1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2, or (at your option) 18 * any later version. 19 * 20 * You should have received a copy of the GNU General Public License 21 * (for example /usr/src/linux/COPYING); if not, write to the Free 22 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/raid/raid1.h> 26 27 /* 28 * Number of guaranteed r1bios in case of extreme VM load: 29 */ 30 #define NR_RAID1_BIOS 256 31 32 static mdk_personality_t raid1_personality; 33 34 static void unplug_slaves(mddev_t *mddev); 35 36 37 static void * r1bio_pool_alloc(unsigned int __nocast gfp_flags, void *data) 38 { 39 struct pool_info *pi = data; 40 r1bio_t *r1_bio; 41 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 42 43 /* allocate a r1bio with room for raid_disks entries in the bios array */ 44 r1_bio = kmalloc(size, gfp_flags); 45 if (r1_bio) 46 memset(r1_bio, 0, size); 47 else 48 unplug_slaves(pi->mddev); 49 50 return r1_bio; 51 } 52 53 static void r1bio_pool_free(void *r1_bio, void *data) 54 { 55 kfree(r1_bio); 56 } 57 58 #define RESYNC_BLOCK_SIZE (64*1024) 59 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 60 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 61 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 62 #define RESYNC_WINDOW (2048*1024) 63 64 static void * r1buf_pool_alloc(unsigned int __nocast gfp_flags, void *data) 65 { 66 struct pool_info *pi = data; 67 struct page *page; 68 r1bio_t *r1_bio; 69 struct bio *bio; 70 int i, j; 71 72 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 73 if (!r1_bio) { 74 unplug_slaves(pi->mddev); 75 return NULL; 76 } 77 78 /* 79 * Allocate bios : 1 for reading, n-1 for writing 80 */ 81 for (j = pi->raid_disks ; j-- ; ) { 82 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 83 if (!bio) 84 goto out_free_bio; 85 r1_bio->bios[j] = bio; 86 } 87 /* 88 * Allocate RESYNC_PAGES data pages and attach them to 89 * the first bio; 90 */ 91 bio = r1_bio->bios[0]; 92 for (i = 0; i < RESYNC_PAGES; i++) { 93 page = alloc_page(gfp_flags); 94 if (unlikely(!page)) 95 goto out_free_pages; 96 97 bio->bi_io_vec[i].bv_page = page; 98 } 99 100 r1_bio->master_bio = NULL; 101 102 return r1_bio; 103 104 out_free_pages: 105 for ( ; i > 0 ; i--) 106 __free_page(bio->bi_io_vec[i-1].bv_page); 107 out_free_bio: 108 while ( ++j < pi->raid_disks ) 109 bio_put(r1_bio->bios[j]); 110 r1bio_pool_free(r1_bio, data); 111 return NULL; 112 } 113 114 static void r1buf_pool_free(void *__r1_bio, void *data) 115 { 116 struct pool_info *pi = data; 117 int i; 118 r1bio_t *r1bio = __r1_bio; 119 struct bio *bio = r1bio->bios[0]; 120 121 for (i = 0; i < RESYNC_PAGES; i++) { 122 __free_page(bio->bi_io_vec[i].bv_page); 123 bio->bi_io_vec[i].bv_page = NULL; 124 } 125 for (i=0 ; i < pi->raid_disks; i++) 126 bio_put(r1bio->bios[i]); 127 128 r1bio_pool_free(r1bio, data); 129 } 130 131 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 132 { 133 int i; 134 135 for (i = 0; i < conf->raid_disks; i++) { 136 struct bio **bio = r1_bio->bios + i; 137 if (*bio) 138 bio_put(*bio); 139 *bio = NULL; 140 } 141 } 142 143 static inline void free_r1bio(r1bio_t *r1_bio) 144 { 145 unsigned long flags; 146 147 conf_t *conf = mddev_to_conf(r1_bio->mddev); 148 149 /* 150 * Wake up any possible resync thread that waits for the device 151 * to go idle. 152 */ 153 spin_lock_irqsave(&conf->resync_lock, flags); 154 if (!--conf->nr_pending) { 155 wake_up(&conf->wait_idle); 156 wake_up(&conf->wait_resume); 157 } 158 spin_unlock_irqrestore(&conf->resync_lock, flags); 159 160 put_all_bios(conf, r1_bio); 161 mempool_free(r1_bio, conf->r1bio_pool); 162 } 163 164 static inline void put_buf(r1bio_t *r1_bio) 165 { 166 conf_t *conf = mddev_to_conf(r1_bio->mddev); 167 unsigned long flags; 168 169 mempool_free(r1_bio, conf->r1buf_pool); 170 171 spin_lock_irqsave(&conf->resync_lock, flags); 172 if (!conf->barrier) 173 BUG(); 174 --conf->barrier; 175 wake_up(&conf->wait_resume); 176 wake_up(&conf->wait_idle); 177 178 if (!--conf->nr_pending) { 179 wake_up(&conf->wait_idle); 180 wake_up(&conf->wait_resume); 181 } 182 spin_unlock_irqrestore(&conf->resync_lock, flags); 183 } 184 185 static void reschedule_retry(r1bio_t *r1_bio) 186 { 187 unsigned long flags; 188 mddev_t *mddev = r1_bio->mddev; 189 conf_t *conf = mddev_to_conf(mddev); 190 191 spin_lock_irqsave(&conf->device_lock, flags); 192 list_add(&r1_bio->retry_list, &conf->retry_list); 193 spin_unlock_irqrestore(&conf->device_lock, flags); 194 195 md_wakeup_thread(mddev->thread); 196 } 197 198 /* 199 * raid_end_bio_io() is called when we have finished servicing a mirrored 200 * operation and are ready to return a success/failure code to the buffer 201 * cache layer. 