xref: /linux/drivers/md/raid1.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
39 #include "md.h"
40 #include "raid1.h"
41 #include "bitmap.h"
42 
43 #define DEBUG 0
44 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
45 
46 /*
47  * Number of guaranteed r1bios in case of extreme VM load:
48  */
49 #define	NR_RAID1_BIOS 256
50 
51 
52 static void allow_barrier(conf_t *conf);
53 static void lower_barrier(conf_t *conf);
54 
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
56 {
57 	struct pool_info *pi = data;
58 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
59 
60 	/* allocate a r1bio with room for raid_disks entries in the bios array */
61 	return kzalloc(size, gfp_flags);
62 }
63 
64 static void r1bio_pool_free(void *r1_bio, void *data)
65 {
66 	kfree(r1_bio);
67 }
68 
69 #define RESYNC_BLOCK_SIZE (64*1024)
70 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
71 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73 #define RESYNC_WINDOW (2048*1024)
74 
75 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
76 {
77 	struct pool_info *pi = data;
78 	struct page *page;
79 	r1bio_t *r1_bio;
80 	struct bio *bio;
81 	int i, j;
82 
83 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
84 	if (!r1_bio)
85 		return NULL;
86 
87 	/*
88 	 * Allocate bios : 1 for reading, n-1 for writing
89 	 */
90 	for (j = pi->raid_disks ; j-- ; ) {
91 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
92 		if (!bio)
93 			goto out_free_bio;
94 		r1_bio->bios[j] = bio;
95 	}
96 	/*
97 	 * Allocate RESYNC_PAGES data pages and attach them to
98 	 * the first bio.
99 	 * If this is a user-requested check/repair, allocate
100 	 * RESYNC_PAGES for each bio.
101 	 */
102 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
103 		j = pi->raid_disks;
104 	else
105 		j = 1;
106 	while(j--) {
107 		bio = r1_bio->bios[j];
108 		for (i = 0; i < RESYNC_PAGES; i++) {
109 			page = alloc_page(gfp_flags);
110 			if (unlikely(!page))
111 				goto out_free_pages;
112 
113 			bio->bi_io_vec[i].bv_page = page;
114 			bio->bi_vcnt = i+1;
115 		}
116 	}
117 	/* If not user-requests, copy the page pointers to all bios */
118 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
119 		for (i=0; i<RESYNC_PAGES ; i++)
120 			for (j=1; j<pi->raid_disks; j++)
121 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
122 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
123 	}
124 
125 	r1_bio->master_bio = NULL;
126 
127 	return r1_bio;
128 
129 out_free_pages:
130 	for (j=0 ; j < pi->raid_disks; j++)
131 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
132 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
133 	j = -1;
134 out_free_bio:
135 	while ( ++j < pi->raid_disks )
136 		bio_put(r1_bio->bios[j]);
137 	r1bio_pool_free(r1_bio, data);
138 	return NULL;
139 }
140 
141 static void r1buf_pool_free(void *__r1_bio, void *data)
142 {
143 	struct pool_info *pi = data;
144 	int i,j;
145 	r1bio_t *r1bio = __r1_bio;
146 
147 	for (i = 0; i < RESYNC_PAGES; i++)
148 		for (j = pi->raid_disks; j-- ;) {
149 			if (j == 0 ||
150 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
151 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
152 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
153 		}
154 	for (i=0 ; i < pi->raid_disks; i++)
155 		bio_put(r1bio->bios[i]);
156 
157 	r1bio_pool_free(r1bio, data);
158 }
159 
160 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
161 {
162 	int i;
163 
164 	for (i = 0; i < conf->raid_disks; i++) {
165 		struct bio **bio = r1_bio->bios + i;
166 		if (!BIO_SPECIAL(*bio))
167 			bio_put(*bio);
168 		*bio = NULL;
169 	}
170 }
171 
172 static void free_r1bio(r1bio_t *r1_bio)
173 {
174 	conf_t *conf = r1_bio->mddev->private;
175 
176 	put_all_bios(conf, r1_bio);
177 	mempool_free(r1_bio, conf->r1bio_pool);
178 }
179 
180 static void put_buf(r1bio_t *r1_bio)
181 {
182 	conf_t *conf = r1_bio->mddev->private;
183 	int i;
184 
185 	for (i=0; i<conf->raid_disks; i++) {
186 		struct bio *bio = r1_bio->bios[i];
187 		if (bio->bi_end_io)
188 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
189 	}
190 
191 	mempool_free(r1_bio, conf->r1buf_pool);
192 
193 	lower_barrier(conf);
194 }
195 
196 static void reschedule_retry(r1bio_t *r1_bio)
197 {
198 	unsigned long flags;
199 	mddev_t *mddev = r1_bio->mddev;
200 	conf_t *conf = mddev->private;
201 
202 	spin_lock_irqsave(&conf->device_lock, flags);
203 	list_add(&r1_bio->retry_list, &conf->retry_list);
204 	conf->nr_queued ++;
205 	spin_unlock_irqrestore(&conf->device_lock, flags);
206 
207 	wake_up(&conf->wait_barrier);
208 	md_wakeup_thread(mddev->thread);
209 }
210 
211 /*
212  * raid_end_bio_io() is called when we have finished servicing a mirrored
213  * operation and are ready to return a success/failure code to the buffer
214  * cache layer.
215  */
216 static void call_bio_endio(r1bio_t *r1_bio)
217 {
218 	struct bio *bio = r1_bio->master_bio;
219 	int done;
220 	conf_t *conf = r1_bio->mddev->private;
221 
222 	if (bio->bi_phys_segments) {
223 		unsigned long flags;
224 		spin_lock_irqsave(&conf->device_lock, flags);
225 		bio->bi_phys_segments--;
226 		done = (bio->bi_phys_segments == 0);
227 		spin_unlock_irqrestore(&conf->device_lock, flags);
228 	} else
229 		done = 1;
230 
231 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
232 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
233 	if (done) {
234 		bio_endio(bio, 0);
235 		/*
236 		 * Wake up any possible resync thread that waits for the device
237 		 * to go idle.
238 		 */
239 		allow_barrier(conf);
240 	}
241 }
242 
243 static void raid_end_bio_io(r1bio_t *r1_bio)
244 {
245 	struct bio *bio = r1_bio->master_bio;
246 
247 	/* if nobody has done the final endio yet, do it now */
248 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
249 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
250 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
251 			(unsigned long long) bio->bi_sector,
252 			(unsigned long long) bio->bi_sector +
253 				(bio->bi_size >> 9) - 1);
254 
255 		call_bio_endio(r1_bio);
256 	}
257 	free_r1bio(r1_bio);
258 }
259 
260 /*
261  * Update disk head position estimator based on IRQ completion info.
262  */
263 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
264 {
265 	conf_t *conf = r1_bio->mddev->private;
266 
267 	conf->mirrors[disk].head_position =
268 		r1_bio->sector + (r1_bio->sectors);
269 }
270 
271 static void raid1_end_read_request(struct bio *bio, int error)
272 {
273 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
274 	r1bio_t *r1_bio = bio->bi_private;
275 	int mirror;
276 	conf_t *conf = r1_bio->mddev->private;
277 
278 	mirror = r1_bio->read_disk;
279 	/*
280 	 * this branch is our 'one mirror IO has finished' event handler:
281 	 */
282 	update_head_pos(mirror, r1_bio);
283 
284 	if (uptodate)
285 		set_bit(R1BIO_Uptodate, &r1_bio->state);
286 	else {
287 		/* If all other devices have failed, we want to return
288 		 * the error upwards rather than fail the last device.
289 		 * Here we redefine "uptodate" to mean "Don't want to retry"
290 		 */
291 		unsigned long flags;
292 		spin_lock_irqsave(&conf->device_lock, flags);
293 		if (r1_bio->mddev->degraded == conf->raid_disks ||
294 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
295 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
296 			uptodate = 1;
297 		spin_unlock_irqrestore(&conf->device_lock, flags);
298 	}
299 
300 	if (uptodate)
301 		raid_end_bio_io(r1_bio);
302 	else {
303 		/*
304 		 * oops, read error:
305 		 */
306 		char b[BDEVNAME_SIZE];
307 		printk_ratelimited(
308 			KERN_ERR "md/raid1:%s: %s: "
309 			"rescheduling sector %llu\n",
310 			mdname(conf->mddev),
311 			bdevname(conf->mirrors[mirror].rdev->bdev,
312 				 b),
313 			(unsigned long long)r1_bio->sector);
314 		set_bit(R1BIO_ReadError, &r1_bio->state);
315 		reschedule_retry(r1_bio);
316 	}
317 
318 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
319 }
320 
321 static void close_write(r1bio_t *r1_bio)
322 {
323 	/* it really is the end of this request */
324 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
325 		/* free extra copy of the data pages */
326 		int i = r1_bio->behind_page_count;
327 		while (i--)
328 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
329 		kfree(r1_bio->behind_bvecs);
330 		r1_bio->behind_bvecs = NULL;
331 	}
332 	/* clear the bitmap if all writes complete successfully */
333 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334 			r1_bio->sectors,
335 			!test_bit(R1BIO_Degraded, &r1_bio->state),
336 			test_bit(R1BIO_BehindIO, &r1_bio->state));
337 	md_write_end(r1_bio->mddev);
338 }
339 
340 static void r1_bio_write_done(r1bio_t *r1_bio)
341 {
342 	if (!atomic_dec_and_test(&r1_bio->remaining))
343 		return;
344 
345 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
346 		reschedule_retry(r1_bio);
347 	else {
348 		close_write(r1_bio);
349 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
350 			reschedule_retry(r1_bio);
351 		else
352 			raid_end_bio_io(r1_bio);
353 	}
354 }
355 
356 static void raid1_end_write_request(struct bio *bio, int error)
357 {
358 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 	r1bio_t *r1_bio = bio->bi_private;
360 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
361 	conf_t *conf = r1_bio->mddev->private;
362 	struct bio *to_put = NULL;
363 
364 
365 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
366 		if (r1_bio->bios[mirror] == bio)
367 			break;
368 
369 	/*
370 	 * 'one mirror IO has finished' event handler:
371 	 */
372 	if (!uptodate) {
373 		set_bit(WriteErrorSeen,
374 			&conf->mirrors[mirror].rdev->flags);
375 		set_bit(R1BIO_WriteError, &r1_bio->state);
376 	} else {
377 		/*
378 		 * Set R1BIO_Uptodate in our master bio, so that we
379 		 * will return a good error code for to the higher
380 		 * levels even if IO on some other mirrored buffer
381 		 * fails.
382 		 *
383 		 * The 'master' represents the composite IO operation
384 		 * to user-side. So if something waits for IO, then it
385 		 * will wait for the 'master' bio.
