xref: /linux/drivers/md/raid1.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 static mdk_personality_t raid1_personality;
51 
52 static void unplug_slaves(mddev_t *mddev);
53 
54 
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
56 {
57 	struct pool_info *pi = data;
58 	r1bio_t *r1_bio;
59 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60 
61 	/* allocate a r1bio with room for raid_disks entries in the bios array */
62 	r1_bio = kmalloc(size, gfp_flags);
63 	if (r1_bio)
64 		memset(r1_bio, 0, size);
65 	else
66 		unplug_slaves(pi->mddev);
67 
68 	return r1_bio;
69 }
70 
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73 	kfree(r1_bio);
74 }
75 
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81 
82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 {
84 	struct pool_info *pi = data;
85 	struct page *page;
86 	r1bio_t *r1_bio;
87 	struct bio *bio;
88 	int i, j;
89 
90 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 	if (!r1_bio) {
92 		unplug_slaves(pi->mddev);
93 		return NULL;
94 	}
95 
96 	/*
97 	 * Allocate bios : 1 for reading, n-1 for writing
98 	 */
99 	for (j = pi->raid_disks ; j-- ; ) {
100 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101 		if (!bio)
102 			goto out_free_bio;
103 		r1_bio->bios[j] = bio;
104 	}
105 	/*
106 	 * Allocate RESYNC_PAGES data pages and attach them to
107 	 * the first bio;
108 	 */
109 	bio = r1_bio->bios[0];
110 	for (i = 0; i < RESYNC_PAGES; i++) {
111 		page = alloc_page(gfp_flags);
112 		if (unlikely(!page))
113 			goto out_free_pages;
114 
115 		bio->bi_io_vec[i].bv_page = page;
116 	}
117 
118 	r1_bio->master_bio = NULL;
119 
120 	return r1_bio;
121 
122 out_free_pages:
123 	for ( ; i > 0 ; i--)
124 		__free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126 	while ( ++j < pi->raid_disks )
127 		bio_put(r1_bio->bios[j]);
128 	r1bio_pool_free(r1_bio, data);
129 	return NULL;
130 }
131 
132 static void r1buf_pool_free(void *__r1_bio, void *data)
133 {
134 	struct pool_info *pi = data;
135 	int i;
136 	r1bio_t *r1bio = __r1_bio;
137 	struct bio *bio = r1bio->bios[0];
138 
139 	for (i = 0; i < RESYNC_PAGES; i++) {
140 		__free_page(bio->bi_io_vec[i].bv_page);
141 		bio->bi_io_vec[i].bv_page = NULL;
142 	}
143 	for (i=0 ; i < pi->raid_disks; i++)
144 		bio_put(r1bio->bios[i]);
145 
146 	r1bio_pool_free(r1bio, data);
147 }
148 
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
150 {
151 	int i;
152 
153 	for (i = 0; i < conf->raid_disks; i++) {
154 		struct bio **bio = r1_bio->bios + i;
155 		if (*bio)
156 			bio_put(*bio);
157 		*bio = NULL;
158 	}
159 }
160 
161 static inline void free_r1bio(r1bio_t *r1_bio)
162 {
163 	unsigned long flags;
164 
165 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
166 
167 	/*
168 	 * Wake up any possible resync thread that waits for the device
169 	 * to go idle.
170 	 */
171 	spin_lock_irqsave(&conf->resync_lock, flags);
172 	if (!--conf->nr_pending) {
173 		wake_up(&conf->wait_idle);
174 		wake_up(&conf->wait_resume);
175 	}
176 	spin_unlock_irqrestore(&conf->resync_lock, flags);
177 
178 	put_all_bios(conf, r1_bio);
179 	mempool_free(r1_bio, conf->r1bio_pool);
180 }
181 
182 static inline void put_buf(r1bio_t *r1_bio)
183 {
184 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
185 	unsigned long flags;
186 
187 	mempool_free(r1_bio, conf->r1buf_pool);
188 
189 	spin_lock_irqsave(&conf->resync_lock, flags);
190 	if (!conf->barrier)
191 		BUG();
192 	--conf->barrier;
193 	wake_up(&conf->wait_resume);
194 	wake_up(&conf->wait_idle);
195 
196 	if (!--conf->nr_pending) {
197 		wake_up(&conf->wait_idle);
198 		wake_up(&conf->wait_resume);
199 	}
200 	spin_unlock_irqrestore(&conf->resync_lock, flags);
201 }
202 
203 static void reschedule_retry(r1bio_t *r1_bio)
204 {
205 	unsigned long flags;
206 	mddev_t *mddev = r1_bio->mddev;
207 	conf_t *conf = mddev_to_conf(mddev);
208 
209 	spin_lock_irqsave(&conf->device_lock, flags);
210 	list_add(&r1_bio->retry_list, &conf->retry_list);
211 	spin_unlock_irqrestore(&conf->device_lock, flags);
212 
213 	md_wakeup_thread(mddev->thread);
214 }
215 
216 /*
217  * raid_end_bio_io() is called when we have finished servicing a mirrored
218  * operation and are ready to return a success/failure code to the buffer
219  * cache layer.
220  */
221 static void raid_end_bio_io(r1bio_t *r1_bio)
222 {
223 	struct bio *bio = r1_bio->master_bio;
224 
225 	/* if nobody has done the final endio yet, do it now */
226 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
227 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
228 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
229 			(unsigned long long) bio->bi_sector,
230 			(unsigned long long) bio->bi_sector +
231 				(bio->bi_size >> 9) - 1);
232 
233 		bio_endio(bio, bio->bi_size,
234 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
235 	}
236 	free_r1bio(r1_bio);
237 }
238 
239 /*
240  * Update disk head position estimator based on IRQ completion info.
241  */
242 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
243 {
244 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
245 
246 	conf->mirrors[disk].head_position =
247 		r1_bio->sector + (r1_bio->sectors);
248 }
249 
250 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
251 {
252 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
253 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
254 	int mirror;
255 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
256 
257 	if (bio->bi_size)
258 		return 1;
259 
260 	mirror = r1_bio->read_disk;
261 	/*
262 	 * this branch is our 'one mirror IO has finished' event handler:
263 	 */
264 	if (!uptodate)
265 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
266 	else
267 		/*
268 		 * Set R1BIO_Uptodate in our master bio, so that
269 		 * we will return a good error code for to the higher
270 		 * levels even if IO on some other mirrored buffer fails.
271 		 *
272 		 * The 'master' represents the composite IO operation to
273 		 * user-side. So if something waits for IO, then it will
274 		 * wait for the 'master' bio.
