1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define RAID_1_10_NAME "raid1" 50 #include "raid1-10.c" 51 52 #define START(node) ((node)->start) 53 #define LAST(node) ((node)->last) 54 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 55 START, LAST, static inline, raid1_rb); 56 57 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 58 struct serial_info *si, int idx) 59 { 60 unsigned long flags; 61 int ret = 0; 62 sector_t lo = r1_bio->sector; 63 sector_t hi = lo + r1_bio->sectors; 64 struct serial_in_rdev *serial = &rdev->serial[idx]; 65 66 spin_lock_irqsave(&serial->serial_lock, flags); 67 /* collision happened */ 68 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 69 ret = -EBUSY; 70 else { 71 si->start = lo; 72 si->last = hi; 73 raid1_rb_insert(si, &serial->serial_rb); 74 } 75 spin_unlock_irqrestore(&serial->serial_lock, flags); 76 77 return ret; 78 } 79 80 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 81 { 82 struct mddev *mddev = rdev->mddev; 83 struct serial_info *si; 84 int idx = sector_to_idx(r1_bio->sector); 85 struct serial_in_rdev *serial = &rdev->serial[idx]; 86 87 if (WARN_ON(!mddev->serial_info_pool)) 88 return; 89 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 90 wait_event(serial->serial_io_wait, 91 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 92 } 93 94 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 95 { 96 struct serial_info *si; 97 unsigned long flags; 98 int found = 0; 99 struct mddev *mddev = rdev->mddev; 100 int idx = sector_to_idx(lo); 101 struct serial_in_rdev *serial = &rdev->serial[idx]; 102 103 spin_lock_irqsave(&serial->serial_lock, flags); 104 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 105 si; si = raid1_rb_iter_next(si, lo, hi)) { 106 if (si->start == lo && si->last == hi) { 107 raid1_rb_remove(si, &serial->serial_rb); 108 mempool_free(si, mddev->serial_info_pool); 109 found = 1; 110 break; 111 } 112 } 113 if (!found) 114 WARN(1, "The write IO is not recorded for serialization\n"); 115 spin_unlock_irqrestore(&serial->serial_lock, flags); 116 wake_up(&serial->serial_io_wait); 117 } 118 119 /* 120 * for resync bio, r1bio pointer can be retrieved from the per-bio 121 * 'struct resync_pages'. 122 */ 123 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 124 { 125 return get_resync_pages(bio)->raid_bio; 126 } 127 128 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 129 { 130 struct pool_info *pi = data; 131 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 132 133 /* allocate a r1bio with room for raid_disks entries in the bios array */ 134 return kzalloc(size, gfp_flags); 135 } 136 137 #define RESYNC_DEPTH 32 138 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 139 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 140 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 141 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 142 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 143 144 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 145 { 146 struct pool_info *pi = data; 147 struct r1bio *r1_bio; 148 struct bio *bio; 149 int need_pages; 150 int j; 151 struct resync_pages *rps; 152 153 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 154 if (!r1_bio) 155 return NULL; 156 157 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 158 gfp_flags); 159 if (!rps) 160 goto out_free_r1bio; 161 162 /* 163 * Allocate bios : 1 for reading, n-1 for writing 164 */ 165 for (j = pi->raid_disks ; j-- ; ) { 166 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 167 if (!bio) 168 goto out_free_bio; 169 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 170 r1_bio->bios[j] = bio; 171 } 172 /* 173 * Allocate RESYNC_PAGES data pages and attach them to 174 * the first bio. 175 * If this is a user-requested check/repair, allocate 176 * RESYNC_PAGES for each bio. 177 */ 178 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 179 need_pages = pi->raid_disks; 180 else 181 need_pages = 1; 182 for (j = 0; j < pi->raid_disks; j++) { 183 struct resync_pages *rp = &rps[j]; 184 185 bio = r1_bio->bios[j]; 186 187 if (j < need_pages) { 188 if (resync_alloc_pages(rp, gfp_flags)) 189 goto out_free_pages; 190 } else { 191 memcpy(rp, &rps[0], sizeof(*rp)); 192 resync_get_all_pages(rp); 193 } 194 195 rp->raid_bio = r1_bio; 196 bio->bi_private = rp; 197 } 198 199 r1_bio->master_bio = NULL; 200 201 return r1_bio; 202 203 out_free_pages: 204 while (--j >= 0) 205 resync_free_pages(&rps[j]); 206 207 out_free_bio: 208 while (++j < pi->raid_disks) { 209 bio_uninit(r1_bio->bios[j]); 210 kfree(r1_bio->bios[j]); 211 } 212 kfree(rps); 213 214 out_free_r1bio: 215 rbio_pool_free(r1_bio, data); 216 return NULL; 217 } 218 219 static void r1buf_pool_free(void *__r1_bio, void *data) 220 { 221 struct pool_info *pi = data; 222 int i; 223 struct r1bio *r1bio = __r1_bio; 224 struct resync_pages *rp = NULL; 225 226 for (i = pi->raid_disks; i--; ) { 227 rp = get_resync_pages(r1bio->bios[i]); 228 resync_free_pages(rp); 229 bio_uninit(r1bio->bios[i]); 230 kfree(r1bio->bios[i]); 231 } 232 233 /* resync pages array stored in the 1st bio's .bi_private */ 234 kfree(rp); 235 236 rbio_pool_free(r1bio, data); 237 } 238 239 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 240 { 241 int i; 242 243 for (i = 0; i < conf->raid_disks * 2; i++) { 244 struct bio **bio = r1_bio->bios + i; 245 if (!BIO_SPECIAL(*bio)) 246 bio_put(*bio); 247 *bio = NULL; 248 } 249 } 250 251 static void free_r1bio(struct r1bio *r1_bio) 252 { 253 struct r1conf *conf = r1_bio->mddev->private; 254 255 put_all_bios(conf, r1_bio); 256 mempool_free(r1_bio, &conf->r1bio_pool); 257 } 258 259 static void put_buf(struct r1bio *r1_bio) 260 { 261 struct r1conf *conf = r1_bio->mddev->private; 262 sector_t sect = r1_bio->sector; 263 int i; 264 265 for (i = 0; i < conf->raid_disks * 2; i++) { 266 struct bio *bio = r1_bio->bios[i]; 267 if (bio->bi_end_io) 268 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 269 } 270 271 mempool_free(r1_bio, &conf->r1buf_pool); 272 273 lower_barrier(conf, sect); 274 } 275 276 static void reschedule_retry(struct r1bio *r1_bio) 277 { 278 unsigned long flags; 279 struct mddev *mddev = r1_bio->mddev; 280 struct r1conf *conf = mddev->private; 281 int idx; 282 283 idx = sector_to_idx(r1_bio->sector); 284 spin_lock_irqsave(&conf->device_lock, flags); 285 list_add(&r1_bio->retry_list, &conf->retry_list); 286 atomic_inc(&conf->nr_queued[idx]); 287 spin_unlock_irqrestore(&conf->device_lock, flags); 288 289 wake_up(&conf->wait_barrier); 290 md_wakeup_thread(mddev->thread); 291 } 292 293 /* 294 * raid_end_bio_io() is called when we have finished servicing a mirrored 295 * operation and are ready to return a success/failure code to the buffer 296 * cache layer. 297 */ 298 static void call_bio_endio(struct r1bio *r1_bio) 299 { 300 struct bio *bio = r1_bio->master_bio; 301 302 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 303 bio->bi_status = BLK_STS_IOERR; 304 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 sector_t sector = r1_bio->sector; 313 314 /* if nobody has done the final endio yet, do it now */ 315 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 316 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 317 (bio_data_dir(bio) == WRITE) ? "write" : "read", 318 (unsigned long long) bio->bi_iter.bi_sector, 319 (unsigned long long) bio_end_sector(bio) - 1); 320 321 call_bio_endio(r1_bio); 322 } 323 324 free_r1bio(r1_bio); 325 /* 326 * Wake up any possible resync thread that waits for the device 327 * to go idle. All I/Os, even write-behind writes, are done. 328 */ 329 allow_barrier(conf, sector); 330 } 331 332 /* 333 * Update disk head position estimator based on IRQ completion info. 334 */ 335 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 336 { 337 struct r1conf *conf = r1_bio->mddev->private; 338 339 conf->mirrors[disk].head_position = 340 r1_bio->sector + (r1_bio->sectors); 341 } 342 343 /* 344 * Find the disk number which triggered given bio 345 */ 346 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 347 { 348 int mirror; 349 struct r1conf *conf = r1_bio->mddev->private; 350 int raid_disks = conf->raid_disks; 351 352 for (mirror = 0; mirror < raid_disks * 2; mirror++) 353 if (r1_bio->bios[mirror] == bio) 354 break; 355 356 BUG_ON(mirror == raid_disks * 2); 357 update_head_pos(mirror, r1_bio); 358 359 return mirror; 360 } 361 362 static void raid1_end_read_request(struct bio *bio) 363 { 364 int uptodate = !bio->bi_status; 365 struct r1bio *r1_bio = bio->bi_private; 366 struct r1conf *conf = r1_bio->mddev->private; 367 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 368 369 /* 370 * this branch is our 'one mirror IO has finished' event handler: 371 */ 372 update_head_pos(r1_bio->read_disk, r1_bio); 373 374 if (uptodate) 375 set_bit(R1BIO_Uptodate, &r1_bio->state); 376 else if (test_bit(FailFast, &rdev->flags) && 377 test_bit(R1BIO_FailFast, &r1_bio->state)) 378 /* This was a fail-fast read so we definitely 379 * want to retry */ 380 ; 381 else { 382 /* If all other devices have failed, we want to return 383 * the error upwards rather than fail the last device. 384 * Here we redefine "uptodate" to mean "Don't want to retry" 385 */ 386 unsigned long flags; 387 spin_lock_irqsave(&conf->device_lock, flags); 388 if (r1_bio->mddev->degraded == conf->raid_disks || 389 (r1_bio->mddev->degraded == conf->raid_disks-1 && 390 test_bit(In_sync, &rdev->flags))) 391 uptodate = 1; 392 spin_unlock_irqrestore(&conf->device_lock, flags); 393 } 394 395 if (uptodate) { 396 raid_end_bio_io(r1_bio); 397 rdev_dec_pending(rdev, conf->mddev); 398 } else { 399 /* 400 * oops, read error: 401 */ 402 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 rdev->bdev, 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 struct mddev *mddev = r1_bio->mddev; 415 416 /* it really is the end of this request */ 417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 418 bio_free_pages(r1_bio->behind_master_bio); 419 bio_put(r1_bio->behind_master_bio); 420 r1_bio->behind_master_bio = NULL; 421 } 422 423 /* clear the bitmap if all writes complete successfully */ 424 mddev->bitmap_ops->endwrite(mddev, r1_bio->sector, r1_bio->sectors, 425 !test_bit(R1BIO_Degraded, &r1_bio->state), 426 test_bit(R1BIO_BehindIO, &r1_bio->state)); 427 md_write_end(mddev); 428 } 429 430 static void r1_bio_write_done(struct r1bio *r1_bio) 431 { 432 if (!atomic_dec_and_test(&r1_bio->remaining)) 433 return; 434 435 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 436 reschedule_retry(r1_bio); 437 else { 438 close_write(r1_bio); 439 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 440 reschedule_retry(r1_bio); 441 else 442 raid_end_bio_io(r1_bio); 443 } 444 } 445 446 static void raid1_end_write_request(struct bio *bio) 447 { 448 struct r1bio *r1_bio = bio->bi_private; 449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 450 struct r1conf *conf = r1_bio->mddev->private; 451 struct bio *to_put = NULL; 452 int mirror = find_bio_disk(r1_bio, bio); 453 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 454 bool discard_error; 455 sector_t lo = r1_bio->sector; 456 sector_t hi = r1_bio->sector + r1_bio->sectors; 457 458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 459 460 /* 461 * 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_status && !discard_error) { 464 set_bit(WriteErrorSeen, &rdev->flags); 465 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 466 set_bit(MD_RECOVERY_NEEDED, & 467 conf->mddev->recovery); 468 469 if (test_bit(FailFast, &rdev->flags) && 470 (bio->bi_opf & MD_FAILFAST) && 471 /* We never try FailFast to WriteMostly devices */ 472 !test_bit(WriteMostly, &rdev->flags)) { 473 md_error(r1_bio->mddev, rdev); 474 } 475 476 /* 477 * When the device is faulty, it is not necessary to 478 * handle write error. 479 */ 480 if (!test_bit(Faulty, &rdev->flags)) 481 set_bit(R1BIO_WriteError, &r1_bio->state); 482 else { 483 /* Fail the request */ 484 set_bit(R1BIO_Degraded, &r1_bio->state); 485 /* Finished with this branch */ 486 r1_bio->bios[mirror] = NULL; 487 to_put = bio; 488 } 489 } else { 490 /* 491 * Set R1BIO_Uptodate in our master bio, so that we 492 * will return a good error code for to the higher 493 * levels even if IO on some other mirrored buffer 494 * fails. 