1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, bio->bi_size, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 if (bio->bi_size) 266 return 1; 267 268 mirror = r1_bio->read_disk; 269 /* 270 * this branch is our 'one mirror IO has finished' event handler: 271 */ 272 update_head_pos(mirror, r1_bio); 273 274 if (uptodate || (conf->raid_disks - conf->mddev->degraded) <= 1) { 275 /* 276 * Set R1BIO_Uptodate in our master bio, so that 277 * we will return a good error code for to the higher 278 * levels even if IO on some other mirrored buffer fails. 279 * 280 * The 'master' represents the composite IO operation to 281 * user-side. So if something waits for IO, then it will 282 * wait for the 'master' bio. 283 */ 284 if (uptodate) 285 set_bit(R1BIO_Uptodate, &r1_bio->state); 286 287 raid_end_bio_io(r1_bio); 288 } else { 289 /* 290 * oops, read error: 291 */ 292 char b[BDEVNAME_SIZE]; 293 if (printk_ratelimit()) 294 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 295 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 296 reschedule_retry(r1_bio); 297 } 298 299 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 300 return 0; 301 } 302 303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 if (bio->bi_size) 312 return 1; 313 314 for (mirror = 0; mirror < conf->raid_disks; mirror++) 315 if (r1_bio->bios[mirror] == bio) 316 break; 317 318 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 319 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 320 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 321 r1_bio->mddev->barriers_work = 0; 322 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 323 } else { 324 /* 325 * this branch is our 'one mirror IO has finished' event handler: 326 */ 327 r1_bio->bios[mirror] = NULL; 328 to_put = bio; 329 if (!uptodate) { 330 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 331 /* an I/O failed, we can't clear the bitmap */ 332 set_bit(R1BIO_Degraded, &r1_bio->state); 333 } else 334 /* 335 * Set R1BIO_Uptodate in our master bio, so that 336 * we will return a good error code for to the higher 337 * levels even if IO on some other mirrored buffer fails. 338 * 339 * The 'master' represents the composite IO operation to 340 * user-side. So if something waits for IO, then it will 341 * wait for the 'master' bio. 342 */ 343 set_bit(R1BIO_Uptodate, &r1_bio->state); 344 345 update_head_pos(mirror, r1_bio); 346 347 if (behind) { 348 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 349 atomic_dec(&r1_bio->behind_remaining); 350 351 /* In behind mode, we ACK the master bio once the I/O has safely 352 * reached all non-writemostly disks. Setting the Returned bit 353 * ensures that this gets done only once -- we don't ever want to 354 * return -EIO here, instead we'll wait */ 355 356 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 357 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 358 /* Maybe we can return now */ 359 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 360 struct bio *mbio = r1_bio->master_bio; 361 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 362 (unsigned long long) mbio->bi_sector, 363 (unsigned long long) mbio->bi_sector + 364 (mbio->bi_size >> 9) - 1); 365 bio_endio(mbio, mbio->bi_size, 0); 366 } 367 } 368 } 369 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 370 } 371 /* 372 * 373 * Let's see if all mirrored write operations have finished 374 * already. 375 */ 376 if (atomic_dec_and_test(&r1_bio->remaining)) { 377 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 378 reschedule_retry(r1_bio); 379 else { 380 /* it really is the end of this request */ 381 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 382 /* free extra copy of the data pages */ 383 int i = bio->bi_vcnt; 384 while (i--) 385 safe_put_page(bio->bi_io_vec[i].bv_page); 386 } 387 /* clear the bitmap if all writes complete successfully */ 388 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 389 r1_bio->sectors, 390 !test_bit(R1BIO_Degraded, &r1_bio->state), 391 behind); 392 md_write_end(r1_bio->mddev); 393 raid_end_bio_io(r1_bio); 394 } 395 } 396 397 if (to_put) 398 bio_put(to_put); 399 400 return 0; 401 } 402 403 404 /* 405 * This routine returns the disk from which the requested read should 406 * be done. There is a per-array 'next expected sequential IO' sector 407 * number - if this matches on the next IO then we use the last disk. 408 * There is also a per-disk 'last know head position' sector that is 409 * maintained from IRQ contexts, both the normal and the resync IO 410 * completion handlers update this position correctly. If there is no 411 * perfect sequential match then we pick the disk whose head is closest. 412 * 413 * If there are 2 mirrors in the same 2 devices, performance degrades 414 * because position is mirror, not device based. 415 * 416 * The rdev for the device selected will have nr_pending incremented. 417 */ 418 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 419 { 420 const unsigned long this_sector = r1_bio->sector; 421 int new_disk = conf->last_used, disk = new_disk; 422 int wonly_disk = -1; 423 const int sectors = r1_bio->sectors; 424 sector_t new_distance, current_distance; 425 mdk_rdev_t *rdev; 426 427 rcu_read_lock(); 428 /* 429 * Check if we can balance. We can balance on the whole 430 * device if no resync is going on, or below the resync window. 431 * We take the first readable disk when above the resync window. 432 */ 433 retry: 434 if (conf->mddev->recovery_cp < MaxSector && 435 (this_sector + sectors >= conf->next_resync)) { 436 /* Choose the first operation device, for consistancy */ 437 new_disk = 0; 438 439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 440 r1_bio->bios[new_disk] == IO_BLOCKED || 441 !rdev || !test_bit(In_sync, &rdev->flags) 442 || test_bit(WriteMostly, &rdev->flags); 443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 444 445 if (rdev && test_bit(In_sync, &rdev->flags) && 446 r1_bio->bios[new_disk] != IO_BLOCKED) 447 wonly_disk = new_disk; 448 449 if (new_disk == conf->raid_disks - 1) { 450 new_disk = wonly_disk; 451 break; 452 } 453 } 454 goto rb_out; 455 } 456 457 458 /* make sure the disk is operational */ 459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 460 r1_bio->bios[new_disk] == IO_BLOCKED || 461 !rdev || !test_bit(In_sync, &rdev->flags) || 462 test_bit(WriteMostly, &rdev->flags); 463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 464 465 if (rdev && test_bit(In_sync, &rdev->flags) && 466 r1_bio->bios[new_disk] != IO_BLOCKED) 467 wonly_disk = new_disk; 468 469 if (new_disk <= 0) 470 new_disk = conf->raid_disks; 471 new_disk--; 472 if (new_disk == disk) { 473 new_disk = wonly_disk; 474 break; 475 } 476 } 477 478 if (new_disk < 0) 479 goto rb_out; 480 481 disk = new_disk; 482 /* now disk == new_disk == starting point for search */ 483 484 /* 485 * Don't change to another disk for sequential reads: 486 */ 487 if (conf->next_seq_sect == this_sector) 488 goto rb_out; 489 if (this_sector == conf->mirrors[new_disk].head_position) 490 goto rb_out; 491 492 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 493 494 /* Find the disk whose head is closest */ 495 496 do { 497 if (disk <= 0) 498 disk = conf->raid_disks; 499 disk--; 500 501 rdev = rcu_dereference(conf->mirrors[disk].rdev); 502 503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 504 !test_bit(In_sync, &rdev->flags) || 505 test_bit(WriteMostly, &rdev->flags)) 506 continue; 507 508 if (!atomic_read(&rdev->nr_pending)) { 509 new_disk = disk; 510 break; 511 } 512 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 513 if (new_distance < current_distance) { 514 current_distance = new_distance; 515 new_disk = disk; 516 } 517 } while (disk != conf->last_used); 518 519 rb_out: 520 521 522 if (new_disk >= 0) { 523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 524 if (!rdev) 525 goto retry; 526 atomic_inc(&rdev->nr_pending); 527 if (!test_bit(In_sync, &rdev->flags)) { 528 /* cannot risk returning a device that failed 529 * before we inc'ed nr_pending 530 */ 531 rdev_dec_pending(rdev, conf->mddev); 532 goto retry; 533 } 534 conf->next_seq_sect = this_sector + sectors; 535 conf->last_used = new_disk; 536 } 537 rcu_read_unlock(); 538 539 return new_disk; 540 } 541 542 static void unplug_slaves(mddev_t *mddev) 543 { 544 conf_t *conf = mddev_to_conf(mddev); 545 int i; 546 547 rcu_read_lock(); 548 for (i=0; i<mddev->raid_disks; i++) { 549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 551 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 552 553 atomic_inc(&rdev->nr_pending); 554 rcu_read_unlock(); 555 556 if (r_queue->unplug_fn) 557 r_queue->unplug_fn(r_queue); 558 559 rdev_dec_pending(rdev, mddev); 560 rcu_read_lock(); 561 } 562 } 563 rcu_read_unlock(); 564 } 565 566 static void raid1_unplug(request_queue_t *q) 567 { 568 mddev_t *mddev = q->queuedata; 569 570 unplug_slaves(mddev); 571 md_wakeup_thread(mddev->thread); 572 } 573 574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 575 sector_t *error_sector) 576 { 577 mddev_t *mddev = q->queuedata; 578 conf_t *conf = mddev_to_conf(mddev); 579 int i, ret = 0; 580 581 rcu_read_lock(); 582 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 583 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 584 if (rdev && !test_bit(Faulty, &rdev->flags)) { 585 struct block_device *bdev = rdev->bdev; 586 request_queue_t *r_queue = bdev_get_queue(bdev); 587 588 if (!r_queue->issue_flush_fn) 589 ret = -EOPNOTSUPP; 590 else { 591 atomic_inc(&rdev->nr_pending); 592 rcu_read_unlock(); 593 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 594 error_sector); 595 rdev_dec_pending(rdev, mddev); 596 rcu_read_lock(); 597 } 598 } 599 } 600 rcu_read_unlock(); 601 return ret; 602 } 603 604 static int raid1_congested(void *data, int bits) 605 { 606 mddev_t *mddev = data; 607 conf_t *conf = mddev_to_conf(mddev); 608 int i, ret = 0; 609 610 rcu_read_lock(); 611 for (i = 0; i < mddev->raid_disks; i++) { 612 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 613 if (rdev && !test_bit(Faulty, &rdev->flags)) { 614 request_queue_t *q = bdev_get_queue(rdev->bdev); 615 616 /* Note the '|| 1' - when read_balance prefers 617 * non-congested targets, it can be removed 618 */ 619 if ((bits & (1<<BDI_write_congested)) || 1) 620 ret |= bdi_congested(&q->backing_dev_info, bits); 621 else 622 ret &= bdi_congested(&q->backing_dev_info, bits); 623 } 624 } 625 rcu_read_unlock(); 626 return ret; 627 } 628 629 630 /* Barriers.... 631 * Sometimes we need to suspend IO while we do something else, 632 * either some resync/recovery, or reconfigure the array. 633 * To do this we raise a 'barrier'. 634 * The 'barrier' is a counter that can be raised multiple times 635 * to count how many activities are happening which preclude 636 * normal IO. 637 * We can only raise the barrier if there is no pending IO. 638 * i.e. if nr_pending == 0. 639 * We choose only to raise the barrier if no-one is waiting for the 640 * barrier to go down. This means that as soon as an IO request 641 * is ready, no other operations which require a barrier will start 642 * until the IO request has had a chance. 643 * 644 * So: regular IO calls 'wait_barrier'. When that returns there 645 * is no backgroup IO happening, It must arrange to call 646 * allow_barrier when it has finished its IO. 647 * backgroup IO calls must call raise_barrier. Once that returns 648 * there is no normal IO happeing. It must arrange to call 649 * lower_barrier when the particular background IO completes. 650 */ 651 #define RESYNC_DEPTH 32 652 653 static void raise_barrier(conf_t *conf) 654 { 655 spin_lock_irq(&conf->resync_lock); 656 657 /* Wait until no block IO is waiting */ 658 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 659 conf->resync_lock, 660 raid1_unplug(conf->mddev->queue)); 661 662 /* block any new IO from starting */ 663 conf->barrier++; 664 665 /* No wait for all pending IO to complete */ 666 wait_event_lock_irq(conf->wait_barrier, 667 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 668 conf->resync_lock, 669 raid1_unplug(conf->mddev->queue)); 670 671 spin_unlock_irq(&conf->resync_lock); 672 } 673 674 static void lower_barrier(conf_t *conf) 675 { 676 unsigned long flags; 677 spin_lock_irqsave(&conf->resync_lock, flags); 678 conf->barrier--; 679 spin_unlock_irqrestore(&conf->resync_lock, flags); 680 wake_up(&conf->wait_barrier); 681 } 682 683 static void wait_barrier(conf_t *conf) 684 { 685 spin_lock_irq(&conf->resync_lock); 686 if (conf->barrier) { 687 conf->nr_waiting++; 688 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 689 conf->resync_lock, 690 raid1_unplug(conf->mddev->queue)); 691 conf->nr_waiting--; 692 } 693 conf->nr_pending++; 694 spin_unlock_irq(&conf->resync_lock); 695 } 696 697 static void allow_barrier(conf_t *conf) 698 { 699 unsigned long flags; 700 spin_lock_irqsave(&conf->resync_lock, flags); 701 conf->nr_pending--; 702 spin_unlock_irqrestore(&conf->resync_lock, flags); 703 wake_up(&conf->wait_barrier); 704 } 705 706 static void freeze_array(conf_t *conf) 707 { 708 /* stop syncio and normal IO and wait for everything to 709 * go quite. 