xref: /linux/drivers/md/raid1.c (revision 492c826b9facefa84995f4dea917e301b5ee0884)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41 
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48 
49 /*
50  * Number of guaranteed r1bios in case of extreme VM load:
51  */
52 #define	NR_RAID1_BIOS 256
53 
54 
55 static void allow_barrier(conf_t *conf);
56 static void lower_barrier(conf_t *conf);
57 
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 	struct pool_info *pi = data;
61 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 
63 	/* allocate a r1bio with room for raid_disks entries in the bios array */
64 	return kzalloc(size, gfp_flags);
65 }
66 
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 	kfree(r1_bio);
70 }
71 
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77 
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 	struct pool_info *pi = data;
81 	struct page *page;
82 	r1bio_t *r1_bio;
83 	struct bio *bio;
84 	int i, j;
85 
86 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 	if (!r1_bio)
88 		return NULL;
89 
90 	/*
91 	 * Allocate bios : 1 for reading, n-1 for writing
92 	 */
93 	for (j = pi->raid_disks ; j-- ; ) {
94 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 		if (!bio)
96 			goto out_free_bio;
97 		r1_bio->bios[j] = bio;
98 	}
99 	/*
100 	 * Allocate RESYNC_PAGES data pages and attach them to
101 	 * the first bio.
102 	 * If this is a user-requested check/repair, allocate
103 	 * RESYNC_PAGES for each bio.
104 	 */
105 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 		j = pi->raid_disks;
107 	else
108 		j = 1;
109 	while(j--) {
110 		bio = r1_bio->bios[j];
111 		for (i = 0; i < RESYNC_PAGES; i++) {
112 			page = alloc_page(gfp_flags);
113 			if (unlikely(!page))
114 				goto out_free_pages;
115 
116 			bio->bi_io_vec[i].bv_page = page;
117 			bio->bi_vcnt = i+1;
118 		}
119 	}
120 	/* If not user-requests, copy the page pointers to all bios */
121 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 		for (i=0; i<RESYNC_PAGES ; i++)
123 			for (j=1; j<pi->raid_disks; j++)
124 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 	}
127 
128 	r1_bio->master_bio = NULL;
129 
130 	return r1_bio;
131 
132 out_free_pages:
133 	for (j=0 ; j < pi->raid_disks; j++)
134 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 	j = -1;
137 out_free_bio:
138 	while ( ++j < pi->raid_disks )
139 		bio_put(r1_bio->bios[j]);
140 	r1bio_pool_free(r1_bio, data);
141 	return NULL;
142 }
143 
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 	struct pool_info *pi = data;
147 	int i,j;
148 	r1bio_t *r1bio = __r1_bio;
149 
150 	for (i = 0; i < RESYNC_PAGES; i++)
151 		for (j = pi->raid_disks; j-- ;) {
152 			if (j == 0 ||
153 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
155 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 		}
157 	for (i=0 ; i < pi->raid_disks; i++)
158 		bio_put(r1bio->bios[i]);
159 
160 	r1bio_pool_free(r1bio, data);
161 }
162 
163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
164 {
165 	int i;
166 
167 	for (i = 0; i < conf->raid_disks; i++) {
168 		struct bio **bio = r1_bio->bios + i;
169 		if (*bio && *bio != IO_BLOCKED)
170 			bio_put(*bio);
171 		*bio = NULL;
172 	}
173 }
174 
175 static void free_r1bio(r1bio_t *r1_bio)
176 {
177 	conf_t *conf = r1_bio->mddev->private;
178 
179 	/*
180 	 * Wake up any possible resync thread that waits for the device
181 	 * to go idle.
182 	 */
183 	allow_barrier(conf);
184 
185 	put_all_bios(conf, r1_bio);
186 	mempool_free(r1_bio, conf->r1bio_pool);
187 }
188 
189 static void put_buf(r1bio_t *r1_bio)
190 {
191 	conf_t *conf = r1_bio->mddev->private;
192 	int i;
193 
194 	for (i=0; i<conf->raid_disks; i++) {
195 		struct bio *bio = r1_bio->bios[i];
196 		if (bio->bi_end_io)
197 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
198 	}
199 
200 	mempool_free(r1_bio, conf->r1buf_pool);
201 
202 	lower_barrier(conf);
203 }
204 
205 static void reschedule_retry(r1bio_t *r1_bio)
206 {
207 	unsigned long flags;
208 	mddev_t *mddev = r1_bio->mddev;
209 	conf_t *conf = mddev->private;
210 
211 	spin_lock_irqsave(&conf->device_lock, flags);
212 	list_add(&r1_bio->retry_list, &conf->retry_list);
213 	conf->nr_queued ++;
214 	spin_unlock_irqrestore(&conf->device_lock, flags);
215 
216 	wake_up(&conf->wait_barrier);
217 	md_wakeup_thread(mddev->thread);
218 }
219 
220 /*
221  * raid_end_bio_io() is called when we have finished servicing a mirrored
222  * operation and are ready to return a success/failure code to the buffer
223  * cache layer.
224  */
225 static void raid_end_bio_io(r1bio_t *r1_bio)
226 {
227 	struct bio *bio = r1_bio->master_bio;
228 
229 	/* if nobody has done the final endio yet, do it now */
230 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
231 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
232 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
233 			(unsigned long long) bio->bi_sector,
234 			(unsigned long long) bio->bi_sector +
235 				(bio->bi_size >> 9) - 1);
236 
237 		bio_endio(bio,
238 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
239 	}
240 	free_r1bio(r1_bio);
241 }
242 
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
246 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
247 {
248 	conf_t *conf = r1_bio->mddev->private;
249 
250 	conf->mirrors[disk].head_position =
251 		r1_bio->sector + (r1_bio->sectors);
252 }
253 
254 static void raid1_end_read_request(struct bio *bio, int error)
255 {
256 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 	r1bio_t *r1_bio = bio->bi_private;
258 	int mirror;
259 	conf_t *conf = r1_bio->mddev->private;
260 
261 	mirror = r1_bio->read_disk;
262 	/*
263 	 * this branch is our 'one mirror IO has finished' event handler:
264 	 */
265 	update_head_pos(mirror, r1_bio);
266 
267 	if (uptodate)
268 		set_bit(R1BIO_Uptodate, &r1_bio->state);
269 	else {
270 		/* If all other devices have failed, we want to return
271 		 * the error upwards rather than fail the last device.
272 		 * Here we redefine "uptodate" to mean "Don't want to retry"
273 		 */
274 		unsigned long flags;
275 		spin_lock_irqsave(&conf->device_lock, flags);
276 		if (r1_bio->mddev->degraded == conf->raid_disks ||
277 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
278 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
279 			uptodate = 1;
280 		spin_unlock_irqrestore(&conf->device_lock, flags);
281 	}
282 
283 	if (uptodate)
284 		raid_end_bio_io(r1_bio);
285 	else {
286 		/*
287 		 * oops, read error:
288 		 */
289 		char b[BDEVNAME_SIZE];
290 		if (printk_ratelimit())
291 			printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
292 			       mdname(conf->mddev),
293 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
294 		reschedule_retry(r1_bio);
295 	}
296 
297 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
298 }
299 
300 static void r1_bio_write_done(r1bio_t *r1_bio)
301 {
302 	if (atomic_dec_and_test(&r1_bio->remaining))
303 	{
304 		/* it really is the end of this request */
305 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
306 			/* free extra copy of the data pages */
307 			int i = r1_bio->behind_page_count;
308 			while (i--)
309 				safe_put_page(r1_bio->behind_pages[i]);
310 			kfree(r1_bio->behind_pages);
311 			r1_bio->behind_pages = NULL;
312 		}
313 		/* clear the bitmap if all writes complete successfully */
314 		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
315 				r1_bio->sectors,
316 				!test_bit(R1BIO_Degraded, &r1_bio->state),
317 				test_bit(R1BIO_BehindIO, &r1_bio->state));
318 		md_write_end(r1_bio->mddev);
319 		raid_end_bio_io(r1_bio);
320 	}
321 }
322 
323 static void raid1_end_write_request(struct bio *bio, int error)
324 {
325 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 	r1bio_t *r1_bio = bio->bi_private;
327 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
328 	conf_t *conf = r1_bio->mddev->private;
329 	struct bio *to_put = NULL;
330 
331 
332 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
333 		if (r1_bio->bios[mirror] == bio)
334 			break;
335 
336 	/*
337 	 * 'one mirror IO has finished' event handler:
338 	 */
339 	r1_bio->bios[mirror] = NULL;
340 	to_put = bio;
341 	if (!uptodate) {
342 		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
343 		/* an I/O failed, we can't clear the bitmap */
344 		set_bit(R1BIO_Degraded, &r1_bio->state);
345 	} else
346 		/*
347 		 * Set R1BIO_Uptodate in our master bio, so that we
348 		 * will return a good error code for to the higher
349 		 * levels even if IO on some other mirrored buffer
350 		 * fails.
351 		 *
352 		 * The 'master' represents the composite IO operation
353 		 * to user-side. So if something waits for IO, then it
354 		 * will wait for the 'master' bio.