495 * 496 * The 'master' represents the composite IO operation 497 * to user-side. So if something waits for IO, then it 498 * will wait for the 'master' bio. 499 */ 500 r1_bio->bios[mirror] = NULL; 501 to_put = bio; 502 /* 503 * Do not set R1BIO_Uptodate if the current device is 504 * rebuilding or Faulty. This is because we cannot use 505 * such device for properly reading the data back (we could 506 * potentially use it, if the current write would have felt 507 * before rdev->recovery_offset, but for simplicity we don't 508 * check this here. 509 */ 510 if (test_bit(In_sync, &rdev->flags) && 511 !test_bit(Faulty, &rdev->flags)) 512 set_bit(R1BIO_Uptodate, &r1_bio->state); 513 514 /* Maybe we can clear some bad blocks. */ 515 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 516 !discard_error) { 517 r1_bio->bios[mirror] = IO_MADE_GOOD; 518 set_bit(R1BIO_MadeGood, &r1_bio->state); 519 } 520 } 521 522 if (behind) { 523 if (test_bit(CollisionCheck, &rdev->flags)) 524 remove_serial(rdev, lo, hi); 525 if (test_bit(WriteMostly, &rdev->flags)) 526 atomic_dec(&r1_bio->behind_remaining); 527 528 /* 529 * In behind mode, we ACK the master bio once the I/O 530 * has safely reached all non-writemostly 531 * disks. Setting the Returned bit ensures that this 532 * gets done only once -- we don't ever want to return 533 * -EIO here, instead we'll wait 534 */ 535 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 536 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 537 /* Maybe we can return now */ 538 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 539 struct bio *mbio = r1_bio->master_bio; 540 pr_debug("raid1: behind end write sectors" 541 " %llu-%llu\n", 542 (unsigned long long) mbio->bi_iter.bi_sector, 543 (unsigned long long) bio_end_sector(mbio) - 1); 544 call_bio_endio(r1_bio); 545 } 546 } 547 } else if (rdev->mddev->serialize_policy) 548 remove_serial(rdev, lo, hi); 549 if (r1_bio->bios[mirror] == NULL) 550 rdev_dec_pending(rdev, conf->mddev); 551 552 /* 553 * Let's see if all mirrored write operations have finished 554 * already. 555 */ 556 r1_bio_write_done(r1_bio); 557 558 if (to_put) 559 bio_put(to_put); 560 } 561 562 static sector_t align_to_barrier_unit_end(sector_t start_sector, 563 sector_t sectors) 564 { 565 sector_t len; 566 567 WARN_ON(sectors == 0); 568 /* 569 * len is the number of sectors from start_sector to end of the 570 * barrier unit which start_sector belongs to. 571 */ 572 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 573 start_sector; 574 575 if (len > sectors) 576 len = sectors; 577 578 return len; 579 } 580 581 static void update_read_sectors(struct r1conf *conf, int disk, 582 sector_t this_sector, int len) 583 { 584 struct raid1_info *info = &conf->mirrors[disk]; 585 586 atomic_inc(&info->rdev->nr_pending); 587 if (info->next_seq_sect != this_sector) 588 info->seq_start = this_sector; 589 info->next_seq_sect = this_sector + len; 590 } 591 592 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 593 int *max_sectors) 594 { 595 sector_t this_sector = r1_bio->sector; 596 int len = r1_bio->sectors; 597 int disk; 598 599 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 600 struct md_rdev *rdev; 601 int read_len; 602 603 if (r1_bio->bios[disk] == IO_BLOCKED) 604 continue; 605 606 rdev = conf->mirrors[disk].rdev; 607 if (!rdev || test_bit(Faulty, &rdev->flags)) 608 continue; 609 610 /* choose the first disk even if it has some bad blocks. */ 611 read_len = raid1_check_read_range(rdev, this_sector, &len); 612 if (read_len > 0) { 613 update_read_sectors(conf, disk, this_sector, read_len); 614 *max_sectors = read_len; 615 return disk; 616 } 617 } 618 619 return -1; 620 } 621 622 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) 623 { 624 return !test_bit(In_sync, &rdev->flags) && 625 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; 626 } 627 628 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 629 int *max_sectors) 630 { 631 sector_t this_sector = r1_bio->sector; 632 int best_disk = -1; 633 int best_len = 0; 634 int disk; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 struct md_rdev *rdev; 638 int len; 639 int read_len; 640 641 if (r1_bio->bios[disk] == IO_BLOCKED) 642 continue; 643 644 rdev = conf->mirrors[disk].rdev; 645 if (!rdev || test_bit(Faulty, &rdev->flags) || 646 rdev_in_recovery(rdev, r1_bio) || 647 test_bit(WriteMostly, &rdev->flags)) 648 continue; 649 650 /* keep track of the disk with the most readable sectors. */ 651 len = r1_bio->sectors; 652 read_len = raid1_check_read_range(rdev, this_sector, &len); 653 if (read_len > best_len) { 654 best_disk = disk; 655 best_len = read_len; 656 } 657 } 658 659 if (best_disk != -1) { 660 *max_sectors = best_len; 661 update_read_sectors(conf, best_disk, this_sector, best_len); 662 } 663 664 return best_disk; 665 } 666 667 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 668 int *max_sectors) 669 { 670 sector_t this_sector = r1_bio->sector; 671 int bb_disk = -1; 672 int bb_read_len = 0; 673 int disk; 674 675 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 676 struct md_rdev *rdev; 677 int len; 678 int read_len; 679 680 if (r1_bio->bios[disk] == IO_BLOCKED) 681 continue; 682 683 rdev = conf->mirrors[disk].rdev; 684 if (!rdev || test_bit(Faulty, &rdev->flags) || 685 !test_bit(WriteMostly, &rdev->flags) || 686 rdev_in_recovery(rdev, r1_bio)) 687 continue; 688 689 /* there are no bad blocks, we can use this disk */ 690 len = r1_bio->sectors; 691 read_len = raid1_check_read_range(rdev, this_sector, &len); 692 if (read_len == r1_bio->sectors) { 693 *max_sectors = read_len; 694 update_read_sectors(conf, disk, this_sector, read_len); 695 return disk; 696 } 697 698 /* 699 * there are partial bad blocks, choose the rdev with largest 700 * read length. 701 */ 702 if (read_len > bb_read_len) { 703 bb_disk = disk; 704 bb_read_len = read_len; 705 } 706 } 707 708 if (bb_disk != -1) { 709 *max_sectors = bb_read_len; 710 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 711 } 712 713 return bb_disk; 714 } 715 716 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 717 { 718 /* TODO: address issues with this check and concurrency. */ 719 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 720 conf->mirrors[disk].head_position == r1_bio->sector; 721 } 722 723 /* 724 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 725 * disk. If yes, choose the idle disk. 726 */ 727 static bool should_choose_next(struct r1conf *conf, int disk) 728 { 729 struct raid1_info *mirror = &conf->mirrors[disk]; 730 int opt_iosize; 731 732 if (!test_bit(Nonrot, &mirror->rdev->flags)) 733 return false; 734 735 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 736 return opt_iosize > 0 && mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 739 } 740 741 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 742 { 743 if (!rdev || test_bit(Faulty, &rdev->flags)) 744 return false; 745 746 if (rdev_in_recovery(rdev, r1_bio)) 747 return false; 748 749 /* don't read from slow disk unless have to */ 750 if (test_bit(WriteMostly, &rdev->flags)) 751 return false; 752 753 /* don't split IO for bad blocks unless have to */ 754 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 755 return false; 756 757 return true; 758 } 759 760 struct read_balance_ctl { 761 sector_t closest_dist; 762 int closest_dist_disk; 763 int min_pending; 764 int min_pending_disk; 765 int sequential_disk; 766 int readable_disks; 767 }; 768 769 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 770 { 771 int disk; 772 struct read_balance_ctl ctl = { 773 .closest_dist_disk = -1, 774 .closest_dist = MaxSector, 775 .min_pending_disk = -1, 776 .min_pending = UINT_MAX, 777 .sequential_disk = -1, 778 }; 779 780 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 781 struct md_rdev *rdev; 782 sector_t dist; 783 unsigned int pending; 784 785 if (r1_bio->bios[disk] == IO_BLOCKED) 786 continue; 787 788 rdev = conf->mirrors[disk].rdev; 789 if (!rdev_readable(rdev, r1_bio)) 790 continue; 791 792 /* At least two disks to choose from so failfast is OK */ 793 if (ctl.readable_disks++ == 1) 794 set_bit(R1BIO_FailFast, &r1_bio->state); 795 796 pending = atomic_read(&rdev->nr_pending); 797 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 798 799 /* Don't change to another disk for sequential reads */ 800 if (is_sequential(conf, disk, r1_bio)) { 801 if (!should_choose_next(conf, disk)) 802 return disk; 803 804 /* 805 * Add 'pending' to avoid choosing this disk if 806 * there is other idle disk. 807 */ 808 pending++; 809 /* 810 * If there is no other idle disk, this disk 811 * will be chosen. 812 */ 813 ctl.sequential_disk = disk; 814 } 815 816 if (ctl.min_pending > pending) { 817 ctl.min_pending = pending; 818 ctl.min_pending_disk = disk; 819 } 820 821 if (ctl.closest_dist > dist) { 822 ctl.closest_dist = dist; 823 ctl.closest_dist_disk = disk; 824 } 825 } 826 827 /* 828 * sequential IO size exceeds optimal iosize, however, there is no other 829 * idle disk, so choose the sequential disk. 830 */ 831 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 832 return ctl.sequential_disk; 833 834 /* 835 * If all disks are rotational, choose the closest disk. If any disk is 836 * non-rotational, choose the disk with less pending request even the 837 * disk is rotational, which might/might not be optimal for raids with 838 * mixed ratation/non-rotational disks depending on workload. 839 */ 840 if (ctl.min_pending_disk != -1 && 841 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 842 return ctl.min_pending_disk; 843 else 844 return ctl.closest_dist_disk; 845 } 846 847 /* 848 * This routine returns the disk from which the requested read should be done. 849 * 850 * 1) If resync is in progress, find the first usable disk and use it even if it 851 * has some bad blocks. 852 * 853 * 2) Now that there is no resync, loop through all disks and skipping slow 854 * disks and disks with bad blocks for now. Only pay attention to key disk 855 * choice. 856 * 857 * 3) If we've made it this far, now look for disks with bad blocks and choose 858 * the one with most number of sectors. 859 * 860 * 4) If we are all the way at the end, we have no choice but to use a disk even 861 * if it is write mostly. 862 * 863 * The rdev for the device selected will have nr_pending incremented. 864 */ 865 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 866 int *max_sectors) 867 { 868 int disk; 869 870 clear_bit(R1BIO_FailFast, &r1_bio->state); 871 872 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 873 r1_bio->sectors)) 874 return choose_first_rdev(conf, r1_bio, max_sectors); 875 876 disk = choose_best_rdev(conf, r1_bio); 877 if (disk >= 0) { 878 *max_sectors = r1_bio->sectors; 879 update_read_sectors(conf, disk, r1_bio->sector, 880 r1_bio->sectors); 881 return disk; 882 } 883 884 /* 885 * If we are here it means we didn't find a perfectly good disk so 886 * now spend a bit more time trying to find one with the most good 887 * sectors. 888 */ 889 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 890 if (disk >= 0) 891 return disk; 892 893 return choose_slow_rdev(conf, r1_bio, max_sectors); 894 } 895 896 static void wake_up_barrier(struct r1conf *conf) 897 { 898 if (wq_has_sleeper(&conf->wait_barrier)) 899 wake_up(&conf->wait_barrier); 900 } 901 902 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 903 { 904 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 905 raid1_prepare_flush_writes(conf->mddev); 906 wake_up_barrier(conf); 907 908 while (bio) { /* submit pending writes */ 909 struct bio *next = bio->bi_next; 910 911 raid1_submit_write(bio); 912 bio = next; 913 cond_resched(); 914 } 915 } 916 917 static void flush_pending_writes(struct r1conf *conf) 918 { 919 /* Any writes that have been queued but are awaiting 920 * bitmap updates get flushed here. 921 */ 922 spin_lock_irq(&conf->device_lock); 923 924 if (conf->pending_bio_list.head) { 925 struct blk_plug plug; 926 struct bio *bio; 927 928 bio = bio_list_get(&conf->pending_bio_list); 929 spin_unlock_irq(&conf->device_lock); 930 931 /* 932 * As this is called in a wait_event() loop (see freeze_array), 933 * current->state might be TASK_UNINTERRUPTIBLE which will 934 * cause a warning when we prepare to wait again. As it is 935 * rare that this path is taken, it is perfectly safe to force 936 * us to go around the wait_event() loop again, so the warning 937 * is a false-positive. Silence the warning by resetting 938 * thread state 939 */ 940 __set_current_state(TASK_RUNNING); 941 blk_start_plug(&plug); 942 flush_bio_list(conf, bio); 943 blk_finish_plug(&plug); 944 } else 945 spin_unlock_irq(&conf->device_lock); 946 } 947 948 /* Barriers.... 949 * Sometimes we need to suspend IO while we do something else, 950 * either some resync/recovery, or reconfigure the array. 951 * To do this we raise a 'barrier'. 952 * The 'barrier' is a counter that can be raised multiple times 953 * to count how many activities are happening which preclude 954 * normal IO. 955 * We can only raise the barrier if there is no pending IO. 956 * i.e. if nr_pending == 0. 957 * We choose only to raise the barrier if no-one is waiting for the 958 * barrier to go down. This means that as soon as an IO request 959 * is ready, no other operations which require a barrier will start 960 * until the IO request has had a chance. 