1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/seq_file.h> 38 #include "md.h" 39 #include "raid1.h" 40 #include "bitmap.h" 41 42 #define DEBUG 0 43 #if DEBUG 44 #define PRINTK(x...) printk(x) 45 #else 46 #define PRINTK(x...) 47 #endif 48 49 /* 50 * Number of guaranteed r1bios in case of extreme VM load: 51 */ 52 #define NR_RAID1_BIOS 256 53 54 55 static void allow_barrier(conf_t *conf); 56 static void lower_barrier(conf_t *conf); 57 58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 59 { 60 struct pool_info *pi = data; 61 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 62 63 /* allocate a r1bio with room for raid_disks entries in the bios array */ 64 return kzalloc(size, gfp_flags); 65 } 66 67 static void r1bio_pool_free(void *r1_bio, void *data) 68 { 69 kfree(r1_bio); 70 } 71 72 #define RESYNC_BLOCK_SIZE (64*1024) 73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 76 #define RESYNC_WINDOW (2048*1024) 77 78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 79 { 80 struct pool_info *pi = data; 81 struct page *page; 82 r1bio_t *r1_bio; 83 struct bio *bio; 84 int i, j; 85 86 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 87 if (!r1_bio) 88 return NULL; 89 90 /* 91 * Allocate bios : 1 for reading, n-1 for writing 92 */ 93 for (j = pi->raid_disks ; j-- ; ) { 94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 95 if (!bio) 96 goto out_free_bio; 97 r1_bio->bios[j] = bio; 98 } 99 /* 100 * Allocate RESYNC_PAGES data pages and attach them to 101 * the first bio. 102 * If this is a user-requested check/repair, allocate 103 * RESYNC_PAGES for each bio. 104 */ 105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 106 j = pi->raid_disks; 107 else 108 j = 1; 109 while(j--) { 110 bio = r1_bio->bios[j]; 111 for (i = 0; i < RESYNC_PAGES; i++) { 112 page = alloc_page(gfp_flags); 113 if (unlikely(!page)) 114 goto out_free_pages; 115 116 bio->bi_io_vec[i].bv_page = page; 117 bio->bi_vcnt = i+1; 118 } 119 } 120 /* If not user-requests, copy the page pointers to all bios */ 121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 122 for (i=0; i<RESYNC_PAGES ; i++) 123 for (j=1; j<pi->raid_disks; j++) 124 r1_bio->bios[j]->bi_io_vec[i].bv_page = 125 r1_bio->bios[0]->bi_io_vec[i].bv_page; 126 } 127 128 r1_bio->master_bio = NULL; 129 130 return r1_bio; 131 132 out_free_pages: 133 for (j=0 ; j < pi->raid_disks; j++) 134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++) 135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < pi->raid_disks ) 139 bio_put(r1_bio->bios[j]); 140 r1bio_pool_free(r1_bio, data); 141 return NULL; 142 } 143 144 static void r1buf_pool_free(void *__r1_bio, void *data) 145 { 146 struct pool_info *pi = data; 147 int i,j; 148 r1bio_t *r1bio = __r1_bio; 149 150 for (i = 0; i < RESYNC_PAGES; i++) 151 for (j = pi->raid_disks; j-- ;) { 152 if (j == 0 || 153 r1bio->bios[j]->bi_io_vec[i].bv_page != 154 r1bio->bios[0]->bi_io_vec[i].bv_page) 155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 156 } 157 for (i=0 ; i < pi->raid_disks; i++) 158 bio_put(r1bio->bios[i]); 159 160 r1bio_pool_free(r1bio, data); 161 } 162 163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 164 { 165 int i; 166 167 for (i = 0; i < conf->raid_disks; i++) { 168 struct bio **bio = r1_bio->bios + i; 169 if (*bio && *bio != IO_BLOCKED) 170 bio_put(*bio); 171 *bio = NULL; 172 } 173 } 174 175 static void free_r1bio(r1bio_t *r1_bio) 176 { 177 conf_t *conf = r1_bio->mddev->private; 178 179 /* 180 * Wake up any possible resync thread that waits for the device 181 * to go idle. 182 */ 183 allow_barrier(conf); 184 185 put_all_bios(conf, r1_bio); 186 mempool_free(r1_bio, conf->r1bio_pool); 187 } 188 189 static void put_buf(r1bio_t *r1_bio) 190 { 191 conf_t *conf = r1_bio->mddev->private; 192 int i; 193 194 for (i=0; i<conf->raid_disks; i++) { 195 struct bio *bio = r1_bio->bios[i]; 196 if (bio->bi_end_io) 197 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 198 } 199 200 mempool_free(r1_bio, conf->r1buf_pool); 201 202 lower_barrier(conf); 203 } 204 205 static void reschedule_retry(r1bio_t *r1_bio) 206 { 207 unsigned long flags; 208 mddev_t *mddev = r1_bio->mddev; 209 conf_t *conf = mddev->private; 210 211 spin_lock_irqsave(&conf->device_lock, flags); 212 list_add(&r1_bio->retry_list, &conf->retry_list); 213 conf->nr_queued ++; 214 spin_unlock_irqrestore(&conf->device_lock, flags); 215 216 wake_up(&conf->wait_barrier); 217 md_wakeup_thread(mddev->thread); 218 } 219 220 /* 221 * raid_end_bio_io() is called when we have finished servicing a mirrored 222 * operation and are ready to return a success/failure code to the buffer 223 * cache layer. 224 */ 225 static void raid_end_bio_io(r1bio_t *r1_bio) 226 { 227 struct bio *bio = r1_bio->master_bio; 228 229 /* if nobody has done the final endio yet, do it now */ 230 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 231 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 232 (bio_data_dir(bio) == WRITE) ? "write" : "read", 233 (unsigned long long) bio->bi_sector, 234 (unsigned long long) bio->bi_sector + 235 (bio->bi_size >> 9) - 1); 236 237 bio_endio(bio, 238 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 239 } 240 free_r1bio(r1_bio); 241 } 242 243 /* 244 * Update disk head position estimator based on IRQ completion info. 245 */ 246 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 247 { 248 conf_t *conf = r1_bio->mddev->private; 249 250 conf->mirrors[disk].head_position = 251 r1_bio->sector + (r1_bio->sectors); 252 } 253 254 static void raid1_end_read_request(struct bio *bio, int error) 255 { 256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 257 r1bio_t *r1_bio = bio->bi_private; 258 int mirror; 259 conf_t *conf = r1_bio->mddev->private; 260 261 mirror = r1_bio->read_disk; 262 /* 263 * this branch is our 'one mirror IO has finished' event handler: 264 */ 265 update_head_pos(mirror, r1_bio); 266 267 if (uptodate) 268 set_bit(R1BIO_Uptodate, &r1_bio->state); 269 else { 270 /* If all other devices have failed, we want to return 271 * the error upwards rather than fail the last device. 272 * Here we redefine "uptodate" to mean "Don't want to retry" 273 */ 274 unsigned long flags; 275 spin_lock_irqsave(&conf->device_lock, flags); 276 if (r1_bio->mddev->degraded == conf->raid_disks || 277 (r1_bio->mddev->degraded == conf->raid_disks-1 && 278 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 279 uptodate = 1; 280 spin_unlock_irqrestore(&conf->device_lock, flags); 281 } 282 283 if (uptodate) 284 raid_end_bio_io(r1_bio); 285 else { 286 /* 287 * oops, read error: 288 */ 289 char b[BDEVNAME_SIZE]; 290 if (printk_ratelimit()) 291 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n", 292 mdname(conf->mddev), 293 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 294 reschedule_retry(r1_bio); 295 } 296 297 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 298 } 299 300 static void r1_bio_write_done(r1bio_t *r1_bio) 301 { 302 if (atomic_dec_and_test(&r1_bio->remaining)) 303 { 304 /* it really is the end of this request */ 305 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 306 /* free extra copy of the data pages */ 307 int i = r1_bio->behind_page_count; 308 while (i--) 309 safe_put_page(r1_bio->behind_pages[i]); 310 kfree(r1_bio->behind_pages); 311 r1_bio->behind_pages = NULL; 312 } 313 /* clear the bitmap if all writes complete successfully */ 314 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 315 r1_bio->sectors, 316 !test_bit(R1BIO_Degraded, &r1_bio->state), 317 test_bit(R1BIO_BehindIO, &r1_bio->state)); 318 md_write_end(r1_bio->mddev); 319 raid_end_bio_io(r1_bio); 320 } 321 } 322 323 static void raid1_end_write_request(struct bio *bio, int error) 324 { 325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 326 r1bio_t *r1_bio = bio->bi_private; 327 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 328 conf_t *conf = r1_bio->mddev->private; 329 struct bio *to_put = NULL; 330 331 332 for (mirror = 0; mirror < conf->raid_disks; mirror++) 333 if (r1_bio->bios[mirror] == bio) 334 break; 335 336 /* 337 * 'one mirror IO has finished' event handler: 338 */ 339 r1_bio->bios[mirror] = NULL; 340 to_put = bio; 341 if (!uptodate) { 342 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 343 /* an I/O failed, we can't clear the bitmap */ 344 set_bit(R1BIO_Degraded, &r1_bio->state); 345 } else 346 /* 347 * Set R1BIO_Uptodate in our master bio, so that we 348 * will return a good error code for to the higher 349 * levels even if IO on some other mirrored buffer 350 * fails. 