xref: /linux/drivers/md/raid1.c (revision 2fe3c78a2c26dd5ee811024a1b7d6cfb4d654319)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define RAID_1_10_NAME "raid1"
50 #include "raid1-10.c"
51 
52 #define START(node) ((node)->start)
53 #define LAST(node) ((node)->last)
54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
55 		     START, LAST, static inline, raid1_rb);
56 
57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
58 				struct serial_info *si, int idx)
59 {
60 	unsigned long flags;
61 	int ret = 0;
62 	sector_t lo = r1_bio->sector;
63 	sector_t hi = lo + r1_bio->sectors;
64 	struct serial_in_rdev *serial = &rdev->serial[idx];
65 
66 	spin_lock_irqsave(&serial->serial_lock, flags);
67 	/* collision happened */
68 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
69 		ret = -EBUSY;
70 	else {
71 		si->start = lo;
72 		si->last = hi;
73 		raid1_rb_insert(si, &serial->serial_rb);
74 	}
75 	spin_unlock_irqrestore(&serial->serial_lock, flags);
76 
77 	return ret;
78 }
79 
80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
81 {
82 	struct mddev *mddev = rdev->mddev;
83 	struct serial_info *si;
84 	int idx = sector_to_idx(r1_bio->sector);
85 	struct serial_in_rdev *serial = &rdev->serial[idx];
86 
87 	if (WARN_ON(!mddev->serial_info_pool))
88 		return;
89 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
90 	wait_event(serial->serial_io_wait,
91 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
92 }
93 
94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
95 {
96 	struct serial_info *si;
97 	unsigned long flags;
98 	int found = 0;
99 	struct mddev *mddev = rdev->mddev;
100 	int idx = sector_to_idx(lo);
101 	struct serial_in_rdev *serial = &rdev->serial[idx];
102 
103 	spin_lock_irqsave(&serial->serial_lock, flags);
104 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
105 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
106 		if (si->start == lo && si->last == hi) {
107 			raid1_rb_remove(si, &serial->serial_rb);
108 			mempool_free(si, mddev->serial_info_pool);
109 			found = 1;
110 			break;
111 		}
112 	}
113 	if (!found)
114 		WARN(1, "The write IO is not recorded for serialization\n");
115 	spin_unlock_irqrestore(&serial->serial_lock, flags);
116 	wake_up(&serial->serial_io_wait);
117 }
118 
119 /*
120  * for resync bio, r1bio pointer can be retrieved from the per-bio
121  * 'struct resync_pages'.
122  */
123 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
124 {
125 	return get_resync_pages(bio)->raid_bio;
126 }
127 
128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
129 {
130 	struct pool_info *pi = data;
131 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
132 
133 	/* allocate a r1bio with room for raid_disks entries in the bios array */
134 	return kzalloc(size, gfp_flags);
135 }
136 
137 #define RESYNC_DEPTH 32
138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
143 
144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
145 {
146 	struct pool_info *pi = data;
147 	struct r1bio *r1_bio;
148 	struct bio *bio;
149 	int need_pages;
150 	int j;
151 	struct resync_pages *rps;
152 
153 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
154 	if (!r1_bio)
155 		return NULL;
156 
157 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
158 			    gfp_flags);
159 	if (!rps)
160 		goto out_free_r1bio;
161 
162 	/*
163 	 * Allocate bios : 1 for reading, n-1 for writing
164 	 */
165 	for (j = pi->raid_disks ; j-- ; ) {
166 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
167 		if (!bio)
168 			goto out_free_bio;
169 		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
170 		r1_bio->bios[j] = bio;
171 	}
172 	/*
173 	 * Allocate RESYNC_PAGES data pages and attach them to
174 	 * the first bio.
175 	 * If this is a user-requested check/repair, allocate
176 	 * RESYNC_PAGES for each bio.
177 	 */
178 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
179 		need_pages = pi->raid_disks;
180 	else
181 		need_pages = 1;
182 	for (j = 0; j < pi->raid_disks; j++) {
183 		struct resync_pages *rp = &rps[j];
184 
185 		bio = r1_bio->bios[j];
186 
187 		if (j < need_pages) {
188 			if (resync_alloc_pages(rp, gfp_flags))
189 				goto out_free_pages;
190 		} else {
191 			memcpy(rp, &rps[0], sizeof(*rp));
192 			resync_get_all_pages(rp);
193 		}
194 
195 		rp->raid_bio = r1_bio;
196 		bio->bi_private = rp;
197 	}
198 
199 	r1_bio->master_bio = NULL;
200 
201 	return r1_bio;
202 
203 out_free_pages:
204 	while (--j >= 0)
205 		resync_free_pages(&rps[j]);
206 
207 out_free_bio:
208 	while (++j < pi->raid_disks) {
209 		bio_uninit(r1_bio->bios[j]);
210 		kfree(r1_bio->bios[j]);
211 	}
212 	kfree(rps);
213 
214 out_free_r1bio:
215 	rbio_pool_free(r1_bio, data);
216 	return NULL;
217 }
218 
219 static void r1buf_pool_free(void *__r1_bio, void *data)
220 {
221 	struct pool_info *pi = data;
222 	int i;
223 	struct r1bio *r1bio = __r1_bio;
224 	struct resync_pages *rp = NULL;
225 
226 	for (i = pi->raid_disks; i--; ) {
227 		rp = get_resync_pages(r1bio->bios[i]);
228 		resync_free_pages(rp);
229 		bio_uninit(r1bio->bios[i]);
230 		kfree(r1bio->bios[i]);
231 	}
232 
233 	/* resync pages array stored in the 1st bio's .bi_private */
234 	kfree(rp);
235 
236 	rbio_pool_free(r1bio, data);
237 }
238 
239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
240 {
241 	int i;
242 
243 	for (i = 0; i < conf->raid_disks * 2; i++) {
244 		struct bio **bio = r1_bio->bios + i;
245 		if (!BIO_SPECIAL(*bio))
246 			bio_put(*bio);
247 		*bio = NULL;
248 	}
249 }
250 
251 static void free_r1bio(struct r1bio *r1_bio)
252 {
253 	struct r1conf *conf = r1_bio->mddev->private;
254 
255 	put_all_bios(conf, r1_bio);
256 	mempool_free(r1_bio, &conf->r1bio_pool);
257 }
258 
259 static void put_buf(struct r1bio *r1_bio)
260 {
261 	struct r1conf *conf = r1_bio->mddev->private;
262 	sector_t sect = r1_bio->sector;
263 	int i;
264 
265 	for (i = 0; i < conf->raid_disks * 2; i++) {
266 		struct bio *bio = r1_bio->bios[i];
267 		if (bio->bi_end_io)
268 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 	}
270 
271 	mempool_free(r1_bio, &conf->r1buf_pool);
272 
273 	lower_barrier(conf, sect);
274 }
275 
276 static void reschedule_retry(struct r1bio *r1_bio)
277 {
278 	unsigned long flags;
279 	struct mddev *mddev = r1_bio->mddev;
280 	struct r1conf *conf = mddev->private;
281 	int idx;
282 
283 	idx = sector_to_idx(r1_bio->sector);
284 	spin_lock_irqsave(&conf->device_lock, flags);
285 	list_add(&r1_bio->retry_list, &conf->retry_list);
286 	atomic_inc(&conf->nr_queued[idx]);
287 	spin_unlock_irqrestore(&conf->device_lock, flags);
288 
289 	wake_up(&conf->wait_barrier);
290 	md_wakeup_thread(mddev->thread);
291 }
292 
293 /*
294  * raid_end_bio_io() is called when we have finished servicing a mirrored
295  * operation and are ready to return a success/failure code to the buffer
296  * cache layer.
297  */
298 static void call_bio_endio(struct r1bio *r1_bio)
299 {
300 	struct bio *bio = r1_bio->master_bio;
301 
302 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
303 		bio->bi_status = BLK_STS_IOERR;
304 
305 	bio_endio(bio);
306 }
307 
308 static void raid_end_bio_io(struct r1bio *r1_bio)
309 {
310 	struct bio *bio = r1_bio->master_bio;
311 	struct r1conf *conf = r1_bio->mddev->private;
312 	sector_t sector = r1_bio->sector;
313 
314 	/* if nobody has done the final endio yet, do it now */
315 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
316 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
317 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
318 			 (unsigned long long) bio->bi_iter.bi_sector,
319 			 (unsigned long long) bio_end_sector(bio) - 1);
320 
321 		call_bio_endio(r1_bio);
322 	}
323 
324 	free_r1bio(r1_bio);
325 	/*
326 	 * Wake up any possible resync thread that waits for the device
327 	 * to go idle.  All I/Os, even write-behind writes, are done.
328 	 */
329 	allow_barrier(conf, sector);
330 }
331 
332 /*
333  * Update disk head position estimator based on IRQ completion info.
334  */
335 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 {
337 	struct r1conf *conf = r1_bio->mddev->private;
338 
339 	conf->mirrors[disk].head_position =
340 		r1_bio->sector + (r1_bio->sectors);
341 }
342 
343 /*
344  * Find the disk number which triggered given bio
345  */
346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
347 {
348 	int mirror;
349 	struct r1conf *conf = r1_bio->mddev->private;
350 	int raid_disks = conf->raid_disks;
351 
352 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
353 		if (r1_bio->bios[mirror] == bio)
354 			break;
355 
356 	BUG_ON(mirror == raid_disks * 2);
357 	update_head_pos(mirror, r1_bio);
358 
359 	return mirror;
360 }
361 
362 static void raid1_end_read_request(struct bio *bio)
363 {
364 	int uptodate = !bio->bi_status;
365 	struct r1bio *r1_bio = bio->bi_private;
366 	struct r1conf *conf = r1_bio->mddev->private;
367 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
368 
369 	/*
370 	 * this branch is our 'one mirror IO has finished' event handler:
371 	 */
372 	update_head_pos(r1_bio->read_disk, r1_bio);
373 
374 	if (uptodate)
375 		set_bit(R1BIO_Uptodate, &r1_bio->state);
376 	else if (test_bit(FailFast, &rdev->flags) &&
377 		 test_bit(R1BIO_FailFast, &r1_bio->state))
378 		/* This was a fail-fast read so we definitely
379 		 * want to retry */
380 		;
381 	else {
382 		/* If all other devices have failed, we want to return
383 		 * the error upwards rather than fail the last device.
384 		 * Here we redefine "uptodate" to mean "Don't want to retry"
385 		 */
386 		unsigned long flags;
387 		spin_lock_irqsave(&conf->device_lock, flags);
388 		if (r1_bio->mddev->degraded == conf->raid_disks ||
389 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
390 		     test_bit(In_sync, &rdev->flags)))
391 			uptodate = 1;
392 		spin_unlock_irqrestore(&conf->device_lock, flags);
393 	}
394 
395 	if (uptodate) {
396 		raid_end_bio_io(r1_bio);
397 		rdev_dec_pending(rdev, conf->mddev);
398 	} else {
399 		/*
400 		 * oops, read error:
401 		 */
402 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
403 				   mdname(conf->mddev),
404 				   rdev->bdev,
405 				   (unsigned long long)r1_bio->sector);
406 		set_bit(R1BIO_ReadError, &r1_bio->state);
407 		reschedule_retry(r1_bio);
408 		/* don't drop the reference on read_disk yet */
409 	}
410 }
411 
412 static void close_write(struct r1bio *r1_bio)
413 {
414 	struct mddev *mddev = r1_bio->mddev;
415 
416 	/* it really is the end of this request */
417 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 		bio_free_pages(r1_bio->behind_master_bio);
419 		bio_put(r1_bio->behind_master_bio);
420 		r1_bio->behind_master_bio = NULL;
421 	}
422 
423 	/* clear the bitmap if all writes complete successfully */
424 	mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors,
425 				    !test_bit(R1BIO_Degraded, &r1_bio->state),
426 				    test_bit(R1BIO_BehindIO, &r1_bio->state));
427 	md_write_end(mddev);
428 }
429 
430 static void r1_bio_write_done(struct r1bio *r1_bio)
431 {
432 	if (!atomic_dec_and_test(&r1_bio->remaining))
433 		return;
434 
435 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 		reschedule_retry(r1_bio);
437 	else {
438 		close_write(r1_bio);
439 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 			reschedule_retry(r1_bio);
441 		else
442 			raid_end_bio_io(r1_bio);
443 	}
444 }
445 
446 static void raid1_end_write_request(struct bio *bio)
447 {
448 	struct r1bio *r1_bio = bio->bi_private;
449 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 	struct r1conf *conf = r1_bio->mddev->private;
451 	struct bio *to_put = NULL;
452 	int mirror = find_bio_disk(r1_bio, bio);
453 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 	bool discard_error;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 
458 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !discard_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Fail the request */
484 			set_bit(R1BIO_Degraded, &r1_bio->state);
485 			/* Finished with this branch */
486 			r1_bio->bios[mirror] = NULL;
487 			to_put = bio;
488 		}
489 	} else {
490 		/*
491 		 * Set R1BIO_Uptodate in our master bio, so that we
492 		 * will return a good error code for to the higher
493 		 * levels even if IO on some other mirrored buffer
494 		 * fails.
495 		 *
496 		 * The 'master' represents the composite IO operation
497 		 * to user-side. So if something waits for IO, then it
498 		 * will wait for the 'master' bio.
499 		 */
500 		r1_bio->bios[mirror] = NULL;
501 		to_put = bio;
502 		/*
503 		 * Do not set R1BIO_Uptodate if the current device is
504 		 * rebuilding or Faulty. This is because we cannot use
505 		 * such device for properly reading the data back (we could
506 		 * potentially use it, if the current write would have felt
507 		 * before rdev->recovery_offset, but for simplicity we don't
508 		 * check this here.
