1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include <linux/sched/signal.h> 41 42 #include <trace/events/block.h> 43 44 #include "md.h" 45 #include "raid1.h" 46 #include "bitmap.h" 47 48 #define UNSUPPORTED_MDDEV_FLAGS \ 49 ((1L << MD_HAS_JOURNAL) | \ 50 (1L << MD_JOURNAL_CLEAN) | \ 51 (1L << MD_HAS_PPL) | \ 52 (1L << MD_HAS_MULTIPLE_PPLS)) 53 54 /* 55 * Number of guaranteed r1bios in case of extreme VM load: 56 */ 57 #define NR_RAID1_BIOS 256 58 59 /* when we get a read error on a read-only array, we redirect to another 60 * device without failing the first device, or trying to over-write to 61 * correct the read error. To keep track of bad blocks on a per-bio 62 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 63 */ 64 #define IO_BLOCKED ((struct bio *)1) 65 /* When we successfully write to a known bad-block, we need to remove the 66 * bad-block marking which must be done from process context. So we record 67 * the success by setting devs[n].bio to IO_MADE_GOOD 68 */ 69 #define IO_MADE_GOOD ((struct bio *)2) 70 71 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 72 73 /* When there are this many requests queue to be written by 74 * the raid1 thread, we become 'congested' to provide back-pressure 75 * for writeback. 76 */ 77 static int max_queued_requests = 1024; 78 79 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 80 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 81 82 #define raid1_log(md, fmt, args...) \ 83 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 84 85 #include "raid1-10.c" 86 87 /* 88 * for resync bio, r1bio pointer can be retrieved from the per-bio 89 * 'struct resync_pages'. 90 */ 91 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 92 { 93 return get_resync_pages(bio)->raid_bio; 94 } 95 96 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 97 { 98 struct pool_info *pi = data; 99 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 100 101 /* allocate a r1bio with room for raid_disks entries in the bios array */ 102 return kzalloc(size, gfp_flags); 103 } 104 105 static void r1bio_pool_free(void *r1_bio, void *data) 106 { 107 kfree(r1_bio); 108 } 109 110 #define RESYNC_DEPTH 32 111 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 112 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 113 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 114 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 115 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 116 117 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 118 { 119 struct pool_info *pi = data; 120 struct r1bio *r1_bio; 121 struct bio *bio; 122 int need_pages; 123 int j; 124 struct resync_pages *rps; 125 126 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 127 if (!r1_bio) 128 return NULL; 129 130 rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks, 131 gfp_flags); 132 if (!rps) 133 goto out_free_r1bio; 134 135 /* 136 * Allocate bios : 1 for reading, n-1 for writing 137 */ 138 for (j = pi->raid_disks ; j-- ; ) { 139 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 140 if (!bio) 141 goto out_free_bio; 142 r1_bio->bios[j] = bio; 143 } 144 /* 145 * Allocate RESYNC_PAGES data pages and attach them to 146 * the first bio. 147 * If this is a user-requested check/repair, allocate 148 * RESYNC_PAGES for each bio. 149 */ 150 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 151 need_pages = pi->raid_disks; 152 else 153 need_pages = 1; 154 for (j = 0; j < pi->raid_disks; j++) { 155 struct resync_pages *rp = &rps[j]; 156 157 bio = r1_bio->bios[j]; 158 159 if (j < need_pages) { 160 if (resync_alloc_pages(rp, gfp_flags)) 161 goto out_free_pages; 162 } else { 163 memcpy(rp, &rps[0], sizeof(*rp)); 164 resync_get_all_pages(rp); 165 } 166 167 rp->raid_bio = r1_bio; 168 bio->bi_private = rp; 169 } 170 171 r1_bio->master_bio = NULL; 172 173 return r1_bio; 174 175 out_free_pages: 176 while (--j >= 0) 177 resync_free_pages(&rps[j]); 178 179 out_free_bio: 180 while (++j < pi->raid_disks) 181 bio_put(r1_bio->bios[j]); 182 kfree(rps); 183 184 out_free_r1bio: 185 r1bio_pool_free(r1_bio, data); 186 return NULL; 187 } 188 189 static void r1buf_pool_free(void *__r1_bio, void *data) 190 { 191 struct pool_info *pi = data; 192 int i; 193 struct r1bio *r1bio = __r1_bio; 194 struct resync_pages *rp = NULL; 195 196 for (i = pi->raid_disks; i--; ) { 197 rp = get_resync_pages(r1bio->bios[i]); 198 resync_free_pages(rp); 199 bio_put(r1bio->bios[i]); 200 } 201 202 /* resync pages array stored in the 1st bio's .bi_private */ 203 kfree(rp); 204 205 r1bio_pool_free(r1bio, data); 206 } 207 208 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 209 { 210 int i; 211 212 for (i = 0; i < conf->raid_disks * 2; i++) { 213 struct bio **bio = r1_bio->bios + i; 214 if (!BIO_SPECIAL(*bio)) 215 bio_put(*bio); 216 *bio = NULL; 217 } 218 } 219 220 static void free_r1bio(struct r1bio *r1_bio) 221 { 222 struct r1conf *conf = r1_bio->mddev->private; 223 224 put_all_bios(conf, r1_bio); 225 mempool_free(r1_bio, conf->r1bio_pool); 226 } 227 228 static void put_buf(struct r1bio *r1_bio) 229 { 230 struct r1conf *conf = r1_bio->mddev->private; 231 sector_t sect = r1_bio->sector; 232 int i; 233 234 for (i = 0; i < conf->raid_disks * 2; i++) { 235 struct bio *bio = r1_bio->bios[i]; 236 if (bio->bi_end_io) 237 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 238 } 239 240 mempool_free(r1_bio, conf->r1buf_pool); 241 242 lower_barrier(conf, sect); 243 } 244 245 static void reschedule_retry(struct r1bio *r1_bio) 246 { 247 unsigned long flags; 248 struct mddev *mddev = r1_bio->mddev; 249 struct r1conf *conf = mddev->private; 250 int idx; 251 252 idx = sector_to_idx(r1_bio->sector); 253 spin_lock_irqsave(&conf->device_lock, flags); 254 list_add(&r1_bio->retry_list, &conf->retry_list); 255 atomic_inc(&conf->nr_queued[idx]); 256 spin_unlock_irqrestore(&conf->device_lock, flags); 257 258 wake_up(&conf->wait_barrier); 259 md_wakeup_thread(mddev->thread); 260 } 261 262 /* 263 * raid_end_bio_io() is called when we have finished servicing a mirrored 264 * operation and are ready to return a success/failure code to the buffer 265 * cache layer. 266 */ 267 static void call_bio_endio(struct r1bio *r1_bio) 268 { 269 struct bio *bio = r1_bio->master_bio; 270 struct r1conf *conf = r1_bio->mddev->private; 271 272 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 273 bio->bi_status = BLK_STS_IOERR; 274 275 bio_endio(bio); 276 /* 277 * Wake up any possible resync thread that waits for the device 278 * to go idle. 279 */ 280 allow_barrier(conf, r1_bio->sector); 281 } 282 283 static void raid_end_bio_io(struct r1bio *r1_bio) 284 { 285 struct bio *bio = r1_bio->master_bio; 286 287 /* if nobody has done the final endio yet, do it now */ 288 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 289 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 290 (bio_data_dir(bio) == WRITE) ? "write" : "read", 291 (unsigned long long) bio->bi_iter.bi_sector, 292 (unsigned long long) bio_end_sector(bio) - 1); 293 294 call_bio_endio(r1_bio); 295 } 296 free_r1bio(r1_bio); 297 } 298 299 /* 300 * Update disk head position estimator based on IRQ completion info. 301 */ 302 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 303 { 304 struct r1conf *conf = r1_bio->mddev->private; 305 306 conf->mirrors[disk].head_position = 307 r1_bio->sector + (r1_bio->sectors); 308 } 309 310 /* 311 * Find the disk number which triggered given bio 312 */ 313 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 314 { 315 int mirror; 316 struct r1conf *conf = r1_bio->mddev->private; 317 int raid_disks = conf->raid_disks; 318 319 for (mirror = 0; mirror < raid_disks * 2; mirror++) 320 if (r1_bio->bios[mirror] == bio) 321 break; 322 323 BUG_ON(mirror == raid_disks * 2); 324 update_head_pos(mirror, r1_bio); 325 326 return mirror; 327 } 328 329 static void raid1_end_read_request(struct bio *bio) 330 { 331 int uptodate = !bio->bi_status; 332 struct r1bio *r1_bio = bio->bi_private; 333 struct r1conf *conf = r1_bio->mddev->private; 334 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 335 336 /* 337 * this branch is our 'one mirror IO has finished' event handler: 338 */ 339 update_head_pos(r1_bio->read_disk, r1_bio); 340 341 if (uptodate) 342 set_bit(R1BIO_Uptodate, &r1_bio->state); 343 else if (test_bit(FailFast, &rdev->flags) && 344 test_bit(R1BIO_FailFast, &r1_bio->state)) 345 /* This was a fail-fast read so we definitely 346 * want to retry */ 347 ; 348 else { 349 /* If all other devices have failed, we want to return 350 * the error upwards rather than fail the last device. 351 * Here we redefine "uptodate" to mean "Don't want to retry" 352 */ 353 unsigned long flags; 354 spin_lock_irqsave(&conf->device_lock, flags); 355 if (r1_bio->mddev->degraded == conf->raid_disks || 356 (r1_bio->mddev->degraded == conf->raid_disks-1 && 357 test_bit(In_sync, &rdev->flags))) 358 uptodate = 1; 359 spin_unlock_irqrestore(&conf->device_lock, flags); 360 } 361 362 if (uptodate) { 363 raid_end_bio_io(r1_bio); 364 rdev_dec_pending(rdev, conf->mddev); 365 } else { 366 /* 367 * oops, read error: 368 */ 369 char b[BDEVNAME_SIZE]; 370 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 371 mdname(conf->mddev), 372 bdevname(rdev->bdev, b), 373 (unsigned long long)r1_bio->sector); 374 set_bit(R1BIO_ReadError, &r1_bio->state); 375 reschedule_retry(r1_bio); 376 /* don't drop the reference on read_disk yet */ 377 } 378 } 379 380 static void close_write(struct r1bio *r1_bio) 381 { 382 /* it really is the end of this request */ 383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 384 bio_free_pages(r1_bio->behind_master_bio); 385 bio_put(r1_bio->behind_master_bio); 386 r1_bio->behind_master_bio = NULL; 387 } 388 /* clear the bitmap if all writes complete successfully */ 389 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 390 r1_bio->sectors, 391 !test_bit(R1BIO_Degraded, &r1_bio->state), 392 test_bit(R1BIO_BehindIO, &r1_bio->state)); 393 md_write_end(r1_bio->mddev); 394 } 395 396 static void r1_bio_write_done(struct r1bio *r1_bio) 397 { 398 if (!atomic_dec_and_test(&r1_bio->remaining)) 399 return; 400 401 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 402 reschedule_retry(r1_bio); 403 else { 404 close_write(r1_bio); 405 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 406 reschedule_retry(r1_bio); 407 else 408 raid_end_bio_io(r1_bio); 409 } 410 } 411 412 static void raid1_end_write_request(struct bio *bio) 413 { 414 struct r1bio *r1_bio = bio->bi_private; 415 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 416 struct r1conf *conf = r1_bio->mddev->private; 417 struct bio *to_put = NULL; 418 int mirror = find_bio_disk(r1_bio, bio); 419 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 420 bool discard_error; 421 422 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 423 424 /* 425 * 'one mirror IO has finished' event handler: 426 */ 427 if (bio->bi_status && !discard_error) { 428 set_bit(WriteErrorSeen, &rdev->flags); 429 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 430 set_bit(MD_RECOVERY_NEEDED, & 431 conf->mddev->recovery); 432 433 if (test_bit(FailFast, &rdev->flags) && 434 (bio->bi_opf & MD_FAILFAST) && 435 /* We never try FailFast to WriteMostly devices */ 436 !test_bit(WriteMostly, &rdev->flags)) { 437 md_error(r1_bio->mddev, rdev); 438 if (!test_bit(Faulty, &rdev->flags)) 439 /* This is the only remaining device, 440 * We need to retry the write without 441 * FailFast 442 */ 443 set_bit(R1BIO_WriteError, &r1_bio->state); 444 else { 445 /* Finished with this branch */ 446 r1_bio->bios[mirror] = NULL; 447 to_put = bio; 448 } 449 } else 450 set_bit(R1BIO_WriteError, &r1_bio->state); 451 } else { 452 /* 453 * Set R1BIO_Uptodate in our master bio, so that we 454 * will return a good error code for to the higher 455 * levels even if IO on some other mirrored buffer 456 * fails. 