275 		 */
276 		set_bit(R1BIO_Uptodate, &r1_bio->state);
277 
278 	update_head_pos(mirror, r1_bio);
279 
280 	/*
281 	 * we have only one bio on the read side
282 	 */
283 	if (uptodate)
284 		raid_end_bio_io(r1_bio);
285 	else {
286 		/*
287 		 * oops, read error:
288 		 */
289 		char b[BDEVNAME_SIZE];
290 		if (printk_ratelimit())
291 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
292 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
293 		reschedule_retry(r1_bio);
294 	}
295 
296 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
297 	return 0;
298 }
299 
300 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
301 {
302 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
303 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
304 	int mirror, behind;
305 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
306 
307 	if (bio->bi_size)
308 		return 1;
309 
310 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
311 		if (r1_bio->bios[mirror] == bio)
312 			break;
313 
314 	/*
315 	 * this branch is our 'one mirror IO has finished' event handler:
316 	 */
317 	if (!uptodate) {
318 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
319 		/* an I/O failed, we can't clear the bitmap */
320 		set_bit(R1BIO_Degraded, &r1_bio->state);
321 	} else
322 		/*
323 		 * Set R1BIO_Uptodate in our master bio, so that
324 		 * we will return a good error code for to the higher
325 		 * levels even if IO on some other mirrored buffer fails.
326 		 *
327 		 * The 'master' represents the composite IO operation to
328 		 * user-side. So if something waits for IO, then it will
329 		 * wait for the 'master' bio.
330 		 */
331 		set_bit(R1BIO_Uptodate, &r1_bio->state);
332 
333 	update_head_pos(mirror, r1_bio);
334 
335 	behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 	if (behind) {
337 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
338 			atomic_dec(&r1_bio->behind_remaining);
339 
340 		/* In behind mode, we ACK the master bio once the I/O has safely
341 		 * reached all non-writemostly disks. Setting the Returned bit
342 		 * ensures that this gets done only once -- we don't ever want to
343 		 * return -EIO here, instead we'll wait */
344 
345 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
346 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
347 			/* Maybe we can return now */
348 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
349 				struct bio *mbio = r1_bio->master_bio;
350 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
351 				       (unsigned long long) mbio->bi_sector,
352 				       (unsigned long long) mbio->bi_sector +
353 				       (mbio->bi_size >> 9) - 1);
354 				bio_endio(mbio, mbio->bi_size, 0);
355 			}
356 		}
357 	}
358 	/*
359 	 *
360 	 * Let's see if all mirrored write operations have finished
361 	 * already.
362 	 */
363 	if (atomic_dec_and_test(&r1_bio->remaining)) {
364 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
365 			/* free extra copy of the data pages */
366 			int i = bio->bi_vcnt;
367 			while (i--)
368 				__free_page(bio->bi_io_vec[i].bv_page);
369 		}
370 		/* clear the bitmap if all writes complete successfully */
371 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
372 				r1_bio->sectors,
373 				!test_bit(R1BIO_Degraded, &r1_bio->state),
374 				behind);
375 		md_write_end(r1_bio->mddev);
376 		raid_end_bio_io(r1_bio);
377 	}
378 
379 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
380 	return 0;
381 }
382 
383 
384 /*
385  * This routine returns the disk from which the requested read should
386  * be done. There is a per-array 'next expected sequential IO' sector
387  * number - if this matches on the next IO then we use the last disk.
388  * There is also a per-disk 'last know head position' sector that is
389  * maintained from IRQ contexts, both the normal and the resync IO
390  * completion handlers update this position correctly. If there is no
391  * perfect sequential match then we pick the disk whose head is closest.
392  *
393  * If there are 2 mirrors in the same 2 devices, performance degrades
394  * because position is mirror, not device based.
395  *
396  * The rdev for the device selected will have nr_pending incremented.
397  */
398 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
399 {
400 	const unsigned long this_sector = r1_bio->sector;
401 	int new_disk = conf->last_used, disk = new_disk;
402 	int wonly_disk = -1;
403 	const int sectors = r1_bio->sectors;
404 	sector_t new_distance, current_distance;
405 	mdk_rdev_t *rdev;
406 
407 	rcu_read_lock();
408 	/*
409 	 * Check if we can balance. We can balance on the whole
410 	 * device if no resync is going on, or below the resync window.
411 	 * We take the first readable disk when above the resync window.
412 	 */
413  retry:
414 	if (conf->mddev->recovery_cp < MaxSector &&
415 	    (this_sector + sectors >= conf->next_resync)) {
416 		/* Choose the first operation device, for consistancy */
417 		new_disk = 0;
418 
419 		for (rdev = conf->mirrors[new_disk].rdev;
420 		     !rdev || !rdev->in_sync
421 			     || test_bit(WriteMostly, &rdev->flags);
422 		     rdev = conf->mirrors[++new_disk].rdev) {
423 
424 			if (rdev && rdev->in_sync)
425 				wonly_disk = new_disk;
426 
427 			if (new_disk == conf->raid_disks - 1) {
428 				new_disk = wonly_disk;
429 				break;
430 			}
431 		}
432 		goto rb_out;
433 	}
434 
435 
436 	/* make sure the disk is operational */
437 	for (rdev = conf->mirrors[new_disk].rdev;
438 	     !rdev || !rdev->in_sync ||
439 		     test_bit(WriteMostly, &rdev->flags);
440 	     rdev = conf->mirrors[new_disk].rdev) {
441 
442 		if (rdev && rdev->in_sync)
443 			wonly_disk = new_disk;
444 
445 		if (new_disk <= 0)
446 			new_disk = conf->raid_disks;
447 		new_disk--;
448 		if (new_disk == disk) {
449 			new_disk = wonly_disk;
450 			break;
451 		}
452 	}
453 
454 	if (new_disk < 0)
455 		goto rb_out;
456 
457 	disk = new_disk;
458 	/* now disk == new_disk == starting point for search */
459 
460 	/*
461 	 * Don't change to another disk for sequential reads:
462 	 */