509 		 */
510 		if (test_bit(In_sync, &rdev->flags) &&
511 		    !test_bit(Faulty, &rdev->flags))
512 			set_bit(R1BIO_Uptodate, &r1_bio->state);
513 
514 		/* Maybe we can clear some bad blocks. */
515 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
516 		    !discard_error) {
517 			r1_bio->bios[mirror] = IO_MADE_GOOD;
518 			set_bit(R1BIO_MadeGood, &r1_bio->state);
519 		}
520 	}
521 
522 	if (behind) {
523 		if (test_bit(CollisionCheck, &rdev->flags))
524 			remove_serial(rdev, lo, hi);
525 		if (test_bit(WriteMostly, &rdev->flags))
526 			atomic_dec(&r1_bio->behind_remaining);
527 
528 		/*
529 		 * In behind mode, we ACK the master bio once the I/O
530 		 * has safely reached all non-writemostly
531 		 * disks. Setting the Returned bit ensures that this
532 		 * gets done only once -- we don't ever want to return
533 		 * -EIO here, instead we'll wait
534 		 */
535 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
536 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
537 			/* Maybe we can return now */
538 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
539 				struct bio *mbio = r1_bio->master_bio;
540 				pr_debug("raid1: behind end write sectors"
541 					 " %llu-%llu\n",
542 					 (unsigned long long) mbio->bi_iter.bi_sector,
543 					 (unsigned long long) bio_end_sector(mbio) - 1);
544 				call_bio_endio(r1_bio);
545 			}
546 		}
547 	} else if (rdev->mddev->serialize_policy)
548 		remove_serial(rdev, lo, hi);
549 	if (r1_bio->bios[mirror] == NULL)
550 		rdev_dec_pending(rdev, conf->mddev);
551 
552 	/*
553 	 * Let's see if all mirrored write operations have finished
554 	 * already.
555 	 */
556 	r1_bio_write_done(r1_bio);
557 
558 	if (to_put)
559 		bio_put(to_put);
560 }
561 
562 static sector_t align_to_barrier_unit_end(sector_t start_sector,
563 					  sector_t sectors)
564 {
565 	sector_t len;
566 
567 	WARN_ON(sectors == 0);
568 	/*
569 	 * len is the number of sectors from start_sector to end of the
570 	 * barrier unit which start_sector belongs to.
571 	 */
572 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
573 	      start_sector;
574 
575 	if (len > sectors)
576 		len = sectors;
577 
578 	return len;
579 }
580 
581 static void update_read_sectors(struct r1conf *conf, int disk,
582 				sector_t this_sector, int len)
583 {
584 	struct raid1_info *info = &conf->mirrors[disk];
585 
586 	atomic_inc(&info->rdev->nr_pending);
587 	if (info->next_seq_sect != this_sector)
588 		info->seq_start = this_sector;
589 	info->next_seq_sect = this_sector + len;
590 }
591 
592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
593 			     int *max_sectors)
594 {
595 	sector_t this_sector = r1_bio->sector;
596 	int len = r1_bio->sectors;
597 	int disk;
598 
599 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
600 		struct md_rdev *rdev;
601 		int read_len;
602 
603 		if (r1_bio->bios[disk] == IO_BLOCKED)
604 			continue;
605 
606 		rdev = conf->mirrors[disk].rdev;
607 		if (!rdev || test_bit(Faulty, &rdev->flags))
608 			continue;
609 
610 		/* choose the first disk even if it has some bad blocks. */
611 		read_len = raid1_check_read_range(rdev, this_sector, &len);
612 		if (read_len > 0) {
613 			update_read_sectors(conf, disk, this_sector, read_len);
614 			*max_sectors = read_len;
615 			return disk;
616 		}
617 	}
618 
619 	return -1;
620 }
621 
622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
623 {
624 	return !test_bit(In_sync, &rdev->flags) &&
625 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
626 }
627 
628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
629 			  int *max_sectors)
630 {
631 	sector_t this_sector = r1_bio->sector;
632 	int best_disk = -1;
633 	int best_len = 0;
634 	int disk;
635 
636 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
637 		struct md_rdev *rdev;
638 		int len;
639 		int read_len;
640 
641 		if (r1_bio->bios[disk] == IO_BLOCKED)
642 			continue;
643 
644 		rdev = conf->mirrors[disk].rdev;
645 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
646 		    rdev_in_recovery(rdev, r1_bio) ||
647 		    test_bit(WriteMostly, &rdev->flags))
648 			continue;
649 
650 		/* keep track of the disk with the most readable sectors. */
651 		len = r1_bio->sectors;
652 		read_len = raid1_check_read_range(rdev, this_sector, &len);
653 		if (read_len > best_len) {
654 			best_disk = disk;
655 			best_len = read_len;
656 		}
657 	}
658 
659 	if (best_disk != -1) {
660 		*max_sectors = best_len;
661 		update_read_sectors(conf, best_disk, this_sector, best_len);
662 	}
663 
664 	return best_disk;
665 }
666 
667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
668 			    int *max_sectors)
669 {
670 	sector_t this_sector = r1_bio->sector;
671 	int bb_disk = -1;
672 	int bb_read_len = 0;
673 	int disk;
674 
675 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
676 		struct md_rdev *rdev;
677 		int len;
678 		int read_len;
679 
680 		if (r1_bio->bios[disk] == IO_BLOCKED)
681 			continue;
682 
683 		rdev = conf->mirrors[disk].rdev;
684 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
685 		    !test_bit(WriteMostly, &rdev->flags) ||
686 		    rdev_in_recovery(rdev, r1_bio))
687 			continue;
688 
689 		/* there are no bad blocks, we can use this disk */
690 		len = r1_bio->sectors;
691 		read_len = raid1_check_read_range(rdev, this_sector, &len);
692 		if (read_len == r1_bio->sectors) {
693 			*max_sectors = read_len;
694 			update_read_sectors(conf, disk, this_sector, read_len);
695 			return disk;
696 		}
697 
698 		/*
699 		 * there are partial bad blocks, choose the rdev with largest
700 		 * read length.
701 		 */
702 		if (read_len > bb_read_len) {
703 			bb_disk = disk;
704 			bb_read_len = read_len;
705 		}
706 	}
707 
708 	if (bb_disk != -1) {
709 		*max_sectors = bb_read_len;
710 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
711 	}
712 
713 	return bb_disk;
714 }
715 
716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
717 {
718 	/* TODO: address issues with this check and concurrency. */
719 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
720 	       conf->mirrors[disk].head_position == r1_bio->sector;
721 }
722 
723 /*
724  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
725  * disk. If yes, choose the idle disk.
726  */
727 static bool should_choose_next(struct r1conf *conf, int disk)
728 {
729 	struct raid1_info *mirror = &conf->mirrors[disk];
730 	int opt_iosize;
731 
732 	if (!test_bit(Nonrot, &mirror->rdev->flags))
733 		return false;
734 
735 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
736 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
737 	       mirror->next_seq_sect > opt_iosize &&
738 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
739 }
740 
741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
742 {
743 	if (!rdev || test_bit(Faulty, &rdev->flags))
744 		return false;
745 
746 	if (rdev_in_recovery(rdev, r1_bio))
747 		return false;
748 
749 	/* don't read from slow disk unless have to */
750 	if (test_bit(WriteMostly, &rdev->flags))
751 		return false;
752 
753 	/* don't split IO for bad blocks unless have to */
754 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
755 		return false;
756 
757 	return true;
758 }
759 
760 struct read_balance_ctl {
761 	sector_t closest_dist;
762 	int closest_dist_disk;
763 	int min_pending;
764 	int min_pending_disk;
765 	int sequential_disk;
766 	int readable_disks;
767 };
768 
769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
770 {
771 	int disk;
772 	struct read_balance_ctl ctl = {
773 		.closest_dist_disk      = -1,
774 		.closest_dist           = MaxSector,
775 		.min_pending_disk       = -1,
776 		.min_pending            = UINT_MAX,
777 		.sequential_disk	= -1,
778 	};
779 
780 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
781 		struct md_rdev *rdev;
782 		sector_t dist;
783 		unsigned int pending;
784 
785 		if (r1_bio->bios[disk] == IO_BLOCKED)
786 			continue;
787 
788 		rdev = conf->mirrors[disk].rdev;
789 		if (!rdev_readable(rdev, r1_bio))
790 			continue;
791 
792 		/* At least two disks to choose from so failfast is OK */
793 		if (ctl.readable_disks++ == 1)
794 			set_bit(R1BIO_FailFast, &r1_bio->state);
795 
796 		pending = atomic_read(&rdev->nr_pending);
797 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
798 
799 		/* Don't change to another disk for sequential reads */
800 		if (is_sequential(conf, disk, r1_bio)) {
801 			if (!should_choose_next(conf, disk))
802 				return disk;
803 
804 			/*
805 			 * Add 'pending' to avoid choosing this disk if
806 			 * there is other idle disk.
807 			 */
808 			pending++;
809 			/*
810 			 * If there is no other idle disk, this disk
811 			 * will be chosen.
812 			 */
813 			ctl.sequential_disk = disk;
814 		}
815 
816 		if (ctl.min_pending > pending) {
817 			ctl.min_pending = pending;
818 			ctl.min_pending_disk = disk;
819 		}
820 
821 		if (ctl.closest_dist > dist) {
822 			ctl.closest_dist = dist;
823 			ctl.closest_dist_disk = disk;
824 		}
825 	}
826 
827 	/*
828 	 * sequential IO size exceeds optimal iosize, however, there is no other
829 	 * idle disk, so choose the sequential disk.
830 	 */
831 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
832 		return ctl.sequential_disk;
833 
834 	/*
835 	 * If all disks are rotational, choose the closest disk. If any disk is
836 	 * non-rotational, choose the disk with less pending request even the
837 	 * disk is rotational, which might/might not be optimal for raids with
838 	 * mixed ratation/non-rotational disks depending on workload.
839 	 */
840 	if (ctl.min_pending_disk != -1 &&
841 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
842 		return ctl.min_pending_disk;
843 	else
844 		return ctl.closest_dist_disk;
845 }
846 
847 /*
848  * This routine returns the disk from which the requested read should be done.
849  *
850  * 1) If resync is in progress, find the first usable disk and use it even if it
851  * has some bad blocks.
852  *
853  * 2) Now that there is no resync, loop through all disks and skipping slow
854  * disks and disks with bad blocks for now. Only pay attention to key disk
855  * choice.
856  *
857  * 3) If we've made it this far, now look for disks with bad blocks and choose
858  * the one with most number of sectors.
859  *
860  * 4) If we are all the way at the end, we have no choice but to use a disk even
861  * if it is write mostly.
862  *
863  * The rdev for the device selected will have nr_pending incremented.
864  */
865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
866 			int *max_sectors)
867 {
868 	int disk;
869 
870 	clear_bit(R1BIO_FailFast, &r1_bio->state);
871 
872 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
873 				    r1_bio->sectors))
874 		return choose_first_rdev(conf, r1_bio, max_sectors);
875 
876 	disk = choose_best_rdev(conf, r1_bio);
877 	if (disk >= 0) {
878 		*max_sectors = r1_bio->sectors;
879 		update_read_sectors(conf, disk, r1_bio->sector,
880 				    r1_bio->sectors);
881 		return disk;
882 	}
883 
884 	/*
885 	 * If we are here it means we didn't find a perfectly good disk so
886 	 * now spend a bit more time trying to find one with the most good
887 	 * sectors.
888 	 */
889 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
890 	if (disk >= 0)
891 		return disk;
892 
893 	return choose_slow_rdev(conf, r1_bio, max_sectors);
894 }
895 
896 static void wake_up_barrier(struct r1conf *conf)
897 {
898 	if (wq_has_sleeper(&conf->wait_barrier))
899 		wake_up(&conf->wait_barrier);
900 }
901 
902 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
903 {
904 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
905 	raid1_prepare_flush_writes(conf->mddev);
906 	wake_up_barrier(conf);
907 
908 	while (bio) { /* submit pending writes */
909 		struct bio *next = bio->bi_next;
910 
911 		raid1_submit_write(bio);
912 		bio = next;
913 		cond_resched();
914 	}
915 }
916 
917 static void flush_pending_writes(struct r1conf *conf)
918 {
919 	/* Any writes that have been queued but are awaiting
920 	 * bitmap updates get flushed here.
921 	 */
922 	spin_lock_irq(&conf->device_lock);
923 
924 	if (conf->pending_bio_list.head) {
925 		struct blk_plug plug;
926 		struct bio *bio;
927 
928 		bio = bio_list_get(&conf->pending_bio_list);
929 		spin_unlock_irq(&conf->device_lock);
930 
931 		/*
932 		 * As this is called in a wait_event() loop (see freeze_array),
933 		 * current->state might be TASK_UNINTERRUPTIBLE which will
934 		 * cause a warning when we prepare to wait again.  As it is
935 		 * rare that this path is taken, it is perfectly safe to force
936 		 * us to go around the wait_event() loop again, so the warning
937 		 * is a false-positive.  Silence the warning by resetting
938 		 * thread state
939 		 */
940 		__set_current_state(TASK_RUNNING);
941 		blk_start_plug(&plug);
942 		flush_bio_list(conf, bio);
943 		blk_finish_plug(&plug);
944 	} else
945 		spin_unlock_irq(&conf->device_lock);
946 }
947 
948 /* Barriers....
949  * Sometimes we need to suspend IO while we do something else,
950  * either some resync/recovery, or reconfigure the array.
951  * To do this we raise a 'barrier'.
952  * The 'barrier' is a counter that can be raised multiple times
953  * to count how many activities are happening which preclude
954  * normal IO.
955  * We can only raise the barrier if there is no pending IO.
956  * i.e. if nr_pending == 0.
957  * We choose only to raise the barrier if no-one is waiting for the
958  * barrier to go down.  This means that as soon as an IO request
959  * is ready, no other operations which require a barrier will start
960  * until the IO request has had a chance.
961  *
962  * So: regular IO calls 'wait_barrier'.  When that returns there
963  *    is no backgroup IO happening,  It must arrange to call
964  *    allow_barrier when it has finished its IO.
965  * backgroup IO calls must call raise_barrier.  Once that returns
966  *    there is no normal IO happeing.  It must arrange to call
967  *    lower_barrier when the particular background IO completes.
968  *
969  * If resync/recovery is interrupted, returns -EINTR;
970  * Otherwise, returns 0.
971  */
972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
973 {
974 	int idx = sector_to_idx(sector_nr);
975 
976 	spin_lock_irq(&conf->resync_lock);
977 
978 	/* Wait until no block IO is waiting */
979 	wait_event_lock_irq(conf->wait_barrier,
980 			    !atomic_read(&conf->nr_waiting[idx]),
981 			    conf->resync_lock);
982 
983 	/* block any new IO from starting */
984 	atomic_inc(&conf->barrier[idx]);
985 	/*
986 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
987 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
988 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
989 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
990 	 * be fetched before conf->barrier[idx] is increased. Otherwise
991 	 * there will be a race between raise_barrier() and _wait_barrier().