386 		 */
387 		sector_t first_bad;
388 		int bad_sectors;
389 
390 		r1_bio->bios[mirror] = NULL;
391 		to_put = bio;
392 		set_bit(R1BIO_Uptodate, &r1_bio->state);
393 
394 		/* Maybe we can clear some bad blocks. */
395 		if (is_badblock(conf->mirrors[mirror].rdev,
396 				r1_bio->sector, r1_bio->sectors,
397 				&first_bad, &bad_sectors)) {
398 			r1_bio->bios[mirror] = IO_MADE_GOOD;
399 			set_bit(R1BIO_MadeGood, &r1_bio->state);
400 		}
401 	}
402 
403 	update_head_pos(mirror, r1_bio);
404 
405 	if (behind) {
406 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
407 			atomic_dec(&r1_bio->behind_remaining);
408 
409 		/*
410 		 * In behind mode, we ACK the master bio once the I/O
411 		 * has safely reached all non-writemostly
412 		 * disks. Setting the Returned bit ensures that this
413 		 * gets done only once -- we don't ever want to return
414 		 * -EIO here, instead we'll wait
415 		 */
416 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
417 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
418 			/* Maybe we can return now */
419 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
420 				struct bio *mbio = r1_bio->master_bio;
421 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
422 				       (unsigned long long) mbio->bi_sector,
423 				       (unsigned long long) mbio->bi_sector +
424 				       (mbio->bi_size >> 9) - 1);
425 				call_bio_endio(r1_bio);
426 			}
427 		}
428 	}
429 	if (r1_bio->bios[mirror] == NULL)
430 		rdev_dec_pending(conf->mirrors[mirror].rdev,
431 				 conf->mddev);
432 
433 	/*
434 	 * Let's see if all mirrored write operations have finished
435 	 * already.
436 	 */
437 	r1_bio_write_done(r1_bio);
438 
439 	if (to_put)
440 		bio_put(to_put);
441 }
442 
443 
444 /*
445  * This routine returns the disk from which the requested read should
446  * be done. There is a per-array 'next expected sequential IO' sector
447  * number - if this matches on the next IO then we use the last disk.
448  * There is also a per-disk 'last know head position' sector that is
449  * maintained from IRQ contexts, both the normal and the resync IO
450  * completion handlers update this position correctly. If there is no
451  * perfect sequential match then we pick the disk whose head is closest.
452  *
453  * If there are 2 mirrors in the same 2 devices, performance degrades
454  * because position is mirror, not device based.
455  *
456  * The rdev for the device selected will have nr_pending incremented.
457  */
458 static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
459 {
460 	const sector_t this_sector = r1_bio->sector;
461 	int sectors;
462 	int best_good_sectors;
463 	int start_disk;
464 	int best_disk;
465 	int i;
466 	sector_t best_dist;
467 	mdk_rdev_t *rdev;
468 	int choose_first;
469 
470 	rcu_read_lock();
471 	/*
472 	 * Check if we can balance. We can balance on the whole
473 	 * device if no resync is going on, or below the resync window.
474 	 * We take the first readable disk when above the resync window.
475 	 */
476  retry:
477 	sectors = r1_bio->sectors;
478 	best_disk = -1;
479 	best_dist = MaxSector;
480 	best_good_sectors = 0;
481 
482 	if (conf->mddev->recovery_cp < MaxSector &&
483 	    (this_sector + sectors >= conf->next_resync)) {
484 		choose_first = 1;
485 		start_disk = 0;
486 	} else {
487 		choose_first = 0;
488 		start_disk = conf->last_used;
489 	}
490 
491 	for (i = 0 ; i < conf->raid_disks ; i++) {
492 		sector_t dist;
493 		sector_t first_bad;
494 		int bad_sectors;
495 
496 		int disk = start_disk + i;
497 		if (disk >= conf->raid_disks)
498 			disk -= conf->raid_disks;
499 
500 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
501 		if (r1_bio->bios[disk] == IO_BLOCKED
502 		    || rdev == NULL
503 		    || test_bit(Faulty, &rdev->flags))
504 			continue;
505 		if (!test_bit(In_sync, &rdev->flags) &&
506 		    rdev->recovery_offset < this_sector + sectors)
507 			continue;
508 		if (test_bit(WriteMostly, &rdev->flags)) {
509 			/* Don't balance among write-mostly, just
510 			 * use the first as a last resort */
511 			if (best_disk < 0)
512 				best_disk = disk;
513 			continue;
514 		}
515 		/* This is a reasonable device to use.  It might
516 		 * even be best.
517 		 */
518 		if (is_badblock(rdev, this_sector, sectors,
519 				&first_bad, &bad_sectors)) {
520 			if (best_dist < MaxSector)
521 				/* already have a better device */
522 				continue;
523 			if (first_bad <= this_sector) {
524 				/* cannot read here. If this is the 'primary'
525 				 * device, then we must not read beyond
526 				 * bad_sectors from another device..
527 				 */
528 				bad_sectors -= (this_sector - first_bad);
529 				if (choose_first && sectors > bad_sectors)
530 					sectors = bad_sectors;
531 				if (best_good_sectors > sectors)
532 					best_good_sectors = sectors;
533 
534 			} else {
535 				sector_t good_sectors = first_bad - this_sector;
536 				if (good_sectors > best_good_sectors) {
537 					best_good_sectors = good_sectors;
538 					best_disk = disk;
539 				}
540 				if (choose_first)
541 					break;
542 			}
543 			continue;
544 		} else
545 			best_good_sectors = sectors;
546 
547 		dist = abs(this_sector - conf->mirrors[disk].head_position);
548 		if (choose_first
549 		    /* Don't change to another disk for sequential reads */
550 		    || conf->next_seq_sect == this_sector
551 		    || dist == 0
552 		    /* If device is idle, use it */
553 		    || atomic_read(&rdev->nr_pending) == 0) {
554 			best_disk = disk;
555 			break;
556 		}
557 		if (dist < best_dist) {
558 			best_dist = dist;
559 			best_disk = disk;
560 		}
561 	}
562 
563 	if (best_disk >= 0) {
564 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
565 		if (!rdev)
566 			goto retry;
567 		atomic_inc(&rdev->nr_pending);
568 		if (test_bit(Faulty, &rdev->flags)) {
569 			/* cannot risk returning a device that failed
570 			 * before we inc'ed nr_pending
571 			 */
572 			rdev_dec_pending(rdev, conf->mddev);
573 			goto retry;
574 		}
575 		sectors = best_good_sectors;
576 		conf->next_seq_sect = this_sector + sectors;
577 		conf->last_used = best_disk;
578 	}
579 	rcu_read_unlock();
580 	*max_sectors = sectors;
581 
582 	return best_disk;
583 }
584 
585 int md_raid1_congested(mddev_t *mddev, int bits)
586 {
587 	conf_t *conf = mddev->private;
588 	int i, ret = 0;
589 
590 	rcu_read_lock();
591 	for (i = 0; i < mddev->raid_disks; i++) {
592 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
593 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
594 			struct request_queue *q = bdev_get_queue(rdev->bdev);
595 
596 			BUG_ON(!q);
597 
598 			/* Note the '|| 1' - when read_balance prefers
599 			 * non-congested targets, it can be removed
600 			 */
601 			if ((bits & (1<<BDI_async_congested)) || 1)
602 				ret |= bdi_congested(&q->backing_dev_info, bits);
603 			else
604 				ret &= bdi_congested(&q->backing_dev_info, bits);
605 		}
606 	}
607 	rcu_read_unlock();
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(md_raid1_congested);
611 
612 static int raid1_congested(void *data, int bits)
613 {
614 	mddev_t *mddev = data;
615 
616 	return mddev_congested(mddev, bits) ||
617 		md_raid1_congested(mddev, bits);
618 }
619 
620 static void flush_pending_writes(conf_t *conf)
621 {
622 	/* Any writes that have been queued but are awaiting
623 	 * bitmap updates get flushed here.
624 	 */
625 	spin_lock_irq(&conf->device_lock);
626 
627 	if (conf->pending_bio_list.head) {
628 		struct bio *bio;
629 		bio = bio_list_get(&conf->pending_bio_list);
630 		spin_unlock_irq(&conf->device_lock);
631 		/* flush any pending bitmap writes to
632 		 * disk before proceeding w/ I/O */
633 		bitmap_unplug(conf->mddev->bitmap);
634 
635 		while (bio) { /* submit pending writes */
636 			struct bio *next = bio->bi_next;
637 			bio->bi_next = NULL;
638 			generic_make_request(bio);
639 			bio = next;
640 		}
641 	} else
642 		spin_unlock_irq(&conf->device_lock);
643 }
644 
645 /* Barriers....
646  * Sometimes we need to suspend IO while we do something else,
647  * either some resync/recovery, or reconfigure the array.
648  * To do this we raise a 'barrier'.
649  * The 'barrier' is a counter that can be raised multiple times
650  * to count how many activities are happening which preclude
651  * normal IO.
652  * We can only raise the barrier if there is no pending IO.
653  * i.e. if nr_pending == 0.
654  * We choose only to raise the barrier if no-one is waiting for the
655  * barrier to go down.  This means that as soon as an IO request
656  * is ready, no other operations which require a barrier will start
657  * until the IO request has had a chance.
658  *
659  * So: regular IO calls 'wait_barrier'.  When that returns there
660  *    is no backgroup IO happening,  It must arrange to call
661  *    allow_barrier when it has finished its IO.
662  * backgroup IO calls must call raise_barrier.  Once that returns
663  *    there is no normal IO happeing.  It must arrange to call
664  *    lower_barrier when the particular background IO completes.
665  */
666 #define RESYNC_DEPTH 32
667 
668 static void raise_barrier(conf_t *conf)
669 {
670 	spin_lock_irq(&conf->resync_lock);
671 
672 	/* Wait until no block IO is waiting */
673 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
674 			    conf->resync_lock, );
675 
676 	/* block any new IO from starting */
677 	conf->barrier++;
678 
679 	/* Now wait for all pending IO to complete */
680 	wait_event_lock_irq(conf->wait_barrier,
681 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
682 			    conf->resync_lock, );
683 
684 	spin_unlock_irq(&conf->resync_lock);
685 }
686 
687 static void lower_barrier(conf_t *conf)
688 {
689 	unsigned long flags;
690 	BUG_ON(conf->barrier <= 0);
691 	spin_lock_irqsave(&conf->resync_lock, flags);
692 	conf->barrier--;
693 	spin_unlock_irqrestore(&conf->resync_lock, flags);
694 	wake_up(&conf->wait_barrier);
695 }
696 
697 static void wait_barrier(conf_t *conf)
698 {
699 	spin_lock_irq(&conf->resync_lock);
700 	if (conf->barrier) {
701 		conf->nr_waiting++;
702 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
703 				    conf->resync_lock,
704 				    );
705 		conf->nr_waiting--;
706 	}
707 	conf->nr_pending++;
708 	spin_unlock_irq(&conf->resync_lock);
709 }
710 
711 static void allow_barrier(conf_t *conf)
712 {
713 	unsigned long flags;
714 	spin_lock_irqsave(&conf->resync_lock, flags);
715 	conf->nr_pending--;
716 	spin_unlock_irqrestore(&conf->resync_lock, flags);
717 	wake_up(&conf->wait_barrier);
718 }
719 
720 static void freeze_array(conf_t *conf)
721 {
722 	/* stop syncio and normal IO and wait for everything to
723 	 * go quite.
724 	 * We increment barrier and nr_waiting, and then
725 	 * wait until nr_pending match nr_queued+1
726 	 * This is called in the context of one normal IO request
727 	 * that has failed. Thus any sync request that might be pending
728 	 * will be blocked by nr_pending, and we need to wait for
729 	 * pending IO requests to complete or be queued for re-try.
730 	 * Thus the number queued (nr_queued) plus this request (1)
731 	 * must match the number of pending IOs (nr_pending) before
732 	 * we continue.
