1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 169 if (!bio) 170 goto out_free_bio; 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 172 r1_bio->bios[j] = bio; 173 } 174 /* 175 * Allocate RESYNC_PAGES data pages and attach them to 176 * the first bio. 177 * If this is a user-requested check/repair, allocate 178 * RESYNC_PAGES for each bio. 179 */ 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 181 need_pages = pi->raid_disks; 182 else 183 need_pages = 1; 184 for (j = 0; j < pi->raid_disks; j++) { 185 struct resync_pages *rp = &rps[j]; 186 187 bio = r1_bio->bios[j]; 188 189 if (j < need_pages) { 190 if (resync_alloc_pages(rp, gfp_flags)) 191 goto out_free_pages; 192 } else { 193 memcpy(rp, &rps[0], sizeof(*rp)); 194 resync_get_all_pages(rp); 195 } 196 197 rp->raid_bio = r1_bio; 198 bio->bi_private = rp; 199 } 200 201 r1_bio->master_bio = NULL; 202 203 return r1_bio; 204 205 out_free_pages: 206 while (--j >= 0) 207 resync_free_pages(&rps[j]); 208 209 out_free_bio: 210 while (++j < pi->raid_disks) { 211 bio_uninit(r1_bio->bios[j]); 212 kfree(r1_bio->bios[j]); 213 } 214 kfree(rps); 215 216 out_free_r1bio: 217 rbio_pool_free(r1_bio, data); 218 return NULL; 219 } 220 221 static void r1buf_pool_free(void *__r1_bio, void *data) 222 { 223 struct pool_info *pi = data; 224 int i; 225 struct r1bio *r1bio = __r1_bio; 226 struct resync_pages *rp = NULL; 227 228 for (i = pi->raid_disks; i--; ) { 229 rp = get_resync_pages(r1bio->bios[i]); 230 resync_free_pages(rp); 231 bio_uninit(r1bio->bios[i]); 232 kfree(r1bio->bios[i]); 233 } 234 235 /* resync pages array stored in the 1st bio's .bi_private */ 236 kfree(rp); 237 238 rbio_pool_free(r1bio, data); 239 } 240 241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->raid_disks * 2; i++) { 246 struct bio **bio = r1_bio->bios + i; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r1bio(struct r1bio *r1_bio) 254 { 255 struct r1conf *conf = r1_bio->mddev->private; 256 257 put_all_bios(conf, r1_bio); 258 mempool_free(r1_bio, &conf->r1bio_pool); 259 } 260 261 static void put_buf(struct r1bio *r1_bio) 262 { 263 struct r1conf *conf = r1_bio->mddev->private; 264 sector_t sect = r1_bio->sector; 265 int i; 266 267 for (i = 0; i < conf->raid_disks * 2; i++) { 268 struct bio *bio = r1_bio->bios[i]; 269 if (bio->bi_end_io) 270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 271 } 272 273 mempool_free(r1_bio, &conf->r1buf_pool); 274 275 lower_barrier(conf, sect); 276 } 277 278 static void reschedule_retry(struct r1bio *r1_bio) 279 { 280 unsigned long flags; 281 struct mddev *mddev = r1_bio->mddev; 282 struct r1conf *conf = mddev->private; 283 int idx; 284 285 idx = sector_to_idx(r1_bio->sector); 286 spin_lock_irqsave(&conf->device_lock, flags); 287 list_add(&r1_bio->retry_list, &conf->retry_list); 288 atomic_inc(&conf->nr_queued[idx]); 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 291 wake_up(&conf->wait_barrier); 292 md_wakeup_thread(mddev->thread); 293 } 294 295 /* 296 * raid_end_bio_io() is called when we have finished servicing a mirrored 297 * operation and are ready to return a success/failure code to the buffer 298 * cache layer. 299 */ 300 static void call_bio_endio(struct r1bio *r1_bio) 301 { 302 struct bio *bio = r1_bio->master_bio; 303 304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 305 bio->bi_status = BLK_STS_IOERR; 306 307 bio_endio(bio); 308 } 309 310 static void raid_end_bio_io(struct r1bio *r1_bio) 311 { 312 struct bio *bio = r1_bio->master_bio; 313 struct r1conf *conf = r1_bio->mddev->private; 314 sector_t sector = r1_bio->sector; 315 316 /* if nobody has done the final endio yet, do it now */ 317 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 319 (bio_data_dir(bio) == WRITE) ? "write" : "read", 320 (unsigned long long) bio->bi_iter.bi_sector, 321 (unsigned long long) bio_end_sector(bio) - 1); 322 323 call_bio_endio(r1_bio); 324 } 325 326 free_r1bio(r1_bio); 327 /* 328 * Wake up any possible resync thread that waits for the device 329 * to go idle. All I/Os, even write-behind writes, are done. 330 */ 331 allow_barrier(conf, sector); 332 } 333 334 /* 335 * Update disk head position estimator based on IRQ completion info. 336 */ 337 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 338 { 339 struct r1conf *conf = r1_bio->mddev->private; 340 341 conf->mirrors[disk].head_position = 342 r1_bio->sector + (r1_bio->sectors); 343 } 344 345 /* 346 * Find the disk number which triggered given bio 347 */ 348 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 349 { 350 int mirror; 351 struct r1conf *conf = r1_bio->mddev->private; 352 int raid_disks = conf->raid_disks; 353 354 for (mirror = 0; mirror < raid_disks * 2; mirror++) 355 if (r1_bio->bios[mirror] == bio) 356 break; 357 358 BUG_ON(mirror == raid_disks * 2); 359 update_head_pos(mirror, r1_bio); 360 361 return mirror; 362 } 363 364 static void raid1_end_read_request(struct bio *bio) 365 { 366 int uptodate = !bio->bi_status; 367 struct r1bio *r1_bio = bio->bi_private; 368 struct r1conf *conf = r1_bio->mddev->private; 369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 370 371 /* 372 * this branch is our 'one mirror IO has finished' event handler: 373 */ 374 update_head_pos(r1_bio->read_disk, r1_bio); 375 376 if (uptodate) 377 set_bit(R1BIO_Uptodate, &r1_bio->state); 378 else if (test_bit(FailFast, &rdev->flags) && 379 test_bit(R1BIO_FailFast, &r1_bio->state)) 380 /* This was a fail-fast read so we definitely 381 * want to retry */ 382 ; 383 else { 384 /* If all other devices have failed, we want to return 385 * the error upwards rather than fail the last device. 386 * Here we redefine "uptodate" to mean "Don't want to retry" 387 */ 388 unsigned long flags; 389 spin_lock_irqsave(&conf->device_lock, flags); 390 if (r1_bio->mddev->degraded == conf->raid_disks || 391 (r1_bio->mddev->degraded == conf->raid_disks-1 && 392 test_bit(In_sync, &rdev->flags))) 393 uptodate = 1; 394 spin_unlock_irqrestore(&conf->device_lock, flags); 395 } 396 397 if (uptodate) { 398 raid_end_bio_io(r1_bio); 399 rdev_dec_pending(rdev, conf->mddev); 400 } else { 401 /* 402 * oops, read error: 403 */ 404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 405 mdname(conf->mddev), 406 rdev->bdev, 407 (unsigned long long)r1_bio->sector); 408 set_bit(R1BIO_ReadError, &r1_bio->state); 409 reschedule_retry(r1_bio); 410 /* don't drop the reference on read_disk yet */ 411 } 412 } 413 414 static void close_write(struct r1bio *r1_bio) 415 { 416 /* it really is the end of this request */ 417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 418 bio_free_pages(r1_bio->behind_master_bio); 419 bio_put(r1_bio->behind_master_bio); 420 r1_bio->behind_master_bio = NULL; 421 } 422 /* clear the bitmap if all writes complete successfully */ 423 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 424 r1_bio->sectors, 425 !test_bit(R1BIO_Degraded, &r1_bio->state), 426 test_bit(R1BIO_BehindIO, &r1_bio->state)); 427 md_write_end(r1_bio->mddev); 428 } 429 430 static void r1_bio_write_done(struct r1bio *r1_bio) 431 { 432 if (!atomic_dec_and_test(&r1_bio->remaining)) 433 return; 434 435 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else { 438 close_write(r1_bio); 439 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 440 reschedule_retry(r1_bio); 441 else 442 raid_end_bio_io(r1_bio); 443 } 444 } 445 446 static void raid1_end_write_request(struct bio *bio) 447 { 448 struct r1bio *r1_bio = bio->bi_private; 449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 450 struct r1conf *conf = r1_bio->mddev->private; 451 struct bio *to_put = NULL; 452 int mirror = find_bio_disk(r1_bio, bio); 453 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 454 bool discard_error; 455 sector_t lo = r1_bio->sector; 456 sector_t hi = r1_bio->sector + r1_bio->sectors; 457 458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 459 460 /* 461 * 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_status && !discard_error) { 464 set_bit(WriteErrorSeen, &rdev->flags); 465 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 466 set_bit(MD_RECOVERY_NEEDED, & 467 conf->mddev->recovery); 468 469 if (test_bit(FailFast, &rdev->flags) && 470 (bio->bi_opf & MD_FAILFAST) && 471 /* We never try FailFast to WriteMostly devices */ 472 !test_bit(WriteMostly, &rdev->flags)) { 473 md_error(r1_bio->mddev, rdev); 474 } 475 476 /* 477 * When the device is faulty, it is not necessary to 478 * handle write error. 479 */ 480 if (!test_bit(Faulty, &rdev->flags)) 481 set_bit(R1BIO_WriteError, &r1_bio->state); 482 else { 483 /* Fail the request */ 484 set_bit(R1BIO_Degraded, &r1_bio->state); 485 /* Finished with this branch */ 486 r1_bio->bios[mirror] = NULL; 487 to_put = bio; 488 } 489 } else { 490 /* 491 * Set R1BIO_Uptodate in our master bio, so that we 492 * will return a good error code for to the higher 493 * levels even if IO on some other mirrored buffer 494 * fails. 495 * 496 * The 'master' represents the composite IO operation 497 * to user-side. So if something waits for IO, then it 498 * will wait for the 'master' bio. 499 */ 500 sector_t first_bad; 501 int bad_sectors; 502 503 r1_bio->bios[mirror] = NULL; 504 to_put = bio; 505 /* 506 * Do not set R1BIO_Uptodate if the current device is 507 * rebuilding or Faulty. This is because we cannot use 508 * such device for properly reading the data back (we could 509 * potentially use it, if the current write would have felt 510 * before rdev->recovery_offset, but for simplicity we don't 511 * check this here. 512 */ 513 if (test_bit(In_sync, &rdev->flags) && 514 !test_bit(Faulty, &rdev->flags)) 515 set_bit(R1BIO_Uptodate, &r1_bio->state); 516 517 /* Maybe we can clear some bad blocks. */ 518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 519 &first_bad, &bad_sectors) && !discard_error) { 520 r1_bio->bios[mirror] = IO_MADE_GOOD; 521 set_bit(R1BIO_MadeGood, &r1_bio->state); 522 } 523 } 524 525 if (behind) { 526 if (test_bit(CollisionCheck, &rdev->flags)) 527 remove_serial(rdev, lo, hi); 528 if (test_bit(WriteMostly, &rdev->flags)) 529 atomic_dec(&r1_bio->behind_remaining); 530 531 /* 532 * In behind mode, we ACK the master bio once the I/O 533 * has safely reached all non-writemostly 534 * disks. Setting the Returned bit ensures that this 535 * gets done only once -- we don't ever want to return 536 * -EIO here, instead we'll wait 537 */ 538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 539 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 540 /* Maybe we can return now */ 541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 542 struct bio *mbio = r1_bio->master_bio; 543 pr_debug("raid1: behind end write sectors" 544 " %llu-%llu\n", 545 (unsigned long long) mbio->bi_iter.bi_sector, 546 (unsigned long long) bio_end_sector(mbio) - 1); 547 call_bio_endio(r1_bio); 548 } 549 } 550 } else if (rdev->mddev->serialize_policy) 551 remove_serial(rdev, lo, hi); 552 if (r1_bio->bios[mirror] == NULL) 553 rdev_dec_pending(rdev, conf->mddev); 554 555 /* 556 * Let's see if all mirrored write operations have finished 557 * already. 558 */ 559 r1_bio_write_done(r1_bio); 560 561 if (to_put) 562 bio_put(to_put); 563 } 564 565 static sector_t align_to_barrier_unit_end(sector_t start_sector, 566 sector_t sectors) 567 { 568 sector_t len; 569 570 WARN_ON(sectors == 0); 571 /* 572 * len is the number of sectors from start_sector to end of the 573 * barrier unit which start_sector belongs to. 574 */ 575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 576 start_sector; 577 578 if (len > sectors) 579 len = sectors; 580 581 return len; 582 } 583 584 /* 585 * This routine returns the disk from which the requested read should 586 * be done. There is a per-array 'next expected sequential IO' sector 587 * number - if this matches on the next IO then we use the last disk. 588 * There is also a per-disk 'last know head position' sector that is 589 * maintained from IRQ contexts, both the normal and the resync IO 590 * completion handlers update this position correctly. If there is no 591 * perfect sequential match then we pick the disk whose head is closest. 