992 	 */
993 	smp_mb__after_atomic();
994 
995 	/* For these conditions we must wait:
996 	 * A: while the array is in frozen state
997 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
998 	 *    existing in corresponding I/O barrier bucket.
999 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
1000 	 *    max resync count which allowed on current I/O barrier bucket.
1001 	 */
1002 	wait_event_lock_irq(conf->wait_barrier,
1003 			    (!conf->array_frozen &&
1004 			     !atomic_read(&conf->nr_pending[idx]) &&
1005 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1006 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1007 			    conf->resync_lock);
1008 
1009 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1010 		atomic_dec(&conf->barrier[idx]);
1011 		spin_unlock_irq(&conf->resync_lock);
1012 		wake_up(&conf->wait_barrier);
1013 		return -EINTR;
1014 	}
1015 
1016 	atomic_inc(&conf->nr_sync_pending);
1017 	spin_unlock_irq(&conf->resync_lock);
1018 
1019 	return 0;
1020 }
1021 
1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024 	int idx = sector_to_idx(sector_nr);
1025 
1026 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1027 
1028 	atomic_dec(&conf->barrier[idx]);
1029 	atomic_dec(&conf->nr_sync_pending);
1030 	wake_up(&conf->wait_barrier);
1031 }
1032 
1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1034 {
1035 	bool ret = true;
1036 
1037 	/*
1038 	 * We need to increase conf->nr_pending[idx] very early here,
1039 	 * then raise_barrier() can be blocked when it waits for
1040 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1041 	 * conf->resync_lock when there is no barrier raised in same
1042 	 * barrier unit bucket. Also if the array is frozen, I/O
1043 	 * should be blocked until array is unfrozen.
1044 	 */
1045 	atomic_inc(&conf->nr_pending[idx]);
1046 	/*
1047 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1048 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1049 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1050 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1051 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1052 	 * will be a race between _wait_barrier() and raise_barrier().
1053 	 */
1054 	smp_mb__after_atomic();
1055 
1056 	/*
1057 	 * Don't worry about checking two atomic_t variables at same time
1058 	 * here. If during we check conf->barrier[idx], the array is
1059 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1060 	 * 0, it is safe to return and make the I/O continue. Because the
1061 	 * array is frozen, all I/O returned here will eventually complete
1062 	 * or be queued, no race will happen. See code comment in
1063 	 * frozen_array().
1064 	 */
1065 	if (!READ_ONCE(conf->array_frozen) &&
1066 	    !atomic_read(&conf->barrier[idx]))
1067 		return ret;
1068 
1069 	/*
1070 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1071 	 * should be decreased before waiting for barrier to drop.
1072 	 * Otherwise, we may encounter a race condition because
1073 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1074 	 * to be 0 at same time.
1075 	 */
1076 	spin_lock_irq(&conf->resync_lock);
1077 	atomic_inc(&conf->nr_waiting[idx]);
1078 	atomic_dec(&conf->nr_pending[idx]);
1079 	/*
1080 	 * In case freeze_array() is waiting for
1081 	 * get_unqueued_pending() == extra
1082 	 */
1083 	wake_up_barrier(conf);
1084 	/* Wait for the barrier in same barrier unit bucket to drop. */
1085 
1086 	/* Return false when nowait flag is set */
1087 	if (nowait) {
1088 		ret = false;
1089 	} else {
1090 		wait_event_lock_irq(conf->wait_barrier,
1091 				!conf->array_frozen &&
1092 				!atomic_read(&conf->barrier[idx]),
1093 				conf->resync_lock);
1094 		atomic_inc(&conf->nr_pending[idx]);
1095 	}
1096 
1097 	atomic_dec(&conf->nr_waiting[idx]);
1098 	spin_unlock_irq(&conf->resync_lock);
1099 	return ret;
1100 }
1101 
1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1103 {
1104 	int idx = sector_to_idx(sector_nr);
1105 	bool ret = true;
1106 
1107 	/*
1108 	 * Very similar to _wait_barrier(). The difference is, for read
1109 	 * I/O we don't need wait for sync I/O, but if the whole array
1110 	 * is frozen, the read I/O still has to wait until the array is
1111 	 * unfrozen. Since there is no ordering requirement with
1112 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1113 	 */
1114 	atomic_inc(&conf->nr_pending[idx]);
1115 
1116 	if (!READ_ONCE(conf->array_frozen))
1117 		return ret;
1118 
1119 	spin_lock_irq(&conf->resync_lock);
1120 	atomic_inc(&conf->nr_waiting[idx]);
1121 	atomic_dec(&conf->nr_pending[idx]);
1122 	/*
1123 	 * In case freeze_array() is waiting for
1124 	 * get_unqueued_pending() == extra
1125 	 */
1126 	wake_up_barrier(conf);
1127 	/* Wait for array to be unfrozen */
1128 
1129 	/* Return false when nowait flag is set */
1130 	if (nowait) {
1131 		/* Return false when nowait flag is set */
1132 		ret = false;
1133 	} else {
1134 		wait_event_lock_irq(conf->wait_barrier,
1135 				!conf->array_frozen,
1136 				conf->resync_lock);
1137 		atomic_inc(&conf->nr_pending[idx]);
1138 	}
1139 
1140 	atomic_dec(&conf->nr_waiting[idx]);
1141 	spin_unlock_irq(&conf->resync_lock);
1142 	return ret;
1143 }
1144 
1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1146 {
1147 	int idx = sector_to_idx(sector_nr);
1148 
1149 	return _wait_barrier(conf, idx, nowait);
1150 }
1151 
1152 static void _allow_barrier(struct r1conf *conf, int idx)
1153 {
1154 	atomic_dec(&conf->nr_pending[idx]);
1155 	wake_up_barrier(conf);
1156 }
1157 
1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1159 {
1160 	int idx = sector_to_idx(sector_nr);
1161 
1162 	_allow_barrier(conf, idx);
1163 }
1164 
1165 /* conf->resync_lock should be held */
1166 static int get_unqueued_pending(struct r1conf *conf)
1167 {
1168 	int idx, ret;
1169 
1170 	ret = atomic_read(&conf->nr_sync_pending);
1171 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1172 		ret += atomic_read(&conf->nr_pending[idx]) -
1173 			atomic_read(&conf->nr_queued[idx]);
1174 
1175 	return ret;
1176 }
1177 
1178 static void freeze_array(struct r1conf *conf, int extra)
1179 {
1180 	/* Stop sync I/O and normal I/O and wait for everything to
1181 	 * go quiet.
1182 	 * This is called in two situations:
1183 	 * 1) management command handlers (reshape, remove disk, quiesce).
1184 	 * 2) one normal I/O request failed.
1185 
1186 	 * After array_frozen is set to 1, new sync IO will be blocked at
1187 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1188 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1189 	 * queued. When everything goes quite, there are only queued I/Os left.
1190 
1191 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1192 	 * barrier bucket index which this I/O request hits. When all sync and
1193 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1194 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1195 	 * in handle_read_error(), we may call freeze_array() before trying to
1196 	 * fix the read error. In this case, the error read I/O is not queued,
1197 	 * so get_unqueued_pending() == 1.
1198 	 *
1199 	 * Therefore before this function returns, we need to wait until
1200 	 * get_unqueued_pendings(conf) gets equal to extra. For
1201 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1202 	 */
1203 	spin_lock_irq(&conf->resync_lock);
1204 	conf->array_frozen = 1;
1205 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1206 	wait_event_lock_irq_cmd(
1207 		conf->wait_barrier,
1208 		get_unqueued_pending(conf) == extra,
1209 		conf->resync_lock,
1210 		flush_pending_writes(conf));
1211 	spin_unlock_irq(&conf->resync_lock);
1212 }
1213 static void unfreeze_array(struct r1conf *conf)
1214 {
1215 	/* reverse the effect of the freeze */
1216 	spin_lock_irq(&conf->resync_lock);
1217 	conf->array_frozen = 0;
1218 	spin_unlock_irq(&conf->resync_lock);
1219 	wake_up(&conf->wait_barrier);
1220 }
1221 
1222 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1223 					   struct bio *bio)
1224 {
1225 	int size = bio->bi_iter.bi_size;
1226 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1227 	int i = 0;
1228 	struct bio *behind_bio = NULL;
1229 
1230 	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
1231 				      &r1_bio->mddev->bio_set);
1232 
1233 	/* discard op, we don't support writezero/writesame yet */
1234 	if (!bio_has_data(bio)) {
1235 		behind_bio->bi_iter.bi_size = size;
1236 		goto skip_copy;
1237 	}
1238 
1239 	while (i < vcnt && size) {
1240 		struct page *page;
1241 		int len = min_t(int, PAGE_SIZE, size);
1242 
1243 		page = alloc_page(GFP_NOIO);
1244 		if (unlikely(!page))
1245 			goto free_pages;
1246 
1247 		if (!bio_add_page(behind_bio, page, len, 0)) {
1248 			put_page(page);
1249 			goto free_pages;
1250 		}
1251 
1252 		size -= len;
1253 		i++;
1254 	}
1255 
1256 	bio_copy_data(behind_bio, bio);
1257 skip_copy:
1258 	r1_bio->behind_master_bio = behind_bio;
1259 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1260 
1261 	return;
1262 
1263 free_pages:
1264 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1265 		 bio->bi_iter.bi_size);
1266 	bio_free_pages(behind_bio);
1267 	bio_put(behind_bio);
1268 }
1269 
1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1271 {
1272 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1273 						  cb);
1274 	struct mddev *mddev = plug->cb.data;
1275 	struct r1conf *conf = mddev->private;
1276 	struct bio *bio;
1277 
1278 	if (from_schedule) {
1279 		spin_lock_irq(&conf->device_lock);
1280 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1281 		spin_unlock_irq(&conf->device_lock);
1282 		wake_up_barrier(conf);
1283 		md_wakeup_thread(mddev->thread);
1284 		kfree(plug);
1285 		return;
1286 	}
1287 
1288 	/* we aren't scheduling, so we can do the write-out directly. */
1289 	bio = bio_list_get(&plug->pending);
1290 	flush_bio_list(conf, bio);
1291 	kfree(plug);
1292 }
1293 
1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1295 {
1296 	r1_bio->master_bio = bio;
1297 	r1_bio->sectors = bio_sectors(bio);
1298 	r1_bio->state = 0;
1299 	r1_bio->mddev = mddev;
1300 	r1_bio->sector = bio->bi_iter.bi_sector;
1301 }
1302 
1303 static inline struct r1bio *
1304 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1305 {
1306 	struct r1conf *conf = mddev->private;
1307 	struct r1bio *r1_bio;
1308 
1309 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1310 	/* Ensure no bio records IO_BLOCKED */
1311 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1312 	init_r1bio(r1_bio, mddev, bio);
1313 	return r1_bio;
1314 }
1315 
1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1317 			       int max_read_sectors, struct r1bio *r1_bio)
1318 {
1319 	struct r1conf *conf = mddev->private;
1320 	struct raid1_info *mirror;
1321 	struct bio *read_bio;
1322 	const enum req_op op = bio_op(bio);
1323 	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1324 	int max_sectors;
1325 	int rdisk;
1326 	bool r1bio_existed = !!r1_bio;
1327 
1328 	/*
1329 	 * If r1_bio is set, we are blocking the raid1d thread
1330 	 * so there is a tiny risk of deadlock.  So ask for
1331 	 * emergency memory if needed.
1332 	 */
1333 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1334 
1335 	/*
1336 	 * Still need barrier for READ in case that whole
1337 	 * array is frozen.
1338 	 */
1339 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1340 				bio->bi_opf & REQ_NOWAIT)) {
1341 		bio_wouldblock_error(bio);
1342 		return;
1343 	}
1344 
1345 	if (!r1_bio)
1346 		r1_bio = alloc_r1bio(mddev, bio);
1347 	else
1348 		init_r1bio(r1_bio, mddev, bio);
1349 	r1_bio->sectors = max_read_sectors;
1350 
1351 	/*
1352 	 * make_request() can abort the operation when read-ahead is being
1353 	 * used and no empty request is available.
1354 	 */
1355 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1356 	if (rdisk < 0) {
1357 		/* couldn't find anywhere to read from */
1358 		if (r1bio_existed)
1359 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1360 					    mdname(mddev),
1361 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1362 					    r1_bio->sector);
1363 		raid_end_bio_io(r1_bio);
1364 		return;
1365 	}
1366 	mirror = conf->mirrors + rdisk;
1367 
1368 	if (r1bio_existed)
1369 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1370 				    mdname(mddev),
1371 				    (unsigned long long)r1_bio->sector,
1372 				    mirror->rdev->bdev);
1373 
1374 	if (test_bit(WriteMostly, &mirror->rdev->flags)) {
1375 		/*
1376 		 * Reading from a write-mostly device must take care not to
1377 		 * over-take any writes that are 'behind'
1378 		 */
1379 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1380 		mddev->bitmap_ops->wait_behind_writes(mddev);
1381 	}
1382 
1383 	if (max_sectors < bio_sectors(bio)) {
1384 		struct bio *split = bio_split(bio, max_sectors,
1385 					      gfp, &conf->bio_split);
1386 		bio_chain(split, bio);
1387 		submit_bio_noacct(bio);
1388 		bio = split;
1389 		r1_bio->master_bio = bio;
1390 		r1_bio->sectors = max_sectors;
1391 	}
1392 
1393 	r1_bio->read_disk = rdisk;
1394 	if (!r1bio_existed) {
1395 		md_account_bio(mddev, &bio);
1396 		r1_bio->master_bio = bio;
1397 	}
1398 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1399 				   &mddev->bio_set);
1400 
1401 	r1_bio->bios[rdisk] = read_bio;
1402 
1403 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1404 		mirror->rdev->data_offset;
1405 	read_bio->bi_end_io = raid1_end_read_request;
1406 	read_bio->bi_opf = op | do_sync;
1407 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1408 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1409 	        read_bio->bi_opf |= MD_FAILFAST;
1410 	read_bio->bi_private = r1_bio;
1411 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1412 	submit_bio_noacct(read_bio);
1413 }
1414 
1415 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1416 				int max_write_sectors)
1417 {
1418 	struct r1conf *conf = mddev->private;
1419 	struct r1bio *r1_bio;
1420 	int i, disks;
1421 	unsigned long flags;
1422 	struct md_rdev *blocked_rdev;
1423 	int first_clone;
1424 	int max_sectors;
1425 	bool write_behind = false;
1426 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1427 
1428 	if (mddev_is_clustered(mddev) &&
1429 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1430 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1431 
1432 		DEFINE_WAIT(w);
1433 		if (bio->bi_opf & REQ_NOWAIT) {
1434 			bio_wouldblock_error(bio);
1435 			return;
1436 		}
1437 		for (;;) {
1438 			prepare_to_wait(&conf->wait_barrier,
1439 					&w, TASK_IDLE);
1440 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1441 							bio->bi_iter.bi_sector,
1442 							bio_end_sector(bio)))
1443 				break;
1444 			schedule();
1445 		}
1446 		finish_wait(&conf->wait_barrier, &w);
1447 	}
1448 
1449 	/*
1450 	 * Register the new request and wait if the reconstruction
1451 	 * thread has put up a bar for new requests.