457 * 458 * The 'master' represents the composite IO operation 459 * to user-side. So if something waits for IO, then it 460 * will wait for the 'master' bio. 461 */ 462 sector_t first_bad; 463 int bad_sectors; 464 465 r1_bio->bios[mirror] = NULL; 466 to_put = bio; 467 /* 468 * Do not set R1BIO_Uptodate if the current device is 469 * rebuilding or Faulty. This is because we cannot use 470 * such device for properly reading the data back (we could 471 * potentially use it, if the current write would have felt 472 * before rdev->recovery_offset, but for simplicity we don't 473 * check this here. 474 */ 475 if (test_bit(In_sync, &rdev->flags) && 476 !test_bit(Faulty, &rdev->flags)) 477 set_bit(R1BIO_Uptodate, &r1_bio->state); 478 479 /* Maybe we can clear some bad blocks. */ 480 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 481 &first_bad, &bad_sectors) && !discard_error) { 482 r1_bio->bios[mirror] = IO_MADE_GOOD; 483 set_bit(R1BIO_MadeGood, &r1_bio->state); 484 } 485 } 486 487 if (behind) { 488 if (test_bit(WriteMostly, &rdev->flags)) 489 atomic_dec(&r1_bio->behind_remaining); 490 491 /* 492 * In behind mode, we ACK the master bio once the I/O 493 * has safely reached all non-writemostly 494 * disks. Setting the Returned bit ensures that this 495 * gets done only once -- we don't ever want to return 496 * -EIO here, instead we'll wait 497 */ 498 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 499 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 500 /* Maybe we can return now */ 501 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 502 struct bio *mbio = r1_bio->master_bio; 503 pr_debug("raid1: behind end write sectors" 504 " %llu-%llu\n", 505 (unsigned long long) mbio->bi_iter.bi_sector, 506 (unsigned long long) bio_end_sector(mbio) - 1); 507 call_bio_endio(r1_bio); 508 } 509 } 510 } 511 if (r1_bio->bios[mirror] == NULL) 512 rdev_dec_pending(rdev, conf->mddev); 513 514 /* 515 * Let's see if all mirrored write operations have finished 516 * already. 517 */ 518 r1_bio_write_done(r1_bio); 519 520 if (to_put) 521 bio_put(to_put); 522 } 523 524 static sector_t align_to_barrier_unit_end(sector_t start_sector, 525 sector_t sectors) 526 { 527 sector_t len; 528 529 WARN_ON(sectors == 0); 530 /* 531 * len is the number of sectors from start_sector to end of the 532 * barrier unit which start_sector belongs to. 533 */ 534 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 535 start_sector; 536 537 if (len > sectors) 538 len = sectors; 539 540 return len; 541 } 542 543 /* 544 * This routine returns the disk from which the requested read should 545 * be done. There is a per-array 'next expected sequential IO' sector 546 * number - if this matches on the next IO then we use the last disk. 547 * There is also a per-disk 'last know head position' sector that is 548 * maintained from IRQ contexts, both the normal and the resync IO 549 * completion handlers update this position correctly. If there is no 550 * perfect sequential match then we pick the disk whose head is closest. 551 * 552 * If there are 2 mirrors in the same 2 devices, performance degrades 553 * because position is mirror, not device based. 554 * 555 * The rdev for the device selected will have nr_pending incremented. 556 */ 557 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 558 { 559 const sector_t this_sector = r1_bio->sector; 560 int sectors; 561 int best_good_sectors; 562 int best_disk, best_dist_disk, best_pending_disk; 563 int has_nonrot_disk; 564 int disk; 565 sector_t best_dist; 566 unsigned int min_pending; 567 struct md_rdev *rdev; 568 int choose_first; 569 int choose_next_idle; 570 571 rcu_read_lock(); 572 /* 573 * Check if we can balance. We can balance on the whole 574 * device if no resync is going on, or below the resync window. 575 * We take the first readable disk when above the resync window. 576 */ 577 retry: 578 sectors = r1_bio->sectors; 579 best_disk = -1; 580 best_dist_disk = -1; 581 best_dist = MaxSector; 582 best_pending_disk = -1; 583 min_pending = UINT_MAX; 584 best_good_sectors = 0; 585 has_nonrot_disk = 0; 586 choose_next_idle = 0; 587 clear_bit(R1BIO_FailFast, &r1_bio->state); 588 589 if ((conf->mddev->recovery_cp < this_sector + sectors) || 590 (mddev_is_clustered(conf->mddev) && 591 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 592 this_sector + sectors))) 593 choose_first = 1; 594 else 595 choose_first = 0; 596 597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 598 sector_t dist; 599 sector_t first_bad; 600 int bad_sectors; 601 unsigned int pending; 602 bool nonrot; 603 604 rdev = rcu_dereference(conf->mirrors[disk].rdev); 605 if (r1_bio->bios[disk] == IO_BLOCKED 606 || rdev == NULL 607 || test_bit(Faulty, &rdev->flags)) 608 continue; 609 if (!test_bit(In_sync, &rdev->flags) && 610 rdev->recovery_offset < this_sector + sectors) 611 continue; 612 if (test_bit(WriteMostly, &rdev->flags)) { 613 /* Don't balance among write-mostly, just 614 * use the first as a last resort */ 615 if (best_dist_disk < 0) { 616 if (is_badblock(rdev, this_sector, sectors, 617 &first_bad, &bad_sectors)) { 618 if (first_bad <= this_sector) 619 /* Cannot use this */ 620 continue; 621 best_good_sectors = first_bad - this_sector; 622 } else 623 best_good_sectors = sectors; 624 best_dist_disk = disk; 625 best_pending_disk = disk; 626 } 627 continue; 628 } 629 /* This is a reasonable device to use. It might 630 * even be best. 631 */ 632 if (is_badblock(rdev, this_sector, sectors, 633 &first_bad, &bad_sectors)) { 634 if (best_dist < MaxSector) 635 /* already have a better device */ 636 continue; 637 if (first_bad <= this_sector) { 638 /* cannot read here. If this is the 'primary' 639 * device, then we must not read beyond 640 * bad_sectors from another device.. 641 */ 642 bad_sectors -= (this_sector - first_bad); 643 if (choose_first && sectors > bad_sectors) 644 sectors = bad_sectors; 645 if (best_good_sectors > sectors) 646 best_good_sectors = sectors; 647 648 } else { 649 sector_t good_sectors = first_bad - this_sector; 650 if (good_sectors > best_good_sectors) { 651 best_good_sectors = good_sectors; 652 best_disk = disk; 653 } 654 if (choose_first) 655 break; 656 } 657 continue; 658 } else { 659 if ((sectors > best_good_sectors) && (best_disk >= 0)) 660 best_disk = -1; 661 best_good_sectors = sectors; 662 } 663 664 if (best_disk >= 0) 665 /* At least two disks to choose from so failfast is OK */ 666 set_bit(R1BIO_FailFast, &r1_bio->state); 667 668 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 669 has_nonrot_disk |= nonrot; 670 pending = atomic_read(&rdev->nr_pending); 671 dist = abs(this_sector - conf->mirrors[disk].head_position); 672 if (choose_first) { 673 best_disk = disk; 674 break; 675 } 676 /* Don't change to another disk for sequential reads */ 677 if (conf->mirrors[disk].next_seq_sect == this_sector 678 || dist == 0) { 679 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 680 struct raid1_info *mirror = &conf->mirrors[disk]; 681 682 best_disk = disk; 683 /* 684 * If buffered sequential IO size exceeds optimal 685 * iosize, check if there is idle disk. If yes, choose 686 * the idle disk. read_balance could already choose an 687 * idle disk before noticing it's a sequential IO in 688 * this disk. This doesn't matter because this disk 689 * will idle, next time it will be utilized after the 690 * first disk has IO size exceeds optimal iosize. In 691 * this way, iosize of the first disk will be optimal 692 * iosize at least. iosize of the second disk might be 693 * small, but not a big deal since when the second disk 694 * starts IO, the first disk is likely still busy. 695 */ 696 if (nonrot && opt_iosize > 0 && 697 mirror->seq_start != MaxSector && 698 mirror->next_seq_sect > opt_iosize && 699 mirror->next_seq_sect - opt_iosize >= 700 mirror->seq_start) { 701 choose_next_idle = 1; 702 continue; 703 } 704 break; 705 } 706 707 if (choose_next_idle) 708 continue; 709 710 if (min_pending > pending) { 711 min_pending = pending; 712 best_pending_disk = disk; 713 } 714 715 if (dist < best_dist) { 716 best_dist = dist; 717 best_dist_disk = disk; 718 } 719 } 720 721 /* 722 * If all disks are rotational, choose the closest disk. If any disk is 723 * non-rotational, choose the disk with less pending request even the 724 * disk is rotational, which might/might not be optimal for raids with 725 * mixed ratation/non-rotational disks depending on workload. 726 */ 727 if (best_disk == -1) { 728 if (has_nonrot_disk || min_pending == 0) 729 best_disk = best_pending_disk; 730 else 731 best_disk = best_dist_disk; 732 } 733 734 if (best_disk >= 0) { 735 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 736 if (!rdev) 737 goto retry; 738 atomic_inc(&rdev->nr_pending); 739 sectors = best_good_sectors; 740 741 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 742 conf->mirrors[best_disk].seq_start = this_sector; 743 744 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 745 } 746 rcu_read_unlock(); 747 *max_sectors = sectors; 748 749 return best_disk; 750 } 751 752 static int raid1_congested(struct mddev *mddev, int bits) 753 { 754 struct r1conf *conf = mddev->private; 755 int i, ret = 0; 756 757 if ((bits & (1 << WB_async_congested)) && 758 conf->pending_count >= max_queued_requests) 759 return 1; 760 761 rcu_read_lock(); 762 for (i = 0; i < conf->raid_disks * 2; i++) { 763 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 764 if (rdev && !test_bit(Faulty, &rdev->flags)) { 765 struct request_queue *q = bdev_get_queue(rdev->bdev); 766 767 BUG_ON(!q); 768 769 /* Note the '|| 1' - when read_balance prefers 770 * non-congested targets, it can be removed 771 */ 772 if ((bits & (1 << WB_async_congested)) || 1) 773 ret |= bdi_congested(q->backing_dev_info, bits); 774 else 775 ret &= bdi_congested(q->backing_dev_info, bits); 776 } 777 } 778 rcu_read_unlock(); 779 return ret; 780 } 781 782 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 783 { 784 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 785 bitmap_unplug(conf->mddev->bitmap); 786 wake_up(&conf->wait_barrier); 787 788 while (bio) { /* submit pending writes */ 789 struct bio *next = bio->bi_next; 790 struct md_rdev *rdev = (void *)bio->bi_disk; 791 bio->bi_next = NULL; 792 bio_set_dev(bio, rdev->bdev); 793 if (test_bit(Faulty, &rdev->flags)) { 794 bio_io_error(bio); 795 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 796 !blk_queue_discard(bio->bi_disk->queue))) 797 /* Just ignore it */ 798 bio_endio(bio); 799 else 800 generic_make_request(bio); 801 bio = next; 802 } 803 } 804 805 static void flush_pending_writes(struct r1conf *conf) 806 { 807 /* Any writes that have been queued but are awaiting 808 * bitmap updates get flushed here. 809 */ 810 spin_lock_irq(&conf->device_lock); 811 812 if (conf->pending_bio_list.head) { 813 struct bio *bio; 814 bio = bio_list_get(&conf->pending_bio_list); 815 conf->pending_count = 0; 816 spin_unlock_irq(&conf->device_lock); 817 flush_bio_list(conf, bio); 818 } else 819 spin_unlock_irq(&conf->device_lock); 820 } 821 822 /* Barriers.... 823 * Sometimes we need to suspend IO while we do something else, 824 * either some resync/recovery, or reconfigure the array. 825 * To do this we raise a 'barrier'. 826 * The 'barrier' is a counter that can be raised multiple times 827 * to count how many activities are happening which preclude 828 * normal IO. 829 * We can only raise the barrier if there is no pending IO. 830 * i.e. if nr_pending == 0. 831 * We choose only to raise the barrier if no-one is waiting for the 832 * barrier to go down. This means that as soon as an IO request 833 * is ready, no other operations which require a barrier will start 834 * until the IO request has had a chance. 835 * 836 * So: regular IO calls 'wait_barrier'. When that returns there 837 * is no backgroup IO happening, It must arrange to call 838 * allow_barrier when it has finished its IO. 839 * backgroup IO calls must call raise_barrier. Once that returns 840 * there is no normal IO happeing. It must arrange to call 841 * lower_barrier when the particular background IO completes. 842 */ 843 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 844 { 845 int idx = sector_to_idx(sector_nr); 846 847 spin_lock_irq(&conf->resync_lock); 848 849 /* Wait until no block IO is waiting */ 850 wait_event_lock_irq(conf->wait_barrier, 851 !atomic_read(&conf->nr_waiting[idx]), 852 conf->resync_lock); 853 854 /* block any new IO from starting */ 855 atomic_inc(&conf->barrier[idx]); 856 /* 857 * In raise_barrier() we firstly increase conf->barrier[idx] then 858 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 859 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 860 * A memory barrier here to make sure conf->nr_pending[idx] won't 861 * be fetched before conf->barrier[idx] is increased. Otherwise 862 * there will be a race between raise_barrier() and _wait_barrier(). 863 */ 864 smp_mb__after_atomic(); 865 866 /* For these conditions we must wait: 867 * A: while the array is in frozen state 868 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 869 * existing in corresponding I/O barrier bucket. 