710 * We increment barrier and nr_waiting, and then 711 * wait until barrier+nr_pending match nr_queued+2 712 */ 713 spin_lock_irq(&conf->resync_lock); 714 conf->barrier++; 715 conf->nr_waiting++; 716 wait_event_lock_irq(conf->wait_barrier, 717 conf->barrier+conf->nr_pending == conf->nr_queued+2, 718 conf->resync_lock, 719 raid1_unplug(conf->mddev->queue)); 720 spin_unlock_irq(&conf->resync_lock); 721 } 722 static void unfreeze_array(conf_t *conf) 723 { 724 /* reverse the effect of the freeze */ 725 spin_lock_irq(&conf->resync_lock); 726 conf->barrier--; 727 conf->nr_waiting--; 728 wake_up(&conf->wait_barrier); 729 spin_unlock_irq(&conf->resync_lock); 730 } 731 732 733 /* duplicate the data pages for behind I/O */ 734 static struct page **alloc_behind_pages(struct bio *bio) 735 { 736 int i; 737 struct bio_vec *bvec; 738 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 739 GFP_NOIO); 740 if (unlikely(!pages)) 741 goto do_sync_io; 742 743 bio_for_each_segment(bvec, bio, i) { 744 pages[i] = alloc_page(GFP_NOIO); 745 if (unlikely(!pages[i])) 746 goto do_sync_io; 747 memcpy(kmap(pages[i]) + bvec->bv_offset, 748 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 749 kunmap(pages[i]); 750 kunmap(bvec->bv_page); 751 } 752 753 return pages; 754 755 do_sync_io: 756 if (pages) 757 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 758 put_page(pages[i]); 759 kfree(pages); 760 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 761 return NULL; 762 } 763 764 static int make_request(request_queue_t *q, struct bio * bio) 765 { 766 mddev_t *mddev = q->queuedata; 767 conf_t *conf = mddev_to_conf(mddev); 768 mirror_info_t *mirror; 769 r1bio_t *r1_bio; 770 struct bio *read_bio; 771 int i, targets = 0, disks; 772 mdk_rdev_t *rdev; 773 struct bitmap *bitmap = mddev->bitmap; 774 unsigned long flags; 775 struct bio_list bl; 776 struct page **behind_pages = NULL; 777 const int rw = bio_data_dir(bio); 778 int do_barriers; 779 780 /* 781 * Register the new request and wait if the reconstruction 782 * thread has put up a bar for new requests. 783 * Continue immediately if no resync is active currently. 784 * We test barriers_work *after* md_write_start as md_write_start 785 * may cause the first superblock write, and that will check out 786 * if barriers work. 787 */ 788 789 md_write_start(mddev, bio); /* wait on superblock update early */ 790 791 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 792 if (rw == WRITE) 793 md_write_end(mddev); 794 bio_endio(bio, bio->bi_size, -EOPNOTSUPP); 795 return 0; 796 } 797 798 wait_barrier(conf); 799 800 disk_stat_inc(mddev->gendisk, ios[rw]); 801 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 802 803 /* 804 * make_request() can abort the operation when READA is being 805 * used and no empty request is available. 806 * 807 */ 808 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 809 810 r1_bio->master_bio = bio; 811 r1_bio->sectors = bio->bi_size >> 9; 812 r1_bio->state = 0; 813 r1_bio->mddev = mddev; 814 r1_bio->sector = bio->bi_sector; 815 816 if (rw == READ) { 817 /* 818 * read balancing logic: 819 */ 820 int rdisk = read_balance(conf, r1_bio); 821 822 if (rdisk < 0) { 823 /* couldn't find anywhere to read from */ 824 raid_end_bio_io(r1_bio); 825 return 0; 826 } 827 mirror = conf->mirrors + rdisk; 828 829 r1_bio->read_disk = rdisk; 830 831 read_bio = bio_clone(bio, GFP_NOIO); 832 833 r1_bio->bios[rdisk] = read_bio; 834 835 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 836 read_bio->bi_bdev = mirror->rdev->bdev; 837 read_bio->bi_end_io = raid1_end_read_request; 838 read_bio->bi_rw = READ; 839 read_bio->bi_private = r1_bio; 840 841 generic_make_request(read_bio); 842 return 0; 843 } 844 845 /* 846 * WRITE: 847 */ 848 /* first select target devices under spinlock and 849 * inc refcount on their rdev. Record them by setting 850 * bios[x] to bio 851 */ 852 disks = conf->raid_disks; 853 #if 0 854 { static int first=1; 855 if (first) printk("First Write sector %llu disks %d\n", 856 (unsigned long long)r1_bio->sector, disks); 857 first = 0; 858 } 859 #endif 860 rcu_read_lock(); 861 for (i = 0; i < disks; i++) { 862 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 863 !test_bit(Faulty, &rdev->flags)) { 864 atomic_inc(&rdev->nr_pending); 865 if (test_bit(Faulty, &rdev->flags)) { 866 rdev_dec_pending(rdev, mddev); 867 r1_bio->bios[i] = NULL; 868 } else 869 r1_bio->bios[i] = bio; 870 targets++; 871 } else 872 r1_bio->bios[i] = NULL; 873 } 874 rcu_read_unlock(); 875 876 BUG_ON(targets == 0); /* we never fail the last device */ 877 878 if (targets < conf->raid_disks) { 879 /* array is degraded, we will not clear the bitmap 880 * on I/O completion (see raid1_end_write_request) */ 881 set_bit(R1BIO_Degraded, &r1_bio->state); 882 } 883 884 /* do behind I/O ? */ 885 if (bitmap && 886 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 887 (behind_pages = alloc_behind_pages(bio)) != NULL) 888 set_bit(R1BIO_BehindIO, &r1_bio->state); 889 890 atomic_set(&r1_bio->remaining, 0); 891 atomic_set(&r1_bio->behind_remaining, 0); 892 893 do_barriers = bio_barrier(bio); 894 if (do_barriers) 895 set_bit(R1BIO_Barrier, &r1_bio->state); 896 897 bio_list_init(&bl); 898 for (i = 0; i < disks; i++) { 899 struct bio *mbio; 900 if (!r1_bio->bios[i]) 901 continue; 902 903 mbio = bio_clone(bio, GFP_NOIO); 904 r1_bio->bios[i] = mbio; 905 906 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 907 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 908 mbio->bi_end_io = raid1_end_write_request; 909 mbio->bi_rw = WRITE | do_barriers; 910 mbio->bi_private = r1_bio; 911 912 if (behind_pages) { 913 struct bio_vec *bvec; 914 int j; 915 916 /* Yes, I really want the '__' version so that 917 * we clear any unused pointer in the io_vec, rather 918 * than leave them unchanged. This is important 919 * because when we come to free the pages, we won't 920 * know the originial bi_idx, so we just free 921 * them all 922 */ 923 __bio_for_each_segment(bvec, mbio, j, 0) 924 bvec->bv_page = behind_pages[j]; 925 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 926 atomic_inc(&r1_bio->behind_remaining); 927 } 928 929 atomic_inc(&r1_bio->remaining); 930 931 bio_list_add(&bl, mbio); 932 } 933 kfree(behind_pages); /* the behind pages are attached to the bios now */ 934 935 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 936 test_bit(R1BIO_BehindIO, &r1_bio->state)); 937 spin_lock_irqsave(&conf->device_lock, flags); 938 bio_list_merge(&conf->pending_bio_list, &bl); 939 bio_list_init(&bl); 940 941 blk_plug_device(mddev->queue); 942 spin_unlock_irqrestore(&conf->device_lock, flags); 943 944 #if 0 945 while ((bio = bio_list_pop(&bl)) != NULL) 946 generic_make_request(bio); 947 #endif 948 949 return 0; 950 } 951 952 static void status(struct seq_file *seq, mddev_t *mddev) 953 { 954 conf_t *conf = mddev_to_conf(mddev); 955 int i; 956 957 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 958 conf->raid_disks - mddev->degraded); 959 rcu_read_lock(); 960 for (i = 0; i < conf->raid_disks; i++) { 961 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 962 seq_printf(seq, "%s", 963 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 964 } 965 rcu_read_unlock(); 966 seq_printf(seq, "]"); 967 } 968 969 970 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 971 { 972 char b[BDEVNAME_SIZE]; 973 conf_t *conf = mddev_to_conf(mddev); 974 975 /* 976 * If it is not operational, then we have already marked it as dead 977 * else if it is the last working disks, ignore the error, let the 978 * next level up know. 979 * else mark the drive as failed 980 */ 981 if (test_bit(In_sync, &rdev->flags) 982 && (conf->raid_disks - mddev->degraded) == 1) 983 /* 984 * Don't fail the drive, act as though we were just a 985 * normal single drive 986 */ 987 return; 988 if (test_and_clear_bit(In_sync, &rdev->flags)) { 989 unsigned long flags; 990 spin_lock_irqsave(&conf->device_lock, flags); 991 mddev->degraded++; 992 spin_unlock_irqrestore(&conf->device_lock, flags); 993 /* 994 * if recovery is running, make sure it aborts. 