351 * 352 * The 'master' represents the composite IO operation 353 * to user-side. So if something waits for IO, then it 354 * will wait for the 'master' bio. 355 */ 356 set_bit(R1BIO_Uptodate, &r1_bio->state); 357 358 update_head_pos(mirror, r1_bio); 359 360 if (behind) { 361 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 362 atomic_dec(&r1_bio->behind_remaining); 363 364 /* 365 * In behind mode, we ACK the master bio once the I/O 366 * has safely reached all non-writemostly 367 * disks. Setting the Returned bit ensures that this 368 * gets done only once -- we don't ever want to return 369 * -EIO here, instead we'll wait 370 */ 371 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 372 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 373 /* Maybe we can return now */ 374 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 375 struct bio *mbio = r1_bio->master_bio; 376 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 377 (unsigned long long) mbio->bi_sector, 378 (unsigned long long) mbio->bi_sector + 379 (mbio->bi_size >> 9) - 1); 380 bio_endio(mbio, 0); 381 } 382 } 383 } 384 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 385 386 /* 387 * Let's see if all mirrored write operations have finished 388 * already. 389 */ 390 r1_bio_write_done(r1_bio); 391 392 if (to_put) 393 bio_put(to_put); 394 } 395 396 397 /* 398 * This routine returns the disk from which the requested read should 399 * be done. There is a per-array 'next expected sequential IO' sector 400 * number - if this matches on the next IO then we use the last disk. 401 * There is also a per-disk 'last know head position' sector that is 402 * maintained from IRQ contexts, both the normal and the resync IO 403 * completion handlers update this position correctly. If there is no 404 * perfect sequential match then we pick the disk whose head is closest. 405 * 406 * If there are 2 mirrors in the same 2 devices, performance degrades 407 * because position is mirror, not device based. 408 * 409 * The rdev for the device selected will have nr_pending incremented. 410 */ 411 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 412 { 413 const sector_t this_sector = r1_bio->sector; 414 const int sectors = r1_bio->sectors; 415 int start_disk; 416 int best_disk; 417 int i; 418 sector_t best_dist; 419 mdk_rdev_t *rdev; 420 int choose_first; 421 422 rcu_read_lock(); 423 /* 424 * Check if we can balance. We can balance on the whole 425 * device if no resync is going on, or below the resync window. 426 * We take the first readable disk when above the resync window. 427 */ 428 retry: 429 best_disk = -1; 430 best_dist = MaxSector; 431 if (conf->mddev->recovery_cp < MaxSector && 432 (this_sector + sectors >= conf->next_resync)) { 433 choose_first = 1; 434 start_disk = 0; 435 } else { 436 choose_first = 0; 437 start_disk = conf->last_used; 438 } 439 440 for (i = 0 ; i < conf->raid_disks ; i++) { 441 sector_t dist; 442 int disk = start_disk + i; 443 if (disk >= conf->raid_disks) 444 disk -= conf->raid_disks; 445 446 rdev = rcu_dereference(conf->mirrors[disk].rdev); 447 if (r1_bio->bios[disk] == IO_BLOCKED 448 || rdev == NULL 449 || test_bit(Faulty, &rdev->flags)) 450 continue; 451 if (!test_bit(In_sync, &rdev->flags) && 452 rdev->recovery_offset < this_sector + sectors) 453 continue; 454 if (test_bit(WriteMostly, &rdev->flags)) { 455 /* Don't balance among write-mostly, just 456 * use the first as a last resort */ 457 if (best_disk < 0) 458 best_disk = disk; 459 continue; 460 } 461 /* This is a reasonable device to use. It might 462 * even be best. 463 */ 464 dist = abs(this_sector - conf->mirrors[disk].head_position); 465 if (choose_first 466 /* Don't change to another disk for sequential reads */ 467 || conf->next_seq_sect == this_sector 468 || dist == 0 469 /* If device is idle, use it */ 470 || atomic_read(&rdev->nr_pending) == 0) { 471 best_disk = disk; 472 break; 473 } 474 if (dist < best_dist) { 475 best_dist = dist; 476 best_disk = disk; 477 } 478 } 479 480 if (best_disk >= 0) { 481 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 482 if (!rdev) 483 goto retry; 484 atomic_inc(&rdev->nr_pending); 485 if (test_bit(Faulty, &rdev->flags)) { 486 /* cannot risk returning a device that failed 487 * before we inc'ed nr_pending 488 */ 489 rdev_dec_pending(rdev, conf->mddev); 490 goto retry; 491 } 492 conf->next_seq_sect = this_sector + sectors; 493 conf->last_used = best_disk; 494 } 495 rcu_read_unlock(); 496 497 return best_disk; 498 } 499 500 static int raid1_congested(void *data, int bits) 501 { 502 mddev_t *mddev = data; 503 conf_t *conf = mddev->private; 504 int i, ret = 0; 505 506 if (mddev_congested(mddev, bits)) 507 return 1; 508 509 rcu_read_lock(); 510 for (i = 0; i < mddev->raid_disks; i++) { 511 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 512 if (rdev && !test_bit(Faulty, &rdev->flags)) { 513 struct request_queue *q = bdev_get_queue(rdev->bdev); 514 515 /* Note the '|| 1' - when read_balance prefers 516 * non-congested targets, it can be removed 517 */ 518 if ((bits & (1<<BDI_async_congested)) || 1) 519 ret |= bdi_congested(&q->backing_dev_info, bits); 520 else 521 ret &= bdi_congested(&q->backing_dev_info, bits); 522 } 523 } 524 rcu_read_unlock(); 525 return ret; 526 } 527 528 529 static void flush_pending_writes(conf_t *conf) 530 { 531 /* Any writes that have been queued but are awaiting 532 * bitmap updates get flushed here. 533 */ 534 spin_lock_irq(&conf->device_lock); 535 536 if (conf->pending_bio_list.head) { 537 struct bio *bio; 538 bio = bio_list_get(&conf->pending_bio_list); 539 spin_unlock_irq(&conf->device_lock); 540 /* flush any pending bitmap writes to 541 * disk before proceeding w/ I/O */ 542 bitmap_unplug(conf->mddev->bitmap); 543 544 while (bio) { /* submit pending writes */ 545 struct bio *next = bio->bi_next; 546 bio->bi_next = NULL; 547 generic_make_request(bio); 548 bio = next; 549 } 550 } else 551 spin_unlock_irq(&conf->device_lock); 552 } 553 554 /* Barriers.... 555 * Sometimes we need to suspend IO while we do something else, 556 * either some resync/recovery, or reconfigure the array. 557 * To do this we raise a 'barrier'. 558 * The 'barrier' is a counter that can be raised multiple times 559 * to count how many activities are happening which preclude 560 * normal IO. 561 * We can only raise the barrier if there is no pending IO. 562 * i.e. if nr_pending == 0. 563 * We choose only to raise the barrier if no-one is waiting for the 564 * barrier to go down. This means that as soon as an IO request 565 * is ready, no other operations which require a barrier will start 566 * until the IO request has had a chance. 567 * 568 * So: regular IO calls 'wait_barrier'. When that returns there 569 * is no backgroup IO happening, It must arrange to call 570 * allow_barrier when it has finished its IO. 571 * backgroup IO calls must call raise_barrier. Once that returns 572 * there is no normal IO happeing. It must arrange to call 573 * lower_barrier when the particular background IO completes. 