355 		 */
356 		set_bit(R1BIO_Uptodate, &r1_bio->state);
357 
358 	update_head_pos(mirror, r1_bio);
359 
360 	if (behind) {
361 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
362 			atomic_dec(&r1_bio->behind_remaining);
363 
364 		/*
365 		 * In behind mode, we ACK the master bio once the I/O
366 		 * has safely reached all non-writemostly
367 		 * disks. Setting the Returned bit ensures that this
368 		 * gets done only once -- we don't ever want to return
369 		 * -EIO here, instead we'll wait
370 		 */
371 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
372 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
373 			/* Maybe we can return now */
374 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
375 				struct bio *mbio = r1_bio->master_bio;
376 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
377 				       (unsigned long long) mbio->bi_sector,
378 				       (unsigned long long) mbio->bi_sector +
379 				       (mbio->bi_size >> 9) - 1);
380 				bio_endio(mbio, 0);
381 			}
382 		}
383 	}
384 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
385 
386 	/*
387 	 * Let's see if all mirrored write operations have finished
388 	 * already.
389 	 */
390 	r1_bio_write_done(r1_bio);
391 
392 	if (to_put)
393 		bio_put(to_put);
394 }
395 
396 
397 /*
398  * This routine returns the disk from which the requested read should
399  * be done. There is a per-array 'next expected sequential IO' sector
400  * number - if this matches on the next IO then we use the last disk.
401  * There is also a per-disk 'last know head position' sector that is
402  * maintained from IRQ contexts, both the normal and the resync IO
403  * completion handlers update this position correctly. If there is no
404  * perfect sequential match then we pick the disk whose head is closest.
405  *
406  * If there are 2 mirrors in the same 2 devices, performance degrades
407  * because position is mirror, not device based.
408  *
409  * The rdev for the device selected will have nr_pending incremented.
410  */
411 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
412 {
413 	const sector_t this_sector = r1_bio->sector;
414 	const int sectors = r1_bio->sectors;
415 	int start_disk;
416 	int best_disk;
417 	int i;
418 	sector_t best_dist;
419 	mdk_rdev_t *rdev;
420 	int choose_first;
421 
422 	rcu_read_lock();
423 	/*
424 	 * Check if we can balance. We can balance on the whole
425 	 * device if no resync is going on, or below the resync window.
426 	 * We take the first readable disk when above the resync window.
427 	 */
428  retry:
429 	best_disk = -1;
430 	best_dist = MaxSector;
431 	if (conf->mddev->recovery_cp < MaxSector &&
432 	    (this_sector + sectors >= conf->next_resync)) {
433 		choose_first = 1;
434 		start_disk = 0;
435 	} else {
436 		choose_first = 0;
437 		start_disk = conf->last_used;
438 	}
439 
440 	for (i = 0 ; i < conf->raid_disks ; i++) {
441 		sector_t dist;
442 		int disk = start_disk + i;
443 		if (disk >= conf->raid_disks)
444 			disk -= conf->raid_disks;
445 
446 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
447 		if (r1_bio->bios[disk] == IO_BLOCKED
448 		    || rdev == NULL
449 		    || test_bit(Faulty, &rdev->flags))
450 			continue;
451 		if (!test_bit(In_sync, &rdev->flags) &&
452 		    rdev->recovery_offset < this_sector + sectors)
453 			continue;
454 		if (test_bit(WriteMostly, &rdev->flags)) {
455 			/* Don't balance among write-mostly, just
456 			 * use the first as a last resort */
457 			if (best_disk < 0)
458 				best_disk = disk;
459 			continue;
460 		}
461 		/* This is a reasonable device to use.  It might
462 		 * even be best.
463 		 */
464 		dist = abs(this_sector - conf->mirrors[disk].head_position);
465 		if (choose_first
466 		    /* Don't change to another disk for sequential reads */
467 		    || conf->next_seq_sect == this_sector
468 		    || dist == 0
469 		    /* If device is idle, use it */
470 		    || atomic_read(&rdev->nr_pending) == 0) {
471 			best_disk = disk;
472 			break;
473 		}
474 		if (dist < best_dist) {
475 			best_dist = dist;
476 			best_disk = disk;
477 		}
478 	}
479 
480 	if (best_disk >= 0) {
481 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
482 		if (!rdev)
483 			goto retry;
484 		atomic_inc(&rdev->nr_pending);
485 		if (test_bit(Faulty, &rdev->flags)) {
486 			/* cannot risk returning a device that failed
487 			 * before we inc'ed nr_pending
488 			 */
489 			rdev_dec_pending(rdev, conf->mddev);
490 			goto retry;
491 		}
492 		conf->next_seq_sect = this_sector + sectors;
493 		conf->last_used = best_disk;
494 	}
495 	rcu_read_unlock();
496 
497 	return best_disk;
498 }
499 
500 static int raid1_congested(void *data, int bits)
501 {
502 	mddev_t *mddev = data;
503 	conf_t *conf = mddev->private;
504 	int i, ret = 0;
505 
506 	if (mddev_congested(mddev, bits))
507 		return 1;
508 
509 	rcu_read_lock();
510 	for (i = 0; i < mddev->raid_disks; i++) {
511 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
512 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
513 			struct request_queue *q = bdev_get_queue(rdev->bdev);
514 
515 			/* Note the '|| 1' - when read_balance prefers
516 			 * non-congested targets, it can be removed
517 			 */
518 			if ((bits & (1<<BDI_async_congested)) || 1)
519 				ret |= bdi_congested(&q->backing_dev_info, bits);
520 			else
521 				ret &= bdi_congested(&q->backing_dev_info, bits);
522 		}
523 	}
524 	rcu_read_unlock();
525 	return ret;
526 }
527 
528 
529 static void flush_pending_writes(conf_t *conf)
530 {
531 	/* Any writes that have been queued but are awaiting
532 	 * bitmap updates get flushed here.
533 	 */
534 	spin_lock_irq(&conf->device_lock);
535 
536 	if (conf->pending_bio_list.head) {
537 		struct bio *bio;
538 		bio = bio_list_get(&conf->pending_bio_list);
539 		spin_unlock_irq(&conf->device_lock);
540 		/* flush any pending bitmap writes to
541 		 * disk before proceeding w/ I/O */
542 		bitmap_unplug(conf->mddev->bitmap);
543 
544 		while (bio) { /* submit pending writes */
545 			struct bio *next = bio->bi_next;
546 			bio->bi_next = NULL;
547 			generic_make_request(bio);
548 			bio = next;
549 		}
550 	} else
551 		spin_unlock_irq(&conf->device_lock);
552 }
553 
554 /* Barriers....
555  * Sometimes we need to suspend IO while we do something else,
556  * either some resync/recovery, or reconfigure the array.
557  * To do this we raise a 'barrier'.
558  * The 'barrier' is a counter that can be raised multiple times
559  * to count how many activities are happening which preclude
560  * normal IO.
561  * We can only raise the barrier if there is no pending IO.
562  * i.e. if nr_pending == 0.
563  * We choose only to raise the barrier if no-one is waiting for the
564  * barrier to go down.  This means that as soon as an IO request
565  * is ready, no other operations which require a barrier will start
566  * until the IO request has had a chance.
567  *
568  * So: regular IO calls 'wait_barrier'.  When that returns there
569  *    is no backgroup IO happening,  It must arrange to call
570  *    allow_barrier when it has finished its IO.
571  * backgroup IO calls must call raise_barrier.  Once that returns
572  *    there is no normal IO happeing.  It must arrange to call
573  *    lower_barrier when the particular background IO completes.
574  */
575 #define RESYNC_DEPTH 32
576 
577 static void raise_barrier(conf_t *conf)
578 {
579 	spin_lock_irq(&conf->resync_lock);
580 
581 	/* Wait until no block IO is waiting */
582 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
583 			    conf->resync_lock, );
584 
585 	/* block any new IO from starting */
586 	conf->barrier++;
587 
588 	/* Now wait for all pending IO to complete */
589 	wait_event_lock_irq(conf->wait_barrier,
590 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
591 			    conf->resync_lock, );
592 
593 	spin_unlock_irq(&conf->resync_lock);
594 }
595 
596 static void lower_barrier(conf_t *conf)
597 {
598 	unsigned long flags;
599 	BUG_ON(conf->barrier <= 0);
600 	spin_lock_irqsave(&conf->resync_lock, flags);
601 	conf->barrier--;
602 	spin_unlock_irqrestore(&conf->resync_lock, flags);
603 	wake_up(&conf->wait_barrier);
604 }
605 
606 static void wait_barrier(conf_t *conf)
607 {
608 	spin_lock_irq(&conf->resync_lock);
609 	if (conf->barrier) {
610 		conf->nr_waiting++;
611 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
612 				    conf->resync_lock,
613 				    );
614 		conf->nr_waiting--;
615 	}
616 	conf->nr_pending++;
617 	spin_unlock_irq(&conf->resync_lock);
618 }
619 
620 static void allow_barrier(conf_t *conf)
621 {
622 	unsigned long flags;
623 	spin_lock_irqsave(&conf->resync_lock, flags);
624 	conf->nr_pending--;
625 	spin_unlock_irqrestore(&conf->resync_lock, flags);
626 	wake_up(&conf->wait_barrier);
627 }
628 
629 static void freeze_array(conf_t *conf)
630 {
631 	/* stop syncio and normal IO and wait for everything to
632 	 * go quite.