995 */ 996 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 997 } 998 set_bit(Faulty, &rdev->flags); 999 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1000 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 1001 " Operation continuing on %d devices\n", 1002 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1003 } 1004 1005 static void print_conf(conf_t *conf) 1006 { 1007 int i; 1008 1009 printk("RAID1 conf printout:\n"); 1010 if (!conf) { 1011 printk("(!conf)\n"); 1012 return; 1013 } 1014 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1015 conf->raid_disks); 1016 1017 rcu_read_lock(); 1018 for (i = 0; i < conf->raid_disks; i++) { 1019 char b[BDEVNAME_SIZE]; 1020 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1021 if (rdev) 1022 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1023 i, !test_bit(In_sync, &rdev->flags), 1024 !test_bit(Faulty, &rdev->flags), 1025 bdevname(rdev->bdev,b)); 1026 } 1027 rcu_read_unlock(); 1028 } 1029 1030 static void close_sync(conf_t *conf) 1031 { 1032 wait_barrier(conf); 1033 allow_barrier(conf); 1034 1035 mempool_destroy(conf->r1buf_pool); 1036 conf->r1buf_pool = NULL; 1037 } 1038 1039 static int raid1_spare_active(mddev_t *mddev) 1040 { 1041 int i; 1042 conf_t *conf = mddev->private; 1043 1044 /* 1045 * Find all failed disks within the RAID1 configuration 1046 * and mark them readable. 1047 * Called under mddev lock, so rcu protection not needed. 1048 */ 1049 for (i = 0; i < conf->raid_disks; i++) { 1050 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1051 if (rdev 1052 && !test_bit(Faulty, &rdev->flags) 1053 && !test_and_set_bit(In_sync, &rdev->flags)) { 1054 unsigned long flags; 1055 spin_lock_irqsave(&conf->device_lock, flags); 1056 mddev->degraded--; 1057 spin_unlock_irqrestore(&conf->device_lock, flags); 1058 } 1059 } 1060 1061 print_conf(conf); 1062 return 0; 1063 } 1064 1065 1066 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1067 { 1068 conf_t *conf = mddev->private; 1069 int found = 0; 1070 int mirror = 0; 1071 mirror_info_t *p; 1072 1073 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1074 if ( !(p=conf->mirrors+mirror)->rdev) { 1075 1076 blk_queue_stack_limits(mddev->queue, 1077 rdev->bdev->bd_disk->queue); 1078 /* as we don't honour merge_bvec_fn, we must never risk 1079 * violating it, so limit ->max_sector to one PAGE, as 1080 * a one page request is never in violation. 1081 */ 1082 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1083 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1084 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1085 1086 p->head_position = 0; 1087 rdev->raid_disk = mirror; 1088 found = 1; 1089 /* As all devices are equivalent, we don't need a full recovery 1090 * if this was recently any drive of the array 1091 */ 1092 if (rdev->saved_raid_disk < 0) 1093 conf->fullsync = 1; 1094 rcu_assign_pointer(p->rdev, rdev); 1095 break; 1096 } 1097 1098 print_conf(conf); 1099 return found; 1100 } 1101 1102 static int raid1_remove_disk(mddev_t *mddev, int number) 1103 { 1104 conf_t *conf = mddev->private; 1105 int err = 0; 1106 mdk_rdev_t *rdev; 1107 mirror_info_t *p = conf->mirrors+ number; 1108 1109 print_conf(conf); 1110 rdev = p->rdev; 1111 if (rdev) { 1112 if (test_bit(In_sync, &rdev->flags) || 1113 atomic_read(&rdev->nr_pending)) { 1114 err = -EBUSY; 1115 goto abort; 1116 } 1117 p->rdev = NULL; 1118 synchronize_rcu(); 1119 if (atomic_read(&rdev->nr_pending)) { 1120 /* lost the race, try later */ 1121 err = -EBUSY; 1122 p->rdev = rdev; 1123 } 1124 } 1125 abort: 1126 1127 print_conf(conf); 1128 return err; 1129 } 1130 1131 1132 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 1133 { 1134 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1135 int i; 1136 1137 if (bio->bi_size) 1138 return 1; 1139 1140 for (i=r1_bio->mddev->raid_disks; i--; ) 1141 if (r1_bio->bios[i] == bio) 1142 break; 1143 BUG_ON(i < 0); 1144 update_head_pos(i, r1_bio); 1145 /* 1146 * we have read a block, now it needs to be re-written, 1147 * or re-read if the read failed. 1148 * We don't do much here, just schedule handling by raid1d 1149 */ 1150 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1151 set_bit(R1BIO_Uptodate, &r1_bio->state); 1152 1153 if (atomic_dec_and_test(&r1_bio->remaining)) 1154 reschedule_retry(r1_bio); 1155 return 0; 1156 } 1157 1158 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1159 { 1160 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1161 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1162 mddev_t *mddev = r1_bio->mddev; 1163 conf_t *conf = mddev_to_conf(mddev); 1164 int i; 1165 int mirror=0; 1166 1167 if (bio->bi_size) 1168 return 1; 1169 1170 for (i = 0; i < conf->raid_disks; i++) 1171 if (r1_bio->bios[i] == bio) { 1172 mirror = i; 1173 break; 1174 } 1175 if (!uptodate) { 1176 int sync_blocks = 0; 1177 sector_t s = r1_bio->sector; 1178 long sectors_to_go = r1_bio->sectors; 1179 /* make sure these bits doesn't get cleared. */ 1180 do { 1181 bitmap_end_sync(mddev->bitmap, s, 1182 &sync_blocks, 1); 1183 s += sync_blocks; 1184 sectors_to_go -= sync_blocks; 1185 } while (sectors_to_go > 0); 1186 md_error(mddev, conf->mirrors[mirror].rdev); 1187 } 1188 1189 update_head_pos(mirror, r1_bio); 1190 1191 if (atomic_dec_and_test(&r1_bio->remaining)) { 1192 md_done_sync(mddev, r1_bio->sectors, uptodate); 1193 put_buf(r1_bio); 1194 } 1195 return 0; 1196 } 1197 1198 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1199 { 1200 conf_t *conf = mddev_to_conf(mddev); 1201 int i; 1202 int disks = conf->raid_disks; 1203 struct bio *bio, *wbio; 1204 1205 bio = r1_bio->bios[r1_bio->read_disk]; 1206 1207 1208 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1209 /* We have read all readable devices. If we haven't 1210 * got the block, then there is no hope left. 1211 * If we have, then we want to do a comparison 1212 * and skip the write if everything is the same. 1213 * If any blocks failed to read, then we need to 1214 * attempt an over-write 1215 */ 1216 int primary; 1217 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1218 for (i=0; i<mddev->raid_disks; i++) 1219 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1220 md_error(mddev, conf->mirrors[i].rdev); 1221 1222 md_done_sync(mddev, r1_bio->sectors, 1); 1223 put_buf(r1_bio); 1224 return; 1225 } 1226 for (primary=0; primary<mddev->raid_disks; primary++) 1227 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1228 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1229 r1_bio->bios[primary]->bi_end_io = NULL; 1230 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1231 break; 1232 } 1233 r1_bio->read_disk = primary; 1234 for (i=0; i<mddev->raid_disks; i++) 1235 if (r1_bio->bios[i]->bi_end_io == end_sync_read && 1236 test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) { 1237 int j; 1238 