592 * 593 * If there are 2 mirrors in the same 2 devices, performance degrades 594 * because position is mirror, not device based. 595 * 596 * The rdev for the device selected will have nr_pending incremented. 597 */ 598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 599 { 600 const sector_t this_sector = r1_bio->sector; 601 int sectors; 602 int best_good_sectors; 603 int best_disk, best_dist_disk, best_pending_disk; 604 int has_nonrot_disk; 605 int disk; 606 sector_t best_dist; 607 unsigned int min_pending; 608 struct md_rdev *rdev; 609 int choose_first; 610 int choose_next_idle; 611 612 rcu_read_lock(); 613 /* 614 * Check if we can balance. We can balance on the whole 615 * device if no resync is going on, or below the resync window. 616 * We take the first readable disk when above the resync window. 617 */ 618 retry: 619 sectors = r1_bio->sectors; 620 best_disk = -1; 621 best_dist_disk = -1; 622 best_dist = MaxSector; 623 best_pending_disk = -1; 624 min_pending = UINT_MAX; 625 best_good_sectors = 0; 626 has_nonrot_disk = 0; 627 choose_next_idle = 0; 628 clear_bit(R1BIO_FailFast, &r1_bio->state); 629 630 if ((conf->mddev->recovery_cp < this_sector + sectors) || 631 (mddev_is_clustered(conf->mddev) && 632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 633 this_sector + sectors))) 634 choose_first = 1; 635 else 636 choose_first = 0; 637 638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 639 sector_t dist; 640 sector_t first_bad; 641 int bad_sectors; 642 unsigned int pending; 643 bool nonrot; 644 645 rdev = rcu_dereference(conf->mirrors[disk].rdev); 646 if (r1_bio->bios[disk] == IO_BLOCKED 647 || rdev == NULL 648 || test_bit(Faulty, &rdev->flags)) 649 continue; 650 if (!test_bit(In_sync, &rdev->flags) && 651 rdev->recovery_offset < this_sector + sectors) 652 continue; 653 if (test_bit(WriteMostly, &rdev->flags)) { 654 /* Don't balance among write-mostly, just 655 * use the first as a last resort */ 656 if (best_dist_disk < 0) { 657 if (is_badblock(rdev, this_sector, sectors, 658 &first_bad, &bad_sectors)) { 659 if (first_bad <= this_sector) 660 /* Cannot use this */ 661 continue; 662 best_good_sectors = first_bad - this_sector; 663 } else 664 best_good_sectors = sectors; 665 best_dist_disk = disk; 666 best_pending_disk = disk; 667 } 668 continue; 669 } 670 /* This is a reasonable device to use. It might 671 * even be best. 672 */ 673 if (is_badblock(rdev, this_sector, sectors, 674 &first_bad, &bad_sectors)) { 675 if (best_dist < MaxSector) 676 /* already have a better device */ 677 continue; 678 if (first_bad <= this_sector) { 679 /* cannot read here. If this is the 'primary' 680 * device, then we must not read beyond 681 * bad_sectors from another device.. 682 */ 683 bad_sectors -= (this_sector - first_bad); 684 if (choose_first && sectors > bad_sectors) 685 sectors = bad_sectors; 686 if (best_good_sectors > sectors) 687 best_good_sectors = sectors; 688 689 } else { 690 sector_t good_sectors = first_bad - this_sector; 691 if (good_sectors > best_good_sectors) { 692 best_good_sectors = good_sectors; 693 best_disk = disk; 694 } 695 if (choose_first) 696 break; 697 } 698 continue; 699 } else { 700 if ((sectors > best_good_sectors) && (best_disk >= 0)) 701 best_disk = -1; 702 best_good_sectors = sectors; 703 } 704 705 if (best_disk >= 0) 706 /* At least two disks to choose from so failfast is OK */ 707 set_bit(R1BIO_FailFast, &r1_bio->state); 708 709 nonrot = bdev_nonrot(rdev->bdev); 710 has_nonrot_disk |= nonrot; 711 pending = atomic_read(&rdev->nr_pending); 712 dist = abs(this_sector - conf->mirrors[disk].head_position); 713 if (choose_first) { 714 best_disk = disk; 715 break; 716 } 717 /* Don't change to another disk for sequential reads */ 718 if (conf->mirrors[disk].next_seq_sect == this_sector 719 || dist == 0) { 720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 721 struct raid1_info *mirror = &conf->mirrors[disk]; 722 723 best_disk = disk; 724 /* 725 * If buffered sequential IO size exceeds optimal 726 * iosize, check if there is idle disk. If yes, choose 727 * the idle disk. read_balance could already choose an 728 * idle disk before noticing it's a sequential IO in 729 * this disk. This doesn't matter because this disk 730 * will idle, next time it will be utilized after the 731 * first disk has IO size exceeds optimal iosize. In 732 * this way, iosize of the first disk will be optimal 733 * iosize at least. iosize of the second disk might be 734 * small, but not a big deal since when the second disk 735 * starts IO, the first disk is likely still busy. 736 */ 737 if (nonrot && opt_iosize > 0 && 738 mirror->seq_start != MaxSector && 739 mirror->next_seq_sect > opt_iosize && 740 mirror->next_seq_sect - opt_iosize >= 741 mirror->seq_start) { 742 choose_next_idle = 1; 743 continue; 744 } 745 break; 746 } 747 748 if (choose_next_idle) 749 continue; 750 751 if (min_pending > pending) { 752 min_pending = pending; 753 best_pending_disk = disk; 754 } 755 756 if (dist < best_dist) { 757 best_dist = dist; 758 best_dist_disk = disk; 759 } 760 } 761 762 /* 763 * If all disks are rotational, choose the closest disk. If any disk is 764 * non-rotational, choose the disk with less pending request even the 765 * disk is rotational, which might/might not be optimal for raids with 766 * mixed ratation/non-rotational disks depending on workload. 767 */ 768 if (best_disk == -1) { 769 if (has_nonrot_disk || min_pending == 0) 770 best_disk = best_pending_disk; 771 else 772 best_disk = best_dist_disk; 773 } 774 775 if (best_disk >= 0) { 776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 777 if (!rdev) 778 goto retry; 779 atomic_inc(&rdev->nr_pending); 780 sectors = best_good_sectors; 781 782 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 783 conf->mirrors[best_disk].seq_start = this_sector; 784 785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 786 } 787 rcu_read_unlock(); 788 *max_sectors = sectors; 789 790 return best_disk; 791 } 792 793 static void wake_up_barrier(struct r1conf *conf) 794 { 795 if (wq_has_sleeper(&conf->wait_barrier)) 796 wake_up(&conf->wait_barrier); 797 } 798 799 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 800 { 801 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 802 raid1_prepare_flush_writes(conf->mddev->bitmap); 803 wake_up_barrier(conf); 804 805 while (bio) { /* submit pending writes */ 806 struct bio *next = bio->bi_next; 807 808 raid1_submit_write(bio); 809 bio = next; 810 cond_resched(); 811 } 812 } 813 814 static void flush_pending_writes(struct r1conf *conf) 815 { 816 /* Any writes that have been queued but are awaiting 817 * bitmap updates get flushed here. 818 */ 819 spin_lock_irq(&conf->device_lock); 820 821 if (conf->pending_bio_list.head) { 822 struct blk_plug plug; 823 struct bio *bio; 824 825 bio = bio_list_get(&conf->pending_bio_list); 826 spin_unlock_irq(&conf->device_lock); 827 828 /* 829 * As this is called in a wait_event() loop (see freeze_array), 830 * current->state might be TASK_UNINTERRUPTIBLE which will 831 * cause a warning when we prepare to wait again. As it is 832 * rare that this path is taken, it is perfectly safe to force 833 * us to go around the wait_event() loop again, so the warning 834 * is a false-positive. Silence the warning by resetting 835 * thread state 836 */ 837 __set_current_state(TASK_RUNNING); 838 blk_start_plug(&plug); 839 flush_bio_list(conf, bio); 840 blk_finish_plug(&plug); 841 } else 842 spin_unlock_irq(&conf->device_lock); 843 } 844 845 /* Barriers.... 846 * Sometimes we need to suspend IO while we do something else, 847 * either some resync/recovery, or reconfigure the array. 848 * To do this we raise a 'barrier'. 849 * The 'barrier' is a counter that can be raised multiple times 850 * to count how many activities are happening which preclude 851 * normal IO. 852 * We can only raise the barrier if there is no pending IO. 853 * i.e. if nr_pending == 0. 854 * We choose only to raise the barrier if no-one is waiting for the 855 * barrier to go down. This means that as soon as an IO request 856 * is ready, no other operations which require a barrier will start 857 * until the IO request has had a chance. 858 * 859 * So: regular IO calls 'wait_barrier'. When that returns there 860 * is no backgroup IO happening, It must arrange to call 861 * allow_barrier when it has finished its IO. 862 * backgroup IO calls must call raise_barrier. Once that returns 863 * there is no normal IO happeing. It must arrange to call 864 * lower_barrier when the particular background IO completes. 865 * 866 * If resync/recovery is interrupted, returns -EINTR; 867 * Otherwise, returns 0. 868 */ 869 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 870 { 871 int idx = sector_to_idx(sector_nr); 872 873 spin_lock_irq(&conf->resync_lock); 874 875 /* Wait until no block IO is waiting */ 876 wait_event_lock_irq(conf->wait_barrier, 877 !atomic_read(&conf->nr_waiting[idx]), 878 conf->resync_lock); 879 880 /* block any new IO from starting */ 881 atomic_inc(&conf->barrier[idx]); 882 /* 883 * In raise_barrier() we firstly increase conf->barrier[idx] then 884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 885 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 886 * A memory barrier here to make sure conf->nr_pending[idx] won't 887 * be fetched before conf->barrier[idx] is increased. Otherwise 888 * there will be a race between raise_barrier() and _wait_barrier(). 889 */ 890 smp_mb__after_atomic(); 891 892 /* For these conditions we must wait: 893 * A: while the array is in frozen state 894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 895 * existing in corresponding I/O barrier bucket. 896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 897 * max resync count which allowed on current I/O barrier bucket. 898 */ 899 wait_event_lock_irq(conf->wait_barrier, 900 (!conf->array_frozen && 901 !atomic_read(&conf->nr_pending[idx]) && 902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 904 conf->resync_lock); 905 906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 907 atomic_dec(&conf->barrier[idx]); 908 spin_unlock_irq(&conf->resync_lock); 909 wake_up(&conf->wait_barrier); 910 return -EINTR; 911 } 912 913 atomic_inc(&conf->nr_sync_pending); 914 spin_unlock_irq(&conf->resync_lock); 915 916 return 0; 917 } 918 919 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 920 { 921 int idx = sector_to_idx(sector_nr); 922 923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 924 925 atomic_dec(&conf->barrier[idx]); 926 atomic_dec(&conf->nr_sync_pending); 927 wake_up(&conf->wait_barrier); 928 } 929 930 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 931 { 932 bool ret = true; 933 934 /* 935 * We need to increase conf->nr_pending[idx] very early here, 936 * then raise_barrier() can be blocked when it waits for 937 * conf->nr_pending[idx] to be 0. Then we can avoid holding 938 * conf->resync_lock when there is no barrier raised in same 939 * barrier unit bucket. Also if the array is frozen, I/O 940 * should be blocked until array is unfrozen. 941 */ 942 atomic_inc(&conf->nr_pending[idx]); 943 /* 944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 945 * check conf->barrier[idx]. In raise_barrier() we firstly increase 946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 947 * barrier is necessary here to make sure conf->barrier[idx] won't be 948 * fetched before conf->nr_pending[idx] is increased. Otherwise there 949 * will be a race between _wait_barrier() and raise_barrier(). 950 */ 951 smp_mb__after_atomic(); 952 953 /* 954 * Don't worry about checking two atomic_t variables at same time 955 * here. If during we check conf->barrier[idx], the array is 956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 957 * 0, it is safe to return and make the I/O continue. Because the 958 * array is frozen, all I/O returned here will eventually complete 959 * or be queued, no race will happen. See code comment in 960 * frozen_array(). 