463 	if (conf->next_seq_sect == this_sector)
464 		goto rb_out;
465 	if (this_sector == conf->mirrors[new_disk].head_position)
466 		goto rb_out;
467 
468 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
469 
470 	/* Find the disk whose head is closest */
471 
472 	do {
473 		if (disk <= 0)
474 			disk = conf->raid_disks;
475 		disk--;
476 
477 		rdev = conf->mirrors[disk].rdev;
478 
479 		if (!rdev ||
480 		    !rdev->in_sync ||
481 		    test_bit(WriteMostly, &rdev->flags))
482 			continue;
483 
484 		if (!atomic_read(&rdev->nr_pending)) {
485 			new_disk = disk;
486 			break;
487 		}
488 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 		if (new_distance < current_distance) {
490 			current_distance = new_distance;
491 			new_disk = disk;
492 		}
493 	} while (disk != conf->last_used);
494 
495  rb_out:
496 
497 
498 	if (new_disk >= 0) {
499 		rdev = conf->mirrors[new_disk].rdev;
500 		if (!rdev)
501 			goto retry;
502 		atomic_inc(&rdev->nr_pending);
503 		if (!rdev->in_sync) {
504 			/* cannot risk returning a device that failed
505 			 * before we inc'ed nr_pending
506 			 */
507 			atomic_dec(&rdev->nr_pending);
508 			goto retry;
509 		}
510 		conf->next_seq_sect = this_sector + sectors;
511 		conf->last_used = new_disk;
512 	}
513 	rcu_read_unlock();
514 
515 	return new_disk;
516 }
517 
518 static void unplug_slaves(mddev_t *mddev)
519 {
520 	conf_t *conf = mddev_to_conf(mddev);
521 	int i;
522 
523 	rcu_read_lock();
524 	for (i=0; i<mddev->raid_disks; i++) {
525 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
526 		if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
527 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
528 
529 			atomic_inc(&rdev->nr_pending);
530 			rcu_read_unlock();
531 
532 			if (r_queue->unplug_fn)
533 				r_queue->unplug_fn(r_queue);
534 
535 			rdev_dec_pending(rdev, mddev);
536 			rcu_read_lock();
537 		}
538 	}
539 	rcu_read_unlock();
540 }
541 
542 static void raid1_unplug(request_queue_t *q)
543 {
544 	mddev_t *mddev = q->queuedata;
545 
546 	unplug_slaves(mddev);
547 	md_wakeup_thread(mddev->thread);
548 }
549 
550 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
551 			     sector_t *error_sector)
552 {
553 	mddev_t *mddev = q->queuedata;
554 	conf_t *conf = mddev_to_conf(mddev);
555 	int i, ret = 0;
556 
557 	rcu_read_lock();
558 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
559 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
560 		if (rdev && !rdev->faulty) {
561 			struct block_device *bdev = rdev->bdev;
562 			request_queue_t *r_queue = bdev_get_queue(bdev);
563 
564 			if (!r_queue->issue_flush_fn)
565 				ret = -EOPNOTSUPP;
566 			else {
567 				atomic_inc(&rdev->nr_pending);
568 				rcu_read_unlock();
569 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
570 							      error_sector);
571 				rdev_dec_pending(rdev, mddev);
572 				rcu_read_lock();
573 			}
574 		}
575 	}
576 	rcu_read_unlock();
577 	return ret;
578 }
579 
580 /*
581  * Throttle resync depth, so that we can both get proper overlapping of
582  * requests, but are still able to handle normal requests quickly.
583  */
584 #define RESYNC_DEPTH 32
585 
586 static void device_barrier(conf_t *conf, sector_t sect)
587 {
588 	spin_lock_irq(&conf->resync_lock);
589 	wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
590 			    conf->resync_lock, raid1_unplug(conf->mddev->queue));
591 
592 	if (!conf->barrier++) {
593 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
594 				    conf->resync_lock, raid1_unplug(conf->mddev->queue));
595 		if (conf->nr_pending)
596 			BUG();
597 	}
598 	wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
599 			    conf->resync_lock, raid1_unplug(conf->mddev->queue));
600 	conf->next_resync = sect;
601 	spin_unlock_irq(&conf->resync_lock);
602 }
603 
604 /* duplicate the data pages for behind I/O */
605 static struct page **alloc_behind_pages(struct bio *bio)
606 {
607 	int i;
608 	struct bio_vec *bvec;
609 	struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
610 					GFP_NOIO);
611 	if (unlikely(!pages))
612 		goto do_sync_io;
613 
614 	memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
615 
616 	bio_for_each_segment(bvec, bio, i) {
617 		pages[i] = alloc_page(GFP_NOIO);
618 		if (unlikely(!pages[i]))
619 			goto do_sync_io;
620 		memcpy(kmap(pages[i]) + bvec->bv_offset,
621 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
622 		kunmap(pages[i]);
623 		kunmap(bvec->bv_page);
624 	}
625 
626 	return pages;
627 
628 do_sync_io:
629 	if (pages)
630 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
631 			__free_page(pages[i]);
632 	kfree(pages);
633 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
634 	return NULL;
635 }
636 
637 static int make_request(request_queue_t *q, struct bio * bio)
638 {
639 	mddev_t *mddev = q->queuedata;
640 	conf_t *conf = mddev_to_conf(mddev);
641 	mirror_info_t *mirror;
642 	r1bio_t *r1_bio;
643 	struct bio *read_bio;
644 	int i, targets = 0, disks;
645 	mdk_rdev_t *rdev;
646 	struct bitmap *bitmap = mddev->bitmap;
647 	unsigned long flags;
648 	struct bio_list bl;
649 	struct page **behind_pages = NULL;
650 
651 	if (unlikely(bio_barrier(bio))) {
652 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
653 		return 0;
654 	}
655 
656 	/*
657 	 * Register the new request and wait if the reconstruction
658 	 * thread has put up a bar for new requests.
659 	 * Continue immediately if no resync is active currently.
660 	 */
661 	md_write_start(mddev, bio); /* wait on superblock update early */
662 
663 	spin_lock_irq(&conf->resync_lock);
664 	wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
665 	conf->nr_pending++;
666 	spin_unlock_irq(&conf->resync_lock);
667 
668 	if (bio_data_dir(bio)==WRITE) {
669 		disk_stat_inc(mddev->gendisk, writes);
670 		disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
671 	} else {
672 		disk_stat_inc(mddev->gendisk, reads);
673 		disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
674 	}
675 
676 	/*
677 	 * make_request() can abort the operation when READA is being
678 	 * used and no empty request is available.