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1239 struct bio *pbio = r1_bio->bios[primary]; 1240 struct bio *sbio = r1_bio->bios[i]; 1241 for (j = vcnt; j-- ; ) 1242 if (memcmp(page_address(pbio->bi_io_vec[j].bv_page), 1243 page_address(sbio->bi_io_vec[j].bv_page), 1244 PAGE_SIZE)) 1245 break; 1246 if (j >= 0) 1247 mddev->resync_mismatches += r1_bio->sectors; 1248 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 1249 sbio->bi_end_io = NULL; 1250 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1251 } else { 1252 /* fixup the bio for reuse */ 1253 sbio->bi_vcnt = vcnt; 1254 sbio->bi_size = r1_bio->sectors << 9; 1255 sbio->bi_idx = 0; 1256 sbio->bi_phys_segments = 0; 1257 sbio->bi_hw_segments = 0; 1258 sbio->bi_hw_front_size = 0; 1259 sbio->bi_hw_back_size = 0; 1260 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1261 sbio->bi_flags |= 1 << BIO_UPTODATE; 1262 sbio->bi_next = NULL; 1263 sbio->bi_sector = r1_bio->sector + 1264 conf->mirrors[i].rdev->data_offset; 1265 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1266 } 1267 } 1268 } 1269 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1270 /* ouch - failed to read all of that. 1271 * Try some synchronous reads of other devices to get 1272 * good data, much like with normal read errors. Only 1273 * read into the pages we already have so we don't 1274 * need to re-issue the read request. 1275 * We don't need to freeze the array, because being in an 1276 * active sync request, there is no normal IO, and 1277 * no overlapping syncs. 1278 */ 1279 sector_t sect = r1_bio->sector; 1280 int sectors = r1_bio->sectors; 1281 int idx = 0; 1282 1283 while(sectors) { 1284 int s = sectors; 1285 int d = r1_bio->read_disk; 1286 int success = 0; 1287 mdk_rdev_t *rdev; 1288 1289 if (s > (PAGE_SIZE>>9)) 1290 s = PAGE_SIZE >> 9; 1291 do { 1292 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1293 /* No rcu protection needed here devices 1294 * can only be removed when no resync is 1295 * active, and resync is currently active 1296 */ 1297 rdev = conf->mirrors[d].rdev; 1298 if (sync_page_io(rdev->bdev, 1299 sect + rdev->data_offset, 1300 s<<9, 1301 bio->bi_io_vec[idx].bv_page, 1302 READ)) { 1303 success = 1; 1304 break; 1305 } 1306 } 1307 d++; 1308 if (d == conf->raid_disks) 1309 d = 0; 1310 } while (!success && d != r1_bio->read_disk); 1311 1312 if (success) { 1313 int start = d; 1314 /* write it back and re-read */ 1315 set_bit(R1BIO_Uptodate, &r1_bio->state); 1316 while (d != r1_bio->read_disk) { 1317 if (d == 0) 1318 d = conf->raid_disks; 1319 d--; 1320 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1321 continue; 1322 rdev = conf->mirrors[d].rdev; 1323 atomic_add(s, &rdev->corrected_errors); 1324 if (sync_page_io(rdev->bdev, 1325 sect + rdev->data_offset, 1326 s<<9, 1327 bio->bi_io_vec[idx].bv_page, 1328 WRITE) == 0) 1329 md_error(mddev, rdev); 1330 } 1331 d = start; 1332 while (d != r1_bio->read_disk) { 1333 if (d == 0) 1334 d = conf->raid_disks; 1335 d--; 1336 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1337 continue; 1338 rdev = conf->mirrors[d].rdev; 1339 if (sync_page_io(rdev->bdev, 1340 sect + rdev->data_offset, 1341 s<<9, 1342 bio->bi_io_vec[idx].bv_page, 1343 READ) == 0) 1344 md_error(mddev, rdev); 1345 } 1346 } else { 1347 char b[BDEVNAME_SIZE]; 1348 /* Cannot read from anywhere, array is toast */ 1349 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1350 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1351 " for block %llu\n", 1352 bdevname(bio->bi_bdev,b), 1353 (unsigned long long)r1_bio->sector); 1354 md_done_sync(mddev, r1_bio->sectors, 0); 1355 put_buf(r1_bio); 1356 return; 1357 } 1358 sectors -= s; 1359 sect += s; 1360 idx ++; 1361 } 1362 } 1363 1364 /* 1365 * schedule writes 1366 */ 1367 atomic_set(&r1_bio->remaining, 1); 1368 for (i = 0; i < disks ; i++) { 1369 wbio = r1_bio->bios[i]; 1370 if (wbio->bi_end_io == NULL || 1371 (wbio->bi_end_io == end_sync_read && 1372 (i == r1_bio->read_disk || 1373 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1374 continue; 1375 1376 wbio->bi_rw = WRITE; 1377 wbio->bi_end_io = end_sync_write; 1378 atomic_inc(&r1_bio->remaining); 1379 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1380 1381 generic_make_request(wbio); 1382 } 1383 1384 if (atomic_dec_and_test(&r1_bio->remaining)) { 1385 /* if we're here, all write(s) have completed, so clean up */ 1386 md_done_sync(mddev, r1_bio->sectors, 1); 1387 put_buf(r1_bio); 1388 } 1389 } 1390 1391 /* 1392 * This is a kernel thread which: 1393 * 1394 * 1. Retries failed read operations on working mirrors. 1395 * 2. Updates the raid superblock when problems encounter. 1396 * 3. Performs writes following reads for array syncronising. 1397 */ 1398 1399 static void fix_read_error(conf_t *conf, int read_disk, 1400 sector_t sect, int sectors) 1401 { 1402 mddev_t *mddev = conf->mddev; 1403 while(sectors) { 1404 int s = sectors; 1405 int d = read_disk; 1406 int success = 0; 1407 int start; 1408 mdk_rdev_t *rdev; 1409 1410 if (s > (PAGE_SIZE>>9)) 1411 s = PAGE_SIZE >> 9; 1412 1413 do { 1414 /* Note: no rcu protection needed here 1415 * as this is synchronous in the raid1d thread 1416 * which is the thread that might remove 1417 * a device. If raid1d ever becomes multi-threaded.... 1418 */ 1419 rdev = conf->mirrors[d].rdev; 1420 if (rdev && 1421 test_bit(In_sync, &rdev->flags) && 1422 sync_page_io(rdev->bdev, 1423 sect + rdev->data_offset, 1424 s<<9, 1425 conf->tmppage, READ)) 1426 success = 1; 1427 else { 1428 d++; 1429 if (d == conf->raid_disks) 1430 d = 0; 1431 } 1432 } while (!success && d != read_disk); 1433 1434 if (!success) { 1435 /* Cannot read from anywhere -- bye bye array */ 1436 md_error(mddev, conf->mirrors[read_disk].rdev); 1437 break; 1438 } 1439 /* write it back and re-read */ 1440 start = d; 1441 while (d != read_disk) { 1442 if (d==0) 1443 d = conf->raid_disks; 1444 d--; 1445 rdev = conf->mirrors[d].rdev; 1446 if (rdev && 1447 test_bit(In_sync, &rdev->flags)) { 1448 if (sync_page_io(rdev->bdev, 1449 sect + rdev->data_offset, 1450 s<<9, conf->tmppage, WRITE) 1451 == 0) 1452 /* Well, this device is dead */ 1453 md_error(mddev, rdev); 1454 } 1455 } 1456 d = start; 1457 while (d != read_disk) { 1458 char b[BDEVNAME_SIZE]; 1459 if (d==0) 1460 d = conf->raid_disks; 1461 d--; 1462 rdev = conf->mirrors[d].rdev; 1463 if (rdev && 1464 test_bit(In_sync, &rdev->flags)) { 1465 if (sync_page_io(rdev->bdev, 1466 sect + rdev->data_offset, 1467 s<<9, conf->tmppage, READ) 1468 == 0) 1469 /* Well, this device is dead */ 1470 md_error(mddev, rdev); 1471 else { 1472 atomic_add(s, &rdev->corrected_errors); 1473 printk(KERN_INFO 1474 "raid1:%s: read error corrected " 1475 "(%d sectors at %llu on %s)\n", 1476 mdname(mddev), s, 1477 (unsigned long long)(sect + 1478 rdev->data_offset), 1479 bdevname(rdev->bdev, b)); 1480 } 1481 } 1482 } 1483 sectors -= s; 1484 sect += s; 1485 } 1486 } 1487 1488 static void raid1d(mddev_t *mddev) 1489 { 1490 r1bio_t *r1_bio; 1491 struct bio *bio; 1492 unsigned long flags; 1493 conf_t *conf = mddev_to_conf(mddev); 1494 struct list_head *head = &conf->retry_list; 1495 int unplug=0; 1496 mdk_rdev_t *rdev; 1497 1498 md_check_recovery(mddev); 1499 1500 for (;;) { 1501 char b[BDEVNAME_SIZE]; 1502 spin_lock_irqsave(&conf->device_lock, flags); 1503 1504 if (conf->pending_bio_list.head) { 1505 bio = bio_list_get(&conf->pending_bio_list); 1506 blk_remove_plug(mddev->queue); 1507 spin_unlock_irqrestore(&conf->device_lock, flags); 1508 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1509 if (bitmap_unplug(mddev->bitmap) != 0) 1510 printk("%s: bitmap file write failed!