733 	 */
734 	spin_lock_irq(&conf->resync_lock);
735 	conf->barrier++;
736 	conf->nr_waiting++;
737 	wait_event_lock_irq(conf->wait_barrier,
738 			    conf->nr_pending == conf->nr_queued+1,
739 			    conf->resync_lock,
740 			    flush_pending_writes(conf));
741 	spin_unlock_irq(&conf->resync_lock);
742 }
743 static void unfreeze_array(conf_t *conf)
744 {
745 	/* reverse the effect of the freeze */
746 	spin_lock_irq(&conf->resync_lock);
747 	conf->barrier--;
748 	conf->nr_waiting--;
749 	wake_up(&conf->wait_barrier);
750 	spin_unlock_irq(&conf->resync_lock);
751 }
752 
753 
754 /* duplicate the data pages for behind I/O
755  */
756 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
757 {
758 	int i;
759 	struct bio_vec *bvec;
760 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
761 					GFP_NOIO);
762 	if (unlikely(!bvecs))
763 		return;
764 
765 	bio_for_each_segment(bvec, bio, i) {
766 		bvecs[i] = *bvec;
767 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
768 		if (unlikely(!bvecs[i].bv_page))
769 			goto do_sync_io;
770 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
771 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
772 		kunmap(bvecs[i].bv_page);
773 		kunmap(bvec->bv_page);
774 	}
775 	r1_bio->behind_bvecs = bvecs;
776 	r1_bio->behind_page_count = bio->bi_vcnt;
777 	set_bit(R1BIO_BehindIO, &r1_bio->state);
778 	return;
779 
780 do_sync_io:
781 	for (i = 0; i < bio->bi_vcnt; i++)
782 		if (bvecs[i].bv_page)
783 			put_page(bvecs[i].bv_page);
784 	kfree(bvecs);
785 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
786 }
787 
788 static int make_request(mddev_t *mddev, struct bio * bio)
789 {
790 	conf_t *conf = mddev->private;
791 	mirror_info_t *mirror;
792 	r1bio_t *r1_bio;
793 	struct bio *read_bio;
794 	int i, disks;
795 	struct bitmap *bitmap;
796 	unsigned long flags;
797 	const int rw = bio_data_dir(bio);
798 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
799 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
800 	mdk_rdev_t *blocked_rdev;
801 	int plugged;
802 	int first_clone;
803 	int sectors_handled;
804 	int max_sectors;
805 
806 	/*
807 	 * Register the new request and wait if the reconstruction
808 	 * thread has put up a bar for new requests.
809 	 * Continue immediately if no resync is active currently.
810 	 */
811 
812 	md_write_start(mddev, bio); /* wait on superblock update early */
813 
814 	if (bio_data_dir(bio) == WRITE &&
815 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
816 	    bio->bi_sector < mddev->suspend_hi) {
817 		/* As the suspend_* range is controlled by
818 		 * userspace, we want an interruptible
819 		 * wait.
820 		 */
821 		DEFINE_WAIT(w);
822 		for (;;) {
823 			flush_signals(current);
824 			prepare_to_wait(&conf->wait_barrier,
825 					&w, TASK_INTERRUPTIBLE);
826 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
827 			    bio->bi_sector >= mddev->suspend_hi)
828 				break;
829 			schedule();
830 		}
831 		finish_wait(&conf->wait_barrier, &w);
832 	}
833 
834 	wait_barrier(conf);
835 
836 	bitmap = mddev->bitmap;
837 
838 	/*
839 	 * make_request() can abort the operation when READA is being
840 	 * used and no empty request is available.
841 	 *
842 	 */
843 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
844 
845 	r1_bio->master_bio = bio;
846 	r1_bio->sectors = bio->bi_size >> 9;
847 	r1_bio->state = 0;
848 	r1_bio->mddev = mddev;
849 	r1_bio->sector = bio->bi_sector;
850 
851 	/* We might need to issue multiple reads to different
852 	 * devices if there are bad blocks around, so we keep
853 	 * track of the number of reads in bio->bi_phys_segments.
854 	 * If this is 0, there is only one r1_bio and no locking
855 	 * will be needed when requests complete.  If it is
856 	 * non-zero, then it is the number of not-completed requests.
857 	 */
858 	bio->bi_phys_segments = 0;
859 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
860 
861 	if (rw == READ) {
862 		/*
863 		 * read balancing logic:
864 		 */
865 		int rdisk;
866 
867 read_again:
868 		rdisk = read_balance(conf, r1_bio, &max_sectors);
869 
870 		if (rdisk < 0) {
871 			/* couldn't find anywhere to read from */
872 			raid_end_bio_io(r1_bio);
873 			return 0;
874 		}
875 		mirror = conf->mirrors + rdisk;
876 
877 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
878 		    bitmap) {
879 			/* Reading from a write-mostly device must
880 			 * take care not to over-take any writes
881 			 * that are 'behind'
882 			 */
883 			wait_event(bitmap->behind_wait,
884 				   atomic_read(&bitmap->behind_writes) == 0);
885 		}
886 		r1_bio->read_disk = rdisk;
887 
888 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
889 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
890 			    max_sectors);
891 
892 		r1_bio->bios[rdisk] = read_bio;
893 
894 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
895 		read_bio->bi_bdev = mirror->rdev->bdev;
896 		read_bio->bi_end_io = raid1_end_read_request;
897 		read_bio->bi_rw = READ | do_sync;
898 		read_bio->bi_private = r1_bio;
899 
900 		if (max_sectors < r1_bio->sectors) {
901 			/* could not read all from this device, so we will
902 			 * need another r1_bio.
903 			 */
904 
905 			sectors_handled = (r1_bio->sector + max_sectors
906 					   - bio->bi_sector);
907 			r1_bio->sectors = max_sectors;
908 			spin_lock_irq(&conf->device_lock);
909 			if (bio->bi_phys_segments == 0)
910 				bio->bi_phys_segments = 2;
911 			else
912 				bio->bi_phys_segments++;
913 			spin_unlock_irq(&conf->device_lock);
914 			/* Cannot call generic_make_request directly
915 			 * as that will be queued in __make_request
916 			 * and subsequent mempool_alloc might block waiting
917 			 * for it.  So hand bio over to raid1d.
918 			 */
919 			reschedule_retry(r1_bio);
920 
921 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
922 
923 			r1_bio->master_bio = bio;
924 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
925 			r1_bio->state = 0;
926 			r1_bio->mddev = mddev;
927 			r1_bio->sector = bio->bi_sector + sectors_handled;
928 			goto read_again;
929 		} else
930 			generic_make_request(read_bio);
931 		return 0;
932 	}
933 
934 	/*
935 	 * WRITE:
936 	 */
937 	/* first select target devices under rcu_lock and
938 	 * inc refcount on their rdev.  Record them by setting
939 	 * bios[x] to bio
940 	 * If there are known/acknowledged bad blocks on any device on
941 	 * which we have seen a write error, we want to avoid writing those
942 	 * blocks.
943 	 * This potentially requires several writes to write around
944 	 * the bad blocks.  Each set of writes gets it's own r1bio
945 	 * with a set of bios attached.
946 	 */
947 	plugged = mddev_check_plugged(mddev);
948 
949 	disks = conf->raid_disks;
950  retry_write:
951 	blocked_rdev = NULL;
952 	rcu_read_lock();
953 	max_sectors = r1_bio->sectors;
954 	for (i = 0;  i < disks; i++) {
955 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
956 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
957 			atomic_inc(&rdev->nr_pending);
958 			blocked_rdev = rdev;
959 			break;
960 		}
961 		r1_bio->bios[i] = NULL;
962 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
963 			set_bit(R1BIO_Degraded, &r1_bio->state);
964 			continue;
965 		}
966 
967 		atomic_inc(&rdev->nr_pending);
968 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
969 			sector_t first_bad;
970 			int bad_sectors;
971 			int is_bad;
972 
973 			is_bad = is_badblock(rdev, r1_bio->sector,
974 					     max_sectors,
975 					     &first_bad, &bad_sectors);
976 			if (is_bad < 0) {
977 				/* mustn't write here until the bad block is
978 				 * acknowledged*/
979 				set_bit(BlockedBadBlocks, &rdev->flags);
980 				blocked_rdev = rdev;
981 				break;
982 			}
983 			if (is_bad && first_bad <= r1_bio->sector) {
984 				/* Cannot write here at all */
985 				bad_sectors -= (r1_bio->sector - first_bad);
986 				if (bad_sectors < max_sectors)
987 					/* mustn't write more than bad_sectors
988 					 * to other devices yet
989 					 */
990 					max_sectors = bad_sectors;
991 				rdev_dec_pending(rdev, mddev);
992 				/* We don't set R1BIO_Degraded as that
993 				 * only applies if the disk is
994 				 * missing, so it might be re-added,
995 				 * and we want to know to recover this
996 				 * chunk.
997 				 * In this case the device is here,
998 				 * and the fact that this chunk is not
999 				 * in-sync is recorded in the bad
1000 				 * block log
1001 				 */
1002 				continue;
1003 			}
1004 			if (is_bad) {
1005 				int good_sectors = first_bad - r1_bio->sector;
1006 				if (good_sectors < max_sectors)
1007 					max_sectors = good_sectors;
1008 			}
1009 		}
1010 		r1_bio->bios[i] = bio;
1011 	}
1012 	rcu_read_unlock();
1013 
1014 	if (unlikely(blocked_rdev)) {
1015 		/* Wait for this device to become unblocked */
1016 		int j;
1017 
1018 		for (j = 0; j < i; j++)
1019 			if (r1_bio->bios[j])
1020 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021 		r1_bio->state = 0;
1022 		allow_barrier(conf);
1023 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024 		wait_barrier(conf);
1025 		goto retry_write;
1026 	}
1027 
1028 	if (max_sectors < r1_bio->sectors) {
1029 		/* We are splitting this write into multiple parts, so
1030 		 * we need to prepare for allocating another r1_bio.
1031 		 */
1032 		r1_bio->sectors = max_sectors;
1033 		spin_lock_irq(&conf->device_lock);
1034 		if (bio->bi_phys_segments == 0)
1035 			bio->bi_phys_segments = 2;
1036 		else
1037 			bio->bi_phys_segments++;
1038 		spin_unlock_irq(&conf->device_lock);
1039 	}
1040 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1041 
1042 	atomic_set(&r1_bio->remaining, 1);
1043 	atomic_set(&r1_bio->behind_remaining, 0);
1044 
1045 	first_clone = 1;
1046 	for (i = 0; i < disks; i++) {
1047 		struct bio *mbio;
1048 		if (!r1_bio->bios[i])
1049 			continue;
1050 
1051 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053 
1054 		if (first_clone) {
1055 			/* do behind I/O ?
1056 			 * Not if there are too many, or cannot
1057 			 * allocate memory, or a reader on WriteMostly
1058 			 * is waiting for behind writes to flush */
1059 			if (bitmap &&
1060 			    (atomic_read(&bitmap->behind_writes)
1061 			     < mddev->bitmap_info.max_write_behind) &&
1062 			    !waitqueue_active(&bitmap->behind_wait))
1063 				alloc_behind_pages(mbio, r1_bio);
1064 
1065 			bitmap_startwrite(bitmap, r1_bio->sector,
1066 					  r1_bio->sectors,
1067 					  test_bit(R1BIO_BehindIO,
1068 						   &r1_bio->state));
1069 			first_clone = 0;
1070 		}
1071 		if (r1_bio->behind_bvecs) {
1072 			struct bio_vec *bvec;
1073 			int j;
1074 
1075 			/* Yes, I really want the '__' version so that
1076 			 * we clear any unused pointer in the io_vec, rather
1077 			 * than leave them unchanged.  This is important
1078 			 * because when we come to free the pages, we won't
1079 			 * know the original bi_idx, so we just free
1080 			 * them all
1081 			 */
1082 			__bio_for_each_segment(bvec, mbio, j, 0)
1083 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085 				atomic_inc(&r1_bio->behind_remaining);
1086 		}
1087 
1088 		r1_bio->bios[i] = mbio;
1089 
1090 		mbio->bi_sector	= (r1_bio->sector +
1091 				   conf->mirrors[i].rdev->data_offset);
1092 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093 		mbio->bi_end_io	= raid1_end_write_request;
1094 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1095 		mbio->bi_private = r1_bio;
1096 
1097 		atomic_inc(&r1_bio->remaining);
1098 		spin_lock_irqsave(&conf->device_lock, flags);
1099 		bio_list_add(&conf->pending_bio_list, mbio);
1100 		spin_unlock_irqrestore(&conf->device_lock, flags);
1101 	}
1102 	/* Mustn't call r1_bio_write_done before this next test,
1103 	 * as it could result in the bio being freed.