961 * 962 * So: regular IO calls 'wait_barrier'. When that returns there 963 * is no backgroup IO happening, It must arrange to call 964 * allow_barrier when it has finished its IO. 965 * backgroup IO calls must call raise_barrier. Once that returns 966 * there is no normal IO happeing. It must arrange to call 967 * lower_barrier when the particular background IO completes. 968 * 969 * If resync/recovery is interrupted, returns -EINTR; 970 * Otherwise, returns 0. 971 */ 972 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 973 { 974 int idx = sector_to_idx(sector_nr); 975 976 spin_lock_irq(&conf->resync_lock); 977 978 /* Wait until no block IO is waiting */ 979 wait_event_lock_irq(conf->wait_barrier, 980 !atomic_read(&conf->nr_waiting[idx]), 981 conf->resync_lock); 982 983 /* block any new IO from starting */ 984 atomic_inc(&conf->barrier[idx]); 985 /* 986 * In raise_barrier() we firstly increase conf->barrier[idx] then 987 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 988 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 989 * A memory barrier here to make sure conf->nr_pending[idx] won't 990 * be fetched before conf->barrier[idx] is increased. Otherwise 991 * there will be a race between raise_barrier() and _wait_barrier(). 992 */ 993 smp_mb__after_atomic(); 994 995 /* For these conditions we must wait: 996 * A: while the array is in frozen state 997 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 998 * existing in corresponding I/O barrier bucket. 999 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 1000 * max resync count which allowed on current I/O barrier bucket. 1001 */ 1002 wait_event_lock_irq(conf->wait_barrier, 1003 (!conf->array_frozen && 1004 !atomic_read(&conf->nr_pending[idx]) && 1005 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 1006 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 1007 conf->resync_lock); 1008 1009 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1010 atomic_dec(&conf->barrier[idx]); 1011 spin_unlock_irq(&conf->resync_lock); 1012 wake_up(&conf->wait_barrier); 1013 return -EINTR; 1014 } 1015 1016 atomic_inc(&conf->nr_sync_pending); 1017 spin_unlock_irq(&conf->resync_lock); 1018 1019 return 0; 1020 } 1021 1022 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1023 { 1024 int idx = sector_to_idx(sector_nr); 1025 1026 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1027 1028 atomic_dec(&conf->barrier[idx]); 1029 atomic_dec(&conf->nr_sync_pending); 1030 wake_up(&conf->wait_barrier); 1031 } 1032 1033 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1034 { 1035 bool ret = true; 1036 1037 /* 1038 * We need to increase conf->nr_pending[idx] very early here, 1039 * then raise_barrier() can be blocked when it waits for 1040 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1041 * conf->resync_lock when there is no barrier raised in same 1042 * barrier unit bucket. Also if the array is frozen, I/O 1043 * should be blocked until array is unfrozen. 1044 */ 1045 atomic_inc(&conf->nr_pending[idx]); 1046 /* 1047 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1048 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1049 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1050 * barrier is necessary here to make sure conf->barrier[idx] won't be 1051 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1052 * will be a race between _wait_barrier() and raise_barrier(). 1053 */ 1054 smp_mb__after_atomic(); 1055 1056 /* 1057 * Don't worry about checking two atomic_t variables at same time 1058 * here. If during we check conf->barrier[idx], the array is 1059 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1060 * 0, it is safe to return and make the I/O continue. Because the 1061 * array is frozen, all I/O returned here will eventually complete 1062 * or be queued, no race will happen. See code comment in 1063 * frozen_array(). 1064 */ 1065 if (!READ_ONCE(conf->array_frozen) && 1066 !atomic_read(&conf->barrier[idx])) 1067 return ret; 1068 1069 /* 1070 * After holding conf->resync_lock, conf->nr_pending[idx] 1071 * should be decreased before waiting for barrier to drop. 1072 * Otherwise, we may encounter a race condition because 1073 * raise_barrer() might be waiting for conf->nr_pending[idx] 1074 * to be 0 at same time. 1075 */ 1076 spin_lock_irq(&conf->resync_lock); 1077 atomic_inc(&conf->nr_waiting[idx]); 1078 atomic_dec(&conf->nr_pending[idx]); 1079 /* 1080 * In case freeze_array() is waiting for 1081 * get_unqueued_pending() == extra 1082 */ 1083 wake_up_barrier(conf); 1084 /* Wait for the barrier in same barrier unit bucket to drop. */ 1085 1086 /* Return false when nowait flag is set */ 1087 if (nowait) { 1088 ret = false; 1089 } else { 1090 wait_event_lock_irq(conf->wait_barrier, 1091 !conf->array_frozen && 1092 !atomic_read(&conf->barrier[idx]), 1093 conf->resync_lock); 1094 atomic_inc(&conf->nr_pending[idx]); 1095 } 1096 1097 atomic_dec(&conf->nr_waiting[idx]); 1098 spin_unlock_irq(&conf->resync_lock); 1099 return ret; 1100 } 1101 1102 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1103 { 1104 int idx = sector_to_idx(sector_nr); 1105 bool ret = true; 1106 1107 /* 1108 * Very similar to _wait_barrier(). The difference is, for read 1109 * I/O we don't need wait for sync I/O, but if the whole array 1110 * is frozen, the read I/O still has to wait until the array is 1111 * unfrozen. Since there is no ordering requirement with 1112 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1113 */ 1114 atomic_inc(&conf->nr_pending[idx]); 1115 1116 if (!READ_ONCE(conf->array_frozen)) 1117 return ret; 1118 1119 spin_lock_irq(&conf->resync_lock); 1120 atomic_inc(&conf->nr_waiting[idx]); 1121 atomic_dec(&conf->nr_pending[idx]); 1122 /* 1123 * In case freeze_array() is waiting for 1124 * get_unqueued_pending() == extra 1125 */ 1126 wake_up_barrier(conf); 1127 /* Wait for array to be unfrozen */ 1128 1129 /* Return false when nowait flag is set */ 1130 if (nowait) { 1131 /* Return false when nowait flag is set */ 1132 ret = false; 1133 } else { 1134 wait_event_lock_irq(conf->wait_barrier, 1135 !conf->array_frozen, 1136 conf->resync_lock); 1137 atomic_inc(&conf->nr_pending[idx]); 1138 } 1139 1140 atomic_dec(&conf->nr_waiting[idx]); 1141 spin_unlock_irq(&conf->resync_lock); 1142 return ret; 1143 } 1144 1145 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1146 { 1147 int idx = sector_to_idx(sector_nr); 1148 1149 return _wait_barrier(conf, idx, nowait); 1150 } 1151 1152 static void _allow_barrier(struct r1conf *conf, int idx) 1153 { 1154 atomic_dec(&conf->nr_pending[idx]); 1155 wake_up_barrier(conf); 1156 } 1157 1158 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1159 { 1160 int idx = sector_to_idx(sector_nr); 1161 1162 _allow_barrier(conf, idx); 1163 } 1164 1165 /* conf->resync_lock should be held */ 1166 static int get_unqueued_pending(struct r1conf *conf) 1167 { 1168 int idx, ret; 1169 1170 ret = atomic_read(&conf->nr_sync_pending); 1171 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1172 ret += atomic_read(&conf->nr_pending[idx]) - 1173 atomic_read(&conf->nr_queued[idx]); 1174 1175 return ret; 1176 } 1177 1178 static void freeze_array(struct r1conf *conf, int extra) 1179 { 1180 /* Stop sync I/O and normal I/O and wait for everything to 1181 * go quiet. 1182 * This is called in two situations: 1183 * 1) management command handlers (reshape, remove disk, quiesce). 1184 * 2) one normal I/O request failed. 1185 1186 * After array_frozen is set to 1, new sync IO will be blocked at 1187 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1188 * or wait_read_barrier(). The flying I/Os will either complete or be 1189 * queued. When everything goes quite, there are only queued I/Os left. 1190 1191 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1192 * barrier bucket index which this I/O request hits. When all sync and 1193 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1194 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1195 * in handle_read_error(), we may call freeze_array() before trying to 1196 * fix the read error. In this case, the error read I/O is not queued, 1197 * so get_unqueued_pending() == 1. 1198 * 1199 * Therefore before this function returns, we need to wait until 1200 * get_unqueued_pendings(conf) gets equal to extra. For 1201 * normal I/O context, extra is 1, in rested situations extra is 0. 1202 */ 1203 spin_lock_irq(&conf->resync_lock); 1204 conf->array_frozen = 1; 1205 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1206 wait_event_lock_irq_cmd( 1207 conf->wait_barrier, 1208 get_unqueued_pending(conf) == extra, 1209 conf->resync_lock, 1210 flush_pending_writes(conf)); 1211 spin_unlock_irq(&conf->resync_lock); 1212 } 1213 static void unfreeze_array(struct r1conf *conf) 1214 { 1215 /* reverse the effect of the freeze */ 1216 spin_lock_irq(&conf->resync_lock); 1217 conf->array_frozen = 0; 1218 spin_unlock_irq(&conf->resync_lock); 1219 wake_up(&conf->wait_barrier); 1220 } 1221 1222 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1223 struct bio *bio) 1224 { 1225 int size = bio->bi_iter.bi_size; 1226 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1227 int i = 0; 1228 struct bio *behind_bio = NULL; 1229 1230 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1231 &r1_bio->mddev->bio_set); 1232 1233 /* discard op, we don't support writezero/writesame yet */ 1234 if (!bio_has_data(bio)) { 1235 behind_bio->bi_iter.bi_size = size; 1236 goto skip_copy; 1237 } 1238 1239 while (i < vcnt && size) { 1240 struct page *page; 1241 int len = min_t(int, PAGE_SIZE, size); 1242 1243 page = alloc_page(GFP_NOIO); 1244 if (unlikely(!page)) 1245 goto free_pages; 1246 1247 if (!bio_add_page(behind_bio, page, len, 0)) { 1248 put_page(page); 1249 goto free_pages; 1250 } 1251 1252 size -= len; 1253 i++; 1254 } 1255 1256 bio_copy_data(behind_bio, bio); 1257 skip_copy: 1258 r1_bio->behind_master_bio = behind_bio; 1259 set_bit(R1BIO_BehindIO, &r1_bio->state); 1260 1261 return; 1262 1263 free_pages: 1264 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1265 bio->bi_iter.bi_size); 1266 bio_free_pages(behind_bio); 1267 bio_put(behind_bio); 1268 } 1269 1270 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1271 { 1272 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1273 cb); 1274 struct mddev *mddev = plug->cb.data; 1275 struct r1conf *conf = mddev->private; 1276 struct bio *bio; 1277 1278 if (from_schedule) { 1279 spin_lock_irq(&conf->device_lock); 1280 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1281 spin_unlock_irq(&conf->device_lock); 1282 wake_up_barrier(conf); 1283 md_wakeup_thread(mddev->thread); 1284 kfree(plug); 1285 return; 1286 } 1287 1288 /* we aren't scheduling, so we can do the write-out directly. */ 1289 bio = bio_list_get(&plug->pending); 1290 flush_bio_list(conf, bio); 1291 kfree(plug); 1292 } 1293 1294 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1295 { 1296 r1_bio->master_bio = bio; 1297 r1_bio->sectors = bio_sectors(bio); 1298 r1_bio->state = 0; 1299 r1_bio->mddev = mddev; 1300 r1_bio->sector = bio->bi_iter.bi_sector; 1301 } 1302 1303 static inline struct r1bio * 1304 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1305 { 1306 struct r1conf *conf = mddev->private; 1307 struct r1bio *r1_bio; 1308 1309 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1310 /* Ensure no bio records IO_BLOCKED */ 1311 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1312 init_r1bio(r1_bio, mddev, bio); 1313 return r1_bio; 1314 } 1315 1316 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1317 int max_read_sectors, struct r1bio *r1_bio) 1318 { 1319 struct r1conf *conf = mddev->private; 1320 struct raid1_info *mirror; 1321 struct bio *read_bio; 1322 const enum req_op op = bio_op(bio); 1323 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1324 int max_sectors; 1325 int rdisk; 1326 bool r1bio_existed = !!r1_bio; 1327 1328 /* 1329 * If r1_bio is set, we are blocking the raid1d thread 1330 * so there is a tiny risk of deadlock. So ask for 1331 * emergency memory if needed. 1332 */ 1333 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1334 1335 /* 1336 * Still need barrier for READ in case that whole 1337 * array is frozen. 1338 */ 1339 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1340 bio->bi_opf & REQ_NOWAIT)) { 1341 bio_wouldblock_error(bio); 1342 return; 1343 } 1344 1345 if (!r1_bio) 1346 r1_bio = alloc_r1bio(mddev, bio); 1347 else 1348 init_r1bio(r1_bio, mddev, bio); 1349 r1_bio->sectors = max_read_sectors; 1350 1351 /* 1352 * make_request() can abort the operation when read-ahead is being 1353 * used and no empty request is available. 