\n", mdname(mddev)); 1511 1512 while (bio) { /* submit pending writes */ 1513 struct bio *next = bio->bi_next; 1514 bio->bi_next = NULL; 1515 generic_make_request(bio); 1516 bio = next; 1517 } 1518 unplug = 1; 1519 1520 continue; 1521 } 1522 1523 if (list_empty(head)) 1524 break; 1525 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1526 list_del(head->prev); 1527 conf->nr_queued--; 1528 spin_unlock_irqrestore(&conf->device_lock, flags); 1529 1530 mddev = r1_bio->mddev; 1531 conf = mddev_to_conf(mddev); 1532 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1533 sync_request_write(mddev, r1_bio); 1534 unplug = 1; 1535 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1536 /* some requests in the r1bio were BIO_RW_BARRIER 1537 * requests which failed with -EOPNOTSUPP. Hohumm.. 1538 * Better resubmit without the barrier. 1539 * We know which devices to resubmit for, because 1540 * all others have had their bios[] entry cleared. 1541 * We already have a nr_pending reference on these rdevs. 1542 */ 1543 int i; 1544 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1545 clear_bit(R1BIO_Barrier, &r1_bio->state); 1546 for (i=0; i < conf->raid_disks; i++) 1547 if (r1_bio->bios[i]) 1548 atomic_inc(&r1_bio->remaining); 1549 for (i=0; i < conf->raid_disks; i++) 1550 if (r1_bio->bios[i]) { 1551 struct bio_vec *bvec; 1552 int j; 1553 1554 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1555 /* copy pages from the failed bio, as 1556 * this might be a write-behind device */ 1557 __bio_for_each_segment(bvec, bio, j, 0) 1558 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1559 bio_put(r1_bio->bios[i]); 1560 bio->bi_sector = r1_bio->sector + 1561 conf->mirrors[i].rdev->data_offset; 1562 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1563 bio->bi_end_io = raid1_end_write_request; 1564 bio->bi_rw = WRITE; 1565 bio->bi_private = r1_bio; 1566 r1_bio->bios[i] = bio; 1567 generic_make_request(bio); 1568 } 1569 } else { 1570 int disk; 1571 1572 /* we got a read error. Maybe the drive is bad. Maybe just 1573 * the block and we can fix it. 1574 * We freeze all other IO, and try reading the block from 1575 * other devices. When we find one, we re-write 1576 * and check it that fixes the read error. 1577 * This is all done synchronously while the array is 1578 * frozen 1579 */ 1580 if (mddev->ro == 0) { 1581 freeze_array(conf); 1582 fix_read_error(conf, r1_bio->read_disk, 1583 r1_bio->sector, 1584 r1_bio->sectors); 1585 unfreeze_array(conf); 1586 } 1587 1588 bio = r1_bio->bios[r1_bio->read_disk]; 1589 if ((disk=read_balance(conf, r1_bio)) == -1) { 1590 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1591 " read error for block %llu\n", 1592 bdevname(bio->bi_bdev,b), 1593 (unsigned long long)r1_bio->sector); 1594 raid_end_bio_io(r1_bio); 1595 } else { 1596 r1_bio->bios[r1_bio->read_disk] = 1597 mddev->ro ? IO_BLOCKED : NULL; 1598 r1_bio->read_disk = disk; 1599 bio_put(bio); 1600 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1601 r1_bio->bios[r1_bio->read_disk] = bio; 1602 rdev = conf->mirrors[disk].rdev; 1603 if (printk_ratelimit()) 1604 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1605 " another mirror\n", 1606 bdevname(rdev->bdev,b), 1607 (unsigned long long)r1_bio->sector); 1608 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1609 bio->bi_bdev = rdev->bdev; 1610 bio->bi_end_io = raid1_end_read_request; 1611 bio->bi_rw = READ; 1612 bio->bi_private = r1_bio; 1613 unplug = 1; 1614 generic_make_request(bio); 1615 } 1616 } 1617 } 1618 spin_unlock_irqrestore(&conf->device_lock, flags); 1619 if (unplug) 1620 unplug_slaves(mddev); 1621 } 1622 1623 1624 static int init_resync(conf_t *conf) 1625 { 1626 int buffs; 1627 1628 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1629 BUG_ON(conf->r1buf_pool); 1630 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1631 conf->poolinfo); 1632 if (!conf->r1buf_pool) 1633 return -ENOMEM; 1634 conf->next_resync = 0; 1635 return 0; 1636 } 1637 1638 /* 1639 * perform a "sync" on one "block" 1640 * 1641 * We need to make sure that no normal I/O request - particularly write 1642 * requests - conflict with active sync requests. 1643 * 1644 * This is achieved by tracking pending requests and a 'barrier' concept 1645 * that can be installed to exclude normal IO requests. 1646 */ 1647 1648 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1649 { 1650 conf_t *conf = mddev_to_conf(mddev); 1651 r1bio_t *r1_bio; 1652 struct bio *bio; 1653 sector_t max_sector, nr_sectors; 1654 int disk = -1; 1655 int i; 1656 int wonly = -1; 1657 int write_targets = 0, read_targets = 0; 1658 int sync_blocks; 1659 int still_degraded = 0; 1660 1661 if (!conf->r1buf_pool) 1662 { 1663 /* 1664 printk("sync start - bitmap %p\n", mddev->bitmap); 1665 */ 1666 if (init_resync(conf)) 1667 return 0; 1668 } 1669 1670 max_sector = mddev->size << 1; 1671 if (sector_nr >= max_sector) { 1672 /* If we aborted, we need to abort the 1673 * sync on the 'current' bitmap chunk (there will 1674 * only be one in raid1 resync. 1675 * We can find the current addess in mddev->curr_resync 1676 */ 1677 if (mddev->curr_resync < max_sector) /* aborted */ 1678 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1679 &sync_blocks, 1); 1680 else /* completed sync */ 1681 conf->fullsync = 0; 1682 1683 bitmap_close_sync(mddev->bitmap); 1684 close_sync(conf); 1685 return 0; 1686 } 1687 1688 if (mddev->bitmap == NULL && 1689 mddev->recovery_cp == MaxSector && 1690 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1691 conf->fullsync == 0) { 1692 *skipped = 1; 1693 return max_sector - sector_nr; 1694 } 1695 /* before building a request, check if we can skip these blocks.. 1696 * This call the bitmap_start_sync doesn't actually record anything 1697 */ 1698 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1699 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1700 /* We can skip this block, and probably several more */ 1701 *skipped = 1; 1702 return sync_blocks; 1703 } 1704 /* 1705 * If there is non-resync activity waiting for a turn, 1706 * and resync is going fast enough, 1707 * then let it though before starting on this new sync request. 