xref: /linux/drivers/md/raid1.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include <linux/ratelimit.h>
39 #include "md.h"
40 #include "raid1.h"
41 #include "bitmap.h"
42 
43 #define DEBUG 0
44 #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
45 
46 /*
47  * Number of guaranteed r1bios in case of extreme VM load:
48  */
49 #define	NR_RAID1_BIOS 256
50 
51 
52 static void allow_barrier(conf_t *conf);
53 static void lower_barrier(conf_t *conf);
54 
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
56 {
57 	struct pool_info *pi = data;
58 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
59 
60 	/* allocate a r1bio with room for raid_disks entries in the bios array */
61 	return kzalloc(size, gfp_flags);
62 }
63 
64 static void r1bio_pool_free(void *r1_bio, void *data)
65 {
66 	kfree(r1_bio);
67 }
68 
69 #define RESYNC_BLOCK_SIZE (64*1024)
70 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
71 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73 #define RESYNC_WINDOW (2048*1024)
74 
75 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
76 {
77 	struct pool_info *pi = data;
78 	struct page *page;
79 	r1bio_t *r1_bio;
80 	struct bio *bio;
81 	int i, j;
82 
83 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
84 	if (!r1_bio)
85 		return NULL;
86 
87 	/*
88 	 * Allocate bios : 1 for reading, n-1 for writing
89 	 */
90 	for (j = pi->raid_disks ; j-- ; ) {
91 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
92 		if (!bio)
93 			goto out_free_bio;
94 		r1_bio->bios[j] = bio;
95 	}
96 	/*
97 	 * Allocate RESYNC_PAGES data pages and attach them to
98 	 * the first bio.
99 	 * If this is a user-requested check/repair, allocate
100 	 * RESYNC_PAGES for each bio.
101 	 */
102 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
103 		j = pi->raid_disks;
104 	else
105 		j = 1;
106 	while(j--) {
107 		bio = r1_bio->bios[j];
108 		for (i = 0; i < RESYNC_PAGES; i++) {
109 			page = alloc_page(gfp_flags);
110 			if (unlikely(!page))
111 				goto out_free_pages;
112 
113 			bio->bi_io_vec[i].bv_page = page;
114 			bio->bi_vcnt = i+1;
115 		}
116 	}
117 	/* If not user-requests, copy the page pointers to all bios */
118 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
119 		for (i=0; i<RESYNC_PAGES ; i++)
120 			for (j=1; j<pi->raid_disks; j++)
121 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
122 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
123 	}
124 
125 	r1_bio->master_bio = NULL;
126 
127 	return r1_bio;
128 
129 out_free_pages:
130 	for (j=0 ; j < pi->raid_disks; j++)
131 		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
132 			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
133 	j = -1;
134 out_free_bio:
135 	while ( ++j < pi->raid_disks )
136 		bio_put(r1_bio->bios[j]);
137 	r1bio_pool_free(r1_bio, data);
138 	return NULL;
139 }
140 
141 static void r1buf_pool_free(void *__r1_bio, void *data)
142 {
143 	struct pool_info *pi = data;
144 	int i,j;
145 	r1bio_t *r1bio = __r1_bio;
146 
147 	for (i = 0; i < RESYNC_PAGES; i++)
148 		for (j = pi->raid_disks; j-- ;) {
149 			if (j == 0 ||
150 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
151 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
152 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
153 		}
154 	for (i=0 ; i < pi->raid_disks; i++)
155 		bio_put(r1bio->bios[i]);
156 
157 	r1bio_pool_free(r1bio, data);
158 }
159 
160 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
161 {
162 	int i;
163 
164 	for (i = 0; i < conf->raid_disks; i++) {
165 		struct bio **bio = r1_bio->bios + i;
166 		if (!BIO_SPECIAL(*bio))
167 			bio_put(*bio);
168 		*bio = NULL;
169 	}
170 }
171 
172 static void free_r1bio(r1bio_t *r1_bio)
173 {
174 	conf_t *conf = r1_bio->mddev->private;
175 
176 	put_all_bios(conf, r1_bio);
177 	mempool_free(r1_bio, conf->r1bio_pool);
178 }
179 
180 static void put_buf(r1bio_t *r1_bio)
181 {
182 	conf_t *conf = r1_bio->mddev->private;
183 	int i;
184 
185 	for (i=0; i<conf->raid_disks; i++) {
186 		struct bio *bio = r1_bio->bios[i];
187 		if (bio->bi_end_io)
188 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
189 	}
190 
191 	mempool_free(r1_bio, conf->r1buf_pool);
192 
193 	lower_barrier(conf);
194 }
195 
196 static void reschedule_retry(r1bio_t *r1_bio)
197 {
198 	unsigned long flags;
199 	mddev_t *mddev = r1_bio->mddev;
200 	conf_t *conf = mddev->private;
201 
202 	spin_lock_irqsave(&conf->device_lock, flags);
203 	list_add(&r1_bio->retry_list, &conf->retry_list);
204 	conf->nr_queued ++;
205 	spin_unlock_irqrestore(&conf->device_lock, flags);
206 
207 	wake_up(&conf->wait_barrier);
208 	md_wakeup_thread(mddev->thread);
209 }
210 
211 /*
212  * raid_end_bio_io() is called when we have finished servicing a mirrored
213  * operation and are ready to return a success/failure code to the buffer
214  * cache layer.
215  */
216 static void call_bio_endio(r1bio_t *r1_bio)
217 {
218 	struct bio *bio = r1_bio->master_bio;
219 	int done;
220 	conf_t *conf = r1_bio->mddev->private;
221 
222 	if (bio->bi_phys_segments) {
223 		unsigned long flags;
224 		spin_lock_irqsave(&conf->device_lock, flags);
225 		bio->bi_phys_segments--;
226 		done = (bio->bi_phys_segments == 0);
227 		spin_unlock_irqrestore(&conf->device_lock, flags);
228 	} else
229 		done = 1;
230 
231 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
232 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
233 	if (done) {
234 		bio_endio(bio, 0);
235 		/*
236 		 * Wake up any possible resync thread that waits for the device
237 		 * to go idle.