961 */ 962 if (!READ_ONCE(conf->array_frozen) && 963 !atomic_read(&conf->barrier[idx])) 964 return ret; 965 966 /* 967 * After holding conf->resync_lock, conf->nr_pending[idx] 968 * should be decreased before waiting for barrier to drop. 969 * Otherwise, we may encounter a race condition because 970 * raise_barrer() might be waiting for conf->nr_pending[idx] 971 * to be 0 at same time. 972 */ 973 spin_lock_irq(&conf->resync_lock); 974 atomic_inc(&conf->nr_waiting[idx]); 975 atomic_dec(&conf->nr_pending[idx]); 976 /* 977 * In case freeze_array() is waiting for 978 * get_unqueued_pending() == extra 979 */ 980 wake_up_barrier(conf); 981 /* Wait for the barrier in same barrier unit bucket to drop. */ 982 983 /* Return false when nowait flag is set */ 984 if (nowait) { 985 ret = false; 986 } else { 987 wait_event_lock_irq(conf->wait_barrier, 988 !conf->array_frozen && 989 !atomic_read(&conf->barrier[idx]), 990 conf->resync_lock); 991 atomic_inc(&conf->nr_pending[idx]); 992 } 993 994 atomic_dec(&conf->nr_waiting[idx]); 995 spin_unlock_irq(&conf->resync_lock); 996 return ret; 997 } 998 999 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1000 { 1001 int idx = sector_to_idx(sector_nr); 1002 bool ret = true; 1003 1004 /* 1005 * Very similar to _wait_barrier(). The difference is, for read 1006 * I/O we don't need wait for sync I/O, but if the whole array 1007 * is frozen, the read I/O still has to wait until the array is 1008 * unfrozen. Since there is no ordering requirement with 1009 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1010 */ 1011 atomic_inc(&conf->nr_pending[idx]); 1012 1013 if (!READ_ONCE(conf->array_frozen)) 1014 return ret; 1015 1016 spin_lock_irq(&conf->resync_lock); 1017 atomic_inc(&conf->nr_waiting[idx]); 1018 atomic_dec(&conf->nr_pending[idx]); 1019 /* 1020 * In case freeze_array() is waiting for 1021 * get_unqueued_pending() == extra 1022 */ 1023 wake_up_barrier(conf); 1024 /* Wait for array to be unfrozen */ 1025 1026 /* Return false when nowait flag is set */ 1027 if (nowait) { 1028 /* Return false when nowait flag is set */ 1029 ret = false; 1030 } else { 1031 wait_event_lock_irq(conf->wait_barrier, 1032 !conf->array_frozen, 1033 conf->resync_lock); 1034 atomic_inc(&conf->nr_pending[idx]); 1035 } 1036 1037 atomic_dec(&conf->nr_waiting[idx]); 1038 spin_unlock_irq(&conf->resync_lock); 1039 return ret; 1040 } 1041 1042 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1043 { 1044 int idx = sector_to_idx(sector_nr); 1045 1046 return _wait_barrier(conf, idx, nowait); 1047 } 1048 1049 static void _allow_barrier(struct r1conf *conf, int idx) 1050 { 1051 atomic_dec(&conf->nr_pending[idx]); 1052 wake_up_barrier(conf); 1053 } 1054 1055 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1056 { 1057 int idx = sector_to_idx(sector_nr); 1058 1059 _allow_barrier(conf, idx); 1060 } 1061 1062 /* conf->resync_lock should be held */ 1063 static int get_unqueued_pending(struct r1conf *conf) 1064 { 1065 int idx, ret; 1066 1067 ret = atomic_read(&conf->nr_sync_pending); 1068 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1069 ret += atomic_read(&conf->nr_pending[idx]) - 1070 atomic_read(&conf->nr_queued[idx]); 1071 1072 return ret; 1073 } 1074 1075 static void freeze_array(struct r1conf *conf, int extra) 1076 { 1077 /* Stop sync I/O and normal I/O and wait for everything to 1078 * go quiet. 1079 * This is called in two situations: 1080 * 1) management command handlers (reshape, remove disk, quiesce). 1081 * 2) one normal I/O request failed. 1082 1083 * After array_frozen is set to 1, new sync IO will be blocked at 1084 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1085 * or wait_read_barrier(). The flying I/Os will either complete or be 1086 * queued. When everything goes quite, there are only queued I/Os left. 1087 1088 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1089 * barrier bucket index which this I/O request hits. When all sync and 1090 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1091 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1092 * in handle_read_error(), we may call freeze_array() before trying to 1093 * fix the read error. In this case, the error read I/O is not queued, 1094 * so get_unqueued_pending() == 1. 1095 * 1096 * Therefore before this function returns, we need to wait until 1097 * get_unqueued_pendings(conf) gets equal to extra. For 1098 * normal I/O context, extra is 1, in rested situations extra is 0. 1099 */ 1100 spin_lock_irq(&conf->resync_lock); 1101 conf->array_frozen = 1; 1102 raid1_log(conf->mddev, "wait freeze"); 1103 wait_event_lock_irq_cmd( 1104 conf->wait_barrier, 1105 get_unqueued_pending(conf) == extra, 1106 conf->resync_lock, 1107 flush_pending_writes(conf)); 1108 spin_unlock_irq(&conf->resync_lock); 1109 } 1110 static void unfreeze_array(struct r1conf *conf) 1111 { 1112 /* reverse the effect of the freeze */ 1113 spin_lock_irq(&conf->resync_lock); 1114 conf->array_frozen = 0; 1115 spin_unlock_irq(&conf->resync_lock); 1116 wake_up(&conf->wait_barrier); 1117 } 1118 1119 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1120 struct bio *bio) 1121 { 1122 int size = bio->bi_iter.bi_size; 1123 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1124 int i = 0; 1125 struct bio *behind_bio = NULL; 1126 1127 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1128 &r1_bio->mddev->bio_set); 1129 if (!behind_bio) 1130 return; 1131 1132 /* discard op, we don't support writezero/writesame yet */ 1133 if (!bio_has_data(bio)) { 1134 behind_bio->bi_iter.bi_size = size; 1135 goto skip_copy; 1136 } 1137 1138 while (i < vcnt && size) { 1139 struct page *page; 1140 int len = min_t(int, PAGE_SIZE, size); 1141 1142 page = alloc_page(GFP_NOIO); 1143 if (unlikely(!page)) 1144 goto free_pages; 1145 1146 if (!bio_add_page(behind_bio, page, len, 0)) { 1147 put_page(page); 1148 goto free_pages; 1149 } 1150 1151 size -= len; 1152 i++; 1153 } 1154 1155 bio_copy_data(behind_bio, bio); 1156 skip_copy: 1157 r1_bio->behind_master_bio = behind_bio; 1158 set_bit(R1BIO_BehindIO, &r1_bio->state); 1159 1160 return; 1161 1162 free_pages: 1163 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1164 bio->bi_iter.bi_size); 1165 bio_free_pages(behind_bio); 1166 bio_put(behind_bio); 1167 } 1168 1169 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1170 { 1171 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1172 cb); 1173 struct mddev *mddev = plug->cb.data; 1174 struct r1conf *conf = mddev->private; 1175 struct bio *bio; 1176 1177 if (from_schedule) { 1178 spin_lock_irq(&conf->device_lock); 1179 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1180 spin_unlock_irq(&conf->device_lock); 1181 wake_up_barrier(conf); 1182 md_wakeup_thread(mddev->thread); 1183 kfree(plug); 1184 return; 1185 } 1186 1187 /* we aren't scheduling, so we can do the write-out directly. */ 1188 bio = bio_list_get(&plug->pending); 1189 flush_bio_list(conf, bio); 1190 kfree(plug); 1191 } 1192 1193 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1194 { 1195 r1_bio->master_bio = bio; 1196 r1_bio->sectors = bio_sectors(bio); 1197 r1_bio->state = 0; 1198 r1_bio->mddev = mddev; 1199 r1_bio->sector = bio->bi_iter.bi_sector; 1200 } 1201 1202 static inline struct r1bio * 1203 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1204 { 1205 struct r1conf *conf = mddev->private; 1206 struct r1bio *r1_bio; 1207 1208 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1209 /* Ensure no bio records IO_BLOCKED */ 1210 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1211 init_r1bio(r1_bio, mddev, bio); 1212 return r1_bio; 1213 } 1214 1215 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1216 int max_read_sectors, struct r1bio *r1_bio) 1217 { 1218 struct r1conf *conf = mddev->private; 1219 struct raid1_info *mirror; 1220 struct bio *read_bio; 1221 struct bitmap *bitmap = mddev->bitmap; 1222 const enum req_op op = bio_op(bio); 1223 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1224 int max_sectors; 1225 int rdisk; 1226 bool r1bio_existed = !!r1_bio; 1227 char b[BDEVNAME_SIZE]; 1228 1229 /* 1230 * If r1_bio is set, we are blocking the raid1d thread 1231 * so there is a tiny risk of deadlock. So ask for 1232 * emergency memory if needed. 1233 */ 1234 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1235 1236 if (r1bio_existed) { 1237 /* Need to get the block device name carefully */ 1238 struct md_rdev *rdev; 1239 rcu_read_lock(); 1240 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1241 if (rdev) 1242 snprintf(b, sizeof(b), "%pg", rdev->bdev); 1243 else 1244 strcpy(b, "???"); 1245 rcu_read_unlock(); 1246 } 1247 1248 /* 1249 * Still need barrier for READ in case that whole 1250 * array is frozen. 1251 */ 1252 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1253 bio->bi_opf & REQ_NOWAIT)) { 1254 bio_wouldblock_error(bio); 1255 return; 1256 } 1257 1258 if (!r1_bio) 1259 r1_bio = alloc_r1bio(mddev, bio); 1260 else 1261 init_r1bio(r1_bio, mddev, bio); 1262 r1_bio->sectors = max_read_sectors; 1263 1264 /* 1265 * make_request() can abort the operation when read-ahead is being 1266 * used and no empty request is available. 1267 */ 1268 rdisk = read_balance(conf, r1_bio, &max_sectors); 1269 1270 if (rdisk < 0) { 1271 /* couldn't find anywhere to read from */ 1272 if (r1bio_existed) { 1273 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1274 mdname(mddev), 1275 b, 1276 (unsigned long long)r1_bio->sector); 1277 } 1278 raid_end_bio_io(r1_bio); 1279 return; 1280 } 1281 mirror = conf->mirrors + rdisk; 1282 1283 if (r1bio_existed) 1284 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1285 mdname(mddev), 1286 (unsigned long long)r1_bio->sector, 1287 mirror->rdev->bdev); 1288 1289 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1290 bitmap) { 1291 /* 1292 * Reading from a write-mostly device must take care not to 1293 * over-take any writes that are 'behind' 1294 */ 1295 raid1_log(mddev, "wait behind writes"); 1296 wait_event(bitmap->behind_wait, 1297 atomic_read(&bitmap->behind_writes) == 0); 1298 } 1299 1300 if (max_sectors < bio_sectors(bio)) { 1301 struct bio *split = bio_split(bio, max_sectors, 1302 gfp, &conf->bio_split); 1303 bio_chain(split, bio); 1304 submit_bio_noacct(bio); 1305 bio = split; 1306 r1_bio->master_bio = bio; 1307 r1_bio->sectors = max_sectors; 1308 } 1309 1310 r1_bio->read_disk = rdisk; 1311 if (!r1bio_existed) { 1312 md_account_bio(mddev, &bio); 1313 r1_bio->master_bio = bio; 1314 } 1315 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1316 &mddev->bio_set); 1317 1318 r1_bio->bios[rdisk] = read_bio; 1319 1320 read_bio->bi_iter.bi_sector = r1_bio->sector + 1321 mirror->rdev->data_offset; 1322 read_bio->bi_end_io = raid1_end_read_request; 1323 read_bio->bi_opf = op | do_sync; 1324 if (test_bit(FailFast, &mirror->rdev->flags) && 1325 test_bit(R1BIO_FailFast, &r1_bio->state)) 1326 read_bio->bi_opf |= MD_FAILFAST; 1327 read_bio->bi_private = r1_bio; 1328 1329 if (mddev->gendisk) 1330 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1331 r1_bio->sector); 1332 1333 submit_bio_noacct(read_bio); 1334 } 1335 1336 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1337 int max_write_sectors) 1338 { 1339 struct r1conf *conf = mddev->private; 1340 struct r1bio *r1_bio; 1341 int i, disks; 1342 struct bitmap *bitmap = mddev->bitmap; 1343 unsigned long flags; 1344 struct md_rdev *blocked_rdev; 1345 int first_clone; 1346 int max_sectors; 1347 bool write_behind = false; 1348 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1349 1350 if (mddev_is_clustered(mddev) && 1351 md_cluster_ops->area_resyncing(mddev, WRITE, 1352 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1353 1354 DEFINE_WAIT(w); 1355 if (bio->bi_opf & REQ_NOWAIT) { 1356 bio_wouldblock_error(bio); 1357 return; 1358 } 1359 for (;;) { 1360 prepare_to_wait(&conf->wait_barrier, 1361 &w, TASK_IDLE); 1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1363 bio->bi_iter.bi_sector, 1364 bio_end_sector(bio))) 1365 break; 1366 schedule(); 1367 } 1368 finish_wait(&conf->wait_barrier, &w); 1369 } 1370 1371 /* 1372 * Register the new request and wait if the reconstruction 1373 * thread has put up a bar for new requests. 1374 * Continue immediately if no resync is active currently. 