1104 	 */
1105 	if (sectors_handled < (bio->bi_size >> 9)) {
1106 		r1_bio_write_done(r1_bio);
1107 		/* We need another r1_bio.  It has already been counted
1108 		 * in bio->bi_phys_segments
1109 		 */
1110 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1111 		r1_bio->master_bio = bio;
1112 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1113 		r1_bio->state = 0;
1114 		r1_bio->mddev = mddev;
1115 		r1_bio->sector = bio->bi_sector + sectors_handled;
1116 		goto retry_write;
1117 	}
1118 
1119 	r1_bio_write_done(r1_bio);
1120 
1121 	/* In case raid1d snuck in to freeze_array */
1122 	wake_up(&conf->wait_barrier);
1123 
1124 	if (do_sync || !bitmap || !plugged)
1125 		md_wakeup_thread(mddev->thread);
1126 
1127 	return 0;
1128 }
1129 
1130 static void status(struct seq_file *seq, mddev_t *mddev)
1131 {
1132 	conf_t *conf = mddev->private;
1133 	int i;
1134 
1135 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1136 		   conf->raid_disks - mddev->degraded);
1137 	rcu_read_lock();
1138 	for (i = 0; i < conf->raid_disks; i++) {
1139 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1140 		seq_printf(seq, "%s",
1141 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1142 	}
1143 	rcu_read_unlock();
1144 	seq_printf(seq, "]");
1145 }
1146 
1147 
1148 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1149 {
1150 	char b[BDEVNAME_SIZE];
1151 	conf_t *conf = mddev->private;
1152 
1153 	/*
1154 	 * If it is not operational, then we have already marked it as dead
1155 	 * else if it is the last working disks, ignore the error, let the
1156 	 * next level up know.
1157 	 * else mark the drive as failed
1158 	 */
1159 	if (test_bit(In_sync, &rdev->flags)
1160 	    && (conf->raid_disks - mddev->degraded) == 1) {
1161 		/*
1162 		 * Don't fail the drive, act as though we were just a
1163 		 * normal single drive.
1164 		 * However don't try a recovery from this drive as
1165 		 * it is very likely to fail.
1166 		 */
1167 		conf->recovery_disabled = mddev->recovery_disabled;
1168 		return;
1169 	}
1170 	set_bit(Blocked, &rdev->flags);
1171 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1172 		unsigned long flags;
1173 		spin_lock_irqsave(&conf->device_lock, flags);
1174 		mddev->degraded++;
1175 		set_bit(Faulty, &rdev->flags);
1176 		spin_unlock_irqrestore(&conf->device_lock, flags);
1177 		/*
1178 		 * if recovery is running, make sure it aborts.
1179 		 */
1180 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1181 	} else
1182 		set_bit(Faulty, &rdev->flags);
1183 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1184 	printk(KERN_ALERT
1185 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1187 	       mdname(mddev), bdevname(rdev->bdev, b),
1188 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1189 }
1190 
1191 static void print_conf(conf_t *conf)
1192 {
1193 	int i;
1194 
1195 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1196 	if (!conf) {
1197 		printk(KERN_DEBUG "(!conf)\n");
1198 		return;
1199 	}
1200 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1201 		conf->raid_disks);
1202 
1203 	rcu_read_lock();
1204 	for (i = 0; i < conf->raid_disks; i++) {
1205 		char b[BDEVNAME_SIZE];
1206 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1207 		if (rdev)
1208 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1209 			       i, !test_bit(In_sync, &rdev->flags),
1210 			       !test_bit(Faulty, &rdev->flags),
1211 			       bdevname(rdev->bdev,b));
1212 	}
1213 	rcu_read_unlock();
1214 }
1215 
1216 static void close_sync(conf_t *conf)
1217 {
1218 	wait_barrier(conf);
1219 	allow_barrier(conf);
1220 
1221 	mempool_destroy(conf->r1buf_pool);
1222 	conf->r1buf_pool = NULL;
1223 }
1224 
1225 static int raid1_spare_active(mddev_t *mddev)
1226 {
1227 	int i;
1228 	conf_t *conf = mddev->private;
1229 	int count = 0;
1230 	unsigned long flags;
1231 
1232 	/*
1233 	 * Find all failed disks within the RAID1 configuration
1234 	 * and mark them readable.
1235 	 * Called under mddev lock, so rcu protection not needed.
1236 	 */
1237 	for (i = 0; i < conf->raid_disks; i++) {
1238 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1239 		if (rdev
1240 		    && !test_bit(Faulty, &rdev->flags)
1241 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1242 			count++;
1243 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1244 		}
1245 	}
1246 	spin_lock_irqsave(&conf->device_lock, flags);
1247 	mddev->degraded -= count;
1248 	spin_unlock_irqrestore(&conf->device_lock, flags);
1249 
1250 	print_conf(conf);
1251 	return count;
1252 }
1253 
1254 
1255 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1256 {
1257 	conf_t *conf = mddev->private;
1258 	int err = -EEXIST;
1259 	int mirror = 0;
1260 	mirror_info_t *p;
1261 	int first = 0;
1262 	int last = mddev->raid_disks - 1;
1263 
1264 	if (mddev->recovery_disabled == conf->recovery_disabled)
1265 		return -EBUSY;
1266 
1267 	if (rdev->raid_disk >= 0)
1268 		first = last = rdev->raid_disk;
1269 
1270 	for (mirror = first; mirror <= last; mirror++)
1271 		if ( !(p=conf->mirrors+mirror)->rdev) {
1272 
1273 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1274 					  rdev->data_offset << 9);
1275 			/* as we don't honour merge_bvec_fn, we must
1276 			 * never risk violating it, so limit
1277 			 * ->max_segments to one lying with a single
1278 			 * page, as a one page request is never in
1279 			 * violation.
1280 			 */
1281 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1282 				blk_queue_max_segments(mddev->queue, 1);
1283 				blk_queue_segment_boundary(mddev->queue,
1284 							   PAGE_CACHE_SIZE - 1);
1285 			}
1286 
1287 			p->head_position = 0;
1288 			rdev->raid_disk = mirror;
1289 			err = 0;
1290 			/* As all devices are equivalent, we don't need a full recovery
1291 			 * if this was recently any drive of the array
1292 			 */
1293 			if (rdev->saved_raid_disk < 0)
1294 				conf->fullsync = 1;
1295 			rcu_assign_pointer(p->rdev, rdev);
1296 			break;
1297 		}
1298 	md_integrity_add_rdev(rdev, mddev);
1299 	print_conf(conf);
1300 	return err;
1301 }
1302 
1303 static int raid1_remove_disk(mddev_t *mddev, int number)
1304 {
1305 	conf_t *conf = mddev->private;
1306 	int err = 0;
1307 	mdk_rdev_t *rdev;
1308 	mirror_info_t *p = conf->mirrors+ number;
1309 
1310 	print_conf(conf);
1311 	rdev = p->rdev;
1312 	if (rdev) {
1313 		if (test_bit(In_sync, &rdev->flags) ||
1314 		    atomic_read(&rdev->nr_pending)) {
1315 			err = -EBUSY;
1316 			goto abort;
1317 		}
1318 		/* Only remove non-faulty devices if recovery
1319 		 * is not possible.
1320 		 */
1321 		if (!test_bit(Faulty, &rdev->flags) &&
1322 		    mddev->recovery_disabled != conf->recovery_disabled &&
1323 		    mddev->degraded < conf->raid_disks) {
1324 			err = -EBUSY;
1325 			goto abort;
1326 		}
1327 		p->rdev = NULL;
1328 		synchronize_rcu();
1329 		if (atomic_read(&rdev->nr_pending)) {
1330 			/* lost the race, try later */
1331 			err = -EBUSY;
1332 			p->rdev = rdev;
1333 			goto abort;
1334 		}
1335 		err = md_integrity_register(mddev);
1336 	}
1337 abort:
1338 
1339 	print_conf(conf);
1340 	return err;
1341 }
1342 
1343 
1344 static void end_sync_read(struct bio *bio, int error)
1345 {
1346 	r1bio_t *r1_bio = bio->bi_private;
1347 	int i;
1348 
1349 	for (i=r1_bio->mddev->raid_disks; i--; )
1350 		if (r1_bio->bios[i] == bio)
1351 			break;
1352 	BUG_ON(i < 0);
1353 	update_head_pos(i, r1_bio);
1354 	/*
1355 	 * we have read a block, now it needs to be re-written,
1356 	 * or re-read if the read failed.
1357 	 * We don't do much here, just schedule handling by raid1d
1358 	 */
1359 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1360 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1361 
1362 	if (atomic_dec_and_test(&r1_bio->remaining))
1363 		reschedule_retry(r1_bio);
1364 }
1365 
1366 static void end_sync_write(struct bio *bio, int error)
1367 {
1368 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1369 	r1bio_t *r1_bio = bio->bi_private;
1370 	mddev_t *mddev = r1_bio->mddev;
1371 	conf_t *conf = mddev->private;
1372 	int i;
1373 	int mirror=0;
1374 	sector_t first_bad;
1375 	int bad_sectors;
1376 
1377 	for (i = 0; i < conf->raid_disks; i++)
1378 		if (r1_bio->bios[i] == bio) {
1379 			mirror = i;
1380 			break;
1381 		}
1382 	if (!uptodate) {
1383 		sector_t sync_blocks = 0;
1384 		sector_t s = r1_bio->sector;
1385 		long sectors_to_go = r1_bio->sectors;
1386 		/* make sure these bits doesn't get cleared. */
1387 		do {
1388 			bitmap_end_sync(mddev->bitmap, s,
1389 					&sync_blocks, 1);
1390 			s += sync_blocks;
1391 			sectors_to_go -= sync_blocks;
1392 		} while (sectors_to_go > 0);
1393 		set_bit(WriteErrorSeen,
1394 			&conf->mirrors[mirror].rdev->flags);
1395 		set_bit(R1BIO_WriteError, &r1_bio->state);
1396 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1397 			       r1_bio->sector,
1398 			       r1_bio->sectors,
1399 			       &first_bad, &bad_sectors) &&
1400 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1401 				r1_bio->sector,
1402 				r1_bio->sectors,
1403 				&first_bad, &bad_sectors)
1404 		)
1405 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1406 
1407 	update_head_pos(mirror, r1_bio);
1408 
1409 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1410 		int s = r1_bio->sectors;
1411 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1412 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1413 			reschedule_retry(r1_bio);
1414 		else {
1415 			put_buf(r1_bio);
1416 			md_done_sync(mddev, s, uptodate);
1417 		}
1418 	}
1419 }
1420 
1421 static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1422 			    int sectors, struct page *page, int rw)
1423 {
1424 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1425 		/* success */
1426 		return 1;
1427 	if (rw == WRITE)
1428 		set_bit(WriteErrorSeen, &rdev->flags);
1429 	/* need to record an error - either for the block or the device */
1430 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1431 		md_error(rdev->mddev, rdev);
1432 	return 0;
1433 }
1434 
1435 static int fix_sync_read_error(r1bio_t *r1_bio)
1436 {
1437 	/* Try some synchronous reads of other devices to get
1438 	 * good data, much like with normal read errors.  Only
1439 	 * read into the pages we already have so we don't
1440 	 * need to re-issue the read request.