574 */ 575 #define RESYNC_DEPTH 32 576 577 static void raise_barrier(conf_t *conf) 578 { 579 spin_lock_irq(&conf->resync_lock); 580 581 /* Wait until no block IO is waiting */ 582 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 583 conf->resync_lock, ); 584 585 /* block any new IO from starting */ 586 conf->barrier++; 587 588 /* Now wait for all pending IO to complete */ 589 wait_event_lock_irq(conf->wait_barrier, 590 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 591 conf->resync_lock, ); 592 593 spin_unlock_irq(&conf->resync_lock); 594 } 595 596 static void lower_barrier(conf_t *conf) 597 { 598 unsigned long flags; 599 BUG_ON(conf->barrier <= 0); 600 spin_lock_irqsave(&conf->resync_lock, flags); 601 conf->barrier--; 602 spin_unlock_irqrestore(&conf->resync_lock, flags); 603 wake_up(&conf->wait_barrier); 604 } 605 606 static void wait_barrier(conf_t *conf) 607 { 608 spin_lock_irq(&conf->resync_lock); 609 if (conf->barrier) { 610 conf->nr_waiting++; 611 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 612 conf->resync_lock, 613 ); 614 conf->nr_waiting--; 615 } 616 conf->nr_pending++; 617 spin_unlock_irq(&conf->resync_lock); 618 } 619 620 static void allow_barrier(conf_t *conf) 621 { 622 unsigned long flags; 623 spin_lock_irqsave(&conf->resync_lock, flags); 624 conf->nr_pending--; 625 spin_unlock_irqrestore(&conf->resync_lock, flags); 626 wake_up(&conf->wait_barrier); 627 } 628 629 static void freeze_array(conf_t *conf) 630 { 631 /* stop syncio and normal IO and wait for everything to 632 * go quite. 633 * We increment barrier and nr_waiting, and then 634 * wait until nr_pending match nr_queued+1 635 * This is called in the context of one normal IO request 636 * that has failed. Thus any sync request that might be pending 637 * will be blocked by nr_pending, and we need to wait for 638 * pending IO requests to complete or be queued for re-try. 639 * Thus the number queued (nr_queued) plus this request (1) 640 * must match the number of pending IOs (nr_pending) before 641 * we continue. 642 */ 643 spin_lock_irq(&conf->resync_lock); 644 conf->barrier++; 645 conf->nr_waiting++; 646 wait_event_lock_irq(conf->wait_barrier, 647 conf->nr_pending == conf->nr_queued+1, 648 conf->resync_lock, 649 flush_pending_writes(conf)); 650 spin_unlock_irq(&conf->resync_lock); 651 } 652 static void unfreeze_array(conf_t *conf) 653 { 654 /* reverse the effect of the freeze */ 655 spin_lock_irq(&conf->resync_lock); 656 conf->barrier--; 657 conf->nr_waiting--; 658 wake_up(&conf->wait_barrier); 659 spin_unlock_irq(&conf->resync_lock); 660 } 661 662 663 /* duplicate the data pages for behind I/O 664 */ 665 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio) 666 { 667 int i; 668 struct bio_vec *bvec; 669 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*), 670 GFP_NOIO); 671 if (unlikely(!pages)) 672 return; 673 674 bio_for_each_segment(bvec, bio, i) { 675 pages[i] = alloc_page(GFP_NOIO); 676 if (unlikely(!pages[i])) 677 goto do_sync_io; 678 memcpy(kmap(pages[i]) + bvec->bv_offset, 679 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 680 kunmap(pages[i]); 681 kunmap(bvec->bv_page); 682 } 683 r1_bio->behind_pages = pages; 684 r1_bio->behind_page_count = bio->bi_vcnt; 685 set_bit(R1BIO_BehindIO, &r1_bio->state); 686 return; 687 688 do_sync_io: 689 for (i = 0; i < bio->bi_vcnt; i++) 690 if (pages[i]) 691 put_page(pages[i]); 692 kfree(pages); 693 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 694 } 695 696 static int make_request(mddev_t *mddev, struct bio * bio) 697 { 698 conf_t *conf = mddev->private; 699 mirror_info_t *mirror; 700 r1bio_t *r1_bio; 701 struct bio *read_bio; 702 int i, targets = 0, disks; 703 struct bitmap *bitmap; 704 unsigned long flags; 705 const int rw = bio_data_dir(bio); 706 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 707 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 708 mdk_rdev_t *blocked_rdev; 709 int plugged; 710 711 /* 712 * Register the new request and wait if the reconstruction 713 * thread has put up a bar for new requests. 714 * Continue immediately if no resync is active currently. 715 */ 716 717 md_write_start(mddev, bio); /* wait on superblock update early */ 718 719 if (bio_data_dir(bio) == WRITE && 720 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo && 721 bio->bi_sector < mddev->suspend_hi) { 722 /* As the suspend_* range is controlled by 723 * userspace, we want an interruptible 724 * wait. 725 */ 726 DEFINE_WAIT(w); 727 for (;;) { 728 flush_signals(current); 729 prepare_to_wait(&conf->wait_barrier, 730 &w, TASK_INTERRUPTIBLE); 731 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo || 732 bio->bi_sector >= mddev->suspend_hi) 733 break; 734 schedule(); 735 } 736 finish_wait(&conf->wait_barrier, &w); 737 } 738 739 wait_barrier(conf); 740 741 bitmap = mddev->bitmap; 742 743 /* 744 * make_request() can abort the operation when READA is being 745 * used and no empty request is available. 746 * 747 */ 748 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 749 750 r1_bio->master_bio = bio; 751 r1_bio->sectors = bio->bi_size >> 9; 752 r1_bio->state = 0; 753 r1_bio->mddev = mddev; 754 r1_bio->sector = bio->bi_sector; 755 756 if (rw == READ) { 757 /* 758 * read balancing logic: 759 */ 760 int rdisk = read_balance(conf, r1_bio); 761 762 if (rdisk < 0) { 763 /* couldn't find anywhere to read from */ 764 raid_end_bio_io(r1_bio); 765 return 0; 766 } 767 mirror = conf->mirrors + rdisk; 768 769 if (test_bit(WriteMostly, &mirror->rdev->flags) && 770 bitmap) { 771 /* Reading from a write-mostly device must 772 * take care not to over-take any writes 773 * that are 'behind' 774 */ 775 wait_event(bitmap->behind_wait, 776 atomic_read(&bitmap->behind_writes) == 0); 777 } 778 r1_bio->read_disk = rdisk; 779 780 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 781 782 r1_bio->bios[rdisk] = read_bio; 783 784 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 785 read_bio->bi_bdev = mirror->rdev->bdev; 786 read_bio->bi_end_io = raid1_end_read_request; 787 read_bio->bi_rw = READ | do_sync; 788 read_bio->bi_private = r1_bio; 789 790 generic_make_request(read_bio); 791 return 0; 792 } 793 794 /* 795 * WRITE: 796 */ 797 /* first select target devices under spinlock and 798 * inc refcount on their rdev. Record them by setting 799 * bios[x] to bio 800 */ 801 plugged = mddev_check_plugged(mddev); 802 803 disks = conf->raid_disks; 804 retry_write: 805 blocked_rdev = NULL; 806 rcu_read_lock(); 807 for (i = 0; i < disks; i++) { 808 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 809 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 810 atomic_inc(&rdev->nr_pending); 811 blocked_rdev = rdev; 812 break; 813 } 814 if (rdev && !test_bit(Faulty, &rdev->flags)) { 815 atomic_inc(&rdev->nr_pending); 816 if (test_bit(Faulty, &rdev->flags)) { 817 rdev_dec_pending(rdev, mddev); 818 r1_bio->bios[i] = NULL; 819 } else { 820 r1_bio->bios[i] = bio; 821 targets++; 822 } 823 } else 824 r1_bio->bios[i] = NULL; 825 } 826 rcu_read_unlock(); 827 828 if (unlikely(blocked_rdev)) { 829 /* Wait for this device to become unblocked */ 830 int j; 831 832 for (j = 0; j < i; j++) 833 if (r1_bio->bios[j]) 834 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 835 836 allow_barrier(conf); 837 md_wait_for_blocked_rdev(blocked_rdev, mddev); 838 wait_barrier(conf); 839 goto retry_write; 840 } 841 842 BUG_ON(targets == 0); /* we never fail the last device */ 843 844 if (targets < conf->raid_disks) { 845 /* array is degraded, we will not clear the bitmap 846 * on I/O completion (see raid1_end_write_request) */ 847 set_bit(R1BIO_Degraded, &r1_bio->state); 848 } 849 850 /* do behind I/O ? 