record anything 2723 */ 2724 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2725 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2726 /* We can skip this block, and probably several more */ 2727 *skipped = 1; 2728 return sync_blocks; 2729 } 2730 2731 /* 2732 * If there is non-resync activity waiting for a turn, then let it 2733 * though before starting on this new sync request. 2734 */ 2735 if (atomic_read(&conf->nr_waiting[idx])) 2736 schedule_timeout_uninterruptible(1); 2737 2738 /* we are incrementing sector_nr below. To be safe, we check against 2739 * sector_nr + two times RESYNC_SECTORS 2740 */ 2741 2742 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2743 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2744 2745 2746 if (raise_barrier(conf, sector_nr)) 2747 return 0; 2748 2749 r1_bio = raid1_alloc_init_r1buf(conf); 2750 2751 rcu_read_lock(); 2752 /* 2753 * If we get a correctably read error during resync or recovery, 2754 * we might want to read from a different device. So we 2755 * flag all drives that could conceivably be read from for READ, 2756 * and any others (which will be non-In_sync devices) for WRITE. 2757 * If a read fails, we try reading from something else for which READ 2758 * is OK. 2759 */ 2760 2761 r1_bio->mddev = mddev; 2762 r1_bio->sector = sector_nr; 2763 r1_bio->state = 0; 2764 set_bit(R1BIO_IsSync, &r1_bio->state); 2765 /* make sure good_sectors won't go across barrier unit boundary */ 2766 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2767 2768 for (i = 0; i < conf->raid_disks * 2; i++) { 2769 struct md_rdev *rdev; 2770 bio = r1_bio->bios[i]; 2771 2772 rdev = rcu_dereference(conf->mirrors[i].rdev); 2773 if (rdev == NULL || 2774 test_bit(Faulty, &rdev->flags)) { 2775 if (i < conf->raid_disks) 2776 still_degraded = 1; 2777 } else if (!test_bit(In_sync, &rdev->flags)) { 2778 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2779 bio->bi_end_io = end_sync_write; 2780 write_targets ++; 2781 } else { 2782 /* may need to read from here */ 2783 sector_t first_bad = MaxSector; 2784 int bad_sectors; 2785 2786 if (is_badblock(rdev, sector_nr, good_sectors, 2787 &first_bad, &bad_sectors)) { 2788 if (first_bad > sector_nr) 2789 good_sectors = first_bad - sector_nr; 2790 else { 2791 bad_sectors -= (sector_nr - first_bad); 2792 if (min_bad == 0 || 2793 min_bad > bad_sectors) 2794 min_bad = bad_sectors; 2795 } 2796 } 2797 if (sector_nr < first_bad) { 2798 if (test_bit(WriteMostly, &rdev->flags)) { 2799 if (wonly < 0) 2800 wonly = i; 2801 } else { 2802 if (disk < 0) 2803 disk = i; 2804 } 2805 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2806 bio->bi_end_io = end_sync_read; 2807 read_targets++; 2808 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2809 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2810 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2811 /* 2812 * The device is suitable for reading (InSync), 2813 * but has bad block(s) here. Let's try to correct them, 2814 * if we are doing resync or repair. Otherwise, leave 2815 * this device alone for this sync request. 