238 		 */
239 		allow_barrier(conf);
240 	}
241 }
242 
243 static void raid_end_bio_io(r1bio_t *r1_bio)
244 {
245 	struct bio *bio = r1_bio->master_bio;
246 
247 	/* if nobody has done the final endio yet, do it now */
248 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
249 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
250 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
251 			(unsigned long long) bio->bi_sector,
252 			(unsigned long long) bio->bi_sector +
253 				(bio->bi_size >> 9) - 1);
254 
255 		call_bio_endio(r1_bio);
256 	}
257 	free_r1bio(r1_bio);
258 }
259 
260 /*
261  * Update disk head position estimator based on IRQ completion info.
262  */
263 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
264 {
265 	conf_t *conf = r1_bio->mddev->private;
266 
267 	conf->mirrors[disk].head_position =
268 		r1_bio->sector + (r1_bio->sectors);
269 }
270 
271 static void raid1_end_read_request(struct bio *bio, int error)
272 {
273 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
274 	r1bio_t *r1_bio = bio->bi_private;
275 	int mirror;
276 	conf_t *conf = r1_bio->mddev->private;
277 
278 	mirror = r1_bio->read_disk;
279 	/*
280 	 * this branch is our 'one mirror IO has finished' event handler:
281 	 */
282 	update_head_pos(mirror, r1_bio);
283 
284 	if (uptodate)
285 		set_bit(R1BIO_Uptodate, &r1_bio->state);
286 	else {
287 		/* If all other devices have failed, we want to return
288 		 * the error upwards rather than fail the last device.
289 		 * Here we redefine "uptodate" to mean "Don't want to retry"
290 		 */
291 		unsigned long flags;
292 		spin_lock_irqsave(&conf->device_lock, flags);
293 		if (r1_bio->mddev->degraded == conf->raid_disks ||
294 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
295 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
296 			uptodate = 1;
297 		spin_unlock_irqrestore(&conf->device_lock, flags);
298 	}
299 
300 	if (uptodate)
301 		raid_end_bio_io(r1_bio);
302 	else {
303 		/*
304 		 * oops, read error:
305 		 */
306 		char b[BDEVNAME_SIZE];
307 		printk_ratelimited(
308 			KERN_ERR "md/raid1:%s: %s: "
309 			"rescheduling sector %llu\n",
310 			mdname(conf->mddev),
311 			bdevname(conf->mirrors[mirror].rdev->bdev,
312 				 b),
313 			(unsigned long long)r1_bio->sector);
314 		set_bit(R1BIO_ReadError, &r1_bio->state);
315 		reschedule_retry(r1_bio);
316 	}
317 
318 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
319 }
320 
321 static void close_write(r1bio_t *r1_bio)
322 {
323 	/* it really is the end of this request */
324 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
325 		/* free extra copy of the data pages */
326 		int i = r1_bio->behind_page_count;
327 		while (i--)
328 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
329 		kfree(r1_bio->behind_bvecs);
330 		r1_bio->behind_bvecs = NULL;
331 	}
332 	/* clear the bitmap if all writes complete successfully */
333 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334 			r1_bio->sectors,
335 			!test_bit(R1BIO_Degraded, &r1_bio->state),
336 			test_bit(R1BIO_BehindIO, &r1_bio->state));
337 	md_write_end(r1_bio->mddev);
338 }
339 
340 static void r1_bio_write_done(r1bio_t *r1_bio)
341 {
342 	if (!atomic_dec_and_test(&r1_bio->remaining))
343 		return;
344 
345 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
346 		reschedule_retry(r1_bio);
347 	else {
348 		close_write(r1_bio);
349 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
350 			reschedule_retry(r1_bio);
351 		else
352 			raid_end_bio_io(r1_bio);
353 	}
354 }
355 
356 static void raid1_end_write_request(struct bio *bio, int error)
357 {
358 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 	r1bio_t *r1_bio = bio->bi_private;
360 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
361 	conf_t *conf = r1_bio->mddev->private;
362 	struct bio *to_put = NULL;
363 
364 
365 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
366 		if (r1_bio->bios[mirror] == bio)
367 			break;
368 
369 	/*
370 	 * 'one mirror IO has finished' event handler:
371 	 */
372 	if (!uptodate) {
373 		set_bit(WriteErrorSeen,
374 			&conf->mirrors[mirror].rdev->flags);
375 		set_bit(R1BIO_WriteError, &r1_bio->state);
376 	} else {
377 		/*
378 		 * Set R1BIO_Uptodate in our master bio, so that we
379 		 * will return a good error code for to the higher
380 		 * levels even if IO on some other mirrored buffer
381 		 * fails.
382 		 *
383 		 * The 'master' represents the composite IO operation
384 		 * to user-side. So if something waits for IO, then it
385 		 * will wait for the 'master' bio.
386 		 */
387 		sector_t first_bad;
388 		int bad_sectors;
389 
390 		r1_bio->bios[mirror] = NULL;
391 		to_put = bio;
392 		set_bit(R1BIO_Uptodate, &r1_bio->state);
393 
394 		/* Maybe we can clear some bad blocks. */
395 		if (is_badblock(conf->mirrors[mirror].rdev,
396 				r1_bio->sector, r1_bio->sectors,
397 				&first_bad, &bad_sectors)) {
398 			r1_bio->bios[mirror] = IO_MADE_GOOD;
399 			set_bit(R1BIO_MadeGood, &r1_bio->state);
400 		}
401 	}
402 
403 	update_head_pos(mirror, r1_bio);
404 
405 	if (behind) {
406 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
407 			atomic_dec(&r1_bio->behind_remaining);
408 
409 		/*
410 		 * In behind mode, we ACK the master bio once the I/O
411 		 * has safely reached all non-writemostly
412 		 * disks. Setting the Returned bit ensures that this
413 		 * gets done only once -- we don't ever want to return
414 		 * -EIO here, instead we'll wait
415 		 */
416 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
417 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
418 			/* Maybe we can return now */
419 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
420 				struct bio *mbio = r1_bio->master_bio;
421 				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
422 				       (unsigned long long) mbio->bi_sector,
423 				       (unsigned long long) mbio->bi_sector +
424 				       (mbio->bi_size >> 9) - 1);
425 				call_bio_endio(r1_bio);
426 			}
427 		}
428 	}
429 	if (r1_bio->bios[mirror] == NULL)
430 		rdev_dec_pending(conf->mirrors[mirror].rdev,
431 				 conf->mddev);
432 
433 	/*
434 	 * Let's see if all mirrored write operations have finished
435 	 * already.