851 * Not if there are too many, or cannot allocate memory, 852 * or a reader on WriteMostly is waiting for behind writes 853 * to flush */ 854 if (bitmap && 855 (atomic_read(&bitmap->behind_writes) 856 < mddev->bitmap_info.max_write_behind) && 857 !waitqueue_active(&bitmap->behind_wait)) 858 alloc_behind_pages(bio, r1_bio); 859 860 atomic_set(&r1_bio->remaining, 1); 861 atomic_set(&r1_bio->behind_remaining, 0); 862 863 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 864 test_bit(R1BIO_BehindIO, &r1_bio->state)); 865 for (i = 0; i < disks; i++) { 866 struct bio *mbio; 867 if (!r1_bio->bios[i]) 868 continue; 869 870 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 871 r1_bio->bios[i] = mbio; 872 873 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 874 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 875 mbio->bi_end_io = raid1_end_write_request; 876 mbio->bi_rw = WRITE | do_flush_fua | do_sync; 877 mbio->bi_private = r1_bio; 878 879 if (r1_bio->behind_pages) { 880 struct bio_vec *bvec; 881 int j; 882 883 /* Yes, I really want the '__' version so that 884 * we clear any unused pointer in the io_vec, rather 885 * than leave them unchanged. This is important 886 * because when we come to free the pages, we won't 887 * know the original bi_idx, so we just free 888 * them all 889 */ 890 __bio_for_each_segment(bvec, mbio, j, 0) 891 bvec->bv_page = r1_bio->behind_pages[j]; 892 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 893 atomic_inc(&r1_bio->behind_remaining); 894 } 895 896 atomic_inc(&r1_bio->remaining); 897 spin_lock_irqsave(&conf->device_lock, flags); 898 bio_list_add(&conf->pending_bio_list, mbio); 899 spin_unlock_irqrestore(&conf->device_lock, flags); 900 } 901 r1_bio_write_done(r1_bio); 902 903 /* In case raid1d snuck in to freeze_array */ 904 wake_up(&conf->wait_barrier); 905 906 if (do_sync || !bitmap || !plugged) 907 md_wakeup_thread(mddev->thread); 908 909 return 0; 910 } 911 912 static void status(struct seq_file *seq, mddev_t *mddev) 913 { 914 conf_t *conf = mddev->private; 915 int i; 916 917 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 918 conf->raid_disks - mddev->degraded); 919 rcu_read_lock(); 920 for (i = 0; i < conf->raid_disks; i++) { 921 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 922 seq_printf(seq, "%s", 923 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 924 } 925 rcu_read_unlock(); 926 seq_printf(seq, "]"); 927 } 928 929 930 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 931 { 932 char b[BDEVNAME_SIZE]; 933 conf_t *conf = mddev->private; 934 935 /* 936 * If it is not operational, then we have already marked it as dead 937 * else if it is the last working disks, ignore the error, let the 938 * next level up know. 939 * else mark the drive as failed 940 */ 941 if (test_bit(In_sync, &rdev->flags) 942 && (conf->raid_disks - mddev->degraded) == 1) { 943 /* 944 * Don't fail the drive, act as though we were just a 945 * normal single drive. 946 * However don't try a recovery from this drive as 947 * it is very likely to fail. 948 */ 949 mddev->recovery_disabled = 1; 950 return; 951 } 952 if (test_and_clear_bit(In_sync, &rdev->flags)) { 953 unsigned long flags; 954 spin_lock_irqsave(&conf->device_lock, flags); 955 mddev->degraded++; 956 set_bit(Faulty, &rdev->flags); 957 spin_unlock_irqrestore(&conf->device_lock, flags); 958 /* 959 * if recovery is running, make sure it aborts. 960 */ 961 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 962 } else 963 set_bit(Faulty, &rdev->flags); 964 set_bit(MD_CHANGE_DEVS, &mddev->flags); 965 printk(KERN_ALERT 966 "md/raid1:%s: Disk failure on %s, disabling device.\n" 967 "md/raid1:%s: Operation continuing on %d devices.\n", 968 mdname(mddev), bdevname(rdev->bdev, b), 969 mdname(mddev), conf->raid_disks - mddev->degraded); 970 } 971 972 static void print_conf(conf_t *conf) 973 { 974 int i; 975 976 printk(KERN_DEBUG "RAID1 conf printout:\n"); 977 if (!conf) { 978 printk(KERN_DEBUG "(!conf)\n"); 979 return; 980 } 981 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 982 conf->raid_disks); 983 984 rcu_read_lock(); 985 for (i = 0; i < conf->raid_disks; i++) { 986 char b[BDEVNAME_SIZE]; 987 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 988 if (rdev) 989 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 990 i, !test_bit(In_sync, &rdev->flags), 991 !test_bit(Faulty, &rdev->flags), 992 bdevname(rdev->bdev,b)); 993 } 994 rcu_read_unlock(); 995 } 996 997 static void close_sync(conf_t *conf) 998 { 999 wait_barrier(conf); 1000 allow_barrier(conf); 1001 1002 mempool_destroy(conf->r1buf_pool); 1003 conf->r1buf_pool = NULL; 1004 } 1005 1006 static int raid1_spare_active(mddev_t *mddev) 1007 { 1008 int i; 1009 conf_t *conf = mddev->private; 1010 int count = 0; 1011 unsigned long flags; 1012 1013 /* 1014 * Find all failed disks within the RAID1 configuration 1015 * and mark them readable. 1016 * Called under mddev lock, so rcu protection not needed. 1017 */ 1018 for (i = 0; i < conf->raid_disks; i++) { 1019 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1020 if (rdev 1021 && !test_bit(Faulty, &rdev->flags) 1022 && !test_and_set_bit(In_sync, &rdev->flags)) { 1023 count++; 1024 sysfs_notify_dirent(rdev->sysfs_state); 1025 } 1026 } 1027 spin_lock_irqsave(&conf->device_lock, flags); 1028 mddev->degraded -= count; 1029 spin_unlock_irqrestore(&conf->device_lock, flags); 1030 1031 print_conf(conf); 1032 return count; 1033 } 1034 1035 1036 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1037 { 1038 conf_t *conf = mddev->private; 1039 int err = -EEXIST; 1040 int mirror = 0; 1041 mirror_info_t *p; 1042 int first = 0; 1043 int last = mddev->raid_disks - 1; 1044 1045 if (rdev->raid_disk >= 0) 1046 first = last = rdev->raid_disk; 1047 1048 for (mirror = first; mirror <= last; mirror++) 1049 if ( !(p=conf->mirrors+mirror)->rdev) { 1050 1051 disk_stack_limits(mddev->gendisk, rdev->bdev, 1052 rdev->data_offset << 9); 1053 /* as we don't honour merge_bvec_fn, we must 1054 * never risk violating it, so limit 1055 * ->max_segments to one lying with a single 1056 * page, as a one page request is never in 1057 * violation. 1058 */ 1059 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1060 blk_queue_max_segments(mddev->queue, 1); 1061 blk_queue_segment_boundary(mddev->queue, 1062 PAGE_CACHE_SIZE - 1); 1063 } 1064 1065 p->head_position = 0; 1066 rdev->raid_disk = mirror; 1067 err = 0; 1068 /* As all devices are equivalent, we don't need a full recovery 1069 * if this was recently any drive of the array 1070 */ 1071 if (rdev->saved_raid_disk < 0) 1072 conf->fullsync = 1; 1073 rcu_assign_pointer(p->rdev, rdev); 1074 break; 1075 } 1076 md_integrity_add_rdev(rdev, mddev); 1077 print_conf(conf); 1078 return err; 1079 } 1080 1081 static int raid1_remove_disk(mddev_t *mddev, int number) 1082 { 1083 conf_t *conf = mddev->private; 1084 int err = 0; 1085 mdk_rdev_t *rdev; 1086 mirror_info_t *p = conf->mirrors+ number; 1087 1088 print_conf(conf); 1089 rdev = p->rdev; 1090 if (rdev) { 1091 if (test_bit(In_sync, &rdev->flags) || 1092 atomic_read(&rdev->nr_pending)) { 1093 err = -EBUSY; 1094 goto abort; 1095 } 1096 /* Only remove non-faulty devices if recovery 1097 * is not possible. 1098 */ 1099 if (!test_bit(Faulty, &rdev->flags) && 1100 !mddev->recovery_disabled && 1101 mddev->degraded < conf->raid_disks) { 1102 err = -EBUSY; 1103 goto abort; 1104 } 1105 p->rdev = NULL; 1106 synchronize_rcu(); 1107 if (atomic_read(&rdev->nr_pending)) { 1108 /* lost the race, try later */ 1109 err = -EBUSY; 1110 p->rdev = rdev; 1111 goto abort; 1112 } 1113 err = md_integrity_register(mddev); 1114 } 1115 abort: 1116 1117 print_conf(conf); 1118 return err; 1119 } 1120 1121 1122 static void end_sync_read(struct bio *bio, int error) 1123 { 1124 r1bio_t *r1_bio = bio->bi_private; 1125 int i; 1126 1127 for (i=r1_bio->mddev->raid_disks; i--; ) 1128 if (r1_bio->bios[i] == bio) 1129 break; 1130 BUG_ON(i < 0); 1131 update_head_pos(i, r1_bio); 1132 /* 1133 * we have read a block, now it needs to be re-written, 1134 * or re-read if the read failed. 