633 	 * We increment barrier and nr_waiting, and then
634 	 * wait until nr_pending match nr_queued+1
635 	 * This is called in the context of one normal IO request
636 	 * that has failed. Thus any sync request that might be pending
637 	 * will be blocked by nr_pending, and we need to wait for
638 	 * pending IO requests to complete or be queued for re-try.
639 	 * Thus the number queued (nr_queued) plus this request (1)
640 	 * must match the number of pending IOs (nr_pending) before
641 	 * we continue.
642 	 */
643 	spin_lock_irq(&conf->resync_lock);
644 	conf->barrier++;
645 	conf->nr_waiting++;
646 	wait_event_lock_irq(conf->wait_barrier,
647 			    conf->nr_pending == conf->nr_queued+1,
648 			    conf->resync_lock,
649 			    flush_pending_writes(conf));
650 	spin_unlock_irq(&conf->resync_lock);
651 }
652 static void unfreeze_array(conf_t *conf)
653 {
654 	/* reverse the effect of the freeze */
655 	spin_lock_irq(&conf->resync_lock);
656 	conf->barrier--;
657 	conf->nr_waiting--;
658 	wake_up(&conf->wait_barrier);
659 	spin_unlock_irq(&conf->resync_lock);
660 }
661 
662 
663 /* duplicate the data pages for behind I/O
664  */
665 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
666 {
667 	int i;
668 	struct bio_vec *bvec;
669 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*),
670 					GFP_NOIO);
671 	if (unlikely(!pages))
672 		return;
673 
674 	bio_for_each_segment(bvec, bio, i) {
675 		pages[i] = alloc_page(GFP_NOIO);
676 		if (unlikely(!pages[i]))
677 			goto do_sync_io;
678 		memcpy(kmap(pages[i]) + bvec->bv_offset,
679 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
680 		kunmap(pages[i]);
681 		kunmap(bvec->bv_page);
682 	}
683 	r1_bio->behind_pages = pages;
684 	r1_bio->behind_page_count = bio->bi_vcnt;
685 	set_bit(R1BIO_BehindIO, &r1_bio->state);
686 	return;
687 
688 do_sync_io:
689 	for (i = 0; i < bio->bi_vcnt; i++)
690 		if (pages[i])
691 			put_page(pages[i]);
692 	kfree(pages);
693 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
694 }
695 
696 static int make_request(mddev_t *mddev, struct bio * bio)
697 {
698 	conf_t *conf = mddev->private;
699 	mirror_info_t *mirror;
700 	r1bio_t *r1_bio;
701 	struct bio *read_bio;
702 	int i, targets = 0, disks;
703 	struct bitmap *bitmap;
704 	unsigned long flags;
705 	const int rw = bio_data_dir(bio);
706 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
707 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
708 	mdk_rdev_t *blocked_rdev;
709 	int plugged;
710 
711 	/*
712 	 * Register the new request and wait if the reconstruction
713 	 * thread has put up a bar for new requests.
714 	 * Continue immediately if no resync is active currently.
715 	 */
716 
717 	md_write_start(mddev, bio); /* wait on superblock update early */
718 
719 	if (bio_data_dir(bio) == WRITE &&
720 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
721 	    bio->bi_sector < mddev->suspend_hi) {
722 		/* As the suspend_* range is controlled by
723 		 * userspace, we want an interruptible
724 		 * wait.
725 		 */
726 		DEFINE_WAIT(w);
727 		for (;;) {
728 			flush_signals(current);
729 			prepare_to_wait(&conf->wait_barrier,
730 					&w, TASK_INTERRUPTIBLE);
731 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
732 			    bio->bi_sector >= mddev->suspend_hi)
733 				break;
734 			schedule();
735 		}
736 		finish_wait(&conf->wait_barrier, &w);
737 	}
738 
739 	wait_barrier(conf);
740 
741 	bitmap = mddev->bitmap;
742 
743 	/*
744 	 * make_request() can abort the operation when READA is being
745 	 * used and no empty request is available.
746 	 *
747 	 */
748 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
749 
750 	r1_bio->master_bio = bio;
751 	r1_bio->sectors = bio->bi_size >> 9;
752 	r1_bio->state = 0;
753 	r1_bio->mddev = mddev;
754 	r1_bio->sector = bio->bi_sector;
755 
756 	if (rw == READ) {
757 		/*
758 		 * read balancing logic:
759 		 */
760 		int rdisk = read_balance(conf, r1_bio);
761 
762 		if (rdisk < 0) {
763 			/* couldn't find anywhere to read from */
764 			raid_end_bio_io(r1_bio);
765 			return 0;
766 		}
767 		mirror = conf->mirrors + rdisk;
768 
769 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
770 		    bitmap) {
771 			/* Reading from a write-mostly device must
772 			 * take care not to over-take any writes
773 			 * that are 'behind'
774 			 */
775 			wait_event(bitmap->behind_wait,
776 				   atomic_read(&bitmap->behind_writes) == 0);
777 		}
778 		r1_bio->read_disk = rdisk;
779 
780 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
781 
782 		r1_bio->bios[rdisk] = read_bio;
783 
784 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
785 		read_bio->bi_bdev = mirror->rdev->bdev;
786 		read_bio->bi_end_io = raid1_end_read_request;
787 		read_bio->bi_rw = READ | do_sync;
788 		read_bio->bi_private = r1_bio;
789 
790 		generic_make_request(read_bio);
791 		return 0;
792 	}
793 
794 	/*
795 	 * WRITE:
796 	 */
797 	/* first select target devices under spinlock and
798 	 * inc refcount on their rdev.  Record them by setting
799 	 * bios[x] to bio
800 	 */
801 	plugged = mddev_check_plugged(mddev);
802 
803 	disks = conf->raid_disks;
804  retry_write:
805 	blocked_rdev = NULL;
806 	rcu_read_lock();
807 	for (i = 0;  i < disks; i++) {
808 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
809 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
810 			atomic_inc(&rdev->nr_pending);
811 			blocked_rdev = rdev;
812 			break;
813 		}
814 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
815 			atomic_inc(&rdev->nr_pending);
816 			if (test_bit(Faulty, &rdev->flags)) {
817 				rdev_dec_pending(rdev, mddev);
818 				r1_bio->bios[i] = NULL;
819 			} else {
820 				r1_bio->bios[i] = bio;
821 				targets++;
822 			}
823 		} else
824 			r1_bio->bios[i] = NULL;
825 	}
826 	rcu_read_unlock();
827 
828 	if (unlikely(blocked_rdev)) {
829 		/* Wait for this device to become unblocked */
830 		int j;
831 
832 		for (j = 0; j < i; j++)
833 			if (r1_bio->bios[j])
834 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
835 
836 		allow_barrier(conf);
837 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
838 		wait_barrier(conf);
839 		goto retry_write;
840 	}
841 
842 	BUG_ON(targets == 0); /* we never fail the last device */
843 
844 	if (targets < conf->raid_disks) {
845 		/* array is degraded, we will not clear the bitmap
846 		 * on I/O completion (see raid1_end_write_request) */
847 		set_bit(R1BIO_Degraded, &r1_bio->state);
848 	}
849 
850 	/* do behind I/O ?
851 	 * Not if there are too many, or cannot allocate memory,
852 	 * or a reader on WriteMostly is waiting for behind writes
853 	 * to flush */
854 	if (bitmap &&
855 	    (atomic_read(&bitmap->behind_writes)
856 	     < mddev->bitmap_info.max_write_behind) &&
857 	    !waitqueue_active(&bitmap->behind_wait))
858 		alloc_behind_pages(bio, r1_bio);
859 
860 	atomic_set(&r1_bio->remaining, 1);
861 	atomic_set(&r1_bio->behind_remaining, 0);
862 
863 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
864 				test_bit(R1BIO_BehindIO, &r1_bio->state));
865 	for (i = 0; i < disks; i++) {
866 		struct bio *mbio;
867 		if (!r1_bio->bios[i])
868 			continue;
869 
870 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
871 		r1_bio->bios[i] = mbio;
872 
873 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
874 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
875 		mbio->bi_end_io	= raid1_end_write_request;
876 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
877 		mbio->bi_private = r1_bio;
878 
879 		if (r1_bio->behind_pages) {
880 			struct bio_vec *bvec;
881 			int j;
882 
883 			/* Yes, I really want the '__' version so that
884 			 * we clear any unused pointer in the io_vec, rather
885 			 * than leave them unchanged.  This is important
886 			 * because when we come to free the pages, we won't
887 			 * know the original bi_idx, so we just free
888 			 * them all
889 			 */
890 			__bio_for_each_segment(bvec, mbio, j, 0)
891 				bvec->bv_page = r1_bio->behind_pages[j];
892 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
893 				atomic_inc(&r1_bio->behind_remaining);
894 		}
895 
896 		atomic_inc(&r1_bio->remaining);
897 		spin_lock_irqsave(&conf->device_lock, flags);
898 		bio_list_add(&conf->pending_bio_list, mbio);
899 		spin_unlock_irqrestore(&conf->device_lock, flags);
900 	}
901 	r1_bio_write_done(r1_bio);
902 
903 	/* In case raid1d snuck in to freeze_array */
904 	wake_up(&conf->wait_barrier);
905 
906 	if (do_sync || !bitmap || !plugged)
907 		md_wakeup_thread(mddev->thread);
908 
909 	return 0;
910 }
911 
912 static void status(struct seq_file *seq, mddev_t *mddev)
913 {
914 	conf_t *conf = mddev->private;
915 	int i;
916 
917 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
918 		   conf->raid_disks - mddev->degraded);
919 	rcu_read_lock();
920 	for (i = 0; i < conf->raid_disks; i++) {
921 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
922 		seq_printf(seq, "%s",
923 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
924 	}
925 	rcu_read_unlock();
926 	seq_printf(seq, "]");
927 }
928 
929 
930 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
931 {
932 	char b[BDEVNAME_SIZE];
933 	conf_t *conf = mddev->private;
934 
935 	/*
936 	 * If it is not operational, then we have already marked it as dead
937 	 * else if it is the last working disks, ignore the error, let the
938 	 * next level up know.