1375 */ 1376 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1377 bio->bi_opf & REQ_NOWAIT)) { 1378 bio_wouldblock_error(bio); 1379 return; 1380 } 1381 1382 retry_write: 1383 r1_bio = alloc_r1bio(mddev, bio); 1384 r1_bio->sectors = max_write_sectors; 1385 1386 /* first select target devices under rcu_lock and 1387 * inc refcount on their rdev. Record them by setting 1388 * bios[x] to bio 1389 * If there are known/acknowledged bad blocks on any device on 1390 * which we have seen a write error, we want to avoid writing those 1391 * blocks. 1392 * This potentially requires several writes to write around 1393 * the bad blocks. Each set of writes gets it's own r1bio 1394 * with a set of bios attached. 1395 */ 1396 1397 disks = conf->raid_disks * 2; 1398 blocked_rdev = NULL; 1399 rcu_read_lock(); 1400 max_sectors = r1_bio->sectors; 1401 for (i = 0; i < disks; i++) { 1402 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1403 1404 /* 1405 * The write-behind io is only attempted on drives marked as 1406 * write-mostly, which means we could allocate write behind 1407 * bio later. 1408 */ 1409 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1410 write_behind = true; 1411 1412 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1413 atomic_inc(&rdev->nr_pending); 1414 blocked_rdev = rdev; 1415 break; 1416 } 1417 r1_bio->bios[i] = NULL; 1418 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1419 if (i < conf->raid_disks) 1420 set_bit(R1BIO_Degraded, &r1_bio->state); 1421 continue; 1422 } 1423 1424 atomic_inc(&rdev->nr_pending); 1425 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1426 sector_t first_bad; 1427 int bad_sectors; 1428 int is_bad; 1429 1430 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1431 &first_bad, &bad_sectors); 1432 if (is_bad < 0) { 1433 /* mustn't write here until the bad block is 1434 * acknowledged*/ 1435 set_bit(BlockedBadBlocks, &rdev->flags); 1436 blocked_rdev = rdev; 1437 break; 1438 } 1439 if (is_bad && first_bad <= r1_bio->sector) { 1440 /* Cannot write here at all */ 1441 bad_sectors -= (r1_bio->sector - first_bad); 1442 if (bad_sectors < max_sectors) 1443 /* mustn't write more than bad_sectors 1444 * to other devices yet 1445 */ 1446 max_sectors = bad_sectors; 1447 rdev_dec_pending(rdev, mddev); 1448 /* We don't set R1BIO_Degraded as that 1449 * only applies if the disk is 1450 * missing, so it might be re-added, 1451 * and we want to know to recover this 1452 * chunk. 1453 * In this case the device is here, 1454 * and the fact that this chunk is not 1455 * in-sync is recorded in the bad 1456 * block log 1457 */ 1458 continue; 1459 } 1460 if (is_bad) { 1461 int good_sectors = first_bad - r1_bio->sector; 1462 if (good_sectors < max_sectors) 1463 max_sectors = good_sectors; 1464 } 1465 } 1466 r1_bio->bios[i] = bio; 1467 } 1468 rcu_read_unlock(); 1469 1470 if (unlikely(blocked_rdev)) { 1471 /* Wait for this device to become unblocked */ 1472 int j; 1473 1474 for (j = 0; j < i; j++) 1475 if (r1_bio->bios[j]) 1476 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1477 free_r1bio(r1_bio); 1478 allow_barrier(conf, bio->bi_iter.bi_sector); 1479 1480 if (bio->bi_opf & REQ_NOWAIT) { 1481 bio_wouldblock_error(bio); 1482 return; 1483 } 1484 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1485 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1486 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1487 goto retry_write; 1488 } 1489 1490 /* 1491 * When using a bitmap, we may call alloc_behind_master_bio below. 1492 * alloc_behind_master_bio allocates a copy of the data payload a page 1493 * at a time and thus needs a new bio that can fit the whole payload 1494 * this bio in page sized chunks. 1495 */ 1496 if (write_behind && bitmap) 1497 max_sectors = min_t(int, max_sectors, 1498 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1499 if (max_sectors < bio_sectors(bio)) { 1500 struct bio *split = bio_split(bio, max_sectors, 1501 GFP_NOIO, &conf->bio_split); 1502 bio_chain(split, bio); 1503 submit_bio_noacct(bio); 1504 bio = split; 1505 r1_bio->master_bio = bio; 1506 r1_bio->sectors = max_sectors; 1507 } 1508 1509 md_account_bio(mddev, &bio); 1510 r1_bio->master_bio = bio; 1511 atomic_set(&r1_bio->remaining, 1); 1512 atomic_set(&r1_bio->behind_remaining, 0); 1513 1514 first_clone = 1; 1515 1516 for (i = 0; i < disks; i++) { 1517 struct bio *mbio = NULL; 1518 struct md_rdev *rdev = conf->mirrors[i].rdev; 1519 if (!r1_bio->bios[i]) 1520 continue; 1521 1522 if (first_clone) { 1523 /* do behind I/O ? 1524 * Not if there are too many, or cannot 1525 * allocate memory, or a reader on WriteMostly 1526 * is waiting for behind writes to flush */ 1527 if (bitmap && write_behind && 1528 (atomic_read(&bitmap->behind_writes) 1529 < mddev->bitmap_info.max_write_behind) && 1530 !waitqueue_active(&bitmap->behind_wait)) { 1531 alloc_behind_master_bio(r1_bio, bio); 1532 } 1533 1534 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1535 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1536 first_clone = 0; 1537 } 1538 1539 if (r1_bio->behind_master_bio) { 1540 mbio = bio_alloc_clone(rdev->bdev, 1541 r1_bio->behind_master_bio, 1542 GFP_NOIO, &mddev->bio_set); 1543 if (test_bit(CollisionCheck, &rdev->flags)) 1544 wait_for_serialization(rdev, r1_bio); 1545 if (test_bit(WriteMostly, &rdev->flags)) 1546 atomic_inc(&r1_bio->behind_remaining); 1547 } else { 1548 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1549 &mddev->bio_set); 1550 1551 if (mddev->serialize_policy) 1552 wait_for_serialization(rdev, r1_bio); 1553 } 1554 1555 r1_bio->bios[i] = mbio; 1556 1557 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1558 mbio->bi_end_io = raid1_end_write_request; 1559 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1560 if (test_bit(FailFast, &rdev->flags) && 1561 !test_bit(WriteMostly, &rdev->flags) && 1562 conf->raid_disks - mddev->degraded > 1) 1563 mbio->bi_opf |= MD_FAILFAST; 1564 mbio->bi_private = r1_bio; 1565 1566 atomic_inc(&r1_bio->remaining); 1567 1568 if (mddev->gendisk) 1569 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1570 r1_bio->sector); 1571 /* flush_pending_writes() needs access to the rdev so...*/ 1572 mbio->bi_bdev = (void *)rdev; 1573 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1574 spin_lock_irqsave(&conf->device_lock, flags); 1575 bio_list_add(&conf->pending_bio_list, mbio); 1576 spin_unlock_irqrestore(&conf->device_lock, flags); 1577 md_wakeup_thread(mddev->thread); 1578 } 1579 } 1580 1581 r1_bio_write_done(r1_bio); 1582 1583 /* In case raid1d snuck in to freeze_array */ 1584 wake_up_barrier(conf); 1585 } 1586 1587 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1588 { 1589 sector_t sectors; 1590 1591 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1592 && md_flush_request(mddev, bio)) 1593 return true; 1594 1595 /* 1596 * There is a limit to the maximum size, but 1597 * the read/write handler might find a lower limit 1598 * due to bad blocks. To avoid multiple splits, 1599 * we pass the maximum number of sectors down 1600 * and let the lower level perform the split. 1601 */ 1602 sectors = align_to_barrier_unit_end( 1603 bio->bi_iter.bi_sector, bio_sectors(bio)); 1604 1605 if (bio_data_dir(bio) == READ) 1606 raid1_read_request(mddev, bio, sectors, NULL); 1607 else { 1608 if (!md_write_start(mddev,bio)) 1609 return false; 1610 raid1_write_request(mddev, bio, sectors); 1611 } 1612 return true; 1613 } 1614 1615 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1616 { 1617 struct r1conf *conf = mddev->private; 1618 int i; 1619 1620 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1621 conf->raid_disks - mddev->degraded); 1622 rcu_read_lock(); 1623 for (i = 0; i < conf->raid_disks; i++) { 1624 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1625 seq_printf(seq, "%s", 1626 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1627 } 1628 rcu_read_unlock(); 1629 seq_printf(seq, "]"); 1630 } 1631 1632 /** 1633 * raid1_error() - RAID1 error handler. 1634 * @mddev: affected md device. 1635 * @rdev: member device to fail. 1636 * 1637 * The routine acknowledges &rdev failure and determines new @mddev state. 1638 * If it failed, then: 1639 * - &MD_BROKEN flag is set in &mddev->flags. 1640 * - recovery is disabled. 1641 * Otherwise, it must be degraded: 1642 * - recovery is interrupted. 1643 * - &mddev->degraded is bumped. 1644 * 1645 * @rdev is marked as &Faulty excluding case when array is failed and 1646 * &mddev->fail_last_dev is off. 1647 */ 1648 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1649 { 1650 struct r1conf *conf = mddev->private; 1651 unsigned long flags; 1652 1653 spin_lock_irqsave(&conf->device_lock, flags); 1654 1655 if (test_bit(In_sync, &rdev->flags) && 1656 (conf->raid_disks - mddev->degraded) == 1) { 1657 set_bit(MD_BROKEN, &mddev->flags); 1658 1659 if (!mddev->fail_last_dev) { 1660 conf->recovery_disabled = mddev->recovery_disabled; 1661 spin_unlock_irqrestore(&conf->device_lock, flags); 1662 return; 1663 } 1664 } 1665 set_bit(Blocked, &rdev->flags); 1666 if (test_and_clear_bit(In_sync, &rdev->flags)) 1667 mddev->degraded++; 1668 set_bit(Faulty, &rdev->flags); 1669 spin_unlock_irqrestore(&conf->device_lock, flags); 1670 /* 1671 * if recovery is running, make sure it aborts. 1672 */ 1673 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1674 set_mask_bits(&mddev->sb_flags, 0, 1675 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1676 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1677 "md/raid1:%s: Operation continuing on %d devices.\n", 1678 mdname(mddev), rdev->bdev, 1679 mdname(mddev), conf->raid_disks - mddev->degraded); 1680 } 1681 1682 static void print_conf(struct r1conf *conf) 1683 { 1684 int i; 1685 1686 pr_debug("RAID1 conf printout:\n"); 1687 if (!conf) { 1688 pr_debug("(!conf)\n"); 1689 return; 1690 } 1691 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1692 conf->raid_disks); 1693 1694 rcu_read_lock(); 1695 for (i = 0; i < conf->raid_disks; i++) { 1696 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1697 if (rdev) 1698 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1699 i, !test_bit(In_sync, &rdev->flags), 1700 !test_bit(Faulty, &rdev->flags), 1701 rdev->bdev); 1702 } 1703 rcu_read_unlock(); 1704 } 1705 1706 static void close_sync(struct r1conf *conf) 1707 { 1708 int idx; 1709 1710 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1711 _wait_barrier(conf, idx, false); 1712 _allow_barrier(conf, idx); 1713 } 1714 1715 mempool_exit(&conf->r1buf_pool); 1716 } 1717 1718 static int raid1_spare_active(struct mddev *mddev) 1719 { 1720 int i; 1721 struct r1conf *conf = mddev->private; 1722 int count = 0; 1723 unsigned long flags; 1724 1725 /* 1726 * Find all failed disks within the RAID1 configuration 1727 * and mark them readable. 1728 * Called under mddev lock, so rcu protection not needed. 1729 * device_lock used to avoid races with raid1_end_read_request 1730 * which expects 'In_sync' flags and ->degraded to be consistent. 1731 */ 1732 spin_lock_irqsave(&conf->device_lock, flags); 1733 for (i = 0; i < conf->raid_disks; i++) { 1734 struct md_rdev *rdev = conf->mirrors[i].rdev; 1735 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1736 if (repl 1737 && !test_bit(Candidate, &repl->flags) 1738 && repl->recovery_offset == MaxSector 1739 && !test_bit(Faulty, &repl->flags) 1740 && !test_and_set_bit(In_sync, &repl->flags)) { 1741 /* replacement has just become active */ 1742 if (!rdev || 1743 !test_and_clear_bit(In_sync, &rdev->flags)) 1744 count++; 1745 if (rdev) { 1746 /* Replaced device not technically 1747 * faulty, but we need to be sure 1748 * it gets removed and never re-added 1749 */ 1750 set_bit(Faulty, &rdev->flags); 1751 sysfs_notify_dirent_safe( 1752 rdev->sysfs_state); 1753 } 1754 } 1755 if (rdev 1756 && rdev->recovery_offset == MaxSector 1757 && !test_bit(Faulty, &rdev->flags) 1758 && !test_and_set_bit(In_sync, &rdev->flags)) { 1759 count++; 1760 sysfs_notify_dirent_safe(rdev->sysfs_state); 1761 } 1762 } 1763 mddev->degraded -= count; 1764 spin_unlock_irqrestore(&conf->device_lock, flags); 1765 1766 print_conf(conf); 1767 return count; 1768 } 1769 1770 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1771 { 1772 struct r1conf *conf = mddev->private; 1773 int err = -EEXIST; 1774 int mirror = 0, repl_slot = -1; 1775 struct raid1_info *p; 1776 int first = 0; 1777 int last = conf->raid_disks - 1; 1778 1779 if (mddev->recovery_disabled == conf->recovery_disabled) 1780 return -EBUSY; 1781 1782 if (md_integrity_add_rdev(rdev, mddev)) 1783 return -ENXIO; 1784 1785 if (rdev->raid_disk >= 0) 1786 first = last = rdev->raid_disk; 1787 1788 /* 1789 * find the disk ... but prefer rdev->saved_raid_disk 1790 * if possible. 