1354 */ 1355 rdisk = read_balance(conf, r1_bio, &max_sectors); 1356 if (rdisk < 0) { 1357 /* couldn't find anywhere to read from */ 1358 if (r1bio_existed) 1359 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 1360 mdname(mddev), 1361 conf->mirrors[r1_bio->read_disk].rdev->bdev, 1362 r1_bio->sector); 1363 raid_end_bio_io(r1_bio); 1364 return; 1365 } 1366 mirror = conf->mirrors + rdisk; 1367 1368 if (r1bio_existed) 1369 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1370 mdname(mddev), 1371 (unsigned long long)r1_bio->sector, 1372 mirror->rdev->bdev); 1373 1374 if (test_bit(WriteMostly, &mirror->rdev->flags)) { 1375 /* 1376 * Reading from a write-mostly device must take care not to 1377 * over-take any writes that are 'behind' 1378 */ 1379 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1380 mddev->bitmap_ops->wait_behind_writes(mddev); 1381 } 1382 1383 if (max_sectors < bio_sectors(bio)) { 1384 struct bio *split = bio_split(bio, max_sectors, 1385 gfp, &conf->bio_split); 1386 bio_chain(split, bio); 1387 submit_bio_noacct(bio); 1388 bio = split; 1389 r1_bio->master_bio = bio; 1390 r1_bio->sectors = max_sectors; 1391 } 1392 1393 r1_bio->read_disk = rdisk; 1394 if (!r1bio_existed) { 1395 md_account_bio(mddev, &bio); 1396 r1_bio->master_bio = bio; 1397 } 1398 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1399 &mddev->bio_set); 1400 1401 r1_bio->bios[rdisk] = read_bio; 1402 1403 read_bio->bi_iter.bi_sector = r1_bio->sector + 1404 mirror->rdev->data_offset; 1405 read_bio->bi_end_io = raid1_end_read_request; 1406 read_bio->bi_opf = op | do_sync; 1407 if (test_bit(FailFast, &mirror->rdev->flags) && 1408 test_bit(R1BIO_FailFast, &r1_bio->state)) 1409 read_bio->bi_opf |= MD_FAILFAST; 1410 read_bio->bi_private = r1_bio; 1411 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1412 submit_bio_noacct(read_bio); 1413 } 1414 1415 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1416 int max_write_sectors) 1417 { 1418 struct r1conf *conf = mddev->private; 1419 struct r1bio *r1_bio; 1420 int i, disks; 1421 unsigned long flags; 1422 struct md_rdev *blocked_rdev; 1423 int first_clone; 1424 int max_sectors; 1425 bool write_behind = false; 1426 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1427 1428 if (mddev_is_clustered(mddev) && 1429 md_cluster_ops->area_resyncing(mddev, WRITE, 1430 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1431 1432 DEFINE_WAIT(w); 1433 if (bio->bi_opf & REQ_NOWAIT) { 1434 bio_wouldblock_error(bio); 1435 return; 1436 } 1437 for (;;) { 1438 prepare_to_wait(&conf->wait_barrier, 1439 &w, TASK_IDLE); 1440 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1441 bio->bi_iter.bi_sector, 1442 bio_end_sector(bio))) 1443 break; 1444 schedule(); 1445 } 1446 finish_wait(&conf->wait_barrier, &w); 1447 } 1448 1449 /* 1450 * Register the new request and wait if the reconstruction 1451 * thread has put up a bar for new requests. 1452 * Continue immediately if no resync is active currently. 1453 */ 1454 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1455 bio->bi_opf & REQ_NOWAIT)) { 1456 bio_wouldblock_error(bio); 1457 return; 1458 } 1459 1460 retry_write: 1461 r1_bio = alloc_r1bio(mddev, bio); 1462 r1_bio->sectors = max_write_sectors; 1463 1464 /* first select target devices under rcu_lock and 1465 * inc refcount on their rdev. Record them by setting 1466 * bios[x] to bio 1467 * If there are known/acknowledged bad blocks on any device on 1468 * which we have seen a write error, we want to avoid writing those 1469 * blocks. 1470 * This potentially requires several writes to write around 1471 * the bad blocks. Each set of writes gets it's own r1bio 1472 * with a set of bios attached. 1473 */ 1474 1475 disks = conf->raid_disks * 2; 1476 blocked_rdev = NULL; 1477 max_sectors = r1_bio->sectors; 1478 for (i = 0; i < disks; i++) { 1479 struct md_rdev *rdev = conf->mirrors[i].rdev; 1480 1481 /* 1482 * The write-behind io is only attempted on drives marked as 1483 * write-mostly, which means we could allocate write behind 1484 * bio later. 1485 */ 1486 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1487 write_behind = true; 1488 1489 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1490 atomic_inc(&rdev->nr_pending); 1491 blocked_rdev = rdev; 1492 break; 1493 } 1494 r1_bio->bios[i] = NULL; 1495 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1496 if (i < conf->raid_disks) 1497 set_bit(R1BIO_Degraded, &r1_bio->state); 1498 continue; 1499 } 1500 1501 atomic_inc(&rdev->nr_pending); 1502 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1503 sector_t first_bad; 1504 int bad_sectors; 1505 int is_bad; 1506 1507 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1508 &first_bad, &bad_sectors); 1509 if (is_bad < 0) { 1510 /* mustn't write here until the bad block is 1511 * acknowledged*/ 1512 set_bit(BlockedBadBlocks, &rdev->flags); 1513 blocked_rdev = rdev; 1514 break; 1515 } 1516 if (is_bad && first_bad <= r1_bio->sector) { 1517 /* Cannot write here at all */ 1518 bad_sectors -= (r1_bio->sector - first_bad); 1519 if (bad_sectors < max_sectors) 1520 /* mustn't write more than bad_sectors 1521 * to other devices yet 1522 */ 1523 max_sectors = bad_sectors; 1524 rdev_dec_pending(rdev, mddev); 1525 /* We don't set R1BIO_Degraded as that 1526 * only applies if the disk is 1527 * missing, so it might be re-added, 1528 * and we want to know to recover this 1529 * chunk. 1530 * In this case the device is here, 1531 * and the fact that this chunk is not 1532 * in-sync is recorded in the bad 1533 * block log 1534 */ 1535 continue; 1536 } 1537 if (is_bad) { 1538 int good_sectors = first_bad - r1_bio->sector; 1539 if (good_sectors < max_sectors) 1540 max_sectors = good_sectors; 1541 } 1542 } 1543 r1_bio->bios[i] = bio; 1544 } 1545 1546 if (unlikely(blocked_rdev)) { 1547 /* Wait for this device to become unblocked */ 1548 int j; 1549 1550 for (j = 0; j < i; j++) 1551 if (r1_bio->bios[j]) 1552 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1553 mempool_free(r1_bio, &conf->r1bio_pool); 1554 allow_barrier(conf, bio->bi_iter.bi_sector); 1555 1556 if (bio->bi_opf & REQ_NOWAIT) { 1557 bio_wouldblock_error(bio); 1558 return; 1559 } 1560 mddev_add_trace_msg(mddev, "raid1 wait rdev %d blocked", 1561 blocked_rdev->raid_disk); 1562 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1563 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1564 goto retry_write; 1565 } 1566 1567 /* 1568 * When using a bitmap, we may call alloc_behind_master_bio below. 1569 * alloc_behind_master_bio allocates a copy of the data payload a page 1570 * at a time and thus needs a new bio that can fit the whole payload 1571 * this bio in page sized chunks. 1572 */ 1573 if (write_behind && mddev->bitmap) 1574 max_sectors = min_t(int, max_sectors, 1575 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1576 if (max_sectors < bio_sectors(bio)) { 1577 struct bio *split = bio_split(bio, max_sectors, 1578 GFP_NOIO, &conf->bio_split); 1579 bio_chain(split, bio); 1580 submit_bio_noacct(bio); 1581 bio = split; 1582 r1_bio->master_bio = bio; 1583 r1_bio->sectors = max_sectors; 1584 } 1585 1586 md_account_bio(mddev, &bio); 1587 r1_bio->master_bio = bio; 1588 atomic_set(&r1_bio->remaining, 1); 1589 atomic_set(&r1_bio->behind_remaining, 0); 1590 1591 first_clone = 1; 1592 1593 for (i = 0; i < disks; i++) { 1594 struct bio *mbio = NULL; 1595 struct md_rdev *rdev = conf->mirrors[i].rdev; 1596 if (!r1_bio->bios[i]) 1597 continue; 1598 1599 if (first_clone) { 1600 unsigned long max_write_behind = 1601 mddev->bitmap_info.max_write_behind; 1602 struct md_bitmap_stats stats; 1603 int err; 1604 1605 /* do behind I/O ? 1606 * Not if there are too many, or cannot 1607 * allocate memory, or a reader on WriteMostly 1608 * is waiting for behind writes to flush */ 1609 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1610 if (!err && write_behind && !stats.behind_wait && 1611 stats.behind_writes < max_write_behind) 1612 alloc_behind_master_bio(r1_bio, bio); 1613 1614 mddev->bitmap_ops->startwrite( 1615 mddev, r1_bio->sector, r1_bio->sectors, 1616 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1617 first_clone = 0; 1618 } 1619 1620 if (r1_bio->behind_master_bio) { 1621 mbio = bio_alloc_clone(rdev->bdev, 1622 r1_bio->behind_master_bio, 1623 GFP_NOIO, &mddev->bio_set); 1624 if (test_bit(CollisionCheck, &rdev->flags)) 1625 wait_for_serialization(rdev, r1_bio); 1626 if (test_bit(WriteMostly, &rdev->flags)) 1627 atomic_inc(&r1_bio->behind_remaining); 1628 } else { 1629 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1630 &mddev->bio_set); 1631 1632 if (mddev->serialize_policy) 1633 wait_for_serialization(rdev, r1_bio); 1634 } 1635 1636 r1_bio->bios[i] = mbio; 1637 1638 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1639 mbio->bi_end_io = raid1_end_write_request; 1640 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1641 if (test_bit(FailFast, &rdev->flags) && 1642 !test_bit(WriteMostly, &rdev->flags) && 1643 conf->raid_disks - mddev->degraded > 1) 1644 mbio->bi_opf |= MD_FAILFAST; 1645 mbio->bi_private = r1_bio; 1646 1647 atomic_inc(&r1_bio->remaining); 1648 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1649 /* flush_pending_writes() needs access to the rdev so...*/ 1650 mbio->bi_bdev = (void *)rdev; 1651 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1652 spin_lock_irqsave(&conf->device_lock, flags); 1653 bio_list_add(&conf->pending_bio_list, mbio); 1654 spin_unlock_irqrestore(&conf->device_lock, flags); 1655 md_wakeup_thread(mddev->thread); 1656 } 1657 } 1658 1659 r1_bio_write_done(r1_bio); 1660 1661 /* In case raid1d snuck in to freeze_array */ 1662 wake_up_barrier(conf); 1663 } 1664 1665 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1666 { 1667 sector_t sectors; 1668 1669 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1670 && md_flush_request(mddev, bio)) 1671 return true; 1672 1673 /* 1674 * There is a limit to the maximum size, but 1675 * the read/write handler might find a lower limit 1676 * due to bad blocks. To avoid multiple splits, 1677 * we pass the maximum number of sectors down 1678 * and let the lower level perform the split. 1679 */ 1680 sectors = align_to_barrier_unit_end( 1681 bio->bi_iter.bi_sector, bio_sectors(bio)); 1682 1683 if (bio_data_dir(bio) == READ) 1684 raid1_read_request(mddev, bio, sectors, NULL); 1685 else { 1686 md_write_start(mddev,bio); 1687 raid1_write_request(mddev, bio, sectors); 1688 } 1689 return true; 1690 } 1691 1692 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1693 { 1694 struct r1conf *conf = mddev->private; 1695 int i; 1696 1697 lockdep_assert_held(&mddev->lock); 1698 1699 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1700 conf->raid_disks - mddev->degraded); 1701 for (i = 0; i < conf->raid_disks; i++) { 1702 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1703 1704 seq_printf(seq, "%s", 1705 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1706 } 1707 seq_printf(seq, "]"); 1708 } 1709 1710 /** 1711 * raid1_error() - RAID1 error handler. 1712 * @mddev: affected md device. 1713 * @rdev: member device to fail. 1714 * 1715 * The routine acknowledges &rdev failure and determines new @mddev state. 1716 * If it failed, then: 1717 * - &MD_BROKEN flag is set in &mddev->flags. 1718 * - recovery is disabled. 1719 * Otherwise, it must be degraded: 1720 * - recovery is interrupted. 1721 * - &mddev->degraded is bumped. 1722 * 1723 * @rdev is marked as &Faulty excluding case when array is failed and 1724 * &mddev->fail_last_dev is off. 1725 */ 1726 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1727 { 1728 struct r1conf *conf = mddev->private; 1729 unsigned long flags; 1730 1731 spin_lock_irqsave(&conf->device_lock, flags); 1732 1733 if (test_bit(In_sync, &rdev->flags) && 1734 (conf->raid_disks - mddev->degraded) == 1) { 1735 set_bit(MD_BROKEN, &mddev->flags); 1736 1737 if (!mddev->fail_last_dev) { 1738 conf->recovery_disabled = mddev->recovery_disabled; 1739 spin_unlock_irqrestore(&conf->device_lock, flags); 1740 return; 1741 } 1742 } 1743 set_bit(Blocked, &rdev->flags); 1744 if (test_and_clear_bit(In_sync, &rdev->flags)) 1745 mddev->degraded++; 1746 set_bit(Faulty, &rdev->flags); 1747 spin_unlock_irqrestore(&conf->device_lock, flags); 1748 /* 1749 * if recovery is running, make sure it aborts. 1750 */ 1751 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1752 set_mask_bits(&mddev->sb_flags, 0, 1753 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1754 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1755 "md/raid1:%s: Operation continuing on %d devices.