939 	 * else mark the drive as failed
940 	 */
941 	if (test_bit(In_sync, &rdev->flags)
942 	    && (conf->raid_disks - mddev->degraded) == 1) {
943 		/*
944 		 * Don't fail the drive, act as though we were just a
945 		 * normal single drive.
946 		 * However don't try a recovery from this drive as
947 		 * it is very likely to fail.
948 		 */
949 		mddev->recovery_disabled = 1;
950 		return;
951 	}
952 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
953 		unsigned long flags;
954 		spin_lock_irqsave(&conf->device_lock, flags);
955 		mddev->degraded++;
956 		set_bit(Faulty, &rdev->flags);
957 		spin_unlock_irqrestore(&conf->device_lock, flags);
958 		/*
959 		 * if recovery is running, make sure it aborts.
960 		 */
961 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
962 	} else
963 		set_bit(Faulty, &rdev->flags);
964 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
965 	printk(KERN_ALERT
966 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
967 	       "md/raid1:%s: Operation continuing on %d devices.\n",
968 	       mdname(mddev), bdevname(rdev->bdev, b),
969 	       mdname(mddev), conf->raid_disks - mddev->degraded);
970 }
971 
972 static void print_conf(conf_t *conf)
973 {
974 	int i;
975 
976 	printk(KERN_DEBUG "RAID1 conf printout:\n");
977 	if (!conf) {
978 		printk(KERN_DEBUG "(!conf)\n");
979 		return;
980 	}
981 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
982 		conf->raid_disks);
983 
984 	rcu_read_lock();
985 	for (i = 0; i < conf->raid_disks; i++) {
986 		char b[BDEVNAME_SIZE];
987 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
988 		if (rdev)
989 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
990 			       i, !test_bit(In_sync, &rdev->flags),
991 			       !test_bit(Faulty, &rdev->flags),
992 			       bdevname(rdev->bdev,b));
993 	}
994 	rcu_read_unlock();
995 }
996 
997 static void close_sync(conf_t *conf)
998 {
999 	wait_barrier(conf);
1000 	allow_barrier(conf);
1001 
1002 	mempool_destroy(conf->r1buf_pool);
1003 	conf->r1buf_pool = NULL;
1004 }
1005 
1006 static int raid1_spare_active(mddev_t *mddev)
1007 {
1008 	int i;
1009 	conf_t *conf = mddev->private;
1010 	int count = 0;
1011 	unsigned long flags;
1012 
1013 	/*
1014 	 * Find all failed disks within the RAID1 configuration
1015 	 * and mark them readable.
1016 	 * Called under mddev lock, so rcu protection not needed.
1017 	 */
1018 	for (i = 0; i < conf->raid_disks; i++) {
1019 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1020 		if (rdev
1021 		    && !test_bit(Faulty, &rdev->flags)
1022 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1023 			count++;
1024 			sysfs_notify_dirent(rdev->sysfs_state);
1025 		}
1026 	}
1027 	spin_lock_irqsave(&conf->device_lock, flags);
1028 	mddev->degraded -= count;
1029 	spin_unlock_irqrestore(&conf->device_lock, flags);
1030 
1031 	print_conf(conf);
1032 	return count;
1033 }
1034 
1035 
1036 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1037 {
1038 	conf_t *conf = mddev->private;
1039 	int err = -EEXIST;
1040 	int mirror = 0;
1041 	mirror_info_t *p;
1042 	int first = 0;
1043 	int last = mddev->raid_disks - 1;
1044 
1045 	if (rdev->raid_disk >= 0)
1046 		first = last = rdev->raid_disk;
1047 
1048 	for (mirror = first; mirror <= last; mirror++)
1049 		if ( !(p=conf->mirrors+mirror)->rdev) {
1050 
1051 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1052 					  rdev->data_offset << 9);
1053 			/* as we don't honour merge_bvec_fn, we must
1054 			 * never risk violating it, so limit
1055 			 * ->max_segments to one lying with a single
1056 			 * page, as a one page request is never in
1057 			 * violation.
1058 			 */
1059 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1060 				blk_queue_max_segments(mddev->queue, 1);
1061 				blk_queue_segment_boundary(mddev->queue,
1062 							   PAGE_CACHE_SIZE - 1);
1063 			}
1064 
1065 			p->head_position = 0;
1066 			rdev->raid_disk = mirror;
1067 			err = 0;
1068 			/* As all devices are equivalent, we don't need a full recovery
1069 			 * if this was recently any drive of the array
1070 			 */
1071 			if (rdev->saved_raid_disk < 0)
1072 				conf->fullsync = 1;
1073 			rcu_assign_pointer(p->rdev, rdev);
1074 			break;
1075 		}
1076 	md_integrity_add_rdev(rdev, mddev);
1077 	print_conf(conf);
1078 	return err;
1079 }
1080 
1081 static int raid1_remove_disk(mddev_t *mddev, int number)
1082 {
1083 	conf_t *conf = mddev->private;
1084 	int err = 0;
1085 	mdk_rdev_t *rdev;
1086 	mirror_info_t *p = conf->mirrors+ number;
1087 
1088 	print_conf(conf);
1089 	rdev = p->rdev;
1090 	if (rdev) {
1091 		if (test_bit(In_sync, &rdev->flags) ||
1092 		    atomic_read(&rdev->nr_pending)) {
1093 			err = -EBUSY;
1094 			goto abort;
1095 		}
1096 		/* Only remove non-faulty devices if recovery
1097 		 * is not possible.
1098 		 */
1099 		if (!test_bit(Faulty, &rdev->flags) &&
1100 		    !mddev->recovery_disabled &&
1101 		    mddev->degraded < conf->raid_disks) {
1102 			err = -EBUSY;
1103 			goto abort;
1104 		}
1105 		p->rdev = NULL;
1106 		synchronize_rcu();
1107 		if (atomic_read(&rdev->nr_pending)) {
1108 			/* lost the race, try later */
1109 			err = -EBUSY;
1110 			p->rdev = rdev;
1111 			goto abort;
1112 		}
1113 		err = md_integrity_register(mddev);
1114 	}
1115 abort:
1116 
1117 	print_conf(conf);
1118 	return err;
1119 }
1120 
1121 
1122 static void end_sync_read(struct bio *bio, int error)
1123 {
1124 	r1bio_t *r1_bio = bio->bi_private;
1125 	int i;
1126 
1127 	for (i=r1_bio->mddev->raid_disks; i--; )
1128 		if (r1_bio->bios[i] == bio)
1129 			break;
1130 	BUG_ON(i < 0);
1131 	update_head_pos(i, r1_bio);
1132 	/*
1133 	 * we have read a block, now it needs to be re-written,
1134 	 * or re-read if the read failed.
1135 	 * We don't do much here, just schedule handling by raid1d
1136 	 */
1137 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1138 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1139 
1140 	if (atomic_dec_and_test(&r1_bio->remaining))
1141 		reschedule_retry(r1_bio);
1142 }
1143 
1144 static void end_sync_write(struct bio *bio, int error)
1145 {
1146 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1147 	r1bio_t *r1_bio = bio->bi_private;
1148 	mddev_t *mddev = r1_bio->mddev;
1149 	conf_t *conf = mddev->private;
1150 	int i;
1151 	int mirror=0;
1152 
1153 	for (i = 0; i < conf->raid_disks; i++)
1154 		if (r1_bio->bios[i] == bio) {
1155 			mirror = i;
1156 			break;
1157 		}
1158 	if (!uptodate) {
1159 		sector_t sync_blocks = 0;
1160 		sector_t s = r1_bio->sector;
1161 		long sectors_to_go = r1_bio->sectors;
1162 		/* make sure these bits doesn't get cleared. */
1163 		do {
1164 			bitmap_end_sync(mddev->bitmap, s,
1165 					&sync_blocks, 1);
1166 			s += sync_blocks;
1167 			sectors_to_go -= sync_blocks;
1168 		} while (sectors_to_go > 0);
1169 		md_error(mddev, conf->mirrors[mirror].rdev);
1170 	}
1171 
1172 	update_head_pos(mirror, r1_bio);
1173 
1174 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1175 		sector_t s = r1_bio->sectors;
1176 		put_buf(r1_bio);
1177 		md_done_sync(mddev, s, uptodate);
1178 	}
1179 }
1180 
1181 static int fix_sync_read_error(r1bio_t *r1_bio)
1182 {
1183 	/* Try some synchronous reads of other devices to get
1184 	 * good data, much like with normal read errors.  Only
1185 	 * read into the pages we already have so we don't
1186 	 * need to re-issue the read request.