870 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 871 * max resync count which allowed on current I/O barrier bucket. 872 */ 873 wait_event_lock_irq(conf->wait_barrier, 874 !conf->array_frozen && 875 !atomic_read(&conf->nr_pending[idx]) && 876 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH, 877 conf->resync_lock); 878 879 atomic_inc(&conf->nr_sync_pending); 880 spin_unlock_irq(&conf->resync_lock); 881 } 882 883 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 884 { 885 int idx = sector_to_idx(sector_nr); 886 887 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 888 889 atomic_dec(&conf->barrier[idx]); 890 atomic_dec(&conf->nr_sync_pending); 891 wake_up(&conf->wait_barrier); 892 } 893 894 static void _wait_barrier(struct r1conf *conf, int idx) 895 { 896 /* 897 * We need to increase conf->nr_pending[idx] very early here, 898 * then raise_barrier() can be blocked when it waits for 899 * conf->nr_pending[idx] to be 0. Then we can avoid holding 900 * conf->resync_lock when there is no barrier raised in same 901 * barrier unit bucket. Also if the array is frozen, I/O 902 * should be blocked until array is unfrozen. 903 */ 904 atomic_inc(&conf->nr_pending[idx]); 905 /* 906 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 907 * check conf->barrier[idx]. In raise_barrier() we firstly increase 908 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 909 * barrier is necessary here to make sure conf->barrier[idx] won't be 910 * fetched before conf->nr_pending[idx] is increased. Otherwise there 911 * will be a race between _wait_barrier() and raise_barrier(). 912 */ 913 smp_mb__after_atomic(); 914 915 /* 916 * Don't worry about checking two atomic_t variables at same time 917 * here. If during we check conf->barrier[idx], the array is 918 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 919 * 0, it is safe to return and make the I/O continue. Because the 920 * array is frozen, all I/O returned here will eventually complete 921 * or be queued, no race will happen. See code comment in 922 * frozen_array(). 923 */ 924 if (!READ_ONCE(conf->array_frozen) && 925 !atomic_read(&conf->barrier[idx])) 926 return; 927 928 /* 929 * After holding conf->resync_lock, conf->nr_pending[idx] 930 * should be decreased before waiting for barrier to drop. 931 * Otherwise, we may encounter a race condition because 932 * raise_barrer() might be waiting for conf->nr_pending[idx] 933 * to be 0 at same time. 934 */ 935 spin_lock_irq(&conf->resync_lock); 936 atomic_inc(&conf->nr_waiting[idx]); 937 atomic_dec(&conf->nr_pending[idx]); 938 /* 939 * In case freeze_array() is waiting for 940 * get_unqueued_pending() == extra 941 */ 942 wake_up(&conf->wait_barrier); 943 /* Wait for the barrier in same barrier unit bucket to drop. */ 944 wait_event_lock_irq(conf->wait_barrier, 945 !conf->array_frozen && 946 !atomic_read(&conf->barrier[idx]), 947 conf->resync_lock); 948 atomic_inc(&conf->nr_pending[idx]); 949 atomic_dec(&conf->nr_waiting[idx]); 950 spin_unlock_irq(&conf->resync_lock); 951 } 952 953 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr) 954 { 955 int idx = sector_to_idx(sector_nr); 956 957 /* 958 * Very similar to _wait_barrier(). The difference is, for read 959 * I/O we don't need wait for sync I/O, but if the whole array 960 * is frozen, the read I/O still has to wait until the array is 961 * unfrozen. Since there is no ordering requirement with 962 * conf->barrier[idx] here, memory barrier is unnecessary as well. 963 */ 964 atomic_inc(&conf->nr_pending[idx]); 965 966 if (!READ_ONCE(conf->array_frozen)) 967 return; 968 969 spin_lock_irq(&conf->resync_lock); 970 atomic_inc(&conf->nr_waiting[idx]); 971 atomic_dec(&conf->nr_pending[idx]); 972 /* 973 * In case freeze_array() is waiting for 974 * get_unqueued_pending() == extra 975 */ 976 wake_up(&conf->wait_barrier); 977 /* Wait for array to be unfrozen */ 978 wait_event_lock_irq(conf->wait_barrier, 979 !conf->array_frozen, 980 conf->resync_lock); 981 atomic_inc(&conf->nr_pending[idx]); 982 atomic_dec(&conf->nr_waiting[idx]); 983 spin_unlock_irq(&conf->resync_lock); 984 } 985 986 static void wait_barrier(struct r1conf *conf, sector_t sector_nr) 987 { 988 int idx = sector_to_idx(sector_nr); 989 990 _wait_barrier(conf, idx); 991 } 992 993 static void wait_all_barriers(struct r1conf *conf) 994 { 995 int idx; 996 997 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 998 _wait_barrier(conf, idx); 999 } 1000 1001 static void _allow_barrier(struct r1conf *conf, int idx) 1002 { 1003 atomic_dec(&conf->nr_pending[idx]); 1004 wake_up(&conf->wait_barrier); 1005 } 1006 1007 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1008 { 1009 int idx = sector_to_idx(sector_nr); 1010 1011 _allow_barrier(conf, idx); 1012 } 1013 1014 static void allow_all_barriers(struct r1conf *conf) 1015 { 1016 int idx; 1017 1018 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1019 _allow_barrier(conf, idx); 1020 } 1021 1022 /* conf->resync_lock should be held */ 1023 static int get_unqueued_pending(struct r1conf *conf) 1024 { 1025 int idx, ret; 1026 1027 ret = atomic_read(&conf->nr_sync_pending); 1028 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1029 ret += atomic_read(&conf->nr_pending[idx]) - 1030 atomic_read(&conf->nr_queued[idx]); 1031 1032 return ret; 1033 } 1034 1035 static void freeze_array(struct r1conf *conf, int extra) 1036 { 1037 /* Stop sync I/O and normal I/O and wait for everything to 1038 * go quiet. 1039 * This is called in two situations: 1040 * 1) management command handlers (reshape, remove disk, quiesce). 1041 * 2) one normal I/O request failed. 1042 1043 * After array_frozen is set to 1, new sync IO will be blocked at 1044 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1045 * or wait_read_barrier(). The flying I/Os will either complete or be 1046 * queued. When everything goes quite, there are only queued I/Os left. 1047 1048 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1049 * barrier bucket index which this I/O request hits. When all sync and 1050 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1051 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1052 * in handle_read_error(), we may call freeze_array() before trying to 1053 * fix the read error. In this case, the error read I/O is not queued, 1054 * so get_unqueued_pending() == 1. 1055 * 1056 * Therefore before this function returns, we need to wait until 1057 * get_unqueued_pendings(conf) gets equal to extra. For 1058 * normal I/O context, extra is 1, in rested situations extra is 0. 1059 */ 1060 spin_lock_irq(&conf->resync_lock); 1061 conf->array_frozen = 1; 1062 raid1_log(conf->mddev, "wait freeze"); 1063 wait_event_lock_irq_cmd( 1064 conf->wait_barrier, 1065 get_unqueued_pending(conf) == extra, 1066 conf->resync_lock, 1067 flush_pending_writes(conf)); 1068 spin_unlock_irq(&conf->resync_lock); 1069 } 1070 static void unfreeze_array(struct r1conf *conf) 1071 { 1072 /* reverse the effect of the freeze */ 1073 spin_lock_irq(&conf->resync_lock); 1074 conf->array_frozen = 0; 1075 spin_unlock_irq(&conf->resync_lock); 1076 wake_up(&conf->wait_barrier); 1077 } 1078 1079 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1080 struct bio *bio) 1081 { 1082 int size = bio->bi_iter.bi_size; 1083 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1084 int i = 0; 1085 struct bio *behind_bio = NULL; 1086 1087 behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev); 1088 if (!behind_bio) 1089 return; 1090 1091 /* discard op, we don't support writezero/writesame yet */ 1092 if (!bio_has_data(bio)) { 1093 behind_bio->bi_iter.bi_size = size; 1094 goto skip_copy; 1095 } 1096 1097 while (i < vcnt && size) { 1098 struct page *page; 1099 int len = min_t(int, PAGE_SIZE, size); 1100 1101 page = alloc_page(GFP_NOIO); 1102 if (unlikely(!page)) 1103 goto free_pages; 1104 1105 bio_add_page(behind_bio, page, len, 0); 1106 1107 size -= len; 1108 i++; 1109 } 1110 1111 bio_copy_data(behind_bio, bio); 1112 skip_copy: 1113 r1_bio->behind_master_bio = behind_bio;; 1114 set_bit(R1BIO_BehindIO, &r1_bio->state); 1115 1116 return; 1117 1118 free_pages: 1119 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1120 bio->bi_iter.bi_size); 1121 bio_free_pages(behind_bio); 1122 bio_put(behind_bio); 1123 } 1124 1125 struct raid1_plug_cb { 1126 struct blk_plug_cb cb; 1127 struct bio_list pending; 1128 int pending_cnt; 1129 }; 1130 1131 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1132 { 1133 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1134 cb); 1135 struct mddev *mddev = plug->cb.data; 1136 struct r1conf *conf = mddev->private; 1137 struct bio *bio; 1138 1139 if (from_schedule || current->bio_list) { 1140 spin_lock_irq(&conf->device_lock); 1141 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1142 conf->pending_count += plug->pending_cnt; 1143 spin_unlock_irq(&conf->device_lock); 1144 wake_up(&conf->wait_barrier); 1145 md_wakeup_thread(mddev->thread); 1146 kfree(plug); 1147 return; 1148 } 1149 1150 /* we aren't scheduling, so we can do the write-out directly. */ 1151 bio = bio_list_get(&plug->pending); 1152 flush_bio_list(conf, bio); 1153 kfree(plug); 1154 } 1155 1156 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1157 { 1158 r1_bio->master_bio = bio; 1159 r1_bio->sectors = bio_sectors(bio); 1160 r1_bio->state = 0; 1161 r1_bio->mddev = mddev; 1162 r1_bio->sector = bio->bi_iter.bi_sector; 1163 } 1164 1165 static inline struct r1bio * 1166 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1167 { 1168 struct r1conf *conf = mddev->private; 1169 struct r1bio *r1_bio; 1170 1171 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1172 /* Ensure no bio records IO_BLOCKED */ 1173 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1174 init_r1bio(r1_bio, mddev, bio); 1175 return r1_bio; 1176 } 1177 1178 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1179 int max_read_sectors, struct r1bio *r1_bio) 1180 { 1181 struct r1conf *conf = mddev->private; 1182 struct raid1_info *mirror; 1183 struct bio *read_bio; 1184 struct bitmap *bitmap = mddev->bitmap; 1185 const int op = bio_op(bio); 1186 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1187 int max_sectors; 1188 int rdisk; 1189 bool print_msg = !!r1_bio; 1190 char b[BDEVNAME_SIZE]; 1191 1192 /* 1193 * If r1_bio is set, we are blocking the raid1d thread 1194 * so there is a tiny risk of deadlock. So ask for 1195 * emergency memory if needed. 1196 */ 1197 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1198 1199 if (print_msg) { 1200 /* Need to get the block device name carefully */ 1201 struct md_rdev *rdev; 1202 rcu_read_lock(); 1203 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1204 if (rdev) 1205 bdevname(rdev->bdev, b); 1206 else 1207 strcpy(b, "???"); 1208 rcu_read_unlock(); 1209 } 1210 1211 /* 1212 * Still need barrier for READ in case that whole 1213 * array is frozen. 1214 */ 1215 wait_read_barrier(conf, bio->bi_iter.bi_sector); 1216 1217 if (!r1_bio) 1218 r1_bio = alloc_r1bio(mddev, bio); 1219 else 1220 init_r1bio(r1_bio, mddev, bio); 1221 r1_bio->sectors = max_read_sectors; 1222 1223 /* 1224 * make_request() can abort the operation when read-ahead is being 1225 * used and no empty request is available. 