1135 * We don't do much here, just schedule handling by raid1d 1136 */ 1137 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1138 set_bit(R1BIO_Uptodate, &r1_bio->state); 1139 1140 if (atomic_dec_and_test(&r1_bio->remaining)) 1141 reschedule_retry(r1_bio); 1142 } 1143 1144 static void end_sync_write(struct bio *bio, int error) 1145 { 1146 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1147 r1bio_t *r1_bio = bio->bi_private; 1148 mddev_t *mddev = r1_bio->mddev; 1149 conf_t *conf = mddev->private; 1150 int i; 1151 int mirror=0; 1152 1153 for (i = 0; i < conf->raid_disks; i++) 1154 if (r1_bio->bios[i] == bio) { 1155 mirror = i; 1156 break; 1157 } 1158 if (!uptodate) { 1159 sector_t sync_blocks = 0; 1160 sector_t s = r1_bio->sector; 1161 long sectors_to_go = r1_bio->sectors; 1162 /* make sure these bits doesn't get cleared. */ 1163 do { 1164 bitmap_end_sync(mddev->bitmap, s, 1165 &sync_blocks, 1); 1166 s += sync_blocks; 1167 sectors_to_go -= sync_blocks; 1168 } while (sectors_to_go > 0); 1169 md_error(mddev, conf->mirrors[mirror].rdev); 1170 } 1171 1172 update_head_pos(mirror, r1_bio); 1173 1174 if (atomic_dec_and_test(&r1_bio->remaining)) { 1175 sector_t s = r1_bio->sectors; 1176 put_buf(r1_bio); 1177 md_done_sync(mddev, s, uptodate); 1178 } 1179 } 1180 1181 static int fix_sync_read_error(r1bio_t *r1_bio) 1182 { 1183 /* Try some synchronous reads of other devices to get 1184 * good data, much like with normal read errors. Only 1185 * read into the pages we already have so we don't 1186 * need to re-issue the read request. 1187 * We don't need to freeze the array, because being in an 1188 * active sync request, there is no normal IO, and 1189 * no overlapping syncs. 1190 */ 1191 mddev_t *mddev = r1_bio->mddev; 1192 conf_t *conf = mddev->private; 1193 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1194 sector_t sect = r1_bio->sector; 1195 int sectors = r1_bio->sectors; 1196 int idx = 0; 1197 1198 while(sectors) { 1199 int s = sectors; 1200 int d = r1_bio->read_disk; 1201 int success = 0; 1202 mdk_rdev_t *rdev; 1203 int start; 1204 1205 if (s > (PAGE_SIZE>>9)) 1206 s = PAGE_SIZE >> 9; 1207 do { 1208 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1209 /* No rcu protection needed here devices 1210 * can only be removed when no resync is 1211 * active, and resync is currently active 1212 */ 1213 rdev = conf->mirrors[d].rdev; 1214 if (sync_page_io(rdev, 1215 sect, 1216 s<<9, 1217 bio->bi_io_vec[idx].bv_page, 1218 READ, false)) { 1219 success = 1; 1220 break; 1221 } 1222 } 1223 d++; 1224 if (d == conf->raid_disks) 1225 d = 0; 1226 } while (!success && d != r1_bio->read_disk); 1227 1228 if (!success) { 1229 char b[BDEVNAME_SIZE]; 1230 /* Cannot read from anywhere, array is toast */ 1231 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1232 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1233 " for block %llu\n", 1234 mdname(mddev), 1235 bdevname(bio->bi_bdev, b), 1236 (unsigned long long)r1_bio->sector); 1237 md_done_sync(mddev, r1_bio->sectors, 0); 1238 put_buf(r1_bio); 1239 return 0; 1240 } 1241 1242 start = d; 1243 /* write it back and re-read */ 1244 while (d != r1_bio->read_disk) { 1245 if (d == 0) 1246 d = conf->raid_disks; 1247 d--; 1248 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1249 continue; 1250 rdev = conf->mirrors[d].rdev; 1251 if (sync_page_io(rdev, 1252 sect, 1253 s<<9, 1254 bio->bi_io_vec[idx].bv_page, 1255 WRITE, false) == 0) { 1256 r1_bio->bios[d]->bi_end_io = NULL; 1257 rdev_dec_pending(rdev, mddev); 1258 md_error(mddev, rdev); 1259 } else 1260 atomic_add(s, &rdev->corrected_errors); 1261 } 1262 d = start; 1263 while (d != r1_bio->read_disk) { 1264 if (d == 0) 1265 d = conf->raid_disks; 1266 d--; 1267 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1268 continue; 1269 rdev = conf->mirrors[d].rdev; 1270 if (sync_page_io(rdev, 1271 sect, 1272 s<<9, 1273 bio->bi_io_vec[idx].bv_page, 1274 READ, false) == 0) 1275 md_error(mddev, rdev); 1276 } 1277 sectors -= s; 1278 sect += s; 1279 idx ++; 1280 } 1281 set_bit(R1BIO_Uptodate, &r1_bio->state); 1282 set_bit(BIO_UPTODATE, &bio->bi_flags); 1283 return 1; 1284 } 1285 1286 static int process_checks(r1bio_t *r1_bio) 1287 { 1288 /* We have read all readable devices. If we haven't 1289 * got the block, then there is no hope left. 1290 * If we have, then we want to do a comparison 1291 * and skip the write if everything is the same. 1292 * If any blocks failed to read, then we need to 1293 * attempt an over-write 1294 */ 1295 mddev_t *mddev = r1_bio->mddev; 1296 conf_t *conf = mddev->private; 1297 int primary; 1298 int i; 1299 1300 for (primary = 0; primary < conf->raid_disks; primary++) 1301 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1302 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1303 r1_bio->bios[primary]->bi_end_io = NULL; 1304 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1305 break; 1306 } 1307 r1_bio->read_disk = primary; 1308 for (i = 0; i < conf->raid_disks; i++) { 1309 int j; 1310 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1311 struct bio *pbio = r1_bio->bios[primary]; 1312 struct bio *sbio = r1_bio->bios[i]; 1313 int size; 1314 1315 if (r1_bio->bios[i]->bi_end_io != end_sync_read) 1316 continue; 1317 1318 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1319 for (j = vcnt; j-- ; ) { 1320 struct page *p, *s; 1321 p = pbio->bi_io_vec[j].bv_page; 1322 s = sbio->bi_io_vec[j].bv_page; 1323 if (memcmp(page_address(p), 1324 page_address(s), 1325 PAGE_SIZE)) 1326 break; 1327 } 1328 } else 1329 j = 0; 1330 if (j >= 0) 1331 mddev->resync_mismatches += r1_bio->sectors; 1332 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1333 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1334 /* No need to write to this device. */ 1335 sbio->bi_end_io = NULL; 1336 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1337 continue; 1338 } 1339 /* fixup the bio for reuse */ 1340 sbio->bi_vcnt = vcnt; 1341 sbio->bi_size = r1_bio->sectors << 9; 1342 sbio->bi_idx = 0; 1343 sbio->bi_phys_segments = 0; 1344 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1345 sbio->bi_flags |= 1 << BIO_UPTODATE; 1346 sbio->bi_next = NULL; 1347 sbio->bi_sector = r1_bio->sector + 1348 conf->mirrors[i].rdev->data_offset; 1349 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1350 size = sbio->bi_size; 1351 for (j = 0; j < vcnt ; j++) { 1352 struct bio_vec *bi; 1353 bi = &sbio->bi_io_vec[j]; 1354 bi->bv_offset = 0; 1355 if (size > PAGE_SIZE) 1356 bi->bv_len = PAGE_SIZE; 1357 else 1358 bi->bv_len = size; 1359 size -= PAGE_SIZE; 1360 memcpy(page_address(bi->bv_page), 1361 page_address(pbio->bi_io_vec[j].bv_page), 1362 PAGE_SIZE); 1363 } 1364 } 1365 return 0; 1366 } 1367 1368 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1369 { 1370 conf_t *conf = mddev->private; 1371 int i; 1372 int disks = conf->raid_disks; 1373 struct bio *bio, *wbio; 1374 1375 bio = r1_bio->bios[r1_bio->read_disk]; 1376 1377 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 1378 /* ouch - failed to read all of that. */ 1379 if (!fix_sync_read_error(r1_bio)) 1380 return; 1381 1382 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1383 if (process_checks(r1_bio) < 0) 1384 return; 1385 /* 1386 * schedule writes 1387 */ 1388 atomic_set(&r1_bio->remaining, 1); 1389 for (i = 0; i < disks ; i++) { 1390 wbio = r1_bio->bios[i]; 1391 if (wbio->bi_end_io == NULL || 1392 (wbio->bi_end_io == end_sync_read && 1393 (i == r1_bio->read_disk || 1394 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1395 continue; 1396 1397 wbio->bi_rw = WRITE; 1398 wbio->bi_end_io = end_sync_write; 1399 atomic_inc(&r1_bio->remaining); 1400 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1401 1402 generic_make_request(wbio); 1403 } 1404 1405 if (atomic_dec_and_test(&r1_bio->remaining)) { 1406 /* if we're here, all write(s) have completed, so clean up */ 1407 md_done_sync(mddev, r1_bio->sectors, 1); 1408 put_buf(r1_bio); 1409 } 1410 } 1411 1412 /* 1413 * This is a kernel thread which: 1414 * 1415 * 1. Retries failed read operations on working mirrors. 1416 * 2. Updates the raid superblock when problems encounter. 1417 * 3. Performs writes following reads for array syncronising. 