679 	 *
680 	 */
681 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
682 
683 	r1_bio->master_bio = bio;
684 	r1_bio->sectors = bio->bi_size >> 9;
685 	r1_bio->state = 0;
686 	r1_bio->mddev = mddev;
687 	r1_bio->sector = bio->bi_sector;
688 
689 	if (bio_data_dir(bio) == READ) {
690 		/*
691 		 * read balancing logic:
692 		 */
693 		int rdisk = read_balance(conf, r1_bio);
694 
695 		if (rdisk < 0) {
696 			/* couldn't find anywhere to read from */
697 			raid_end_bio_io(r1_bio);
698 			return 0;
699 		}
700 		mirror = conf->mirrors + rdisk;
701 
702 		r1_bio->read_disk = rdisk;
703 
704 		read_bio = bio_clone(bio, GFP_NOIO);
705 
706 		r1_bio->bios[rdisk] = read_bio;
707 
708 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
709 		read_bio->bi_bdev = mirror->rdev->bdev;
710 		read_bio->bi_end_io = raid1_end_read_request;
711 		read_bio->bi_rw = READ;
712 		read_bio->bi_private = r1_bio;
713 
714 		generic_make_request(read_bio);
715 		return 0;
716 	}
717 
718 	/*
719 	 * WRITE:
720 	 */
721 	/* first select target devices under spinlock and
722 	 * inc refcount on their rdev.  Record them by setting
723 	 * bios[x] to bio
724 	 */
725 	disks = conf->raid_disks;
726 #if 0
727 	{ static int first=1;
728 	if (first) printk("First Write sector %llu disks %d\n",
729 			  (unsigned long long)r1_bio->sector, disks);
730 	first = 0;
731 	}
732 #endif
733 	rcu_read_lock();
734 	for (i = 0;  i < disks; i++) {
735 		if ((rdev=conf->mirrors[i].rdev) != NULL &&
736 		    !rdev->faulty) {
737 			atomic_inc(&rdev->nr_pending);
738 			if (rdev->faulty) {
739 				atomic_dec(&rdev->nr_pending);
740 				r1_bio->bios[i] = NULL;
741 			} else
742 				r1_bio->bios[i] = bio;
743 			targets++;
744 		} else
745 			r1_bio->bios[i] = NULL;
746 	}
747 	rcu_read_unlock();
748 
749 	BUG_ON(targets == 0); /* we never fail the last device */
750 
751 	if (targets < conf->raid_disks) {
752 		/* array is degraded, we will not clear the bitmap
753 		 * on I/O completion (see raid1_end_write_request) */
754 		set_bit(R1BIO_Degraded, &r1_bio->state);
755 	}
756 
757 	/* do behind I/O ? */
758 	if (bitmap &&
759 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
760 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
761 		set_bit(R1BIO_BehindIO, &r1_bio->state);
762 
763 	atomic_set(&r1_bio->remaining, 0);
764 	atomic_set(&r1_bio->behind_remaining, 0);
765 
766 	bio_list_init(&bl);
767 	for (i = 0; i < disks; i++) {
768 		struct bio *mbio;
769 		if (!r1_bio->bios[i])
770 			continue;
771 
772 		mbio = bio_clone(bio, GFP_NOIO);
773 		r1_bio->bios[i] = mbio;
774 
775 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
776 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
777 		mbio->bi_end_io	= raid1_end_write_request;
778 		mbio->bi_rw = WRITE;
779 		mbio->bi_private = r1_bio;
780 
781 		if (behind_pages) {
782 			struct bio_vec *bvec;
783 			int j;
784 
785 			/* Yes, I really want the '__' version so that
786 			 * we clear any unused pointer in the io_vec, rather
787 			 * than leave them unchanged.  This is important
788 			 * because when we come to free the pages, we won't
789 			 * know the originial bi_idx, so we just free
790 			 * them all
791 			 */
792 			__bio_for_each_segment(bvec, mbio, j, 0)
793 				bvec->bv_page = behind_pages[j];
794 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
795 				atomic_inc(&r1_bio->behind_remaining);
796 		}
797 
798 		atomic_inc(&r1_bio->remaining);
799 
800 		bio_list_add(&bl, mbio);
801 	}
802 	kfree(behind_pages); /* the behind pages are attached to the bios now */
803 
804 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
805 				test_bit(R1BIO_BehindIO, &r1_bio->state));
806 	spin_lock_irqsave(&conf->device_lock, flags);
807 	bio_list_merge(&conf->pending_bio_list, &bl);
808 	bio_list_init(&bl);
809 
810 	blk_plug_device(mddev->queue);
811 	spin_unlock_irqrestore(&conf->device_lock, flags);
812 
813 #if 0
814 	while ((bio = bio_list_pop(&bl)) != NULL)
815 		generic_make_request(bio);
816 #endif
817 
818 	return 0;
819 }
820 
821 static void status(struct seq_file *seq, mddev_t *mddev)
822 {
823 	conf_t *conf = mddev_to_conf(mddev);
824 	int i;
825 
826 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827 						conf->working_disks);
828 	for (i = 0; i < conf->raid_disks; i++)
829 		seq_printf(seq, "%s",
830 			      conf->mirrors[i].rdev &&
831 			      conf->mirrors[i].rdev->in_sync ? "U" : "_");
832 	seq_printf(seq, "]");
833 }
834 
835 
836 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
837 {
838 	char b[BDEVNAME_SIZE];
839 	conf_t *conf = mddev_to_conf(mddev);
840 
841 	/*
842 	 * If it is not operational, then we have already marked it as dead
843 	 * else if it is the last working disks, ignore the error, let the
844 	 * next level up know.
845 	 * else mark the drive as failed
846 	 */
847 	if (rdev->in_sync
848 	    && conf->working_disks == 1)
849 		/*
850 		 * Don't fail the drive, act as though we were just a
851 		 * normal single drive
852 		 */
853 		return;
854 	if (rdev->in_sync) {
855 		mddev->degraded++;
856 		conf->working_disks--;
857 		/*
858 		 * if recovery is running, make sure it aborts.
859 		 */
860 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
861 	}
862 	rdev->in_sync = 0;
863 	rdev->faulty = 1;
864 	mddev->sb_dirty = 1;
865 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
866 		"	Operation continuing on %d devices\n",
867 		bdevname(rdev->bdev,b), conf->working_disks);
868 }
869 
870 static void print_conf(conf_t *conf)
871 {
872 	int i;
873 	mirror_info_t *tmp;
874 
875 	printk("RAID1 conf printout:\n");
876 	if (!conf) {
877 		printk("(!conf)\n");
878 		return;
879 	}
880 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
881 		conf->raid_disks);
882 
883 	for (i = 0; i < conf->raid_disks; i++) {
884 		char b[BDEVNAME_SIZE];
885 		tmp = conf->mirrors + i;
886 		if (tmp->rdev)
887 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
888 				i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
889 				bdevname(tmp->rdev->bdev,b));
890 	}
891 }
892 
893 static void close_sync(conf_t *conf)
894 {
895 	spin_lock_irq(&conf->resync_lock);
896 	wait_event_lock_irq(conf->wait_resume, !conf->barrier,
897 			    conf->resync_lock, 	raid1_unplug(conf->mddev->queue));
898 	spin_unlock_irq(&conf->resync_lock);
899 
900 	if (conf->barrier) BUG();
901 	if (waitqueue_active(&conf->wait_idle)) BUG();
902 
903 	mempool_destroy(conf->r1buf_pool);
904 	conf->r1buf_pool = NULL;
905 }
906 
907 static int raid1_spare_active(mddev_t *mddev)
908 {
909 	int i;
910 	conf_t *conf = mddev->private;
911 	mirror_info_t *tmp;
912 
913 	/*
914 	 * Find all failed disks within the RAID1 configuration
915 	 * and mark them readable
916 	 */
917 	for (i = 0; i < conf->raid_disks; i++) {
918 		tmp = conf->mirrors + i;
919 		if (tmp->rdev
920 		    && !tmp->rdev->faulty
921 		    && !tmp->rdev->in_sync) {
922 			conf->working_disks++;
923 			mddev->degraded--;
924 			tmp->rdev->in_sync = 1;
925 		}
926 	}
927 
928 	print_conf(conf);
929 	return 0;
930 }
931 
932 
933 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
934 {
935 	conf_t *conf = mddev->private;
936 	int found = 0;
937 	int mirror = 0;
938 	mirror_info_t *p;
939 
940 	if (rdev->saved_raid_disk >= 0 &&
941 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
942 		mirror = rdev->saved_raid_disk;
943 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
944 		if ( !(p=conf->mirrors+mirror)->rdev) {
945 
946 			blk_queue_stack_limits(mddev->queue,
947 					       rdev->bdev->bd_disk->queue);
948 			/* as we don't honour merge_bvec_fn, we must never risk
949 			 * violating it, so limit ->max_sector to one PAGE, as
950 			 * a one page request is never in violation.