1226 */ 1227 rdisk = read_balance(conf, r1_bio, &max_sectors); 1228 1229 if (rdisk < 0) { 1230 /* couldn't find anywhere to read from */ 1231 if (print_msg) { 1232 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1233 mdname(mddev), 1234 b, 1235 (unsigned long long)r1_bio->sector); 1236 } 1237 raid_end_bio_io(r1_bio); 1238 return; 1239 } 1240 mirror = conf->mirrors + rdisk; 1241 1242 if (print_msg) 1243 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1244 mdname(mddev), 1245 (unsigned long long)r1_bio->sector, 1246 bdevname(mirror->rdev->bdev, b)); 1247 1248 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1249 bitmap) { 1250 /* 1251 * Reading from a write-mostly device must take care not to 1252 * over-take any writes that are 'behind' 1253 */ 1254 raid1_log(mddev, "wait behind writes"); 1255 wait_event(bitmap->behind_wait, 1256 atomic_read(&bitmap->behind_writes) == 0); 1257 } 1258 1259 if (max_sectors < bio_sectors(bio)) { 1260 struct bio *split = bio_split(bio, max_sectors, 1261 gfp, conf->bio_split); 1262 bio_chain(split, bio); 1263 generic_make_request(bio); 1264 bio = split; 1265 r1_bio->master_bio = bio; 1266 r1_bio->sectors = max_sectors; 1267 } 1268 1269 r1_bio->read_disk = rdisk; 1270 1271 read_bio = bio_clone_fast(bio, gfp, mddev->bio_set); 1272 1273 r1_bio->bios[rdisk] = read_bio; 1274 1275 read_bio->bi_iter.bi_sector = r1_bio->sector + 1276 mirror->rdev->data_offset; 1277 bio_set_dev(read_bio, mirror->rdev->bdev); 1278 read_bio->bi_end_io = raid1_end_read_request; 1279 bio_set_op_attrs(read_bio, op, do_sync); 1280 if (test_bit(FailFast, &mirror->rdev->flags) && 1281 test_bit(R1BIO_FailFast, &r1_bio->state)) 1282 read_bio->bi_opf |= MD_FAILFAST; 1283 read_bio->bi_private = r1_bio; 1284 1285 if (mddev->gendisk) 1286 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio, 1287 disk_devt(mddev->gendisk), r1_bio->sector); 1288 1289 generic_make_request(read_bio); 1290 } 1291 1292 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1293 int max_write_sectors) 1294 { 1295 struct r1conf *conf = mddev->private; 1296 struct r1bio *r1_bio; 1297 int i, disks; 1298 struct bitmap *bitmap = mddev->bitmap; 1299 unsigned long flags; 1300 struct md_rdev *blocked_rdev; 1301 struct blk_plug_cb *cb; 1302 struct raid1_plug_cb *plug = NULL; 1303 int first_clone; 1304 int max_sectors; 1305 1306 /* 1307 * Register the new request and wait if the reconstruction 1308 * thread has put up a bar for new requests. 1309 * Continue immediately if no resync is active currently. 1310 */ 1311 1312 1313 if ((bio_end_sector(bio) > mddev->suspend_lo && 1314 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1315 (mddev_is_clustered(mddev) && 1316 md_cluster_ops->area_resyncing(mddev, WRITE, 1317 bio->bi_iter.bi_sector, bio_end_sector(bio)))) { 1318 1319 /* 1320 * As the suspend_* range is controlled by userspace, we want 1321 * an interruptible wait. 1322 */ 1323 DEFINE_WAIT(w); 1324 for (;;) { 1325 sigset_t full, old; 1326 prepare_to_wait(&conf->wait_barrier, 1327 &w, TASK_INTERRUPTIBLE); 1328 if (bio_end_sector(bio) <= mddev->suspend_lo || 1329 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1330 (mddev_is_clustered(mddev) && 1331 !md_cluster_ops->area_resyncing(mddev, WRITE, 1332 bio->bi_iter.bi_sector, 1333 bio_end_sector(bio)))) 1334 break; 1335 sigfillset(&full); 1336 sigprocmask(SIG_BLOCK, &full, &old); 1337 schedule(); 1338 sigprocmask(SIG_SETMASK, &old, NULL); 1339 } 1340 finish_wait(&conf->wait_barrier, &w); 1341 } 1342 wait_barrier(conf, bio->bi_iter.bi_sector); 1343 1344 r1_bio = alloc_r1bio(mddev, bio); 1345 r1_bio->sectors = max_write_sectors; 1346 1347 if (conf->pending_count >= max_queued_requests) { 1348 md_wakeup_thread(mddev->thread); 1349 raid1_log(mddev, "wait queued"); 1350 wait_event(conf->wait_barrier, 1351 conf->pending_count < max_queued_requests); 1352 } 1353 /* first select target devices under rcu_lock and 1354 * inc refcount on their rdev. Record them by setting 1355 * bios[x] to bio 1356 * If there are known/acknowledged bad blocks on any device on 1357 * which we have seen a write error, we want to avoid writing those 1358 * blocks. 1359 * This potentially requires several writes to write around 1360 * the bad blocks. Each set of writes gets it's own r1bio 1361 * with a set of bios attached. 1362 */ 1363 1364 disks = conf->raid_disks * 2; 1365 retry_write: 1366 blocked_rdev = NULL; 1367 rcu_read_lock(); 1368 max_sectors = r1_bio->sectors; 1369 for (i = 0; i < disks; i++) { 1370 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1371 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1372 atomic_inc(&rdev->nr_pending); 1373 blocked_rdev = rdev; 1374 break; 1375 } 1376 r1_bio->bios[i] = NULL; 1377 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1378 if (i < conf->raid_disks) 1379 set_bit(R1BIO_Degraded, &r1_bio->state); 1380 continue; 1381 } 1382 1383 atomic_inc(&rdev->nr_pending); 1384 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1385 sector_t first_bad; 1386 int bad_sectors; 1387 int is_bad; 1388 1389 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1390 &first_bad, &bad_sectors); 1391 if (is_bad < 0) { 1392 /* mustn't write here until the bad block is 1393 * acknowledged*/ 1394 set_bit(BlockedBadBlocks, &rdev->flags); 1395 blocked_rdev = rdev; 1396 break; 1397 } 1398 if (is_bad && first_bad <= r1_bio->sector) { 1399 /* Cannot write here at all */ 1400 bad_sectors -= (r1_bio->sector - first_bad); 1401 if (bad_sectors < max_sectors) 1402 /* mustn't write more than bad_sectors 1403 * to other devices yet 1404 */ 1405 max_sectors = bad_sectors; 1406 rdev_dec_pending(rdev, mddev); 1407 /* We don't set R1BIO_Degraded as that 1408 * only applies if the disk is 1409 * missing, so it might be re-added, 1410 * and we want to know to recover this 1411 * chunk. 1412 * In this case the device is here, 1413 * and the fact that this chunk is not 1414 * in-sync is recorded in the bad 1415 * block log 1416 */ 1417 continue; 1418 } 1419 if (is_bad) { 1420 int good_sectors = first_bad - r1_bio->sector; 1421 if (good_sectors < max_sectors) 1422 max_sectors = good_sectors; 1423 } 1424 } 1425 r1_bio->bios[i] = bio; 1426 } 1427 rcu_read_unlock(); 1428 1429 if (unlikely(blocked_rdev)) { 1430 /* Wait for this device to become unblocked */ 1431 int j; 1432 1433 for (j = 0; j < i; j++) 1434 if (r1_bio->bios[j]) 1435 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1436 r1_bio->state = 0; 1437 allow_barrier(conf, bio->bi_iter.bi_sector); 1438 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1439 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1440 wait_barrier(conf, bio->bi_iter.bi_sector); 1441 goto retry_write; 1442 } 1443 1444 if (max_sectors < bio_sectors(bio)) { 1445 struct bio *split = bio_split(bio, max_sectors, 1446 GFP_NOIO, conf->bio_split); 1447 bio_chain(split, bio); 1448 generic_make_request(bio); 1449 bio = split; 1450 r1_bio->master_bio = bio; 1451 r1_bio->sectors = max_sectors; 1452 } 1453 1454 atomic_set(&r1_bio->remaining, 1); 1455 atomic_set(&r1_bio->behind_remaining, 0); 1456 1457 first_clone = 1; 1458 1459 for (i = 0; i < disks; i++) { 1460 struct bio *mbio = NULL; 1461 if (!r1_bio->bios[i]) 1462 continue; 1463 1464 1465 if (first_clone) { 1466 /* do behind I/O ? 1467 * Not if there are too many, or cannot 1468 * allocate memory, or a reader on WriteMostly 1469 * is waiting for behind writes to flush */ 1470 if (bitmap && 1471 (atomic_read(&bitmap->behind_writes) 1472 < mddev->bitmap_info.max_write_behind) && 1473 !waitqueue_active(&bitmap->behind_wait)) { 1474 alloc_behind_master_bio(r1_bio, bio); 1475 } 1476 1477 bitmap_startwrite(bitmap, r1_bio->sector, 1478 r1_bio->sectors, 1479 test_bit(R1BIO_BehindIO, 1480 &r1_bio->state)); 1481 first_clone = 0; 1482 } 1483 1484 if (r1_bio->behind_master_bio) 1485 mbio = bio_clone_fast(r1_bio->behind_master_bio, 1486 GFP_NOIO, mddev->bio_set); 1487 else 1488 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set); 1489 1490 if (r1_bio->behind_master_bio) { 1491 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1492 atomic_inc(&r1_bio->behind_remaining); 1493 } 1494 1495 r1_bio->bios[i] = mbio; 1496 1497 mbio->bi_iter.bi_sector = (r1_bio->sector + 1498 conf->mirrors[i].rdev->data_offset); 1499 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev); 1500 mbio->bi_end_io = raid1_end_write_request; 1501 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1502 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) && 1503 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) && 1504 conf->raid_disks - mddev->degraded > 1) 1505 mbio->bi_opf |= MD_FAILFAST; 1506 mbio->bi_private = r1_bio; 1507 1508 atomic_inc(&r1_bio->remaining); 1509 1510 if (mddev->gendisk) 1511 trace_block_bio_remap(mbio->bi_disk->queue, 1512 mbio, disk_devt(mddev->gendisk), 1513 r1_bio->sector); 1514 /* flush_pending_writes() needs access to the rdev so...*/ 1515 mbio->bi_disk = (void *)conf->mirrors[i].rdev; 1516 1517 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1518 if (cb) 1519 plug = container_of(cb, struct raid1_plug_cb, cb); 1520 else 1521 plug = NULL; 1522 if (plug) { 1523 bio_list_add(&plug->pending, mbio); 1524 plug->pending_cnt++; 1525 } else { 1526 spin_lock_irqsave(&conf->device_lock, flags); 1527 bio_list_add(&conf->pending_bio_list, mbio); 1528 conf->pending_count++; 1529 spin_unlock_irqrestore(&conf->device_lock, flags); 1530 md_wakeup_thread(mddev->thread); 1531 } 1532 } 1533 1534 r1_bio_write_done(r1_bio); 1535 1536 /* In case raid1d snuck in to freeze_array */ 1537 wake_up(&conf->wait_barrier); 1538 } 1539 1540 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1541 { 1542 sector_t sectors; 1543 1544 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { 1545 md_flush_request(mddev, bio); 1546 return true; 1547 } 1548 1549 /* 1550 * There is a limit to the maximum size, but 1551 * the read/write handler might find a lower limit 1552 * due to bad blocks. To avoid multiple splits, 1553 * we pass the maximum number of sectors down 1554 * and let the lower level perform the split. 1555 */ 1556 sectors = align_to_barrier_unit_end( 1557 bio->bi_iter.bi_sector, bio_sectors(bio)); 1558 1559 if (bio_data_dir(bio) == READ) 1560 raid1_read_request(mddev, bio, sectors, NULL); 1561 else { 1562 if (!md_write_start(mddev,bio)) 1563 return false; 1564 raid1_write_request(mddev, bio, sectors); 1565 } 1566 return true; 1567 } 1568 1569 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1570 { 1571 struct r1conf *conf = mddev->private; 1572 int i; 1573 1574 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1575 conf->raid_disks - mddev->degraded); 1576 rcu_read_lock(); 1577 for (i = 0; i < conf->raid_disks; i++) { 1578 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1579 seq_printf(seq, "%s", 1580 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1581 } 1582 rcu_read_unlock(); 1583 seq_printf(seq, "]"); 1584 } 1585 1586 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1587 { 1588 char b[BDEVNAME_SIZE]; 1589 struct r1conf *conf = mddev->private; 1590 unsigned long flags; 1591 1592 /* 1593 * If it is not operational, then we have already marked it as dead 1594 * else if it is the last working disks, ignore the error, let the 1595 * next level up know. 1596 * else mark the drive as failed 1597 */ 1598 spin_lock_irqsave(&conf->device_lock, flags); 1599 if (test_bit(In_sync, &rdev->flags) 1600 && (conf->raid_disks - mddev->degraded) == 1) { 1601 /* 1602 * Don't fail the drive, act as though we were just a 1603 * normal single drive. 1604 * However don't try a recovery from this drive as 1605 * it is very likely to fail. 1606 */ 1607 conf->recovery_disabled = mddev->recovery_disabled; 1608 spin_unlock_irqrestore(&conf->device_lock, flags); 1609 return; 1610 } 1611 set_bit(Blocked, &rdev->flags); 1612 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1613 mddev->degraded++; 1614 set_bit(Faulty, &rdev->flags); 1615 } else 1616 set_bit(Faulty, &rdev->flags); 1617 spin_unlock_irqrestore(&conf->device_lock, flags); 1618 /* 1619 * if recovery is running, make sure it aborts. 1620 */ 1621 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1622 set_mask_bits(&mddev->sb_flags, 0, 1623 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1624 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1625 "md/raid1:%s: Operation continuing on %d devices.\n", 1626 mdname(mddev), bdevname(rdev->bdev, b), 1627 mdname(mddev), conf->raid_disks - mddev->degraded); 1628 } 1629 1630 static void print_conf(struct r1conf *conf) 1631 { 1632 int i; 1633 1634 pr_debug("RAID1 conf printout:\n"); 1635 if (!conf) { 1636 pr_debug("(!conf)\n"); 1637 return; 1638 } 1639 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1640 conf->raid_disks); 1641 1642 rcu_read_lock(); 1643 for (i = 0; i < conf->raid_disks; i++) { 1644 char b[BDEVNAME_SIZE]; 1645 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1646 if (rdev) 1647 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1648 i, !test_bit(In_sync, &rdev->flags), 1649 !test_bit(Faulty, &rdev->flags), 1650 bdevname(rdev->bdev,b)); 1651 } 1652 rcu_read_unlock(); 1653 } 1654 1655 static void close_sync(struct r1conf *conf) 1656 { 1657 wait_all_barriers(conf); 1658 allow_all_barriers(conf); 1659 1660 mempool_destroy(conf->r1buf_pool); 1661 conf->r1buf_pool = NULL; 1662 } 1663 1664 static int raid1_spare_active(struct mddev *mddev) 1665 { 1666 int i; 1667 struct r1conf *conf = mddev->private; 1668 int count = 0; 1669 unsigned long flags; 1670 1671 /* 1672 * Find all failed disks within the RAID1 configuration 1673 * and mark them readable. 