1441 	 * We don't need to freeze the array, because being in an
1442 	 * active sync request, there is no normal IO, and
1443 	 * no overlapping syncs.
1444 	 * We don't need to check is_badblock() again as we
1445 	 * made sure that anything with a bad block in range
1446 	 * will have bi_end_io clear.
1447 	 */
1448 	mddev_t *mddev = r1_bio->mddev;
1449 	conf_t *conf = mddev->private;
1450 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1451 	sector_t sect = r1_bio->sector;
1452 	int sectors = r1_bio->sectors;
1453 	int idx = 0;
1454 
1455 	while(sectors) {
1456 		int s = sectors;
1457 		int d = r1_bio->read_disk;
1458 		int success = 0;
1459 		mdk_rdev_t *rdev;
1460 		int start;
1461 
1462 		if (s > (PAGE_SIZE>>9))
1463 			s = PAGE_SIZE >> 9;
1464 		do {
1465 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1466 				/* No rcu protection needed here devices
1467 				 * can only be removed when no resync is
1468 				 * active, and resync is currently active
1469 				 */
1470 				rdev = conf->mirrors[d].rdev;
1471 				if (sync_page_io(rdev, sect, s<<9,
1472 						 bio->bi_io_vec[idx].bv_page,
1473 						 READ, false)) {
1474 					success = 1;
1475 					break;
1476 				}
1477 			}
1478 			d++;
1479 			if (d == conf->raid_disks)
1480 				d = 0;
1481 		} while (!success && d != r1_bio->read_disk);
1482 
1483 		if (!success) {
1484 			char b[BDEVNAME_SIZE];
1485 			int abort = 0;
1486 			/* Cannot read from anywhere, this block is lost.
1487 			 * Record a bad block on each device.  If that doesn't
1488 			 * work just disable and interrupt the recovery.
1489 			 * Don't fail devices as that won't really help.
1490 			 */
1491 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1492 			       " for block %llu\n",
1493 			       mdname(mddev),
1494 			       bdevname(bio->bi_bdev, b),
1495 			       (unsigned long long)r1_bio->sector);
1496 			for (d = 0; d < conf->raid_disks; d++) {
1497 				rdev = conf->mirrors[d].rdev;
1498 				if (!rdev || test_bit(Faulty, &rdev->flags))
1499 					continue;
1500 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1501 					abort = 1;
1502 			}
1503 			if (abort) {
1504 				mddev->recovery_disabled = 1;
1505 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506 				md_done_sync(mddev, r1_bio->sectors, 0);
1507 				put_buf(r1_bio);
1508 				return 0;
1509 			}
1510 			/* Try next page */
1511 			sectors -= s;
1512 			sect += s;
1513 			idx++;
1514 			continue;
1515 		}
1516 
1517 		start = d;
1518 		/* write it back and re-read */
1519 		while (d != r1_bio->read_disk) {
1520 			if (d == 0)
1521 				d = conf->raid_disks;
1522 			d--;
1523 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1524 				continue;
1525 			rdev = conf->mirrors[d].rdev;
1526 			if (r1_sync_page_io(rdev, sect, s,
1527 					    bio->bi_io_vec[idx].bv_page,
1528 					    WRITE) == 0) {
1529 				r1_bio->bios[d]->bi_end_io = NULL;
1530 				rdev_dec_pending(rdev, mddev);
1531 			}
1532 		}
1533 		d = start;
1534 		while (d != r1_bio->read_disk) {
1535 			if (d == 0)
1536 				d = conf->raid_disks;
1537 			d--;
1538 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1539 				continue;
1540 			rdev = conf->mirrors[d].rdev;
1541 			if (r1_sync_page_io(rdev, sect, s,
1542 					    bio->bi_io_vec[idx].bv_page,
1543 					    READ) != 0)
1544 				atomic_add(s, &rdev->corrected_errors);
1545 		}
1546 		sectors -= s;
1547 		sect += s;
1548 		idx ++;
1549 	}
1550 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1551 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1552 	return 1;
1553 }
1554 
1555 static int process_checks(r1bio_t *r1_bio)
1556 {
1557 	/* We have read all readable devices.  If we haven't
1558 	 * got the block, then there is no hope left.
1559 	 * If we have, then we want to do a comparison
1560 	 * and skip the write if everything is the same.
1561 	 * If any blocks failed to read, then we need to
1562 	 * attempt an over-write
1563 	 */
1564 	mddev_t *mddev = r1_bio->mddev;
1565 	conf_t *conf = mddev->private;
1566 	int primary;
1567 	int i;
1568 
1569 	for (primary = 0; primary < conf->raid_disks; primary++)
1570 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1571 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1572 			r1_bio->bios[primary]->bi_end_io = NULL;
1573 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1574 			break;
1575 		}
1576 	r1_bio->read_disk = primary;
1577 	for (i = 0; i < conf->raid_disks; i++) {
1578 		int j;
1579 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1580 		struct bio *pbio = r1_bio->bios[primary];
1581 		struct bio *sbio = r1_bio->bios[i];
1582 		int size;
1583 
1584 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1585 			continue;
1586 
1587 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1588 			for (j = vcnt; j-- ; ) {
1589 				struct page *p, *s;
1590 				p = pbio->bi_io_vec[j].bv_page;
1591 				s = sbio->bi_io_vec[j].bv_page;
1592 				if (memcmp(page_address(p),
1593 					   page_address(s),
1594 					   PAGE_SIZE))
1595 					break;
1596 			}
1597 		} else
1598 			j = 0;
1599 		if (j >= 0)
1600 			mddev->resync_mismatches += r1_bio->sectors;
1601 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1602 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1603 			/* No need to write to this device. */
1604 			sbio->bi_end_io = NULL;
1605 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1606 			continue;
1607 		}
1608 		/* fixup the bio for reuse */
1609 		sbio->bi_vcnt = vcnt;
1610 		sbio->bi_size = r1_bio->sectors << 9;
1611 		sbio->bi_idx = 0;
1612 		sbio->bi_phys_segments = 0;
1613 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1615 		sbio->bi_next = NULL;
1616 		sbio->bi_sector = r1_bio->sector +
1617 			conf->mirrors[i].rdev->data_offset;
1618 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1619 		size = sbio->bi_size;
1620 		for (j = 0; j < vcnt ; j++) {
1621 			struct bio_vec *bi;
1622 			bi = &sbio->bi_io_vec[j];
1623 			bi->bv_offset = 0;
1624 			if (size > PAGE_SIZE)
1625 				bi->bv_len = PAGE_SIZE;
1626 			else
1627 				bi->bv_len = size;
1628 			size -= PAGE_SIZE;
1629 			memcpy(page_address(bi->bv_page),
1630 			       page_address(pbio->bi_io_vec[j].bv_page),
1631 			       PAGE_SIZE);
1632 		}
1633 	}
1634 	return 0;
1635 }
1636 
1637 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1638 {
1639 	conf_t *conf = mddev->private;
1640 	int i;
1641 	int disks = conf->raid_disks;
1642 	struct bio *bio, *wbio;
1643 
1644 	bio = r1_bio->bios[r1_bio->read_disk];
1645 
1646 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1647 		/* ouch - failed to read all of that. */
1648 		if (!fix_sync_read_error(r1_bio))
1649 			return;
1650 
1651 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1652 		if (process_checks(r1_bio) < 0)
1653 			return;
1654 	/*
1655 	 * schedule writes
1656 	 */
1657 	atomic_set(&r1_bio->remaining, 1);
1658 	for (i = 0; i < disks ; i++) {
1659 		wbio = r1_bio->bios[i];
1660 		if (wbio->bi_end_io == NULL ||
1661 		    (wbio->bi_end_io == end_sync_read &&
1662 		     (i == r1_bio->read_disk ||
1663 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1664 			continue;
1665 
1666 		wbio->bi_rw = WRITE;
1667 		wbio->bi_end_io = end_sync_write;
1668 		atomic_inc(&r1_bio->remaining);
1669 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1670 
1671 		generic_make_request(wbio);
1672 	}
1673 
1674 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1675 		/* if we're here, all write(s) have completed, so clean up */
1676 		md_done_sync(mddev, r1_bio->sectors, 1);
1677 		put_buf(r1_bio);
1678 	}
1679 }
1680 
1681 /*
1682  * This is a kernel thread which:
1683  *
1684  *	1.	Retries failed read operations on working mirrors.
1685  *	2.	Updates the raid superblock when problems encounter.
1686  *	3.	Performs writes following reads for array synchronising.
1687  */
1688 
1689 static void fix_read_error(conf_t *conf, int read_disk,
1690 			   sector_t sect, int sectors)
1691 {
1692 	mddev_t *mddev = conf->mddev;
1693 	while(sectors) {
1694 		int s = sectors;
1695 		int d = read_disk;
1696 		int success = 0;
1697 		int start;
1698 		mdk_rdev_t *rdev;
1699 
1700 		if (s > (PAGE_SIZE>>9))
1701 			s = PAGE_SIZE >> 9;
1702 
1703 		do {
1704 			/* Note: no rcu protection needed here
1705 			 * as this is synchronous in the raid1d thread
1706 			 * which is the thread that might remove
1707 			 * a device.  If raid1d ever becomes multi-threaded....
1708 			 */
1709 			sector_t first_bad;
1710 			int bad_sectors;
1711 
1712 			rdev = conf->mirrors[d].rdev;
1713 			if (rdev &&
1714 			    test_bit(In_sync, &rdev->flags) &&
1715 			    is_badblock(rdev, sect, s,
1716 					&first_bad, &bad_sectors) == 0 &&
1717 			    sync_page_io(rdev, sect, s<<9,
1718 					 conf->tmppage, READ, false))
1719 				success = 1;
1720 			else {
1721 				d++;
1722 				if (d == conf->raid_disks)
1723 					d = 0;
1724 			}
1725 		} while (!success && d != read_disk);
1726 
1727 		if (!success) {
1728 			/* Cannot read from anywhere - mark it bad */
1729 			mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1730 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1731 				md_error(mddev, rdev);
1732 			break;
1733 		}
1734 		/* write it back and re-read */
1735 		start = d;
1736 		while (d != read_disk) {
1737 			if (d==0)
1738 				d = conf->raid_disks;
1739 			d--;
1740 			rdev = conf->mirrors[d].rdev;
1741 			if (rdev &&
1742 			    test_bit(In_sync, &rdev->flags))
1743 				r1_sync_page_io(rdev, sect, s,
1744 						conf->tmppage, WRITE);
1745 		}
1746 		d = start;
1747 		while (d != read_disk) {
1748 			char b[BDEVNAME_SIZE];
1749 			if (d==0)
1750 				d = conf->raid_disks;
1751 			d--;
1752 			rdev = conf->mirrors[d].rdev;
1753 			if (rdev &&
1754 			    test_bit(In_sync, &rdev->flags)) {
1755 				if (r1_sync_page_io(rdev, sect, s,
1756 						    conf->tmppage, READ)) {
1757 					atomic_add(s, &rdev->corrected_errors);
1758 					printk(KERN_INFO
1759 					       "md/raid1:%s: read error corrected "
1760 					       "(%d sectors at %llu on %s)\n",
1761 					       mdname(mddev), s,
1762 					       (unsigned long long)(sect +
1763 					           rdev->data_offset),
1764 					       bdevname(rdev->bdev, b));
1765 				}
1766 			}
1767 		}
1768 		sectors -= s;
1769 		sect += s;
1770 	}
1771 }
1772 
1773 static void bi_complete(struct bio *bio, int error)
1774 {
1775 	complete((struct completion *)bio->bi_private);
1776 }
1777 
1778 static int submit_bio_wait(int rw, struct bio *bio)
1779 {
1780 	struct completion event;
1781 	rw |= REQ_SYNC;
1782 
1783 	init_completion(&event);
1784 	bio->bi_private = &event;
1785 	bio->bi_end_io = bi_complete;
1786 	submit_bio(rw, bio);
1787 	wait_for_completion(&event);
1788 
1789 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1790 }
1791 
1792 static int narrow_write_error(r1bio_t *r1_bio, int i)
1793 {
1794 	mddev_t *mddev = r1_bio->mddev;
1795 	conf_t *conf = mddev->private;
1796 	mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1797 	int vcnt, idx;
1798 	struct bio_vec *vec;
1799 
1800 	/* bio has the data to be written to device 'i' where
1801 	 * we just recently had a write error.