951 			 */
952 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
953 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
954 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
955 
956 			p->head_position = 0;
957 			rdev->raid_disk = mirror;
958 			found = 1;
959 			if (rdev->saved_raid_disk != mirror)
960 				conf->fullsync = 1;
961 			p->rdev = rdev;
962 			break;
963 		}
964 
965 	print_conf(conf);
966 	return found;
967 }
968 
969 static int raid1_remove_disk(mddev_t *mddev, int number)
970 {
971 	conf_t *conf = mddev->private;
972 	int err = 0;
973 	mdk_rdev_t *rdev;
974 	mirror_info_t *p = conf->mirrors+ number;
975 
976 	print_conf(conf);
977 	rdev = p->rdev;
978 	if (rdev) {
979 		if (rdev->in_sync ||
980 		    atomic_read(&rdev->nr_pending)) {
981 			err = -EBUSY;
982 			goto abort;
983 		}
984 		p->rdev = NULL;
985 		synchronize_rcu();
986 		if (atomic_read(&rdev->nr_pending)) {
987 			/* lost the race, try later */
988 			err = -EBUSY;
989 			p->rdev = rdev;
990 		}
991 	}
992 abort:
993 
994 	print_conf(conf);
995 	return err;
996 }
997 
998 
999 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1000 {
1001 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1002 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1003 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
1004 
1005 	if (bio->bi_size)
1006 		return 1;
1007 
1008 	if (r1_bio->bios[r1_bio->read_disk] != bio)
1009 		BUG();
1010 	update_head_pos(r1_bio->read_disk, r1_bio);
1011 	/*
1012 	 * we have read a block, now it needs to be re-written,
1013 	 * or re-read if the read failed.
1014 	 * We don't do much here, just schedule handling by raid1d
1015 	 */
1016 	if (!uptodate) {
1017 		md_error(r1_bio->mddev,
1018 			 conf->mirrors[r1_bio->read_disk].rdev);
1019 	} else
1020 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1021 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
1022 	reschedule_retry(r1_bio);
1023 	return 0;
1024 }
1025 
1026 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1027 {
1028 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1029 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1030 	mddev_t *mddev = r1_bio->mddev;
1031 	conf_t *conf = mddev_to_conf(mddev);
1032 	int i;
1033 	int mirror=0;
1034 
1035 	if (bio->bi_size)
1036 		return 1;
1037 
1038 	for (i = 0; i < conf->raid_disks; i++)
1039 		if (r1_bio->bios[i] == bio) {
1040 			mirror = i;
1041 			break;
1042 		}
1043 	if (!uptodate)
1044 		md_error(mddev, conf->mirrors[mirror].rdev);
1045 
1046 	update_head_pos(mirror, r1_bio);
1047 
1048 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1049 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1050 		put_buf(r1_bio);
1051 	}
1052 	rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1053 	return 0;
1054 }
1055 
1056 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1057 {
1058 	conf_t *conf = mddev_to_conf(mddev);
1059 	int i;
1060 	int disks = conf->raid_disks;
1061 	struct bio *bio, *wbio;
1062 
1063 	bio = r1_bio->bios[r1_bio->read_disk];
1064 
1065 /*
1066 	if (r1_bio->sector == 0) printk("First sync write startss\n");
1067 */
1068 	/*
1069 	 * schedule writes
1070 	 */
1071 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1072 		/*
1073 		 * There is no point trying a read-for-reconstruct as
1074 		 * reconstruct is about to be aborted
1075 		 */
1076 		char b[BDEVNAME_SIZE];
1077 		printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1078 			" for block %llu\n",
1079 			bdevname(bio->bi_bdev,b),
1080 			(unsigned long long)r1_bio->sector);
1081 		md_done_sync(mddev, r1_bio->sectors, 0);
1082 		put_buf(r1_bio);
1083 		return;
1084 	}
1085 
1086 	atomic_set(&r1_bio->remaining, 1);
1087 	for (i = 0; i < disks ; i++) {
1088 		wbio = r1_bio->bios[i];
1089 		if (wbio->bi_end_io != end_sync_write)
1090 			continue;
1091 
1092 		atomic_inc(&conf->mirrors[i].rdev->nr_pending);
1093 		atomic_inc(&r1_bio->remaining);
1094 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1095 
1096 		generic_make_request(wbio);
1097 	}
1098 
1099 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1100 		/* if we're here, all write(s) have completed, so clean up */
1101 		md_done_sync(mddev, r1_bio->sectors, 1);
1102 		put_buf(r1_bio);
1103 	}
1104 }
1105 
1106 /*
1107  * This is a kernel thread which:
1108  *
1109  *	1.	Retries failed read operations on working mirrors.
1110  *	2.	Updates the raid superblock when problems encounter.
1111  *	3.	Performs writes following reads for array syncronising.
1112  */
1113 
1114 static void raid1d(mddev_t *mddev)
1115 {
1116 	r1bio_t *r1_bio;
1117 	struct bio *bio;
1118 	unsigned long flags;
1119 	conf_t *conf = mddev_to_conf(mddev);
1120 	struct list_head *head = &conf->retry_list;
1121 	int unplug=0;
1122 	mdk_rdev_t *rdev;
1123 
1124 	md_check_recovery(mddev);
1125 
1126 	for (;;) {
1127 		char b[BDEVNAME_SIZE];
1128 		spin_lock_irqsave(&conf->device_lock, flags);
1129 
1130 		if (conf->pending_bio_list.head) {
1131 			bio = bio_list_get(&conf->pending_bio_list);
1132 			blk_remove_plug(mddev->queue);
1133 			spin_unlock_irqrestore(&conf->device_lock, flags);
1134 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1135 			if (bitmap_unplug(mddev->bitmap) != 0)
1136 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1137 
1138 			while (bio) { /* submit pending writes */
1139 				struct bio *next = bio->bi_next;
1140 				bio->bi_next = NULL;
1141 				generic_make_request(bio);
1142 				bio = next;
1143 			}
1144 			unplug = 1;
1145 
1146 			continue;
1147 		}
1148 
1149 		if (list_empty(head))
1150 			break;
1151 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1152 		list_del(head->prev);
1153 		spin_unlock_irqrestore(&conf->device_lock, flags);
1154 
1155 		mddev = r1_bio->mddev;
1156 		conf = mddev_to_conf(mddev);
1157 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1158 			sync_request_write(mddev, r1_bio);
1159 			unplug = 1;
1160 		} else {
1161 			int disk;
1162 			bio = r1_bio->bios[r1_bio->read_disk];
1163 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1164 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1165 				       " read error for block %llu\n",
1166 				       bdevname(bio->bi_bdev,b),
1167 				       (unsigned long long)r1_bio->sector);
1168 				raid_end_bio_io(r1_bio);
1169 			} else {
1170 				r1_bio->bios[r1_bio->read_disk] = NULL;
1171 				r1_bio->read_disk = disk;
1172 				bio_put(bio);
1173 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1174 				r1_bio->bios[r1_bio->read_disk] = bio;
1175 				rdev = conf->mirrors[disk].rdev;
1176 				if (printk_ratelimit())
1177 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1178 					       " another mirror\n",
1179 					       bdevname(rdev->bdev,b),
1180 					       (unsigned long long)r1_bio->sector);
1181 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1182 				bio->bi_bdev = rdev->bdev;
1183 				bio->bi_end_io = raid1_end_read_request;
1184 				bio->bi_rw = READ;
1185 				bio->bi_private = r1_bio;
1186 				unplug = 1;
1187 				generic_make_request(bio);
1188 			}
1189 		}
1190 	}
1191 	spin_unlock_irqrestore(&conf->device_lock, flags);
1192 	if (unplug)
1193 		unplug_slaves(mddev);
1194 }
1195 
1196 
1197 static int init_resync(conf_t *conf)
1198 {
1199 	int buffs;
1200 
1201 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1202 	if (conf->r1buf_pool)
1203 		BUG();
1204 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1205 					  conf->poolinfo);
1206 	if (!conf->r1buf_pool)
1207 		return -ENOMEM;
1208 	conf->next_resync = 0;
1209 	return 0;
1210 }
1211 
1212 /*
1213  * perform a "sync" on one "block"
1214  *
1215  * We need to make sure that no normal I/O request - particularly write
1216  * requests - conflict with active sync requests.