436 	 */
437 	r1_bio_write_done(r1_bio);
438 
439 	if (to_put)
440 		bio_put(to_put);
441 }
442 
443 
444 /*
445  * This routine returns the disk from which the requested read should
446  * be done. There is a per-array 'next expected sequential IO' sector
447  * number - if this matches on the next IO then we use the last disk.
448  * There is also a per-disk 'last know head position' sector that is
449  * maintained from IRQ contexts, both the normal and the resync IO
450  * completion handlers update this position correctly. If there is no
451  * perfect sequential match then we pick the disk whose head is closest.
452  *
453  * If there are 2 mirrors in the same 2 devices, performance degrades
454  * because position is mirror, not device based.
455  *
456  * The rdev for the device selected will have nr_pending incremented.
457  */
458 static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
459 {
460 	const sector_t this_sector = r1_bio->sector;
461 	int sectors;
462 	int best_good_sectors;
463 	int start_disk;
464 	int best_disk;
465 	int i;
466 	sector_t best_dist;
467 	mdk_rdev_t *rdev;
468 	int choose_first;
469 
470 	rcu_read_lock();
471 	/*
472 	 * Check if we can balance. We can balance on the whole
473 	 * device if no resync is going on, or below the resync window.
474 	 * We take the first readable disk when above the resync window.
475 	 */
476  retry:
477 	sectors = r1_bio->sectors;
478 	best_disk = -1;
479 	best_dist = MaxSector;
480 	best_good_sectors = 0;
481 
482 	if (conf->mddev->recovery_cp < MaxSector &&
483 	    (this_sector + sectors >= conf->next_resync)) {
484 		choose_first = 1;
485 		start_disk = 0;
486 	} else {
487 		choose_first = 0;
488 		start_disk = conf->last_used;
489 	}
490 
491 	for (i = 0 ; i < conf->raid_disks ; i++) {
492 		sector_t dist;
493 		sector_t first_bad;
494 		int bad_sectors;
495 
496 		int disk = start_disk + i;
497 		if (disk >= conf->raid_disks)
498 			disk -= conf->raid_disks;
499 
500 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
501 		if (r1_bio->bios[disk] == IO_BLOCKED
502 		    || rdev == NULL
503 		    || test_bit(Faulty, &rdev->flags))
504 			continue;
505 		if (!test_bit(In_sync, &rdev->flags) &&
506 		    rdev->recovery_offset < this_sector + sectors)
507 			continue;
508 		if (test_bit(WriteMostly, &rdev->flags)) {
509 			/* Don't balance among write-mostly, just
510 			 * use the first as a last resort */
511 			if (best_disk < 0)
512 				best_disk = disk;
513 			continue;
514 		}
515 		/* This is a reasonable device to use.  It might
516 		 * even be best.
517 		 */
518 		if (is_badblock(rdev, this_sector, sectors,
519 				&first_bad, &bad_sectors)) {
520 			if (best_dist < MaxSector)
521 				/* already have a better device */
522 				continue;
523 			if (first_bad <= this_sector) {
524 				/* cannot read here. If this is the 'primary'
525 				 * device, then we must not read beyond
526 				 * bad_sectors from another device..
527 				 */
528 				bad_sectors -= (this_sector - first_bad);
529 				if (choose_first && sectors > bad_sectors)
530 					sectors = bad_sectors;
531 				if (best_good_sectors > sectors)
532 					best_good_sectors = sectors;
533 
534 			} else {
535 				sector_t good_sectors = first_bad - this_sector;
536 				if (good_sectors > best_good_sectors) {
537 					best_good_sectors = good_sectors;
538 					best_disk = disk;
539 				}
540 				if (choose_first)
541 					break;
542 			}
543 			continue;
544 		} else
545 			best_good_sectors = sectors;
546 
547 		dist = abs(this_sector - conf->mirrors[disk].head_position);
548 		if (choose_first
549 		    /* Don't change to another disk for sequential reads */
550 		    || conf->next_seq_sect == this_sector
551 		    || dist == 0
552 		    /* If device is idle, use it */
553 		    || atomic_read(&rdev->nr_pending) == 0) {
554 			best_disk = disk;
555 			break;
556 		}
557 		if (dist < best_dist) {
558 			best_dist = dist;
559 			best_disk = disk;
560 		}
561 	}
562 
563 	if (best_disk >= 0) {
564 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
565 		if (!rdev)
566 			goto retry;
567 		atomic_inc(&rdev->nr_pending);
568 		if (test_bit(Faulty, &rdev->flags)) {
569 			/* cannot risk returning a device that failed
570 			 * before we inc'ed nr_pending
571 			 */
572 			rdev_dec_pending(rdev, conf->mddev);
573 			goto retry;
574 		}
575 		sectors = best_good_sectors;
576 		conf->next_seq_sect = this_sector + sectors;
577 		conf->last_used = best_disk;
578 	}
579 	rcu_read_unlock();
580 	*max_sectors = sectors;
581 
582 	return best_disk;
583 }
584 
585 int md_raid1_congested(mddev_t *mddev, int bits)
586 {
587 	conf_t *conf = mddev->private;
588 	int i, ret = 0;
589 
590 	rcu_read_lock();
591 	for (i = 0; i < mddev->raid_disks; i++) {
592 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
593 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
594 			struct request_queue *q = bdev_get_queue(rdev->bdev);
595 
596 			BUG_ON(!q);
597 
598 			/* Note the '|| 1' - when read_balance prefers
599 			 * non-congested targets, it can be removed
600 			 */
601 			if ((bits & (1<<BDI_async_congested)) || 1)
602 				ret |= bdi_congested(&q->backing_dev_info, bits);
603 			else
604 				ret &= bdi_congested(&q->backing_dev_info, bits);
605 		}
606 	}
607 	rcu_read_unlock();
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(md_raid1_congested);
611 
612 static int raid1_congested(void *data, int bits)
613 {
614 	mddev_t *mddev = data;
615 
616 	return mddev_congested(mddev, bits) ||
617 		md_raid1_congested(mddev, bits);
618 }
619 
620 static void flush_pending_writes(conf_t *conf)
621 {
622 	/* Any writes that have been queued but are awaiting
623 	 * bitmap updates get flushed here.