1791 */ 1792 if (rdev->saved_raid_disk >= 0 && 1793 rdev->saved_raid_disk >= first && 1794 rdev->saved_raid_disk < conf->raid_disks && 1795 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1796 first = last = rdev->saved_raid_disk; 1797 1798 for (mirror = first; mirror <= last; mirror++) { 1799 p = conf->mirrors + mirror; 1800 if (!p->rdev) { 1801 if (mddev->gendisk) 1802 disk_stack_limits(mddev->gendisk, rdev->bdev, 1803 rdev->data_offset << 9); 1804 1805 p->head_position = 0; 1806 rdev->raid_disk = mirror; 1807 err = 0; 1808 /* As all devices are equivalent, we don't need a full recovery 1809 * if this was recently any drive of the array 1810 */ 1811 if (rdev->saved_raid_disk < 0) 1812 conf->fullsync = 1; 1813 rcu_assign_pointer(p->rdev, rdev); 1814 break; 1815 } 1816 if (test_bit(WantReplacement, &p->rdev->flags) && 1817 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1818 repl_slot = mirror; 1819 } 1820 1821 if (err && repl_slot >= 0) { 1822 /* Add this device as a replacement */ 1823 p = conf->mirrors + repl_slot; 1824 clear_bit(In_sync, &rdev->flags); 1825 set_bit(Replacement, &rdev->flags); 1826 rdev->raid_disk = repl_slot; 1827 err = 0; 1828 conf->fullsync = 1; 1829 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1830 } 1831 1832 print_conf(conf); 1833 return err; 1834 } 1835 1836 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1837 { 1838 struct r1conf *conf = mddev->private; 1839 int err = 0; 1840 int number = rdev->raid_disk; 1841 struct raid1_info *p = conf->mirrors + number; 1842 1843 if (unlikely(number >= conf->raid_disks)) 1844 goto abort; 1845 1846 if (rdev != p->rdev) 1847 p = conf->mirrors + conf->raid_disks + number; 1848 1849 print_conf(conf); 1850 if (rdev == p->rdev) { 1851 if (test_bit(In_sync, &rdev->flags) || 1852 atomic_read(&rdev->nr_pending)) { 1853 err = -EBUSY; 1854 goto abort; 1855 } 1856 /* Only remove non-faulty devices if recovery 1857 * is not possible. 1858 */ 1859 if (!test_bit(Faulty, &rdev->flags) && 1860 mddev->recovery_disabled != conf->recovery_disabled && 1861 mddev->degraded < conf->raid_disks) { 1862 err = -EBUSY; 1863 goto abort; 1864 } 1865 p->rdev = NULL; 1866 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1867 synchronize_rcu(); 1868 if (atomic_read(&rdev->nr_pending)) { 1869 /* lost the race, try later */ 1870 err = -EBUSY; 1871 p->rdev = rdev; 1872 goto abort; 1873 } 1874 } 1875 if (conf->mirrors[conf->raid_disks + number].rdev) { 1876 /* We just removed a device that is being replaced. 1877 * Move down the replacement. We drain all IO before 1878 * doing this to avoid confusion. 1879 */ 1880 struct md_rdev *repl = 1881 conf->mirrors[conf->raid_disks + number].rdev; 1882 freeze_array(conf, 0); 1883 if (atomic_read(&repl->nr_pending)) { 1884 /* It means that some queued IO of retry_list 1885 * hold repl. Thus, we cannot set replacement 1886 * as NULL, avoiding rdev NULL pointer 1887 * dereference in sync_request_write and 1888 * handle_write_finished. 1889 */ 1890 err = -EBUSY; 1891 unfreeze_array(conf); 1892 goto abort; 1893 } 1894 clear_bit(Replacement, &repl->flags); 1895 p->rdev = repl; 1896 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1897 unfreeze_array(conf); 1898 } 1899 1900 clear_bit(WantReplacement, &rdev->flags); 1901 err = md_integrity_register(mddev); 1902 } 1903 abort: 1904 1905 print_conf(conf); 1906 return err; 1907 } 1908 1909 static void end_sync_read(struct bio *bio) 1910 { 1911 struct r1bio *r1_bio = get_resync_r1bio(bio); 1912 1913 update_head_pos(r1_bio->read_disk, r1_bio); 1914 1915 /* 1916 * we have read a block, now it needs to be re-written, 1917 * or re-read if the read failed. 1918 * We don't do much here, just schedule handling by raid1d 1919 */ 1920 if (!bio->bi_status) 1921 set_bit(R1BIO_Uptodate, &r1_bio->state); 1922 1923 if (atomic_dec_and_test(&r1_bio->remaining)) 1924 reschedule_retry(r1_bio); 1925 } 1926 1927 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1928 { 1929 sector_t sync_blocks = 0; 1930 sector_t s = r1_bio->sector; 1931 long sectors_to_go = r1_bio->sectors; 1932 1933 /* make sure these bits don't get cleared. */ 1934 do { 1935 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1936 s += sync_blocks; 1937 sectors_to_go -= sync_blocks; 1938 } while (sectors_to_go > 0); 1939 } 1940 1941 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1942 { 1943 if (atomic_dec_and_test(&r1_bio->remaining)) { 1944 struct mddev *mddev = r1_bio->mddev; 1945 int s = r1_bio->sectors; 1946 1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1948 test_bit(R1BIO_WriteError, &r1_bio->state)) 1949 reschedule_retry(r1_bio); 1950 else { 1951 put_buf(r1_bio); 1952 md_done_sync(mddev, s, uptodate); 1953 } 1954 } 1955 } 1956 1957 static void end_sync_write(struct bio *bio) 1958 { 1959 int uptodate = !bio->bi_status; 1960 struct r1bio *r1_bio = get_resync_r1bio(bio); 1961 struct mddev *mddev = r1_bio->mddev; 1962 struct r1conf *conf = mddev->private; 1963 sector_t first_bad; 1964 int bad_sectors; 1965 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1966 1967 if (!uptodate) { 1968 abort_sync_write(mddev, r1_bio); 1969 set_bit(WriteErrorSeen, &rdev->flags); 1970 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1971 set_bit(MD_RECOVERY_NEEDED, & 1972 mddev->recovery); 1973 set_bit(R1BIO_WriteError, &r1_bio->state); 1974 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1975 &first_bad, &bad_sectors) && 1976 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1977 r1_bio->sector, 1978 r1_bio->sectors, 1979 &first_bad, &bad_sectors) 1980 ) 1981 set_bit(R1BIO_MadeGood, &r1_bio->state); 1982 1983 put_sync_write_buf(r1_bio, uptodate); 1984 } 1985 1986 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1987 int sectors, struct page *page, int rw) 1988 { 1989 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1990 /* success */ 1991 return 1; 1992 if (rw == WRITE) { 1993 set_bit(WriteErrorSeen, &rdev->flags); 1994 if (!test_and_set_bit(WantReplacement, 1995 &rdev->flags)) 1996 set_bit(MD_RECOVERY_NEEDED, & 1997 rdev->mddev->recovery); 1998 } 1999 /* need to record an error - either for the block or the device */ 2000 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2001 md_error(rdev->mddev, rdev); 2002 return 0; 2003 } 2004 2005 static int fix_sync_read_error(struct r1bio *r1_bio) 2006 { 2007 /* Try some synchronous reads of other devices to get 2008 * good data, much like with normal read errors. Only 2009 * read into the pages we already have so we don't 2010 * need to re-issue the read request. 2011 * We don't need to freeze the array, because being in an 2012 * active sync request, there is no normal IO, and 2013 * no overlapping syncs. 2014 * We don't need to check is_badblock() again as we 2015 * made sure that anything with a bad block in range 2016 * will have bi_end_io clear. 2017 */ 2018 struct mddev *mddev = r1_bio->mddev; 2019 struct r1conf *conf = mddev->private; 2020 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2021 struct page **pages = get_resync_pages(bio)->pages; 2022 sector_t sect = r1_bio->sector; 2023 int sectors = r1_bio->sectors; 2024 int idx = 0; 2025 struct md_rdev *rdev; 2026 2027 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2028 if (test_bit(FailFast, &rdev->flags)) { 2029 /* Don't try recovering from here - just fail it 2030 * ... unless it is the last working device of course */ 2031 md_error(mddev, rdev); 2032 if (test_bit(Faulty, &rdev->flags)) 2033 /* Don't try to read from here, but make sure 2034 * put_buf does it's thing 2035 */ 2036 bio->bi_end_io = end_sync_write; 2037 } 2038 2039 while(sectors) { 2040 int s = sectors; 2041 int d = r1_bio->read_disk; 2042 int success = 0; 2043 int start; 2044 2045 if (s > (PAGE_SIZE>>9)) 2046 s = PAGE_SIZE >> 9; 2047 do { 2048 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2049 /* No rcu protection needed here devices 2050 * can only be removed when no resync is 2051 * active, and resync is currently active 2052 */ 2053 rdev = conf->mirrors[d].rdev; 2054 if (sync_page_io(rdev, sect, s<<9, 2055 pages[idx], 2056 REQ_OP_READ, false)) { 2057 success = 1; 2058 break; 2059 } 2060 } 2061 d++; 2062 if (d == conf->raid_disks * 2) 2063 d = 0; 2064 } while (!success && d != r1_bio->read_disk); 2065 2066 if (!success) { 2067 int abort = 0; 2068 /* Cannot read from anywhere, this block is lost. 2069 * Record a bad block on each device. If that doesn't 2070 * work just disable and interrupt the recovery. 2071 * Don't fail devices as that won't really help. 2072 */ 2073 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2074 mdname(mddev), bio->bi_bdev, 2075 (unsigned long long)r1_bio->sector); 2076 for (d = 0; d < conf->raid_disks * 2; d++) { 2077 rdev = conf->mirrors[d].rdev; 2078 if (!rdev || test_bit(Faulty, &rdev->flags)) 2079 continue; 2080 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2081 abort = 1; 2082 } 2083 if (abort) { 2084 conf->recovery_disabled = 2085 mddev->recovery_disabled; 2086 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2087 md_done_sync(mddev, r1_bio->sectors, 0); 2088 put_buf(r1_bio); 2089 return 0; 2090 } 2091 /* Try next page */ 2092 sectors -= s; 2093 sect += s; 2094 idx++; 2095 continue; 2096 } 2097 2098 start = d; 2099 /* write it back and re-read */ 2100 while (d != r1_bio->read_disk) { 2101 if (d == 0) 2102 d = conf->raid_disks * 2; 2103 d--; 2104 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2105 continue; 2106 rdev = conf->mirrors[d].rdev; 2107 if (r1_sync_page_io(rdev, sect, s, 2108 pages[idx], 2109 WRITE) == 0) { 2110 r1_bio->bios[d]->bi_end_io = NULL; 2111 rdev_dec_pending(rdev, mddev); 2112 } 2113 } 2114 d = start; 2115 while (d != r1_bio->read_disk) { 2116 if (d == 0) 2117 d = conf->raid_disks * 2; 2118 d--; 2119 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2120 continue; 2121 rdev = conf->mirrors[d].rdev; 2122 if (r1_sync_page_io(rdev, sect, s, 2123 pages[idx], 2124 READ) != 0) 2125 atomic_add(s, &rdev->corrected_errors); 2126 } 2127 sectors -= s; 2128 sect += s; 2129 idx ++; 2130 } 2131 set_bit(R1BIO_Uptodate, &r1_bio->state); 2132 bio->bi_status = 0; 2133 return 1; 2134 } 2135 2136 static void process_checks(struct r1bio *r1_bio) 2137 { 2138 /* We have read all readable devices. If we haven't 2139 * got the block, then there is no hope left. 2140 * If we have, then we want to do a comparison 2141 * and skip the write if everything is the same. 2142 * If any blocks failed to read, then we need to 2143 * attempt an over-write 2144 */ 2145 struct mddev *mddev = r1_bio->mddev; 2146 struct r1conf *conf = mddev->private; 2147 int primary; 2148 int i; 2149 int vcnt; 2150 2151 /* Fix variable parts of all bios */ 2152 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2153 for (i = 0; i < conf->raid_disks * 2; i++) { 2154 blk_status_t status; 2155 struct bio *b = r1_bio->bios[i]; 2156 struct resync_pages *rp = get_resync_pages(b); 2157 if (b->bi_end_io != end_sync_read) 2158 continue; 2159 /* fixup the bio for reuse, but preserve errno */ 2160 status = b->bi_status; 2161 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2162 b->bi_status = status; 2163 b->bi_iter.bi_sector = r1_bio->sector + 2164 conf->mirrors[i].rdev->data_offset; 2165 b->bi_end_io = end_sync_read; 2166 rp->raid_bio = r1_bio; 2167 b->bi_private = rp; 2168 2169 /* initialize bvec table again */ 2170 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2171 } 2172 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2173 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2174 !r1_bio->bios[primary]->bi_status) { 2175 r1_bio->bios[primary]->bi_end_io = NULL; 2176 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2177 break; 2178 } 2179 r1_bio->read_disk = primary; 2180 for (i = 0; i < conf->raid_disks * 2; i++) { 2181 int j = 0; 2182 struct bio *pbio = r1_bio->bios[primary]; 2183 struct bio *sbio = r1_bio->bios[i]; 2184 blk_status_t status = sbio->bi_status; 2185 struct page **ppages = get_resync_pages(pbio)->pages; 2186 struct page **spages = get_resync_pages(sbio)->pages; 2187 struct bio_vec *bi; 2188 int page_len[RESYNC_PAGES] = { 0 }; 2189 struct bvec_iter_all iter_all; 2190 2191 if (sbio->bi_end_io != end_sync_read) 2192 continue; 2193 /* Now we can 'fixup' the error value */ 2194 sbio->bi_status = 0; 2195 2196 bio_for_each_segment_all(bi, sbio, iter_all) 2197 page_len[j++] = bi->bv_len; 2198 2199 if (!status) { 2200 for (j = vcnt; j-- ; ) { 2201 if (memcmp(page_address(ppages[j]), 2202 page_address(spages[j]), 2203 page_len[j])) 2204 break; 2205 } 2206 } else 2207 j = 0; 2208 if (j >= 0) 2209 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2210 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2211 && !status)) { 2212 /* No need to write to this device. */ 2213 sbio->bi_end_io = NULL; 2214 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2215 continue; 2216 } 2217 2218 bio_copy_data(sbio, pbio); 2219 } 2220 } 2221 2222 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2223 { 2224 struct r1conf *conf = mddev->private; 2225 int i; 2226 int disks = conf->raid_disks * 2; 2227 struct bio *wbio; 2228 2229 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2230 /* ouch - failed to read all of that. */ 2231 if (!fix_sync_read_error(r1_bio)) 2232 return; 2233 2234 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2235 process_checks(r1_bio); 2236 2237 /* 2238 * schedule writes 2239 */ 2240 atomic_set(&r1_bio->remaining, 1); 2241 for (i = 0; i < disks ; i++) { 2242 wbio = r1_bio->bios[i]; 2243 if (wbio->bi_end_io == NULL || 2244 (wbio->bi_end_io == end_sync_read && 2245 (i == r1_bio->read_disk || 2246 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2247 continue; 2248 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2249 abort_sync_write(mddev, r1_bio); 2250 continue; 2251 } 2252 2253 wbio->bi_opf = REQ_OP_WRITE; 2254 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2255 wbio->bi_opf |= MD_FAILFAST; 2256 2257 wbio->bi_end_io = end_sync_write; 2258 atomic_inc(&r1_bio->remaining); 2259 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2260 2261 submit_bio_noacct(wbio); 2262 } 2263 2264 put_sync_write_buf(r1_bio, 1); 2265 } 2266 2267 /* 2268 * This is a kernel thread which: 2269 * 2270 * 1. Retries failed read operations on working mirrors. 2271 * 2. Updates the raid superblock when problems encounter. 2272 * 3. Performs writes following reads for array synchronising. 2273 */ 2274 2275 static void fix_read_error(struct r1conf *conf, int read_disk, 2276 sector_t sect, int sectors) 2277 { 2278 struct mddev *mddev = conf->mddev; 2279 while(sectors) { 2280 int s = sectors; 2281 int d = read_disk; 2282 int success = 0; 2283 int start; 2284 struct md_rdev *rdev; 2285 2286 if (s > (PAGE_SIZE>>9)) 2287 s = PAGE_SIZE >> 9; 2288 2289 do { 2290 sector_t first_bad; 2291 int bad_sectors; 2292 2293 rcu_read_lock(); 2294 rdev = rcu_dereference(conf->mirrors[d].rdev); 2295 if (rdev && 2296 (test_bit(In_sync, &rdev->flags) || 2297 (!test_bit(Faulty, &rdev->flags) && 2298 rdev->recovery_offset >= sect + s)) && 2299 is_badblock(rdev, sect, s, 2300 &first_bad, &bad_sectors) == 0) { 2301 atomic_inc(&rdev->nr_pending); 2302 rcu_read_unlock(); 2303 if (sync_page_io(rdev, sect, s<<9, 2304 conf->tmppage, REQ_OP_READ, false)) 2305 success = 1; 2306 rdev_dec_pending(rdev, mddev); 2307 if (success) 2308 break; 2309 } else 2310 rcu_read_unlock(); 2311 d++; 2312 if (d == conf->raid_disks * 2) 2313 d = 0; 2314 } while (d != read_disk); 2315 2316 if (!success) { 2317 /* Cannot read from anywhere - mark it bad */ 2318 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2319 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2320 md_error(mddev, rdev); 2321 break; 2322 } 2323 /* write it back and re-read */ 2324 start = d; 2325 while (d != read_disk) { 2326 if (d==0) 2327 d = conf->raid_disks * 2; 2328 d--; 2329 rcu_read_lock(); 2330 rdev = rcu_dereference(conf->mirrors[d].rdev); 2331 if (rdev && 2332 !test_bit(Faulty, &rdev->flags)) { 2333 atomic_inc(&rdev->nr_pending); 2334 rcu_read_unlock(); 2335 r1_sync_page_io(rdev, sect, s, 2336 conf->tmppage, WRITE); 2337 rdev_dec_pending(rdev, mddev); 2338 } else 2339 rcu_read_unlock(); 2340 } 2341 d = start; 2342 while (d != read_disk) { 2343 if (d==0) 2344 d = conf->raid_disks * 2; 2345 d--; 2346 rcu_read_lock(); 2347 rdev = rcu_dereference(conf->mirrors[d].rdev); 2348 if (rdev && 2349 !test_bit(Faulty, &rdev->flags)) { 2350 atomic_inc(&rdev->nr_pending); 2351 rcu_read_unlock(); 2352 if (r1_sync_page_io(rdev, sect, s, 2353 conf->tmppage, READ)) { 2354 atomic_add(s, &rdev->corrected_errors); 2355 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2356 mdname(mddev), s, 2357 (unsigned long long)(sect + 2358 rdev->data_offset), 2359 rdev->bdev); 2360 } 2361 rdev_dec_pending(rdev, mddev); 2362 } else 2363 rcu_read_unlock(); 2364 } 2365 sectors -= s; 2366 sect += s; 2367 } 2368 } 2369 2370 static int narrow_write_error(struct r1bio *r1_bio, int i) 2371 { 2372 struct mddev *mddev = r1_bio->mddev; 2373 struct r1conf *conf = mddev->private; 2374 struct md_rdev *rdev = conf->mirrors[i].rdev; 2375 2376 /* bio has the data to be written to device 'i' where 2377 * we just recently had a write error. 2378 * We repeatedly clone the bio and trim down to one block, 2379 * then try the write. Where the write fails we record 2380 * a bad block. 2381 * It is conceivable that the bio doesn't exactly align with 2382 * blocks. We must handle this somehow. 2383 * 2384 * We currently own a reference on the rdev. 2385 */ 2386 2387 int block_sectors; 2388 sector_t sector; 2389 int sectors; 2390 int sect_to_write = r1_bio->sectors; 2391 int ok = 1; 2392 2393 if (rdev->badblocks.shift < 0) 2394 return 0; 2395 2396 block_sectors = roundup(1 << rdev->badblocks.shift, 2397 bdev_logical_block_size(rdev->bdev) >> 9); 2398 sector = r1_bio->sector; 2399 sectors = ((sector + block_sectors) 2400 & ~(sector_t)(block_sectors - 1)) 2401 - sector; 2402 2403 while (sect_to_write) { 2404 struct bio *wbio; 2405 if (sectors > sect_to_write) 2406 sectors = sect_to_write; 2407 /* Write at 'sector' for 'sectors'*/ 2408 2409 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2410 wbio = bio_alloc_clone(rdev->bdev, 2411 r1_bio->behind_master_bio, 2412 GFP_NOIO, &mddev->bio_set); 2413 } else { 2414 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2415 GFP_NOIO, &mddev->bio_set); 2416 } 2417 2418 wbio->bi_opf = REQ_OP_WRITE; 2419 wbio->bi_iter.bi_sector = r1_bio->sector; 2420 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2421 2422 bio_trim(wbio, sector - r1_bio->sector, sectors); 2423 wbio->bi_iter.bi_sector += rdev->data_offset; 2424 2425 if (submit_bio_wait(wbio) < 0) 2426 /* failure! */ 2427 ok = rdev_set_badblocks(rdev, sector, 2428 sectors, 0) 2429 && ok; 2430 2431 bio_put(wbio); 2432 sect_to_write -= sectors; 2433 sector += sectors; 2434 sectors = block_sectors; 2435 } 2436 return ok; 2437 } 2438 2439 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2440 { 2441 int m; 2442 int s = r1_bio->sectors; 2443 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2444 struct md_rdev *rdev = conf->mirrors[m].rdev; 2445 struct bio *bio = r1_bio->bios[m]; 2446 if (bio->bi_end_io == NULL) 2447 continue; 2448 if (!bio->bi_status && 2449 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2450 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2451 } 2452 if (bio->bi_status && 2453 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2454 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2455 md_error(conf->mddev, rdev); 2456 } 2457 } 2458 put_buf(r1_bio); 2459 md_done_sync(conf->mddev, s, 1); 2460 } 2461 2462 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2463 { 2464 int m, idx; 2465 bool fail = false; 2466 2467 for (m = 0; m < conf->raid_disks * 2 ; m++) 2468 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2469 struct md_rdev *rdev = conf->mirrors[m].rdev; 2470 rdev_clear_badblocks(rdev, 2471 r1_bio->sector, 2472 r1_bio->sectors, 0); 2473 rdev_dec_pending(rdev, conf->mddev); 2474 } else if (r1_bio->bios[m] != NULL) { 2475 /* This drive got a write error. We need to 2476 * narrow down and record precise write 2477 * errors. 2478 */ 2479 fail = true; 2480 if (!narrow_write_error(r1_bio, m)) { 2481 md_error(conf->mddev, 2482 conf->mirrors[m].rdev); 2483 /* an I/O failed, we can't clear the bitmap */ 2484 set_bit(R1BIO_Degraded, &r1_bio->state); 2485 } 2486 rdev_dec_pending(conf->mirrors[m].rdev, 2487 conf->mddev); 2488 } 2489 if (fail) { 2490 spin_lock_irq(&conf->device_lock); 2491 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2492 idx = sector_to_idx(r1_bio->sector); 2493 atomic_inc(&conf->nr_queued[idx]); 2494 spin_unlock_irq(&conf->device_lock); 2495 /* 2496 * In case freeze_array() is waiting for condition 2497 * get_unqueued_pending() == extra to be true. 2498 */ 2499 wake_up(&conf->wait_barrier); 2500 md_wakeup_thread(conf->mddev->thread); 2501 } else { 2502 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2503 close_write(r1_bio); 2504 raid_end_bio_io(r1_bio); 2505 } 2506 } 2507 2508 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2509 { 2510 struct mddev *mddev = conf->mddev; 2511 struct bio *bio; 2512 struct md_rdev *rdev; 2513 sector_t sector; 2514 2515 clear_bit(R1BIO_ReadError, &r1_bio->state); 2516 /* we got a read error. Maybe the drive is bad. Maybe just 2517 * the block and we can fix it. 2518 * We freeze all other IO, and try reading the block from 2519 * other devices. When we find one, we re-write 2520 * and check it that fixes the read error. 2521 * This is all done synchronously while the array is 2522 * frozen 2523 */ 2524 2525 bio = r1_bio->bios[r1_bio->read_disk]; 2526 bio_put(bio); 2527 r1_bio->bios[r1_bio->read_disk] = NULL; 2528 2529 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2530 if (mddev->ro == 0 2531 && !test_bit(FailFast, &rdev->flags)) { 2532 freeze_array(conf, 1); 2533 fix_read_error(conf, r1_bio->read_disk, 2534 r1_bio->sector, r1_bio->sectors); 2535 unfreeze_array(conf); 2536 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2537 md_error(mddev, rdev); 2538 } else { 2539 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2540 } 2541 2542 rdev_dec_pending(rdev, conf->mddev); 2543 sector = r1_bio->sector; 2544 bio = r1_bio->master_bio; 2545 2546 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2547 r1_bio->state = 0; 2548 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2549 allow_barrier(conf, sector); 2550 } 2551 2552 static void raid1d(struct md_thread *thread) 2553 { 2554 struct mddev *mddev = thread->mddev; 2555 struct r1bio *r1_bio; 2556 unsigned long flags; 2557 struct r1conf *conf = mddev->private; 2558 struct list_head *head = &conf->retry_list; 2559 struct blk_plug plug; 2560 int idx; 2561 2562 md_check_recovery(mddev); 2563 2564 if (!list_empty_careful(&conf->bio_end_io_list) && 2565 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2566 LIST_HEAD(tmp); 2567 spin_lock_irqsave(&conf->device_lock, flags); 2568 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2569 list_splice_init(&conf->bio_end_io_list, &tmp); 2570 spin_unlock_irqrestore(&conf->device_lock, flags); 2571 while (!list_empty(&tmp)) { 2572 r1_bio = list_first_entry(&tmp, struct r1bio, 2573 retry_list); 2574 list_del(&r1_bio->retry_list); 2575 idx = sector_to_idx(r1_bio->sector); 2576 atomic_dec(&conf->nr_queued[idx]); 2577 if (mddev->degraded) 2578 set_bit(R1BIO_Degraded, &r1_bio->state); 2579 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2580 close_write(r1_bio); 2581 raid_end_bio_io(r1_bio); 2582 } 2583 } 2584 2585 blk_start_plug(&plug); 2586 