1217  *
1218  * This is achieved by tracking pending requests and a 'barrier' concept
1219  * that can be installed to exclude normal IO requests.
1220  */
1221 
1222 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1223 {
1224 	conf_t *conf = mddev_to_conf(mddev);
1225 	mirror_info_t *mirror;
1226 	r1bio_t *r1_bio;
1227 	struct bio *bio;
1228 	sector_t max_sector, nr_sectors;
1229 	int disk;
1230 	int i;
1231 	int wonly;
1232 	int write_targets = 0;
1233 	int sync_blocks;
1234 	int still_degraded = 0;
1235 
1236 	if (!conf->r1buf_pool)
1237 	{
1238 /*
1239 		printk("sync start - bitmap %p\n", mddev->bitmap);
1240 */
1241 		if (init_resync(conf))
1242 			return 0;
1243 	}
1244 
1245 	max_sector = mddev->size << 1;
1246 	if (sector_nr >= max_sector) {
1247 		/* If we aborted, we need to abort the
1248 		 * sync on the 'current' bitmap chunk (there will
1249 		 * only be one in raid1 resync.
1250 		 * We can find the current addess in mddev->curr_resync
1251 		 */
1252 		if (mddev->curr_resync < max_sector) /* aborted */
1253 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1254 						&sync_blocks, 1);
1255 		else /* completed sync */
1256 			conf->fullsync = 0;
1257 
1258 		bitmap_close_sync(mddev->bitmap);
1259 		close_sync(conf);
1260 		return 0;
1261 	}
1262 
1263 	/* before building a request, check if we can skip these blocks..
1264 	 * This call the bitmap_start_sync doesn't actually record anything
1265 	 */
1266 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1267 	    !conf->fullsync) {
1268 		/* We can skip this block, and probably several more */
1269 		*skipped = 1;
1270 		return sync_blocks;
1271 	}
1272 	/*
1273 	 * If there is non-resync activity waiting for us then
1274 	 * put in a delay to throttle resync.
1275 	 */
1276 	if (!go_faster && waitqueue_active(&conf->wait_resume))
1277 		msleep_interruptible(1000);
1278 	device_barrier(conf, sector_nr + RESYNC_SECTORS);
1279 
1280 	/*
1281 	 * If reconstructing, and >1 working disc,
1282 	 * could dedicate one to rebuild and others to
1283 	 * service read requests ..
1284 	 */
1285 	disk = conf->last_used;
1286 	/* make sure disk is operational */
1287 	wonly = disk;
1288 	while (conf->mirrors[disk].rdev == NULL ||
1289 	       !conf->mirrors[disk].rdev->in_sync ||
1290 	       test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags)
1291 		) {
1292 		if (conf->mirrors[disk].rdev  &&
1293 		    conf->mirrors[disk].rdev->in_sync)
1294 			wonly = disk;
1295 		if (disk <= 0)
1296 			disk = conf->raid_disks;
1297 		disk--;
1298 		if (disk == conf->last_used) {
1299 			disk = wonly;
1300 			break;
1301 		}
1302 	}
1303 	conf->last_used = disk;
1304 	atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1305 
1306 
1307 	mirror = conf->mirrors + disk;
1308 
1309 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1310 
1311 	spin_lock_irq(&conf->resync_lock);
1312 	conf->nr_pending++;
1313 	spin_unlock_irq(&conf->resync_lock);
1314 
1315 	r1_bio->mddev = mddev;
1316 	r1_bio->sector = sector_nr;
1317 	r1_bio->state = 0;
1318 	set_bit(R1BIO_IsSync, &r1_bio->state);
1319 	r1_bio->read_disk = disk;
1320 
1321 	for (i=0; i < conf->raid_disks; i++) {
1322 		bio = r1_bio->bios[i];
1323 
1324 		/* take from bio_init */
1325 		bio->bi_next = NULL;
1326 		bio->bi_flags |= 1 << BIO_UPTODATE;
1327 		bio->bi_rw = 0;
1328 		bio->bi_vcnt = 0;
1329 		bio->bi_idx = 0;
1330 		bio->bi_phys_segments = 0;
1331 		bio->bi_hw_segments = 0;
1332 		bio->bi_size = 0;
1333 		bio->bi_end_io = NULL;
1334 		bio->bi_private = NULL;
1335 
1336 		if (i == disk) {
1337 			bio->bi_rw = READ;
1338 			bio->bi_end_io = end_sync_read;
1339 		} else if (conf->mirrors[i].rdev == NULL ||
1340 			   conf->mirrors[i].rdev->faulty) {
1341 			still_degraded = 1;
1342 			continue;
1343 		} else if (!conf->mirrors[i].rdev->in_sync ||
1344 			   sector_nr + RESYNC_SECTORS > mddev->recovery_cp) {
1345 			bio->bi_rw = WRITE;
1346 			bio->bi_end_io = end_sync_write;
1347 			write_targets ++;
1348 		} else
1349 			/* no need to read or write here */
1350 			continue;
1351 		bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1352 		bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1353 		bio->bi_private = r1_bio;
1354 	}
1355 
1356 	if (write_targets == 0) {
1357 		/* There is nowhere to write, so all non-sync
1358 		 * drives must be failed - so we are finished
1359 		 */
1360 		sector_t rv = max_sector - sector_nr;
1361 		*skipped = 1;
1362 		put_buf(r1_bio);
1363 		rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1364 		return rv;
1365 	}
1366 
1367 	nr_sectors = 0;
1368 	sync_blocks = 0;
1369 	do {
1370 		struct page *page;
1371 		int len = PAGE_SIZE;
1372 		if (sector_nr + (len>>9) > max_sector)
1373 			len = (max_sector - sector_nr) << 9;
1374 		if (len == 0)
1375 			break;
1376 		if (sync_blocks == 0) {
1377 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1378 					&sync_blocks, still_degraded) &&
1379 					!conf->fullsync)
1380 				break;
1381 			if (sync_blocks < (PAGE_SIZE>>9))
1382 				BUG();
1383 			if (len > (sync_blocks<<9))
1384 				len = sync_blocks<<9;
1385 		}
1386 
1387 		for (i=0 ; i < conf->raid_disks; i++) {
1388 			bio = r1_bio->bios[i];
1389 			if (bio->bi_end_io) {
1390 				page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1391 				if (bio_add_page(bio, page, len, 0) == 0) {
1392 					/* stop here */
1393 					r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1394 					while (i > 0) {
1395 						i--;
1396 						bio = r1_bio->bios[i];
1397 						if (bio->bi_end_io==NULL)
1398 							continue;
1399 						/* remove last page from this bio */
1400 						bio->bi_vcnt--;
1401 						bio->bi_size -= len;
1402 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1403 					}
1404 					goto bio_full;