624 	 */
625 	spin_lock_irq(&conf->device_lock);
626 
627 	if (conf->pending_bio_list.head) {
628 		struct bio *bio;
629 		bio = bio_list_get(&conf->pending_bio_list);
630 		spin_unlock_irq(&conf->device_lock);
631 		/* flush any pending bitmap writes to
632 		 * disk before proceeding w/ I/O */
633 		bitmap_unplug(conf->mddev->bitmap);
634 
635 		while (bio) { /* submit pending writes */
636 			struct bio *next = bio->bi_next;
637 			bio->bi_next = NULL;
638 			generic_make_request(bio);
639 			bio = next;
640 		}
641 	} else
642 		spin_unlock_irq(&conf->device_lock);
643 }
644 
645 /* Barriers....
646  * Sometimes we need to suspend IO while we do something else,
647  * either some resync/recovery, or reconfigure the array.
648  * To do this we raise a 'barrier'.
649  * The 'barrier' is a counter that can be raised multiple times
650  * to count how many activities are happening which preclude
651  * normal IO.
652  * We can only raise the barrier if there is no pending IO.
653  * i.e. if nr_pending == 0.
654  * We choose only to raise the barrier if no-one is waiting for the
655  * barrier to go down.  This means that as soon as an IO request
656  * is ready, no other operations which require a barrier will start
657  * until the IO request has had a chance.
658  *
659  * So: regular IO calls 'wait_barrier'.  When that returns there
660  *    is no backgroup IO happening,  It must arrange to call
661  *    allow_barrier when it has finished its IO.
662  * backgroup IO calls must call raise_barrier.  Once that returns
663  *    there is no normal IO happeing.  It must arrange to call
664  *    lower_barrier when the particular background IO completes.
665  */
666 #define RESYNC_DEPTH 32
667 
668 static void raise_barrier(conf_t *conf)
669 {
670 	spin_lock_irq(&conf->resync_lock);
671 
672 	/* Wait until no block IO is waiting */
673 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
674 			    conf->resync_lock, );
675 
676 	/* block any new IO from starting */
677 	conf->barrier++;
678 
679 	/* Now wait for all pending IO to complete */
680 	wait_event_lock_irq(conf->wait_barrier,
681 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
682 			    conf->resync_lock, );
683 
684 	spin_unlock_irq(&conf->resync_lock);
685 }
686 
687 static void lower_barrier(conf_t *conf)
688 {
689 	unsigned long flags;
690 	BUG_ON(conf->barrier <= 0);
691 	spin_lock_irqsave(&conf->resync_lock, flags);
692 	conf->barrier--;
693 	spin_unlock_irqrestore(&conf->resync_lock, flags);
694 	wake_up(&conf->wait_barrier);
695 }
696 
697 static void wait_barrier(conf_t *conf)
698 {
699 	spin_lock_irq(&conf->resync_lock);
700 	if (conf->barrier) {
701 		conf->nr_waiting++;
702 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
703 				    conf->resync_lock,
704 				    );
705 		conf->nr_waiting--;
706 	}
707 	conf->nr_pending++;
708 	spin_unlock_irq(&conf->resync_lock);
709 }
710 
711 static void allow_barrier(conf_t *conf)
712 {
713 	unsigned long flags;
714 	spin_lock_irqsave(&conf->resync_lock, flags);
715 	conf->nr_pending--;
716 	spin_unlock_irqrestore(&conf->resync_lock, flags);
717 	wake_up(&conf->wait_barrier);
718 }
719 
720 static void freeze_array(conf_t *conf)
721 {
722 	/* stop syncio and normal IO and wait for everything to
723 	 * go quite.
724 	 * We increment barrier and nr_waiting, and then
725 	 * wait until nr_pending match nr_queued+1
726 	 * This is called in the context of one normal IO request
727 	 * that has failed. Thus any sync request that might be pending
728 	 * will be blocked by nr_pending, and we need to wait for
729 	 * pending IO requests to complete or be queued for re-try.
730 	 * Thus the number queued (nr_queued) plus this request (1)
731 	 * must match the number of pending IOs (nr_pending) before
732 	 * we continue.
733 	 */
734 	spin_lock_irq(&conf->resync_lock);
735 	conf->barrier++;
736 	conf->nr_waiting++;
737 	wait_event_lock_irq(conf->wait_barrier,
738 			    conf->nr_pending == conf->nr_queued+1,
739 			    conf->resync_lock,
740 			    flush_pending_writes(conf));
741 	spin_unlock_irq(&conf->resync_lock);
742 }
743 static void unfreeze_array(conf_t *conf)
744 {
745 	/* reverse the effect of the freeze */
746 	spin_lock_irq(&conf->resync_lock);
747 	conf->barrier--;
748 	conf->nr_waiting--;
749 	wake_up(&conf->wait_barrier);
750 	spin_unlock_irq(&conf->resync_lock);
751 }
752 
753 
754 /* duplicate the data pages for behind I/O
755  */
756 static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
757 {
758 	int i;
759 	struct bio_vec *bvec;
760 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
761 					GFP_NOIO);
762 	if (unlikely(!bvecs))
763 		return;
764 
765 	bio_for_each_segment(bvec, bio, i) {
766 		bvecs[i] = *bvec;
767 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
768 		if (unlikely(!bvecs[i].bv_page))
769 			goto do_sync_io;
770 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
771 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
772 		kunmap(bvecs[i].bv_page);
773 		kunmap(bvec->bv_page);
774 	}
775 	r1_bio->behind_bvecs = bvecs;
776 	r1_bio->behind_page_count = bio->bi_vcnt;
777 	set_bit(R1BIO_BehindIO, &r1_bio->state);
778 	return;
779 
780 do_sync_io:
781 	for (i = 0; i < bio->bi_vcnt; i++)
782 		if (bvecs[i].bv_page)
783 			put_page(bvecs[i].bv_page);
784 	kfree(bvecs);
785 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
786 }
787 
788 static int make_request(mddev_t *mddev, struct bio * bio)
789 {
790 	conf_t *conf = mddev->private;
791 	mirror_info_t *mirror;
792 	r1bio_t *r1_bio;
793 	struct bio *read_bio;
794 	int i, disks;
795 	struct bitmap *bitmap;
796 	unsigned long flags;
797 	const int rw = bio_data_dir(bio);
798 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
799 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
800 	mdk_rdev_t *blocked_rdev;
801 	int plugged;
802 	int first_clone;
803 	int sectors_handled;
804 	int max_sectors;
805 
806 	/*
807 	 * Register the new request and wait if the reconstruction
808 	 * thread has put up a bar for new requests.
809 	 * Continue immediately if no resync is active currently.