\n", 1756 mdname(mddev), rdev->bdev, 1757 mdname(mddev), conf->raid_disks - mddev->degraded); 1758 } 1759 1760 static void print_conf(struct r1conf *conf) 1761 { 1762 int i; 1763 1764 pr_debug("RAID1 conf printout:\n"); 1765 if (!conf) { 1766 pr_debug("(!conf)\n"); 1767 return; 1768 } 1769 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1770 conf->raid_disks); 1771 1772 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1773 for (i = 0; i < conf->raid_disks; i++) { 1774 struct md_rdev *rdev = conf->mirrors[i].rdev; 1775 if (rdev) 1776 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1777 i, !test_bit(In_sync, &rdev->flags), 1778 !test_bit(Faulty, &rdev->flags), 1779 rdev->bdev); 1780 } 1781 } 1782 1783 static void close_sync(struct r1conf *conf) 1784 { 1785 int idx; 1786 1787 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1788 _wait_barrier(conf, idx, false); 1789 _allow_barrier(conf, idx); 1790 } 1791 1792 mempool_exit(&conf->r1buf_pool); 1793 } 1794 1795 static int raid1_spare_active(struct mddev *mddev) 1796 { 1797 int i; 1798 struct r1conf *conf = mddev->private; 1799 int count = 0; 1800 unsigned long flags; 1801 1802 /* 1803 * Find all failed disks within the RAID1 configuration 1804 * and mark them readable. 1805 * Called under mddev lock, so rcu protection not needed. 1806 * device_lock used to avoid races with raid1_end_read_request 1807 * which expects 'In_sync' flags and ->degraded to be consistent. 1808 */ 1809 spin_lock_irqsave(&conf->device_lock, flags); 1810 for (i = 0; i < conf->raid_disks; i++) { 1811 struct md_rdev *rdev = conf->mirrors[i].rdev; 1812 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1813 if (repl 1814 && !test_bit(Candidate, &repl->flags) 1815 && repl->recovery_offset == MaxSector 1816 && !test_bit(Faulty, &repl->flags) 1817 && !test_and_set_bit(In_sync, &repl->flags)) { 1818 /* replacement has just become active */ 1819 if (!rdev || 1820 !test_and_clear_bit(In_sync, &rdev->flags)) 1821 count++; 1822 if (rdev) { 1823 /* Replaced device not technically 1824 * faulty, but we need to be sure 1825 * it gets removed and never re-added 1826 */ 1827 set_bit(Faulty, &rdev->flags); 1828 sysfs_notify_dirent_safe( 1829 rdev->sysfs_state); 1830 } 1831 } 1832 if (rdev 1833 && rdev->recovery_offset == MaxSector 1834 && !test_bit(Faulty, &rdev->flags) 1835 && !test_and_set_bit(In_sync, &rdev->flags)) { 1836 count++; 1837 sysfs_notify_dirent_safe(rdev->sysfs_state); 1838 } 1839 } 1840 mddev->degraded -= count; 1841 spin_unlock_irqrestore(&conf->device_lock, flags); 1842 1843 print_conf(conf); 1844 return count; 1845 } 1846 1847 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1848 bool replacement) 1849 { 1850 struct raid1_info *info = conf->mirrors + disk; 1851 1852 if (replacement) 1853 info += conf->raid_disks; 1854 1855 if (info->rdev) 1856 return false; 1857 1858 if (bdev_nonrot(rdev->bdev)) { 1859 set_bit(Nonrot, &rdev->flags); 1860 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1861 } 1862 1863 rdev->raid_disk = disk; 1864 info->head_position = 0; 1865 info->seq_start = MaxSector; 1866 WRITE_ONCE(info->rdev, rdev); 1867 1868 return true; 1869 } 1870 1871 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1872 { 1873 struct raid1_info *info = conf->mirrors + disk; 1874 struct md_rdev *rdev = info->rdev; 1875 1876 if (!rdev || test_bit(In_sync, &rdev->flags) || 1877 atomic_read(&rdev->nr_pending)) 1878 return false; 1879 1880 /* Only remove non-faulty devices if recovery is not possible. */ 1881 if (!test_bit(Faulty, &rdev->flags) && 1882 rdev->mddev->recovery_disabled != conf->recovery_disabled && 1883 rdev->mddev->degraded < conf->raid_disks) 1884 return false; 1885 1886 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1887 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1888 1889 WRITE_ONCE(info->rdev, NULL); 1890 return true; 1891 } 1892 1893 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1894 { 1895 struct r1conf *conf = mddev->private; 1896 int err = -EEXIST; 1897 int mirror = 0, repl_slot = -1; 1898 struct raid1_info *p; 1899 int first = 0; 1900 int last = conf->raid_disks - 1; 1901 1902 if (mddev->recovery_disabled == conf->recovery_disabled) 1903 return -EBUSY; 1904 1905 if (rdev->raid_disk >= 0) 1906 first = last = rdev->raid_disk; 1907 1908 /* 1909 * find the disk ... but prefer rdev->saved_raid_disk 1910 * if possible. 1911 */ 1912 if (rdev->saved_raid_disk >= 0 && 1913 rdev->saved_raid_disk >= first && 1914 rdev->saved_raid_disk < conf->raid_disks && 1915 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1916 first = last = rdev->saved_raid_disk; 1917 1918 for (mirror = first; mirror <= last; mirror++) { 1919 p = conf->mirrors + mirror; 1920 if (!p->rdev) { 1921 err = mddev_stack_new_rdev(mddev, rdev); 1922 if (err) 1923 return err; 1924 1925 raid1_add_conf(conf, rdev, mirror, false); 1926 /* As all devices are equivalent, we don't need a full recovery 1927 * if this was recently any drive of the array 1928 */ 1929 if (rdev->saved_raid_disk < 0) 1930 conf->fullsync = 1; 1931 break; 1932 } 1933 if (test_bit(WantReplacement, &p->rdev->flags) && 1934 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1935 repl_slot = mirror; 1936 } 1937 1938 if (err && repl_slot >= 0) { 1939 /* Add this device as a replacement */ 1940 clear_bit(In_sync, &rdev->flags); 1941 set_bit(Replacement, &rdev->flags); 1942 raid1_add_conf(conf, rdev, repl_slot, true); 1943 err = 0; 1944 conf->fullsync = 1; 1945 } 1946 1947 print_conf(conf); 1948 return err; 1949 } 1950 1951 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1952 { 1953 struct r1conf *conf = mddev->private; 1954 int err = 0; 1955 int number = rdev->raid_disk; 1956 struct raid1_info *p = conf->mirrors + number; 1957 1958 if (unlikely(number >= conf->raid_disks)) 1959 goto abort; 1960 1961 if (rdev != p->rdev) { 1962 number += conf->raid_disks; 1963 p = conf->mirrors + number; 1964 } 1965 1966 print_conf(conf); 1967 if (rdev == p->rdev) { 1968 if (!raid1_remove_conf(conf, number)) { 1969 err = -EBUSY; 1970 goto abort; 1971 } 1972 1973 if (number < conf->raid_disks && 1974 conf->mirrors[conf->raid_disks + number].rdev) { 1975 /* We just removed a device that is being replaced. 1976 * Move down the replacement. We drain all IO before 1977 * doing this to avoid confusion. 1978 */ 1979 struct md_rdev *repl = 1980 conf->mirrors[conf->raid_disks + number].rdev; 1981 freeze_array(conf, 0); 1982 if (atomic_read(&repl->nr_pending)) { 1983 /* It means that some queued IO of retry_list 1984 * hold repl. Thus, we cannot set replacement 1985 * as NULL, avoiding rdev NULL pointer 1986 * dereference in sync_request_write and 1987 * handle_write_finished. 1988 */ 1989 err = -EBUSY; 1990 unfreeze_array(conf); 1991 goto abort; 1992 } 1993 clear_bit(Replacement, &repl->flags); 1994 WRITE_ONCE(p->rdev, repl); 1995 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1996 unfreeze_array(conf); 1997 } 1998 1999 clear_bit(WantReplacement, &rdev->flags); 2000 err = md_integrity_register(mddev); 2001 } 2002 abort: 2003 2004 print_conf(conf); 2005 return err; 2006 } 2007 2008 static void end_sync_read(struct bio *bio) 2009 { 2010 struct r1bio *r1_bio = get_resync_r1bio(bio); 2011 2012 update_head_pos(r1_bio->read_disk, r1_bio); 2013 2014 /* 2015 * we have read a block, now it needs to be re-written, 2016 * or re-read if the read failed. 2017 * We don't do much here, just schedule handling by raid1d 2018 */ 2019 if (!bio->bi_status) 2020 set_bit(R1BIO_Uptodate, &r1_bio->state); 2021 2022 if (atomic_dec_and_test(&r1_bio->remaining)) 2023 reschedule_retry(r1_bio); 2024 } 2025 2026 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2027 { 2028 sector_t sync_blocks = 0; 2029 sector_t s = r1_bio->sector; 2030 long sectors_to_go = r1_bio->sectors; 2031 2032 /* make sure these bits don't get cleared. */ 2033 do { 2034 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks); 2035 s += sync_blocks; 2036 sectors_to_go -= sync_blocks; 2037 } while (sectors_to_go > 0); 2038 } 2039 2040 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 2041 { 2042 if (atomic_dec_and_test(&r1_bio->remaining)) { 2043 struct mddev *mddev = r1_bio->mddev; 2044 int s = r1_bio->sectors; 2045 2046 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2047 test_bit(R1BIO_WriteError, &r1_bio->state)) 2048 reschedule_retry(r1_bio); 2049 else { 2050 put_buf(r1_bio); 2051 md_done_sync(mddev, s, uptodate); 2052 } 2053 } 2054 } 2055 2056 static void end_sync_write(struct bio *bio) 2057 { 2058 int uptodate = !bio->bi_status; 2059 struct r1bio *r1_bio = get_resync_r1bio(bio); 2060 struct mddev *mddev = r1_bio->mddev; 2061 struct r1conf *conf = mddev->private; 2062 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2063 2064 if (!uptodate) { 2065 abort_sync_write(mddev, r1_bio); 2066 set_bit(WriteErrorSeen, &rdev->flags); 2067 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2068 set_bit(MD_RECOVERY_NEEDED, & 2069 mddev->recovery); 2070 set_bit(R1BIO_WriteError, &r1_bio->state); 2071 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2072 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2073 r1_bio->sector, r1_bio->sectors)) { 2074 set_bit(R1BIO_MadeGood, &r1_bio->state); 2075 } 2076 2077 put_sync_write_buf(r1_bio, uptodate); 2078 } 2079 2080 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2081 int sectors, struct page *page, blk_opf_t rw) 2082 { 2083 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2084 /* success */ 2085 return 1; 2086 if (rw == REQ_OP_WRITE) { 2087 set_bit(WriteErrorSeen, &rdev->flags); 2088 if (!test_and_set_bit(WantReplacement, 2089 &rdev->flags)) 2090 set_bit(MD_RECOVERY_NEEDED, & 2091 rdev->mddev->recovery); 2092 } 2093 /* need to record an error - either for the block or the device */ 2094 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2095 md_error(rdev->mddev, rdev); 2096 return 0; 2097 } 2098 2099 static int fix_sync_read_error(struct r1bio *r1_bio) 2100 { 2101 /* Try some synchronous reads of other devices to get 2102 * good data, much like with normal read errors. Only 2103 * read into the pages we already have so we don't 2104 * need to re-issue the read request. 2105 * We don't need to freeze the array, because being in an 2106 * active sync request, there is no normal IO, and 2107 * no overlapping syncs. 2108 * We don't need to check is_badblock() again as we 2109 * made sure that anything with a bad block in range 2110 * will have bi_end_io clear. 2111 */ 2112 struct mddev *mddev = r1_bio->mddev; 2113 struct r1conf *conf = mddev->private; 2114 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2115 struct page **pages = get_resync_pages(bio)->pages; 2116 sector_t sect = r1_bio->sector; 2117 int sectors = r1_bio->sectors; 2118 int idx = 0; 2119 struct md_rdev *rdev; 2120 2121 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2122 if (test_bit(FailFast, &rdev->flags)) { 2123 /* Don't try recovering from here - just fail it 2124 * ... unless it is the last working device of course */ 2125 md_error(mddev, rdev); 2126 if (test_bit(Faulty, &rdev->flags)) 2127 /* Don't try to read from here, but make sure 2128 * put_buf does it's thing 2129 */ 2130 bio->bi_end_io = end_sync_write; 2131 } 2132 2133 while(sectors) { 2134 int s = sectors; 2135 int d = r1_bio->read_disk; 2136 int success = 0; 2137 int start; 2138 2139 if (s > (PAGE_SIZE>>9)) 2140 s = PAGE_SIZE >> 9; 2141 do { 2142 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2143 /* No rcu protection needed here devices 2144 * can only be removed when no resync is 2145 * active, and resync is currently active 2146 */ 2147 rdev = conf->mirrors[d].rdev; 2148 if (sync_page_io(rdev, sect, s<<9, 2149 pages[idx], 2150 REQ_OP_READ, false)) { 2151 success = 1; 2152 break; 2153 } 2154 } 2155 d++; 2156 if (d == conf->raid_disks * 2) 2157 d = 0; 2158 } while (!success && d != r1_bio->read_disk); 2159 2160 if (!success) { 2161 int abort = 0; 2162 /* Cannot read from anywhere, this block is lost. 2163 * Record a bad block on each device. If that doesn't 2164 * work just disable and interrupt the recovery. 