1187 	 * We don't need to freeze the array, because being in an
1188 	 * active sync request, there is no normal IO, and
1189 	 * no overlapping syncs.
1190 	 */
1191 	mddev_t *mddev = r1_bio->mddev;
1192 	conf_t *conf = mddev->private;
1193 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1194 	sector_t sect = r1_bio->sector;
1195 	int sectors = r1_bio->sectors;
1196 	int idx = 0;
1197 
1198 	while(sectors) {
1199 		int s = sectors;
1200 		int d = r1_bio->read_disk;
1201 		int success = 0;
1202 		mdk_rdev_t *rdev;
1203 		int start;
1204 
1205 		if (s > (PAGE_SIZE>>9))
1206 			s = PAGE_SIZE >> 9;
1207 		do {
1208 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1209 				/* No rcu protection needed here devices
1210 				 * can only be removed when no resync is
1211 				 * active, and resync is currently active
1212 				 */
1213 				rdev = conf->mirrors[d].rdev;
1214 				if (sync_page_io(rdev,
1215 						 sect,
1216 						 s<<9,
1217 						 bio->bi_io_vec[idx].bv_page,
1218 						 READ, false)) {
1219 					success = 1;
1220 					break;
1221 				}
1222 			}
1223 			d++;
1224 			if (d == conf->raid_disks)
1225 				d = 0;
1226 		} while (!success && d != r1_bio->read_disk);
1227 
1228 		if (!success) {
1229 			char b[BDEVNAME_SIZE];
1230 			/* Cannot read from anywhere, array is toast */
1231 			md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1232 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1233 			       " for block %llu\n",
1234 			       mdname(mddev),
1235 			       bdevname(bio->bi_bdev, b),
1236 			       (unsigned long long)r1_bio->sector);
1237 			md_done_sync(mddev, r1_bio->sectors, 0);
1238 			put_buf(r1_bio);
1239 			return 0;
1240 		}
1241 
1242 		start = d;
1243 		/* write it back and re-read */
1244 		while (d != r1_bio->read_disk) {
1245 			if (d == 0)
1246 				d = conf->raid_disks;
1247 			d--;
1248 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1249 				continue;
1250 			rdev = conf->mirrors[d].rdev;
1251 			if (sync_page_io(rdev,
1252 					 sect,
1253 					 s<<9,
1254 					 bio->bi_io_vec[idx].bv_page,
1255 					 WRITE, false) == 0) {
1256 				r1_bio->bios[d]->bi_end_io = NULL;
1257 				rdev_dec_pending(rdev, mddev);
1258 				md_error(mddev, rdev);
1259 			} else
1260 				atomic_add(s, &rdev->corrected_errors);
1261 		}
1262 		d = start;
1263 		while (d != r1_bio->read_disk) {
1264 			if (d == 0)
1265 				d = conf->raid_disks;
1266 			d--;
1267 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1268 				continue;
1269 			rdev = conf->mirrors[d].rdev;
1270 			if (sync_page_io(rdev,
1271 					 sect,
1272 					 s<<9,
1273 					 bio->bi_io_vec[idx].bv_page,
1274 					 READ, false) == 0)
1275 				md_error(mddev, rdev);
1276 		}
1277 		sectors -= s;
1278 		sect += s;
1279 		idx ++;
1280 	}
1281 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1282 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1283 	return 1;
1284 }
1285 
1286 static int process_checks(r1bio_t *r1_bio)
1287 {
1288 	/* We have read all readable devices.  If we haven't
1289 	 * got the block, then there is no hope left.
1290 	 * If we have, then we want to do a comparison
1291 	 * and skip the write if everything is the same.
1292 	 * If any blocks failed to read, then we need to
1293 	 * attempt an over-write
1294 	 */
1295 	mddev_t *mddev = r1_bio->mddev;
1296 	conf_t *conf = mddev->private;
1297 	int primary;
1298 	int i;
1299 
1300 	for (primary = 0; primary < conf->raid_disks; primary++)
1301 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1302 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1303 			r1_bio->bios[primary]->bi_end_io = NULL;
1304 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1305 			break;
1306 		}
1307 	r1_bio->read_disk = primary;
1308 	for (i = 0; i < conf->raid_disks; i++) {
1309 		int j;
1310 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1311 		struct bio *pbio = r1_bio->bios[primary];
1312 		struct bio *sbio = r1_bio->bios[i];
1313 		int size;
1314 
1315 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1316 			continue;
1317 
1318 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1319 			for (j = vcnt; j-- ; ) {
1320 				struct page *p, *s;
1321 				p = pbio->bi_io_vec[j].bv_page;
1322 				s = sbio->bi_io_vec[j].bv_page;
1323 				if (memcmp(page_address(p),
1324 					   page_address(s),
1325 					   PAGE_SIZE))
1326 					break;
1327 			}
1328 		} else
1329 			j = 0;
1330 		if (j >= 0)
1331 			mddev->resync_mismatches += r1_bio->sectors;
1332 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1333 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1334 			/* No need to write to this device. */
1335 			sbio->bi_end_io = NULL;
1336 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1337 			continue;
1338 		}
1339 		/* fixup the bio for reuse */
1340 		sbio->bi_vcnt = vcnt;
1341 		sbio->bi_size = r1_bio->sectors << 9;
1342 		sbio->bi_idx = 0;
1343 		sbio->bi_phys_segments = 0;
1344 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1345 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1346 		sbio->bi_next = NULL;
1347 		sbio->bi_sector = r1_bio->sector +
1348 			conf->mirrors[i].rdev->data_offset;
1349 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1350 		size = sbio->bi_size;
1351 		for (j = 0; j < vcnt ; j++) {
1352 			struct bio_vec *bi;
1353 			bi = &sbio->bi_io_vec[j];
1354 			bi->bv_offset = 0;
1355 			if (size > PAGE_SIZE)
1356 				bi->bv_len = PAGE_SIZE;
1357 			else
1358 				bi->bv_len = size;
1359 			size -= PAGE_SIZE;
1360 			memcpy(page_address(bi->bv_page),
1361 			       page_address(pbio->bi_io_vec[j].bv_page),
1362 			       PAGE_SIZE);
1363 		}
1364 	}
1365 	return 0;
1366 }
1367 
1368 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1369 {
1370 	conf_t *conf = mddev->private;
1371 	int i;
1372 	int disks = conf->raid_disks;
1373 	struct bio *bio, *wbio;
1374 
1375 	bio = r1_bio->bios[r1_bio->read_disk];
1376 
1377 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1378 		/* ouch - failed to read all of that. */
1379 		if (!fix_sync_read_error(r1_bio))
1380 			return;
1381 
1382 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1383 		if (process_checks(r1_bio) < 0)
1384 			return;
1385 	/*
1386 	 * schedule writes
1387 	 */
1388 	atomic_set(&r1_bio->remaining, 1);
1389 	for (i = 0; i < disks ; i++) {
1390 		wbio = r1_bio->bios[i];
1391 		if (wbio->bi_end_io == NULL ||
1392 		    (wbio->bi_end_io == end_sync_read &&
1393 		     (i == r1_bio->read_disk ||
1394 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1395 			continue;
1396 
1397 		wbio->bi_rw = WRITE;
1398 		wbio->bi_end_io = end_sync_write;
1399 		atomic_inc(&r1_bio->remaining);
1400 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1401 
1402 		generic_make_request(wbio);
1403 	}
1404 
1405 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1406 		/* if we're here, all write(s) have completed, so clean up */
1407 		md_done_sync(mddev, r1_bio->sectors, 1);
1408 		put_buf(r1_bio);
1409 	}
1410 }
1411 
1412 /*
1413  * This is a kernel thread which:
1414  *
1415  *	1.	Retries failed read operations on working mirrors.
1416  *	2.	Updates the raid superblock when problems encounter.
1417  *	3.	Performs writes following reads for array syncronising.
1418  */
1419 
1420 static void fix_read_error(conf_t *conf, int read_disk,
1421 			   sector_t sect, int sectors)
1422 {
1423 	mddev_t *mddev = conf->mddev;
1424 	while(sectors) {
1425 		int s = sectors;
1426 		int d = read_disk;
1427 		int success = 0;
1428 		int start;
1429 		mdk_rdev_t *rdev;
1430 
1431 		if (s > (PAGE_SIZE>>9))
1432 			s = PAGE_SIZE >> 9;
1433 
1434 		do {
1435 			/* Note: no rcu protection needed here
1436 			 * as this is synchronous in the raid1d thread
1437 			 * which is the thread that might remove
1438 			 * a device.  If raid1d ever becomes multi-threaded....