810 	 */
811 
812 	md_write_start(mddev, bio); /* wait on superblock update early */
813 
814 	if (bio_data_dir(bio) == WRITE &&
815 	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
816 	    bio->bi_sector < mddev->suspend_hi) {
817 		/* As the suspend_* range is controlled by
818 		 * userspace, we want an interruptible
819 		 * wait.
820 		 */
821 		DEFINE_WAIT(w);
822 		for (;;) {
823 			flush_signals(current);
824 			prepare_to_wait(&conf->wait_barrier,
825 					&w, TASK_INTERRUPTIBLE);
826 			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
827 			    bio->bi_sector >= mddev->suspend_hi)
828 				break;
829 			schedule();
830 		}
831 		finish_wait(&conf->wait_barrier, &w);
832 	}
833 
834 	wait_barrier(conf);
835 
836 	bitmap = mddev->bitmap;
837 
838 	/*
839 	 * make_request() can abort the operation when READA is being
840 	 * used and no empty request is available.
841 	 *
842 	 */
843 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
844 
845 	r1_bio->master_bio = bio;
846 	r1_bio->sectors = bio->bi_size >> 9;
847 	r1_bio->state = 0;
848 	r1_bio->mddev = mddev;
849 	r1_bio->sector = bio->bi_sector;
850 
851 	/* We might need to issue multiple reads to different
852 	 * devices if there are bad blocks around, so we keep
853 	 * track of the number of reads in bio->bi_phys_segments.
854 	 * If this is 0, there is only one r1_bio and no locking
855 	 * will be needed when requests complete.  If it is
856 	 * non-zero, then it is the number of not-completed requests.
857 	 */
858 	bio->bi_phys_segments = 0;
859 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
860 
861 	if (rw == READ) {
862 		/*
863 		 * read balancing logic:
864 		 */
865 		int rdisk;
866 
867 read_again:
868 		rdisk = read_balance(conf, r1_bio, &max_sectors);
869 
870 		if (rdisk < 0) {
871 			/* couldn't find anywhere to read from */
872 			raid_end_bio_io(r1_bio);
873 			return 0;
874 		}
875 		mirror = conf->mirrors + rdisk;
876 
877 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
878 		    bitmap) {
879 			/* Reading from a write-mostly device must
880 			 * take care not to over-take any writes
881 			 * that are 'behind'
882 			 */
883 			wait_event(bitmap->behind_wait,
884 				   atomic_read(&bitmap->behind_writes) == 0);
885 		}
886 		r1_bio->read_disk = rdisk;
887 
888 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
889 		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
890 			    max_sectors);
891 
892 		r1_bio->bios[rdisk] = read_bio;
893 
894 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
895 		read_bio->bi_bdev = mirror->rdev->bdev;
896 		read_bio->bi_end_io = raid1_end_read_request;
897 		read_bio->bi_rw = READ | do_sync;
898 		read_bio->bi_private = r1_bio;
899 
900 		if (max_sectors < r1_bio->sectors) {
901 			/* could not read all from this device, so we will
902 			 * need another r1_bio.
903 			 */
904 
905 			sectors_handled = (r1_bio->sector + max_sectors
906 					   - bio->bi_sector);
907 			r1_bio->sectors = max_sectors;
908 			spin_lock_irq(&conf->device_lock);
909 			if (bio->bi_phys_segments == 0)
910 				bio->bi_phys_segments = 2;
911 			else
912 				bio->bi_phys_segments++;
913 			spin_unlock_irq(&conf->device_lock);
914 			/* Cannot call generic_make_request directly
915 			 * as that will be queued in __make_request
916 			 * and subsequent mempool_alloc might block waiting
917 			 * for it.  So hand bio over to raid1d.
918 			 */
919 			reschedule_retry(r1_bio);
920 
921 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
922 
923 			r1_bio->master_bio = bio;
924 			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
925 			r1_bio->state = 0;
926 			r1_bio->mddev = mddev;
927 			r1_bio->sector = bio->bi_sector + sectors_handled;
928 			goto read_again;
929 		} else
930 			generic_make_request(read_bio);
931 		return 0;
932 	}
933 
934 	/*
935 	 * WRITE:
936 	 */
937 	/* first select target devices under rcu_lock and
938 	 * inc refcount on their rdev.  Record them by setting
939 	 * bios[x] to bio
940 	 * If there are known/acknowledged bad blocks on any device on
941 	 * which we have seen a write error, we want to avoid writing those
942 	 * blocks.
943 	 * This potentially requires several writes to write around
944 	 * the bad blocks.  Each set of writes gets it's own r1bio
945 	 * with a set of bios attached.
946 	 */
947 	plugged = mddev_check_plugged(mddev);
948 
949 	disks = conf->raid_disks;
950  retry_write:
951 	blocked_rdev = NULL;
952 	rcu_read_lock();
953 	max_sectors = r1_bio->sectors;
954 	for (i = 0;  i < disks; i++) {
955 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
956 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
957 			atomic_inc(&rdev->nr_pending);
958 			blocked_rdev = rdev;
959 			break;
960 		}
961 		r1_bio->bios[i] = NULL;
962 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
963 			set_bit(R1BIO_Degraded, &r1_bio->state);
964 			continue;
965 		}
966 
967 		atomic_inc(&rdev->nr_pending);
968 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
969 			sector_t first_bad;
970 			int bad_sectors;
971 			int is_bad;
972 
973 			is_bad = is_badblock(rdev, r1_bio->sector,
974 					     max_sectors,
975 					     &first_bad, &bad_sectors);
976 			if (is_bad < 0) {
977 				/* mustn't write here until the bad block is
978 				 * acknowledged*/
979 				set_bit(BlockedBadBlocks, &rdev->flags);
980 				blocked_rdev = rdev;
981 				break;
982 			}
983 			if (is_bad && first_bad <= r1_bio->sector) {
984 				/* Cannot write here at all */
985 				bad_sectors -= (r1_bio->sector - first_bad);
986 				if (bad_sectors < max_sectors)
987 					/* mustn't write more than bad_sectors
988 					 * to other devices yet
989 					 */
990 					max_sectors = bad_sectors;
991 				rdev_dec_pending(rdev, mddev);
992 				/* We don't set R1BIO_Degraded as that
993 				 * only applies if the disk is
994 				 * missing, so it might be re-added,
995 				 * and we want to know to recover this
996 				 * chunk.