1452 	 * Continue immediately if no resync is active currently.
1453 	 */
1454 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1455 				bio->bi_opf & REQ_NOWAIT)) {
1456 		bio_wouldblock_error(bio);
1457 		return;
1458 	}
1459 
1460  retry_write:
1461 	r1_bio = alloc_r1bio(mddev, bio);
1462 	r1_bio->sectors = max_write_sectors;
1463 
1464 	/* first select target devices under rcu_lock and
1465 	 * inc refcount on their rdev.  Record them by setting
1466 	 * bios[x] to bio
1467 	 * If there are known/acknowledged bad blocks on any device on
1468 	 * which we have seen a write error, we want to avoid writing those
1469 	 * blocks.
1470 	 * This potentially requires several writes to write around
1471 	 * the bad blocks.  Each set of writes gets it's own r1bio
1472 	 * with a set of bios attached.
1473 	 */
1474 
1475 	disks = conf->raid_disks * 2;
1476 	blocked_rdev = NULL;
1477 	max_sectors = r1_bio->sectors;
1478 	for (i = 0;  i < disks; i++) {
1479 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1480 
1481 		/*
1482 		 * The write-behind io is only attempted on drives marked as
1483 		 * write-mostly, which means we could allocate write behind
1484 		 * bio later.
1485 		 */
1486 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1487 			write_behind = true;
1488 
1489 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1490 			atomic_inc(&rdev->nr_pending);
1491 			blocked_rdev = rdev;
1492 			break;
1493 		}
1494 		r1_bio->bios[i] = NULL;
1495 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1496 			if (i < conf->raid_disks)
1497 				set_bit(R1BIO_Degraded, &r1_bio->state);
1498 			continue;
1499 		}
1500 
1501 		atomic_inc(&rdev->nr_pending);
1502 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1503 			sector_t first_bad;
1504 			int bad_sectors;
1505 			int is_bad;
1506 
1507 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1508 					     &first_bad, &bad_sectors);
1509 			if (is_bad < 0) {
1510 				/* mustn't write here until the bad block is
1511 				 * acknowledged*/
1512 				set_bit(BlockedBadBlocks, &rdev->flags);
1513 				blocked_rdev = rdev;
1514 				break;
1515 			}
1516 			if (is_bad && first_bad <= r1_bio->sector) {
1517 				/* Cannot write here at all */
1518 				bad_sectors -= (r1_bio->sector - first_bad);
1519 				if (bad_sectors < max_sectors)
1520 					/* mustn't write more than bad_sectors
1521 					 * to other devices yet
1522 					 */
1523 					max_sectors = bad_sectors;
1524 				rdev_dec_pending(rdev, mddev);
1525 				/* We don't set R1BIO_Degraded as that
1526 				 * only applies if the disk is
1527 				 * missing, so it might be re-added,
1528 				 * and we want to know to recover this
1529 				 * chunk.
1530 				 * In this case the device is here,
1531 				 * and the fact that this chunk is not
1532 				 * in-sync is recorded in the bad
1533 				 * block log
1534 				 */
1535 				continue;
1536 			}
1537 			if (is_bad) {
1538 				int good_sectors = first_bad - r1_bio->sector;
1539 				if (good_sectors < max_sectors)
1540 					max_sectors = good_sectors;
1541 			}
1542 		}
1543 		r1_bio->bios[i] = bio;
1544 	}
1545 
1546 	if (unlikely(blocked_rdev)) {
1547 		/* Wait for this device to become unblocked */
1548 		int j;
1549 
1550 		for (j = 0; j < i; j++)
1551 			if (r1_bio->bios[j])
1552 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1553 		mempool_free(r1_bio, &conf->r1bio_pool);
1554 		allow_barrier(conf, bio->bi_iter.bi_sector);
1555 
1556 		if (bio->bi_opf & REQ_NOWAIT) {
1557 			bio_wouldblock_error(bio);
1558 			return;
1559 		}
1560 		mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked",
1561 				blocked_rdev->raid_disk);
1562 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1563 		wait_barrier(conf, bio->bi_iter.bi_sector, false);
1564 		goto retry_write;
1565 	}
1566 
1567 	/*
1568 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1569 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1570 	 * at a time and thus needs a new bio that can fit the whole payload
1571 	 * this bio in page sized chunks.
1572 	 */
1573 	if (write_behind && mddev->bitmap)
1574 		max_sectors = min_t(int, max_sectors,
1575 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1576 	if (max_sectors < bio_sectors(bio)) {
1577 		struct bio *split = bio_split(bio, max_sectors,
1578 					      GFP_NOIO, &conf->bio_split);
1579 		bio_chain(split, bio);
1580 		submit_bio_noacct(bio);
1581 		bio = split;
1582 		r1_bio->master_bio = bio;
1583 		r1_bio->sectors = max_sectors;
1584 	}
1585 
1586 	md_account_bio(mddev, &bio);
1587 	r1_bio->master_bio = bio;
1588 	atomic_set(&r1_bio->remaining, 1);
1589 	atomic_set(&r1_bio->behind_remaining, 0);
1590 
1591 	first_clone = 1;
1592 
1593 	for (i = 0; i < disks; i++) {
1594 		struct bio *mbio = NULL;
1595 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1596 		if (!r1_bio->bios[i])
1597 			continue;
1598 
1599 		if (first_clone) {
1600 			unsigned long max_write_behind =
1601 				mddev->bitmap_info.max_write_behind;
1602 			struct md_bitmap_stats stats;
1603 			int err;
1604 
1605 			/* do behind I/O ?
1606 			 * Not if there are too many, or cannot
1607 			 * allocate memory, or a reader on WriteMostly
1608 			 * is waiting for behind writes to flush */
1609 			err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1610 			if (!err && write_behind && !stats.behind_wait &&
1611 			    stats.behind_writes < max_write_behind)
1612 				alloc_behind_master_bio(r1_bio, bio);
1613 
1614 			mddev->bitmap_ops->startwrite(
1615 				mddev, r1_bio->sector, r1_bio->sectors,
1616 				test_bit(R1BIO_BehindIO, &r1_bio->state));
1617 			first_clone = 0;
1618 		}
1619 
1620 		if (r1_bio->behind_master_bio) {
1621 			mbio = bio_alloc_clone(rdev->bdev,
1622 					       r1_bio->behind_master_bio,
1623 					       GFP_NOIO, &mddev->bio_set);
1624 			if (test_bit(CollisionCheck, &rdev->flags))
1625 				wait_for_serialization(rdev, r1_bio);
1626 			if (test_bit(WriteMostly, &rdev->flags))
1627 				atomic_inc(&r1_bio->behind_remaining);
1628 		} else {
1629 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1630 					       &mddev->bio_set);
1631 
1632 			if (mddev->serialize_policy)
1633 				wait_for_serialization(rdev, r1_bio);
1634 		}
1635 
1636 		r1_bio->bios[i] = mbio;
1637 
1638 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1639 		mbio->bi_end_io	= raid1_end_write_request;
1640 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1641 		if (test_bit(FailFast, &rdev->flags) &&
1642 		    !test_bit(WriteMostly, &rdev->flags) &&
1643 		    conf->raid_disks - mddev->degraded > 1)
1644 			mbio->bi_opf |= MD_FAILFAST;
1645 		mbio->bi_private = r1_bio;
1646 
1647 		atomic_inc(&r1_bio->remaining);
1648 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1649 		/* flush_pending_writes() needs access to the rdev so...*/
1650 		mbio->bi_bdev = (void *)rdev;
1651 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1652 			spin_lock_irqsave(&conf->device_lock, flags);
1653 			bio_list_add(&conf->pending_bio_list, mbio);
1654 			spin_unlock_irqrestore(&conf->device_lock, flags);
1655 			md_wakeup_thread(mddev->thread);
1656 		}
1657 	}
1658 
1659 	r1_bio_write_done(r1_bio);
1660 
1661 	/* In case raid1d snuck in to freeze_array */
1662 	wake_up_barrier(conf);
1663 }
1664 
1665 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1666 {
1667 	sector_t sectors;
1668 
1669 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1670 	    && md_flush_request(mddev, bio))
1671 		return true;
1672 
1673 	/*
1674 	 * There is a limit to the maximum size, but
1675 	 * the read/write handler might find a lower limit
1676 	 * due to bad blocks.  To avoid multiple splits,
1677 	 * we pass the maximum number of sectors down
1678 	 * and let the lower level perform the split.
1679 	 */
1680 	sectors = align_to_barrier_unit_end(
1681 		bio->bi_iter.bi_sector, bio_sectors(bio));
1682 
1683 	if (bio_data_dir(bio) == READ)
1684 		raid1_read_request(mddev, bio, sectors, NULL);
1685 	else {
1686 		md_write_start(mddev,bio);
1687 		raid1_write_request(mddev, bio, sectors);
1688 	}
1689 	return true;
1690 }
1691 
1692 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1693 {
1694 	struct r1conf *conf = mddev->private;
1695 	int i;
1696 
1697 	lockdep_assert_held(&mddev->lock);
1698 
1699 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1700 		   conf->raid_disks - mddev->degraded);
1701 	for (i = 0; i < conf->raid_disks; i++) {
1702 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1703 
1704 		seq_printf(seq, "%s",
1705 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1706 	}
1707 	seq_printf(seq, "]");
1708 }
1709 
1710 /**
1711  * raid1_error() - RAID1 error handler.
1712  * @mddev: affected md device.
1713  * @rdev: member device to fail.
1714  *
1715  * The routine acknowledges &rdev failure and determines new @mddev state.
1716  * If it failed, then:
1717  *	- &MD_BROKEN flag is set in &mddev->flags.
1718  *	- recovery is disabled.
1719  * Otherwise, it must be degraded:
1720  *	- recovery is interrupted.
1721  *	- &mddev->degraded is bumped.
1722  *
1723  * @rdev is marked as &Faulty excluding case when array is failed and
1724  * &mddev->fail_last_dev is off.
1725  */
1726 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 	struct r1conf *conf = mddev->private;
1729 	unsigned long flags;
1730 
1731 	spin_lock_irqsave(&conf->device_lock, flags);
1732 
1733 	if (test_bit(In_sync, &rdev->flags) &&
1734 	    (conf->raid_disks - mddev->degraded) == 1) {
1735 		set_bit(MD_BROKEN, &mddev->flags);
1736 
1737 		if (!mddev->fail_last_dev) {
1738 			conf->recovery_disabled = mddev->recovery_disabled;
1739 			spin_unlock_irqrestore(&conf->device_lock, flags);
1740 			return;
1741 		}
1742 	}
1743 	set_bit(Blocked, &rdev->flags);
1744 	if (test_and_clear_bit(In_sync, &rdev->flags))
1745 		mddev->degraded++;
1746 	set_bit(Faulty, &rdev->flags);
1747 	spin_unlock_irqrestore(&conf->device_lock, flags);
1748 	/*
1749 	 * if recovery is running, make sure it aborts.
1750 	 */
1751 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1752 	set_mask_bits(&mddev->sb_flags, 0,
1753 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1754 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1755 		"md/raid1:%s: Operation continuing on %d devices.\n",
1756 		mdname(mddev), rdev->bdev,
1757 		mdname(mddev), conf->raid_disks - mddev->degraded);
1758 }
1759 
1760 static void print_conf(struct r1conf *conf)
1761 {
1762 	int i;
1763 
1764 	pr_debug("RAID1 conf printout:\n");
1765 	if (!conf) {
1766 		pr_debug("(!conf)\n");
1767 		return;
1768 	}
1769 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1770 		 conf->raid_disks);
1771 
1772 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1773 	for (i = 0; i < conf->raid_disks; i++) {
1774 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1775 		if (rdev)
1776 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1777 				 i, !test_bit(In_sync, &rdev->flags),
1778 				 !test_bit(Faulty, &rdev->flags),
1779 				 rdev->bdev);
1780 	}
1781 }
1782 
1783 static void close_sync(struct r1conf *conf)
1784 {
1785 	int idx;
1786 
1787 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1788 		_wait_barrier(conf, idx, false);
1789 		_allow_barrier(conf, idx);
1790 	}
1791 
1792 	mempool_exit(&conf->r1buf_pool);
1793 }
1794 
1795 static int raid1_spare_active(struct mddev *mddev)
1796 {
1797 	int i;
1798 	struct r1conf *conf = mddev->private;
1799 	int count = 0;
1800 	unsigned long flags;
1801 
1802 	/*
1803 	 * Find all failed disks within the RAID1 configuration
1804 	 * and mark them readable.
1805 	 * Called under mddev lock, so rcu protection not needed.