1708 */ 1709 if (!go_faster && conf->nr_waiting) 1710 msleep_interruptible(1000); 1711 1712 raise_barrier(conf); 1713 1714 conf->next_resync = sector_nr; 1715 1716 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1717 rcu_read_lock(); 1718 /* 1719 * If we get a correctably read error during resync or recovery, 1720 * we might want to read from a different device. So we 1721 * flag all drives that could conceivably be read from for READ, 1722 * and any others (which will be non-In_sync devices) for WRITE. 1723 * If a read fails, we try reading from something else for which READ 1724 * is OK. 1725 */ 1726 1727 r1_bio->mddev = mddev; 1728 r1_bio->sector = sector_nr; 1729 r1_bio->state = 0; 1730 set_bit(R1BIO_IsSync, &r1_bio->state); 1731 1732 for (i=0; i < conf->raid_disks; i++) { 1733 mdk_rdev_t *rdev; 1734 bio = r1_bio->bios[i]; 1735 1736 /* take from bio_init */ 1737 bio->bi_next = NULL; 1738 bio->bi_flags |= 1 << BIO_UPTODATE; 1739 bio->bi_rw = 0; 1740 bio->bi_vcnt = 0; 1741 bio->bi_idx = 0; 1742 bio->bi_phys_segments = 0; 1743 bio->bi_hw_segments = 0; 1744 bio->bi_size = 0; 1745 bio->bi_end_io = NULL; 1746 bio->bi_private = NULL; 1747 1748 rdev = rcu_dereference(conf->mirrors[i].rdev); 1749 if (rdev == NULL || 1750 test_bit(Faulty, &rdev->flags)) { 1751 still_degraded = 1; 1752 continue; 1753 } else if (!test_bit(In_sync, &rdev->flags)) { 1754 bio->bi_rw = WRITE; 1755 bio->bi_end_io = end_sync_write; 1756 write_targets ++; 1757 } else { 1758 /* may need to read from here */ 1759 bio->bi_rw = READ; 1760 bio->bi_end_io = end_sync_read; 1761 if (test_bit(WriteMostly, &rdev->flags)) { 1762 if (wonly < 0) 1763 wonly = i; 1764 } else { 1765 if (disk < 0) 1766 disk = i; 1767 } 1768 read_targets++; 1769 } 1770 atomic_inc(&rdev->nr_pending); 1771 bio->bi_sector = sector_nr + rdev->data_offset; 1772 bio->bi_bdev = rdev->bdev; 1773 bio->bi_private = r1_bio; 1774 } 1775 rcu_read_unlock(); 1776 if (disk < 0) 1777 disk = wonly; 1778 r1_bio->read_disk = disk; 1779 1780 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1781 /* extra read targets are also write targets */ 1782 write_targets += read_targets-1; 1783 1784 if (write_targets == 0 || read_targets == 0) { 1785 /* There is nowhere to write, so all non-sync 1786 * drives must be failed - so we are finished 1787 */ 1788 sector_t rv = max_sector - sector_nr; 1789 *skipped = 1; 1790 put_buf(r1_bio); 1791 return rv; 1792 } 1793 1794 nr_sectors = 0; 1795 sync_blocks = 0; 1796 do { 1797 struct page *page; 1798 int len = PAGE_SIZE; 1799 if (sector_nr + (len>>9) > max_sector) 1800 len = (max_sector - sector_nr) << 9; 1801 if (len == 0) 1802 break; 1803 if (sync_blocks == 0) { 1804 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1805 &sync_blocks, still_degraded) && 1806 !conf->fullsync && 1807 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1808 break; 1809 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1810 if (len > (sync_blocks<<9)) 1811 len = sync_blocks<<9; 1812 } 1813 1814 for (i=0 ; i < conf->raid_disks; i++) { 1815 bio = r1_bio->bios[i]; 1816 if (bio->bi_end_io) { 1817 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1818 if (bio_add_page(bio, page, len, 0) == 0) { 1819 /* stop here */ 1820 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1821 while (i > 0) { 1822 i--; 1823 bio = r1_bio->bios[i]; 1824 if (bio->bi_end_io==NULL) 1825 continue; 1826 /* remove last page from this bio */ 1827 bio->bi_vcnt--; 1828 bio->bi_size -= len; 1829 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1830 } 1831 goto bio_full; 1832 } 1833 } 1834 } 1835 nr_sectors += len>>9; 1836 sector_nr += len>>9; 1837 sync_blocks -= (len>>9); 1838 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1839 bio_full: 1840 r1_bio->sectors = nr_sectors; 1841 1842 /* For a user-requested sync, we read all readable devices and do a 1843 * compare 1844 */ 1845 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1846 atomic_set(&r1_bio->remaining, read_targets); 1847 for (i=0; i<conf->raid_disks; i++) { 1848 bio = r1_bio->bios[i]; 1849 if (bio->bi_end_io == end_sync_read) { 1850 md_sync_acct(bio->bi_bdev, nr_sectors); 1851 generic_make_request(bio); 1852 } 1853 } 1854 } else { 1855 atomic_set(&r1_bio->remaining, 1); 1856 bio = r1_bio->bios[r1_bio->read_disk]; 1857 md_sync_acct(bio->bi_bdev, nr_sectors); 1858 generic_make_request(bio); 1859 1860 } 1861 return nr_sectors; 1862 } 1863 1864 static int run(mddev_t *mddev) 1865 { 1866 conf_t *conf; 1867 int i, j, disk_idx; 1868 mirror_info_t *disk; 1869 mdk_rdev_t *rdev; 1870 struct list_head *tmp; 1871 1872 if (mddev->level != 1) { 1873 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1874 mdname(mddev), mddev->level); 1875 goto out; 1876 } 1877 if (mddev->reshape_position != MaxSector) { 1878 printk("raid1: %s: reshape_position set but not supported\n", 1879 mdname(mddev)); 1880 goto out; 1881 } 1882 /* 1883 * copy the already verified devices into our private RAID1 1884 * bookkeeping area. [whatever we allocate in run(), 1885 * should be freed in stop()] 1886 */ 1887 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1888 mddev->private = conf; 1889 if (!conf) 1890 goto out_no_mem; 1891 1892 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1893 GFP_KERNEL); 1894 if (!conf->mirrors) 1895 goto out_no_mem; 1896 1897 conf->tmppage = alloc_page(GFP_KERNEL); 1898 if (!conf->tmppage) 1899 goto out_no_mem; 1900 1901 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1902 if (!conf->poolinfo) 1903 goto out_no_mem; 1904 conf->poolinfo->mddev = mddev; 1905 conf->poolinfo->raid_disks = mddev->raid_disks; 1906 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1907 r1bio_pool_free, 1908 conf->poolinfo); 1909 if (!conf->r1bio_pool) 1910 goto out_no_mem; 1911 1912 ITERATE_RDEV(mddev, rdev, tmp) { 1913 disk_idx = rdev->raid_disk; 1914 if (disk_idx >= mddev->raid_disks 1915 || disk_idx < 0) 1916 continue; 1917 disk = conf->mirrors + disk_idx; 1918 1919 disk->rdev = rdev; 1920 1921 blk_queue_stack_limits(mddev->queue, 1922 rdev->bdev->bd_disk->queue); 1923 /* as we don't honour merge_bvec_fn, we must never risk 1924 * violating it, so limit ->max_sector to one PAGE, as 1925 * a one page request is never in violation. 1926 */ 1927 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1928 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1929 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1930 1931 disk->head_position = 0; 1932 } 1933 conf->raid_disks = mddev->raid_disks; 1934 conf->mddev = mddev; 1935 spin_lock_init(&conf->device_lock); 1936 INIT_LIST_HEAD(&conf->retry_list); 1937 1938 spin_lock_init(&conf->resync_lock); 1939 init_waitqueue_head(&conf->wait_barrier); 1940 1941 bio_list_init(&conf->pending_bio_list); 1942 bio_list_init(&conf->flushing_bio_list); 1943 1944 1945 mddev->degraded = 0; 1946 for (i = 0; i < conf->raid_disks; i++) { 1947 1948 disk = conf->mirrors + i; 1949 1950 if (!disk->rdev || 1951 !test_bit(In_sync, &disk->rdev->flags)) { 1952 disk->head_position = 0; 1953 mddev->degraded++; 1954 } 1955 } 1956 if (mddev->degraded == conf->raid_disks) { 1957 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1958 mdname(mddev)); 1959 goto out_free_conf; 1960 } 1961 if (conf->raid_disks - mddev->degraded == 1) 1962 mddev->recovery_cp = MaxSector; 1963 1964 /* 1965 * find the first working one and use it as a starting point 1966 * to read balancing. 