1439 			 */
1440 			rdev = conf->mirrors[d].rdev;
1441 			if (rdev &&
1442 			    test_bit(In_sync, &rdev->flags) &&
1443 			    sync_page_io(rdev, sect, s<<9,
1444 					 conf->tmppage, READ, false))
1445 				success = 1;
1446 			else {
1447 				d++;
1448 				if (d == conf->raid_disks)
1449 					d = 0;
1450 			}
1451 		} while (!success && d != read_disk);
1452 
1453 		if (!success) {
1454 			/* Cannot read from anywhere -- bye bye array */
1455 			md_error(mddev, conf->mirrors[read_disk].rdev);
1456 			break;
1457 		}
1458 		/* write it back and re-read */
1459 		start = d;
1460 		while (d != read_disk) {
1461 			if (d==0)
1462 				d = conf->raid_disks;
1463 			d--;
1464 			rdev = conf->mirrors[d].rdev;
1465 			if (rdev &&
1466 			    test_bit(In_sync, &rdev->flags)) {
1467 				if (sync_page_io(rdev, sect, s<<9,
1468 						 conf->tmppage, WRITE, false)
1469 				    == 0)
1470 					/* Well, this device is dead */
1471 					md_error(mddev, rdev);
1472 			}
1473 		}
1474 		d = start;
1475 		while (d != read_disk) {
1476 			char b[BDEVNAME_SIZE];
1477 			if (d==0)
1478 				d = conf->raid_disks;
1479 			d--;
1480 			rdev = conf->mirrors[d].rdev;
1481 			if (rdev &&
1482 			    test_bit(In_sync, &rdev->flags)) {
1483 				if (sync_page_io(rdev, sect, s<<9,
1484 						 conf->tmppage, READ, false)
1485 				    == 0)
1486 					/* Well, this device is dead */
1487 					md_error(mddev, rdev);
1488 				else {
1489 					atomic_add(s, &rdev->corrected_errors);
1490 					printk(KERN_INFO
1491 					       "md/raid1:%s: read error corrected "
1492 					       "(%d sectors at %llu on %s)\n",
1493 					       mdname(mddev), s,
1494 					       (unsigned long long)(sect +
1495 					           rdev->data_offset),
1496 					       bdevname(rdev->bdev, b));
1497 				}
1498 			}
1499 		}
1500 		sectors -= s;
1501 		sect += s;
1502 	}
1503 }
1504 
1505 static void raid1d(mddev_t *mddev)
1506 {
1507 	r1bio_t *r1_bio;
1508 	struct bio *bio;
1509 	unsigned long flags;
1510 	conf_t *conf = mddev->private;
1511 	struct list_head *head = &conf->retry_list;
1512 	mdk_rdev_t *rdev;
1513 	struct blk_plug plug;
1514 
1515 	md_check_recovery(mddev);
1516 
1517 	blk_start_plug(&plug);
1518 	for (;;) {
1519 		char b[BDEVNAME_SIZE];
1520 
1521 		if (atomic_read(&mddev->plug_cnt) == 0)
1522 			flush_pending_writes(conf);
1523 
1524 		spin_lock_irqsave(&conf->device_lock, flags);
1525 		if (list_empty(head)) {
1526 			spin_unlock_irqrestore(&conf->device_lock, flags);
1527 			break;
1528 		}
1529 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1530 		list_del(head->prev);
1531 		conf->nr_queued--;
1532 		spin_unlock_irqrestore(&conf->device_lock, flags);
1533 
1534 		mddev = r1_bio->mddev;
1535 		conf = mddev->private;
1536 		if (test_bit(R1BIO_IsSync, &r1_bio->state))
1537 			sync_request_write(mddev, r1_bio);
1538 		else {
1539 			int disk;
1540 
1541 			/* we got a read error. Maybe the drive is bad.  Maybe just
1542 			 * the block and we can fix it.
1543 			 * We freeze all other IO, and try reading the block from
1544 			 * other devices.  When we find one, we re-write
1545 			 * and check it that fixes the read error.
1546 			 * This is all done synchronously while the array is
1547 			 * frozen
1548 			 */
1549 			if (mddev->ro == 0) {
1550 				freeze_array(conf);
1551 				fix_read_error(conf, r1_bio->read_disk,
1552 					       r1_bio->sector,
1553 					       r1_bio->sectors);
1554 				unfreeze_array(conf);
1555 			} else
1556 				md_error(mddev,
1557 					 conf->mirrors[r1_bio->read_disk].rdev);
1558 
1559 			bio = r1_bio->bios[r1_bio->read_disk];
1560 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1561 				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1562 				       " read error for block %llu\n",
1563 				       mdname(mddev),
1564 				       bdevname(bio->bi_bdev,b),
1565 				       (unsigned long long)r1_bio->sector);
1566 				raid_end_bio_io(r1_bio);
1567 			} else {
1568 				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1569 				r1_bio->bios[r1_bio->read_disk] =
1570 					mddev->ro ? IO_BLOCKED : NULL;
1571 				r1_bio->read_disk = disk;
1572 				bio_put(bio);
1573 				bio = bio_clone_mddev(r1_bio->master_bio,
1574 						      GFP_NOIO, mddev);
1575 				r1_bio->bios[r1_bio->read_disk] = bio;
1576 				rdev = conf->mirrors[disk].rdev;
1577 				if (printk_ratelimit())
1578 					printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1579 					       " other mirror: %s\n",
1580 					       mdname(mddev),
1581 					       (unsigned long long)r1_bio->sector,
1582 					       bdevname(rdev->bdev,b));
1583 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1584 				bio->bi_bdev = rdev->bdev;
1585 				bio->bi_end_io = raid1_end_read_request;
1586 				bio->bi_rw = READ | do_sync;
1587 				bio->bi_private = r1_bio;
1588 				generic_make_request(bio);
1589 			}
1590 		}
1591 		cond_resched();
1592 	}
1593 	blk_finish_plug(&plug);
1594 }
1595 
1596 
1597 static int init_resync(conf_t *conf)
1598 {
1599 	int buffs;
1600 
1601 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1602 	BUG_ON(conf->r1buf_pool);
1603 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1604 					  conf->poolinfo);
1605 	if (!conf->r1buf_pool)
1606 		return -ENOMEM;
1607 	conf->next_resync = 0;
1608 	return 0;
1609 }
1610 
1611 /*
1612  * perform a "sync" on one "block"
1613  *
1614  * We need to make sure that no normal I/O request - particularly write
1615  * requests - conflict with active sync requests.
1616  *
1617  * This is achieved by tracking pending requests and a 'barrier' concept
1618  * that can be installed to exclude normal IO requests.
1619  */
1620 
1621 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1622 {
1623 	conf_t *conf = mddev->private;
1624 	r1bio_t *r1_bio;
1625 	struct bio *bio;
1626 	sector_t max_sector, nr_sectors;
1627 	int disk = -1;
1628 	int i;
1629 	int wonly = -1;
1630 	int write_targets = 0, read_targets = 0;
1631 	sector_t sync_blocks;
1632 	int still_degraded = 0;
1633 
1634 	if (!conf->r1buf_pool)
1635 		if (init_resync(conf))
1636 			return 0;
1637 
1638 	max_sector = mddev->dev_sectors;
1639 	if (sector_nr >= max_sector) {
1640 		/* If we aborted, we need to abort the
1641 		 * sync on the 'current' bitmap chunk (there will
1642 		 * only be one in raid1 resync.
1643 		 * We can find the current addess in mddev->curr_resync
1644 		 */
1645 		if (mddev->curr_resync < max_sector) /* aborted */
1646 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1647 						&sync_blocks, 1);
1648 		else /* completed sync */
1649 			conf->fullsync = 0;
1650 
1651 		bitmap_close_sync(mddev->bitmap);
1652 		close_sync(conf);
1653 		return 0;
1654 	}
1655 
1656 	if (mddev->bitmap == NULL &&
1657 	    mddev->recovery_cp == MaxSector &&
1658 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1659 	    conf->fullsync == 0) {
1660 		*skipped = 1;
1661 		return max_sector - sector_nr;
1662 	}
1663 	/* before building a request, check if we can skip these blocks..
1664 	 * This call the bitmap_start_sync doesn't actually record anything
1665 	 */
1666 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1667 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1668 		/* We can skip this block, and probably several more */
1669 		*skipped = 1;
1670 		return sync_blocks;
1671 	}
1672 	/*
1673 	 * If there is non-resync activity waiting for a turn,
1674 	 * and resync is going fast enough,
1675 	 * then let it though before starting on this new sync request.
1676 	 */
1677 	if (!go_faster && conf->nr_waiting)
1678 		msleep_interruptible(1000);
1679 
1680 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1681 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1682 	raise_barrier(conf);
1683 
1684 	conf->next_resync = sector_nr;
1685 
1686 	rcu_read_lock();
1687 	/*
1688 	 * If we get a correctably read error during resync or recovery,
1689 	 * we might want to read from a different device.  So we
1690 	 * flag all drives that could conceivably be read from for READ,
1691 	 * and any others (which will be non-In_sync devices) for WRITE.
1692 	 * If a read fails, we try reading from something else for which READ
1693 	 * is OK.