1802 	 * We repeatedly clone the bio and trim down to one block,
1803 	 * then try the write.  Where the write fails we record
1804 	 * a bad block.
1805 	 * It is conceivable that the bio doesn't exactly align with
1806 	 * blocks.  We must handle this somehow.
1807 	 *
1808 	 * We currently own a reference on the rdev.
1809 	 */
1810 
1811 	int block_sectors;
1812 	sector_t sector;
1813 	int sectors;
1814 	int sect_to_write = r1_bio->sectors;
1815 	int ok = 1;
1816 
1817 	if (rdev->badblocks.shift < 0)
1818 		return 0;
1819 
1820 	block_sectors = 1 << rdev->badblocks.shift;
1821 	sector = r1_bio->sector;
1822 	sectors = ((sector + block_sectors)
1823 		   & ~(sector_t)(block_sectors - 1))
1824 		- sector;
1825 
1826 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1827 		vcnt = r1_bio->behind_page_count;
1828 		vec = r1_bio->behind_bvecs;
1829 		idx = 0;
1830 		while (vec[idx].bv_page == NULL)
1831 			idx++;
1832 	} else {
1833 		vcnt = r1_bio->master_bio->bi_vcnt;
1834 		vec = r1_bio->master_bio->bi_io_vec;
1835 		idx = r1_bio->master_bio->bi_idx;
1836 	}
1837 	while (sect_to_write) {
1838 		struct bio *wbio;
1839 		if (sectors > sect_to_write)
1840 			sectors = sect_to_write;
1841 		/* Write at 'sector' for 'sectors'*/
1842 
1843 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1844 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1845 		wbio->bi_sector = r1_bio->sector;
1846 		wbio->bi_rw = WRITE;
1847 		wbio->bi_vcnt = vcnt;
1848 		wbio->bi_size = r1_bio->sectors << 9;
1849 		wbio->bi_idx = idx;
1850 
1851 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1852 		wbio->bi_sector += rdev->data_offset;
1853 		wbio->bi_bdev = rdev->bdev;
1854 		if (submit_bio_wait(WRITE, wbio) == 0)
1855 			/* failure! */
1856 			ok = rdev_set_badblocks(rdev, sector,
1857 						sectors, 0)
1858 				&& ok;
1859 
1860 		bio_put(wbio);
1861 		sect_to_write -= sectors;
1862 		sector += sectors;
1863 		sectors = block_sectors;
1864 	}
1865 	return ok;
1866 }
1867 
1868 static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1869 {
1870 	int m;
1871 	int s = r1_bio->sectors;
1872 	for (m = 0; m < conf->raid_disks ; m++) {
1873 		mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1874 		struct bio *bio = r1_bio->bios[m];
1875 		if (bio->bi_end_io == NULL)
1876 			continue;
1877 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1879 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1880 		}
1881 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1882 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1883 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1884 				md_error(conf->mddev, rdev);
1885 		}
1886 	}
1887 	put_buf(r1_bio);
1888 	md_done_sync(conf->mddev, s, 1);
1889 }
1890 
1891 static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1892 {
1893 	int m;
1894 	for (m = 0; m < conf->raid_disks ; m++)
1895 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1896 			mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1897 			rdev_clear_badblocks(rdev,
1898 					     r1_bio->sector,
1899 					     r1_bio->sectors);
1900 			rdev_dec_pending(rdev, conf->mddev);
1901 		} else if (r1_bio->bios[m] != NULL) {
1902 			/* This drive got a write error.  We need to
1903 			 * narrow down and record precise write
1904 			 * errors.
1905 			 */
1906 			if (!narrow_write_error(r1_bio, m)) {
1907 				md_error(conf->mddev,
1908 					 conf->mirrors[m].rdev);
1909 				/* an I/O failed, we can't clear the bitmap */
1910 				set_bit(R1BIO_Degraded, &r1_bio->state);
1911 			}
1912 			rdev_dec_pending(conf->mirrors[m].rdev,
1913 					 conf->mddev);
1914 		}
1915 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1916 		close_write(r1_bio);
1917 	raid_end_bio_io(r1_bio);
1918 }
1919 
1920 static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1921 {
1922 	int disk;
1923 	int max_sectors;
1924 	mddev_t *mddev = conf->mddev;
1925 	struct bio *bio;
1926 	char b[BDEVNAME_SIZE];
1927 	mdk_rdev_t *rdev;
1928 
1929 	clear_bit(R1BIO_ReadError, &r1_bio->state);
1930 	/* we got a read error. Maybe the drive is bad.  Maybe just
1931 	 * the block and we can fix it.
1932 	 * We freeze all other IO, and try reading the block from
1933 	 * other devices.  When we find one, we re-write
1934 	 * and check it that fixes the read error.
1935 	 * This is all done synchronously while the array is
1936 	 * frozen
1937 	 */
1938 	if (mddev->ro == 0) {
1939 		freeze_array(conf);
1940 		fix_read_error(conf, r1_bio->read_disk,
1941 			       r1_bio->sector, r1_bio->sectors);
1942 		unfreeze_array(conf);
1943 	} else
1944 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1945 
1946 	bio = r1_bio->bios[r1_bio->read_disk];
1947 	bdevname(bio->bi_bdev, b);
1948 read_more:
1949 	disk = read_balance(conf, r1_bio, &max_sectors);
1950 	if (disk == -1) {
1951 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1952 		       " read error for block %llu\n",
1953 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1954 		raid_end_bio_io(r1_bio);
1955 	} else {
1956 		const unsigned long do_sync
1957 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
1958 		if (bio) {
1959 			r1_bio->bios[r1_bio->read_disk] =
1960 				mddev->ro ? IO_BLOCKED : NULL;
1961 			bio_put(bio);
1962 		}
1963 		r1_bio->read_disk = disk;
1964 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1965 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1966 		r1_bio->bios[r1_bio->read_disk] = bio;
1967 		rdev = conf->mirrors[disk].rdev;
1968 		printk_ratelimited(KERN_ERR
1969 				   "md/raid1:%s: redirecting sector %llu"
1970 				   " to other mirror: %s\n",
1971 				   mdname(mddev),
1972 				   (unsigned long long)r1_bio->sector,
1973 				   bdevname(rdev->bdev, b));
1974 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
1975 		bio->bi_bdev = rdev->bdev;
1976 		bio->bi_end_io = raid1_end_read_request;
1977 		bio->bi_rw = READ | do_sync;
1978 		bio->bi_private = r1_bio;
1979 		if (max_sectors < r1_bio->sectors) {
1980 			/* Drat - have to split this up more */
1981 			struct bio *mbio = r1_bio->master_bio;
1982 			int sectors_handled = (r1_bio->sector + max_sectors
1983 					       - mbio->bi_sector);
1984 			r1_bio->sectors = max_sectors;
1985 			spin_lock_irq(&conf->device_lock);
1986 			if (mbio->bi_phys_segments == 0)
1987 				mbio->bi_phys_segments = 2;
1988 			else
1989 				mbio->bi_phys_segments++;
1990 			spin_unlock_irq(&conf->device_lock);
1991 			generic_make_request(bio);
1992 			bio = NULL;
1993 
1994 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1995 
1996 			r1_bio->master_bio = mbio;
1997 			r1_bio->sectors = (mbio->bi_size >> 9)
1998 					  - sectors_handled;
1999 			r1_bio->state = 0;
2000 			set_bit(R1BIO_ReadError, &r1_bio->state);
2001 			r1_bio->mddev = mddev;
2002 			r1_bio->sector = mbio->bi_sector + sectors_handled;
2003 
2004 			goto read_more;
2005 		} else
2006 			generic_make_request(bio);
2007 	}
2008 }
2009 
2010 static void raid1d(mddev_t *mddev)
2011 {
2012 	r1bio_t *r1_bio;
2013 	unsigned long flags;
2014 	conf_t *conf = mddev->private;
2015 	struct list_head *head = &conf->retry_list;
2016 	struct blk_plug plug;
2017 
2018 	md_check_recovery(mddev);
2019 
2020 	blk_start_plug(&plug);
2021 	for (;;) {
2022 
2023 		if (atomic_read(&mddev->plug_cnt) == 0)
2024 			flush_pending_writes(conf);
2025 
2026 		spin_lock_irqsave(&conf->device_lock, flags);
2027 		if (list_empty(head)) {
2028 			spin_unlock_irqrestore(&conf->device_lock, flags);
2029 			break;
2030 		}
2031 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2032 		list_del(head->prev);
2033 		conf->nr_queued--;
2034 		spin_unlock_irqrestore(&conf->device_lock, flags);
2035 
2036 		mddev = r1_bio->mddev;
2037 		conf = mddev->private;
2038 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2039 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2040 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2041 				handle_sync_write_finished(conf, r1_bio);
2042 			else
2043 				sync_request_write(mddev, r1_bio);
2044 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2046 			handle_write_finished(conf, r1_bio);
2047 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2048 			handle_read_error(conf, r1_bio);
2049 		else
2050 			/* just a partial read to be scheduled from separate
2051 			 * context
2052 			 */
2053 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2054 
2055 		cond_resched();
2056 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2057 			md_check_recovery(mddev);
2058 	}
2059 	blk_finish_plug(&plug);
2060 }
2061 
2062 
2063 static int init_resync(conf_t *conf)
2064 {
2065 	int buffs;
2066 
2067 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2068 	BUG_ON(conf->r1buf_pool);
2069 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2070 					  conf->poolinfo);
2071 	if (!conf->r1buf_pool)
2072 		return -ENOMEM;
2073 	conf->next_resync = 0;
2074 	return 0;
2075 }
2076 
2077 /*
2078  * perform a "sync" on one "block"
2079  *
2080  * We need to make sure that no normal I/O request - particularly write
2081  * requests - conflict with active sync requests.
2082  *
2083  * This is achieved by tracking pending requests and a 'barrier' concept
2084  * that can be installed to exclude normal IO requests.