1806 	 * device_lock used to avoid races with raid1_end_read_request
1807 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1808 	 */
1809 	spin_lock_irqsave(&conf->device_lock, flags);
1810 	for (i = 0; i < conf->raid_disks; i++) {
1811 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1812 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1813 		if (repl
1814 		    && !test_bit(Candidate, &repl->flags)
1815 		    && repl->recovery_offset == MaxSector
1816 		    && !test_bit(Faulty, &repl->flags)
1817 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1818 			/* replacement has just become active */
1819 			if (!rdev ||
1820 			    !test_and_clear_bit(In_sync, &rdev->flags))
1821 				count++;
1822 			if (rdev) {
1823 				/* Replaced device not technically
1824 				 * faulty, but we need to be sure
1825 				 * it gets removed and never re-added
1826 				 */
1827 				set_bit(Faulty, &rdev->flags);
1828 				sysfs_notify_dirent_safe(
1829 					rdev->sysfs_state);
1830 			}
1831 		}
1832 		if (rdev
1833 		    && rdev->recovery_offset == MaxSector
1834 		    && !test_bit(Faulty, &rdev->flags)
1835 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1836 			count++;
1837 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1838 		}
1839 	}
1840 	mddev->degraded -= count;
1841 	spin_unlock_irqrestore(&conf->device_lock, flags);
1842 
1843 	print_conf(conf);
1844 	return count;
1845 }
1846 
1847 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1848 			   bool replacement)
1849 {
1850 	struct raid1_info *info = conf->mirrors + disk;
1851 
1852 	if (replacement)
1853 		info += conf->raid_disks;
1854 
1855 	if (info->rdev)
1856 		return false;
1857 
1858 	if (bdev_nonrot(rdev->bdev)) {
1859 		set_bit(Nonrot, &rdev->flags);
1860 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1861 	}
1862 
1863 	rdev->raid_disk = disk;
1864 	info->head_position = 0;
1865 	info->seq_start = MaxSector;
1866 	WRITE_ONCE(info->rdev, rdev);
1867 
1868 	return true;
1869 }
1870 
1871 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1872 {
1873 	struct raid1_info *info = conf->mirrors + disk;
1874 	struct md_rdev *rdev = info->rdev;
1875 
1876 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1877 	    atomic_read(&rdev->nr_pending))
1878 		return false;
1879 
1880 	/* Only remove non-faulty devices if recovery is not possible. */
1881 	if (!test_bit(Faulty, &rdev->flags) &&
1882 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1883 	    rdev->mddev->degraded < conf->raid_disks)
1884 		return false;
1885 
1886 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1887 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1888 
1889 	WRITE_ONCE(info->rdev, NULL);
1890 	return true;
1891 }
1892 
1893 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1894 {
1895 	struct r1conf *conf = mddev->private;
1896 	int err = -EEXIST;
1897 	int mirror = 0, repl_slot = -1;
1898 	struct raid1_info *p;
1899 	int first = 0;
1900 	int last = conf->raid_disks - 1;
1901 
1902 	if (mddev->recovery_disabled == conf->recovery_disabled)
1903 		return -EBUSY;
1904 
1905 	if (rdev->raid_disk >= 0)
1906 		first = last = rdev->raid_disk;
1907 
1908 	/*
1909 	 * find the disk ... but prefer rdev->saved_raid_disk
1910 	 * if possible.
1911 	 */
1912 	if (rdev->saved_raid_disk >= 0 &&
1913 	    rdev->saved_raid_disk >= first &&
1914 	    rdev->saved_raid_disk < conf->raid_disks &&
1915 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1916 		first = last = rdev->saved_raid_disk;
1917 
1918 	for (mirror = first; mirror <= last; mirror++) {
1919 		p = conf->mirrors + mirror;
1920 		if (!p->rdev) {
1921 			err = mddev_stack_new_rdev(mddev, rdev);
1922 			if (err)
1923 				return err;
1924 
1925 			raid1_add_conf(conf, rdev, mirror, false);
1926 			/* As all devices are equivalent, we don't need a full recovery
1927 			 * if this was recently any drive of the array
1928 			 */
1929 			if (rdev->saved_raid_disk < 0)
1930 				conf->fullsync = 1;
1931 			break;
1932 		}
1933 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1934 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1935 			repl_slot = mirror;
1936 	}
1937 
1938 	if (err && repl_slot >= 0) {
1939 		/* Add this device as a replacement */
1940 		clear_bit(In_sync, &rdev->flags);
1941 		set_bit(Replacement, &rdev->flags);
1942 		raid1_add_conf(conf, rdev, repl_slot, true);
1943 		err = 0;
1944 		conf->fullsync = 1;
1945 	}
1946 
1947 	print_conf(conf);
1948 	return err;
1949 }
1950 
1951 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1952 {
1953 	struct r1conf *conf = mddev->private;
1954 	int err = 0;
1955 	int number = rdev->raid_disk;
1956 	struct raid1_info *p = conf->mirrors + number;
1957 
1958 	if (unlikely(number >= conf->raid_disks))
1959 		goto abort;
1960 
1961 	if (rdev != p->rdev) {
1962 		number += conf->raid_disks;
1963 		p = conf->mirrors + number;
1964 	}
1965 
1966 	print_conf(conf);
1967 	if (rdev == p->rdev) {
1968 		if (!raid1_remove_conf(conf, number)) {
1969 			err = -EBUSY;
1970 			goto abort;
1971 		}
1972 
1973 		if (number < conf->raid_disks &&
1974 		    conf->mirrors[conf->raid_disks + number].rdev) {
1975 			/* We just removed a device that is being replaced.
1976 			 * Move down the replacement.  We drain all IO before
1977 			 * doing this to avoid confusion.
1978 			 */
1979 			struct md_rdev *repl =
1980 				conf->mirrors[conf->raid_disks + number].rdev;
1981 			freeze_array(conf, 0);
1982 			if (atomic_read(&repl->nr_pending)) {
1983 				/* It means that some queued IO of retry_list
1984 				 * hold repl. Thus, we cannot set replacement
1985 				 * as NULL, avoiding rdev NULL pointer
1986 				 * dereference in sync_request_write and
1987 				 * handle_write_finished.
1988 				 */
1989 				err = -EBUSY;
1990 				unfreeze_array(conf);
1991 				goto abort;
1992 			}
1993 			clear_bit(Replacement, &repl->flags);
1994 			WRITE_ONCE(p->rdev, repl);
1995 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1996 			unfreeze_array(conf);
1997 		}
1998 
1999 		clear_bit(WantReplacement, &rdev->flags);
2000 		err = md_integrity_register(mddev);
2001 	}
2002 abort:
2003 
2004 	print_conf(conf);
2005 	return err;
2006 }
2007 
2008 static void end_sync_read(struct bio *bio)
2009 {
2010 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2011 
2012 	update_head_pos(r1_bio->read_disk, r1_bio);
2013 
2014 	/*
2015 	 * we have read a block, now it needs to be re-written,
2016 	 * or re-read if the read failed.
2017 	 * We don't do much here, just schedule handling by raid1d
2018 	 */
2019 	if (!bio->bi_status)
2020 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2021 
2022 	if (atomic_dec_and_test(&r1_bio->remaining))
2023 		reschedule_retry(r1_bio);
2024 }
2025 
2026 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2027 {
2028 	sector_t sync_blocks = 0;
2029 	sector_t s = r1_bio->sector;
2030 	long sectors_to_go = r1_bio->sectors;
2031 
2032 	/* make sure these bits don't get cleared. */
2033 	do {
2034 		mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks);
2035 		s += sync_blocks;
2036 		sectors_to_go -= sync_blocks;
2037 	} while (sectors_to_go > 0);
2038 }
2039 
2040 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2041 {
2042 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2043 		struct mddev *mddev = r1_bio->mddev;
2044 		int s = r1_bio->sectors;
2045 
2046 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2047 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2048 			reschedule_retry(r1_bio);
2049 		else {
2050 			put_buf(r1_bio);
2051 			md_done_sync(mddev, s, uptodate);
2052 		}
2053 	}
2054 }
2055 
2056 static void end_sync_write(struct bio *bio)
2057 {
2058 	int uptodate = !bio->bi_status;
2059 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2060 	struct mddev *mddev = r1_bio->mddev;
2061 	struct r1conf *conf = mddev->private;
2062 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2063 
2064 	if (!uptodate) {
2065 		abort_sync_write(mddev, r1_bio);
2066 		set_bit(WriteErrorSeen, &rdev->flags);
2067 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2068 			set_bit(MD_RECOVERY_NEEDED, &
2069 				mddev->recovery);
2070 		set_bit(R1BIO_WriteError, &r1_bio->state);
2071 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2072 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2073 				      r1_bio->sector, r1_bio->sectors)) {
2074 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2075 	}
2076 
2077 	put_sync_write_buf(r1_bio, uptodate);
2078 }
2079 
2080 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2081 			   int sectors, struct page *page, blk_opf_t rw)
2082 {
2083 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2084 		/* success */
2085 		return 1;
2086 	if (rw == REQ_OP_WRITE) {
2087 		set_bit(WriteErrorSeen, &rdev->flags);
2088 		if (!test_and_set_bit(WantReplacement,
2089 				      &rdev->flags))
2090 			set_bit(MD_RECOVERY_NEEDED, &
2091 				rdev->mddev->recovery);
2092 	}
2093 	/* need to record an error - either for the block or the device */
2094 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2095 		md_error(rdev->mddev, rdev);
2096 	return 0;
2097 }
2098 
2099 static int fix_sync_read_error(struct r1bio *r1_bio)
2100 {
2101 	/* Try some synchronous reads of other devices to get
2102 	 * good data, much like with normal read errors.  Only
2103 	 * read into the pages we already have so we don't
2104 	 * need to re-issue the read request.
2105 	 * We don't need to freeze the array, because being in an
2106 	 * active sync request, there is no normal IO, and
2107 	 * no overlapping syncs.
2108 	 * We don't need to check is_badblock() again as we
2109 	 * made sure that anything with a bad block in range
2110 	 * will have bi_end_io clear.
2111 	 */
2112 	struct mddev *mddev = r1_bio->mddev;
2113 	struct r1conf *conf = mddev->private;
2114 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2115 	struct page **pages = get_resync_pages(bio)->pages;
2116 	sector_t sect = r1_bio->sector;
2117 	int sectors = r1_bio->sectors;
2118 	int idx = 0;
2119 	struct md_rdev *rdev;
2120 
2121 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2122 	if (test_bit(FailFast, &rdev->flags)) {
2123 		/* Don't try recovering from here - just fail it
2124 		 * ... unless it is the last working device of course */
2125 		md_error(mddev, rdev);
2126 		if (test_bit(Faulty, &rdev->flags))
2127 			/* Don't try to read from here, but make sure
2128 			 * put_buf does it's thing
2129 			 */
2130 			bio->bi_end_io = end_sync_write;
2131 	}
2132 
2133 	while(sectors) {
2134 		int s = sectors;
2135 		int d = r1_bio->read_disk;
2136 		int success = 0;
2137 		int start;
2138 
2139 		if (s > (PAGE_SIZE>>9))
2140 			s = PAGE_SIZE >> 9;
2141 		do {
2142 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2143 				/* No rcu protection needed here devices
2144 				 * can only be removed when no resync is
2145 				 * active, and resync is currently active
2146 				 */
2147 				rdev = conf->mirrors[d].rdev;
2148 				if (sync_page_io(rdev, sect, s<<9,
2149 						 pages[idx],
2150 						 REQ_OP_READ, false)) {
2151 					success = 1;
2152 					break;
2153 				}
2154 			}
2155 			d++;
2156 			if (d == conf->raid_disks * 2)
2157 				d = 0;
2158 		} while (!success && d != r1_bio->read_disk);
2159 
2160 		if (!success) {
2161 			int abort = 0;
2162 			/* Cannot read from anywhere, this block is lost.
2163 			 * Record a bad block on each device.  If that doesn't
2164 			 * work just disable and interrupt the recovery.
2165 			 * Don't fail devices as that won't really help.
2166 			 */
2167 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2168 					    mdname(mddev), bio->bi_bdev,
2169 					    (unsigned long long)r1_bio->sector);
2170 			for (d = 0; d < conf->raid_disks * 2; d++) {
2171 				rdev = conf->mirrors[d].rdev;
2172 				if (!rdev || test_bit(Faulty, &rdev->flags))
2173 					continue;
2174 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2175 					abort = 1;
2176 			}
2177 			if (abort) {
2178 				conf->recovery_disabled =
2179 					mddev->recovery_disabled;
2180 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2181 				md_done_sync(mddev, r1_bio->sectors, 0);
2182 				put_buf(r1_bio);
2183 				return 0;
2184 			}
2185 			/* Try next page */
2186 			sectors -= s;
2187 			sect += s;
2188 			idx++;
2189 			continue;
2190 		}
2191 
2192 		start = d;
2193 		/* write it back and re-read */
2194 		while (d != r1_bio->read_disk) {
2195 			if (d == 0)
2196 				d = conf->raid_disks * 2;
2197 			d--;
2198 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2199 				continue;
2200 			rdev = conf->mirrors[d].rdev;
2201 			if (r1_sync_page_io(rdev, sect, s,
2202 					    pages[idx],
2203 					    REQ_OP_WRITE) == 0) {
2204 				r1_bio->bios[d]->bi_end_io = NULL;
2205 				rdev_dec_pending(rdev, mddev);
2206 			}
2207 		}
2208 		d = start;
2209 		while (d != r1_bio->read_disk) {
2210 			if (d == 0)
2211 				d = conf->raid_disks * 2;
2212 			d--;
2213 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2214 				continue;
2215 			rdev = conf->mirrors[d].rdev;
2216 			if (r1_sync_page_io(rdev, sect, s,
2217 					    pages[idx],
2218 					    REQ_OP_READ) != 0)
2219 				atomic_add(s, &rdev->corrected_errors);
2220 		}
2221 		sectors -= s;
2222 		sect += s;
2223 		idx ++;
2224 	}
2225 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2226 	bio->bi_status = 0;
2227 	return 1;
2228 }
2229 
2230 static void process_checks(struct r1bio *r1_bio)
2231 {
2232 	/* We have read all readable devices.  If we haven't
2233 	 * got the block, then there is no hope left.
2234 	 * If we have, then we want to do a comparison
2235 	 * and skip the write if everything is the same.