202 */ 203 static void raid_end_bio_io(r1bio_t *r1_bio) 204 { 205 struct bio *bio = r1_bio->master_bio; 206 207 bio_endio(bio, bio->bi_size, 208 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 209 free_r1bio(r1_bio); 210 } 211 212 /* 213 * Update disk head position estimator based on IRQ completion info. 214 */ 215 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 216 { 217 conf_t *conf = mddev_to_conf(r1_bio->mddev); 218 219 conf->mirrors[disk].head_position = 220 r1_bio->sector + (r1_bio->sectors); 221 } 222 223 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 224 { 225 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 226 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 227 int mirror; 228 conf_t *conf = mddev_to_conf(r1_bio->mddev); 229 230 if (bio->bi_size) 231 return 1; 232 233 mirror = r1_bio->read_disk; 234 /* 235 * this branch is our 'one mirror IO has finished' event handler: 236 */ 237 if (!uptodate) 238 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 239 else 240 /* 241 * Set R1BIO_Uptodate in our master bio, so that 242 * we will return a good error code for to the higher 243 * levels even if IO on some other mirrored buffer fails. 244 * 245 * The 'master' represents the composite IO operation to 246 * user-side. So if something waits for IO, then it will 247 * wait for the 'master' bio. 248 */ 249 set_bit(R1BIO_Uptodate, &r1_bio->state); 250 251 update_head_pos(mirror, r1_bio); 252 253 /* 254 * we have only one bio on the read side 255 */ 256 if (uptodate) 257 raid_end_bio_io(r1_bio); 258 else { 259 /* 260 * oops, read error: 261 */ 262 char b[BDEVNAME_SIZE]; 263 if (printk_ratelimit()) 264 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 265 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 266 reschedule_retry(r1_bio); 267 } 268 269 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 270 return 0; 271 } 272 273 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 274 { 275 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 276 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 277 int mirror; 278 conf_t *conf = mddev_to_conf(r1_bio->mddev); 279 280 if (bio->bi_size) 281 return 1; 282 283 for (mirror = 0; mirror < conf->raid_disks; mirror++) 284 if (r1_bio->bios[mirror] == bio) 285 break; 286 287 /* 288 * this branch is our 'one mirror IO has finished' event handler: 289 */ 290 if (!uptodate) 291 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 292 else 293 /* 294 * Set R1BIO_Uptodate in our master bio, so that 295 * we will return a good error code for to the higher 296 * levels even if IO on some other mirrored buffer fails. 297 * 298 * The 'master' represents the composite IO operation to 299 * user-side. So if something waits for IO, then it will 300 * wait for the 'master' bio. 301 */ 302 set_bit(R1BIO_Uptodate, &r1_bio->state); 303 304 update_head_pos(mirror, r1_bio); 305 306 /* 307 * 308 * Let's see if all mirrored write operations have finished 309 * already. 310 */ 311 if (atomic_dec_and_test(&r1_bio->remaining)) { 312 md_write_end(r1_bio->mddev); 313 raid_end_bio_io(r1_bio); 314 } 315 316 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 317 return 0; 318 } 319 320 321 /* 322 * This routine returns the disk from which the requested read should 323 * be done. There is a per-array 'next expected sequential IO' sector 324 * number - if this matches on the next IO then we use the last disk. 325 * There is also a per-disk 'last know head position' sector that is 326 * maintained from IRQ contexts, both the normal and the resync IO 327 * completion handlers update this position correctly. If there is no 328 * perfect sequential match then we pick the disk whose head is closest. 329 * 330 * If there are 2 mirrors in the same 2 devices, performance degrades 331 * because position is mirror, not device based. 332 * 333 * The rdev for the device selected will have nr_pending incremented. 334 */ 335 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 336 { 337 const unsigned long this_sector = r1_bio->sector; 338 int new_disk = conf->last_used, disk = new_disk; 339 const int sectors = r1_bio->sectors; 340 sector_t new_distance, current_distance; 341 mdk_rdev_t *new_rdev, *rdev; 342 343 rcu_read_lock(); 344 /* 345 * Check if it if we can balance. We can balance on the whole 346 * device if no resync is going on, or below the resync window. 347 * We take the first readable disk when above the resync window. 