2085  */
2086 
2087 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2088 {
2089 	conf_t *conf = mddev->private;
2090 	r1bio_t *r1_bio;
2091 	struct bio *bio;
2092 	sector_t max_sector, nr_sectors;
2093 	int disk = -1;
2094 	int i;
2095 	int wonly = -1;
2096 	int write_targets = 0, read_targets = 0;
2097 	sector_t sync_blocks;
2098 	int still_degraded = 0;
2099 	int good_sectors = RESYNC_SECTORS;
2100 	int min_bad = 0; /* number of sectors that are bad in all devices */
2101 
2102 	if (!conf->r1buf_pool)
2103 		if (init_resync(conf))
2104 			return 0;
2105 
2106 	max_sector = mddev->dev_sectors;
2107 	if (sector_nr >= max_sector) {
2108 		/* If we aborted, we need to abort the
2109 		 * sync on the 'current' bitmap chunk (there will
2110 		 * only be one in raid1 resync.
2111 		 * We can find the current addess in mddev->curr_resync
2112 		 */
2113 		if (mddev->curr_resync < max_sector) /* aborted */
2114 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2115 						&sync_blocks, 1);
2116 		else /* completed sync */
2117 			conf->fullsync = 0;
2118 
2119 		bitmap_close_sync(mddev->bitmap);
2120 		close_sync(conf);
2121 		return 0;
2122 	}
2123 
2124 	if (mddev->bitmap == NULL &&
2125 	    mddev->recovery_cp == MaxSector &&
2126 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2127 	    conf->fullsync == 0) {
2128 		*skipped = 1;
2129 		return max_sector - sector_nr;
2130 	}
2131 	/* before building a request, check if we can skip these blocks..
2132 	 * This call the bitmap_start_sync doesn't actually record anything
2133 	 */
2134 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2135 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2136 		/* We can skip this block, and probably several more */
2137 		*skipped = 1;
2138 		return sync_blocks;
2139 	}
2140 	/*
2141 	 * If there is non-resync activity waiting for a turn,
2142 	 * and resync is going fast enough,
2143 	 * then let it though before starting on this new sync request.
2144 	 */
2145 	if (!go_faster && conf->nr_waiting)
2146 		msleep_interruptible(1000);
2147 
2148 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2149 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2150 	raise_barrier(conf);
2151 
2152 	conf->next_resync = sector_nr;
2153 
2154 	rcu_read_lock();
2155 	/*
2156 	 * If we get a correctably read error during resync or recovery,
2157 	 * we might want to read from a different device.  So we
2158 	 * flag all drives that could conceivably be read from for READ,
2159 	 * and any others (which will be non-In_sync devices) for WRITE.
2160 	 * If a read fails, we try reading from something else for which READ
2161 	 * is OK.
2162 	 */
2163 
2164 	r1_bio->mddev = mddev;
2165 	r1_bio->sector = sector_nr;
2166 	r1_bio->state = 0;
2167 	set_bit(R1BIO_IsSync, &r1_bio->state);
2168 
2169 	for (i=0; i < conf->raid_disks; i++) {
2170 		mdk_rdev_t *rdev;
2171 		bio = r1_bio->bios[i];
2172 
2173 		/* take from bio_init */
2174 		bio->bi_next = NULL;
2175 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2176 		bio->bi_flags |= 1 << BIO_UPTODATE;
2177 		bio->bi_comp_cpu = -1;
2178 		bio->bi_rw = READ;
2179 		bio->bi_vcnt = 0;
2180 		bio->bi_idx = 0;
2181 		bio->bi_phys_segments = 0;
2182 		bio->bi_size = 0;
2183 		bio->bi_end_io = NULL;
2184 		bio->bi_private = NULL;
2185 
2186 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2187 		if (rdev == NULL ||
2188 		    test_bit(Faulty, &rdev->flags)) {
2189 			still_degraded = 1;
2190 		} else if (!test_bit(In_sync, &rdev->flags)) {
2191 			bio->bi_rw = WRITE;
2192 			bio->bi_end_io = end_sync_write;
2193 			write_targets ++;
2194 		} else {
2195 			/* may need to read from here */
2196 			sector_t first_bad = MaxSector;
2197 			int bad_sectors;
2198 
2199 			if (is_badblock(rdev, sector_nr, good_sectors,
2200 					&first_bad, &bad_sectors)) {
2201 				if (first_bad > sector_nr)
2202 					good_sectors = first_bad - sector_nr;
2203 				else {
2204 					bad_sectors -= (sector_nr - first_bad);
2205 					if (min_bad == 0 ||
2206 					    min_bad > bad_sectors)
2207 						min_bad = bad_sectors;
2208 				}
2209 			}
2210 			if (sector_nr < first_bad) {
2211 				if (test_bit(WriteMostly, &rdev->flags)) {
2212 					if (wonly < 0)
2213 						wonly = i;
2214 				} else {
2215 					if (disk < 0)
2216 						disk = i;
2217 				}
2218 				bio->bi_rw = READ;
2219 				bio->bi_end_io = end_sync_read;
2220 				read_targets++;
2221 			}
2222 		}
2223 		if (bio->bi_end_io) {
2224 			atomic_inc(&rdev->nr_pending);
2225 			bio->bi_sector = sector_nr + rdev->data_offset;
2226 			bio->bi_bdev = rdev->bdev;
2227 			bio->bi_private = r1_bio;
2228 		}
2229 	}
2230 	rcu_read_unlock();
2231 	if (disk < 0)
2232 		disk = wonly;
2233 	r1_bio->read_disk = disk;
2234 
2235 	if (read_targets == 0 && min_bad > 0) {
2236 		/* These sectors are bad on all InSync devices, so we
2237 		 * need to mark them bad on all write targets
2238 		 */
2239 		int ok = 1;
2240 		for (i = 0 ; i < conf->raid_disks ; i++)
2241 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2242 				mdk_rdev_t *rdev =
2243 					rcu_dereference(conf->mirrors[i].rdev);
2244 				ok = rdev_set_badblocks(rdev, sector_nr,
2245 							min_bad, 0
2246 					) && ok;
2247 			}
2248 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2249 		*skipped = 1;
2250 		put_buf(r1_bio);
2251 
2252 		if (!ok) {
2253 			/* Cannot record the badblocks, so need to
2254 			 * abort the resync.
2255 			 * If there are multiple read targets, could just
2256 			 * fail the really bad ones ???
2257 			 */
2258 			conf->recovery_disabled = mddev->recovery_disabled;
2259 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2260 			return 0;
2261 		} else
2262 			return min_bad;
2263 
2264 	}
2265 	if (min_bad > 0 && min_bad < good_sectors) {
2266 		/* only resync enough to reach the next bad->good
2267 		 * transition */
2268 		good_sectors = min_bad;
2269 	}
2270 
2271 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2272 		/* extra read targets are also write targets */
2273 		write_targets += read_targets-1;
2274 
2275 	if (write_targets == 0 || read_targets == 0) {
2276 		/* There is nowhere to write, so all non-sync
2277 		 * drives must be failed - so we are finished
2278 		 */
2279 		sector_t rv = max_sector - sector_nr;
2280 		*skipped = 1;
2281 		put_buf(r1_bio);
2282 		return rv;
2283 	}
2284 
2285 	if (max_sector > mddev->resync_max)
2286 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2287 	if (max_sector > sector_nr + good_sectors)
2288 		max_sector = sector_nr + good_sectors;
2289 	nr_sectors = 0;
2290 	sync_blocks = 0;
2291 	do {
2292 		struct page *page;
2293 		int len = PAGE_SIZE;
2294 		if (sector_nr + (len>>9) > max_sector)
2295 			len = (max_sector - sector_nr) << 9;
2296 		if (len == 0)
2297 			break;
2298 		if (sync_blocks == 0) {
2299 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2300 					       &sync_blocks, still_degraded) &&
2301 			    !conf->fullsync &&
2302 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303 				break;
2304 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2305 			if ((len >> 9) > sync_blocks)
2306 				len = sync_blocks<<9;
2307 		}
2308 
2309 		for (i=0 ; i < conf->raid_disks; i++) {
2310 			bio = r1_bio->bios[i];
2311 			if (bio->bi_end_io) {
2312 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2313 				if (bio_add_page(bio, page, len, 0) == 0) {
2314 					/* stop here */
2315 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2316 					while (i > 0) {
2317 						i--;
2318 						bio = r1_bio->bios[i];
2319 						if (bio->bi_end_io==NULL)
2320 							continue;
2321 						/* remove last page from this bio */
2322 						bio->bi_vcnt--;
2323 						bio->bi_size -= len;
2324 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2325 					}
2326 					goto bio_full;
2327 				}
2328 			}
2329 		}
2330 		nr_sectors += len>>9;
2331 		sector_nr += len>>9;
2332 		sync_blocks -= (len>>9);
2333 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2334  bio_full:
2335 	r1_bio->sectors = nr_sectors;
2336 
2337 	/* For a user-requested sync, we read all readable devices and do a
2338 	 * compare
2339 	 */
2340 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2341 		atomic_set(&r1_bio->remaining, read_targets);
2342 		for (i=0; i<conf->raid_disks; i++) {
2343 			bio = r1_bio->bios[i];
2344 			if (bio->bi_end_io == end_sync_read) {
2345 				md_sync_acct(bio->bi_bdev, nr_sectors);
2346 				generic_make_request(bio);
2347 			}
2348 		}
2349 	} else {
2350 		atomic_set(&r1_bio->remaining, 1);
2351 		bio = r1_bio->bios[r1_bio->read_disk];
2352 		md_sync_acct(bio->bi_bdev, nr_sectors);
2353 		generic_make_request(bio);
2354 
2355 	}
2356 	return nr_sectors;
2357 }
2358 
2359 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2360 {
2361 	if (sectors)
2362 		return sectors;
2363 
2364 	return mddev->dev_sectors;
2365 }
2366 
2367 static conf_t *setup_conf(mddev_t *mddev)
2368 {
2369 	conf_t *conf;
2370 	int i;
2371 	mirror_info_t *disk;
2372 	mdk_rdev_t *rdev;
2373 	int err = -ENOMEM;
2374 
2375 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2376 	if (!conf)
2377 		goto abort;
2378 
2379 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2380 				 GFP_KERNEL);
2381 	if (!conf->mirrors)
2382 		goto abort;
2383 
2384 	conf->tmppage = alloc_page(GFP_KERNEL);
2385 	if (!conf->tmppage)
2386 		goto abort;
2387 
2388 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2389 	if (!conf->poolinfo)
2390 		goto abort;
2391 	conf->poolinfo->raid_disks = mddev->raid_disks;
2392 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2393 					  r1bio_pool_free,
2394 					  conf->poolinfo);
2395 	if (!conf->r1bio_pool)
2396 		goto abort;
2397 
2398 	conf->poolinfo->mddev = mddev;
2399 
2400 	spin_lock_init(&conf->device_lock);
2401 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2402 		int disk_idx = rdev->raid_disk;
2403 		if (disk_idx >= mddev->raid_disks
2404 		    || disk_idx < 0)
2405 			continue;
2406 		disk = conf->mirrors + disk_idx;
2407 
2408 		disk->rdev = rdev;
2409 
2410 		disk->head_position = 0;
2411 	}
2412 	conf->raid_disks = mddev->raid_disks;
2413 	conf->mddev = mddev;
2414 	INIT_LIST_HEAD(&conf->retry_list);
2415 
2416 	spin_lock_init(&conf->resync_lock);
2417 	init_waitqueue_head(&conf->wait_barrier);
2418 
2419 	bio_list_init(&conf->pending_bio_list);
2420 
2421 	conf->last_used = -1;
2422 	for (i = 0; i < conf->raid_disks; i++) {
2423 
2424 		disk = conf->mirrors + i;
2425 
2426 		if (!disk->rdev ||
2427 		    !test_bit(In_sync, &disk->rdev->flags)) {
2428 			disk->head_position = 0;
2429 			if (disk->rdev)
2430 				conf->fullsync = 1;
2431 		} else if (conf->last_used < 0)
2432 			/*
2433 			 * The first working device is used as a
2434 			 * starting point to read balancing.