997 				 * In this case the device is here,
998 				 * and the fact that this chunk is not
999 				 * in-sync is recorded in the bad
1000 				 * block log
1001 				 */
1002 				continue;
1003 			}
1004 			if (is_bad) {
1005 				int good_sectors = first_bad - r1_bio->sector;
1006 				if (good_sectors < max_sectors)
1007 					max_sectors = good_sectors;
1008 			}
1009 		}
1010 		r1_bio->bios[i] = bio;
1011 	}
1012 	rcu_read_unlock();
1013 
1014 	if (unlikely(blocked_rdev)) {
1015 		/* Wait for this device to become unblocked */
1016 		int j;
1017 
1018 		for (j = 0; j < i; j++)
1019 			if (r1_bio->bios[j])
1020 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021 		r1_bio->state = 0;
1022 		allow_barrier(conf);
1023 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024 		wait_barrier(conf);
1025 		goto retry_write;
1026 	}
1027 
1028 	if (max_sectors < r1_bio->sectors) {
1029 		/* We are splitting this write into multiple parts, so
1030 		 * we need to prepare for allocating another r1_bio.
1031 		 */
1032 		r1_bio->sectors = max_sectors;
1033 		spin_lock_irq(&conf->device_lock);
1034 		if (bio->bi_phys_segments == 0)
1035 			bio->bi_phys_segments = 2;
1036 		else
1037 			bio->bi_phys_segments++;
1038 		spin_unlock_irq(&conf->device_lock);
1039 	}
1040 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1041 
1042 	atomic_set(&r1_bio->remaining, 1);
1043 	atomic_set(&r1_bio->behind_remaining, 0);
1044 
1045 	first_clone = 1;
1046 	for (i = 0; i < disks; i++) {
1047 		struct bio *mbio;
1048 		if (!r1_bio->bios[i])
1049 			continue;
1050 
1051 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052 		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053 
1054 		if (first_clone) {
1055 			/* do behind I/O ?
1056 			 * Not if there are too many, or cannot
1057 			 * allocate memory, or a reader on WriteMostly
1058 			 * is waiting for behind writes to flush */
1059 			if (bitmap &&
1060 			    (atomic_read(&bitmap->behind_writes)
1061 			     < mddev->bitmap_info.max_write_behind) &&
1062 			    !waitqueue_active(&bitmap->behind_wait))
1063 				alloc_behind_pages(mbio, r1_bio);
1064 
1065 			bitmap_startwrite(bitmap, r1_bio->sector,
1066 					  r1_bio->sectors,
1067 					  test_bit(R1BIO_BehindIO,
1068 						   &r1_bio->state));
1069 			first_clone = 0;
1070 		}
1071 		if (r1_bio->behind_bvecs) {
1072 			struct bio_vec *bvec;
1073 			int j;
1074 
1075 			/* Yes, I really want the '__' version so that
1076 			 * we clear any unused pointer in the io_vec, rather
1077 			 * than leave them unchanged.  This is important
1078 			 * because when we come to free the pages, we won't
1079 			 * know the original bi_idx, so we just free
1080 			 * them all
1081 			 */
1082 			__bio_for_each_segment(bvec, mbio, j, 0)
1083 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085 				atomic_inc(&r1_bio->behind_remaining);
1086 		}
1087 
1088 		r1_bio->bios[i] = mbio;
1089 
1090 		mbio->bi_sector	= (r1_bio->sector +
1091 				   conf->mirrors[i].rdev->data_offset);
1092 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093 		mbio->bi_end_io	= raid1_end_write_request;
1094 		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1095 		mbio->bi_private = r1_bio;
1096 
1097 		atomic_inc(&r1_bio->remaining);
1098 		spin_lock_irqsave(&conf->device_lock, flags);
1099 		bio_list_add(&conf->pending_bio_list, mbio);
1100 		spin_unlock_irqrestore(&conf->device_lock, flags);
1101 	}
1102 	r1_bio_write_done(r1_bio);
1103 
1104 	/* In case raid1d snuck in to freeze_array */
1105 	wake_up(&conf->wait_barrier);
1106 
1107 	if (sectors_handled < (bio->bi_size >> 9)) {
1108 		/* We need another r1_bio.  It has already been counted
1109 		 * in bio->bi_phys_segments
1110 		 */
1111 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1112 		r1_bio->master_bio = bio;
1113 		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1114 		r1_bio->state = 0;
1115 		r1_bio->mddev = mddev;
1116 		r1_bio->sector = bio->bi_sector + sectors_handled;
1117 		goto retry_write;
1118 	}
1119 
1120 	if (do_sync || !bitmap || !plugged)
1121 		md_wakeup_thread(mddev->thread);
1122 
1123 	return 0;
1124 }
1125 
1126 static void status(struct seq_file *seq, mddev_t *mddev)
1127 {
1128 	conf_t *conf = mddev->private;
1129 	int i;
1130 
1131 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1132 		   conf->raid_disks - mddev->degraded);
1133 	rcu_read_lock();
1134 	for (i = 0; i < conf->raid_disks; i++) {
1135 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1136 		seq_printf(seq, "%s",
1137 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1138 	}
1139 	rcu_read_unlock();
1140 	seq_printf(seq, "]");
1141 }
1142 
1143 
1144 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1145 {
1146 	char b[BDEVNAME_SIZE];
1147 	conf_t *conf = mddev->private;
1148 
1149 	/*
1150 	 * If it is not operational, then we have already marked it as dead
1151 	 * else if it is the last working disks, ignore the error, let the
1152 	 * next level up know.
1153 	 * else mark the drive as failed
1154 	 */
1155 	if (test_bit(In_sync, &rdev->flags)
1156 	    && (conf->raid_disks - mddev->degraded) == 1) {
1157 		/*
1158 		 * Don't fail the drive, act as though we were just a
1159 		 * normal single drive.
1160 		 * However don't try a recovery from this drive as
1161 		 * it is very likely to fail.
1162 		 */
1163 		conf->recovery_disabled = mddev->recovery_disabled;
1164 		return;
1165 	}
1166 	set_bit(Blocked, &rdev->flags);
1167 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1168 		unsigned long flags;
1169 		spin_lock_irqsave(&conf->device_lock, flags);
1170 		mddev->degraded++;
1171 		set_bit(Faulty, &rdev->flags);
1172 		spin_unlock_irqrestore(&conf->device_lock, flags);
1173 		/*
1174 		 * if recovery is running, make sure it aborts.