348 */ 349 retry: 350 if (conf->mddev->recovery_cp < MaxSector && 351 (this_sector + sectors >= conf->next_resync)) { 352 /* Choose the first operation device, for consistancy */ 353 new_disk = 0; 354 355 while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL || 356 !new_rdev->in_sync) { 357 new_disk++; 358 if (new_disk == conf->raid_disks) { 359 new_disk = -1; 360 break; 361 } 362 } 363 goto rb_out; 364 } 365 366 367 /* make sure the disk is operational */ 368 while ((new_rdev=conf->mirrors[new_disk].rdev) == NULL || 369 !new_rdev->in_sync) { 370 if (new_disk <= 0) 371 new_disk = conf->raid_disks; 372 new_disk--; 373 if (new_disk == disk) { 374 new_disk = -1; 375 goto rb_out; 376 } 377 } 378 disk = new_disk; 379 /* now disk == new_disk == starting point for search */ 380 381 /* 382 * Don't change to another disk for sequential reads: 383 */ 384 if (conf->next_seq_sect == this_sector) 385 goto rb_out; 386 if (this_sector == conf->mirrors[new_disk].head_position) 387 goto rb_out; 388 389 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 390 391 /* Find the disk whose head is closest */ 392 393 do { 394 if (disk <= 0) 395 disk = conf->raid_disks; 396 disk--; 397 398 if ((rdev=conf->mirrors[disk].rdev) == NULL || 399 !rdev->in_sync) 400 continue; 401 402 if (!atomic_read(&rdev->nr_pending)) { 403 new_disk = disk; 404 new_rdev = rdev; 405 break; 406 } 407 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 408 if (new_distance < current_distance) { 409 current_distance = new_distance; 410 new_disk = disk; 411 new_rdev = rdev; 412 } 413 } while (disk != conf->last_used); 414 415 rb_out: 416 417 418 if (new_disk >= 0) { 419 conf->next_seq_sect = this_sector + sectors; 420 conf->last_used = new_disk; 421 atomic_inc(&new_rdev->nr_pending); 422 if (!new_rdev->in_sync) { 423 /* cannot risk returning a device that failed 424 * before we inc'ed nr_pending 425 */ 426 atomic_dec(&new_rdev->nr_pending); 427 goto retry; 428 } 429 } 430 rcu_read_unlock(); 431 432 return new_disk; 433 } 434 435 static void unplug_slaves(mddev_t *mddev) 436 { 437 conf_t *conf = mddev_to_conf(mddev); 438 int i; 439 440 rcu_read_lock(); 441 for (i=0; i<mddev->raid_disks; i++) { 442 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 443 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { 444 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 445 446 atomic_inc(&rdev->nr_pending); 447 rcu_read_unlock(); 448 449 if (r_queue->unplug_fn) 450 r_queue->unplug_fn(r_queue); 451 452 rdev_dec_pending(rdev, mddev); 453 rcu_read_lock(); 454 } 455 } 456 rcu_read_unlock(); 457 } 458 459 static void raid1_unplug(request_queue_t *q) 460 { 461 unplug_slaves(q->queuedata); 462 } 463 464 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk, 465 sector_t *error_sector) 466 { 467 mddev_t *mddev = q->queuedata; 468 conf_t *conf = mddev_to_conf(mddev); 469 int i, ret = 0; 470 471 rcu_read_lock(); 472 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 473 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 474 if (rdev && !rdev->faulty) { 475 struct block_device *bdev = rdev->bdev; 476 request_queue_t *r_queue = bdev_get_queue(bdev); 477 478 if (!r_queue->issue_flush_fn) 479 ret = -EOPNOTSUPP; 480 else { 481 atomic_inc(&rdev->nr_pending); 482 rcu_read_unlock(); 483 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 484 error_sector); 485 rdev_dec_pending(rdev, mddev); 486 rcu_read_lock(); 487 } 488 } 489 } 490 rcu_read_unlock(); 491 return ret; 492 } 493 494 /* 495 * Throttle resync depth, so that we can both get proper overlapping of 496 * requests, but are still able to handle normal requests quickly. 497 */ 498 #define RESYNC_DEPTH 32 499 500 static void device_barrier(conf_t *conf, sector_t sect) 501 { 502 spin_lock_irq(&conf->resync_lock); 503 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume), 504 conf->resync_lock, unplug_slaves(conf->mddev)); 505 506 if (!conf->barrier++) { 507 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 508 conf->resync_lock, unplug_slaves(conf->mddev)); 509 if (conf->nr_pending) 510 BUG(); 511 } 512 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH, 513 conf->resync_lock, unplug_slaves(conf->mddev)); 514 conf->next_resync = sect; 515 spin_unlock_irq(&conf->resync_lock); 516 } 517 518 static int make_request(request_queue_t *q, struct bio * bio) 519 { 520 mddev_t *mddev = q->queuedata; 521 conf_t *conf = mddev_to_conf(mddev); 522 mirror_info_t *mirror; 523 r1bio_t *r1_bio; 524 struct bio *read_bio; 525 int i, disks; 526 mdk_rdev_t *rdev; 527 528 /* 529 * Register the new request and wait if the reconstruction 530 * thread has put up a bar for new requests. 531 * Continue immediately if no resync is active currently. 532 */ 533 spin_lock_irq(&conf->resync_lock); 534 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, ); 535 conf->nr_pending++; 536 spin_unlock_irq(&conf->resync_lock); 537 538 if (bio_data_dir(bio)==WRITE) { 539 disk_stat_inc(mddev->gendisk, writes); 540 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio)); 541 } else { 542 disk_stat_inc(mddev->gendisk, reads); 543 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio)); 544 } 545 546 /* 547 * make_request() can abort the operation when READA is being 548 * used and no empty request is available. 