1418 */ 1419 1420 static void fix_read_error(conf_t *conf, int read_disk, 1421 sector_t sect, int sectors) 1422 { 1423 mddev_t *mddev = conf->mddev; 1424 while(sectors) { 1425 int s = sectors; 1426 int d = read_disk; 1427 int success = 0; 1428 int start; 1429 mdk_rdev_t *rdev; 1430 1431 if (s > (PAGE_SIZE>>9)) 1432 s = PAGE_SIZE >> 9; 1433 1434 do { 1435 /* Note: no rcu protection needed here 1436 * as this is synchronous in the raid1d thread 1437 * which is the thread that might remove 1438 * a device. If raid1d ever becomes multi-threaded.... 1439 */ 1440 rdev = conf->mirrors[d].rdev; 1441 if (rdev && 1442 test_bit(In_sync, &rdev->flags) && 1443 sync_page_io(rdev, sect, s<<9, 1444 conf->tmppage, READ, false)) 1445 success = 1; 1446 else { 1447 d++; 1448 if (d == conf->raid_disks) 1449 d = 0; 1450 } 1451 } while (!success && d != read_disk); 1452 1453 if (!success) { 1454 /* Cannot read from anywhere -- bye bye array */ 1455 md_error(mddev, conf->mirrors[read_disk].rdev); 1456 break; 1457 } 1458 /* write it back and re-read */ 1459 start = d; 1460 while (d != read_disk) { 1461 if (d==0) 1462 d = conf->raid_disks; 1463 d--; 1464 rdev = conf->mirrors[d].rdev; 1465 if (rdev && 1466 test_bit(In_sync, &rdev->flags)) { 1467 if (sync_page_io(rdev, sect, s<<9, 1468 conf->tmppage, WRITE, false) 1469 == 0) 1470 /* Well, this device is dead */ 1471 md_error(mddev, rdev); 1472 } 1473 } 1474 d = start; 1475 while (d != read_disk) { 1476 char b[BDEVNAME_SIZE]; 1477 if (d==0) 1478 d = conf->raid_disks; 1479 d--; 1480 rdev = conf->mirrors[d].rdev; 1481 if (rdev && 1482 test_bit(In_sync, &rdev->flags)) { 1483 if (sync_page_io(rdev, sect, s<<9, 1484 conf->tmppage, READ, false) 1485 == 0) 1486 /* Well, this device is dead */ 1487 md_error(mddev, rdev); 1488 else { 1489 atomic_add(s, &rdev->corrected_errors); 1490 printk(KERN_INFO 1491 "md/raid1:%s: read error corrected " 1492 "(%d sectors at %llu on %s)\n", 1493 mdname(mddev), s, 1494 (unsigned long long)(sect + 1495 rdev->data_offset), 1496 bdevname(rdev->bdev, b)); 1497 } 1498 } 1499 } 1500 sectors -= s; 1501 sect += s; 1502 } 1503 } 1504 1505 static void raid1d(mddev_t *mddev) 1506 { 1507 r1bio_t *r1_bio; 1508 struct bio *bio; 1509 unsigned long flags; 1510 conf_t *conf = mddev->private; 1511 struct list_head *head = &conf->retry_list; 1512 mdk_rdev_t *rdev; 1513 struct blk_plug plug; 1514 1515 md_check_recovery(mddev); 1516 1517 blk_start_plug(&plug); 1518 for (;;) { 1519 char b[BDEVNAME_SIZE]; 1520 1521 if (atomic_read(&mddev->plug_cnt) == 0) 1522 flush_pending_writes(conf); 1523 1524 spin_lock_irqsave(&conf->device_lock, flags); 1525 if (list_empty(head)) { 1526 spin_unlock_irqrestore(&conf->device_lock, flags); 1527 break; 1528 } 1529 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1530 list_del(head->prev); 1531 conf->nr_queued--; 1532 spin_unlock_irqrestore(&conf->device_lock, flags); 1533 1534 mddev = r1_bio->mddev; 1535 conf = mddev->private; 1536 if (test_bit(R1BIO_IsSync, &r1_bio->state)) 1537 sync_request_write(mddev, r1_bio); 1538 else { 1539 int disk; 1540 1541 /* we got a read error. Maybe the drive is bad. Maybe just 1542 * the block and we can fix it. 1543 * We freeze all other IO, and try reading the block from 1544 * other devices. When we find one, we re-write 1545 * and check it that fixes the read error. 1546 * This is all done synchronously while the array is 1547 * frozen 1548 */ 1549 if (mddev->ro == 0) { 1550 freeze_array(conf); 1551 fix_read_error(conf, r1_bio->read_disk, 1552 r1_bio->sector, 1553 r1_bio->sectors); 1554 unfreeze_array(conf); 1555 } else 1556 md_error(mddev, 1557 conf->mirrors[r1_bio->read_disk].rdev); 1558 1559 bio = r1_bio->bios[r1_bio->read_disk]; 1560 if ((disk=read_balance(conf, r1_bio)) == -1) { 1561 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 1562 " read error for block %llu\n", 1563 mdname(mddev), 1564 bdevname(bio->bi_bdev,b), 1565 (unsigned long long)r1_bio->sector); 1566 raid_end_bio_io(r1_bio); 1567 } else { 1568 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC; 1569 r1_bio->bios[r1_bio->read_disk] = 1570 mddev->ro ? IO_BLOCKED : NULL; 1571 r1_bio->read_disk = disk; 1572 bio_put(bio); 1573 bio = bio_clone_mddev(r1_bio->master_bio, 1574 GFP_NOIO, mddev); 1575 r1_bio->bios[r1_bio->read_disk] = bio; 1576 rdev = conf->mirrors[disk].rdev; 1577 if (printk_ratelimit()) 1578 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to" 1579 " other mirror: %s\n", 1580 mdname(mddev), 1581 (unsigned long long)r1_bio->sector, 1582 bdevname(rdev->bdev,b)); 1583 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1584 bio->bi_bdev = rdev->bdev; 1585 bio->bi_end_io = raid1_end_read_request; 1586 bio->bi_rw = READ | do_sync; 1587 bio->bi_private = r1_bio; 1588 generic_make_request(bio); 1589 } 1590 } 1591 cond_resched(); 1592 } 1593 blk_finish_plug(&plug); 1594 } 1595 1596 1597 static int init_resync(conf_t *conf) 1598 { 1599 int buffs; 1600 1601 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1602 BUG_ON(conf->r1buf_pool); 1603 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1604 conf->poolinfo); 1605 if (!conf->r1buf_pool) 1606 return -ENOMEM; 1607 conf->next_resync = 0; 1608 return 0; 1609 } 1610 1611 /* 1612 * perform a "sync" on one "block" 1613 * 1614 * We need to make sure that no normal I/O request - particularly write 1615 * requests - conflict with active sync requests. 1616 * 1617 * This is achieved by tracking pending requests and a 'barrier' concept 1618 * that can be installed to exclude normal IO requests. 1619 */ 1620 1621 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1622 { 1623 conf_t *conf = mddev->private; 1624 r1bio_t *r1_bio; 1625 struct bio *bio; 1626 sector_t max_sector, nr_sectors; 1627 int disk = -1; 1628 int i; 1629 int wonly = -1; 1630 int write_targets = 0, read_targets = 0; 1631 sector_t sync_blocks; 1632 int still_degraded = 0; 1633 1634 if (!conf->r1buf_pool) 1635 if (init_resync(conf)) 1636 return 0; 1637 1638 max_sector = mddev->dev_sectors; 1639 if (sector_nr >= max_sector) { 1640 /* If we aborted, we need to abort the 1641 * sync on the 'current' bitmap chunk (there will 1642 * only be one in raid1 resync. 1643 * We can find the current addess in mddev->curr_resync 1644 */ 1645 if (mddev->curr_resync < max_sector) /* aborted */ 1646 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1647 &sync_blocks, 1); 1648 else /* completed sync */ 1649 conf->fullsync = 0; 1650 1651 bitmap_close_sync(mddev->bitmap); 1652 close_sync(conf); 1653 return 0; 1654 } 1655 1656 if (mddev->bitmap == NULL && 1657 mddev->recovery_cp == MaxSector && 1658 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1659 conf->fullsync == 0) { 1660 *skipped = 1; 1661 return max_sector - sector_nr; 1662 } 1663 /* before building a request, check if we can skip these blocks.. 1664 * This call the bitmap_start_sync doesn't actually record anything 1665 */ 1666 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1667 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1668 /* We can skip this block, and probably several more */ 1669 *skipped = 1; 1670 return sync_blocks; 1671 } 1672 /* 1673 * If there is non-resync activity waiting for a turn, 1674 * and resync is going fast enough, 1675 * then let it though before starting on this new sync request. 1676 */ 1677 if (!go_faster && conf->nr_waiting) 1678 msleep_interruptible(1000); 1679 1680 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 1681 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1682 raise_barrier(conf); 1683 1684 conf->next_resync = sector_nr; 1685 1686 rcu_read_lock(); 1687 /* 1688 * If we get a correctably read error during resync or recovery, 1689 * we might want to read from a different device. So we 1690 * flag all drives that could conceivably be read from for READ, 1691 * and any others (which will be non-In_sync devices) for WRITE. 