2165 * Don't fail devices as that won't really help. 2166 */ 2167 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2168 mdname(mddev), bio->bi_bdev, 2169 (unsigned long long)r1_bio->sector); 2170 for (d = 0; d < conf->raid_disks * 2; d++) { 2171 rdev = conf->mirrors[d].rdev; 2172 if (!rdev || test_bit(Faulty, &rdev->flags)) 2173 continue; 2174 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2175 abort = 1; 2176 } 2177 if (abort) { 2178 conf->recovery_disabled = 2179 mddev->recovery_disabled; 2180 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2181 md_done_sync(mddev, r1_bio->sectors, 0); 2182 put_buf(r1_bio); 2183 return 0; 2184 } 2185 /* Try next page */ 2186 sectors -= s; 2187 sect += s; 2188 idx++; 2189 continue; 2190 } 2191 2192 start = d; 2193 /* write it back and re-read */ 2194 while (d != r1_bio->read_disk) { 2195 if (d == 0) 2196 d = conf->raid_disks * 2; 2197 d--; 2198 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2199 continue; 2200 rdev = conf->mirrors[d].rdev; 2201 if (r1_sync_page_io(rdev, sect, s, 2202 pages[idx], 2203 REQ_OP_WRITE) == 0) { 2204 r1_bio->bios[d]->bi_end_io = NULL; 2205 rdev_dec_pending(rdev, mddev); 2206 } 2207 } 2208 d = start; 2209 while (d != r1_bio->read_disk) { 2210 if (d == 0) 2211 d = conf->raid_disks * 2; 2212 d--; 2213 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2214 continue; 2215 rdev = conf->mirrors[d].rdev; 2216 if (r1_sync_page_io(rdev, sect, s, 2217 pages[idx], 2218 REQ_OP_READ) != 0) 2219 atomic_add(s, &rdev->corrected_errors); 2220 } 2221 sectors -= s; 2222 sect += s; 2223 idx ++; 2224 } 2225 set_bit(R1BIO_Uptodate, &r1_bio->state); 2226 bio->bi_status = 0; 2227 return 1; 2228 } 2229 2230 static void process_checks(struct r1bio *r1_bio) 2231 { 2232 /* We have read all readable devices. If we haven't 2233 * got the block, then there is no hope left. 2234 * If we have, then we want to do a comparison 2235 * and skip the write if everything is the same. 2236 * If any blocks failed to read, then we need to 2237 * attempt an over-write 2238 */ 2239 struct mddev *mddev = r1_bio->mddev; 2240 struct r1conf *conf = mddev->private; 2241 int primary; 2242 int i; 2243 int vcnt; 2244 2245 /* Fix variable parts of all bios */ 2246 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2247 for (i = 0; i < conf->raid_disks * 2; i++) { 2248 blk_status_t status; 2249 struct bio *b = r1_bio->bios[i]; 2250 struct resync_pages *rp = get_resync_pages(b); 2251 if (b->bi_end_io != end_sync_read) 2252 continue; 2253 /* fixup the bio for reuse, but preserve errno */ 2254 status = b->bi_status; 2255 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2256 b->bi_status = status; 2257 b->bi_iter.bi_sector = r1_bio->sector + 2258 conf->mirrors[i].rdev->data_offset; 2259 b->bi_end_io = end_sync_read; 2260 rp->raid_bio = r1_bio; 2261 b->bi_private = rp; 2262 2263 /* initialize bvec table again */ 2264 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2265 } 2266 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2267 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2268 !r1_bio->bios[primary]->bi_status) { 2269 r1_bio->bios[primary]->bi_end_io = NULL; 2270 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2271 break; 2272 } 2273 r1_bio->read_disk = primary; 2274 for (i = 0; i < conf->raid_disks * 2; i++) { 2275 int j = 0; 2276 struct bio *pbio = r1_bio->bios[primary]; 2277 struct bio *sbio = r1_bio->bios[i]; 2278 blk_status_t status = sbio->bi_status; 2279 struct page **ppages = get_resync_pages(pbio)->pages; 2280 struct page **spages = get_resync_pages(sbio)->pages; 2281 struct bio_vec *bi; 2282 int page_len[RESYNC_PAGES] = { 0 }; 2283 struct bvec_iter_all iter_all; 2284 2285 if (sbio->bi_end_io != end_sync_read) 2286 continue; 2287 /* Now we can 'fixup' the error value */ 2288 sbio->bi_status = 0; 2289 2290 bio_for_each_segment_all(bi, sbio, iter_all) 2291 page_len[j++] = bi->bv_len; 2292 2293 if (!status) { 2294 for (j = vcnt; j-- ; ) { 2295 if (memcmp(page_address(ppages[j]), 2296 page_address(spages[j]), 2297 page_len[j])) 2298 break; 2299 } 2300 } else 2301 j = 0; 2302 if (j >= 0) 2303 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2304 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2305 && !status)) { 2306 /* No need to write to this device. */ 2307 sbio->bi_end_io = NULL; 2308 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2309 continue; 2310 } 2311 2312 bio_copy_data(sbio, pbio); 2313 } 2314 } 2315 2316 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2317 { 2318 struct r1conf *conf = mddev->private; 2319 int i; 2320 int disks = conf->raid_disks * 2; 2321 struct bio *wbio; 2322 2323 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2324 /* ouch - failed to read all of that. */ 2325 if (!fix_sync_read_error(r1_bio)) 2326 return; 2327 2328 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2329 process_checks(r1_bio); 2330 2331 /* 2332 * schedule writes 2333 */ 2334 atomic_set(&r1_bio->remaining, 1); 2335 for (i = 0; i < disks ; i++) { 2336 wbio = r1_bio->bios[i]; 2337 if (wbio->bi_end_io == NULL || 2338 (wbio->bi_end_io == end_sync_read && 2339 (i == r1_bio->read_disk || 2340 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2341 continue; 2342 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2343 abort_sync_write(mddev, r1_bio); 2344 continue; 2345 } 2346 2347 wbio->bi_opf = REQ_OP_WRITE; 2348 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2349 wbio->bi_opf |= MD_FAILFAST; 2350 2351 wbio->bi_end_io = end_sync_write; 2352 atomic_inc(&r1_bio->remaining); 2353 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2354 2355 submit_bio_noacct(wbio); 2356 } 2357 2358 put_sync_write_buf(r1_bio, 1); 2359 } 2360 2361 /* 2362 * This is a kernel thread which: 2363 * 2364 * 1. Retries failed read operations on working mirrors. 2365 * 2. Updates the raid superblock when problems encounter. 2366 * 3. Performs writes following reads for array synchronising. 2367 */ 2368 2369 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2370 { 2371 sector_t sect = r1_bio->sector; 2372 int sectors = r1_bio->sectors; 2373 int read_disk = r1_bio->read_disk; 2374 struct mddev *mddev = conf->mddev; 2375 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2376 2377 if (exceed_read_errors(mddev, rdev)) { 2378 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2379 return; 2380 } 2381 2382 while(sectors) { 2383 int s = sectors; 2384 int d = read_disk; 2385 int success = 0; 2386 int start; 2387 2388 if (s > (PAGE_SIZE>>9)) 2389 s = PAGE_SIZE >> 9; 2390 2391 do { 2392 rdev = conf->mirrors[d].rdev; 2393 if (rdev && 2394 (test_bit(In_sync, &rdev->flags) || 2395 (!test_bit(Faulty, &rdev->flags) && 2396 rdev->recovery_offset >= sect + s)) && 2397 rdev_has_badblock(rdev, sect, s) == 0) { 2398 atomic_inc(&rdev->nr_pending); 2399 if (sync_page_io(rdev, sect, s<<9, 2400 conf->tmppage, REQ_OP_READ, false)) 2401 success = 1; 2402 rdev_dec_pending(rdev, mddev); 2403 if (success) 2404 break; 2405 } 2406 2407 d++; 2408 if (d == conf->raid_disks * 2) 2409 d = 0; 2410 } while (d != read_disk); 2411 2412 if (!success) { 2413 /* Cannot read from anywhere - mark it bad */ 2414 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2415 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2416 md_error(mddev, rdev); 2417 break; 2418 } 2419 /* write it back and re-read */ 2420 start = d; 2421 while (d != read_disk) { 2422 if (d==0) 2423 d = conf->raid_disks * 2; 2424 d--; 2425 rdev = conf->mirrors[d].rdev; 2426 if (rdev && 2427 !test_bit(Faulty, &rdev->flags)) { 2428 atomic_inc(&rdev->nr_pending); 2429 r1_sync_page_io(rdev, sect, s, 2430 conf->tmppage, REQ_OP_WRITE); 2431 rdev_dec_pending(rdev, mddev); 2432 } 2433 } 2434 d = start; 2435 while (d != read_disk) { 2436 if (d==0) 2437 d = conf->raid_disks * 2; 2438 d--; 2439 rdev = conf->mirrors[d].rdev; 2440 if (rdev && 2441 !test_bit(Faulty, &rdev->flags)) { 2442 atomic_inc(&rdev->nr_pending); 2443 if (r1_sync_page_io(rdev, sect, s, 2444 conf->tmppage, REQ_OP_READ)) { 2445 atomic_add(s, &rdev->corrected_errors); 2446 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2447 mdname(mddev), s, 2448 (unsigned long long)(sect + 2449 rdev->data_offset), 2450 rdev->bdev); 2451 } 2452 rdev_dec_pending(rdev, mddev); 2453 } 2454 } 2455 sectors -= s; 2456 sect += s; 2457 } 2458 } 2459 2460 static int narrow_write_error(struct r1bio *r1_bio, int i) 2461 { 2462 struct mddev *mddev = r1_bio->mddev; 2463 struct r1conf *conf = mddev->private; 2464 struct md_rdev *rdev = conf->mirrors[i].rdev; 2465 2466 /* bio has the data to be written to device 'i' where 2467 * we just recently had a write error. 2468 * We repeatedly clone the bio and trim down to one block, 2469 * then try the write. Where the write fails we record 2470 * a bad block. 2471 * It is conceivable that the bio doesn't exactly align with 2472 * blocks. We must handle this somehow. 2473 * 2474 * We currently own a reference on the rdev. 2475 */ 2476 2477 int block_sectors; 2478 sector_t sector; 2479 int sectors; 2480 int sect_to_write = r1_bio->sectors; 2481 int ok = 1; 2482 2483 if (rdev->badblocks.shift < 0) 2484 return 0; 2485 2486 block_sectors = roundup(1 << rdev->badblocks.shift, 2487 bdev_logical_block_size(rdev->bdev) >> 9); 2488 sector = r1_bio->sector; 2489 sectors = ((sector + block_sectors) 2490 & ~(sector_t)(block_sectors - 1)) 2491 - sector; 2492 2493 while (sect_to_write) { 2494 struct bio *wbio; 2495 if (sectors > sect_to_write) 2496 sectors = sect_to_write; 2497 /* Write at 'sector' for 'sectors'*/ 2498 2499 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2500 wbio = bio_alloc_clone(rdev->bdev, 2501 r1_bio->behind_master_bio, 2502 GFP_NOIO, &mddev->bio_set); 2503 } else { 2504 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2505 GFP_NOIO, &mddev->bio_set); 2506 } 2507 2508 wbio->bi_opf = REQ_OP_WRITE; 2509 wbio->bi_iter.bi_sector = r1_bio->sector; 2510 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2511 2512 bio_trim(wbio, sector - r1_bio->sector, sectors); 2513 wbio->bi_iter.bi_sector += rdev->data_offset; 2514 2515 if (submit_bio_wait(wbio) < 0) 2516 /* failure! */ 2517 ok = rdev_set_badblocks(rdev, sector, 2518 sectors, 0) 2519 && ok; 2520 2521 bio_put(wbio); 2522 sect_to_write -= sectors; 2523 sector += sectors; 2524 sectors = block_sectors; 2525 } 2526 return ok; 2527 } 2528 2529 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2530 { 2531 int m; 2532 int s = r1_bio->sectors; 2533 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2534 struct md_rdev *rdev = conf->mirrors[m].rdev; 2535 struct bio *bio = r1_bio->bios[m]; 2536 if (bio->bi_end_io == NULL) 2537 continue; 2538 if (!bio->bi_status && 2539 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2540 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2541 } 2542 if (bio->bi_status && 2543 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2544 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2545 md_error(conf->mddev, rdev); 2546 } 2547 } 2548 put_buf(r1_bio); 2549 md_done_sync(conf->mddev, s, 1); 2550 } 2551 2552 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2553 { 2554 int m, idx; 2555 bool fail = false; 2556 2557 for (m = 0; m < conf->raid_disks * 2 ; m++) 2558 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2559 struct md_rdev *rdev = conf->mirrors[m].rdev; 2560 rdev_clear_badblocks(rdev, 2561 r1_bio->sector, 2562 r1_bio->sectors, 0); 2563 rdev_dec_pending(rdev, conf->mddev); 2564 } else if (r1_bio->bios[m] != NULL) { 2565 /* This drive got a write error. We need to 2566 * narrow down and record precise write 2567 * errors. 2568 */ 2569 fail = true; 2570 if (!narrow_write_error(r1_bio, m)) { 2571 md_error(conf->mddev, 2572 conf->mirrors[m].rdev); 2573 /* an I/O failed, we can't clear the bitmap */ 2574 set_bit(R1BIO_Degraded, &r1_bio->state); 2575 } 2576 rdev_dec_pending(conf->mirrors[m].rdev, 2577 conf->mddev); 2578 } 2579 if (fail) { 2580 spin_lock_irq(&conf->device_lock); 2581 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2582 idx = sector_to_idx(r1_bio->sector); 2583 atomic_inc(&conf->nr_queued[idx]); 2584 spin_unlock_irq(&conf->device_lock); 2585 /* 2586 * In case freeze_array() is waiting for condition 2587 * get_unqueued_pending() == extra to be true. 2588 */ 2589 wake_up(&conf->wait_barrier); 2590 md_wakeup_thread(conf->mddev->thread); 2591 } else { 2592 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2593 close_write(r1_bio); 2594 raid_end_bio_io(r1_bio); 2595 } 2596 } 2597 2598 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2599 { 2600 struct mddev *mddev = conf->mddev; 2601 struct bio *bio; 2602 struct md_rdev *rdev; 2603 sector_t sector; 2604 2605 clear_bit(R1BIO_ReadError, &r1_bio->state); 2606 /* we got a read error. Maybe the drive is bad. Maybe just 2607 * the block and we can fix it. 2608 * We freeze all other IO, and try reading the block from 2609 * other devices. When we find one, we re-write 2610 * and check it that fixes the read error. 