549 * 550 */ 551 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 552 553 r1_bio->master_bio = bio; 554 r1_bio->sectors = bio->bi_size >> 9; 555 556 r1_bio->mddev = mddev; 557 r1_bio->sector = bio->bi_sector; 558 559 r1_bio->state = 0; 560 561 if (bio_data_dir(bio) == READ) { 562 /* 563 * read balancing logic: 564 */ 565 int rdisk = read_balance(conf, r1_bio); 566 567 if (rdisk < 0) { 568 /* couldn't find anywhere to read from */ 569 raid_end_bio_io(r1_bio); 570 return 0; 571 } 572 mirror = conf->mirrors + rdisk; 573 574 r1_bio->read_disk = rdisk; 575 576 read_bio = bio_clone(bio, GFP_NOIO); 577 578 r1_bio->bios[rdisk] = read_bio; 579 580 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 581 read_bio->bi_bdev = mirror->rdev->bdev; 582 read_bio->bi_end_io = raid1_end_read_request; 583 read_bio->bi_rw = READ; 584 read_bio->bi_private = r1_bio; 585 586 generic_make_request(read_bio); 587 return 0; 588 } 589 590 /* 591 * WRITE: 592 */ 593 /* first select target devices under spinlock and 594 * inc refcount on their rdev. Record them by setting 595 * bios[x] to bio 596 */ 597 disks = conf->raid_disks; 598 rcu_read_lock(); 599 for (i = 0; i < disks; i++) { 600 if ((rdev=conf->mirrors[i].rdev) != NULL && 601 !rdev->faulty) { 602 atomic_inc(&rdev->nr_pending); 603 if (rdev->faulty) { 604 atomic_dec(&rdev->nr_pending); 605 r1_bio->bios[i] = NULL; 606 } else 607 r1_bio->bios[i] = bio; 608 } else 609 r1_bio->bios[i] = NULL; 610 } 611 rcu_read_unlock(); 612 613 atomic_set(&r1_bio->remaining, 1); 614 md_write_start(mddev); 615 for (i = 0; i < disks; i++) { 616 struct bio *mbio; 617 if (!r1_bio->bios[i]) 618 continue; 619 620 mbio = bio_clone(bio, GFP_NOIO); 621 r1_bio->bios[i] = mbio; 622 623 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 624 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 625 mbio->bi_end_io = raid1_end_write_request; 626 mbio->bi_rw = WRITE; 627 mbio->bi_private = r1_bio; 628 629 atomic_inc(&r1_bio->remaining); 630 generic_make_request(mbio); 631 } 632 633 if (atomic_dec_and_test(&r1_bio->remaining)) { 634 md_write_end(mddev); 635 raid_end_bio_io(r1_bio); 636 } 637 638 return 0; 639 } 640 641 static void status(struct seq_file *seq, mddev_t *mddev) 642 { 643 conf_t *conf = mddev_to_conf(mddev); 644 int i; 645 646 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 647 conf->working_disks); 648 for (i = 0; i < conf->raid_disks; i++) 649 seq_printf(seq, "%s", 650 conf->mirrors[i].rdev && 651 conf->mirrors[i].rdev->in_sync ? "U" : "_"); 652 seq_printf(seq, "]"); 653 } 654 655 656 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 657 { 658 char b[BDEVNAME_SIZE]; 659 conf_t *conf = mddev_to_conf(mddev); 660 661 /* 662 * If it is not operational, then we have already marked it as dead 663 * else if it is the last working disks, ignore the error, let the 664 * next level up know. 665 * else mark the drive as failed 666 */ 667 if (rdev->in_sync 668 && conf->working_disks == 1) 669 /* 670 * Don't fail the drive, act as though we were just a 671 * normal single drive 672 */ 673 return; 674 if (rdev->in_sync) { 675 mddev->degraded++; 676 conf->working_disks--; 677 /* 678 * if recovery is running, make sure it aborts. 679 */ 680 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 681 } 682 rdev->in_sync = 0; 683 rdev->faulty = 1; 684 mddev->sb_dirty = 1; 685 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 686 " Operation continuing on %d devices\n", 687 bdevname(rdev->bdev,b), conf->working_disks); 688 } 689 690 static void print_conf(conf_t *conf) 691 { 692 int i; 693 mirror_info_t *tmp; 694 695 printk("RAID1 conf printout:\n"); 696 if (!conf) { 697 printk("(!conf)\n"); 698 return; 699 } 700 printk(" --- wd:%d rd:%d\n", conf->working_disks, 701 conf->raid_disks); 702 703 for (i = 0; i < conf->raid_disks; i++) { 704 char b[BDEVNAME_SIZE]; 705 tmp = conf->mirrors + i; 706 if (tmp->rdev) 707 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 708 i, !tmp->rdev->in_sync, !tmp->rdev->faulty, 709 bdevname(tmp->rdev->bdev,b)); 710 } 711 } 712 713 static void close_sync(conf_t *conf) 714 { 715 spin_lock_irq(&conf->resync_lock); 716 wait_event_lock_irq(conf->wait_resume, !conf->barrier, 717 conf->resync_lock, unplug_slaves(conf->mddev)); 718 spin_unlock_irq(&conf->resync_lock); 719 720 if (conf->barrier) BUG(); 721 if (waitqueue_active(&conf->wait_idle)) BUG(); 722 723 mempool_destroy(conf->r1buf_pool); 724 conf->r1buf_pool = NULL; 725 } 726 727 static int raid1_spare_active(mddev_t *mddev) 728 { 729 int i; 730 conf_t *conf = mddev->private; 731 mirror_info_t *tmp; 732 733 /* 734 * Find all failed disks within the RAID1 configuration 735 * and mark them readable 736 */ 737 for (i = 0; i < conf->raid_disks; i++) { 738 tmp = conf->mirrors + i; 739 if (tmp->rdev 740 && !tmp->rdev->faulty 741 && !tmp->rdev->in_sync) { 742 conf->working_disks++; 743 mddev->degraded--; 744 tmp->rdev->in_sync = 1; 745 } 746 } 747 748 print_conf(conf); 749 return 0; 750 } 751 752 753 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 754 { 755 conf_t *conf = mddev->private; 756 int found = 0; 757 int mirror; 758 mirror_info_t *p; 759 760 for (mirror=0; mirror < mddev->raid_disks; mirror++) 761 if ( !