1674 * Called under mddev lock, so rcu protection not needed. 1675 * device_lock used to avoid races with raid1_end_read_request 1676 * which expects 'In_sync' flags and ->degraded to be consistent. 1677 */ 1678 spin_lock_irqsave(&conf->device_lock, flags); 1679 for (i = 0; i < conf->raid_disks; i++) { 1680 struct md_rdev *rdev = conf->mirrors[i].rdev; 1681 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1682 if (repl 1683 && !test_bit(Candidate, &repl->flags) 1684 && repl->recovery_offset == MaxSector 1685 && !test_bit(Faulty, &repl->flags) 1686 && !test_and_set_bit(In_sync, &repl->flags)) { 1687 /* replacement has just become active */ 1688 if (!rdev || 1689 !test_and_clear_bit(In_sync, &rdev->flags)) 1690 count++; 1691 if (rdev) { 1692 /* Replaced device not technically 1693 * faulty, but we need to be sure 1694 * it gets removed and never re-added 1695 */ 1696 set_bit(Faulty, &rdev->flags); 1697 sysfs_notify_dirent_safe( 1698 rdev->sysfs_state); 1699 } 1700 } 1701 if (rdev 1702 && rdev->recovery_offset == MaxSector 1703 && !test_bit(Faulty, &rdev->flags) 1704 && !test_and_set_bit(In_sync, &rdev->flags)) { 1705 count++; 1706 sysfs_notify_dirent_safe(rdev->sysfs_state); 1707 } 1708 } 1709 mddev->degraded -= count; 1710 spin_unlock_irqrestore(&conf->device_lock, flags); 1711 1712 print_conf(conf); 1713 return count; 1714 } 1715 1716 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1717 { 1718 struct r1conf *conf = mddev->private; 1719 int err = -EEXIST; 1720 int mirror = 0; 1721 struct raid1_info *p; 1722 int first = 0; 1723 int last = conf->raid_disks - 1; 1724 1725 if (mddev->recovery_disabled == conf->recovery_disabled) 1726 return -EBUSY; 1727 1728 if (md_integrity_add_rdev(rdev, mddev)) 1729 return -ENXIO; 1730 1731 if (rdev->raid_disk >= 0) 1732 first = last = rdev->raid_disk; 1733 1734 /* 1735 * find the disk ... but prefer rdev->saved_raid_disk 1736 * if possible. 1737 */ 1738 if (rdev->saved_raid_disk >= 0 && 1739 rdev->saved_raid_disk >= first && 1740 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1741 first = last = rdev->saved_raid_disk; 1742 1743 for (mirror = first; mirror <= last; mirror++) { 1744 p = conf->mirrors+mirror; 1745 if (!p->rdev) { 1746 1747 if (mddev->gendisk) 1748 disk_stack_limits(mddev->gendisk, rdev->bdev, 1749 rdev->data_offset << 9); 1750 1751 p->head_position = 0; 1752 rdev->raid_disk = mirror; 1753 err = 0; 1754 /* As all devices are equivalent, we don't need a full recovery 1755 * if this was recently any drive of the array 1756 */ 1757 if (rdev->saved_raid_disk < 0) 1758 conf->fullsync = 1; 1759 rcu_assign_pointer(p->rdev, rdev); 1760 break; 1761 } 1762 if (test_bit(WantReplacement, &p->rdev->flags) && 1763 p[conf->raid_disks].rdev == NULL) { 1764 /* Add this device as a replacement */ 1765 clear_bit(In_sync, &rdev->flags); 1766 set_bit(Replacement, &rdev->flags); 1767 rdev->raid_disk = mirror; 1768 err = 0; 1769 conf->fullsync = 1; 1770 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1771 break; 1772 } 1773 } 1774 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1775 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1776 print_conf(conf); 1777 return err; 1778 } 1779 1780 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1781 { 1782 struct r1conf *conf = mddev->private; 1783 int err = 0; 1784 int number = rdev->raid_disk; 1785 struct raid1_info *p = conf->mirrors + number; 1786 1787 if (rdev != p->rdev) 1788 p = conf->mirrors + conf->raid_disks + number; 1789 1790 print_conf(conf); 1791 if (rdev == p->rdev) { 1792 if (test_bit(In_sync, &rdev->flags) || 1793 atomic_read(&rdev->nr_pending)) { 1794 err = -EBUSY; 1795 goto abort; 1796 } 1797 /* Only remove non-faulty devices if recovery 1798 * is not possible. 1799 */ 1800 if (!test_bit(Faulty, &rdev->flags) && 1801 mddev->recovery_disabled != conf->recovery_disabled && 1802 mddev->degraded < conf->raid_disks) { 1803 err = -EBUSY; 1804 goto abort; 1805 } 1806 p->rdev = NULL; 1807 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1808 synchronize_rcu(); 1809 if (atomic_read(&rdev->nr_pending)) { 1810 /* lost the race, try later */ 1811 err = -EBUSY; 1812 p->rdev = rdev; 1813 goto abort; 1814 } 1815 } 1816 if (conf->mirrors[conf->raid_disks + number].rdev) { 1817 /* We just removed a device that is being replaced. 1818 * Move down the replacement. We drain all IO before 1819 * doing this to avoid confusion. 1820 */ 1821 struct md_rdev *repl = 1822 conf->mirrors[conf->raid_disks + number].rdev; 1823 freeze_array(conf, 0); 1824 clear_bit(Replacement, &repl->flags); 1825 p->rdev = repl; 1826 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1827 unfreeze_array(conf); 1828 } 1829 1830 clear_bit(WantReplacement, &rdev->flags); 1831 err = md_integrity_register(mddev); 1832 } 1833 abort: 1834 1835 print_conf(conf); 1836 return err; 1837 } 1838 1839 static void end_sync_read(struct bio *bio) 1840 { 1841 struct r1bio *r1_bio = get_resync_r1bio(bio); 1842 1843 update_head_pos(r1_bio->read_disk, r1_bio); 1844 1845 /* 1846 * we have read a block, now it needs to be re-written, 1847 * or re-read if the read failed. 1848 * We don't do much here, just schedule handling by raid1d 1849 */ 1850 if (!bio->bi_status) 1851 set_bit(R1BIO_Uptodate, &r1_bio->state); 1852 1853 if (atomic_dec_and_test(&r1_bio->remaining)) 1854 reschedule_retry(r1_bio); 1855 } 1856 1857 static void end_sync_write(struct bio *bio) 1858 { 1859 int uptodate = !bio->bi_status; 1860 struct r1bio *r1_bio = get_resync_r1bio(bio); 1861 struct mddev *mddev = r1_bio->mddev; 1862 struct r1conf *conf = mddev->private; 1863 sector_t first_bad; 1864 int bad_sectors; 1865 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1866 1867 if (!uptodate) { 1868 sector_t sync_blocks = 0; 1869 sector_t s = r1_bio->sector; 1870 long sectors_to_go = r1_bio->sectors; 1871 /* make sure these bits doesn't get cleared. */ 1872 do { 1873 bitmap_end_sync(mddev->bitmap, s, 1874 &sync_blocks, 1); 1875 s += sync_blocks; 1876 sectors_to_go -= sync_blocks; 1877 } while (sectors_to_go > 0); 1878 set_bit(WriteErrorSeen, &rdev->flags); 1879 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1880 set_bit(MD_RECOVERY_NEEDED, & 1881 mddev->recovery); 1882 set_bit(R1BIO_WriteError, &r1_bio->state); 1883 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1884 &first_bad, &bad_sectors) && 1885 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1886 r1_bio->sector, 1887 r1_bio->sectors, 1888 &first_bad, &bad_sectors) 1889 ) 1890 set_bit(R1BIO_MadeGood, &r1_bio->state); 1891 1892 if (atomic_dec_and_test(&r1_bio->remaining)) { 1893 int s = r1_bio->sectors; 1894 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1895 test_bit(R1BIO_WriteError, &r1_bio->state)) 1896 reschedule_retry(r1_bio); 1897 else { 1898 put_buf(r1_bio); 1899 md_done_sync(mddev, s, uptodate); 1900 } 1901 } 1902 } 1903 1904 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1905 int sectors, struct page *page, int rw) 1906 { 1907 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1908 /* success */ 1909 return 1; 1910 if (rw == WRITE) { 1911 set_bit(WriteErrorSeen, &rdev->flags); 1912 if (!test_and_set_bit(WantReplacement, 1913 &rdev->flags)) 1914 set_bit(MD_RECOVERY_NEEDED, & 1915 rdev->mddev->recovery); 1916 } 1917 /* need to record an error - either for the block or the device */ 1918 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1919 md_error(rdev->mddev, rdev); 1920 return 0; 1921 } 1922 1923 static int fix_sync_read_error(struct r1bio *r1_bio) 1924 { 1925 /* Try some synchronous reads of other devices to get 1926 * good data, much like with normal read errors. Only 1927 * read into the pages we already have so we don't 1928 * need to re-issue the read request. 1929 * We don't need to freeze the array, because being in an 1930 * active sync request, there is no normal IO, and 1931 * no overlapping syncs. 1932 * We don't need to check is_badblock() again as we 1933 * made sure that anything with a bad block in range 1934 * will have bi_end_io clear. 1935 */ 1936 struct mddev *mddev = r1_bio->mddev; 1937 struct r1conf *conf = mddev->private; 1938 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1939 struct page **pages = get_resync_pages(bio)->pages; 1940 sector_t sect = r1_bio->sector; 1941 int sectors = r1_bio->sectors; 1942 int idx = 0; 1943 struct md_rdev *rdev; 1944 1945 rdev = conf->mirrors[r1_bio->read_disk].rdev; 1946 if (test_bit(FailFast, &rdev->flags)) { 1947 /* Don't try recovering from here - just fail it 1948 * ... unless it is the last working device of course */ 1949 md_error(mddev, rdev); 1950 if (test_bit(Faulty, &rdev->flags)) 1951 /* Don't try to read from here, but make sure 1952 * put_buf does it's thing 1953 */ 1954 bio->bi_end_io = end_sync_write; 1955 } 1956 1957 while(sectors) { 1958 int s = sectors; 1959 int d = r1_bio->read_disk; 1960 int success = 0; 1961 int start; 1962 1963 if (s > (PAGE_SIZE>>9)) 1964 s = PAGE_SIZE >> 9; 1965 do { 1966 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1967 /* No rcu protection needed here devices 1968 * can only be removed when no resync is 1969 * active, and resync is currently active 1970 */ 1971 rdev = conf->mirrors[d].rdev; 1972 if (sync_page_io(rdev, sect, s<<9, 1973 pages[idx], 1974 REQ_OP_READ, 0, false)) { 1975 success = 1; 1976 break; 1977 } 1978 } 1979 d++; 1980 if (d == conf->raid_disks * 2) 1981 d = 0; 1982 } while (!success && d != r1_bio->read_disk); 1983 1984 if (!success) { 1985 char b[BDEVNAME_SIZE]; 1986 int abort = 0; 1987 /* Cannot read from anywhere, this block is lost. 1988 * Record a bad block on each device. If that doesn't 1989 * work just disable and interrupt the recovery. 1990 * Don't fail devices as that won't really help. 1991 */ 1992 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1993 mdname(mddev), bio_devname(bio, b), 1994 (unsigned long long)r1_bio->sector); 1995 for (d = 0; d < conf->raid_disks * 2; d++) { 1996 rdev = conf->mirrors[d].rdev; 1997 if (!rdev || test_bit(Faulty, &rdev->flags)) 1998 continue; 1999 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2000 abort = 1; 2001 } 2002 if (abort) { 2003 conf->recovery_disabled = 2004 mddev->recovery_disabled; 2005 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2006 md_done_sync(mddev, r1_bio->sectors, 0); 2007 put_buf(r1_bio); 2008 return 0; 2009 } 2010 /* Try next page */ 2011 sectors -= s; 2012 sect += s; 2013 idx++; 2014 continue; 2015 } 2016 2017 start = d; 2018 /* write it back and re-read */ 2019 while (d != r1_bio->read_disk) { 2020 if (d == 0) 2021 d = conf->raid_disks * 2; 2022 d--; 2023 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2024 continue; 2025 rdev = conf->mirrors[d].rdev; 2026 if (r1_sync_page_io(rdev, sect, s, 2027 pages[idx], 2028 WRITE) == 0) { 2029 r1_bio->bios[d]->bi_end_io = NULL; 2030 rdev_dec_pending(rdev, mddev); 2031 } 2032 } 2033 d = start; 2034 while (d != r1_bio->read_disk) { 2035 if (d == 0) 2036 d = conf->raid_disks * 2; 2037 d--; 2038 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2039 continue; 2040 rdev = conf->mirrors[d].rdev; 2041 if (r1_sync_page_io(rdev, sect, s, 2042 pages[idx], 2043 READ) != 0) 2044 atomic_add(s, &rdev->corrected_errors); 2045 } 2046 sectors -= s; 2047 sect += s; 2048 idx ++; 2049 } 2050 set_bit(R1BIO_Uptodate, &r1_bio->state); 2051 bio->bi_status = 0; 2052 return 1; 2053 } 2054 2055 static void process_checks(struct r1bio *r1_bio) 2056 { 2057 /* We have read all readable devices. If we haven't 2058 * got the block, then there is no hope left. 2059 * If we have, then we want to do a comparison 2060 * and skip the write if everything is the same. 2061 * If any blocks failed to read, then we need to 2062 * attempt an over-write 2063 */ 2064 struct mddev *mddev = r1_bio->mddev; 2065 struct r1conf *conf = mddev->private; 2066 int primary; 2067 int i; 2068 int vcnt; 2069 2070 /* Fix variable parts of all bios */ 2071 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2072 for (i = 0; i < conf->raid_disks * 2; i++) { 2073 blk_status_t status; 2074 struct bio *b = r1_bio->bios[i]; 2075 struct resync_pages *rp = get_resync_pages(b); 2076 if (b->bi_end_io != end_sync_read) 2077 continue; 2078 /* fixup the bio for reuse, but preserve errno */ 2079 status = b->bi_status; 2080 bio_reset(b); 2081 b->bi_status = status; 2082 b->bi_iter.bi_sector = r1_bio->sector + 2083 conf->mirrors[i].rdev->data_offset; 2084 bio_set_dev(b, conf->mirrors[i].rdev->bdev); 2085 