1692 * If a read fails, we try reading from something else for which READ 1693 * is OK. 1694 */ 1695 1696 r1_bio->mddev = mddev; 1697 r1_bio->sector = sector_nr; 1698 r1_bio->state = 0; 1699 set_bit(R1BIO_IsSync, &r1_bio->state); 1700 1701 for (i=0; i < conf->raid_disks; i++) { 1702 mdk_rdev_t *rdev; 1703 bio = r1_bio->bios[i]; 1704 1705 /* take from bio_init */ 1706 bio->bi_next = NULL; 1707 bio->bi_flags &= ~(BIO_POOL_MASK-1); 1708 bio->bi_flags |= 1 << BIO_UPTODATE; 1709 bio->bi_comp_cpu = -1; 1710 bio->bi_rw = READ; 1711 bio->bi_vcnt = 0; 1712 bio->bi_idx = 0; 1713 bio->bi_phys_segments = 0; 1714 bio->bi_size = 0; 1715 bio->bi_end_io = NULL; 1716 bio->bi_private = NULL; 1717 1718 rdev = rcu_dereference(conf->mirrors[i].rdev); 1719 if (rdev == NULL || 1720 test_bit(Faulty, &rdev->flags)) { 1721 still_degraded = 1; 1722 continue; 1723 } else if (!test_bit(In_sync, &rdev->flags)) { 1724 bio->bi_rw = WRITE; 1725 bio->bi_end_io = end_sync_write; 1726 write_targets ++; 1727 } else { 1728 /* may need to read from here */ 1729 bio->bi_rw = READ; 1730 bio->bi_end_io = end_sync_read; 1731 if (test_bit(WriteMostly, &rdev->flags)) { 1732 if (wonly < 0) 1733 wonly = i; 1734 } else { 1735 if (disk < 0) 1736 disk = i; 1737 } 1738 read_targets++; 1739 } 1740 atomic_inc(&rdev->nr_pending); 1741 bio->bi_sector = sector_nr + rdev->data_offset; 1742 bio->bi_bdev = rdev->bdev; 1743 bio->bi_private = r1_bio; 1744 } 1745 rcu_read_unlock(); 1746 if (disk < 0) 1747 disk = wonly; 1748 r1_bio->read_disk = disk; 1749 1750 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1751 /* extra read targets are also write targets */ 1752 write_targets += read_targets-1; 1753 1754 if (write_targets == 0 || read_targets == 0) { 1755 /* There is nowhere to write, so all non-sync 1756 * drives must be failed - so we are finished 1757 */ 1758 sector_t rv = max_sector - sector_nr; 1759 *skipped = 1; 1760 put_buf(r1_bio); 1761 return rv; 1762 } 1763 1764 if (max_sector > mddev->resync_max) 1765 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1766 nr_sectors = 0; 1767 sync_blocks = 0; 1768 do { 1769 struct page *page; 1770 int len = PAGE_SIZE; 1771 if (sector_nr + (len>>9) > max_sector) 1772 len = (max_sector - sector_nr) << 9; 1773 if (len == 0) 1774 break; 1775 if (sync_blocks == 0) { 1776 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1777 &sync_blocks, still_degraded) && 1778 !conf->fullsync && 1779 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1780 break; 1781 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1782 if ((len >> 9) > sync_blocks) 1783 len = sync_blocks<<9; 1784 } 1785 1786 for (i=0 ; i < conf->raid_disks; i++) { 1787 bio = r1_bio->bios[i]; 1788 if (bio->bi_end_io) { 1789 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1790 if (bio_add_page(bio, page, len, 0) == 0) { 1791 /* stop here */ 1792 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1793 while (i > 0) { 1794 i--; 1795 bio = r1_bio->bios[i]; 1796 if (bio->bi_end_io==NULL) 1797 continue; 1798 /* remove last page from this bio */ 1799 bio->bi_vcnt--; 1800 bio->bi_size -= len; 1801 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1802 } 1803 goto bio_full; 1804 } 1805 } 1806 } 1807 nr_sectors += len>>9; 1808 sector_nr += len>>9; 1809 sync_blocks -= (len>>9); 1810 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1811 bio_full: 1812 r1_bio->sectors = nr_sectors; 1813 1814 /* For a user-requested sync, we read all readable devices and do a 1815 * compare 1816 */ 1817 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1818 atomic_set(&r1_bio->remaining, read_targets); 1819 for (i=0; i<conf->raid_disks; i++) { 1820 bio = r1_bio->bios[i]; 1821 if (bio->bi_end_io == end_sync_read) { 1822 md_sync_acct(bio->bi_bdev, nr_sectors); 1823 generic_make_request(bio); 1824 } 1825 } 1826 } else { 1827 atomic_set(&r1_bio->remaining, 1); 1828 bio = r1_bio->bios[r1_bio->read_disk]; 1829 md_sync_acct(bio->bi_bdev, nr_sectors); 1830 generic_make_request(bio); 1831 1832 } 1833 return nr_sectors; 1834 } 1835 1836 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks) 1837 { 1838 if (sectors) 1839 return sectors; 1840 1841 return mddev->dev_sectors; 1842 } 1843 1844 static conf_t *setup_conf(mddev_t *mddev) 1845 { 1846 conf_t *conf; 1847 int i; 1848 mirror_info_t *disk; 1849 mdk_rdev_t *rdev; 1850 int err = -ENOMEM; 1851 1852 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1853 if (!conf) 1854 goto abort; 1855 1856 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1857 GFP_KERNEL); 1858 if (!conf->mirrors) 1859 goto abort; 1860 1861 conf->tmppage = alloc_page(GFP_KERNEL); 1862 if (!conf->tmppage) 1863 goto abort; 1864 1865 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1866 if (!conf->poolinfo) 1867 goto abort; 1868 conf->poolinfo->raid_disks = mddev->raid_disks; 1869 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1870 r1bio_pool_free, 1871 conf->poolinfo); 1872 if (!conf->r1bio_pool) 1873 goto abort; 1874 1875 conf->poolinfo->mddev = mddev; 1876 1877 spin_lock_init(&conf->device_lock); 1878 list_for_each_entry(rdev, &mddev->disks, same_set) { 1879 int disk_idx = rdev->raid_disk; 1880 if (disk_idx >= mddev->raid_disks 1881 || disk_idx < 0) 1882 continue; 1883 disk = conf->mirrors + disk_idx; 1884 1885 disk->rdev = rdev; 1886 1887 disk->head_position = 0; 1888 } 1889 conf->raid_disks = mddev->raid_disks; 1890 conf->mddev = mddev; 1891 INIT_LIST_HEAD(&conf->retry_list); 1892 1893 spin_lock_init(&conf->resync_lock); 1894 init_waitqueue_head(&conf->wait_barrier); 1895 1896 bio_list_init(&conf->pending_bio_list); 1897 1898 conf->last_used = -1; 1899 for (i = 0; i < conf->raid_disks; i++) { 1900 1901 disk = conf->mirrors + i; 1902 1903 if (!disk->rdev || 1904 !test_bit(In_sync, &disk->rdev->flags)) { 1905 disk->head_position = 0; 1906 if (disk->rdev) 1907 conf->fullsync = 1; 1908 } else if (conf->last_used < 0) 1909 /* 1910 * The first working device is used as a 1911 * starting point to read balancing. 1912 */ 1913 conf->last_used = i; 1914 } 1915 1916 err = -EIO; 1917 if (conf->last_used < 0) { 1918 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n", 1919 mdname(mddev)); 1920 goto abort; 1921 } 1922 err = -ENOMEM; 1923 conf->thread = md_register_thread(raid1d, mddev, NULL); 1924 if (!conf->thread) { 1925 printk(KERN_ERR 1926 "md/raid1:%s: couldn't allocate thread\n", 1927 mdname(mddev)); 1928 goto abort; 1929 } 1930 1931 return conf; 1932 1933 abort: 1934 if (conf) { 1935 if (conf->r1bio_pool) 1936 mempool_destroy(conf->r1bio_pool); 1937 kfree(conf->mirrors); 1938 safe_put_page(conf->tmppage); 1939 kfree(conf->poolinfo); 1940 kfree(conf); 1941 } 1942 return ERR_PTR(err); 1943 } 1944 1945 static int run(mddev_t *mddev) 1946 { 1947 conf_t *conf; 1948 int i; 1949 mdk_rdev_t *rdev; 1950 1951 if (mddev->level != 1) { 1952 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 1953 mdname(mddev), mddev->level); 1954 return -EIO; 1955 } 1956 if (mddev->reshape_position != MaxSector) { 1957 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 1958 mdname(mddev)); 1959 return -EIO; 1960 } 1961 /* 1962 * copy the already verified devices into our private RAID1 1963 * bookkeeping area. [whatever we allocate in run(), 1964 * should be freed in stop()] 1965 */ 1966 if (mddev->private == NULL) 1967 conf = setup_conf(mddev); 1968 else 1969 conf = mddev->private; 1970 1971 if (IS_ERR(conf)) 1972 return PTR_ERR(conf); 1973 1974 list_for_each_entry(rdev, &mddev->disks, same_set) { 1975 disk_stack_limits(mddev->gendisk, rdev->bdev, 1976 rdev->data_offset << 9); 1977 /* as we don't honour merge_bvec_fn, we must never risk 1978 * violating it, so limit ->max_segments to 1 lying within 1979 * a single page, as a one page request is never in violation. 