(p=conf->mirrors+mirror)->rdev) { 762 763 blk_queue_stack_limits(mddev->queue, 764 rdev->bdev->bd_disk->queue); 765 /* as we don't honour merge_bvec_fn, we must never risk 766 * violating it, so limit ->max_sector to one PAGE, as 767 * a one page request is never in violation. 768 */ 769 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 770 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 771 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 772 773 p->head_position = 0; 774 rdev->raid_disk = mirror; 775 found = 1; 776 p->rdev = rdev; 777 break; 778 } 779 780 print_conf(conf); 781 return found; 782 } 783 784 static int raid1_remove_disk(mddev_t *mddev, int number) 785 { 786 conf_t *conf = mddev->private; 787 int err = 0; 788 mdk_rdev_t *rdev; 789 mirror_info_t *p = conf->mirrors+ number; 790 791 print_conf(conf); 792 rdev = p->rdev; 793 if (rdev) { 794 if (rdev->in_sync || 795 atomic_read(&rdev->nr_pending)) { 796 err = -EBUSY; 797 goto abort; 798 } 799 p->rdev = NULL; 800 synchronize_rcu(); 801 if (atomic_read(&rdev->nr_pending)) { 802 /* lost the race, try later */ 803 err = -EBUSY; 804 p->rdev = rdev; 805 } 806 } 807 abort: 808 809 print_conf(conf); 810 return err; 811 } 812 813 814 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 815 { 816 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 817 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 818 conf_t *conf = mddev_to_conf(r1_bio->mddev); 819 820 if (bio->bi_size) 821 return 1; 822 823 if (r1_bio->bios[r1_bio->read_disk] != bio) 824 BUG(); 825 update_head_pos(r1_bio->read_disk, r1_bio); 826 /* 827 * we have read a block, now it needs to be re-written, 828 * or re-read if the read failed. 829 * We don't do much here, just schedule handling by raid1d 830 */ 831 if (!uptodate) 832 md_error(r1_bio->mddev, 833 conf->mirrors[r1_bio->read_disk].rdev); 834 else 835 set_bit(R1BIO_Uptodate, &r1_bio->state); 836 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 837 reschedule_retry(r1_bio); 838 return 0; 839 } 840 841 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 842 { 843 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 844 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 845 mddev_t *mddev = r1_bio->mddev; 846 conf_t *conf = mddev_to_conf(mddev); 847 int i; 848 int mirror=0; 849 850 if (bio->bi_size) 851 return 1; 852 853 for (i = 0; i < conf->raid_disks; i++) 854 if (r1_bio->bios[i] == bio) { 855 mirror = i; 856 break; 857 } 858 if (!uptodate) 859 md_error(mddev, conf->mirrors[mirror].rdev); 860 update_head_pos(mirror, r1_bio); 861 862 if (atomic_dec_and_test(&r1_bio->remaining)) { 863 md_done_sync(mddev, r1_bio->sectors, uptodate); 864 put_buf(r1_bio); 865 } 866 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev); 867 return 0; 868 } 869 870 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 871 { 872 conf_t *conf = mddev_to_conf(mddev); 873 int i; 874 int disks = conf->raid_disks; 875 struct bio *bio, *wbio; 876 877 bio = r1_bio->bios[r1_bio->read_disk]; 878 879 /* 880 * schedule writes 881 */ 882 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 883 /* 884 * There is no point trying a read-for-reconstruct as 885 * reconstruct is about to be aborted 886 */ 887 char b[BDEVNAME_SIZE]; 888 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 889 " for block %llu\n", 890 bdevname(bio->bi_bdev,b), 891 (unsigned long long)r1_bio->sector); 892 md_done_sync(mddev, r1_bio->sectors, 0); 893 put_buf(r1_bio); 894 return; 895 } 896 897 atomic_set(&r1_bio->remaining, 1); 898 for (i = 0; i < disks ; i++) { 899 wbio = r1_bio->bios[i]; 900 if (wbio->bi_end_io != end_sync_write) 901 continue; 902 903 atomic_inc(&conf->mirrors[i].rdev->nr_pending); 904 atomic_inc(&r1_bio->remaining); 905 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 906 generic_make_request(wbio); 907 } 908 909 if (atomic_dec_and_test(&r1_bio->remaining)) { 910 md_done_sync(mddev, r1_bio->sectors, 1); 911 put_buf(r1_bio); 912 } 913 } 914 915 /* 916 * This is a kernel thread which: 917 * 918 * 1. Retries failed read operations on working mirrors. 919 * 2. Updates the raid superblock when problems encounter. 920 * 3. Performs writes following reads for array syncronising. 