2435 			 */
2436 			conf->last_used = i;
2437 	}
2438 
2439 	err = -EIO;
2440 	if (conf->last_used < 0) {
2441 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2442 		       mdname(mddev));
2443 		goto abort;
2444 	}
2445 	err = -ENOMEM;
2446 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2447 	if (!conf->thread) {
2448 		printk(KERN_ERR
2449 		       "md/raid1:%s: couldn't allocate thread\n",
2450 		       mdname(mddev));
2451 		goto abort;
2452 	}
2453 
2454 	return conf;
2455 
2456  abort:
2457 	if (conf) {
2458 		if (conf->r1bio_pool)
2459 			mempool_destroy(conf->r1bio_pool);
2460 		kfree(conf->mirrors);
2461 		safe_put_page(conf->tmppage);
2462 		kfree(conf->poolinfo);
2463 		kfree(conf);
2464 	}
2465 	return ERR_PTR(err);
2466 }
2467 
2468 static int run(mddev_t *mddev)
2469 {
2470 	conf_t *conf;
2471 	int i;
2472 	mdk_rdev_t *rdev;
2473 
2474 	if (mddev->level != 1) {
2475 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2476 		       mdname(mddev), mddev->level);
2477 		return -EIO;
2478 	}
2479 	if (mddev->reshape_position != MaxSector) {
2480 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2481 		       mdname(mddev));
2482 		return -EIO;
2483 	}
2484 	/*
2485 	 * copy the already verified devices into our private RAID1
2486 	 * bookkeeping area. [whatever we allocate in run(),
2487 	 * should be freed in stop()]
2488 	 */
2489 	if (mddev->private == NULL)
2490 		conf = setup_conf(mddev);
2491 	else
2492 		conf = mddev->private;
2493 
2494 	if (IS_ERR(conf))
2495 		return PTR_ERR(conf);
2496 
2497 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 		if (!mddev->gendisk)
2499 			continue;
2500 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2501 				  rdev->data_offset << 9);
2502 		/* as we don't honour merge_bvec_fn, we must never risk
2503 		 * violating it, so limit ->max_segments to 1 lying within
2504 		 * a single page, as a one page request is never in violation.
2505 		 */
2506 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2507 			blk_queue_max_segments(mddev->queue, 1);
2508 			blk_queue_segment_boundary(mddev->queue,
2509 						   PAGE_CACHE_SIZE - 1);
2510 		}
2511 	}
2512 
2513 	mddev->degraded = 0;
2514 	for (i=0; i < conf->raid_disks; i++)
2515 		if (conf->mirrors[i].rdev == NULL ||
2516 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2517 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2518 			mddev->degraded++;
2519 
2520 	if (conf->raid_disks - mddev->degraded == 1)
2521 		mddev->recovery_cp = MaxSector;
2522 
2523 	if (mddev->recovery_cp != MaxSector)
2524 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2525 		       " -- starting background reconstruction\n",
2526 		       mdname(mddev));
2527 	printk(KERN_INFO
2528 		"md/raid1:%s: active with %d out of %d mirrors\n",
2529 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2530 		mddev->raid_disks);
2531 
2532 	/*
2533 	 * Ok, everything is just fine now
2534 	 */
2535 	mddev->thread = conf->thread;
2536 	conf->thread = NULL;
2537 	mddev->private = conf;
2538 
2539 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2540 
2541 	if (mddev->queue) {
2542 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2543 		mddev->queue->backing_dev_info.congested_data = mddev;
2544 	}
2545 	return md_integrity_register(mddev);
2546 }
2547 
2548 static int stop(mddev_t *mddev)
2549 {
2550 	conf_t *conf = mddev->private;
2551 	struct bitmap *bitmap = mddev->bitmap;
2552 
2553 	/* wait for behind writes to complete */
2554 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2555 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2556 		       mdname(mddev));
2557 		/* need to kick something here to make sure I/O goes? */
2558 		wait_event(bitmap->behind_wait,
2559 			   atomic_read(&bitmap->behind_writes) == 0);
2560 	}
2561 
2562 	raise_barrier(conf);
2563 	lower_barrier(conf);
2564 
2565 	md_unregister_thread(&mddev->thread);
2566 	if (conf->r1bio_pool)
2567 		mempool_destroy(conf->r1bio_pool);
2568 	kfree(conf->mirrors);
2569 	kfree(conf->poolinfo);
2570 	kfree(conf);
2571 	mddev->private = NULL;
2572 	return 0;
2573 }
2574 
2575 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2576 {
2577 	/* no resync is happening, and there is enough space
2578 	 * on all devices, so we can resize.
2579 	 * We need to make sure resync covers any new space.
2580 	 * If the array is shrinking we should possibly wait until
2581 	 * any io in the removed space completes, but it hardly seems
2582 	 * worth it.
2583 	 */
2584 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2585 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2586 		return -EINVAL;
2587 	set_capacity(mddev->gendisk, mddev->array_sectors);
2588 	revalidate_disk(mddev->gendisk);
2589 	if (sectors > mddev->dev_sectors &&
2590 	    mddev->recovery_cp > mddev->dev_sectors) {
2591 		mddev->recovery_cp = mddev->dev_sectors;
2592 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2593 	}
2594 	mddev->dev_sectors = sectors;
2595 	mddev->resync_max_sectors = sectors;
2596 	return 0;
2597 }
2598 
2599 static int raid1_reshape(mddev_t *mddev)
2600 {
2601 	/* We need to:
2602 	 * 1/ resize the r1bio_pool
2603 	 * 2/ resize conf->mirrors
2604 	 *
2605 	 * We allocate a new r1bio_pool if we can.
2606 	 * Then raise a device barrier and wait until all IO stops.
2607 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2608 	 *
2609 	 * At the same time, we "pack" the devices so that all the missing
2610 	 * devices have the higher raid_disk numbers.
2611 	 */
2612 	mempool_t *newpool, *oldpool;
2613 	struct pool_info *newpoolinfo;
2614 	mirror_info_t *newmirrors;
2615 	conf_t *conf = mddev->private;
2616 	int cnt, raid_disks;
2617 	unsigned long flags;
2618 	int d, d2, err;
2619 
2620 	/* Cannot change chunk_size, layout, or level */
2621 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2622 	    mddev->layout != mddev->new_layout ||
2623 	    mddev->level != mddev->new_level) {
2624 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2625 		mddev->new_layout = mddev->layout;
2626 		mddev->new_level = mddev->level;
2627 		return -EINVAL;
2628 	}
2629 
2630 	err = md_allow_write(mddev);
2631 	if (err)
2632 		return err;
2633 
2634 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2635 
2636 	if (raid_disks < conf->raid_disks) {
2637 		cnt=0;
2638 		for (d= 0; d < conf->raid_disks; d++)
2639 			if (conf->mirrors[d].rdev)
2640 				cnt++;
2641 		if (cnt > raid_disks)
2642 			return -EBUSY;
2643 	}
2644 
2645 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2646 	if (!newpoolinfo)
2647 		return -ENOMEM;
2648 	newpoolinfo->mddev = mddev;
2649 	newpoolinfo->raid_disks = raid_disks;
2650 
2651 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652 				 r1bio_pool_free, newpoolinfo);
2653 	if (!newpool) {
2654 		kfree(newpoolinfo);
2655 		return -ENOMEM;
2656 	}
2657 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2658 	if (!newmirrors) {
2659 		kfree(newpoolinfo);
2660 		mempool_destroy(newpool);
2661 		return -ENOMEM;
2662 	}
2663 
2664 	raise_barrier(conf);
2665 
2666 	/* ok, everything is stopped */
2667 	oldpool = conf->r1bio_pool;
2668 	conf->r1bio_pool = newpool;
2669 
2670 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2671 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2672 		if (rdev && rdev->raid_disk != d2) {
2673 			sysfs_unlink_rdev(mddev, rdev);
2674 			rdev->raid_disk = d2;
2675 			sysfs_unlink_rdev(mddev, rdev);
2676 			if (sysfs_link_rdev(mddev, rdev))
2677 				printk(KERN_WARNING
2678 				       "md/raid1:%s: cannot register rd%d\n",
2679 				       mdname(mddev), rdev->raid_disk);
2680 		}
2681 		if (rdev)
2682 			newmirrors[d2++].rdev = rdev;
2683 	}
2684 	kfree(conf->mirrors);
2685 	conf->mirrors = newmirrors;
2686 	kfree(conf->poolinfo);
2687 	conf->poolinfo = newpoolinfo;
2688 
2689 	spin_lock_irqsave(&conf->device_lock, flags);
2690 	mddev->degraded += (raid_disks - conf->raid_disks);
2691 	spin_unlock_irqrestore(&conf->device_lock, flags);
2692 	conf->raid_disks = mddev->raid_disks = raid_disks;
2693 	mddev->delta_disks = 0;
2694 
2695 	conf->last_used = 0; /* just make sure it is in-range */
2696 	lower_barrier(conf);
2697 
2698 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699 	md_wakeup_thread(mddev->thread);
2700 
2701 	mempool_destroy(oldpool);
2702 	return 0;
2703 }
2704 
2705 static void raid1_quiesce(mddev_t *mddev, int state)
2706 {
2707 	conf_t *conf = mddev->private;
2708 
2709 	switch(state) {
2710 	case 2: /* wake for suspend */
2711 		wake_up(&conf->wait_barrier);
2712 		break;
2713 	case 1:
2714 		raise_barrier(conf);
2715 		break;
2716 	case 0:
2717 		lower_barrier(conf);
2718 		break;
2719 	}
2720 }
2721 
2722 static void *raid1_takeover(mddev_t *mddev)
2723 {
2724 	/* raid1 can take over:
2725 	 *  raid5 with 2 devices, any layout or chunk size
2726 	 */
2727 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2728 		conf_t *conf;
2729 		mddev->new_level = 1;
2730 		mddev->new_layout = 0;
2731 		mddev->new_chunk_sectors = 0;
2732 		conf = setup_conf(mddev);
2733 		if (!IS_ERR(conf))
2734 			conf->barrier = 1;
2735 		return conf;
2736 	}
2737 	return ERR_PTR(-EINVAL);
2738 }
2739 
2740 static struct mdk_personality raid1_personality =
2741 {
2742 	.name		= "raid1",
2743 	.level		= 1,
2744 	.owner		= THIS_MODULE,
2745 	.make_request	= make_request,
2746 	.run		= run,
2747 	.stop		= stop,
2748 	.status		= status,
2749 	.error_handler	= error,
2750 	.hot_add_disk	= raid1_add_disk,
2751 	.hot_remove_disk= raid1_remove_disk,
2752 	.spare_active	= raid1_spare_active,
2753 	.sync_request	= sync_request,
2754 	.resize		= raid1_resize,
2755 	.size		= raid1_size,
2756 	.check_reshape	= raid1_reshape,
2757 	.quiesce	= raid1_quiesce,
2758 	.takeover	= raid1_takeover,
2759 };
2760 
2761 static int __init raid_init(void)
2762 {
2763 	return register_md_personality(&raid1_personality);
2764 }
2765 
2766 static void raid_exit(void)
2767 {
2768 	unregister_md_personality(&raid1_personality);
2769 }
2770 
2771 module_init(raid_init);
2772 module_exit(raid_exit);
2773 MODULE_LICENSE("GPL");
2774 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776 MODULE_ALIAS("md-raid1");
2777 MODULE_ALIAS("md-level-1");
2778