2236 	 * If any blocks failed to read, then we need to
2237 	 * attempt an over-write
2238 	 */
2239 	struct mddev *mddev = r1_bio->mddev;
2240 	struct r1conf *conf = mddev->private;
2241 	int primary;
2242 	int i;
2243 	int vcnt;
2244 
2245 	/* Fix variable parts of all bios */
2246 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2247 	for (i = 0; i < conf->raid_disks * 2; i++) {
2248 		blk_status_t status;
2249 		struct bio *b = r1_bio->bios[i];
2250 		struct resync_pages *rp = get_resync_pages(b);
2251 		if (b->bi_end_io != end_sync_read)
2252 			continue;
2253 		/* fixup the bio for reuse, but preserve errno */
2254 		status = b->bi_status;
2255 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2256 		b->bi_status = status;
2257 		b->bi_iter.bi_sector = r1_bio->sector +
2258 			conf->mirrors[i].rdev->data_offset;
2259 		b->bi_end_io = end_sync_read;
2260 		rp->raid_bio = r1_bio;
2261 		b->bi_private = rp;
2262 
2263 		/* initialize bvec table again */
2264 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2265 	}
2266 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2267 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2268 		    !r1_bio->bios[primary]->bi_status) {
2269 			r1_bio->bios[primary]->bi_end_io = NULL;
2270 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2271 			break;
2272 		}
2273 	r1_bio->read_disk = primary;
2274 	for (i = 0; i < conf->raid_disks * 2; i++) {
2275 		int j = 0;
2276 		struct bio *pbio = r1_bio->bios[primary];
2277 		struct bio *sbio = r1_bio->bios[i];
2278 		blk_status_t status = sbio->bi_status;
2279 		struct page **ppages = get_resync_pages(pbio)->pages;
2280 		struct page **spages = get_resync_pages(sbio)->pages;
2281 		struct bio_vec *bi;
2282 		int page_len[RESYNC_PAGES] = { 0 };
2283 		struct bvec_iter_all iter_all;
2284 
2285 		if (sbio->bi_end_io != end_sync_read)
2286 			continue;
2287 		/* Now we can 'fixup' the error value */
2288 		sbio->bi_status = 0;
2289 
2290 		bio_for_each_segment_all(bi, sbio, iter_all)
2291 			page_len[j++] = bi->bv_len;
2292 
2293 		if (!status) {
2294 			for (j = vcnt; j-- ; ) {
2295 				if (memcmp(page_address(ppages[j]),
2296 					   page_address(spages[j]),
2297 					   page_len[j]))
2298 					break;
2299 			}
2300 		} else
2301 			j = 0;
2302 		if (j >= 0)
2303 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2304 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2305 			      && !status)) {
2306 			/* No need to write to this device. */
2307 			sbio->bi_end_io = NULL;
2308 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2309 			continue;
2310 		}
2311 
2312 		bio_copy_data(sbio, pbio);
2313 	}
2314 }
2315 
2316 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2317 {
2318 	struct r1conf *conf = mddev->private;
2319 	int i;
2320 	int disks = conf->raid_disks * 2;
2321 	struct bio *wbio;
2322 
2323 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2324 		/* ouch - failed to read all of that. */
2325 		if (!fix_sync_read_error(r1_bio))
2326 			return;
2327 
2328 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2329 		process_checks(r1_bio);
2330 
2331 	/*
2332 	 * schedule writes
2333 	 */
2334 	atomic_set(&r1_bio->remaining, 1);
2335 	for (i = 0; i < disks ; i++) {
2336 		wbio = r1_bio->bios[i];
2337 		if (wbio->bi_end_io == NULL ||
2338 		    (wbio->bi_end_io == end_sync_read &&
2339 		     (i == r1_bio->read_disk ||
2340 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2341 			continue;
2342 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2343 			abort_sync_write(mddev, r1_bio);
2344 			continue;
2345 		}
2346 
2347 		wbio->bi_opf = REQ_OP_WRITE;
2348 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2349 			wbio->bi_opf |= MD_FAILFAST;
2350 
2351 		wbio->bi_end_io = end_sync_write;
2352 		atomic_inc(&r1_bio->remaining);
2353 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2354 
2355 		submit_bio_noacct(wbio);
2356 	}
2357 
2358 	put_sync_write_buf(r1_bio, 1);
2359 }
2360 
2361 /*
2362  * This is a kernel thread which:
2363  *
2364  *	1.	Retries failed read operations on working mirrors.
2365  *	2.	Updates the raid superblock when problems encounter.
2366  *	3.	Performs writes following reads for array synchronising.
2367  */
2368 
2369 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2370 {
2371 	sector_t sect = r1_bio->sector;
2372 	int sectors = r1_bio->sectors;
2373 	int read_disk = r1_bio->read_disk;
2374 	struct mddev *mddev = conf->mddev;
2375 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2376 
2377 	if (exceed_read_errors(mddev, rdev)) {
2378 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2379 		return;
2380 	}
2381 
2382 	while(sectors) {
2383 		int s = sectors;
2384 		int d = read_disk;
2385 		int success = 0;
2386 		int start;
2387 
2388 		if (s > (PAGE_SIZE>>9))
2389 			s = PAGE_SIZE >> 9;
2390 
2391 		do {
2392 			rdev = conf->mirrors[d].rdev;
2393 			if (rdev &&
2394 			    (test_bit(In_sync, &rdev->flags) ||
2395 			     (!test_bit(Faulty, &rdev->flags) &&
2396 			      rdev->recovery_offset >= sect + s)) &&
2397 			    rdev_has_badblock(rdev, sect, s) == 0) {
2398 				atomic_inc(&rdev->nr_pending);
2399 				if (sync_page_io(rdev, sect, s<<9,
2400 					 conf->tmppage, REQ_OP_READ, false))
2401 					success = 1;
2402 				rdev_dec_pending(rdev, mddev);
2403 				if (success)
2404 					break;
2405 			}
2406 
2407 			d++;
2408 			if (d == conf->raid_disks * 2)
2409 				d = 0;
2410 		} while (d != read_disk);
2411 
2412 		if (!success) {
2413 			/* Cannot read from anywhere - mark it bad */
2414 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2415 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2416 				md_error(mddev, rdev);
2417 			break;
2418 		}
2419 		/* write it back and re-read */
2420 		start = d;
2421 		while (d != read_disk) {
2422 			if (d==0)
2423 				d = conf->raid_disks * 2;
2424 			d--;
2425 			rdev = conf->mirrors[d].rdev;
2426 			if (rdev &&
2427 			    !test_bit(Faulty, &rdev->flags)) {
2428 				atomic_inc(&rdev->nr_pending);
2429 				r1_sync_page_io(rdev, sect, s,
2430 						conf->tmppage, REQ_OP_WRITE);
2431 				rdev_dec_pending(rdev, mddev);
2432 			}
2433 		}
2434 		d = start;
2435 		while (d != read_disk) {
2436 			if (d==0)
2437 				d = conf->raid_disks * 2;
2438 			d--;
2439 			rdev = conf->mirrors[d].rdev;
2440 			if (rdev &&
2441 			    !test_bit(Faulty, &rdev->flags)) {
2442 				atomic_inc(&rdev->nr_pending);
2443 				if (r1_sync_page_io(rdev, sect, s,
2444 						conf->tmppage, REQ_OP_READ)) {
2445 					atomic_add(s, &rdev->corrected_errors);
2446 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2447 						mdname(mddev), s,
2448 						(unsigned long long)(sect +
2449 								     rdev->data_offset),
2450 						rdev->bdev);
2451 				}
2452 				rdev_dec_pending(rdev, mddev);
2453 			}
2454 		}
2455 		sectors -= s;
2456 		sect += s;
2457 	}
2458 }
2459 
2460 static int narrow_write_error(struct r1bio *r1_bio, int i)
2461 {
2462 	struct mddev *mddev = r1_bio->mddev;
2463 	struct r1conf *conf = mddev->private;
2464 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2465 
2466 	/* bio has the data to be written to device 'i' where
2467 	 * we just recently had a write error.
2468 	 * We repeatedly clone the bio and trim down to one block,
2469 	 * then try the write.  Where the write fails we record
2470 	 * a bad block.
2471 	 * It is conceivable that the bio doesn't exactly align with
2472 	 * blocks.  We must handle this somehow.
2473 	 *
2474 	 * We currently own a reference on the rdev.
2475 	 */
2476 
2477 	int block_sectors;
2478 	sector_t sector;
2479 	int sectors;
2480 	int sect_to_write = r1_bio->sectors;
2481 	int ok = 1;
2482 
2483 	if (rdev->badblocks.shift < 0)
2484 		return 0;
2485 
2486 	block_sectors = roundup(1 << rdev->badblocks.shift,
2487 				bdev_logical_block_size(rdev->bdev) >> 9);
2488 	sector = r1_bio->sector;
2489 	sectors = ((sector + block_sectors)
2490 		   & ~(sector_t)(block_sectors - 1))
2491 		- sector;
2492 
2493 	while (sect_to_write) {
2494 		struct bio *wbio;
2495 		if (sectors > sect_to_write)
2496 			sectors = sect_to_write;
2497 		/* Write at 'sector' for 'sectors'*/
2498 
2499 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2500 			wbio = bio_alloc_clone(rdev->bdev,
2501 					       r1_bio->behind_master_bio,
2502 					       GFP_NOIO, &mddev->bio_set);
2503 		} else {
2504 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2505 					       GFP_NOIO, &mddev->bio_set);
2506 		}
2507 
2508 		wbio->bi_opf = REQ_OP_WRITE;
2509 		wbio->bi_iter.bi_sector = r1_bio->sector;
2510 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2511 
2512 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2513 		wbio->bi_iter.bi_sector += rdev->data_offset;
2514 
2515 		if (submit_bio_wait(wbio) < 0)
2516 			/* failure! */
2517 			ok = rdev_set_badblocks(rdev, sector,
2518 						sectors, 0)
2519 				&& ok;
2520 
2521 		bio_put(wbio);
2522 		sect_to_write -= sectors;
2523 		sector += sectors;
2524 		sectors = block_sectors;
2525 	}
2526 	return ok;
2527 }
2528 
2529 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2530 {
2531 	int m;
2532 	int s = r1_bio->sectors;
2533 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2534 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2535 		struct bio *bio = r1_bio->bios[m];
2536 		if (bio->bi_end_io == NULL)
2537 			continue;
2538 		if (!bio->bi_status &&
2539 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2540 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2541 		}
2542 		if (bio->bi_status &&
2543 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2544 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2545 				md_error(conf->mddev, rdev);
2546 		}
2547 	}
2548 	put_buf(r1_bio);
2549 	md_done_sync(conf->mddev, s, 1);
2550 }
2551 
2552 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2553 {
2554 	int m, idx;
2555 	bool fail = false;
2556 
2557 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2558 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2559 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2560 			rdev_clear_badblocks(rdev,
2561 					     r1_bio->sector,
2562 					     r1_bio->sectors, 0);
2563 			rdev_dec_pending(rdev, conf->mddev);
2564 		} else if (r1_bio->bios[m] != NULL) {
2565 			/* This drive got a write error.  We need to
2566 			 * narrow down and record precise write
2567 			 * errors.
2568 			 */
2569 			fail = true;
2570 			if (!narrow_write_error(r1_bio, m)) {
2571 				md_error(conf->mddev,
2572 					 conf->mirrors[m].rdev);
2573 				/* an I/O failed, we can't clear the bitmap */
2574 				set_bit(R1BIO_Degraded, &r1_bio->state);
2575 			}
2576 			rdev_dec_pending(conf->mirrors[m].rdev,
2577 					 conf->mddev);
2578 		}
2579 	if (fail) {
2580 		spin_lock_irq(&conf->device_lock);
2581 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2582 		idx = sector_to_idx(r1_bio->sector);
2583 		atomic_inc(&conf->nr_queued[idx]);
2584 		spin_unlock_irq(&conf->device_lock);
2585 		/*
2586 		 * In case freeze_array() is waiting for condition
2587 		 * get_unqueued_pending() == extra to be true.
2588 		 */
2589 		wake_up(&conf->wait_barrier);
2590 		md_wakeup_thread(conf->mddev->thread);
2591 	} else {
2592 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2593 			close_write(r1_bio);
2594 		raid_end_bio_io(r1_bio);
2595 	}
2596 }
2597 
2598 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2599 {
2600 	struct mddev *mddev = conf->mddev;
2601 	struct bio *bio;
2602 	struct md_rdev *rdev;
2603 	sector_t sector;
2604 
2605 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2606 	/* we got a read error. Maybe the drive is bad.  Maybe just
2607 	 * the block and we can fix it.
2608 	 * We freeze all other IO, and try reading the block from
2609 	 * other devices.  When we find one, we re-write
2610 	 * and check it that fixes the read error.