1175 		 */
1176 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1177 	} else
1178 		set_bit(Faulty, &rdev->flags);
1179 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1180 	printk(KERN_ALERT
1181 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1182 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1183 	       mdname(mddev), bdevname(rdev->bdev, b),
1184 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1185 }
1186 
1187 static void print_conf(conf_t *conf)
1188 {
1189 	int i;
1190 
1191 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1192 	if (!conf) {
1193 		printk(KERN_DEBUG "(!conf)\n");
1194 		return;
1195 	}
1196 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1197 		conf->raid_disks);
1198 
1199 	rcu_read_lock();
1200 	for (i = 0; i < conf->raid_disks; i++) {
1201 		char b[BDEVNAME_SIZE];
1202 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1203 		if (rdev)
1204 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1205 			       i, !test_bit(In_sync, &rdev->flags),
1206 			       !test_bit(Faulty, &rdev->flags),
1207 			       bdevname(rdev->bdev,b));
1208 	}
1209 	rcu_read_unlock();
1210 }
1211 
1212 static void close_sync(conf_t *conf)
1213 {
1214 	wait_barrier(conf);
1215 	allow_barrier(conf);
1216 
1217 	mempool_destroy(conf->r1buf_pool);
1218 	conf->r1buf_pool = NULL;
1219 }
1220 
1221 static int raid1_spare_active(mddev_t *mddev)
1222 {
1223 	int i;
1224 	conf_t *conf = mddev->private;
1225 	int count = 0;
1226 	unsigned long flags;
1227 
1228 	/*
1229 	 * Find all failed disks within the RAID1 configuration
1230 	 * and mark them readable.
1231 	 * Called under mddev lock, so rcu protection not needed.
1232 	 */
1233 	for (i = 0; i < conf->raid_disks; i++) {
1234 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1235 		if (rdev
1236 		    && !test_bit(Faulty, &rdev->flags)
1237 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1238 			count++;
1239 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1240 		}
1241 	}
1242 	spin_lock_irqsave(&conf->device_lock, flags);
1243 	mddev->degraded -= count;
1244 	spin_unlock_irqrestore(&conf->device_lock, flags);
1245 
1246 	print_conf(conf);
1247 	return count;
1248 }
1249 
1250 
1251 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1252 {
1253 	conf_t *conf = mddev->private;
1254 	int err = -EEXIST;
1255 	int mirror = 0;
1256 	mirror_info_t *p;
1257 	int first = 0;
1258 	int last = mddev->raid_disks - 1;
1259 
1260 	if (mddev->recovery_disabled == conf->recovery_disabled)
1261 		return -EBUSY;
1262 
1263 	if (rdev->raid_disk >= 0)
1264 		first = last = rdev->raid_disk;
1265 
1266 	for (mirror = first; mirror <= last; mirror++)
1267 		if ( !(p=conf->mirrors+mirror)->rdev) {
1268 
1269 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1270 					  rdev->data_offset << 9);
1271 			/* as we don't honour merge_bvec_fn, we must
1272 			 * never risk violating it, so limit
1273 			 * ->max_segments to one lying with a single
1274 			 * page, as a one page request is never in
1275 			 * violation.
1276 			 */
1277 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1278 				blk_queue_max_segments(mddev->queue, 1);
1279 				blk_queue_segment_boundary(mddev->queue,
1280 							   PAGE_CACHE_SIZE - 1);
1281 			}
1282 
1283 			p->head_position = 0;
1284 			rdev->raid_disk = mirror;
1285 			err = 0;
1286 			/* As all devices are equivalent, we don't need a full recovery
1287 			 * if this was recently any drive of the array
1288 			 */
1289 			if (rdev->saved_raid_disk < 0)
1290 				conf->fullsync = 1;
1291 			rcu_assign_pointer(p->rdev, rdev);
1292 			break;
1293 		}
1294 	md_integrity_add_rdev(rdev, mddev);
1295 	print_conf(conf);
1296 	return err;
1297 }
1298 
1299 static int raid1_remove_disk(mddev_t *mddev, int number)
1300 {
1301 	conf_t *conf = mddev->private;
1302 	int err = 0;
1303 	mdk_rdev_t *rdev;
1304 	mirror_info_t *p = conf->mirrors+ number;
1305 
1306 	print_conf(conf);
1307 	rdev = p->rdev;
1308 	if (rdev) {
1309 		if (test_bit(In_sync, &rdev->flags) ||
1310 		    atomic_read(&rdev->nr_pending)) {
1311 			err = -EBUSY;
1312 			goto abort;
1313 		}
1314 		/* Only remove non-faulty devices if recovery
1315 		 * is not possible.
1316 		 */
1317 		if (!test_bit(Faulty, &rdev->flags) &&
1318 		    mddev->recovery_disabled != conf->recovery_disabled &&
1319 		    mddev->degraded < conf->raid_disks) {
1320 			err = -EBUSY;
1321 			goto abort;
1322 		}
1323 		p->rdev = NULL;
1324 		synchronize_rcu();
1325 		if (atomic_read(&rdev->nr_pending)) {
1326 			/* lost the race, try later */
1327 			err = -EBUSY;
1328 			p->rdev = rdev;
1329 			goto abort;
1330 		}
1331 		err = md_integrity_register(mddev);
1332 	}
1333 abort:
1334 
1335 	print_conf(conf);
1336 	return err;
1337 }
1338 
1339 
1340 static void end_sync_read(struct bio *bio, int error)
1341 {
1342 	r1bio_t *r1_bio = bio->bi_private;
1343 	int i;
1344 
1345 	for (i=r1_bio->mddev->raid_disks; i--; )
1346 		if (r1_bio->bios[i] == bio)
1347 			break;
1348 	BUG_ON(i < 0);
1349 	update_head_pos(i, r1_bio);
1350 	/*
1351 	 * we have read a block, now it needs to be re-written,
1352 	 * or re-read if the read failed.