2816 */ 2817 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2818 bio->bi_end_io = end_sync_write; 2819 write_targets++; 2820 } 2821 } 2822 if (rdev && bio->bi_end_io) { 2823 atomic_inc(&rdev->nr_pending); 2824 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2825 bio_set_dev(bio, rdev->bdev); 2826 if (test_bit(FailFast, &rdev->flags)) 2827 bio->bi_opf |= MD_FAILFAST; 2828 } 2829 } 2830 rcu_read_unlock(); 2831 if (disk < 0) 2832 disk = wonly; 2833 r1_bio->read_disk = disk; 2834 2835 if (read_targets == 0 && min_bad > 0) { 2836 /* These sectors are bad on all InSync devices, so we 2837 * need to mark them bad on all write targets 2838 */ 2839 int ok = 1; 2840 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2841 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2842 struct md_rdev *rdev = conf->mirrors[i].rdev; 2843 ok = rdev_set_badblocks(rdev, sector_nr, 2844 min_bad, 0 2845 ) && ok; 2846 } 2847 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2848 *skipped = 1; 2849 put_buf(r1_bio); 2850 2851 if (!ok) { 2852 /* Cannot record the badblocks, so need to 2853 * abort the resync. 2854 * If there are multiple read targets, could just 2855 * fail the really bad ones ??? 2856 */ 2857 conf->recovery_disabled = mddev->recovery_disabled; 2858 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2859 return 0; 2860 } else 2861 return min_bad; 2862 2863 } 2864 if (min_bad > 0 && min_bad < good_sectors) { 2865 /* only resync enough to reach the next bad->good 2866 * transition */ 2867 good_sectors = min_bad; 2868 } 2869 2870 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2871 /* extra read targets are also write targets */ 2872 write_targets += read_targets-1; 2873 2874 if (write_targets == 0 || read_targets == 0) { 2875 /* There is nowhere to write, so all non-sync 2876 * drives must be failed - so we are finished 2877 */ 2878 sector_t rv; 2879 if (min_bad > 0) 2880 max_sector = sector_nr + min_bad; 2881 rv = max_sector - sector_nr; 2882 *skipped = 1; 2883 put_buf(r1_bio); 2884 return rv; 2885 } 2886 2887 if (max_sector > mddev->resync_max) 2888 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2889 if (max_sector > sector_nr + good_sectors) 2890 max_sector = sector_nr + good_sectors; 2891 nr_sectors = 0; 2892 sync_blocks = 0; 2893 do { 2894 struct page *page; 2895 int len = PAGE_SIZE; 2896 if (sector_nr + (len>>9) > max_sector) 2897 len = (max_sector - sector_nr) << 9; 2898 if (len == 0) 2899 break; 2900 if (sync_blocks == 0) { 2901 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2902 &sync_blocks, still_degraded) && 2903 !conf->fullsync && 2904 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2905 break; 2906 if ((len >> 9) > sync_blocks) 2907 len = sync_blocks<<9; 2908 } 2909 2910 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2911 struct resync_pages *rp; 2912 2913 bio = r1_bio->bios[i]; 2914 rp = get_resync_pages(bio); 2915 if (bio->bi_end_io) { 2916 page = resync_fetch_page(rp, page_idx); 2917 2918 /* 2919 * won't fail because the vec table is big 2920 * enough to hold all these pages 2921 */ 2922 bio_add_page(bio, page, len, 0); 2923 } 2924 } 2925 nr_sectors += len>>9; 2926 sector_nr += len>>9; 2927 sync_blocks -= (len>>9); 2928 } while (++page_idx < RESYNC_PAGES); 2929 2930 r1_bio->sectors = nr_sectors; 2931 2932 if (mddev_is_clustered(mddev) && 2933 conf->cluster_sync_high < sector_nr + nr_sectors) { 2934 conf->cluster_sync_low = mddev->curr_resync_completed; 2935 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2936 /* Send resync message */ 2937 md_cluster_ops->resync_info_update(mddev, 2938 conf->cluster_sync_low, 2939 conf->cluster_sync_high); 2940 } 2941 2942 /* For a user-requested sync, we read all readable devices and do a 2943 * compare 2944 */ 2945 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2946 