921 */ 922 923 static void raid1d(mddev_t *mddev) 924 { 925 r1bio_t *r1_bio; 926 struct bio *bio; 927 unsigned long flags; 928 conf_t *conf = mddev_to_conf(mddev); 929 struct list_head *head = &conf->retry_list; 930 int unplug=0; 931 mdk_rdev_t *rdev; 932 933 md_check_recovery(mddev); 934 md_handle_safemode(mddev); 935 936 for (;;) { 937 char b[BDEVNAME_SIZE]; 938 spin_lock_irqsave(&conf->device_lock, flags); 939 if (list_empty(head)) 940 break; 941 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 942 list_del(head->prev); 943 spin_unlock_irqrestore(&conf->device_lock, flags); 944 945 mddev = r1_bio->mddev; 946 conf = mddev_to_conf(mddev); 947 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 948 sync_request_write(mddev, r1_bio); 949 unplug = 1; 950 } else { 951 int disk; 952 bio = r1_bio->bios[r1_bio->read_disk]; 953 if ((disk=read_balance(conf, r1_bio)) == -1) { 954 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 955 " read error for block %llu\n", 956 bdevname(bio->bi_bdev,b), 957 (unsigned long long)r1_bio->sector); 958 raid_end_bio_io(r1_bio); 959 } else { 960 r1_bio->bios[r1_bio->read_disk] = NULL; 961 r1_bio->read_disk = disk; 962 bio_put(bio); 963 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 964 r1_bio->bios[r1_bio->read_disk] = bio; 965 rdev = conf->mirrors[disk].rdev; 966 if (printk_ratelimit()) 967 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 968 " another mirror\n", 969 bdevname(rdev->bdev,b), 970 (unsigned long long)r1_bio->sector); 971 bio->bi_sector = r1_bio->sector + rdev->data_offset; 972 bio->bi_bdev = rdev->bdev; 973 bio->bi_end_io = raid1_end_read_request; 974 bio->bi_rw = READ; 975 bio->bi_private = r1_bio; 976 unplug = 1; 977 generic_make_request(bio); 978 } 979 } 980 } 981 spin_unlock_irqrestore(&conf->device_lock, flags); 982 if (unplug) 983 unplug_slaves(mddev); 984 } 985 986 987 static int init_resync(conf_t *conf) 988 { 989 int buffs; 990 991 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 992 if (conf->r1buf_pool) 993 BUG(); 994 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 995 conf->poolinfo); 996 if (!conf->r1buf_pool) 997 return -ENOMEM; 998 conf->next_resync = 0; 999 return 0; 1000 } 1001 1002 /* 1003 * perform a "sync" on one "block" 1004 * 1005 * We need to make sure that no normal I/O request - particularly write 1006 * requests - conflict with active sync requests. 1007 * 1008 * This is achieved by tracking pending requests and a 'barrier' concept 1009 * that can be installed to exclude normal IO requests. 1010 */ 1011 1012 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster) 1013 { 1014 conf_t *conf = mddev_to_conf(mddev); 1015 mirror_info_t *mirror; 1016 r1bio_t *r1_bio; 1017 struct bio *bio; 1018 sector_t max_sector, nr_sectors; 1019 int disk; 1020 int i; 1021 int write_targets = 0; 1022 1023 if (!conf->r1buf_pool) 1024 if (init_resync(conf)) 1025 return -ENOMEM; 1026 1027 max_sector = mddev->size << 1; 1028 if (sector_nr >= max_sector) { 1029 close_sync(conf); 1030 return 0; 1031 } 1032 1033 /* 1034 * If there is non-resync activity waiting for us then 1035 * put in a delay to throttle resync. 1036 */ 1037 if (!go_faster && waitqueue_active(&conf->wait_resume)) 1038 msleep_interruptible(1000); 1039 device_barrier(conf, sector_nr + RESYNC_SECTORS); 1040 1041 /* 1042 * If reconstructing, and >1 working disc, 1043 * could dedicate one to rebuild and others to 1044 * service read requests .. 1045 */ 1046 disk = conf->last_used; 1047 /* make sure disk is operational */ 1048 1049 while (conf->mirrors[disk].rdev == NULL || 1050 !conf->mirrors[disk].rdev->in_sync) { 1051 if (disk <= 0) 1052 disk = conf->raid_disks; 1053 disk--; 1054 if (disk == conf->last_used) 1055 break; 1056 } 1057 conf->last_used = disk; 1058 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 1059 1060 1061 mirror = conf->mirrors + disk; 1062 1063 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1064 1065 spin_lock_irq(&conf->resync_lock); 1066 conf->nr_pending++; 1067 spin_unlock_irq(&conf->resync_lock); 1068 1069 r1_bio->mddev = mddev; 1070 r1_bio->sector = sector_nr; 1071 set_bit(R1BIO_IsSync, &r1_bio->state); 1072 r1_bio->read_disk = disk; 1073 1074 for (i=0; i < conf->raid_disks; i++) { 1075 bio = r1_bio->bios[i]; 1076 1077 /* take from bio_init */ 1078 bio->bi_next = NULL; 1079 bio->bi_flags |= 1 << BIO_UPTODATE; 1080 bio->bi_rw = 0; 1081 bio->bi_vcnt = 0; 1082 bio->bi_idx = 0; 1083 bio->bi_phys_segments = 0; 1084 bio->bi_hw_segments = 0; 1085 bio->bi_size = 0; 1086 bio->bi_end_io = NULL; 1087 bio->bi_private = NULL; 1088 1089 if (i == disk) { 1090 bio->bi_rw = READ; 1091 bio->bi_end_io = end_sync_read; 1092 } else if (conf->mirrors[i].rdev && 1093 !conf->mirrors[i].rdev->faulty && 1094 (!conf->mirrors[i].rdev->in_sync || 1095 sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) { 1096 bio->bi_rw = WRITE; 1097 bio->bi_end_io = end_sync_write; 1098 write_targets ++; 1099 } else 1100 continue; 1101 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset; 1102 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1103 bio->bi_private = r1_bio; 