b->bi_end_io = end_sync_read; 2086 rp->raid_bio = r1_bio; 2087 b->bi_private = rp; 2088 2089 /* initialize bvec table again */ 2090 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2091 } 2092 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2093 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2094 !r1_bio->bios[primary]->bi_status) { 2095 r1_bio->bios[primary]->bi_end_io = NULL; 2096 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2097 break; 2098 } 2099 r1_bio->read_disk = primary; 2100 for (i = 0; i < conf->raid_disks * 2; i++) { 2101 int j; 2102 struct bio *pbio = r1_bio->bios[primary]; 2103 struct bio *sbio = r1_bio->bios[i]; 2104 blk_status_t status = sbio->bi_status; 2105 struct page **ppages = get_resync_pages(pbio)->pages; 2106 struct page **spages = get_resync_pages(sbio)->pages; 2107 struct bio_vec *bi; 2108 int page_len[RESYNC_PAGES] = { 0 }; 2109 2110 if (sbio->bi_end_io != end_sync_read) 2111 continue; 2112 /* Now we can 'fixup' the error value */ 2113 sbio->bi_status = 0; 2114 2115 bio_for_each_segment_all(bi, sbio, j) 2116 page_len[j] = bi->bv_len; 2117 2118 if (!status) { 2119 for (j = vcnt; j-- ; ) { 2120 if (memcmp(page_address(ppages[j]), 2121 page_address(spages[j]), 2122 page_len[j])) 2123 break; 2124 } 2125 } else 2126 j = 0; 2127 if (j >= 0) 2128 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2129 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2130 && !status)) { 2131 /* No need to write to this device. */ 2132 sbio->bi_end_io = NULL; 2133 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2134 continue; 2135 } 2136 2137 bio_copy_data(sbio, pbio); 2138 } 2139 } 2140 2141 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2142 { 2143 struct r1conf *conf = mddev->private; 2144 int i; 2145 int disks = conf->raid_disks * 2; 2146 struct bio *wbio; 2147 2148 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2149 /* ouch - failed to read all of that. */ 2150 if (!fix_sync_read_error(r1_bio)) 2151 return; 2152 2153 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2154 process_checks(r1_bio); 2155 2156 /* 2157 * schedule writes 2158 */ 2159 atomic_set(&r1_bio->remaining, 1); 2160 for (i = 0; i < disks ; i++) { 2161 wbio = r1_bio->bios[i]; 2162 if (wbio->bi_end_io == NULL || 2163 (wbio->bi_end_io == end_sync_read && 2164 (i == r1_bio->read_disk || 2165 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2166 continue; 2167 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2168 continue; 2169 2170 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2171 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2172 wbio->bi_opf |= MD_FAILFAST; 2173 2174 wbio->bi_end_io = end_sync_write; 2175 atomic_inc(&r1_bio->remaining); 2176 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2177 2178 generic_make_request(wbio); 2179 } 2180 2181 if (atomic_dec_and_test(&r1_bio->remaining)) { 2182 /* if we're here, all write(s) have completed, so clean up */ 2183 int s = r1_bio->sectors; 2184 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2185 test_bit(R1BIO_WriteError, &r1_bio->state)) 2186 reschedule_retry(r1_bio); 2187 else { 2188 put_buf(r1_bio); 2189 md_done_sync(mddev, s, 1); 2190 } 2191 } 2192 } 2193 2194 /* 2195 * This is a kernel thread which: 2196 * 2197 * 1. Retries failed read operations on working mirrors. 2198 * 2. Updates the raid superblock when problems encounter. 2199 * 3. Performs writes following reads for array synchronising. 2200 */ 2201 2202 static void fix_read_error(struct r1conf *conf, int read_disk, 2203 sector_t sect, int sectors) 2204 { 2205 struct mddev *mddev = conf->mddev; 2206 while(sectors) { 2207 int s = sectors; 2208 int d = read_disk; 2209 int success = 0; 2210 int start; 2211 struct md_rdev *rdev; 2212 2213 if (s > (PAGE_SIZE>>9)) 2214 s = PAGE_SIZE >> 9; 2215 2216 do { 2217 sector_t first_bad; 2218 int bad_sectors; 2219 2220 rcu_read_lock(); 2221 rdev = rcu_dereference(conf->mirrors[d].rdev); 2222 if (rdev && 2223 (test_bit(In_sync, &rdev->flags) || 2224 (!test_bit(Faulty, &rdev->flags) && 2225 rdev->recovery_offset >= sect + s)) && 2226 is_badblock(rdev, sect, s, 2227 &first_bad, &bad_sectors) == 0) { 2228 atomic_inc(&rdev->nr_pending); 2229 rcu_read_unlock(); 2230 if (sync_page_io(rdev, sect, s<<9, 2231 conf->tmppage, REQ_OP_READ, 0, false)) 2232 success = 1; 2233 rdev_dec_pending(rdev, mddev); 2234 if (success) 2235 break; 2236 } else 2237 rcu_read_unlock(); 2238 d++; 2239 if (d == conf->raid_disks * 2) 2240 d = 0; 2241 } while (!success && d != read_disk); 2242 2243 if (!success) { 2244 /* Cannot read from anywhere - mark it bad */ 2245 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2246 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2247 md_error(mddev, rdev); 2248 break; 2249 } 2250 /* write it back and re-read */ 2251 start = d; 2252 while (d != read_disk) { 2253 if (d==0) 2254 d = conf->raid_disks * 2; 2255 d--; 2256 rcu_read_lock(); 2257 rdev = rcu_dereference(conf->mirrors[d].rdev); 2258 if (rdev && 2259 !test_bit(Faulty, &rdev->flags)) { 2260 atomic_inc(&rdev->nr_pending); 2261 rcu_read_unlock(); 2262 r1_sync_page_io(rdev, sect, s, 2263 conf->tmppage, WRITE); 2264 rdev_dec_pending(rdev, mddev); 2265 } else 2266 rcu_read_unlock(); 2267 } 2268 d = start; 2269 while (d != read_disk) { 2270 char b[BDEVNAME_SIZE]; 2271 if (d==0) 2272 d = conf->raid_disks * 2; 2273 d--; 2274 rcu_read_lock(); 2275 rdev = rcu_dereference(conf->mirrors[d].rdev); 2276 if (rdev && 2277 !test_bit(Faulty, &rdev->flags)) { 2278 atomic_inc(&rdev->nr_pending); 2279 rcu_read_unlock(); 2280 if (r1_sync_page_io(rdev, sect, s, 2281 conf->tmppage, READ)) { 2282 atomic_add(s, &rdev->corrected_errors); 2283 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2284 mdname(mddev), s, 2285 (unsigned long long)(sect + 2286 rdev->data_offset), 2287 bdevname(rdev->bdev, b)); 2288 } 2289 rdev_dec_pending(rdev, mddev); 2290 } else 2291 rcu_read_unlock(); 2292 } 2293 sectors -= s; 2294 sect += s; 2295 } 2296 } 2297 2298 static int narrow_write_error(struct r1bio *r1_bio, int i) 2299 { 2300 struct mddev *mddev = r1_bio->mddev; 2301 struct r1conf *conf = mddev->private; 2302 struct md_rdev *rdev = conf->mirrors[i].rdev; 2303 2304 /* bio has the data to be written to device 'i' where 2305 * we just recently had a write error. 2306 * We repeatedly clone the bio and trim down to one block, 2307 * then try the write. Where the write fails we record 2308 * a bad block. 2309 * It is conceivable that the bio doesn't exactly align with 2310 * blocks. We must handle this somehow. 2311 * 2312 * We currently own a reference on the rdev. 2313 */ 2314 2315 int block_sectors; 2316 sector_t sector; 2317 int sectors; 2318 int sect_to_write = r1_bio->sectors; 2319 int ok = 1; 2320 2321 if (rdev->badblocks.shift < 0) 2322 return 0; 2323 2324 block_sectors = roundup(1 << rdev->badblocks.shift, 2325 bdev_logical_block_size(rdev->bdev) >> 9); 2326 sector = r1_bio->sector; 2327 sectors = ((sector + block_sectors) 2328 & ~(sector_t)(block_sectors - 1)) 2329 - sector; 2330 2331 while (sect_to_write) { 2332 struct bio *wbio; 2333 if (sectors > sect_to_write) 2334 sectors = sect_to_write; 2335 /* Write at 'sector' for 'sectors'*/ 2336 2337 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2338 wbio = bio_clone_fast(r1_bio->behind_master_bio, 2339 GFP_NOIO, 2340 mddev->bio_set); 2341 } else { 2342 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO, 2343 mddev->bio_set); 2344 } 2345 2346 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2347 wbio->bi_iter.bi_sector = r1_bio->sector; 2348 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2349 2350 bio_trim(wbio, sector - r1_bio->sector, sectors); 2351 wbio->bi_iter.bi_sector += rdev->data_offset; 2352 bio_set_dev(wbio, rdev->bdev); 2353 2354 if (submit_bio_wait(wbio) < 0) 2355 /* failure! */ 2356 ok = rdev_set_badblocks(rdev, sector, 2357 sectors, 0) 2358 && ok; 2359 2360 bio_put(wbio); 2361 sect_to_write -= sectors; 2362 sector += sectors; 2363 sectors = block_sectors; 2364 } 2365 return ok; 2366 } 2367 2368 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2369 { 2370 int m; 2371 int s = r1_bio->sectors; 2372 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2373 struct md_rdev *rdev = conf->mirrors[m].rdev; 2374 struct bio *bio = r1_bio->bios[m]; 2375 if (bio->bi_end_io == NULL) 2376 continue; 2377 if (!bio->bi_status && 2378 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2379 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2380 } 2381 if (bio->bi_status && 2382 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2383 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2384 md_error(conf->mddev, rdev); 2385 } 2386 } 2387 put_buf(r1_bio); 2388 md_done_sync(conf->mddev, s, 1); 2389 } 2390 2391 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2392 { 2393 int m, idx; 2394 bool fail = false; 2395 2396 for (m = 0; m < conf->raid_disks * 2 ; m++) 2397 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2398 struct md_rdev *rdev = conf->mirrors[m].rdev; 2399 rdev_clear_badblocks(rdev, 2400 r1_bio->sector, 2401 r1_bio->sectors, 0); 2402 rdev_dec_pending(rdev, conf->mddev); 2403 } else if (r1_bio->bios[m] != NULL) { 2404 /* This drive got a write error. We need to 2405 * narrow down and record precise write 2406 * errors. 2407 */ 2408 fail = true; 2409 if (!narrow_write_error(r1_bio, m)) { 2410 md_error(conf->mddev, 2411 conf->mirrors[m].rdev); 2412 /* an I/O failed, we can't clear the bitmap */ 2413 set_bit(R1BIO_Degraded, &r1_bio->state); 2414 } 2415 rdev_dec_pending(conf->mirrors[m].rdev, 2416 conf->mddev); 2417 } 2418 if (fail) { 2419 spin_lock_irq(&conf->device_lock); 2420 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2421 idx = sector_to_idx(r1_bio->sector); 2422 atomic_inc(&conf->nr_queued[idx]); 2423 spin_unlock_irq(&conf->device_lock); 2424 /* 2425 * In case freeze_array() is waiting for condition 2426 * get_unqueued_pending() == extra to be true. 2427 */ 2428 wake_up(&conf->wait_barrier); 2429 md_wakeup_thread(conf->mddev->thread); 2430 } else { 2431 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2432 close_write(r1_bio); 2433 raid_end_bio_io(r1_bio); 2434 } 2435 } 2436 2437 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2438 { 2439 struct mddev *mddev = conf->mddev; 2440 struct bio *bio; 2441 struct md_rdev *rdev; 2442 sector_t bio_sector; 2443 2444 clear_bit(R1BIO_ReadError, &r1_bio->state); 2445 /* we got a read error. Maybe the drive is bad. Maybe just 2446 * the block and we can fix it. 2447 * We freeze all other IO, and try reading the block from 2448 * other devices. When we find one, we re-write 2449 * and check it that fixes the read error. 