1694 	 */
1695 
1696 	r1_bio->mddev = mddev;
1697 	r1_bio->sector = sector_nr;
1698 	r1_bio->state = 0;
1699 	set_bit(R1BIO_IsSync, &r1_bio->state);
1700 
1701 	for (i=0; i < conf->raid_disks; i++) {
1702 		mdk_rdev_t *rdev;
1703 		bio = r1_bio->bios[i];
1704 
1705 		/* take from bio_init */
1706 		bio->bi_next = NULL;
1707 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
1708 		bio->bi_flags |= 1 << BIO_UPTODATE;
1709 		bio->bi_comp_cpu = -1;
1710 		bio->bi_rw = READ;
1711 		bio->bi_vcnt = 0;
1712 		bio->bi_idx = 0;
1713 		bio->bi_phys_segments = 0;
1714 		bio->bi_size = 0;
1715 		bio->bi_end_io = NULL;
1716 		bio->bi_private = NULL;
1717 
1718 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1719 		if (rdev == NULL ||
1720 			   test_bit(Faulty, &rdev->flags)) {
1721 			still_degraded = 1;
1722 			continue;
1723 		} else if (!test_bit(In_sync, &rdev->flags)) {
1724 			bio->bi_rw = WRITE;
1725 			bio->bi_end_io = end_sync_write;
1726 			write_targets ++;
1727 		} else {
1728 			/* may need to read from here */
1729 			bio->bi_rw = READ;
1730 			bio->bi_end_io = end_sync_read;
1731 			if (test_bit(WriteMostly, &rdev->flags)) {
1732 				if (wonly < 0)
1733 					wonly = i;
1734 			} else {
1735 				if (disk < 0)
1736 					disk = i;
1737 			}
1738 			read_targets++;
1739 		}
1740 		atomic_inc(&rdev->nr_pending);
1741 		bio->bi_sector = sector_nr + rdev->data_offset;
1742 		bio->bi_bdev = rdev->bdev;
1743 		bio->bi_private = r1_bio;
1744 	}
1745 	rcu_read_unlock();
1746 	if (disk < 0)
1747 		disk = wonly;
1748 	r1_bio->read_disk = disk;
1749 
1750 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1751 		/* extra read targets are also write targets */
1752 		write_targets += read_targets-1;
1753 
1754 	if (write_targets == 0 || read_targets == 0) {
1755 		/* There is nowhere to write, so all non-sync
1756 		 * drives must be failed - so we are finished
1757 		 */
1758 		sector_t rv = max_sector - sector_nr;
1759 		*skipped = 1;
1760 		put_buf(r1_bio);
1761 		return rv;
1762 	}
1763 
1764 	if (max_sector > mddev->resync_max)
1765 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
1766 	nr_sectors = 0;
1767 	sync_blocks = 0;
1768 	do {
1769 		struct page *page;
1770 		int len = PAGE_SIZE;
1771 		if (sector_nr + (len>>9) > max_sector)
1772 			len = (max_sector - sector_nr) << 9;
1773 		if (len == 0)
1774 			break;
1775 		if (sync_blocks == 0) {
1776 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1777 					       &sync_blocks, still_degraded) &&
1778 			    !conf->fullsync &&
1779 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1780 				break;
1781 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1782 			if ((len >> 9) > sync_blocks)
1783 				len = sync_blocks<<9;
1784 		}
1785 
1786 		for (i=0 ; i < conf->raid_disks; i++) {
1787 			bio = r1_bio->bios[i];
1788 			if (bio->bi_end_io) {
1789 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1790 				if (bio_add_page(bio, page, len, 0) == 0) {
1791 					/* stop here */
1792 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1793 					while (i > 0) {
1794 						i--;
1795 						bio = r1_bio->bios[i];
1796 						if (bio->bi_end_io==NULL)
1797 							continue;
1798 						/* remove last page from this bio */
1799 						bio->bi_vcnt--;
1800 						bio->bi_size -= len;
1801 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1802 					}
1803 					goto bio_full;
1804 				}
1805 			}
1806 		}
1807 		nr_sectors += len>>9;
1808 		sector_nr += len>>9;
1809 		sync_blocks -= (len>>9);
1810 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1811  bio_full:
1812 	r1_bio->sectors = nr_sectors;
1813 
1814 	/* For a user-requested sync, we read all readable devices and do a
1815 	 * compare
1816 	 */
1817 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1818 		atomic_set(&r1_bio->remaining, read_targets);
1819 		for (i=0; i<conf->raid_disks; i++) {
1820 			bio = r1_bio->bios[i];
1821 			if (bio->bi_end_io == end_sync_read) {
1822 				md_sync_acct(bio->bi_bdev, nr_sectors);
1823 				generic_make_request(bio);
1824 			}
1825 		}
1826 	} else {
1827 		atomic_set(&r1_bio->remaining, 1);
1828 		bio = r1_bio->bios[r1_bio->read_disk];
1829 		md_sync_acct(bio->bi_bdev, nr_sectors);
1830 		generic_make_request(bio);
1831 
1832 	}
1833 	return nr_sectors;
1834 }
1835 
1836 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1837 {
1838 	if (sectors)
1839 		return sectors;
1840 
1841 	return mddev->dev_sectors;
1842 }
1843 
1844 static conf_t *setup_conf(mddev_t *mddev)
1845 {
1846 	conf_t *conf;
1847 	int i;
1848 	mirror_info_t *disk;
1849 	mdk_rdev_t *rdev;
1850 	int err = -ENOMEM;
1851 
1852 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1853 	if (!conf)
1854 		goto abort;
1855 
1856 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1857 				 GFP_KERNEL);
1858 	if (!conf->mirrors)
1859 		goto abort;
1860 
1861 	conf->tmppage = alloc_page(GFP_KERNEL);
1862 	if (!conf->tmppage)
1863 		goto abort;
1864 
1865 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1866 	if (!conf->poolinfo)
1867 		goto abort;
1868 	conf->poolinfo->raid_disks = mddev->raid_disks;
1869 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1870 					  r1bio_pool_free,
1871 					  conf->poolinfo);
1872 	if (!conf->r1bio_pool)
1873 		goto abort;
1874 
1875 	conf->poolinfo->mddev = mddev;
1876 
1877 	spin_lock_init(&conf->device_lock);
1878 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1879 		int disk_idx = rdev->raid_disk;
1880 		if (disk_idx >= mddev->raid_disks
1881 		    || disk_idx < 0)
1882 			continue;
1883 		disk = conf->mirrors + disk_idx;
1884 
1885 		disk->rdev = rdev;
1886 
1887 		disk->head_position = 0;
1888 	}
1889 	conf->raid_disks = mddev->raid_disks;
1890 	conf->mddev = mddev;
1891 	INIT_LIST_HEAD(&conf->retry_list);
1892 
1893 	spin_lock_init(&conf->resync_lock);
1894 	init_waitqueue_head(&conf->wait_barrier);
1895 
1896 	bio_list_init(&conf->pending_bio_list);
1897 
1898 	conf->last_used = -1;
1899 	for (i = 0; i < conf->raid_disks; i++) {
1900 
1901 		disk = conf->mirrors + i;
1902 
1903 		if (!disk->rdev ||
1904 		    !test_bit(In_sync, &disk->rdev->flags)) {
1905 			disk->head_position = 0;
1906 			if (disk->rdev)
1907 				conf->fullsync = 1;
1908 		} else if (conf->last_used < 0)
1909 			/*
1910 			 * The first working device is used as a
1911 			 * starting point to read balancing.
1912 			 */
1913 			conf->last_used = i;
1914 	}
1915 
1916 	err = -EIO;
1917 	if (conf->last_used < 0) {
1918 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1919 		       mdname(mddev));
1920 		goto abort;
1921 	}
1922 	err = -ENOMEM;
1923 	conf->thread = md_register_thread(raid1d, mddev, NULL);
1924 	if (!conf->thread) {
1925 		printk(KERN_ERR
1926 		       "md/raid1:%s: couldn't allocate thread\n",
1927 		       mdname(mddev));
1928 		goto abort;
1929 	}
1930 
1931 	return conf;
1932 
1933  abort:
1934 	if (conf) {
1935 		if (conf->r1bio_pool)
1936 			mempool_destroy(conf->r1bio_pool);
1937 		kfree(conf->mirrors);
1938 		safe_put_page(conf->tmppage);
1939 		kfree(conf->poolinfo);
1940 		kfree(conf);
1941 	}
1942 	return ERR_PTR(err);
1943 }
1944 
1945 static int run(mddev_t *mddev)
1946 {
1947 	conf_t *conf;
1948 	int i;
1949 	mdk_rdev_t *rdev;
1950 
1951 	if (mddev->level != 1) {
1952 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1953 		       mdname(mddev), mddev->level);
1954 		return -EIO;
1955 	}
1956 	if (mddev->reshape_position != MaxSector) {
1957 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1958 		       mdname(mddev));
1959 		return -EIO;
1960 	}
1961 	/*
1962 	 * copy the already verified devices into our private RAID1
1963 	 * bookkeeping area. [whatever we allocate in run(),
1964 	 * should be freed in stop()]
1965 	 */
1966 	if (mddev->private == NULL)
1967 		conf = setup_conf(mddev);
1968 	else
1969 		conf = mddev->private;
1970 
1971 	if (IS_ERR(conf))
1972 		return PTR_ERR(conf);
1973 
1974 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1975 		disk_stack_limits(mddev->gendisk, rdev->bdev,
1976 				  rdev->data_offset << 9);
1977 		/* as we don't honour merge_bvec_fn, we must never risk
1978 		 * violating it, so limit ->max_segments to 1 lying within
1979 		 * a single page, as a one page request is never in violation.