1967 */ 1968 for (j = 0; j < conf->raid_disks && 1969 (!conf->mirrors[j].rdev || 1970 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1971 /* nothing */; 1972 conf->last_used = j; 1973 1974 1975 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1976 if (!mddev->thread) { 1977 printk(KERN_ERR 1978 "raid1: couldn't allocate thread for %s\n", 1979 mdname(mddev)); 1980 goto out_free_conf; 1981 } 1982 1983 printk(KERN_INFO 1984 "raid1: raid set %s active with %d out of %d mirrors\n", 1985 mdname(mddev), mddev->raid_disks - mddev->degraded, 1986 mddev->raid_disks); 1987 /* 1988 * Ok, everything is just fine now 1989 */ 1990 mddev->array_size = mddev->size; 1991 1992 mddev->queue->unplug_fn = raid1_unplug; 1993 mddev->queue->issue_flush_fn = raid1_issue_flush; 1994 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 1995 mddev->queue->backing_dev_info.congested_data = mddev; 1996 1997 return 0; 1998 1999 out_no_mem: 2000 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2001 mdname(mddev)); 2002 2003 out_free_conf: 2004 if (conf) { 2005 if (conf->r1bio_pool) 2006 mempool_destroy(conf->r1bio_pool); 2007 kfree(conf->mirrors); 2008 safe_put_page(conf->tmppage); 2009 kfree(conf->poolinfo); 2010 kfree(conf); 2011 mddev->private = NULL; 2012 } 2013 out: 2014 return -EIO; 2015 } 2016 2017 static int stop(mddev_t *mddev) 2018 { 2019 conf_t *conf = mddev_to_conf(mddev); 2020 struct bitmap *bitmap = mddev->bitmap; 2021 int behind_wait = 0; 2022 2023 /* wait for behind writes to complete */ 2024 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2025 behind_wait++; 2026 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2027 set_current_state(TASK_UNINTERRUPTIBLE); 2028 schedule_timeout(HZ); /* wait a second */ 2029 /* need to kick something here to make sure I/O goes? */ 2030 } 2031 2032 md_unregister_thread(mddev->thread); 2033 mddev->thread = NULL; 2034 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2035 if (conf->r1bio_pool) 2036 mempool_destroy(conf->r1bio_pool); 2037 kfree(conf->mirrors); 2038 kfree(conf->poolinfo); 2039 kfree(conf); 2040 mddev->private = NULL; 2041 return 0; 2042 } 2043 2044 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2045 { 2046 /* no resync is happening, and there is enough space 2047 * on all devices, so we can resize. 2048 * We need to make sure resync covers any new space. 2049 * If the array is shrinking we should possibly wait until 2050 * any io in the removed space completes, but it hardly seems 2051 * worth it. 2052 */ 2053 mddev->array_size = sectors>>1; 2054 set_capacity(mddev->gendisk, mddev->array_size << 1); 2055 mddev->changed = 1; 2056 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2057 mddev->recovery_cp = mddev->size << 1; 2058 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2059 } 2060 mddev->size = mddev->array_size; 2061 mddev->resync_max_sectors = sectors; 2062 return 0; 2063 } 2064 2065 static int raid1_reshape(mddev_t *mddev) 2066 { 2067 /* We need to: 2068 * 1/ resize the r1bio_pool 2069 * 2/ resize conf->mirrors 2070 * 2071 * We allocate a new r1bio_pool if we can. 2072 * Then raise a device barrier and wait until all IO stops. 2073 * Then resize conf->mirrors and swap in the new r1bio pool. 2074 * 2075 * At the same time, we "pack" the devices so that all the missing 2076 * devices have the higher raid_disk numbers. 2077 */ 2078 mempool_t *newpool, *oldpool; 2079 struct pool_info *newpoolinfo; 2080 mirror_info_t *newmirrors; 2081 conf_t *conf = mddev_to_conf(mddev); 2082 int cnt, raid_disks; 2083 unsigned long flags; 2084 int d, d2; 2085 2086 /* Cannot change chunk_size, layout, or level */ 2087 if (mddev->chunk_size != mddev->new_chunk || 2088 mddev->layout != mddev->new_layout || 2089 mddev->level != mddev->new_level) { 2090 mddev->new_chunk = mddev->chunk_size; 2091 mddev->new_layout = mddev->layout; 2092 mddev->new_level = mddev->level; 2093 return -EINVAL; 2094 } 2095 2096 raid_disks = mddev->raid_disks + mddev->delta_disks; 2097 2098 if (raid_disks < conf->raid_disks) { 2099 cnt=0; 2100 for (d= 0; d < conf->raid_disks; d++) 2101 if (conf->mirrors[d].rdev) 2102 cnt++; 2103 if (cnt > raid_disks) 2104 return -EBUSY; 2105 } 2106 2107 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2108 if (!newpoolinfo) 2109 return -ENOMEM; 2110 newpoolinfo->mddev = mddev; 2111 newpoolinfo->raid_disks = raid_disks; 2112 2113 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2114 r1bio_pool_free, newpoolinfo); 2115 if (!newpool) { 2116 kfree(newpoolinfo); 2117 return -ENOMEM; 2118 } 2119 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2120 if (!newmirrors) { 2121 kfree(newpoolinfo); 2122 mempool_destroy(newpool); 2123 return -ENOMEM; 2124 } 2125 2126 raise_barrier(conf); 2127 2128 /* ok, everything is stopped */ 2129 oldpool = conf->r1bio_pool; 2130 conf->r1bio_pool = newpool; 2131 2132 for (d=d2=0; d < conf->raid_disks; d++) 2133 if (conf->mirrors[d].rdev) { 2134 conf->mirrors[d].rdev->raid_disk = d2; 2135 newmirrors[d2++].rdev = conf->mirrors[d].rdev; 2136 } 2137 kfree(conf->mirrors); 2138 conf->mirrors = newmirrors; 2139 kfree(conf->poolinfo); 2140 conf->poolinfo = newpoolinfo; 2141 2142 spin_lock_irqsave(&conf->device_lock, flags); 2143 mddev->degraded += (raid_disks - conf->raid_disks); 2144 spin_unlock_irqrestore(&conf->device_lock, flags); 2145 conf->raid_disks = mddev->raid_disks = raid_disks; 2146 mddev->delta_disks = 0; 2147 2148 conf->last_used = 0; /* just make sure it is in-range */ 2149 lower_barrier(conf); 2150 2151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2152 md_wakeup_thread(mddev->thread); 2153 2154 mempool_destroy(oldpool); 2155 return 0; 2156 } 2157 2158 static void raid1_quiesce(mddev_t *mddev, int state) 2159 { 2160 conf_t *conf = mddev_to_conf(mddev); 2161 2162 switch(state) { 2163 case 1: 2164 raise_barrier(conf); 2165 break; 2166 case 0: 2167 lower_barrier(conf); 2168 break; 2169 } 2170 } 2171 2172 2173 static struct mdk_personality raid1_personality = 2174 { 2175 .name = "raid1", 2176 .level = 1, 2177 .owner = THIS_MODULE, 2178 .make_request = make_request, 2179 .run = run, 2180 .stop = stop, 2181 .status = status, 2182 .error_handler = error, 2183 .hot_add_disk = raid1_add_disk, 2184 .hot_remove_disk= raid1_remove_disk, 2185 .spare_active = raid1_spare_active, 2186 .sync_request = sync_request, 2187 .resize = raid1_resize, 2188 .check_reshape = raid1_reshape, 2189 .quiesce = raid1_quiesce, 2190 }; 2191 2192 static int __init raid_init(void) 2193 { 2194 return register_md_personality(&raid1_personality); 2195 } 2196 2197 static void raid_exit(void) 2198 { 2199 unregister_md_personality(&raid1_personality); 2200 } 2201 2202 module_init(raid_init); 2203 module_exit(raid_exit); 2204 MODULE_LICENSE("GPL"); 2205 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2206 MODULE_ALIAS("md-raid1"); 2207 MODULE_ALIAS("md-level-1"); 2208