1405 				}
1406 			}
1407 		}
1408 		nr_sectors += len>>9;
1409 		sector_nr += len>>9;
1410 		sync_blocks -= (len>>9);
1411 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1412  bio_full:
1413 	bio = r1_bio->bios[disk];
1414 	r1_bio->sectors = nr_sectors;
1415 
1416 	md_sync_acct(mirror->rdev->bdev, nr_sectors);
1417 
1418 	generic_make_request(bio);
1419 
1420 	return nr_sectors;
1421 }
1422 
1423 static int run(mddev_t *mddev)
1424 {
1425 	conf_t *conf;
1426 	int i, j, disk_idx;
1427 	mirror_info_t *disk;
1428 	mdk_rdev_t *rdev;
1429 	struct list_head *tmp;
1430 
1431 	if (mddev->level != 1) {
1432 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1433 		       mdname(mddev), mddev->level);
1434 		goto out;
1435 	}
1436 	/*
1437 	 * copy the already verified devices into our private RAID1
1438 	 * bookkeeping area. [whatever we allocate in run(),
1439 	 * should be freed in stop()]
1440 	 */
1441 	conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1442 	mddev->private = conf;
1443 	if (!conf)
1444 		goto out_no_mem;
1445 
1446 	memset(conf, 0, sizeof(*conf));
1447 	conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1448 				 GFP_KERNEL);
1449 	if (!conf->mirrors)
1450 		goto out_no_mem;
1451 
1452 	memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1453 
1454 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1455 	if (!conf->poolinfo)
1456 		goto out_no_mem;
1457 	conf->poolinfo->mddev = mddev;
1458 	conf->poolinfo->raid_disks = mddev->raid_disks;
1459 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1460 					  r1bio_pool_free,
1461 					  conf->poolinfo);
1462 	if (!conf->r1bio_pool)
1463 		goto out_no_mem;
1464 
1465 	ITERATE_RDEV(mddev, rdev, tmp) {
1466 		disk_idx = rdev->raid_disk;
1467 		if (disk_idx >= mddev->raid_disks
1468 		    || disk_idx < 0)
1469 			continue;
1470 		disk = conf->mirrors + disk_idx;
1471 
1472 		disk->rdev = rdev;
1473 
1474 		blk_queue_stack_limits(mddev->queue,
1475 				       rdev->bdev->bd_disk->queue);
1476 		/* as we don't honour merge_bvec_fn, we must never risk
1477 		 * violating it, so limit ->max_sector to one PAGE, as
1478 		 * a one page request is never in violation.
1479 		 */
1480 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1481 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1482 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1483 
1484 		disk->head_position = 0;
1485 		if (!rdev->faulty && rdev->in_sync)
1486 			conf->working_disks++;
1487 	}
1488 	conf->raid_disks = mddev->raid_disks;
1489 	conf->mddev = mddev;
1490 	spin_lock_init(&conf->device_lock);
1491 	INIT_LIST_HEAD(&conf->retry_list);
1492 	if (conf->working_disks == 1)
1493 		mddev->recovery_cp = MaxSector;
1494 
1495 	spin_lock_init(&conf->resync_lock);
1496 	init_waitqueue_head(&conf->wait_idle);
1497 	init_waitqueue_head(&conf->wait_resume);
1498 
1499 	bio_list_init(&conf->pending_bio_list);
1500 	bio_list_init(&conf->flushing_bio_list);
1501 
1502 	if (!conf->working_disks) {
1503 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1504 			mdname(mddev));
1505 		goto out_free_conf;
1506 	}
1507 
1508 	mddev->degraded = 0;
1509 	for (i = 0; i < conf->raid_disks; i++) {
1510 
1511 		disk = conf->mirrors + i;
1512 
1513 		if (!disk->rdev) {
1514 			disk->head_position = 0;
1515 			mddev->degraded++;
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * find the first working one and use it as a starting point
1521 	 * to read balancing.
1522 	 */
1523 	for (j = 0; j < conf->raid_disks &&
1524 		     (!conf->mirrors[j].rdev ||
1525 		      !conf->mirrors[j].rdev->in_sync) ; j++)
1526 		/* nothing */;
1527 	conf->last_used = j;
1528 
1529 
1530 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1531 	if (!mddev->thread) {
1532 		printk(KERN_ERR
1533 		       "raid1: couldn't allocate thread for %s\n",
1534 		       mdname(mddev));
1535 		goto out_free_conf;
1536 	}
1537 	if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1538 
1539 	printk(KERN_INFO
1540 		"raid1: raid set %s active with %d out of %d mirrors\n",
1541 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1542 		mddev->raid_disks);
1543 	/*
1544 	 * Ok, everything is just fine now
1545 	 */
1546 	mddev->array_size = mddev->size;
1547 
1548 	mddev->queue->unplug_fn = raid1_unplug;
1549 	mddev->queue->issue_flush_fn = raid1_issue_flush;
1550 
1551 	return 0;
1552 
1553 out_no_mem:
1554 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1555 	       mdname(mddev));
1556 
1557 out_free_conf:
1558 	if (conf) {
1559 		if (conf->r1bio_pool)
1560 			mempool_destroy(conf->r1bio_pool);
1561 		kfree(conf->mirrors);
1562 		kfree(conf->poolinfo);
1563 		kfree(conf);
1564 		mddev->private = NULL;
1565 	}
1566 out:
1567 	return -EIO;
1568 }
1569 
1570 static int stop(mddev_t *mddev)
1571 {
1572 	conf_t *conf = mddev_to_conf(mddev);
1573 	struct bitmap *bitmap = mddev->bitmap;
1574 	int behind_wait = 0;
1575 
1576 	/* wait for behind writes to complete */
1577 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1578 		behind_wait++;
1579 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1580 		set_current_state(TASK_UNINTERRUPTIBLE);
1581 		schedule_timeout(HZ); /* wait a second */
1582 		/* need to kick something here to make sure I/O goes? */
1583 	}
1584 
1585 	md_unregister_thread(mddev->thread);
1586 	mddev->thread = NULL;
1587 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1588 	if (conf->r1bio_pool)
1589 		mempool_destroy(conf->r1bio_pool);
1590 	kfree(conf->mirrors);
1591 	kfree(conf->poolinfo);
1592 	kfree(conf);
1593 	mddev->private = NULL;
1594 	return 0;
1595 }
1596 
1597 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1598 {
1599 	/* no resync is happening, and there is enough space
1600 	 * on all devices, so we can resize.