2450 * This is all done synchronously while the array is 2451 * frozen 2452 */ 2453 2454 bio = r1_bio->bios[r1_bio->read_disk]; 2455 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector; 2456 bio_put(bio); 2457 r1_bio->bios[r1_bio->read_disk] = NULL; 2458 2459 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2460 if (mddev->ro == 0 2461 && !test_bit(FailFast, &rdev->flags)) { 2462 freeze_array(conf, 1); 2463 fix_read_error(conf, r1_bio->read_disk, 2464 r1_bio->sector, r1_bio->sectors); 2465 unfreeze_array(conf); 2466 } else { 2467 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2468 } 2469 2470 rdev_dec_pending(rdev, conf->mddev); 2471 allow_barrier(conf, r1_bio->sector); 2472 bio = r1_bio->master_bio; 2473 2474 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2475 r1_bio->state = 0; 2476 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2477 } 2478 2479 static void raid1d(struct md_thread *thread) 2480 { 2481 struct mddev *mddev = thread->mddev; 2482 struct r1bio *r1_bio; 2483 unsigned long flags; 2484 struct r1conf *conf = mddev->private; 2485 struct list_head *head = &conf->retry_list; 2486 struct blk_plug plug; 2487 int idx; 2488 2489 md_check_recovery(mddev); 2490 2491 if (!list_empty_careful(&conf->bio_end_io_list) && 2492 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2493 LIST_HEAD(tmp); 2494 spin_lock_irqsave(&conf->device_lock, flags); 2495 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2496 list_splice_init(&conf->bio_end_io_list, &tmp); 2497 spin_unlock_irqrestore(&conf->device_lock, flags); 2498 while (!list_empty(&tmp)) { 2499 r1_bio = list_first_entry(&tmp, struct r1bio, 2500 retry_list); 2501 list_del(&r1_bio->retry_list); 2502 idx = sector_to_idx(r1_bio->sector); 2503 atomic_dec(&conf->nr_queued[idx]); 2504 if (mddev->degraded) 2505 set_bit(R1BIO_Degraded, &r1_bio->state); 2506 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2507 close_write(r1_bio); 2508 raid_end_bio_io(r1_bio); 2509 } 2510 } 2511 2512 blk_start_plug(&plug); 2513 for (;;) { 2514 2515 flush_pending_writes(conf); 2516 2517 spin_lock_irqsave(&conf->device_lock, flags); 2518 if (list_empty(head)) { 2519 spin_unlock_irqrestore(&conf->device_lock, flags); 2520 break; 2521 } 2522 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2523 list_del(head->prev); 2524 idx = sector_to_idx(r1_bio->sector); 2525 atomic_dec(&conf->nr_queued[idx]); 2526 spin_unlock_irqrestore(&conf->device_lock, flags); 2527 2528 mddev = r1_bio->mddev; 2529 conf = mddev->private; 2530 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2531 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2532 test_bit(R1BIO_WriteError, &r1_bio->state)) 2533 handle_sync_write_finished(conf, r1_bio); 2534 else 2535 sync_request_write(mddev, r1_bio); 2536 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2537 test_bit(R1BIO_WriteError, &r1_bio->state)) 2538 handle_write_finished(conf, r1_bio); 2539 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2540 handle_read_error(conf, r1_bio); 2541 else 2542 WARN_ON_ONCE(1); 2543 2544 cond_resched(); 2545 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2546 md_check_recovery(mddev); 2547 } 2548 blk_finish_plug(&plug); 2549 } 2550 2551 static int init_resync(struct r1conf *conf) 2552 { 2553 int buffs; 2554 2555 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2556 BUG_ON(conf->r1buf_pool); 2557 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2558 conf->poolinfo); 2559 if (!conf->r1buf_pool) 2560 return -ENOMEM; 2561 return 0; 2562 } 2563 2564 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2565 { 2566 struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2567 struct resync_pages *rps; 2568 struct bio *bio; 2569 int i; 2570 2571 for (i = conf->poolinfo->raid_disks; i--; ) { 2572 bio = r1bio->bios[i]; 2573 rps = bio->bi_private; 2574 bio_reset(bio); 2575 bio->bi_private = rps; 2576 } 2577 r1bio->master_bio = NULL; 2578 return r1bio; 2579 } 2580 2581 /* 2582 * perform a "sync" on one "block" 2583 * 2584 * We need to make sure that no normal I/O request - particularly write 2585 * requests - conflict with active sync requests. 2586 * 2587 * This is achieved by tracking pending requests and a 'barrier' concept 2588 * that can be installed to exclude normal IO requests. 2589 */ 2590 2591 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2592 int *skipped) 2593 { 2594 struct r1conf *conf = mddev->private; 2595 struct r1bio *r1_bio; 2596 struct bio *bio; 2597 sector_t max_sector, nr_sectors; 2598 int disk = -1; 2599 int i; 2600 int wonly = -1; 2601 int write_targets = 0, read_targets = 0; 2602 sector_t sync_blocks; 2603 int still_degraded = 0; 2604 int good_sectors = RESYNC_SECTORS; 2605 int min_bad = 0; /* number of sectors that are bad in all devices */ 2606 int idx = sector_to_idx(sector_nr); 2607 int page_idx = 0; 2608 2609 if (!conf->r1buf_pool) 2610 if (init_resync(conf)) 2611 return 0; 2612 2613 max_sector = mddev->dev_sectors; 2614 if (sector_nr >= max_sector) { 2615 /* If we aborted, we need to abort the 2616 * sync on the 'current' bitmap chunk (there will 2617 * only be one in raid1 resync. 2618 * We can find the current addess in mddev->curr_resync 2619 */ 2620 if (mddev->curr_resync < max_sector) /* aborted */ 2621 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2622 &sync_blocks, 1); 2623 else /* completed sync */ 2624 conf->fullsync = 0; 2625 2626 bitmap_close_sync(mddev->bitmap); 2627 close_sync(conf); 2628 2629 if (mddev_is_clustered(mddev)) { 2630 conf->cluster_sync_low = 0; 2631 conf->cluster_sync_high = 0; 2632 } 2633 return 0; 2634 } 2635 2636 if (mddev->bitmap == NULL && 2637 mddev->recovery_cp == MaxSector && 2638 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2639 conf->fullsync == 0) { 2640 *skipped = 1; 2641 return max_sector - sector_nr; 2642 } 2643 /* before building a request, check if we can skip these blocks.. 2644 * This call the bitmap_start_sync doesn't actually record anything 2645 */ 2646 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2647 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2648 /* We can skip this block, and probably several more */ 2649 *skipped = 1; 2650 return sync_blocks; 2651 } 2652 2653 /* 2654 * If there is non-resync activity waiting for a turn, then let it 2655 * though before starting on this new sync request. 2656 */ 2657 if (atomic_read(&conf->nr_waiting[idx])) 2658 schedule_timeout_uninterruptible(1); 2659 2660 /* we are incrementing sector_nr below. To be safe, we check against 2661 * sector_nr + two times RESYNC_SECTORS 2662 */ 2663 2664 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2665 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2666 r1_bio = raid1_alloc_init_r1buf(conf); 2667 2668 raise_barrier(conf, sector_nr); 2669 2670 rcu_read_lock(); 2671 /* 2672 * If we get a correctably read error during resync or recovery, 2673 * we might want to read from a different device. So we 2674 * flag all drives that could conceivably be read from for READ, 2675 * and any others (which will be non-In_sync devices) for WRITE. 2676 * If a read fails, we try reading from something else for which READ 2677 * is OK. 2678 */ 2679 2680 r1_bio->mddev = mddev; 2681 r1_bio->sector = sector_nr; 2682 r1_bio->state = 0; 2683 set_bit(R1BIO_IsSync, &r1_bio->state); 2684 /* make sure good_sectors won't go across barrier unit boundary */ 2685 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2686 2687 for (i = 0; i < conf->raid_disks * 2; i++) { 2688 struct md_rdev *rdev; 2689 bio = r1_bio->bios[i]; 2690 2691 rdev = rcu_dereference(conf->mirrors[i].rdev); 2692 if (rdev == NULL || 2693 test_bit(Faulty, &rdev->flags)) { 2694 if (i < conf->raid_disks) 2695 still_degraded = 1; 2696 } else if (!test_bit(In_sync, &rdev->flags)) { 2697 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2698 bio->bi_end_io = end_sync_write; 2699 write_targets ++; 2700 } else { 2701 /* may need to read from here */ 2702 sector_t first_bad = MaxSector; 2703 int bad_sectors; 2704 2705 if (is_badblock(rdev, sector_nr, good_sectors, 2706 &first_bad, &bad_sectors)) { 2707 if (first_bad > sector_nr) 2708 good_sectors = first_bad - sector_nr; 2709 else { 2710 bad_sectors -= (sector_nr - first_bad); 2711 if (min_bad == 0 || 2712 min_bad > bad_sectors) 2713 min_bad = bad_sectors; 2714 } 2715 } 2716 if (sector_nr < first_bad) { 2717 if (test_bit(WriteMostly, &rdev->flags)) { 2718 if (wonly < 0) 2719 wonly = i; 2720 } else { 2721 if (disk < 0) 2722 disk = i; 2723 } 2724 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2725 bio->bi_end_io = end_sync_read; 2726 read_targets++; 2727 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2728 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2729 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2730 /* 2731 * The device is suitable for reading (InSync), 2732 * but has bad block(s) here. Let's try to correct them, 2733 * if we are doing resync or repair. Otherwise, leave 2734 * this device alone for this sync request. 2735 */ 2736 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2737 bio->bi_end_io = end_sync_write; 2738 write_targets++; 2739 } 2740 } 2741 if (bio->bi_end_io) { 2742 atomic_inc(&rdev->nr_pending); 2743 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2744 bio_set_dev(bio, rdev->bdev); 2745 if (test_bit(FailFast, &rdev->flags)) 2746 bio->bi_opf |= MD_FAILFAST; 2747 } 2748 } 2749 rcu_read_unlock(); 2750 if (disk < 0) 2751 disk = wonly; 2752 r1_bio->read_disk = disk; 2753 2754 if (read_targets == 0 && min_bad > 0) { 2755 /* These sectors are bad on all InSync devices, so we 2756 * need to mark them bad on all write targets 2757 */ 2758 int ok = 1; 2759 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2760 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2761 struct md_rdev *rdev = conf->mirrors[i].rdev; 2762 ok = rdev_set_badblocks(rdev, sector_nr, 2763 min_bad, 0 2764 ) && ok; 2765 } 2766 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2767 *skipped = 1; 2768 put_buf(r1_bio); 2769 2770 if (!ok) { 2771 /* Cannot record the badblocks, so need to 2772 * abort the resync. 2773 * If there are multiple read targets, could just 2774 * fail the really bad ones ??? 2775 */ 2776 conf->recovery_disabled = mddev->recovery_disabled; 2777 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2778 return 0; 2779 } else 2780 return min_bad; 2781 2782 } 2783 if (min_bad > 0 && min_bad < good_sectors) { 2784 /* only resync enough to reach the next bad->good 2785 * transition */ 2786 good_sectors = min_bad; 2787 } 2788 2789 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2790 /* extra read targets are also write targets */ 2791 write_targets += read_targets-1; 2792 2793 if (write_targets == 0 || read_targets == 0) { 2794 /* There is nowhere to write, so all non-sync 2795 * drives must be failed - so we are finished 2796 */ 2797 sector_t rv; 2798 if (min_bad > 0) 2799 max_sector = sector_nr + min_bad; 2800 rv = max_sector - sector_nr; 2801 *skipped = 1; 2802 put_buf(r1_bio); 2803 return rv; 2804 } 2805 2806 if (max_sector > mddev->resync_max) 2807 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2808 if (max_sector > sector_nr + good_sectors) 2809 max_sector = sector_nr + good_sectors; 2810 nr_sectors = 0; 2811 sync_blocks = 0; 2812 do { 2813 struct page *page; 2814 int len = PAGE_SIZE; 2815 if (sector_nr + (len>>9) > max_sector) 2816 len = (max_sector - sector_nr) << 9; 2817 if (len == 0) 2818 break; 2819 if (sync_blocks == 0) { 2820 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2821 &sync_blocks, still_degraded) && 2822 !conf->fullsync && 2823 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2824 break; 2825 if ((len >> 9) > sync_blocks) 2826 len = sync_blocks<<9; 2827 } 2828 2829 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2830 struct resync_pages *rp; 2831 2832 bio = r1_bio->bios[i]; 2833 rp = get_resync_pages(bio); 2834 if (bio->bi_end_io) { 2835 page = resync_fetch_page(rp, page_idx); 2836 2837 /* 2838 * won't fail because the vec table is big 2839 * enough to hold all these pages 2840 */ 2841 bio_add_page(bio, page, len, 0); 2842 } 2843 } 2844 nr_sectors += len>>9; 2845 sector_nr += len>>9; 2846 sync_blocks -= (len>>9); 2847 } while (++page_idx < RESYNC_PAGES); 2848 2849 r1_bio->sectors = nr_sectors; 2850 2851 if (mddev_is_clustered(mddev) && 2852 conf->cluster_sync_high < sector_nr + nr_sectors) { 2853 conf->cluster_sync_low = mddev->curr_resync_completed; 2854 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2855 /* Send resync message */ 2856 md_cluster_ops->resync_info_update(mddev, 2857 conf->cluster_sync_low, 2858 conf->cluster_sync_high); 2859 } 2860 2861 /* For a user-requested sync, we read all readable devices and do a 2862 * compare 2863 */ 2864 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2865 atomic_set(&r1_bio->remaining, read_targets); 2866 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2867 bio = r1_bio->bios[i]; 2868 if (bio->bi_end_io == end_sync_read) { 2869 read_targets--; 2870 md_sync_acct_bio(bio, nr_sectors); 2871 if (read_targets == 1) 2872 bio->bi_opf &= ~MD_FAILFAST; 2873 generic_make_request(bio); 2874 } 2875 } 2876 } else { 2877 atomic_set(&r1_bio->remaining, 1); 2878 bio = r1_bio->bios[r1_bio->read_disk]; 2879 md_sync_acct_bio(bio, nr_sectors); 2880 if (read_targets == 1) 2881 bio->bi_opf &= ~MD_FAILFAST; 2882 generic_make_request(bio); 2883 2884 } 2885 return nr_sectors; 2886 } 2887 2888 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2889 { 2890 if (sectors) 2891 return sectors; 2892 2893 return mddev->dev_sectors; 2894 } 2895 2896 static struct r1conf *setup_conf(struct mddev *mddev) 2897 { 2898 struct r1conf *conf; 2899 int i; 2900 struct raid1_info *disk; 2901 struct md_rdev *rdev; 2902 int err = -ENOMEM; 2903 2904 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2905 if (!conf) 2906 goto abort; 2907 2908 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2909 sizeof(atomic_t), GFP_KERNEL); 2910 if (!conf->nr_pending) 2911 goto abort; 2912 2913 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2914 sizeof(atomic_t), GFP_KERNEL); 2915 if (!conf->nr_waiting) 2916 goto abort; 2917 2918 