1980 */ 1981 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1982 blk_queue_max_segments(mddev->queue, 1); 1983 blk_queue_segment_boundary(mddev->queue, 1984 PAGE_CACHE_SIZE - 1); 1985 } 1986 } 1987 1988 mddev->degraded = 0; 1989 for (i=0; i < conf->raid_disks; i++) 1990 if (conf->mirrors[i].rdev == NULL || 1991 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 1992 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 1993 mddev->degraded++; 1994 1995 if (conf->raid_disks - mddev->degraded == 1) 1996 mddev->recovery_cp = MaxSector; 1997 1998 if (mddev->recovery_cp != MaxSector) 1999 printk(KERN_NOTICE "md/raid1:%s: not clean" 2000 " -- starting background reconstruction\n", 2001 mdname(mddev)); 2002 printk(KERN_INFO 2003 "md/raid1:%s: active with %d out of %d mirrors\n", 2004 mdname(mddev), mddev->raid_disks - mddev->degraded, 2005 mddev->raid_disks); 2006 2007 /* 2008 * Ok, everything is just fine now 2009 */ 2010 mddev->thread = conf->thread; 2011 conf->thread = NULL; 2012 mddev->private = conf; 2013 2014 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2015 2016 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2017 mddev->queue->backing_dev_info.congested_data = mddev; 2018 return md_integrity_register(mddev); 2019 } 2020 2021 static int stop(mddev_t *mddev) 2022 { 2023 conf_t *conf = mddev->private; 2024 struct bitmap *bitmap = mddev->bitmap; 2025 2026 /* wait for behind writes to complete */ 2027 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2028 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n", 2029 mdname(mddev)); 2030 /* need to kick something here to make sure I/O goes? */ 2031 wait_event(bitmap->behind_wait, 2032 atomic_read(&bitmap->behind_writes) == 0); 2033 } 2034 2035 raise_barrier(conf); 2036 lower_barrier(conf); 2037 2038 md_unregister_thread(mddev->thread); 2039 mddev->thread = NULL; 2040 if (conf->r1bio_pool) 2041 mempool_destroy(conf->r1bio_pool); 2042 kfree(conf->mirrors); 2043 kfree(conf->poolinfo); 2044 kfree(conf); 2045 mddev->private = NULL; 2046 return 0; 2047 } 2048 2049 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2050 { 2051 /* no resync is happening, and there is enough space 2052 * on all devices, so we can resize. 2053 * We need to make sure resync covers any new space. 2054 * If the array is shrinking we should possibly wait until 2055 * any io in the removed space completes, but it hardly seems 2056 * worth it. 2057 */ 2058 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0)); 2059 if (mddev->array_sectors > raid1_size(mddev, sectors, 0)) 2060 return -EINVAL; 2061 set_capacity(mddev->gendisk, mddev->array_sectors); 2062 revalidate_disk(mddev->gendisk); 2063 if (sectors > mddev->dev_sectors && 2064 mddev->recovery_cp > mddev->dev_sectors) { 2065 mddev->recovery_cp = mddev->dev_sectors; 2066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2067 } 2068 mddev->dev_sectors = sectors; 2069 mddev->resync_max_sectors = sectors; 2070 return 0; 2071 } 2072 2073 static int raid1_reshape(mddev_t *mddev) 2074 { 2075 /* We need to: 2076 * 1/ resize the r1bio_pool 2077 * 2/ resize conf->mirrors 2078 * 2079 * We allocate a new r1bio_pool if we can. 2080 * Then raise a device barrier and wait until all IO stops. 2081 * Then resize conf->mirrors and swap in the new r1bio pool. 2082 * 2083 * At the same time, we "pack" the devices so that all the missing 2084 * devices have the higher raid_disk numbers. 2085 */ 2086 mempool_t *newpool, *oldpool; 2087 struct pool_info *newpoolinfo; 2088 mirror_info_t *newmirrors; 2089 conf_t *conf = mddev->private; 2090 int cnt, raid_disks; 2091 unsigned long flags; 2092 int d, d2, err; 2093 2094 /* Cannot change chunk_size, layout, or level */ 2095 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 2096 mddev->layout != mddev->new_layout || 2097 mddev->level != mddev->new_level) { 2098 mddev->new_chunk_sectors = mddev->chunk_sectors; 2099 mddev->new_layout = mddev->layout; 2100 mddev->new_level = mddev->level; 2101 return -EINVAL; 2102 } 2103 2104 err = md_allow_write(mddev); 2105 if (err) 2106 return err; 2107 2108 raid_disks = mddev->raid_disks + mddev->delta_disks; 2109 2110 if (raid_disks < conf->raid_disks) { 2111 cnt=0; 2112 for (d= 0; d < conf->raid_disks; d++) 2113 if (conf->mirrors[d].rdev) 2114 cnt++; 2115 if (cnt > raid_disks) 2116 return -EBUSY; 2117 } 2118 2119 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2120 if (!newpoolinfo) 2121 return -ENOMEM; 2122 newpoolinfo->mddev = mddev; 2123 newpoolinfo->raid_disks = raid_disks; 2124 2125 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2126 r1bio_pool_free, newpoolinfo); 2127 if (!newpool) { 2128 kfree(newpoolinfo); 2129 return -ENOMEM; 2130 } 2131 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2132 if (!newmirrors) { 2133 kfree(newpoolinfo); 2134 mempool_destroy(newpool); 2135 return -ENOMEM; 2136 } 2137 2138 raise_barrier(conf); 2139 2140 /* ok, everything is stopped */ 2141 oldpool = conf->r1bio_pool; 2142 conf->r1bio_pool = newpool; 2143 2144 for (d = d2 = 0; d < conf->raid_disks; d++) { 2145 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2146 if (rdev && rdev->raid_disk != d2) { 2147 char nm[20]; 2148 sprintf(nm, "rd%d", rdev->raid_disk); 2149 sysfs_remove_link(&mddev->kobj, nm); 2150 rdev->raid_disk = d2; 2151 sprintf(nm, "rd%d", rdev->raid_disk); 2152 sysfs_remove_link(&mddev->kobj, nm); 2153 if (sysfs_create_link(&mddev->kobj, 2154 &rdev->kobj, nm)) 2155 printk(KERN_WARNING 2156 "md/raid1:%s: cannot register " 2157 "%s\n", 2158 mdname(mddev), nm); 2159 } 2160 if (rdev) 2161 newmirrors[d2++].rdev = rdev; 2162 } 2163 kfree(conf->mirrors); 2164 conf->mirrors = newmirrors; 2165 kfree(conf->poolinfo); 2166 conf->poolinfo = newpoolinfo; 2167 2168 spin_lock_irqsave(&conf->device_lock, flags); 2169 mddev->degraded += (raid_disks - conf->raid_disks); 2170 spin_unlock_irqrestore(&conf->device_lock, flags); 2171 conf->raid_disks = mddev->raid_disks = raid_disks; 2172 mddev->delta_disks = 0; 2173 2174 conf->last_used = 0; /* just make sure it is in-range */ 2175 lower_barrier(conf); 2176 2177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2178 md_wakeup_thread(mddev->thread); 2179 2180 mempool_destroy(oldpool); 2181 return 0; 2182 } 2183 2184 static void raid1_quiesce(mddev_t *mddev, int state) 2185 { 2186 conf_t *conf = mddev->private; 2187 2188 switch(state) { 2189 case 2: /* wake for suspend */ 2190 wake_up(&conf->wait_barrier); 2191 break; 2192 case 1: 2193 raise_barrier(conf); 2194 break; 2195 case 0: 2196 lower_barrier(conf); 2197 break; 2198 } 2199 } 2200 2201 static void *raid1_takeover(mddev_t *mddev) 2202 { 2203 /* raid1 can take over: 2204 * raid5 with 2 devices, any layout or chunk size 2205 */ 2206 if (mddev->level == 5 && mddev->raid_disks == 2) { 2207 conf_t *conf; 2208 mddev->new_level = 1; 2209 mddev->new_layout = 0; 2210 mddev->new_chunk_sectors = 0; 2211 conf = setup_conf(mddev); 2212 if (!IS_ERR(conf)) 2213 conf->barrier = 1; 2214 return conf; 2215 } 2216 return ERR_PTR(-EINVAL); 2217 } 2218 2219 static struct mdk_personality raid1_personality = 2220 { 2221 .name = "raid1", 2222 .level = 1, 2223 .owner = THIS_MODULE, 2224 .make_request = make_request, 2225 .run = run, 2226 .stop = stop, 2227 .status = status, 2228 .error_handler = error, 2229 .hot_add_disk = raid1_add_disk, 2230 .hot_remove_disk= raid1_remove_disk, 2231 .spare_active = raid1_spare_active, 2232 .sync_request = sync_request, 2233 .resize = raid1_resize, 2234 .size = raid1_size, 2235 .check_reshape = raid1_reshape, 2236 .quiesce = raid1_quiesce, 2237 .takeover = raid1_takeover, 2238 }; 2239 2240 static int __init raid_init(void) 2241 { 2242 return register_md_personality(&raid1_personality); 2243 } 2244 2245 static void raid_exit(void) 2246 { 2247 unregister_md_personality(&raid1_personality); 2248 } 2249 2250 module_init(raid_init); 2251 module_exit(raid_exit); 2252 MODULE_LICENSE("GPL"); 2253 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 2254 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2255 MODULE_ALIAS("md-raid1"); 2256 MODULE_ALIAS("md-level-1"); 2257