1601 	 * We need to make sure resync covers any new space.
1602 	 * If the array is shrinking we should possibly wait until
1603 	 * any io in the removed space completes, but it hardly seems
1604 	 * worth it.
1605 	 */
1606 	mddev->array_size = sectors>>1;
1607 	set_capacity(mddev->gendisk, mddev->array_size << 1);
1608 	mddev->changed = 1;
1609 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1610 		mddev->recovery_cp = mddev->size << 1;
1611 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1612 	}
1613 	mddev->size = mddev->array_size;
1614 	mddev->resync_max_sectors = sectors;
1615 	return 0;
1616 }
1617 
1618 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1619 {
1620 	/* We need to:
1621 	 * 1/ resize the r1bio_pool
1622 	 * 2/ resize conf->mirrors
1623 	 *
1624 	 * We allocate a new r1bio_pool if we can.
1625 	 * Then raise a device barrier and wait until all IO stops.
1626 	 * Then resize conf->mirrors and swap in the new r1bio pool.
1627 	 *
1628 	 * At the same time, we "pack" the devices so that all the missing
1629 	 * devices have the higher raid_disk numbers.
1630 	 */
1631 	mempool_t *newpool, *oldpool;
1632 	struct pool_info *newpoolinfo;
1633 	mirror_info_t *newmirrors;
1634 	conf_t *conf = mddev_to_conf(mddev);
1635 	int cnt;
1636 
1637 	int d, d2;
1638 
1639 	if (raid_disks < conf->raid_disks) {
1640 		cnt=0;
1641 		for (d= 0; d < conf->raid_disks; d++)
1642 			if (conf->mirrors[d].rdev)
1643 				cnt++;
1644 		if (cnt > raid_disks)
1645 			return -EBUSY;
1646 	}
1647 
1648 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1649 	if (!newpoolinfo)
1650 		return -ENOMEM;
1651 	newpoolinfo->mddev = mddev;
1652 	newpoolinfo->raid_disks = raid_disks;
1653 
1654 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1655 				 r1bio_pool_free, newpoolinfo);
1656 	if (!newpool) {
1657 		kfree(newpoolinfo);
1658 		return -ENOMEM;
1659 	}
1660 	newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1661 	if (!newmirrors) {
1662 		kfree(newpoolinfo);
1663 		mempool_destroy(newpool);
1664 		return -ENOMEM;
1665 	}
1666 	memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1667 
1668 	spin_lock_irq(&conf->resync_lock);
1669 	conf->barrier++;
1670 	wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1671 			    conf->resync_lock, raid1_unplug(mddev->queue));
1672 	spin_unlock_irq(&conf->resync_lock);
1673 
1674 	/* ok, everything is stopped */
1675 	oldpool = conf->r1bio_pool;
1676 	conf->r1bio_pool = newpool;
1677 
1678 	for (d=d2=0; d < conf->raid_disks; d++)
1679 		if (conf->mirrors[d].rdev) {
1680 			conf->mirrors[d].rdev->raid_disk = d2;
1681 			newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1682 		}
1683 	kfree(conf->mirrors);
1684 	conf->mirrors = newmirrors;
1685 	kfree(conf->poolinfo);
1686 	conf->poolinfo = newpoolinfo;
1687 
1688 	mddev->degraded += (raid_disks - conf->raid_disks);
1689 	conf->raid_disks = mddev->raid_disks = raid_disks;
1690 
1691 	conf->last_used = 0; /* just make sure it is in-range */
1692 	spin_lock_irq(&conf->resync_lock);
1693 	conf->barrier--;
1694 	spin_unlock_irq(&conf->resync_lock);
1695 	wake_up(&conf->wait_resume);
1696 	wake_up(&conf->wait_idle);
1697 
1698 
1699 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1700 	md_wakeup_thread(mddev->thread);
1701 
1702 	mempool_destroy(oldpool);
1703 	return 0;
1704 }
1705 
1706 static void raid1_quiesce(mddev_t *mddev, int state)
1707 {
1708 	conf_t *conf = mddev_to_conf(mddev);
1709 
1710 	switch(state) {
1711 	case 1:
1712 		spin_lock_irq(&conf->resync_lock);
1713 		conf->barrier++;
1714 		wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1715 				    conf->resync_lock, raid1_unplug(mddev->queue));
1716 		spin_unlock_irq(&conf->resync_lock);
1717 		break;
1718 	case 0:
1719 		spin_lock_irq(&conf->resync_lock);
1720 		conf->barrier--;
1721 		spin_unlock_irq(&conf->resync_lock);
1722 		wake_up(&conf->wait_resume);
1723 		wake_up(&conf->wait_idle);
1724 		break;
1725 	}
1726 	if (mddev->thread) {
1727 		if (mddev->bitmap)
1728 			mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1729 		else
1730 			mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1731 		md_wakeup_thread(mddev->thread);
1732 	}
1733 }
1734 
1735 
1736 static mdk_personality_t raid1_personality =
1737 {
1738 	.name		= "raid1",
1739 	.owner		= THIS_MODULE,
1740 	.make_request	= make_request,
1741 	.run		= run,
1742 	.stop		= stop,
1743 	.status		= status,
1744 	.error_handler	= error,
1745 	.hot_add_disk	= raid1_add_disk,
1746 	.hot_remove_disk= raid1_remove_disk,
1747 	.spare_active	= raid1_spare_active,
1748 	.sync_request	= sync_request,
1749 	.resize		= raid1_resize,
1750 	.reshape	= raid1_reshape,
1751 	.quiesce	= raid1_quiesce,
1752 };
1753 
1754 static int __init raid_init(void)
1755 {
1756 	return register_md_personality(RAID1, &raid1_personality);
1757 }
1758 
1759 static void raid_exit(void)
1760 {
1761 	unregister_md_personality(RAID1);
1762 }
1763 
1764 module_init(raid_init);
1765 module_exit(raid_exit);
1766 MODULE_LICENSE("GPL");
1767 MODULE_ALIAS("md-personality-3"); /* RAID1 */
1768