2611 * This is all done synchronously while the array is 2612 * frozen 2613 */ 2614 2615 bio = r1_bio->bios[r1_bio->read_disk]; 2616 bio_put(bio); 2617 r1_bio->bios[r1_bio->read_disk] = NULL; 2618 2619 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2620 if (mddev->ro == 0 2621 && !test_bit(FailFast, &rdev->flags)) { 2622 freeze_array(conf, 1); 2623 fix_read_error(conf, r1_bio); 2624 unfreeze_array(conf); 2625 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2626 md_error(mddev, rdev); 2627 } else { 2628 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2629 } 2630 2631 rdev_dec_pending(rdev, conf->mddev); 2632 sector = r1_bio->sector; 2633 bio = r1_bio->master_bio; 2634 2635 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2636 r1_bio->state = 0; 2637 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2638 allow_barrier(conf, sector); 2639 } 2640 2641 static void raid1d(struct md_thread *thread) 2642 { 2643 struct mddev *mddev = thread->mddev; 2644 struct r1bio *r1_bio; 2645 unsigned long flags; 2646 struct r1conf *conf = mddev->private; 2647 struct list_head *head = &conf->retry_list; 2648 struct blk_plug plug; 2649 int idx; 2650 2651 md_check_recovery(mddev); 2652 2653 if (!list_empty_careful(&conf->bio_end_io_list) && 2654 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2655 LIST_HEAD(tmp); 2656 spin_lock_irqsave(&conf->device_lock, flags); 2657 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2658 list_splice_init(&conf->bio_end_io_list, &tmp); 2659 spin_unlock_irqrestore(&conf->device_lock, flags); 2660 while (!list_empty(&tmp)) { 2661 r1_bio = list_first_entry(&tmp, struct r1bio, 2662 retry_list); 2663 list_del(&r1_bio->retry_list); 2664 idx = sector_to_idx(r1_bio->sector); 2665 atomic_dec(&conf->nr_queued[idx]); 2666 if (mddev->degraded) 2667 set_bit(R1BIO_Degraded, &r1_bio->state); 2668 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2669 close_write(r1_bio); 2670 raid_end_bio_io(r1_bio); 2671 } 2672 } 2673 2674 blk_start_plug(&plug); 2675 for (;;) { 2676 2677 flush_pending_writes(conf); 2678 2679 spin_lock_irqsave(&conf->device_lock, flags); 2680 if (list_empty(head)) { 2681 spin_unlock_irqrestore(&conf->device_lock, flags); 2682 break; 2683 } 2684 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2685 list_del(head->prev); 2686 idx = sector_to_idx(r1_bio->sector); 2687 atomic_dec(&conf->nr_queued[idx]); 2688 spin_unlock_irqrestore(&conf->device_lock, flags); 2689 2690 mddev = r1_bio->mddev; 2691 conf = mddev->private; 2692 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2693 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2694 test_bit(R1BIO_WriteError, &r1_bio->state)) 2695 handle_sync_write_finished(conf, r1_bio); 2696 else 2697 sync_request_write(mddev, r1_bio); 2698 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2699 test_bit(R1BIO_WriteError, &r1_bio->state)) 2700 handle_write_finished(conf, r1_bio); 2701 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2702 handle_read_error(conf, r1_bio); 2703 else 2704 WARN_ON_ONCE(1); 2705 2706 cond_resched(); 2707 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2708 md_check_recovery(mddev); 2709 } 2710 blk_finish_plug(&plug); 2711 } 2712 2713 static int init_resync(struct r1conf *conf) 2714 { 2715 int buffs; 2716 2717 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2718 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2719 2720 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2721 r1buf_pool_free, conf->poolinfo); 2722 } 2723 2724 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2725 { 2726 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2727 struct resync_pages *rps; 2728 struct bio *bio; 2729 int i; 2730 2731 for (i = conf->poolinfo->raid_disks; i--; ) { 2732 bio = r1bio->bios[i]; 2733 rps = bio->bi_private; 2734 bio_reset(bio, NULL, 0); 2735 bio->bi_private = rps; 2736 } 2737 r1bio->master_bio = NULL; 2738 return r1bio; 2739 } 2740 2741 /* 2742 * perform a "sync" on one "block" 2743 * 2744 * We need to make sure that no normal I/O request - particularly write 2745 * requests - conflict with active sync requests. 2746 * 2747 * This is achieved by tracking pending requests and a 'barrier' concept 2748 * that can be installed to exclude normal IO requests. 2749 */ 2750 2751 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2752 sector_t max_sector, int *skipped) 2753 { 2754 struct r1conf *conf = mddev->private; 2755 struct r1bio *r1_bio; 2756 struct bio *bio; 2757 sector_t nr_sectors; 2758 int disk = -1; 2759 int i; 2760 int wonly = -1; 2761 int write_targets = 0, read_targets = 0; 2762 sector_t sync_blocks; 2763 bool still_degraded = false; 2764 int good_sectors = RESYNC_SECTORS; 2765 int min_bad = 0; /* number of sectors that are bad in all devices */ 2766 int idx = sector_to_idx(sector_nr); 2767 int page_idx = 0; 2768 2769 if (!mempool_initialized(&conf->r1buf_pool)) 2770 if (init_resync(conf)) 2771 return 0; 2772 2773 if (sector_nr >= max_sector) { 2774 /* If we aborted, we need to abort the 2775 * sync on the 'current' bitmap chunk (there will 2776 * only be one in raid1 resync. 2777 * We can find the current addess in mddev->curr_resync 2778 */ 2779 if (mddev->curr_resync < max_sector) /* aborted */ 2780 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 2781 &sync_blocks); 2782 else /* completed sync */ 2783 conf->fullsync = 0; 2784 2785 mddev->bitmap_ops->close_sync(mddev); 2786 close_sync(conf); 2787 2788 if (mddev_is_clustered(mddev)) { 2789 conf->cluster_sync_low = 0; 2790 conf->cluster_sync_high = 0; 2791 } 2792 return 0; 2793 } 2794 2795 if (mddev->bitmap == NULL && 2796 mddev->recovery_cp == MaxSector && 2797 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2798 conf->fullsync == 0) { 2799 *skipped = 1; 2800 return max_sector - sector_nr; 2801 } 2802 /* before building a request, check if we can skip these blocks.. 2803 * This call the bitmap_start_sync doesn't actually record anything 2804 */ 2805 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) && 2806 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2807 /* We can skip this block, and probably several more */ 2808 *skipped = 1; 2809 return sync_blocks; 2810 } 2811 2812 /* 2813 * If there is non-resync activity waiting for a turn, then let it 2814 * though before starting on this new sync request. 2815 */ 2816 if (atomic_read(&conf->nr_waiting[idx])) 2817 schedule_timeout_uninterruptible(1); 2818 2819 /* we are incrementing sector_nr below. To be safe, we check against 2820 * sector_nr + two times RESYNC_SECTORS 2821 */ 2822 2823 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 2824 mddev_is_clustered(mddev) && 2825 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2826 2827 if (raise_barrier(conf, sector_nr)) 2828 return 0; 2829 2830 r1_bio = raid1_alloc_init_r1buf(conf); 2831 2832 /* 2833 * If we get a correctably read error during resync or recovery, 2834 * we might want to read from a different device. So we 2835 * flag all drives that could conceivably be read from for READ, 2836 * and any others (which will be non-In_sync devices) for WRITE. 2837 * If a read fails, we try reading from something else for which READ 2838 * is OK. 2839 */ 2840 2841 r1_bio->mddev = mddev; 2842 r1_bio->sector = sector_nr; 2843 r1_bio->state = 0; 2844 set_bit(R1BIO_IsSync, &r1_bio->state); 2845 /* make sure good_sectors won't go across barrier unit boundary */ 2846 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2847 2848 for (i = 0; i < conf->raid_disks * 2; i++) { 2849 struct md_rdev *rdev; 2850 bio = r1_bio->bios[i]; 2851 2852 rdev = conf->mirrors[i].rdev; 2853 if (rdev == NULL || 2854 test_bit(Faulty, &rdev->flags)) { 2855 if (i < conf->raid_disks) 2856 still_degraded = true; 2857 } else if (!test_bit(In_sync, &rdev->flags)) { 2858 bio->bi_opf = REQ_OP_WRITE; 2859 bio->bi_end_io = end_sync_write; 2860 write_targets ++; 2861 } else { 2862 /* may need to read from here */ 2863 sector_t first_bad = MaxSector; 2864 int bad_sectors; 2865 2866 if (is_badblock(rdev, sector_nr, good_sectors, 2867 &first_bad, &bad_sectors)) { 2868 if (first_bad > sector_nr) 2869 good_sectors = first_bad - sector_nr; 2870 else { 2871 bad_sectors -= (sector_nr - first_bad); 2872 if (min_bad == 0 || 2873 min_bad > bad_sectors) 2874 min_bad = bad_sectors; 2875 } 2876 } 2877 if (sector_nr < first_bad) { 2878 if (test_bit(WriteMostly, &rdev->flags)) { 2879 if (wonly < 0) 2880 wonly = i; 2881 } else { 2882 if (disk < 0) 2883 disk = i; 2884 } 2885 bio->bi_opf = REQ_OP_READ; 2886 bio->bi_end_io = end_sync_read; 2887 read_targets++; 2888 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2889 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2890 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2891 /* 2892 * The device is suitable for reading (InSync), 2893 * but has bad block(s) here. Let's try to correct them, 2894 * if we are doing resync or repair. Otherwise, leave 2895 * this device alone for this sync request. 2896 */ 2897 bio->bi_opf = REQ_OP_WRITE; 2898 bio->bi_end_io = end_sync_write; 2899 write_targets++; 2900 } 2901 } 2902 if (rdev && bio->bi_end_io) { 2903 atomic_inc(&rdev->nr_pending); 2904 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2905 bio_set_dev(bio, rdev->bdev); 2906 if (test_bit(FailFast, &rdev->flags)) 2907 bio->bi_opf |= MD_FAILFAST; 2908 } 2909 } 2910 if (disk < 0) 2911 disk = wonly; 2912 r1_bio->read_disk = disk; 2913 2914 if (read_targets == 0 && min_bad > 0) { 2915 /* These sectors are bad on all InSync devices, so we 2916 * need to mark them bad on all write targets 2917 */ 2918 int ok = 1; 2919 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2920 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2921 struct md_rdev *rdev = conf->mirrors[i].rdev; 2922 ok = rdev_set_badblocks(rdev, sector_nr, 2923 min_bad, 0 2924 ) && ok; 2925 } 2926 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2927 *skipped = 1; 2928 put_buf(r1_bio); 2929 2930 if (!ok) { 2931 /* Cannot record the badblocks, so need to 2932 * abort the resync. 2933 * If there are multiple read targets, could just 2934 * fail the really bad ones ??? 2935 */ 2936 conf->recovery_disabled = mddev->recovery_disabled; 2937 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2938 return 0; 2939 } else 2940 return min_bad; 2941 2942 } 2943 if (min_bad > 0 && min_bad < good_sectors) { 2944 /* only resync enough to reach the next bad->good 2945 * transition */ 2946 good_sectors = min_bad; 2947 } 2948 2949 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2950 /* extra read targets are also write targets */ 2951 write_targets += read_targets-1; 2952 2953 if (write_targets == 0 || read_targets == 0) { 2954 /* There is nowhere to write, so all non-sync 2955 * drives must be failed - so we are finished 2956 */ 2957 sector_t rv; 2958 if (min_bad > 0) 2959 max_sector = sector_nr + min_bad; 2960 rv = max_sector - sector_nr; 2961 *skipped = 1; 2962 put_buf(r1_bio); 2963 return rv; 2964 } 2965 2966 if (max_sector > mddev->resync_max) 2967 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2968 if (max_sector > sector_nr + good_sectors) 2969 max_sector = sector_nr + good_sectors; 2970 nr_sectors = 0; 2971 sync_blocks = 0; 2972 do { 2973 struct page *page; 2974 int len = PAGE_SIZE; 2975 if (sector_nr + (len>>9) > max_sector) 2976 len = (max_sector - sector_nr) << 9; 2977 if (len == 0) 2978 break; 2979 if (sync_blocks == 0) { 2980 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 2981 &sync_blocks, still_degraded) && 2982 !conf->fullsync && 2983 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2984 break; 2985 if ((len >> 9) > sync_blocks) 2986 len = sync_blocks<<9; 2987 } 2988 2989 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2990 struct resync_pages *rp; 2991 2992 bio = r1_bio->bios[i]; 2993 rp = get_resync_pages(bio); 2994 if (bio->bi_end_io) { 2995 page = resync_fetch_page(rp, page_idx); 2996 2997 /* 2998 * won't fail because the vec table is big 2999 * enough to hold all these pages 3000 */ 3001 __bio_add_page(bio, page, len, 0); 3002 } 3003 } 3004 nr_sectors += len>>9; 3005 sector_nr += len>>9; 3006 sync_blocks -= (len>>9); 3007 } while (++page_idx < RESYNC_PAGES); 3008 3009 r1_bio->sectors = nr_sectors; 3010 3011 if (mddev_is_clustered(mddev) && 3012 conf->cluster_sync_high < sector_nr + nr_sectors) { 3013 conf->cluster_sync_low = mddev->curr_resync_completed; 3014 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3015 /* Send resync message */ 3016 md_cluster_ops->resync_info_update(mddev, 3017 conf->cluster_sync_low, 3018 conf->cluster_sync_high); 3019 } 3020 3021 /* For a user-requested sync, we read all readable devices and do a 3022 * compare 3023 */ 3024 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3025 atomic_set(&r1_bio->remaining, read_targets); 3026 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3027 bio = r1_bio->bios[i]; 3028 if (bio->bi_end_io == end_sync_read) { 3029 read_targets--; 3030 md_sync_acct_bio(bio, nr_sectors); 3031 if (read_targets == 1) 3032 bio->bi_opf &= ~MD_FAILFAST; 3033 submit_bio_noacct(bio); 3034 } 3035 } 3036 } else { 3037 atomic_set(&r1_bio->remaining, 1); 3038 bio = r1_bio->bios[r1_bio->read_disk]; 3039 md_sync_acct_bio(bio, nr_sectors); 3040 if (read_targets == 1) 3041 bio->bi_opf &= ~MD_FAILFAST; 3042 submit_bio_noacct(bio); 3043 } 3044 return nr_sectors; 3045 } 3046 3047 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3048 { 3049 if (sectors) 3050 return sectors; 3051 3052 return mddev->dev_sectors; 3053 } 3054 3055 static struct r1conf *setup_conf(struct mddev *mddev) 3056 { 3057 struct r1conf *conf; 3058 int i; 3059 struct raid1_info *disk; 3060 struct md_rdev *rdev; 3061 int err = -ENOMEM; 3062 3063 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3064 if (!conf) 3065 goto abort; 3066 3067 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3068 sizeof(atomic_t), GFP_KERNEL); 3069 if (!conf->nr_pending) 3070 goto abort; 3071 3072 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3073 sizeof(atomic_t), GFP_KERNEL); 3074 if (!conf->nr_waiting) 3075 goto abort; 3076 3077 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3078 sizeof(atomic_t), GFP_KERNEL); 3079 if (!conf->nr_queued) 3080 goto abort; 3081 3082 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3083 sizeof(atomic_t), GFP_KERNEL); 3084 if (!conf->barrier) 3085 goto abort; 3086 3087 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3088 mddev->raid_disks, 2), 3089 GFP_KERNEL); 3090 if (!conf->mirrors) 3091 goto abort; 3092 3093 conf->tmppage = alloc_page(GFP_KERNEL); 3094 if (!conf->tmppage) 3095 goto abort; 3096 3097 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3098 if (!conf->poolinfo) 3099 goto abort; 3100 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3101 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3102 rbio_pool_free, conf->poolinfo); 3103 if (err) 3104 goto abort; 3105 3106 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3107 if (err) 3108 goto abort; 3109 3110 conf->poolinfo->mddev = mddev; 3111 3112 err = -EINVAL; 3113 spin_lock_init(&conf->device_lock); 3114 conf->raid_disks = mddev->raid_disks; 3115 rdev_for_each(rdev, mddev) { 3116 int disk_idx = rdev->raid_disk; 3117 3118 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3119 continue; 3120 3121 if (!raid1_add_conf(conf, rdev, disk_idx, 3122 test_bit(Replacement, &rdev->flags))) 3123 goto abort; 3124 } 3125 conf->mddev = mddev; 3126 INIT_LIST_HEAD(&conf->retry_list); 3127 INIT_LIST_HEAD(&conf->bio_end_io_list); 3128 3129 spin_lock_init(&conf->resync_lock); 3130 init_waitqueue_head(&conf->wait_barrier); 3131 3132 bio_list_init(&conf->pending_bio_list); 3133 conf->recovery_disabled = mddev->recovery_disabled - 1; 3134 3135 err = -EIO; 3136 for (i = 0; i < conf->raid_disks * 2; i++) { 3137 3138 disk = conf->mirrors + i; 3139 3140 if (i < conf->raid_disks && 3141 disk[conf->raid_disks].rdev) { 3142 /* This slot has a replacement. */ 3143 if (!disk->rdev) { 3144 /* No original, just make the replacement 3145 * a recovering spare 3146 */ 3147 disk->rdev = 3148 disk[conf->raid_disks].rdev; 3149 disk[conf->raid_disks].rdev = NULL; 3150 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3151 /* Original is not in_sync - bad */ 3152 goto abort; 3153 } 3154 3155 if (!disk->rdev || 3156 !test_bit(In_sync, &disk->rdev->flags)) { 3157 disk->head_position = 0; 3158 if (disk->rdev && 3159 (disk->rdev->saved_raid_disk < 0)) 3160 conf->fullsync = 1; 3161 } 3162 } 3163 3164 err = -ENOMEM; 3165 rcu_assign_pointer(conf->thread, 3166 md_register_thread(raid1d, mddev, "raid1")); 3167 if (!conf->thread) 3168 goto abort; 3169 3170 return conf; 3171 3172 abort: 3173 if (conf) { 3174 mempool_exit(&conf->r1bio_pool); 3175 kfree(conf->mirrors); 3176 safe_put_page(conf->tmppage); 3177 kfree(conf->poolinfo); 3178 kfree(conf->nr_pending); 3179 kfree(conf->nr_waiting); 3180 kfree(conf->nr_queued); 3181 kfree(conf->barrier); 3182 bioset_exit(&conf->bio_split); 3183 kfree(conf); 3184 } 3185 return ERR_PTR(err); 3186 } 3187 3188 static int raid1_set_limits(struct mddev *mddev) 3189 { 3190 struct queue_limits lim; 3191 int err; 3192 3193 md_init_stacking_limits(&lim); 3194 lim.max_write_zeroes_sectors = 0; 3195 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3196 if (err) { 3197 queue_limits_cancel_update(mddev->gendisk->queue); 3198 return err; 3199 } 3200 return queue_limits_set(mddev->gendisk->queue, &lim); 3201 } 3202 3203 static int raid1_run(struct mddev *mddev) 3204 { 3205 struct r1conf *conf; 3206 int i; 3207 int ret; 3208 3209 if (mddev->level != 1) { 3210 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3211 mdname(mddev), mddev->level); 3212 return -EIO; 3213 } 3214 if (mddev->reshape_position != MaxSector) { 3215 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3216 mdname(mddev)); 3217 return -EIO; 3218 } 3219 3220 /* 3221 * copy the already verified devices into our private RAID1 3222 * bookkeeping area. [whatever we allocate in run(), 3223 * should be freed in raid1_free()] 3224 */ 3225 if (mddev->private == NULL) 3226 conf = setup_conf(mddev); 3227 else 3228 conf = mddev->private; 3229 3230 if (IS_ERR(conf)) 3231 return PTR_ERR(conf); 3232 3233 if (!mddev_is_dm(mddev)) { 3234 ret = raid1_set_limits(mddev); 3235 if (ret) 3236 return ret; 3237 } 3238 3239 mddev->degraded = 0; 3240 for (i = 0; i < conf->raid_disks; i++) 3241 if (conf->mirrors[i].rdev == NULL || 3242 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3243 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3244 mddev->degraded++; 3245 /* 3246 * RAID1 needs at least one disk in active 3247 */ 3248 if (conf->raid_disks - mddev->degraded < 1) { 3249 md_unregister_thread(mddev, &conf->thread); 3250 return -EINVAL; 3251 } 3252 3253 if (conf->raid_disks - mddev->degraded == 1) 3254 mddev->recovery_cp = MaxSector; 3255 3256 if (mddev->recovery_cp != MaxSector) 3257 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3258 mdname(mddev)); 3259 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3260 mdname(mddev), mddev->raid_disks - mddev->degraded, 3261 mddev->raid_disks); 3262 3263 /* 3264 * Ok, everything is just fine now 3265 */ 3266 rcu_assign_pointer(mddev->thread, conf->thread); 3267 rcu_assign_pointer(conf->thread, NULL); 3268 mddev->private = conf; 3269 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3270 3271 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3272 3273 ret = md_integrity_register(mddev); 3274 if (ret) 3275 md_unregister_thread(mddev, &mddev->thread); 3276 return ret; 3277 } 3278 3279 static void raid1_free(struct mddev *mddev, void *priv) 3280 { 3281 struct r1conf *conf = priv; 3282 3283 mempool_exit(&conf->r1bio_pool); 3284 kfree(conf->mirrors); 3285 safe_put_page(conf->tmppage); 3286 kfree(conf->poolinfo); 3287 kfree(conf->nr_pending); 3288 kfree(conf->nr_waiting); 3289 kfree(conf->nr_queued); 3290 kfree(conf->barrier); 3291 bioset_exit(&conf->bio_split); 3292 kfree(conf); 3293 } 3294 3295 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3296 { 3297 /* no resync is happening, and there is enough space 3298 * on all devices, so we can resize. 3299 * We need to make sure resync covers any new space. 3300 * If the array is shrinking we should possibly wait until 3301 * any io in the removed space completes, but it hardly seems 3302 * worth it. 3303 */ 3304 sector_t newsize = raid1_size(mddev, sectors, 0); 3305 int ret; 3306 3307 if (mddev->external_size && 3308 mddev->array_sectors > newsize) 3309 return -EINVAL; 3310 3311 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 3312 if (ret) 3313 return ret; 3314 3315 md_set_array_sectors(mddev, newsize); 3316 if (sectors > mddev->dev_sectors && 3317 mddev->recovery_cp > mddev->dev_sectors) { 3318 mddev->recovery_cp = mddev->dev_sectors; 3319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3320 } 3321 mddev->dev_sectors = sectors; 3322 mddev->resync_max_sectors = sectors; 3323 return 0; 3324 } 3325 3326 static int raid1_reshape(struct mddev *mddev) 3327 { 3328 /* We need to: 3329 * 1/ resize the r1bio_pool 3330 * 2/ resize conf->mirrors 3331 * 3332 * We allocate a new r1bio_pool if we can. 3333 * Then raise a device barrier and wait until all IO stops. 3334 * Then resize conf->mirrors and swap in the new r1bio pool. 3335 * 3336 * At the same time, we "pack" the devices so that all the missing 3337 * devices have the higher raid_disk numbers. 3338 */ 3339 mempool_t newpool, oldpool; 3340 struct pool_info *newpoolinfo; 3341 struct raid1_info *newmirrors; 3342 struct r1conf *conf = mddev->private; 3343 int cnt, raid_disks; 3344 unsigned long flags; 3345 int d, d2; 3346 int ret; 3347 3348 memset(&newpool, 0, sizeof(newpool)); 3349 memset(&oldpool, 0, sizeof(oldpool)); 3350 3351 /* Cannot change chunk_size, layout, or level */ 3352 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3353 mddev->layout != mddev->new_layout || 3354 mddev->level != mddev->new_level) { 3355 mddev->new_chunk_sectors = mddev->chunk_sectors; 3356 mddev->new_layout = mddev->layout; 3357 mddev->new_level = mddev->level; 3358 return -EINVAL; 3359 } 3360 3361 if (!mddev_is_clustered(mddev)) 3362 md_allow_write(mddev); 3363 3364 raid_disks = mddev->raid_disks + mddev->delta_disks; 3365 3366 if (raid_disks < conf->raid_disks) { 3367 cnt=0; 3368 for (d= 0; d < conf->raid_disks; d++) 3369 if (conf->mirrors[d].rdev) 3370 cnt++; 3371 if (cnt > raid_disks) 3372 return -EBUSY; 3373 } 3374 3375 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3376 if (!newpoolinfo) 3377 return -ENOMEM; 3378 newpoolinfo->mddev = mddev; 3379 newpoolinfo->raid_disks = raid_disks * 2; 3380 3381 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3382 rbio_pool_free, newpoolinfo); 3383 if (ret) { 3384 kfree(newpoolinfo); 3385 return ret; 3386 } 3387 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3388 raid_disks, 2), 3389 GFP_KERNEL); 3390 if (!newmirrors) { 3391 kfree(newpoolinfo); 3392 mempool_exit(&newpool); 3393 return -ENOMEM; 3394 } 3395 3396 freeze_array(conf, 0); 3397 3398 /* ok, everything is stopped */ 3399 oldpool = conf->r1bio_pool; 3400 conf->r1bio_pool = newpool; 3401 3402 for (d = d2 = 0; d < conf->raid_disks; d++) { 3403 struct md_rdev *rdev = conf->mirrors[d].rdev; 3404 if (rdev && rdev->raid_disk != d2) { 3405 sysfs_unlink_rdev(mddev, rdev); 3406 rdev->raid_disk = d2; 3407 sysfs_unlink_rdev(mddev, rdev); 3408 if (sysfs_link_rdev(mddev, rdev)) 3409 pr_warn("md/raid1:%s: cannot register rd%d\n", 3410 mdname(mddev), rdev->raid_disk); 3411 } 3412 if (rdev) 3413 newmirrors[d2++].rdev = rdev; 3414 } 3415 kfree(conf->mirrors); 3416 conf->mirrors = newmirrors; 3417 kfree(conf->poolinfo); 3418 conf->poolinfo = newpoolinfo; 3419 3420 spin_lock_irqsave(&conf->device_lock, flags); 3421 mddev->degraded += (raid_disks - conf->raid_disks); 3422 spin_unlock_irqrestore(&conf->device_lock, flags); 3423 conf->raid_disks = mddev->raid_disks = raid_disks; 3424 mddev->delta_disks = 0; 3425 3426 unfreeze_array(conf); 3427 3428 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3429 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3430 md_wakeup_thread(mddev->thread); 3431 3432 mempool_exit(&oldpool); 3433 return 0; 3434 } 3435 3436 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3437 { 3438 struct r1conf *conf = mddev->private; 3439 3440 if (quiesce) 3441 freeze_array(conf, 0); 3442 else 3443 unfreeze_array(conf); 3444 } 3445 3446 static void *raid1_takeover(struct mddev *mddev) 3447 { 3448 /* raid1 can take over: 3449 * raid5 with 2 devices, any layout or chunk size 3450 */ 3451 if (mddev->level == 5 && mddev->raid_disks == 2) { 3452 struct r1conf *conf; 3453 mddev->new_level = 1; 3454 mddev->new_layout = 0; 3455 mddev->new_chunk_sectors = 0; 3456 conf = setup_conf(mddev); 3457 if (!IS_ERR(conf)) { 3458 /* Array must appear to be quiesced */ 3459 conf->array_frozen = 1; 3460 mddev_clear_unsupported_flags(mddev, 3461 UNSUPPORTED_MDDEV_FLAGS); 3462 } 3463 return conf; 3464 } 3465 return ERR_PTR(-EINVAL); 3466 } 3467 3468 static struct md_personality raid1_personality = 3469 { 3470 .name = "raid1", 3471 .level = 1, 3472 .owner = THIS_MODULE, 3473 .make_request = raid1_make_request, 3474 .run = raid1_run, 3475 .free = raid1_free, 3476 .status = raid1_status, 3477 .error_handler = raid1_error, 3478 .hot_add_disk = raid1_add_disk, 3479 .hot_remove_disk= raid1_remove_disk, 3480 .spare_active = raid1_spare_active, 3481 .sync_request = raid1_sync_request, 3482 .resize = raid1_resize, 3483 .size = raid1_size, 3484 .check_reshape = raid1_reshape, 3485 .quiesce = raid1_quiesce, 3486 .takeover = raid1_takeover, 3487 }; 3488 3489 static int __init raid_init(void) 3490 { 3491 return register_md_personality(&raid1_personality); 3492 } 3493 3494 static void raid_exit(void) 3495 { 3496 unregister_md_personality(&raid1_personality); 3497 } 3498 3499 module_init(raid_init); 3500 module_exit(raid_exit); 3501 MODULE_LICENSE("GPL"); 3502 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3503 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3504 MODULE_ALIAS("md-raid1"); 3505 MODULE_ALIAS("md-level-1"); 3506