1104 } 1105 if (write_targets == 0) { 1106 /* There is nowhere to write, so all non-sync 1107 * drives must be failed - so we are finished 1108 */ 1109 int rv = max_sector - sector_nr; 1110 md_done_sync(mddev, rv, 1); 1111 put_buf(r1_bio); 1112 rdev_dec_pending(conf->mirrors[disk].rdev, mddev); 1113 return rv; 1114 } 1115 1116 nr_sectors = 0; 1117 do { 1118 struct page *page; 1119 int len = PAGE_SIZE; 1120 if (sector_nr + (len>>9) > max_sector) 1121 len = (max_sector - sector_nr) << 9; 1122 if (len == 0) 1123 break; 1124 for (i=0 ; i < conf->raid_disks; i++) { 1125 bio = r1_bio->bios[i]; 1126 if (bio->bi_end_io) { 1127 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page; 1128 if (bio_add_page(bio, page, len, 0) == 0) { 1129 /* stop here */ 1130 r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page; 1131 while (i > 0) { 1132 i--; 1133 bio = r1_bio->bios[i]; 1134 if (bio->bi_end_io==NULL) continue; 1135 /* remove last page from this bio */ 1136 bio->bi_vcnt--; 1137 bio->bi_size -= len; 1138 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1139 } 1140 goto bio_full; 1141 } 1142 } 1143 } 1144 nr_sectors += len>>9; 1145 sector_nr += len>>9; 1146 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1147 bio_full: 1148 bio = r1_bio->bios[disk]; 1149 r1_bio->sectors = nr_sectors; 1150 1151 md_sync_acct(mirror->rdev->bdev, nr_sectors); 1152 1153 generic_make_request(bio); 1154 1155 return nr_sectors; 1156 } 1157 1158 static int run(mddev_t *mddev) 1159 { 1160 conf_t *conf; 1161 int i, j, disk_idx; 1162 mirror_info_t *disk; 1163 mdk_rdev_t *rdev; 1164 struct list_head *tmp; 1165 1166 if (mddev->level != 1) { 1167 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1168 mdname(mddev), mddev->level); 1169 goto out; 1170 } 1171 /* 1172 * copy the already verified devices into our private RAID1 1173 * bookkeeping area. [whatever we allocate in run(), 1174 * should be freed in stop()] 1175 */ 1176 conf = kmalloc(sizeof(conf_t), GFP_KERNEL); 1177 mddev->private = conf; 1178 if (!conf) 1179 goto out_no_mem; 1180 1181 memset(conf, 0, sizeof(*conf)); 1182 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1183 GFP_KERNEL); 1184 if (!conf->mirrors) 1185 goto out_no_mem; 1186 1187 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks); 1188 1189 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1190 if (!conf->poolinfo) 1191 goto out_no_mem; 1192 conf->poolinfo->mddev = mddev; 1193 conf->poolinfo->raid_disks = mddev->raid_disks; 1194 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1195 r1bio_pool_free, 1196 conf->poolinfo); 1197 if (!conf->r1bio_pool) 1198 goto out_no_mem; 1199 1200 ITERATE_RDEV(mddev, rdev, tmp) { 1201 disk_idx = rdev->raid_disk; 1202 if (disk_idx >= mddev->raid_disks 1203 || disk_idx < 0) 1204 continue; 1205 disk = conf->mirrors + disk_idx; 1206 1207 disk->rdev = rdev; 1208 1209 blk_queue_stack_limits(mddev->queue, 1210 rdev->bdev->bd_disk->queue); 1211 /* as we don't honour merge_bvec_fn, we must never risk 1212 * violating it, so limit ->max_sector to one PAGE, as 1213 * a one page request is never in violation. 1214 */ 1215 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1216 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1217 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1218 1219 disk->head_position = 0; 1220 if (!rdev->faulty && rdev->in_sync) 1221 conf->working_disks++; 1222 } 1223 conf->raid_disks = mddev->raid_disks; 1224 conf->mddev = mddev; 1225 spin_lock_init(&conf->device_lock); 1226 INIT_LIST_HEAD(&conf->retry_list); 1227 if (conf->working_disks == 1) 1228 mddev->recovery_cp = MaxSector; 1229 1230 spin_lock_init(&conf->resync_lock); 1231 init_waitqueue_head(&conf->wait_idle); 1232 init_waitqueue_head(&conf->wait_resume); 1233 1234 if (!conf->working_disks) { 1235 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1236 mdname(mddev)); 1237 goto out_free_conf; 1238 } 1239 1240 mddev->degraded = 0; 1241 for (i = 0; i < conf->raid_disks; i++) { 1242 1243 disk = conf->mirrors + i; 1244 1245 if (!disk->rdev) { 1246 disk->head_position = 0; 1247 mddev->degraded++; 1248 } 1249 } 1250 1251 /* 1252 * find the first working one and use it as a starting point 1253 * to read balancing. 