for (;;) { 2587 2588 flush_pending_writes(conf); 2589 2590 spin_lock_irqsave(&conf->device_lock, flags); 2591 if (list_empty(head)) { 2592 spin_unlock_irqrestore(&conf->device_lock, flags); 2593 break; 2594 } 2595 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2596 list_del(head->prev); 2597 idx = sector_to_idx(r1_bio->sector); 2598 atomic_dec(&conf->nr_queued[idx]); 2599 spin_unlock_irqrestore(&conf->device_lock, flags); 2600 2601 mddev = r1_bio->mddev; 2602 conf = mddev->private; 2603 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2604 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2605 test_bit(R1BIO_WriteError, &r1_bio->state)) 2606 handle_sync_write_finished(conf, r1_bio); 2607 else 2608 sync_request_write(mddev, r1_bio); 2609 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2610 test_bit(R1BIO_WriteError, &r1_bio->state)) 2611 handle_write_finished(conf, r1_bio); 2612 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2613 handle_read_error(conf, r1_bio); 2614 else 2615 WARN_ON_ONCE(1); 2616 2617 cond_resched(); 2618 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2619 md_check_recovery(mddev); 2620 } 2621 blk_finish_plug(&plug); 2622 } 2623 2624 static int init_resync(struct r1conf *conf) 2625 { 2626 int buffs; 2627 2628 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2629 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2630 2631 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2632 r1buf_pool_free, conf->poolinfo); 2633 } 2634 2635 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2636 { 2637 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2638 struct resync_pages *rps; 2639 struct bio *bio; 2640 int i; 2641 2642 for (i = conf->poolinfo->raid_disks; i--; ) { 2643 bio = r1bio->bios[i]; 2644 rps = bio->bi_private; 2645 bio_reset(bio, NULL, 0); 2646 bio->bi_private = rps; 2647 } 2648 r1bio->master_bio = NULL; 2649 return r1bio; 2650 } 2651 2652 /* 2653 * perform a "sync" on one "block" 2654 * 2655 * We need to make sure that no normal I/O request - particularly write 2656 * requests - conflict with active sync requests. 2657 * 2658 * This is achieved by tracking pending requests and a 'barrier' concept 2659 * that can be installed to exclude normal IO requests. 2660 */ 2661 2662 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2663 int *skipped) 2664 { 2665 struct r1conf *conf = mddev->private; 2666 struct r1bio *r1_bio; 2667 struct bio *bio; 2668 sector_t max_sector, nr_sectors; 2669 int disk = -1; 2670 int i; 2671 int wonly = -1; 2672 int write_targets = 0, read_targets = 0; 2673 sector_t sync_blocks; 2674 int still_degraded = 0; 2675 int good_sectors = RESYNC_SECTORS; 2676 int min_bad = 0; /* number of sectors that are bad in all devices */ 2677 int idx = sector_to_idx(sector_nr); 2678 int page_idx = 0; 2679 2680 if (!mempool_initialized(&conf->r1buf_pool)) 2681 if (init_resync(conf)) 2682 return 0; 2683 2684 max_sector = mddev->dev_sectors; 2685 if (sector_nr >= max_sector) { 2686 /* If we aborted, we need to abort the 2687 * sync on the 'current' bitmap chunk (there will 2688 * only be one in raid1 resync. 2689 * We can find the current addess in mddev->curr_resync 2690 */ 2691 if (mddev->curr_resync < max_sector) /* aborted */ 2692 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2693 &sync_blocks, 1); 2694 else /* completed sync */ 2695 conf->fullsync = 0; 2696 2697 md_bitmap_close_sync(mddev->bitmap); 2698 close_sync(conf); 2699 2700 if (mddev_is_clustered(mddev)) { 2701 conf->cluster_sync_low = 0; 2702 conf->cluster_sync_high = 0; 2703 } 2704 return 0; 2705 } 2706 2707 if (mddev->bitmap == NULL && 2708 mddev->recovery_cp == MaxSector && 2709 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2710 conf->fullsync == 0) { 2711 *skipped = 1; 2712 return max_sector - sector_nr; 2713 } 2714 /* before building a request, check if we can skip these blocks.. 2715 * This call the bitmap_start_sync doesn't actually record anything 2716 */ 2717 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2718 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2719 /* We can skip this block, and probably several more */ 2720 *skipped = 1; 2721 return sync_blocks; 2722 } 2723 2724 /* 2725 * If there is non-resync activity waiting for a turn, then let it 2726 * though before starting on this new sync request. 2727 */ 2728 if (atomic_read(&conf->nr_waiting[idx])) 2729 schedule_timeout_uninterruptible(1); 2730 2731 /* we are incrementing sector_nr below. To be safe, we check against 2732 * sector_nr + two times RESYNC_SECTORS 2733 */ 2734 2735 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2736 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2737 2738 2739 if (raise_barrier(conf, sector_nr)) 2740 return 0; 2741 2742 r1_bio = raid1_alloc_init_r1buf(conf); 2743 2744 rcu_read_lock(); 2745 /* 2746 * If we get a correctably read error during resync or recovery, 2747 * we might want to read from a different device. So we 2748 * flag all drives that could conceivably be read from for READ, 2749 * and any others (which will be non-In_sync devices) for WRITE. 2750 * If a read fails, we try reading from something else for which READ 2751 * is OK. 2752 */ 2753 2754 r1_bio->mddev = mddev; 2755 r1_bio->sector = sector_nr; 2756 r1_bio->state = 0; 2757 set_bit(R1BIO_IsSync, &r1_bio->state); 2758 /* make sure good_sectors won't go across barrier unit boundary */ 2759 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2760 2761 for (i = 0; i < conf->raid_disks * 2; i++) { 2762 struct md_rdev *rdev; 2763 bio = r1_bio->bios[i]; 2764 2765 rdev = rcu_dereference(conf->mirrors[i].rdev); 2766 if (rdev == NULL || 2767 test_bit(Faulty, &rdev->flags)) { 2768 if (i < conf->raid_disks) 2769 still_degraded = 1; 2770 } else if (!test_bit(In_sync, &rdev->flags)) { 2771 bio->bi_opf = REQ_OP_WRITE; 2772 bio->bi_end_io = end_sync_write; 2773 write_targets ++; 2774 } else { 2775 /* may need to read from here */ 2776 sector_t first_bad = MaxSector; 2777 int bad_sectors; 2778 2779 if (is_badblock(rdev, sector_nr, good_sectors, 2780 &first_bad, &bad_sectors)) { 2781 if (first_bad > sector_nr) 2782 good_sectors = first_bad - sector_nr; 2783 else { 2784 bad_sectors -= (sector_nr - first_bad); 2785 if (min_bad == 0 || 2786 min_bad > bad_sectors) 2787 min_bad = bad_sectors; 2788 } 2789 } 2790 if (sector_nr < first_bad) { 2791 if (test_bit(WriteMostly, &rdev->flags)) { 2792 if (wonly < 0) 2793 wonly = i; 2794 } else { 2795 if (disk < 0) 2796 disk = i; 2797 } 2798 bio->bi_opf = REQ_OP_READ; 2799 bio->bi_end_io = end_sync_read; 2800 read_targets++; 2801 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2802 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2803 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2804 /* 2805 * The device is suitable for reading (InSync), 2806 * but has bad block(s) here. Let's try to correct them, 2807 * if we are doing resync or repair. Otherwise, leave 2808 * this device alone for this sync request. 2809 */ 2810 bio->bi_opf = REQ_OP_WRITE; 2811 bio->bi_end_io = end_sync_write; 2812 write_targets++; 2813 } 2814 } 2815 if (rdev && bio->bi_end_io) { 2816 atomic_inc(&rdev->nr_pending); 2817 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2818 bio_set_dev(bio, rdev->bdev); 2819 if (test_bit(FailFast, &rdev->flags)) 2820 bio->bi_opf |= MD_FAILFAST; 2821 } 2822 } 2823 rcu_read_unlock(); 2824 if (disk < 0) 2825 disk = wonly; 2826 r1_bio->read_disk = disk; 2827 2828 if (read_targets == 0 && min_bad > 0) { 2829 /* These sectors are bad on all InSync devices, so we 2830 * need to mark them bad on all write targets 2831 */ 2832 int ok = 1; 2833 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2834 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2835 struct md_rdev *rdev = conf->mirrors[i].rdev; 2836 ok = rdev_set_badblocks(rdev, sector_nr, 2837 min_bad, 0 2838 ) && ok; 2839 } 2840 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2841 *skipped = 1; 2842 put_buf(r1_bio); 2843 2844 if (!ok) { 2845 /* Cannot record the badblocks, so need to 2846 * abort the resync. 2847 * If there are multiple read targets, could just 2848 * fail the really bad ones ??? 2849 */ 2850 conf->recovery_disabled = mddev->recovery_disabled; 2851 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2852 return 0; 2853 } else 2854 return min_bad; 2855 2856 } 2857 if (min_bad > 0 && min_bad < good_sectors) { 2858 /* only resync enough to reach the next bad->good 2859 * transition */ 2860 good_sectors = min_bad; 2861 } 2862 2863 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2864 /* extra read targets are also write targets */ 2865 write_targets += read_targets-1; 2866 2867 if (write_targets == 0 || read_targets == 0) { 2868 /* There is nowhere to write, so all non-sync 2869 * drives must be failed - so we are finished 2870 */ 2871 sector_t rv; 2872 if (min_bad > 0) 2873 max_sector = sector_nr + min_bad; 2874 rv = max_sector - sector_nr; 2875 *skipped = 1; 2876 put_buf(r1_bio); 2877 return rv; 2878 } 2879 2880 if (max_sector > mddev->resync_max) 2881 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2882 if (max_sector > sector_nr + good_sectors) 2883 max_sector = sector_nr + good_sectors; 2884 nr_sectors = 0; 2885 sync_blocks = 0; 2886 do { 2887 struct page *page; 2888 int len = PAGE_SIZE; 2889 if (sector_nr + (len>>9) > max_sector) 2890 len = (max_sector - sector_nr) << 9; 2891 if (len == 0) 2892 break; 2893 if (sync_blocks == 0) { 2894 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2895 &sync_blocks, still_degraded) && 2896 !conf->fullsync && 2897 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2898 break; 2899 if ((len >> 9) > sync_blocks) 2900 len = sync_blocks<<9; 2901 } 2902 2903 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2904 struct resync_pages *rp; 2905 2906 bio = r1_bio->bios[i]; 2907 rp = get_resync_pages(bio); 2908 if (bio->bi_end_io) { 2909 page = resync_fetch_page(rp, page_idx); 2910 2911 /* 2912 * won't fail because the vec table is big 2913 * enough to hold all these pages 2914 */ 2915 __bio_add_page(bio, page, len, 0); 2916 } 2917 } 2918 nr_sectors += len>>9; 2919 sector_nr += len>>9; 2920 sync_blocks -= (len>>9); 2921 } while (++page_idx < RESYNC_PAGES); 2922 2923 r1_bio->sectors = nr_sectors; 2924 2925 if (mddev_is_clustered(mddev) && 2926 conf->cluster_sync_high < sector_nr + nr_sectors) { 2927 conf->cluster_sync_low = mddev->curr_resync_completed; 2928 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2929 /* Send resync message */ 2930 md_cluster_ops->resync_info_update(mddev, 2931 conf->cluster_sync_low, 2932 conf->cluster_sync_high); 2933 } 2934 2935 /* For a user-requested sync, we read all readable devices and do a 2936 * compare 2937 */ 2938 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2939 atomic_set(&r1_bio->remaining, read_targets); 2940 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2941 bio = r1_bio->bios[i]; 2942 if (bio->bi_end_io == end_sync_read) { 2943 read_targets--; 2944 md_sync_acct_bio(bio, nr_sectors); 2945 if (read_targets == 1) 2946 bio->bi_opf &= ~MD_FAILFAST; 2947 submit_bio_noacct(bio); 2948 } 2949 } 2950 } else { 2951 atomic_set(&r1_bio->remaining, 1); 2952 bio = r1_bio->bios[r1_bio->read_disk]; 2953 md_sync_acct_bio(bio, nr_sectors); 2954 if (read_targets == 1) 2955 bio->bi_opf &= ~MD_FAILFAST; 2956 submit_bio_noacct(bio); 2957 } 2958 return nr_sectors; 2959 } 2960 2961 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2962 { 2963 if (sectors) 2964 return sectors; 2965 2966 return mddev->dev_sectors; 2967 } 2968 2969 static struct r1conf *setup_conf(struct mddev *mddev) 2970 { 2971 struct r1conf *conf; 2972 int i; 2973 struct raid1_info *disk; 2974 struct md_rdev *rdev; 2975 int err = -ENOMEM; 2976 2977 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2978 if (!conf) 2979 goto abort; 2980 2981 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2982 sizeof(atomic_t), GFP_KERNEL); 2983 if (!conf->nr_pending) 2984 goto abort; 2985 2986 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2987 sizeof(atomic_t), GFP_KERNEL); 2988 if (!conf->nr_waiting) 2989 goto abort; 2990 2991 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2992 sizeof(atomic_t), GFP_KERNEL); 2993 if (!conf->nr_queued) 2994 goto abort; 2995 2996 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2997 sizeof(atomic_t), GFP_KERNEL); 2998 if (!conf->barrier) 2999 goto abort; 3000 3001 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3002 mddev->raid_disks, 2), 3003 GFP_KERNEL); 3004 if (!conf->mirrors) 3005 goto abort; 3006 3007 conf->tmppage = alloc_page(GFP_KERNEL); 3008 if (!conf->tmppage) 3009 goto abort; 3010 3011 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3012 if (!conf->poolinfo) 3013 goto abort; 3014 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3015 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3016 rbio_pool_free, conf->poolinfo); 3017 if (err) 3018 goto abort; 3019 3020 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3021 if (err) 3022 goto abort; 3023 3024 conf->poolinfo->mddev = mddev; 3025 3026 err = -EINVAL; 3027 spin_lock_init(&conf->device_lock); 3028 rdev_for_each(rdev, mddev) { 3029 int disk_idx = rdev->raid_disk; 3030 if (disk_idx >= mddev->raid_disks 3031 || disk_idx < 0) 3032 continue; 3033 if (test_bit(Replacement, &rdev->flags)) 3034 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3035 else 3036 disk = conf->mirrors + disk_idx; 3037 3038 if (disk->rdev) 3039 goto abort; 3040 disk->rdev = rdev; 3041 disk->head_position = 0; 3042 disk->seq_start = MaxSector; 3043 } 3044 conf->raid_disks = mddev->raid_disks; 3045 conf->mddev = mddev; 3046 INIT_LIST_HEAD(&conf->retry_list); 3047 INIT_LIST_HEAD(&conf->bio_end_io_list); 3048 3049 spin_lock_init(&conf->resync_lock); 3050 init_waitqueue_head(&conf->wait_barrier); 3051 3052 bio_list_init(&conf->pending_bio_list); 3053 conf->recovery_disabled = mddev->recovery_disabled - 1; 3054 3055 err = -EIO; 3056 for (i = 0; i < conf->raid_disks * 2; i++) { 3057 3058 disk = conf->mirrors + i; 3059 3060 if (i < conf->raid_disks && 3061 disk[conf->raid_disks].rdev) { 3062 /* This slot has a replacement. */ 3063 if (!disk->rdev) { 3064 /* No original, just make the replacement 3065 * a recovering spare 3066 */ 3067 disk->rdev = 3068 disk[conf->raid_disks].rdev; 3069 disk[conf->raid_disks].rdev = NULL; 3070 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3071 /* Original is not in_sync - bad */ 3072 goto abort; 3073 } 3074 3075 if (!disk->rdev || 3076 !test_bit(In_sync, &disk->rdev->flags)) { 3077 disk->head_position = 0; 3078 if (disk->rdev && 3079 (disk->rdev->saved_raid_disk < 0)) 3080 conf->fullsync = 1; 3081 } 3082 } 3083 3084 err = -ENOMEM; 3085 rcu_assign_pointer(conf->thread, 3086 md_register_thread(raid1d, mddev, "raid1")); 3087 if (!conf->thread) 3088 goto abort; 3089 3090 return conf; 3091 3092 abort: 3093 if (conf) { 3094 mempool_exit(&conf->r1bio_pool); 3095 kfree(conf->mirrors); 3096 safe_put_page(conf->tmppage); 3097 kfree(conf->poolinfo); 3098 kfree(conf->nr_pending); 3099 kfree(conf->nr_waiting); 3100 kfree(conf->nr_queued); 3101 kfree(conf->barrier); 3102 bioset_exit(&conf->bio_split); 3103 kfree(conf); 3104 } 3105 return ERR_PTR(err); 3106 } 3107 3108 static void raid1_free(struct mddev *mddev, void *priv); 3109 static int raid1_run(struct mddev *mddev) 3110 { 3111 struct r1conf *conf; 3112 int i; 3113 struct md_rdev *rdev; 3114 int ret; 3115 3116 if (mddev->level != 1) { 3117 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3118 mdname(mddev), mddev->level); 3119 return -EIO; 3120 } 3121 if (mddev->reshape_position != MaxSector) { 3122 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3123 mdname(mddev)); 3124 return -EIO; 3125 } 3126 3127 /* 3128 * copy the already verified devices into our private RAID1 3129 * bookkeeping area. [whatever we allocate in run(), 3130 * should be freed in raid1_free()] 3131 */ 3132 if (mddev->private == NULL) 3133 conf = setup_conf(mddev); 3134 else 3135 conf = mddev->private; 3136 3137 if (IS_ERR(conf)) 3138 return PTR_ERR(conf); 3139 3140 if (mddev->queue) 3141 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3142 3143 rdev_for_each(rdev, mddev) { 3144 if (!mddev->gendisk) 3145 continue; 3146 disk_stack_limits(mddev->gendisk, rdev->bdev, 3147 rdev->data_offset << 9); 3148 } 3149 3150 mddev->degraded = 0; 3151 for (i = 0; i < conf->raid_disks; i++) 3152 if (conf->mirrors[i].rdev == NULL || 3153 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3154 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3155 mddev->degraded++; 3156 /* 3157 * RAID1 needs at least one disk in active 3158 */ 3159 if (conf->raid_disks - mddev->degraded < 1) { 3160 md_unregister_thread(mddev, &conf->thread); 3161 ret = -EINVAL; 3162 goto abort; 3163 } 3164 3165 if (conf->raid_disks - mddev->degraded == 1) 3166 mddev->recovery_cp = MaxSector; 3167 3168 if (mddev->recovery_cp != MaxSector) 3169 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3170 mdname(mddev)); 3171 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3172 mdname(mddev), mddev->raid_disks - mddev->degraded, 3173 mddev->raid_disks); 3174 3175 /* 3176 * Ok, everything is just fine now 3177 */ 3178 rcu_assign_pointer(mddev->thread, conf->thread); 3179 rcu_assign_pointer(conf->thread, NULL); 3180 mddev->private = conf; 3181 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3182 3183 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3184 3185 ret = md_integrity_register(mddev); 3186 if (ret) { 3187 md_unregister_thread(mddev, &mddev->thread); 3188 goto abort; 3189 } 3190 return 0; 3191 3192 abort: 3193 raid1_free(mddev, conf); 3194 return ret; 3195 } 3196 3197 static void raid1_free(struct mddev *mddev, void *priv) 3198 { 3199 struct r1conf *conf = priv; 3200 3201 mempool_exit(&conf->r1bio_pool); 3202 kfree(conf->mirrors); 3203 safe_put_page(conf->tmppage); 3204 kfree(conf->poolinfo); 3205 kfree(conf->nr_pending); 3206 kfree(conf->nr_waiting); 3207 kfree(conf->nr_queued); 3208 kfree(conf->barrier); 3209 bioset_exit(&conf->bio_split); 3210 kfree(conf); 3211 } 3212 3213 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3214 { 3215 /* no resync is happening, and there is enough space 3216 * on all devices, so we can resize. 3217 * We need to make sure resync covers any new space. 3218 * If the array is shrinking we should possibly wait until 3219 * any io in the removed space completes, but it hardly seems 3220 * worth it. 3221 */ 3222 sector_t newsize = raid1_size(mddev, sectors, 0); 3223 if (mddev->external_size && 3224 mddev->array_sectors > newsize) 3225 return -EINVAL; 3226 if (mddev->bitmap) { 3227 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3228 if (ret) 3229 return ret; 3230 } 3231 md_set_array_sectors(mddev, newsize); 3232 if (sectors > mddev->dev_sectors && 3233 mddev->recovery_cp > mddev->dev_sectors) { 3234 mddev->recovery_cp = mddev->dev_sectors; 3235 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3236 } 3237 mddev->dev_sectors = sectors; 3238 mddev->resync_max_sectors = sectors; 3239 return 0; 3240 } 3241 3242 static int raid1_reshape(struct mddev *mddev) 3243 { 3244 /* We need to: 3245 * 1/ resize the r1bio_pool 3246 * 2/ resize conf->mirrors 3247 * 3248 * We allocate a new r1bio_pool if we can. 3249 * Then raise a device barrier and wait until all IO stops. 3250 * Then resize conf->mirrors and swap in the new r1bio pool. 3251 * 3252 * At the same time, we "pack" the devices so that all the missing 3253 * devices have the higher raid_disk numbers. 3254 */ 3255 mempool_t newpool, oldpool; 3256 struct pool_info *newpoolinfo; 3257 struct raid1_info *newmirrors; 3258 struct r1conf *conf = mddev->private; 3259 int cnt, raid_disks; 3260 unsigned long flags; 3261 int d, d2; 3262 int ret; 3263 3264 memset(&newpool, 0, sizeof(newpool)); 3265 memset(&oldpool, 0, sizeof(oldpool)); 3266 3267 /* Cannot change chunk_size, layout, or level */ 3268 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3269 mddev->layout != mddev->new_layout || 3270 mddev->level != mddev->new_level) { 3271 mddev->new_chunk_sectors = mddev->chunk_sectors; 3272 mddev->new_layout = mddev->layout; 3273 mddev->new_level = mddev->level; 3274 return -EINVAL; 3275 } 3276 3277 if (!mddev_is_clustered(mddev)) 3278 md_allow_write(mddev); 3279 3280 raid_disks = mddev->raid_disks + mddev->delta_disks; 3281 3282 if (raid_disks < conf->raid_disks) { 3283 cnt=0; 3284 for (d= 0; d < conf->raid_disks; d++) 3285 if (conf->mirrors[d].rdev) 3286 cnt++; 3287 if (cnt > raid_disks) 3288 return -EBUSY; 3289 } 3290 3291 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3292 if (!newpoolinfo) 3293 return -ENOMEM; 3294 newpoolinfo->mddev = mddev; 3295 newpoolinfo->raid_disks = raid_disks * 2; 3296 3297 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3298 rbio_pool_free, newpoolinfo); 3299 if (ret) { 3300 kfree(newpoolinfo); 3301 return ret; 3302 } 3303 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3304 raid_disks, 2), 3305 GFP_KERNEL); 3306 if (!newmirrors) { 3307 kfree(newpoolinfo); 3308 mempool_exit(&newpool); 3309 return -ENOMEM; 3310 } 3311 3312 freeze_array(conf, 0); 3313 3314 /* ok, everything is stopped */ 3315 oldpool = conf->r1bio_pool; 3316 conf->r1bio_pool = newpool; 3317 3318 for (d = d2 = 0; d < conf->raid_disks; d++) { 3319 struct md_rdev *rdev = conf->mirrors[d].rdev; 3320 if (rdev && rdev->raid_disk != d2) { 3321 sysfs_unlink_rdev(mddev, rdev); 3322 rdev->raid_disk = d2; 3323 sysfs_unlink_rdev(mddev, rdev); 3324 if (sysfs_link_rdev(mddev, rdev)) 3325 pr_warn("md/raid1:%s: cannot register rd%d\n", 3326 mdname(mddev), rdev->raid_disk); 3327 } 3328 if (rdev) 3329 newmirrors[d2++].rdev = rdev; 3330 } 3331 kfree(conf->mirrors); 3332 conf->mirrors = newmirrors; 3333 kfree(conf->poolinfo); 3334 conf->poolinfo = newpoolinfo; 3335 3336 spin_lock_irqsave(&conf->device_lock, flags); 3337 mddev->degraded += (raid_disks - conf->raid_disks); 3338 spin_unlock_irqrestore(&conf->device_lock, flags); 3339 conf->raid_disks = mddev->raid_disks = raid_disks; 3340 mddev->delta_disks = 0; 3341 3342 unfreeze_array(conf); 3343 3344 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3346 md_wakeup_thread(mddev->thread); 3347 3348 mempool_exit(&oldpool); 3349 return 0; 3350 } 3351 3352 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3353 { 3354 struct r1conf *conf = mddev->private; 3355 3356 if (quiesce) 3357 freeze_array(conf, 0); 3358 else 3359 unfreeze_array(conf); 3360 } 3361 3362 static void *raid1_takeover(struct mddev *mddev) 3363 { 3364 /* raid1 can take over: 3365 * raid5 with 2 devices, any layout or chunk size 3366 */ 3367 if (mddev->level == 5 && mddev->raid_disks == 2) { 3368 struct r1conf *conf; 3369 mddev->new_level = 1; 3370 mddev->new_layout = 0; 3371 mddev->new_chunk_sectors = 0; 3372 conf = setup_conf(mddev); 3373 if (!IS_ERR(conf)) { 3374 /* Array must appear to be quiesced */ 3375 conf->array_frozen = 1; 3376 mddev_clear_unsupported_flags(mddev, 3377 UNSUPPORTED_MDDEV_FLAGS); 3378 } 3379 return conf; 3380 } 3381 return ERR_PTR(-EINVAL); 3382 } 3383 3384 static struct md_personality raid1_personality = 3385 { 3386 .name = "raid1", 3387 .level = 1, 3388 .owner = THIS_MODULE, 3389 .make_request = raid1_make_request, 3390 .run = raid1_run, 3391 .free = raid1_free, 3392 .status = raid1_status, 3393 .error_handler = raid1_error, 3394 .hot_add_disk = raid1_add_disk, 3395 .hot_remove_disk= raid1_remove_disk, 3396 .spare_active = raid1_spare_active, 3397 .sync_request = raid1_sync_request, 3398 .resize = raid1_resize, 3399 .size = raid1_size, 3400 .check_reshape = raid1_reshape, 3401 .quiesce = raid1_quiesce, 3402 .takeover = raid1_takeover, 3403 }; 3404 3405 static int __init raid_init(void) 3406 { 3407 return register_md_personality(&raid1_personality); 3408 } 3409 3410 static void raid_exit(void) 3411 { 3412 unregister_md_personality(&raid1_personality); 3413 } 3414 3415 module_init(raid_init); 3416 module_exit(raid_exit); 3417 MODULE_LICENSE("GPL"); 3418 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3419 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3420 MODULE_ALIAS("md-raid1"); 3421 MODULE_ALIAS("md-level-1"); 3422