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2919 sizeof(atomic_t), GFP_KERNEL); 2920 if (!conf->nr_queued) 2921 goto abort; 2922 2923 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2924 sizeof(atomic_t), GFP_KERNEL); 2925 if (!conf->barrier) 2926 goto abort; 2927 2928 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2929 * mddev->raid_disks * 2, 2930 GFP_KERNEL); 2931 if (!conf->mirrors) 2932 goto abort; 2933 2934 conf->tmppage = alloc_page(GFP_KERNEL); 2935 if (!conf->tmppage) 2936 goto abort; 2937 2938 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2939 if (!conf->poolinfo) 2940 goto abort; 2941 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2942 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2943 r1bio_pool_free, 2944 conf->poolinfo); 2945 if (!conf->r1bio_pool) 2946 goto abort; 2947 2948 conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0); 2949 if (!conf->bio_split) 2950 goto abort; 2951 2952 conf->poolinfo->mddev = mddev; 2953 2954 err = -EINVAL; 2955 spin_lock_init(&conf->device_lock); 2956 rdev_for_each(rdev, mddev) { 2957 int disk_idx = rdev->raid_disk; 2958 if (disk_idx >= mddev->raid_disks 2959 || disk_idx < 0) 2960 continue; 2961 if (test_bit(Replacement, &rdev->flags)) 2962 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2963 else 2964 disk = conf->mirrors + disk_idx; 2965 2966 if (disk->rdev) 2967 goto abort; 2968 disk->rdev = rdev; 2969 disk->head_position = 0; 2970 disk->seq_start = MaxSector; 2971 } 2972 conf->raid_disks = mddev->raid_disks; 2973 conf->mddev = mddev; 2974 INIT_LIST_HEAD(&conf->retry_list); 2975 INIT_LIST_HEAD(&conf->bio_end_io_list); 2976 2977 spin_lock_init(&conf->resync_lock); 2978 init_waitqueue_head(&conf->wait_barrier); 2979 2980 bio_list_init(&conf->pending_bio_list); 2981 conf->pending_count = 0; 2982 conf->recovery_disabled = mddev->recovery_disabled - 1; 2983 2984 err = -EIO; 2985 for (i = 0; i < conf->raid_disks * 2; i++) { 2986 2987 disk = conf->mirrors + i; 2988 2989 if (i < conf->raid_disks && 2990 disk[conf->raid_disks].rdev) { 2991 /* This slot has a replacement. */ 2992 if (!disk->rdev) { 2993 /* No original, just make the replacement 2994 * a recovering spare 2995 */ 2996 disk->rdev = 2997 disk[conf->raid_disks].rdev; 2998 disk[conf->raid_disks].rdev = NULL; 2999 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3000 /* Original is not in_sync - bad */ 3001 goto abort; 3002 } 3003 3004 if (!disk->rdev || 3005 !test_bit(In_sync, &disk->rdev->flags)) { 3006 disk->head_position = 0; 3007 if (disk->rdev && 3008 (disk->rdev->saved_raid_disk < 0)) 3009 conf->fullsync = 1; 3010 } 3011 } 3012 3013 err = -ENOMEM; 3014 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3015 if (!conf->thread) 3016 goto abort; 3017 3018 return conf; 3019 3020 abort: 3021 if (conf) { 3022 mempool_destroy(conf->r1bio_pool); 3023 kfree(conf->mirrors); 3024 safe_put_page(conf->tmppage); 3025 kfree(conf->poolinfo); 3026 kfree(conf->nr_pending); 3027 kfree(conf->nr_waiting); 3028 kfree(conf->nr_queued); 3029 kfree(conf->barrier); 3030 if (conf->bio_split) 3031 bioset_free(conf->bio_split); 3032 kfree(conf); 3033 } 3034 return ERR_PTR(err); 3035 } 3036 3037 static void raid1_free(struct mddev *mddev, void *priv); 3038 static int raid1_run(struct mddev *mddev) 3039 { 3040 struct r1conf *conf; 3041 int i; 3042 struct md_rdev *rdev; 3043 int ret; 3044 bool discard_supported = false; 3045 3046 if (mddev->level != 1) { 3047 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3048 mdname(mddev), mddev->level); 3049 return -EIO; 3050 } 3051 if (mddev->reshape_position != MaxSector) { 3052 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3053 mdname(mddev)); 3054 return -EIO; 3055 } 3056 if (mddev_init_writes_pending(mddev) < 0) 3057 return -ENOMEM; 3058 /* 3059 * copy the already verified devices into our private RAID1 3060 * bookkeeping area. [whatever we allocate in run(), 3061 * should be freed in raid1_free()] 3062 */ 3063 if (mddev->private == NULL) 3064 conf = setup_conf(mddev); 3065 else 3066 conf = mddev->private; 3067 3068 if (IS_ERR(conf)) 3069 return PTR_ERR(conf); 3070 3071 if (mddev->queue) { 3072 blk_queue_max_write_same_sectors(mddev->queue, 0); 3073 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3074 } 3075 3076 rdev_for_each(rdev, mddev) { 3077 if (!mddev->gendisk) 3078 continue; 3079 disk_stack_limits(mddev->gendisk, rdev->bdev, 3080 rdev->data_offset << 9); 3081 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3082 discard_supported = true; 3083 } 3084 3085 mddev->degraded = 0; 3086 for (i=0; i < conf->raid_disks; i++) 3087 if (conf->mirrors[i].rdev == NULL || 3088 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3089 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3090 mddev->degraded++; 3091 3092 if (conf->raid_disks - mddev->degraded == 1) 3093 mddev->recovery_cp = MaxSector; 3094 3095 if (mddev->recovery_cp != MaxSector) 3096 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3097 mdname(mddev)); 3098 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3099 mdname(mddev), mddev->raid_disks - mddev->degraded, 3100 mddev->raid_disks); 3101 3102 /* 3103 * Ok, everything is just fine now 3104 */ 3105 mddev->thread = conf->thread; 3106 conf->thread = NULL; 3107 mddev->private = conf; 3108 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3109 3110 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3111 3112 if (mddev->queue) { 3113 if (discard_supported) 3114 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 3115 mddev->queue); 3116 else 3117 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 3118 mddev->queue); 3119 } 3120 3121 ret = md_integrity_register(mddev); 3122 if (ret) { 3123 md_unregister_thread(&mddev->thread); 3124 raid1_free(mddev, conf); 3125 } 3126 return ret; 3127 } 3128 3129 static void raid1_free(struct mddev *mddev, void *priv) 3130 { 3131 struct r1conf *conf = priv; 3132 3133 mempool_destroy(conf->r1bio_pool); 3134 kfree(conf->mirrors); 3135 safe_put_page(conf->tmppage); 3136 kfree(conf->poolinfo); 3137 kfree(conf->nr_pending); 3138 kfree(conf->nr_waiting); 3139 kfree(conf->nr_queued); 3140 kfree(conf->barrier); 3141 if (conf->bio_split) 3142 bioset_free(conf->bio_split); 3143 kfree(conf); 3144 } 3145 3146 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3147 { 3148 /* no resync is happening, and there is enough space 3149 * on all devices, so we can resize. 3150 * We need to make sure resync covers any new space. 3151 * If the array is shrinking we should possibly wait until 3152 * any io in the removed space completes, but it hardly seems 3153 * worth it. 3154 */ 3155 sector_t newsize = raid1_size(mddev, sectors, 0); 3156 if (mddev->external_size && 3157 mddev->array_sectors > newsize) 3158 return -EINVAL; 3159 if (mddev->bitmap) { 3160 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 3161 if (ret) 3162 return ret; 3163 } 3164 md_set_array_sectors(mddev, newsize); 3165 if (sectors > mddev->dev_sectors && 3166 mddev->recovery_cp > mddev->dev_sectors) { 3167 mddev->recovery_cp = mddev->dev_sectors; 3168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3169 } 3170 mddev->dev_sectors = sectors; 3171 mddev->resync_max_sectors = sectors; 3172 return 0; 3173 } 3174 3175 static int raid1_reshape(struct mddev *mddev) 3176 { 3177 /* We need to: 3178 * 1/ resize the r1bio_pool 3179 * 2/ resize conf->mirrors 3180 * 3181 * We allocate a new r1bio_pool if we can. 3182 * Then raise a device barrier and wait until all IO stops. 3183 * Then resize conf->mirrors and swap in the new r1bio pool. 3184 * 3185 * At the same time, we "pack" the devices so that all the missing 3186 * devices have the higher raid_disk numbers. 3187 */ 3188 mempool_t *newpool, *oldpool; 3189 struct pool_info *newpoolinfo; 3190 struct raid1_info *newmirrors; 3191 struct r1conf *conf = mddev->private; 3192 int cnt, raid_disks; 3193 unsigned long flags; 3194 int d, d2; 3195 3196 /* Cannot change chunk_size, layout, or level */ 3197 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3198 mddev->layout != mddev->new_layout || 3199 mddev->level != mddev->new_level) { 3200 mddev->new_chunk_sectors = mddev->chunk_sectors; 3201 mddev->new_layout = mddev->layout; 3202 mddev->new_level = mddev->level; 3203 return -EINVAL; 3204 } 3205 3206 if (!mddev_is_clustered(mddev)) 3207 md_allow_write(mddev); 3208 3209 raid_disks = mddev->raid_disks + mddev->delta_disks; 3210 3211 if (raid_disks < conf->raid_disks) { 3212 cnt=0; 3213 for (d= 0; d < conf->raid_disks; d++) 3214 if (conf->mirrors[d].rdev) 3215 cnt++; 3216 if (cnt > raid_disks) 3217 return -EBUSY; 3218 } 3219 3220 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3221 if (!newpoolinfo) 3222 return -ENOMEM; 3223 newpoolinfo->mddev = mddev; 3224 newpoolinfo->raid_disks = raid_disks * 2; 3225 3226 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3227 r1bio_pool_free, newpoolinfo); 3228 if (!newpool) { 3229 kfree(newpoolinfo); 3230 return -ENOMEM; 3231 } 3232 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3233 GFP_KERNEL); 3234 if (!newmirrors) { 3235 kfree(newpoolinfo); 3236 mempool_destroy(newpool); 3237 return -ENOMEM; 3238 } 3239 3240 freeze_array(conf, 0); 3241 3242 /* ok, everything is stopped */ 3243 oldpool = conf->r1bio_pool; 3244 conf->r1bio_pool = newpool; 3245 3246 for (d = d2 = 0; d < conf->raid_disks; d++) { 3247 struct md_rdev *rdev = conf->mirrors[d].rdev; 3248 if (rdev && rdev->raid_disk != d2) { 3249 sysfs_unlink_rdev(mddev, rdev); 3250 rdev->raid_disk = d2; 3251 sysfs_unlink_rdev(mddev, rdev); 3252 if (sysfs_link_rdev(mddev, rdev)) 3253 pr_warn("md/raid1:%s: cannot register rd%d\n", 3254 mdname(mddev), rdev->raid_disk); 3255 } 3256 if (rdev) 3257 newmirrors[d2++].rdev = rdev; 3258 } 3259 kfree(conf->mirrors); 3260 conf->mirrors = newmirrors; 3261 kfree(conf->poolinfo); 3262 conf->poolinfo = newpoolinfo; 3263 3264 spin_lock_irqsave(&conf->device_lock, flags); 3265 mddev->degraded += (raid_disks - conf->raid_disks); 3266 spin_unlock_irqrestore(&conf->device_lock, flags); 3267 conf->raid_disks = mddev->raid_disks = raid_disks; 3268 mddev->delta_disks = 0; 3269 3270 unfreeze_array(conf); 3271 3272 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3274 md_wakeup_thread(mddev->thread); 3275 3276 mempool_destroy(oldpool); 3277 return 0; 3278 } 3279 3280 static void raid1_quiesce(struct mddev *mddev, int state) 3281 { 3282 struct r1conf *conf = mddev->private; 3283 3284 switch(state) { 3285 case 2: /* wake for suspend */ 3286 wake_up(&conf->wait_barrier); 3287 break; 3288 case 1: 3289 freeze_array(conf, 0); 3290 break; 3291 case 0: 3292 unfreeze_array(conf); 3293 break; 3294 } 3295 } 3296 3297 static void *raid1_takeover(struct mddev *mddev) 3298 { 3299 /* raid1 can take over: 3300 * raid5 with 2 devices, any layout or chunk size 3301 */ 3302 if (mddev->level == 5 && mddev->raid_disks == 2) { 3303 struct r1conf *conf; 3304 mddev->new_level = 1; 3305 mddev->new_layout = 0; 3306 mddev->new_chunk_sectors = 0; 3307 conf = setup_conf(mddev); 3308 if (!IS_ERR(conf)) { 3309 /* Array must appear to be quiesced */ 3310 conf->array_frozen = 1; 3311 mddev_clear_unsupported_flags(mddev, 3312 UNSUPPORTED_MDDEV_FLAGS); 3313 } 3314 return conf; 3315 } 3316 return ERR_PTR(-EINVAL); 3317 } 3318 3319 static struct md_personality raid1_personality = 3320 { 3321 .name = "raid1", 3322 .level = 1, 3323 .owner = THIS_MODULE, 3324 .make_request = raid1_make_request, 3325 .run = raid1_run, 3326 .free = raid1_free, 3327 .status = raid1_status, 3328 .error_handler = raid1_error, 3329 .hot_add_disk = raid1_add_disk, 3330 .hot_remove_disk= raid1_remove_disk, 3331 .spare_active = raid1_spare_active, 3332 .sync_request = raid1_sync_request, 3333 .resize = raid1_resize, 3334 .size = raid1_size, 3335 .check_reshape = raid1_reshape, 3336 .quiesce = raid1_quiesce, 3337 .takeover = raid1_takeover, 3338 .congested = raid1_congested, 3339 }; 3340 3341 static int __init raid_init(void) 3342 { 3343 return register_md_personality(&raid1_personality); 3344 } 3345 3346 static void raid_exit(void) 3347 { 3348 unregister_md_personality(&raid1_personality); 3349 } 3350 3351 module_init(raid_init); 3352 module_exit(raid_exit); 3353 MODULE_LICENSE("GPL"); 3354 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3355 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3356 MODULE_ALIAS("md-raid1"); 3357 MODULE_ALIAS("md-level-1"); 3358 3359 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3360