atomic_set(&r1_bio->remaining, read_targets); 2947 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2948 bio = r1_bio->bios[i]; 2949 if (bio->bi_end_io == end_sync_read) { 2950 read_targets--; 2951 md_sync_acct_bio(bio, nr_sectors); 2952 if (read_targets == 1) 2953 bio->bi_opf &= ~MD_FAILFAST; 2954 submit_bio_noacct(bio); 2955 } 2956 } 2957 } else { 2958 atomic_set(&r1_bio->remaining, 1); 2959 bio = r1_bio->bios[r1_bio->read_disk]; 2960 md_sync_acct_bio(bio, nr_sectors); 2961 if (read_targets == 1) 2962 bio->bi_opf &= ~MD_FAILFAST; 2963 submit_bio_noacct(bio); 2964 } 2965 return nr_sectors; 2966 } 2967 2968 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2969 { 2970 if (sectors) 2971 return sectors; 2972 2973 return mddev->dev_sectors; 2974 } 2975 2976 static struct r1conf *setup_conf(struct mddev *mddev) 2977 { 2978 struct r1conf *conf; 2979 int i; 2980 struct raid1_info *disk; 2981 struct md_rdev *rdev; 2982 int err = -ENOMEM; 2983 2984 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2985 if (!conf) 2986 goto abort; 2987 2988 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2989 sizeof(atomic_t), GFP_KERNEL); 2990 if (!conf->nr_pending) 2991 goto abort; 2992 2993 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2994 sizeof(atomic_t), GFP_KERNEL); 2995 if (!conf->nr_waiting) 2996 goto abort; 2997 2998 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2999 sizeof(atomic_t), GFP_KERNEL); 3000 if (!conf->nr_queued) 3001 goto abort; 3002 3003 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3004 sizeof(atomic_t), GFP_KERNEL); 3005 if (!conf->barrier) 3006 goto abort; 3007 3008 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3009 mddev->raid_disks, 2), 3010 GFP_KERNEL); 3011 if (!conf->mirrors) 3012 goto abort; 3013 3014 conf->tmppage = alloc_page(GFP_KERNEL); 3015 if (!conf->tmppage) 3016 goto abort; 3017 3018 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3019 if (!conf->poolinfo) 3020 goto abort; 3021 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3022 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3023 rbio_pool_free, conf->poolinfo); 3024 if (err) 3025 goto abort; 3026 3027 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3028 if (err) 3029 goto abort; 3030 3031 conf->poolinfo->mddev = mddev; 3032 3033 err = -EINVAL; 3034 spin_lock_init(&conf->device_lock); 3035 rdev_for_each(rdev, mddev) { 3036 int disk_idx = rdev->raid_disk; 3037 if (disk_idx >= mddev->raid_disks 3038 || disk_idx < 0) 3039 continue; 3040 if (test_bit(Replacement, &rdev->flags)) 3041 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3042 else 3043 disk = conf->mirrors + disk_idx; 3044 3045 if (disk->rdev) 3046 goto abort; 3047 disk->rdev = rdev; 3048 disk->head_position = 0; 3049 disk->seq_start = MaxSector; 3050 } 3051 conf->raid_disks = mddev->raid_disks; 3052 conf->mddev = mddev; 3053 INIT_LIST_HEAD(&conf->retry_list); 3054 INIT_LIST_HEAD(&conf->bio_end_io_list); 3055 3056 spin_lock_init(&conf->resync_lock); 3057 init_waitqueue_head(&conf->wait_barrier); 3058 3059 bio_list_init(&conf->pending_bio_list); 3060 conf->pending_count = 0; 3061 conf->recovery_disabled = mddev->recovery_disabled - 1; 3062 3063 err = -EIO; 3064 for (i = 0; i < conf->raid_disks * 2; i++) { 3065 3066 disk = conf->mirrors + i; 3067 3068 if (i < conf->raid_disks && 3069 disk[conf->raid_disks].rdev) { 3070 /* This slot has a replacement. */ 3071 if (!disk->rdev) { 3072 /* No original, just make the replacement 3073 * a recovering spare 3074 */ 3075 disk->rdev = 3076 disk[conf->raid_disks].rdev; 3077 disk[conf->raid_disks].rdev = NULL; 3078 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3079 /* Original is not in_sync - bad */ 3080 goto abort; 3081 } 3082 3083 if (!disk->rdev || 3084 !test_bit(In_sync, &disk->rdev->flags)) { 3085 disk->head_position = 0; 3086 if (disk->rdev && 3087 (disk->rdev->saved_raid_disk < 0)) 3088 conf->fullsync = 1; 3089 } 3090 } 3091 3092 err = -ENOMEM; 3093 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3094 if (!conf->thread) 3095 goto abort; 3096 3097 return conf; 3098 3099 abort: 3100 if (conf) { 3101 mempool_exit(&conf->r1bio_pool); 3102 kfree(conf->mirrors); 3103 safe_put_page(conf->tmppage); 3104 kfree(conf->poolinfo); 3105 kfree(conf->nr_pending); 3106 kfree(conf->nr_waiting); 3107 kfree(conf->nr_queued); 3108 kfree(conf->barrier); 3109 bioset_exit(&conf->bio_split); 3110 kfree(conf); 3111 } 3112 return ERR_PTR(err); 3113 } 3114 3115 static void raid1_free(struct mddev *mddev, void *priv); 3116 static int raid1_run(struct mddev *mddev) 3117 { 3118 struct r1conf *conf; 3119 int i; 3120 struct md_rdev *rdev; 3121 int ret; 3122 bool discard_supported = false; 3123 3124 if (mddev->level != 1) { 3125 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3126 mdname(mddev), mddev->level); 3127 return -EIO; 3128 } 3129 if (mddev->reshape_position != MaxSector) { 3130 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3131 mdname(mddev)); 3132 return -EIO; 3133 } 3134 if (mddev_init_writes_pending(mddev) < 0) 3135 return -ENOMEM; 3136 /* 3137 * copy the already verified devices into our private RAID1 3138 * bookkeeping area. [whatever we allocate in run(), 3139 * should be freed in raid1_free()] 3140 */ 3141 if (mddev->private == NULL) 3142 conf = setup_conf(mddev); 3143 else 3144 conf = mddev->private; 3145 3146 if (IS_ERR(conf)) 3147 return PTR_ERR(conf); 3148 3149 if (mddev->queue) { 3150 blk_queue_max_write_same_sectors(mddev->queue, 0); 3151 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3152 } 3153 3154 rdev_for_each(rdev, mddev) { 3155 if (!mddev->gendisk) 3156 continue; 3157 disk_stack_limits(mddev->gendisk, rdev->bdev, 3158 rdev->data_offset << 9); 3159 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3160 discard_supported = true; 3161 } 3162 3163 mddev->degraded = 0; 3164 for (i = 0; i < conf->raid_disks; i++) 3165 if (conf->mirrors[i].rdev == NULL || 3166 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3167 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3168 mddev->degraded++; 3169 /* 3170 * RAID1 needs at least one disk in active 3171 */ 3172 if (conf->raid_disks - mddev->degraded < 1) { 3173 ret = -EINVAL; 3174 goto abort; 3175 } 3176 3177 if (conf->raid_disks - mddev->degraded == 1) 3178 mddev->recovery_cp = MaxSector; 3179 3180 if (mddev->recovery_cp != MaxSector) 3181 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3182 mdname(mddev)); 3183 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3184 mdname(mddev), mddev->raid_disks - mddev->degraded, 3185 mddev->raid_disks); 3186 3187 /* 3188 * Ok, everything is just fine now 3189 */ 3190 mddev->thread = conf->thread; 3191 conf->thread = NULL; 3192 mddev->private = conf; 3193 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3194 3195 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3196 3197 if (mddev->queue) { 3198 if (discard_supported) 3199 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3200 mddev->queue); 3201 else 3202 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3203 mddev->queue); 3204 } 3205 3206 ret = md_integrity_register(mddev); 3207 if (ret) { 3208 md_unregister_thread(&mddev->thread); 3209 goto abort; 3210 } 3211 return 0; 3212 3213 abort: 3214 raid1_free(mddev, conf); 3215 return ret; 3216 } 3217 3218 static void raid1_free(struct mddev *mddev, void *priv) 3219 { 3220 struct r1conf *conf = priv; 3221 3222 mempool_exit(&conf->r1bio_pool); 3223 kfree(conf->mirrors); 3224 safe_put_page(conf->tmppage); 3225 kfree(conf->poolinfo); 3226 kfree(conf->nr_pending); 3227 kfree(conf->nr_waiting); 3228 kfree(conf->nr_queued); 3229 kfree(conf->barrier); 3230 bioset_exit(&conf->bio_split); 3231 kfree(conf); 3232 } 3233 3234 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3235 { 3236 /* no resync is happening, and there is enough space 3237 * on all devices, so we can resize. 3238 * We need to make sure resync covers any new space. 3239 * If the array is shrinking we should possibly wait until 3240 * any io in the removed space completes, but it hardly seems 3241 * worth it. 3242 */ 3243 sector_t newsize = raid1_size(mddev, sectors, 0); 3244 if (mddev->external_size && 3245 mddev->array_sectors > newsize) 3246 return -EINVAL; 3247 if (mddev->bitmap) { 3248 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3249 if (ret) 3250 return ret; 3251 } 3252 md_set_array_sectors(mddev, newsize); 3253 if (sectors > mddev->dev_sectors && 3254 mddev->recovery_cp > mddev->dev_sectors) { 3255 mddev->recovery_cp = mddev->dev_sectors; 3256 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3257 } 3258 mddev->dev_sectors = sectors; 3259 mddev->resync_max_sectors = sectors; 3260 return 0; 3261 } 3262 3263 static int raid1_reshape(struct mddev *mddev) 3264 { 3265 /* We need to: 3266 * 1/ resize the r1bio_pool 3267 * 2/ resize conf->mirrors 3268 * 3269 * We allocate a new r1bio_pool if we can. 3270 * Then raise a device barrier and wait until all IO stops. 3271 * Then resize conf->mirrors and swap in the new r1bio pool. 3272 * 3273 * At the same time, we "pack" the devices so that all the missing 3274 * devices have the higher raid_disk numbers. 3275 */ 3276 mempool_t newpool, oldpool; 3277 struct pool_info *newpoolinfo; 3278 struct raid1_info *newmirrors; 3279 struct r1conf *conf = mddev->private; 3280 int cnt, raid_disks; 3281 unsigned long flags; 3282 int d, d2; 3283 int ret; 3284 3285 memset(&newpool, 0, sizeof(newpool)); 3286 memset(&oldpool, 0, sizeof(oldpool)); 3287 3288 /* Cannot change chunk_size, layout, or level */ 3289 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3290 mddev->layout != mddev->new_layout || 3291 mddev->level != mddev->new_level) { 3292 mddev->new_chunk_sectors = mddev->chunk_sectors; 3293 mddev->new_layout = mddev->layout; 3294 mddev->new_level = mddev->level; 3295 return -EINVAL; 3296 } 3297 3298 if (!mddev_is_clustered(mddev)) 3299 md_allow_write(mddev); 3300 3301 raid_disks = mddev->raid_disks + mddev->delta_disks; 3302 3303 if (raid_disks < conf->raid_disks) { 3304 cnt=0; 3305 for (d= 0; d < conf->raid_disks; d++) 3306 if (conf->mirrors[d].rdev) 3307 cnt++; 3308 if (cnt > raid_disks) 3309 return -EBUSY; 3310 } 3311 3312 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3313 if (!newpoolinfo) 3314 return -ENOMEM; 3315 newpoolinfo->mddev = mddev; 3316 newpoolinfo->raid_disks = raid_disks * 2; 3317 3318 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3319 rbio_pool_free, newpoolinfo); 3320 if (ret) { 3321 kfree(newpoolinfo); 3322 return ret; 3323 } 3324 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3325 raid_disks, 2), 3326 GFP_KERNEL); 3327 if (!newmirrors) { 3328 kfree(newpoolinfo); 3329 mempool_exit(&newpool); 3330 return -ENOMEM; 3331 } 3332 3333 freeze_array(conf, 0); 3334 3335 /* ok, everything is stopped */ 3336 oldpool = conf->r1bio_pool; 3337 conf->r1bio_pool = newpool; 3338 3339 for (d = d2 = 0; d < conf->raid_disks; d++) { 3340 struct md_rdev *rdev = conf->mirrors[d].rdev; 3341 if (rdev && rdev->raid_disk != d2) { 3342 sysfs_unlink_rdev(mddev, rdev); 3343 rdev->raid_disk = d2; 3344 sysfs_unlink_rdev(mddev, rdev); 3345 if (sysfs_link_rdev(mddev, rdev)) 3346 pr_warn("md/raid1:%s: cannot register rd%d\n", 3347 mdname(mddev), rdev->raid_disk); 3348 } 3349 if (rdev) 3350 newmirrors[d2++].rdev = rdev; 3351 } 3352 kfree(conf->mirrors); 3353 conf->mirrors = newmirrors; 3354 kfree(conf->poolinfo); 3355 conf->poolinfo = newpoolinfo; 3356 3357 spin_lock_irqsave(&conf->device_lock, flags); 3358 mddev->degraded += (raid_disks - conf->raid_disks); 3359 spin_unlock_irqrestore(&conf->device_lock, flags); 3360 conf->raid_disks = mddev->raid_disks = raid_disks; 3361 mddev->delta_disks = 0; 3362 3363 unfreeze_array(conf); 3364 3365 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3367 md_wakeup_thread(mddev->thread); 3368 3369 mempool_exit(&oldpool); 3370 return 0; 3371 } 3372 3373 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3374 { 3375 struct r1conf *conf = mddev->private; 3376 3377 if (quiesce) 3378 freeze_array(conf, 0); 3379 else 3380 unfreeze_array(conf); 3381 } 3382 3383 static void *raid1_takeover(struct mddev *mddev) 3384 { 3385 /* raid1 can take over: 3386 * raid5 with 2 devices, any layout or chunk size 3387 */ 3388 if (mddev->level == 5 && mddev->raid_disks == 2) { 3389 struct r1conf *conf; 3390 mddev->new_level = 1; 3391 mddev->new_layout = 0; 3392 mddev->new_chunk_sectors = 0; 3393 conf = setup_conf(mddev); 3394 if (!IS_ERR(conf)) { 3395 /* Array must appear to be quiesced */ 3396 conf->array_frozen = 1; 3397 mddev_clear_unsupported_flags(mddev, 3398 UNSUPPORTED_MDDEV_FLAGS); 3399 } 3400 return conf; 3401 } 3402 return ERR_PTR(-EINVAL); 3403 } 3404 3405 static struct md_personality raid1_personality = 3406 { 3407 .name = "raid1", 3408 .level = 1, 3409 .owner = THIS_MODULE, 3410 .make_request = raid1_make_request, 3411 .run = raid1_run, 3412 .free = raid1_free, 3413 .status = raid1_status, 3414 .error_handler = raid1_error, 3415 .hot_add_disk = raid1_add_disk, 3416 .hot_remove_disk= raid1_remove_disk, 3417 .spare_active = raid1_spare_active, 3418 .sync_request = raid1_sync_request, 3419 .resize = raid1_resize, 3420 .size = raid1_size, 3421 .check_reshape = raid1_reshape, 3422 .quiesce = raid1_quiesce, 3423 .takeover = raid1_takeover, 3424 }; 3425 3426 static int __init raid_init(void) 3427 { 3428 return register_md_personality(&raid1_personality); 3429 } 3430 3431 static void raid_exit(void) 3432 { 3433 unregister_md_personality(&raid1_personality); 3434 } 3435 3436 module_init(raid_init); 3437 module_exit(raid_exit); 3438 MODULE_LICENSE("GPL"); 3439 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3440 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3441 MODULE_ALIAS("md-raid1"); 3442 MODULE_ALIAS("md-level-1"); 3443