2611 	 * This is all done synchronously while the array is
2612 	 * frozen
2613 	 */
2614 
2615 	bio = r1_bio->bios[r1_bio->read_disk];
2616 	bio_put(bio);
2617 	r1_bio->bios[r1_bio->read_disk] = NULL;
2618 
2619 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2620 	if (mddev->ro == 0
2621 	    && !test_bit(FailFast, &rdev->flags)) {
2622 		freeze_array(conf, 1);
2623 		fix_read_error(conf, r1_bio);
2624 		unfreeze_array(conf);
2625 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2626 		md_error(mddev, rdev);
2627 	} else {
2628 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2629 	}
2630 
2631 	rdev_dec_pending(rdev, conf->mddev);
2632 	sector = r1_bio->sector;
2633 	bio = r1_bio->master_bio;
2634 
2635 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2636 	r1_bio->state = 0;
2637 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2638 	allow_barrier(conf, sector);
2639 }
2640 
2641 static void raid1d(struct md_thread *thread)
2642 {
2643 	struct mddev *mddev = thread->mddev;
2644 	struct r1bio *r1_bio;
2645 	unsigned long flags;
2646 	struct r1conf *conf = mddev->private;
2647 	struct list_head *head = &conf->retry_list;
2648 	struct blk_plug plug;
2649 	int idx;
2650 
2651 	md_check_recovery(mddev);
2652 
2653 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2654 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2655 		LIST_HEAD(tmp);
2656 		spin_lock_irqsave(&conf->device_lock, flags);
2657 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2658 			list_splice_init(&conf->bio_end_io_list, &tmp);
2659 		spin_unlock_irqrestore(&conf->device_lock, flags);
2660 		while (!list_empty(&tmp)) {
2661 			r1_bio = list_first_entry(&tmp, struct r1bio,
2662 						  retry_list);
2663 			list_del(&r1_bio->retry_list);
2664 			idx = sector_to_idx(r1_bio->sector);
2665 			atomic_dec(&conf->nr_queued[idx]);
2666 			if (mddev->degraded)
2667 				set_bit(R1BIO_Degraded, &r1_bio->state);
2668 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2669 				close_write(r1_bio);
2670 			raid_end_bio_io(r1_bio);
2671 		}
2672 	}
2673 
2674 	blk_start_plug(&plug);
2675 	for (;;) {
2676 
2677 		flush_pending_writes(conf);
2678 
2679 		spin_lock_irqsave(&conf->device_lock, flags);
2680 		if (list_empty(head)) {
2681 			spin_unlock_irqrestore(&conf->device_lock, flags);
2682 			break;
2683 		}
2684 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2685 		list_del(head->prev);
2686 		idx = sector_to_idx(r1_bio->sector);
2687 		atomic_dec(&conf->nr_queued[idx]);
2688 		spin_unlock_irqrestore(&conf->device_lock, flags);
2689 
2690 		mddev = r1_bio->mddev;
2691 		conf = mddev->private;
2692 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2693 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2694 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2695 				handle_sync_write_finished(conf, r1_bio);
2696 			else
2697 				sync_request_write(mddev, r1_bio);
2698 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2699 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2700 			handle_write_finished(conf, r1_bio);
2701 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2702 			handle_read_error(conf, r1_bio);
2703 		else
2704 			WARN_ON_ONCE(1);
2705 
2706 		cond_resched();
2707 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2708 			md_check_recovery(mddev);
2709 	}
2710 	blk_finish_plug(&plug);
2711 }
2712 
2713 static int init_resync(struct r1conf *conf)
2714 {
2715 	int buffs;
2716 
2717 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2718 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2719 
2720 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2721 			    r1buf_pool_free, conf->poolinfo);
2722 }
2723 
2724 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2725 {
2726 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2727 	struct resync_pages *rps;
2728 	struct bio *bio;
2729 	int i;
2730 
2731 	for (i = conf->poolinfo->raid_disks; i--; ) {
2732 		bio = r1bio->bios[i];
2733 		rps = bio->bi_private;
2734 		bio_reset(bio, NULL, 0);
2735 		bio->bi_private = rps;
2736 	}
2737 	r1bio->master_bio = NULL;
2738 	return r1bio;
2739 }
2740 
2741 /*
2742  * perform a "sync" on one "block"
2743  *
2744  * We need to make sure that no normal I/O request - particularly write
2745  * requests - conflict with active sync requests.
2746  *
2747  * This is achieved by tracking pending requests and a 'barrier' concept
2748  * that can be installed to exclude normal IO requests.
2749  */
2750 
2751 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2752 				   sector_t max_sector, int *skipped)
2753 {
2754 	struct r1conf *conf = mddev->private;
2755 	struct r1bio *r1_bio;
2756 	struct bio *bio;
2757 	sector_t nr_sectors;
2758 	int disk = -1;
2759 	int i;
2760 	int wonly = -1;
2761 	int write_targets = 0, read_targets = 0;
2762 	sector_t sync_blocks;
2763 	bool still_degraded = false;
2764 	int good_sectors = RESYNC_SECTORS;
2765 	int min_bad = 0; /* number of sectors that are bad in all devices */
2766 	int idx = sector_to_idx(sector_nr);
2767 	int page_idx = 0;
2768 
2769 	if (!mempool_initialized(&conf->r1buf_pool))
2770 		if (init_resync(conf))
2771 			return 0;
2772 
2773 	if (sector_nr >= max_sector) {
2774 		/* If we aborted, we need to abort the
2775 		 * sync on the 'current' bitmap chunk (there will
2776 		 * only be one in raid1 resync.
2777 		 * We can find the current addess in mddev->curr_resync
2778 		 */
2779 		if (mddev->curr_resync < max_sector) /* aborted */
2780 			mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
2781 						    &sync_blocks);
2782 		else /* completed sync */
2783 			conf->fullsync = 0;
2784 
2785 		mddev->bitmap_ops->close_sync(mddev);
2786 		close_sync(conf);
2787 
2788 		if (mddev_is_clustered(mddev)) {
2789 			conf->cluster_sync_low = 0;
2790 			conf->cluster_sync_high = 0;
2791 		}
2792 		return 0;
2793 	}
2794 
2795 	if (mddev->bitmap == NULL &&
2796 	    mddev->recovery_cp == MaxSector &&
2797 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2798 	    conf->fullsync == 0) {
2799 		*skipped = 1;
2800 		return max_sector - sector_nr;
2801 	}
2802 	/* before building a request, check if we can skip these blocks..
2803 	 * This call the bitmap_start_sync doesn't actually record anything
2804 	 */
2805 	if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) &&
2806 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2807 		/* We can skip this block, and probably several more */
2808 		*skipped = 1;
2809 		return sync_blocks;
2810 	}
2811 
2812 	/*
2813 	 * If there is non-resync activity waiting for a turn, then let it
2814 	 * though before starting on this new sync request.
2815 	 */
2816 	if (atomic_read(&conf->nr_waiting[idx]))
2817 		schedule_timeout_uninterruptible(1);
2818 
2819 	/* we are incrementing sector_nr below. To be safe, we check against
2820 	 * sector_nr + two times RESYNC_SECTORS
2821 	 */
2822 
2823 	mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2824 		mddev_is_clustered(mddev) &&
2825 		(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2826 
2827 	if (raise_barrier(conf, sector_nr))
2828 		return 0;
2829 
2830 	r1_bio = raid1_alloc_init_r1buf(conf);
2831 
2832 	/*
2833 	 * If we get a correctably read error during resync or recovery,
2834 	 * we might want to read from a different device.  So we
2835 	 * flag all drives that could conceivably be read from for READ,
2836 	 * and any others (which will be non-In_sync devices) for WRITE.
2837 	 * If a read fails, we try reading from something else for which READ
2838 	 * is OK.
2839 	 */
2840 
2841 	r1_bio->mddev = mddev;
2842 	r1_bio->sector = sector_nr;
2843 	r1_bio->state = 0;
2844 	set_bit(R1BIO_IsSync, &r1_bio->state);
2845 	/* make sure good_sectors won't go across barrier unit boundary */
2846 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2847 
2848 	for (i = 0; i < conf->raid_disks * 2; i++) {
2849 		struct md_rdev *rdev;
2850 		bio = r1_bio->bios[i];
2851 
2852 		rdev = conf->mirrors[i].rdev;
2853 		if (rdev == NULL ||
2854 		    test_bit(Faulty, &rdev->flags)) {
2855 			if (i < conf->raid_disks)
2856 				still_degraded = true;
2857 		} else if (!test_bit(In_sync, &rdev->flags)) {
2858 			bio->bi_opf = REQ_OP_WRITE;
2859 			bio->bi_end_io = end_sync_write;
2860 			write_targets ++;
2861 		} else {
2862 			/* may need to read from here */
2863 			sector_t first_bad = MaxSector;
2864 			int bad_sectors;
2865 
2866 			if (is_badblock(rdev, sector_nr, good_sectors,
2867 					&first_bad, &bad_sectors)) {
2868 				if (first_bad > sector_nr)
2869 					good_sectors = first_bad - sector_nr;
2870 				else {
2871 					bad_sectors -= (sector_nr - first_bad);
2872 					if (min_bad == 0 ||
2873 					    min_bad > bad_sectors)
2874 						min_bad = bad_sectors;
2875 				}
2876 			}
2877 			if (sector_nr < first_bad) {
2878 				if (test_bit(WriteMostly, &rdev->flags)) {
2879 					if (wonly < 0)
2880 						wonly = i;
2881 				} else {
2882 					if (disk < 0)
2883 						disk = i;
2884 				}
2885 				bio->bi_opf = REQ_OP_READ;
2886 				bio->bi_end_io = end_sync_read;
2887 				read_targets++;
2888 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2889 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2890 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2891 				/*
2892 				 * The device is suitable for reading (InSync),
2893 				 * but has bad block(s) here. Let's try to correct them,
2894 				 * if we are doing resync or repair. Otherwise, leave
2895 				 * this device alone for this sync request.
2896 				 */
2897 				bio->bi_opf = REQ_OP_WRITE;
2898 				bio->bi_end_io = end_sync_write;
2899 				write_targets++;
2900 			}
2901 		}
2902 		if (rdev && bio->bi_end_io) {
2903 			atomic_inc(&rdev->nr_pending);
2904 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2905 			bio_set_dev(bio, rdev->bdev);
2906 			if (test_bit(FailFast, &rdev->flags))
2907 				bio->bi_opf |= MD_FAILFAST;
2908 		}
2909 	}
2910 	if (disk < 0)
2911 		disk = wonly;
2912 	r1_bio->read_disk = disk;
2913 
2914 	if (read_targets == 0 && min_bad > 0) {
2915 		/* These sectors are bad on all InSync devices, so we
2916 		 * need to mark them bad on all write targets
2917 		 */
2918 		int ok = 1;
2919 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2920 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2921 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2922 				ok = rdev_set_badblocks(rdev, sector_nr,
2923 							min_bad, 0
2924 					) && ok;
2925 			}
2926 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2927 		*skipped = 1;
2928 		put_buf(r1_bio);
2929 
2930 		if (!ok) {
2931 			/* Cannot record the badblocks, so need to
2932 			 * abort the resync.
2933 			 * If there are multiple read targets, could just
2934 			 * fail the really bad ones ???
2935 			 */
2936 			conf->recovery_disabled = mddev->recovery_disabled;
2937 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2938 			return 0;
2939 		} else
2940 			return min_bad;
2941 
2942 	}
2943 	if (min_bad > 0 && min_bad < good_sectors) {
2944 		/* only resync enough to reach the next bad->good
2945 		 * transition */
2946 		good_sectors = min_bad;
2947 	}
2948 
2949 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2950 		/* extra read targets are also write targets */
2951 		write_targets += read_targets-1;
2952 
2953 	if (write_targets == 0 || read_targets == 0) {
2954 		/* There is nowhere to write, so all non-sync
2955 		 * drives must be failed - so we are finished
2956 		 */
2957 		sector_t rv;
2958 		if (min_bad > 0)
2959 			max_sector = sector_nr + min_bad;
2960 		rv = max_sector - sector_nr;
2961 		*skipped = 1;
2962 		put_buf(r1_bio);
2963 		return rv;
2964 	}
2965 
2966 	if (max_sector > mddev->resync_max)
2967 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2968 	if (max_sector > sector_nr + good_sectors)
2969 		max_sector = sector_nr + good_sectors;
2970 	nr_sectors = 0;
2971 	sync_blocks = 0;
2972 	do {
2973 		struct page *page;
2974 		int len = PAGE_SIZE;
2975 		if (sector_nr + (len>>9) > max_sector)
2976 			len = (max_sector - sector_nr) << 9;
2977 		if (len == 0)
2978 			break;
2979 		if (sync_blocks == 0) {
2980 			if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
2981 						&sync_blocks, still_degraded) &&
2982 			    !conf->fullsync &&
2983 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2984 				break;
2985 			if ((len >> 9) > sync_blocks)
2986 				len = sync_blocks<<9;
2987 		}
2988 
2989 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2990 			struct resync_pages *rp;
2991 
2992 			bio = r1_bio->bios[i];
2993 			rp = get_resync_pages(bio);
2994 			if (bio->bi_end_io) {
2995 				page = resync_fetch_page(rp, page_idx);
2996 
2997 				/*
2998 				 * won't fail because the vec table is big
2999 				 * enough to hold all these pages
3000 				 */
3001 				__bio_add_page(bio, page, len, 0);
3002 			}
3003 		}
3004 		nr_sectors += len>>9;
3005 		sector_nr += len>>9;
3006 		sync_blocks -= (len>>9);
3007 	} while (++page_idx < RESYNC_PAGES);
3008 
3009 	r1_bio->sectors = nr_sectors;
3010 
3011 	if (mddev_is_clustered(mddev) &&
3012 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3013 		conf->cluster_sync_low = mddev->curr_resync_completed;
3014 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3015 		/* Send resync message */
3016 		md_cluster_ops->resync_info_update(mddev,
3017 				conf->cluster_sync_low,
3018 				conf->cluster_sync_high);
3019 	}
3020 
3021 	/* For a user-requested sync, we read all readable devices and do a
3022 	 * compare
3023 	 */
3024 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3025 		atomic_set(&r1_bio->remaining, read_targets);
3026 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3027 			bio = r1_bio->bios[i];
3028 			if (bio->bi_end_io == end_sync_read) {
3029 				read_targets--;
3030 				md_sync_acct_bio(bio, nr_sectors);