1254 */ 1255 for (j = 0; j < conf->raid_disks && 1256 (!conf->mirrors[j].rdev || 1257 !conf->mirrors[j].rdev->in_sync) ; j++) 1258 /* nothing */; 1259 conf->last_used = j; 1260 1261 1262 1263 { 1264 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1265 if (!mddev->thread) { 1266 printk(KERN_ERR 1267 "raid1: couldn't allocate thread for %s\n", 1268 mdname(mddev)); 1269 goto out_free_conf; 1270 } 1271 } 1272 printk(KERN_INFO 1273 "raid1: raid set %s active with %d out of %d mirrors\n", 1274 mdname(mddev), mddev->raid_disks - mddev->degraded, 1275 mddev->raid_disks); 1276 /* 1277 * Ok, everything is just fine now 1278 */ 1279 mddev->array_size = mddev->size; 1280 1281 mddev->queue->unplug_fn = raid1_unplug; 1282 mddev->queue->issue_flush_fn = raid1_issue_flush; 1283 1284 return 0; 1285 1286 out_no_mem: 1287 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1288 mdname(mddev)); 1289 1290 out_free_conf: 1291 if (conf) { 1292 if (conf->r1bio_pool) 1293 mempool_destroy(conf->r1bio_pool); 1294 if (conf->mirrors) 1295 kfree(conf->mirrors); 1296 if (conf->poolinfo) 1297 kfree(conf->poolinfo); 1298 kfree(conf); 1299 mddev->private = NULL; 1300 } 1301 out: 1302 return -EIO; 1303 } 1304 1305 static int stop(mddev_t *mddev) 1306 { 1307 conf_t *conf = mddev_to_conf(mddev); 1308 1309 md_unregister_thread(mddev->thread); 1310 mddev->thread = NULL; 1311 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1312 if (conf->r1bio_pool) 1313 mempool_destroy(conf->r1bio_pool); 1314 if (conf->mirrors) 1315 kfree(conf->mirrors); 1316 if (conf->poolinfo) 1317 kfree(conf->poolinfo); 1318 kfree(conf); 1319 mddev->private = NULL; 1320 return 0; 1321 } 1322 1323 static int raid1_resize(mddev_t *mddev, sector_t sectors) 1324 { 1325 /* no resync is happening, and there is enough space 1326 * on all devices, so we can resize. 1327 * We need to make sure resync covers any new space. 1328 * If the array is shrinking we should possibly wait until 1329 * any io in the removed space completes, but it hardly seems 1330 * worth it. 1331 */ 1332 mddev->array_size = sectors>>1; 1333 set_capacity(mddev->gendisk, mddev->array_size << 1); 1334 mddev->changed = 1; 1335 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 1336 mddev->recovery_cp = mddev->size << 1; 1337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1338 } 1339 mddev->size = mddev->array_size; 1340 return 0; 1341 } 1342 1343 static int raid1_reshape(mddev_t *mddev, int raid_disks) 1344 { 1345 /* We need to: 1346 * 1/ resize the r1bio_pool 1347 * 2/ resize conf->mirrors 1348 * 1349 * We allocate a new r1bio_pool if we can. 1350 * Then raise a device barrier and wait until all IO stops. 1351 * Then resize conf->mirrors and swap in the new r1bio pool. 1352 */ 1353 mempool_t *newpool, *oldpool; 1354 struct pool_info *newpoolinfo; 1355 mirror_info_t *newmirrors; 1356 conf_t *conf = mddev_to_conf(mddev); 1357 1358 int d; 1359 1360 for (d= raid_disks; d < conf->raid_disks; d++) 1361 if (conf->mirrors[d].rdev) 1362 return -EBUSY; 1363 1364 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 1365 if (!newpoolinfo) 1366 return -ENOMEM; 1367 newpoolinfo->mddev = mddev; 1368 newpoolinfo->raid_disks = raid_disks; 1369 1370 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1371 r1bio_pool_free, newpoolinfo); 1372 if (!newpool) { 1373 kfree(newpoolinfo); 1374 return -ENOMEM; 1375 } 1376 newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 1377 if (!newmirrors) { 1378 kfree(newpoolinfo); 1379 mempool_destroy(newpool); 1380 return -ENOMEM; 1381 } 1382 memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks); 1383 1384 spin_lock_irq(&conf->resync_lock); 1385 conf->barrier++; 1386 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 1387 conf->resync_lock, unplug_slaves(mddev)); 1388 spin_unlock_irq(&conf->resync_lock); 1389 1390 /* ok, everything is stopped */ 1391 oldpool = conf->r1bio_pool; 1392 conf->r1bio_pool = newpool; 1393 for (d=0; d < raid_disks && d < conf->raid_disks; d++) 1394 newmirrors[d] = conf->mirrors[d]; 1395 kfree(conf->mirrors); 1396 conf->mirrors = newmirrors; 1397 kfree(conf->poolinfo); 1398 conf->poolinfo = newpoolinfo; 1399 1400 mddev->degraded += (raid_disks - conf->raid_disks); 1401 conf->raid_disks = mddev->raid_disks = raid_disks; 1402 1403 spin_lock_irq(&conf->resync_lock); 1404 conf->barrier--; 1405 spin_unlock_irq(&conf->resync_lock); 1406 wake_up(&conf->wait_resume); 1407 wake_up(&conf->wait_idle); 1408 1409 1410 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1411 md_wakeup_thread(mddev->thread); 1412 1413 mempool_destroy(oldpool); 1414 return 0; 1415 } 1416 1417 1418 static mdk_personality_t raid1_personality = 1419 { 1420 .name = "raid1", 1421 .owner = THIS_MODULE, 1422 .make_request = make_request, 1423 .run = run, 1424 .stop = stop, 1425 .status = status, 1426 .error_handler = error, 1427 .hot_add_disk = raid1_add_disk, 1428 .hot_remove_disk= raid1_remove_disk, 1429 .spare_active = raid1_spare_active, 1430 .sync_request = sync_request, 1431 .resize = raid1_resize, 1432 .reshape = raid1_reshape, 1433 }; 1434 1435 static int __init raid_init(void) 1436 { 1437 return register_md_personality(RAID1, &raid1_personality); 1438 } 1439 1440 static void raid_exit(void) 1441 { 1442 unregister_md_personality(RAID1); 1443 } 1444 1445 module_init(raid_init); 1446 module_exit(raid_exit); 1447 MODULE_LICENSE("GPL"); 1448 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 1449