1980 		 */
1981 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1982 			blk_queue_max_segments(mddev->queue, 1);
1983 			blk_queue_segment_boundary(mddev->queue,
1984 						   PAGE_CACHE_SIZE - 1);
1985 		}
1986 	}
1987 
1988 	mddev->degraded = 0;
1989 	for (i=0; i < conf->raid_disks; i++)
1990 		if (conf->mirrors[i].rdev == NULL ||
1991 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
1992 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
1993 			mddev->degraded++;
1994 
1995 	if (conf->raid_disks - mddev->degraded == 1)
1996 		mddev->recovery_cp = MaxSector;
1997 
1998 	if (mddev->recovery_cp != MaxSector)
1999 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2000 		       " -- starting background reconstruction\n",
2001 		       mdname(mddev));
2002 	printk(KERN_INFO
2003 		"md/raid1:%s: active with %d out of %d mirrors\n",
2004 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2005 		mddev->raid_disks);
2006 
2007 	/*
2008 	 * Ok, everything is just fine now
2009 	 */
2010 	mddev->thread = conf->thread;
2011 	conf->thread = NULL;
2012 	mddev->private = conf;
2013 
2014 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2015 
2016 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2017 	mddev->queue->backing_dev_info.congested_data = mddev;
2018 	return md_integrity_register(mddev);
2019 }
2020 
2021 static int stop(mddev_t *mddev)
2022 {
2023 	conf_t *conf = mddev->private;
2024 	struct bitmap *bitmap = mddev->bitmap;
2025 
2026 	/* wait for behind writes to complete */
2027 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2028 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2029 		       mdname(mddev));
2030 		/* need to kick something here to make sure I/O goes? */
2031 		wait_event(bitmap->behind_wait,
2032 			   atomic_read(&bitmap->behind_writes) == 0);
2033 	}
2034 
2035 	raise_barrier(conf);
2036 	lower_barrier(conf);
2037 
2038 	md_unregister_thread(mddev->thread);
2039 	mddev->thread = NULL;
2040 	if (conf->r1bio_pool)
2041 		mempool_destroy(conf->r1bio_pool);
2042 	kfree(conf->mirrors);
2043 	kfree(conf->poolinfo);
2044 	kfree(conf);
2045 	mddev->private = NULL;
2046 	return 0;
2047 }
2048 
2049 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2050 {
2051 	/* no resync is happening, and there is enough space
2052 	 * on all devices, so we can resize.
2053 	 * We need to make sure resync covers any new space.
2054 	 * If the array is shrinking we should possibly wait until
2055 	 * any io in the removed space completes, but it hardly seems
2056 	 * worth it.
2057 	 */
2058 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2059 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2060 		return -EINVAL;
2061 	set_capacity(mddev->gendisk, mddev->array_sectors);
2062 	revalidate_disk(mddev->gendisk);
2063 	if (sectors > mddev->dev_sectors &&
2064 	    mddev->recovery_cp > mddev->dev_sectors) {
2065 		mddev->recovery_cp = mddev->dev_sectors;
2066 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2067 	}
2068 	mddev->dev_sectors = sectors;
2069 	mddev->resync_max_sectors = sectors;
2070 	return 0;
2071 }
2072 
2073 static int raid1_reshape(mddev_t *mddev)
2074 {
2075 	/* We need to:
2076 	 * 1/ resize the r1bio_pool
2077 	 * 2/ resize conf->mirrors
2078 	 *
2079 	 * We allocate a new r1bio_pool if we can.
2080 	 * Then raise a device barrier and wait until all IO stops.
2081 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2082 	 *
2083 	 * At the same time, we "pack" the devices so that all the missing
2084 	 * devices have the higher raid_disk numbers.
2085 	 */
2086 	mempool_t *newpool, *oldpool;
2087 	struct pool_info *newpoolinfo;
2088 	mirror_info_t *newmirrors;
2089 	conf_t *conf = mddev->private;
2090 	int cnt, raid_disks;
2091 	unsigned long flags;
2092 	int d, d2, err;
2093 
2094 	/* Cannot change chunk_size, layout, or level */
2095 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2096 	    mddev->layout != mddev->new_layout ||
2097 	    mddev->level != mddev->new_level) {
2098 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2099 		mddev->new_layout = mddev->layout;
2100 		mddev->new_level = mddev->level;
2101 		return -EINVAL;
2102 	}
2103 
2104 	err = md_allow_write(mddev);
2105 	if (err)
2106 		return err;
2107 
2108 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2109 
2110 	if (raid_disks < conf->raid_disks) {
2111 		cnt=0;
2112 		for (d= 0; d < conf->raid_disks; d++)
2113 			if (conf->mirrors[d].rdev)
2114 				cnt++;
2115 		if (cnt > raid_disks)
2116 			return -EBUSY;
2117 	}
2118 
2119 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2120 	if (!newpoolinfo)
2121 		return -ENOMEM;
2122 	newpoolinfo->mddev = mddev;
2123 	newpoolinfo->raid_disks = raid_disks;
2124 
2125 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2126 				 r1bio_pool_free, newpoolinfo);
2127 	if (!newpool) {
2128 		kfree(newpoolinfo);
2129 		return -ENOMEM;
2130 	}
2131 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2132 	if (!newmirrors) {
2133 		kfree(newpoolinfo);
2134 		mempool_destroy(newpool);
2135 		return -ENOMEM;
2136 	}
2137 
2138 	raise_barrier(conf);
2139 
2140 	/* ok, everything is stopped */
2141 	oldpool = conf->r1bio_pool;
2142 	conf->r1bio_pool = newpool;
2143 
2144 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2145 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2146 		if (rdev && rdev->raid_disk != d2) {
2147 			char nm[20];
2148 			sprintf(nm, "rd%d", rdev->raid_disk);
2149 			sysfs_remove_link(&mddev->kobj, nm);
2150 			rdev->raid_disk = d2;
2151 			sprintf(nm, "rd%d", rdev->raid_disk);
2152 			sysfs_remove_link(&mddev->kobj, nm);
2153 			if (sysfs_create_link(&mddev->kobj,
2154 					      &rdev->kobj, nm))
2155 				printk(KERN_WARNING
2156 				       "md/raid1:%s: cannot register "
2157 				       "%s\n",
2158 				       mdname(mddev), nm);
2159 		}
2160 		if (rdev)
2161 			newmirrors[d2++].rdev = rdev;
2162 	}
2163 	kfree(conf->mirrors);
2164 	conf->mirrors = newmirrors;
2165 	kfree(conf->poolinfo);
2166 	conf->poolinfo = newpoolinfo;
2167 
2168 	spin_lock_irqsave(&conf->device_lock, flags);
2169 	mddev->degraded += (raid_disks - conf->raid_disks);
2170 	spin_unlock_irqrestore(&conf->device_lock, flags);
2171 	conf->raid_disks = mddev->raid_disks = raid_disks;
2172 	mddev->delta_disks = 0;
2173 
2174 	conf->last_used = 0; /* just make sure it is in-range */
2175 	lower_barrier(conf);
2176 
2177 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2178 	md_wakeup_thread(mddev->thread);
2179 
2180 	mempool_destroy(oldpool);
2181 	return 0;
2182 }
2183 
2184 static void raid1_quiesce(mddev_t *mddev, int state)
2185 {
2186 	conf_t *conf = mddev->private;
2187 
2188 	switch(state) {
2189 	case 2: /* wake for suspend */
2190 		wake_up(&conf->wait_barrier);
2191 		break;
2192 	case 1:
2193 		raise_barrier(conf);
2194 		break;
2195 	case 0:
2196 		lower_barrier(conf);
2197 		break;
2198 	}
2199 }
2200 
2201 static void *raid1_takeover(mddev_t *mddev)
2202 {
2203 	/* raid1 can take over:
2204 	 *  raid5 with 2 devices, any layout or chunk size
2205 	 */
2206 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2207 		conf_t *conf;
2208 		mddev->new_level = 1;
2209 		mddev->new_layout = 0;
2210 		mddev->new_chunk_sectors = 0;
2211 		conf = setup_conf(mddev);
2212 		if (!IS_ERR(conf))
2213 			conf->barrier = 1;
2214 		return conf;
2215 	}
2216 	return ERR_PTR(-EINVAL);
2217 }
2218 
2219 static struct mdk_personality raid1_personality =
2220 {
2221 	.name		= "raid1",
2222 	.level		= 1,
2223 	.owner		= THIS_MODULE,
2224 	.make_request	= make_request,
2225 	.run		= run,
2226 	.stop		= stop,
2227 	.status		= status,
2228 	.error_handler	= error,
2229 	.hot_add_disk	= raid1_add_disk,
2230 	.hot_remove_disk= raid1_remove_disk,
2231 	.spare_active	= raid1_spare_active,
2232 	.sync_request	= sync_request,
2233 	.resize		= raid1_resize,
2234 	.size		= raid1_size,
2235 	.check_reshape	= raid1_reshape,
2236 	.quiesce	= raid1_quiesce,
2237 	.takeover	= raid1_takeover,
2238 };
2239 
2240 static int __init raid_init(void)
2241 {
2242 	return register_md_personality(&raid1_personality);
2243 }
2244 
2245 static void raid_exit(void)
2246 {
2247 	unregister_md_personality(&raid1_personality);
2248 }
2249 
2250 module_init(raid_init);
2251 module_exit(raid_exit);
2252 MODULE_LICENSE("GPL");
2253 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2254 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2255 MODULE_ALIAS("md-raid1");
2256 MODULE_ALIAS("md-level-1");
2257