3031 				if (read_targets == 1)
3032 					bio->bi_opf &= ~MD_FAILFAST;
3033 				submit_bio_noacct(bio);
3034 			}
3035 		}
3036 	} else {
3037 		atomic_set(&r1_bio->remaining, 1);
3038 		bio = r1_bio->bios[r1_bio->read_disk];
3039 		md_sync_acct_bio(bio, nr_sectors);
3040 		if (read_targets == 1)
3041 			bio->bi_opf &= ~MD_FAILFAST;
3042 		submit_bio_noacct(bio);
3043 	}
3044 	return nr_sectors;
3045 }
3046 
3047 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3048 {
3049 	if (sectors)
3050 		return sectors;
3051 
3052 	return mddev->dev_sectors;
3053 }
3054 
3055 static struct r1conf *setup_conf(struct mddev *mddev)
3056 {
3057 	struct r1conf *conf;
3058 	int i;
3059 	struct raid1_info *disk;
3060 	struct md_rdev *rdev;
3061 	int err = -ENOMEM;
3062 
3063 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3064 	if (!conf)
3065 		goto abort;
3066 
3067 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3068 				   sizeof(atomic_t), GFP_KERNEL);
3069 	if (!conf->nr_pending)
3070 		goto abort;
3071 
3072 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3073 				   sizeof(atomic_t), GFP_KERNEL);
3074 	if (!conf->nr_waiting)
3075 		goto abort;
3076 
3077 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3078 				  sizeof(atomic_t), GFP_KERNEL);
3079 	if (!conf->nr_queued)
3080 		goto abort;
3081 
3082 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3083 				sizeof(atomic_t), GFP_KERNEL);
3084 	if (!conf->barrier)
3085 		goto abort;
3086 
3087 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3088 					    mddev->raid_disks, 2),
3089 				GFP_KERNEL);
3090 	if (!conf->mirrors)
3091 		goto abort;
3092 
3093 	conf->tmppage = alloc_page(GFP_KERNEL);
3094 	if (!conf->tmppage)
3095 		goto abort;
3096 
3097 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
3098 	if (!conf->poolinfo)
3099 		goto abort;
3100 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3101 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
3102 			   rbio_pool_free, conf->poolinfo);
3103 	if (err)
3104 		goto abort;
3105 
3106 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3107 	if (err)
3108 		goto abort;
3109 
3110 	conf->poolinfo->mddev = mddev;
3111 
3112 	err = -EINVAL;
3113 	spin_lock_init(&conf->device_lock);
3114 	conf->raid_disks = mddev->raid_disks;
3115 	rdev_for_each(rdev, mddev) {
3116 		int disk_idx = rdev->raid_disk;
3117 
3118 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3119 			continue;
3120 
3121 		if (!raid1_add_conf(conf, rdev, disk_idx,
3122 				    test_bit(Replacement, &rdev->flags)))
3123 			goto abort;
3124 	}
3125 	conf->mddev = mddev;
3126 	INIT_LIST_HEAD(&conf->retry_list);
3127 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3128 
3129 	spin_lock_init(&conf->resync_lock);
3130 	init_waitqueue_head(&conf->wait_barrier);
3131 
3132 	bio_list_init(&conf->pending_bio_list);
3133 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3134 
3135 	err = -EIO;
3136 	for (i = 0; i < conf->raid_disks * 2; i++) {
3137 
3138 		disk = conf->mirrors + i;
3139 
3140 		if (i < conf->raid_disks &&
3141 		    disk[conf->raid_disks].rdev) {
3142 			/* This slot has a replacement. */
3143 			if (!disk->rdev) {
3144 				/* No original, just make the replacement
3145 				 * a recovering spare
3146 				 */
3147 				disk->rdev =
3148 					disk[conf->raid_disks].rdev;
3149 				disk[conf->raid_disks].rdev = NULL;
3150 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3151 				/* Original is not in_sync - bad */
3152 				goto abort;
3153 		}
3154 
3155 		if (!disk->rdev ||
3156 		    !test_bit(In_sync, &disk->rdev->flags)) {
3157 			disk->head_position = 0;
3158 			if (disk->rdev &&
3159 			    (disk->rdev->saved_raid_disk < 0))
3160 				conf->fullsync = 1;
3161 		}
3162 	}
3163 
3164 	err = -ENOMEM;
3165 	rcu_assign_pointer(conf->thread,
3166 			   md_register_thread(raid1d, mddev, "raid1"));
3167 	if (!conf->thread)
3168 		goto abort;
3169 
3170 	return conf;
3171 
3172  abort:
3173 	if (conf) {
3174 		mempool_exit(&conf->r1bio_pool);
3175 		kfree(conf->mirrors);
3176 		safe_put_page(conf->tmppage);
3177 		kfree(conf->poolinfo);
3178 		kfree(conf->nr_pending);
3179 		kfree(conf->nr_waiting);
3180 		kfree(conf->nr_queued);
3181 		kfree(conf->barrier);
3182 		bioset_exit(&conf->bio_split);
3183 		kfree(conf);
3184 	}
3185 	return ERR_PTR(err);
3186 }
3187 
3188 static int raid1_set_limits(struct mddev *mddev)
3189 {
3190 	struct queue_limits lim;
3191 	int err;
3192 
3193 	md_init_stacking_limits(&lim);
3194 	lim.max_write_zeroes_sectors = 0;
3195 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3196 	if (err) {
3197 		queue_limits_cancel_update(mddev->gendisk->queue);
3198 		return err;
3199 	}
3200 	return queue_limits_set(mddev->gendisk->queue, &lim);
3201 }
3202 
3203 static int raid1_run(struct mddev *mddev)
3204 {
3205 	struct r1conf *conf;
3206 	int i;
3207 	int ret;
3208 
3209 	if (mddev->level != 1) {
3210 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3211 			mdname(mddev), mddev->level);
3212 		return -EIO;
3213 	}
3214 	if (mddev->reshape_position != MaxSector) {
3215 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3216 			mdname(mddev));
3217 		return -EIO;
3218 	}
3219 
3220 	/*
3221 	 * copy the already verified devices into our private RAID1
3222 	 * bookkeeping area. [whatever we allocate in run(),
3223 	 * should be freed in raid1_free()]
3224 	 */
3225 	if (mddev->private == NULL)
3226 		conf = setup_conf(mddev);
3227 	else
3228 		conf = mddev->private;
3229 
3230 	if (IS_ERR(conf))
3231 		return PTR_ERR(conf);
3232 
3233 	if (!mddev_is_dm(mddev)) {
3234 		ret = raid1_set_limits(mddev);
3235 		if (ret)
3236 			return ret;
3237 	}
3238 
3239 	mddev->degraded = 0;
3240 	for (i = 0; i < conf->raid_disks; i++)
3241 		if (conf->mirrors[i].rdev == NULL ||
3242 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3243 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3244 			mddev->degraded++;
3245 	/*
3246 	 * RAID1 needs at least one disk in active
3247 	 */
3248 	if (conf->raid_disks - mddev->degraded < 1) {
3249 		md_unregister_thread(mddev, &conf->thread);
3250 		return -EINVAL;
3251 	}
3252 
3253 	if (conf->raid_disks - mddev->degraded == 1)
3254 		mddev->recovery_cp = MaxSector;
3255 
3256 	if (mddev->recovery_cp != MaxSector)
3257 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3258 			mdname(mddev));
3259 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3260 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3261 		mddev->raid_disks);
3262 
3263 	/*
3264 	 * Ok, everything is just fine now
3265 	 */
3266 	rcu_assign_pointer(mddev->thread, conf->thread);
3267 	rcu_assign_pointer(conf->thread, NULL);
3268 	mddev->private = conf;
3269 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3270 
3271 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3272 
3273 	ret = md_integrity_register(mddev);
3274 	if (ret)
3275 		md_unregister_thread(mddev, &mddev->thread);
3276 	return ret;
3277 }
3278 
3279 static void raid1_free(struct mddev *mddev, void *priv)
3280 {
3281 	struct r1conf *conf = priv;
3282 
3283 	mempool_exit(&conf->r1bio_pool);
3284 	kfree(conf->mirrors);
3285 	safe_put_page(conf->tmppage);
3286 	kfree(conf->poolinfo);
3287 	kfree(conf->nr_pending);
3288 	kfree(conf->nr_waiting);
3289 	kfree(conf->nr_queued);
3290 	kfree(conf->barrier);
3291 	bioset_exit(&conf->bio_split);
3292 	kfree(conf);
3293 }
3294 
3295 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3296 {
3297 	/* no resync is happening, and there is enough space
3298 	 * on all devices, so we can resize.
3299 	 * We need to make sure resync covers any new space.
3300 	 * If the array is shrinking we should possibly wait until
3301 	 * any io in the removed space completes, but it hardly seems
3302 	 * worth it.
3303 	 */
3304 	sector_t newsize = raid1_size(mddev, sectors, 0);
3305 	int ret;
3306 
3307 	if (mddev->external_size &&
3308 	    mddev->array_sectors > newsize)
3309 		return -EINVAL;
3310 
3311 	ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
3312 	if (ret)
3313 		return ret;
3314 
3315 	md_set_array_sectors(mddev, newsize);
3316 	if (sectors > mddev->dev_sectors &&
3317 	    mddev->recovery_cp > mddev->dev_sectors) {
3318 		mddev->recovery_cp = mddev->dev_sectors;
3319 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3320 	}
3321 	mddev->dev_sectors = sectors;
3322 	mddev->resync_max_sectors = sectors;
3323 	return 0;
3324 }
3325 
3326 static int raid1_reshape(struct mddev *mddev)
3327 {
3328 	/* We need to:
3329 	 * 1/ resize the r1bio_pool
3330 	 * 2/ resize conf->mirrors
3331 	 *
3332 	 * We allocate a new r1bio_pool if we can.
3333 	 * Then raise a device barrier and wait until all IO stops.
3334 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3335 	 *
3336 	 * At the same time, we "pack" the devices so that all the missing
3337 	 * devices have the higher raid_disk numbers.
3338 	 */
3339 	mempool_t newpool, oldpool;
3340 	struct pool_info *newpoolinfo;
3341 	struct raid1_info *newmirrors;
3342 	struct r1conf *conf = mddev->private;
3343 	int cnt, raid_disks;
3344 	unsigned long flags;
3345 	int d, d2;
3346 	int ret;
3347 
3348 	memset(&newpool, 0, sizeof(newpool));
3349 	memset(&oldpool, 0, sizeof(oldpool));
3350 
3351 	/* Cannot change chunk_size, layout, or level */
3352 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3353 	    mddev->layout != mddev->new_layout ||
3354 	    mddev->level != mddev->new_level) {
3355 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3356 		mddev->new_layout = mddev->layout;
3357 		mddev->new_level = mddev->level;
3358 		return -EINVAL;
3359 	}
3360 
3361 	if (!mddev_is_clustered(mddev))
3362 		md_allow_write(mddev);
3363 
3364 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3365 
3366 	if (raid_disks < conf->raid_disks) {
3367 		cnt=0;
3368 		for (d= 0; d < conf->raid_disks; d++)
3369 			if (conf->mirrors[d].rdev)
3370 				cnt++;
3371 		if (cnt > raid_disks)
3372 			return -EBUSY;
3373 	}
3374 
3375 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3376 	if (!newpoolinfo)
3377 		return -ENOMEM;
3378 	newpoolinfo->mddev = mddev;
3379 	newpoolinfo->raid_disks = raid_disks * 2;
3380 
3381 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3382 			   rbio_pool_free, newpoolinfo);
3383 	if (ret) {
3384 		kfree(newpoolinfo);
3385 		return ret;
3386 	}
3387 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3388 					 raid_disks, 2),
3389 			     GFP_KERNEL);
3390 	if (!newmirrors) {
3391 		kfree(newpoolinfo);
3392 		mempool_exit(&newpool);
3393 		return -ENOMEM;
3394 	}
3395 
3396 	freeze_array(conf, 0);
3397 
3398 	/* ok, everything is stopped */
3399 	oldpool = conf->r1bio_pool;
3400 	conf->r1bio_pool = newpool;
3401 
3402 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3403 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3404 		if (rdev && rdev->raid_disk != d2) {
3405 			sysfs_unlink_rdev(mddev, rdev);
3406 			rdev->raid_disk = d2;
3407 			sysfs_unlink_rdev(mddev, rdev);
3408 			if (sysfs_link_rdev(mddev, rdev))
3409 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3410 					mdname(mddev), rdev->raid_disk);
3411 		}
3412 		if (rdev)
3413 			newmirrors[d2++].rdev = rdev;
3414 	}
3415 	kfree(conf->mirrors);
3416 	conf->mirrors = newmirrors;
3417 	kfree(conf->poolinfo);
3418 	conf->poolinfo = newpoolinfo;
3419 
3420 	spin_lock_irqsave(&conf->device_lock, flags);
3421 	mddev->degraded += (raid_disks - conf->raid_disks);
3422 	spin_unlock_irqrestore(&conf->device_lock, flags);
3423 	conf->raid_disks = mddev->raid_disks = raid_disks;
3424 	mddev->delta_disks = 0;
3425 
3426 	unfreeze_array(conf);
3427 
3428 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3429 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3430 	md_wakeup_thread(mddev->thread);
3431 
3432 	mempool_exit(&oldpool);
3433 	return 0;
3434 }
3435 
3436 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3437 {
3438 	struct r1conf *conf = mddev->private;
3439 
3440 	if (quiesce)
3441 		freeze_array(conf, 0);
3442 	else
3443 		unfreeze_array(conf);
3444 }
3445 
3446 static void *raid1_takeover(struct mddev *mddev)
3447 {
3448 	/* raid1 can take over:
3449 	 *  raid5 with 2 devices, any layout or chunk size
3450 	 */
3451 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3452 		struct r1conf *conf;
3453 		mddev->new_level = 1;
3454 		mddev->new_layout = 0;
3455 		mddev->new_chunk_sectors = 0;
3456 		conf = setup_conf(mddev);
3457 		if (!IS_ERR(conf)) {
3458 			/* Array must appear to be quiesced */
3459 			conf->array_frozen = 1;
3460 			mddev_clear_unsupported_flags(mddev,
3461 				UNSUPPORTED_MDDEV_FLAGS);
3462 		}
3463 		return conf;
3464 	}
3465 	return ERR_PTR(-EINVAL);
3466 }
3467 
3468 static struct md_personality raid1_personality =
3469 {
3470 	.name		= "raid1",
3471 	.level		= 1,
3472 	.owner		= THIS_MODULE,
3473 	.make_request	= raid1_make_request,
3474 	.run		= raid1_run,
3475 	.free		= raid1_free,
3476 	.status		= raid1_status,
3477 	.error_handler	= raid1_error,
3478 	.hot_add_disk	= raid1_add_disk,
3479 	.hot_remove_disk= raid1_remove_disk,
3480 	.spare_active	= raid1_spare_active,
3481 	.sync_request	= raid1_sync_request,
3482 	.resize		= raid1_resize,
3483 	.size		= raid1_size,
3484 	.check_reshape	= raid1_reshape,
3485 	.quiesce	= raid1_quiesce,
3486 	.takeover	= raid1_takeover,
3487 };
3488 
3489 static int __init raid_init(void)
3490 {
3491 	return register_md_personality(&raid1_personality);
3492 }
3493 
3494 static void raid_exit(void)
3495 {
3496 	unregister_md_personality(&raid1_personality);
3497 }
3498 
3499 module_init(raid_init);
3500 module_exit(raid_exit);
3501 MODULE_LICENSE("GPL");
3502 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3503 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3504 MODULE_ALIAS("md-raid1");
3505 MODULE_ALIAS("md-level-1");
3506