1353 	 * We don't do much here, just schedule handling by raid1d
1354 	 */
1355 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1356 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1357 
1358 	if (atomic_dec_and_test(&r1_bio->remaining))
1359 		reschedule_retry(r1_bio);
1360 }
1361 
1362 static void end_sync_write(struct bio *bio, int error)
1363 {
1364 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1365 	r1bio_t *r1_bio = bio->bi_private;
1366 	mddev_t *mddev = r1_bio->mddev;
1367 	conf_t *conf = mddev->private;
1368 	int i;
1369 	int mirror=0;
1370 	sector_t first_bad;
1371 	int bad_sectors;
1372 
1373 	for (i = 0; i < conf->raid_disks; i++)
1374 		if (r1_bio->bios[i] == bio) {
1375 			mirror = i;
1376 			break;
1377 		}
1378 	if (!uptodate) {
1379 		sector_t sync_blocks = 0;
1380 		sector_t s = r1_bio->sector;
1381 		long sectors_to_go = r1_bio->sectors;
1382 		/* make sure these bits doesn't get cleared. */
1383 		do {
1384 			bitmap_end_sync(mddev->bitmap, s,
1385 					&sync_blocks, 1);
1386 			s += sync_blocks;
1387 			sectors_to_go -= sync_blocks;
1388 		} while (sectors_to_go > 0);
1389 		set_bit(WriteErrorSeen,
1390 			&conf->mirrors[mirror].rdev->flags);
1391 		set_bit(R1BIO_WriteError, &r1_bio->state);
1392 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1393 			       r1_bio->sector,
1394 			       r1_bio->sectors,
1395 			       &first_bad, &bad_sectors) &&
1396 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1397 				r1_bio->sector,
1398 				r1_bio->sectors,
1399 				&first_bad, &bad_sectors)
1400 		)
1401 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1402 
1403 	update_head_pos(mirror, r1_bio);
1404 
1405 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1406 		int s = r1_bio->sectors;
1407 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1408 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1409 			reschedule_retry(r1_bio);
1410 		else {
1411 			put_buf(r1_bio);
1412 			md_done_sync(mddev, s, uptodate);
1413 		}
1414 	}
1415 }
1416 
1417 static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1418 			    int sectors, struct page *page, int rw)
1419 {
1420 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1421 		/* success */
1422 		return 1;
1423 	if (rw == WRITE)
1424 		set_bit(WriteErrorSeen, &rdev->flags);
1425 	/* need to record an error - either for the block or the device */
1426 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1427 		md_error(rdev->mddev, rdev);
1428 	return 0;
1429 }
1430 
1431 static int fix_sync_read_error(r1bio_t *r1_bio)
1432 {
1433 	/* Try some synchronous reads of other devices to get
1434 	 * good data, much like with normal read errors.  Only
1435 	 * read into the pages we already have so we don't
1436 	 * need to re-issue the read request.
1437 	 * We don't need to freeze the array, because being in an
1438 	 * active sync request, there is no normal IO, and
1439 	 * no overlapping syncs.
1440 	 * We don't need to check is_badblock() again as we
1441 	 * made sure that anything with a bad block in range
1442 	 * will have bi_end_io clear.
1443 	 */
1444 	mddev_t *mddev = r1_bio->mddev;
1445 	conf_t *conf = mddev->private;
1446 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1447 	sector_t sect = r1_bio->sector;
1448 	int sectors = r1_bio->sectors;
1449 	int idx = 0;
1450 
1451 	while(sectors) {
1452 		int s = sectors;
1453 		int d = r1_bio->read_disk;
1454 		int success = 0;
1455 		mdk_rdev_t *rdev;
1456 		int start;
1457 
1458 		if (s > (PAGE_SIZE>>9))
1459 			s = PAGE_SIZE >> 9;
1460 		do {
1461 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1462 				/* No rcu protection needed here devices
1463 				 * can only be removed when no resync is
1464 				 * active, and resync is currently active
1465 				 */
1466 				rdev = conf->mirrors[d].rdev;
1467 				if (sync_page_io(rdev, sect, s<<9,
1468 						 bio->bi_io_vec[idx].bv_page,
1469 						 READ, false)) {
1470 					success = 1;
1471 					break;
1472 				}
1473 			}
1474 			d++;
1475 			if (d == conf->raid_disks)
1476 				d = 0;
1477 		} while (!success && d != r1_bio->read_disk);
1478 
1479 		if (!success) {
1480 			char b[BDEVNAME_SIZE];
1481 			int abort = 0;
1482 			/* Cannot read from anywhere, this block is lost.
1483 			 * Record a bad block on each device.  If that doesn't
1484 			 * work just disable and interrupt the recovery.
1485 			 * Don't fail devices as that won't really help.
1486 			 */
1487 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1488 			       " for block %llu\n",
1489 			       mdname(mddev),
1490 			       bdevname(bio->bi_bdev, b),
1491 			       (unsigned long long)r1_bio->sector);
1492 			for (d = 0; d < conf->raid_disks; d++) {
1493 				rdev = conf->mirrors[d].rdev;
1494 				if (!rdev || test_bit(Faulty, &rdev->flags))
1495 					continue;
1496 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1497 					abort = 1;
1498 			}
1499 			if (abort) {
1500 				mddev->recovery_disabled = 1;
1501 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1502 				md_done_sync(mddev, r1_bio->sectors, 0);
1503 				put_buf(r1_bio);
1504 				return 0;
1505 			}
1506 			/* Try next page */
1507 			sectors -= s;
1508 			sect += s;
1509 			idx++;
1510 			continue;
1511 		}
1512 
1513 		start = d;
1514 		/* write it back and re-read */
1515 		while (d != r1_bio->read_disk) {
1516 			if (d == 0)
1517 				d = conf->raid_disks;
1518 			d--;
1519 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1520 				continue;
1521 			rdev = conf->mirrors[d].rdev;
1522 			if (r1_sync_page_io(rdev, sect, s,
1523 					    bio->bi_io_vec[idx].bv_page,
1524 					    WRITE) == 0) {
1525 				r1_bio->bios[d]->bi_end_io = NULL;
1526 				rdev_dec_pending(rdev, mddev);
1527 			}
1528 		}
1529 		d = start;
1530 		while (d != r1_bio->read_disk) {
1531 			if (d == 0)
1532 				d = conf->raid_disks;
1533 			d--;
1534 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1535 				continue;
1536 			rdev = conf->mirrors[d].rdev;
1537 			if (r1_sync_page_io(rdev, sect, s,
1538 					    bio->bi_io_vec[idx].bv_page,
1539 					    READ) != 0)
1540 				atomic_add(s, &rdev->corrected_errors);
1541 		}
1542 		sectors -= s;
1543 		sect += s;
1544 		idx ++;
1545 	}
1546 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1547 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1548 	return 1;
1549 }
1550 
1551 static int process_checks(r1bio_t *r1_bio)
1552 {
1553 	/* We have read all readable devices.  If we haven't
1554 	 * got the block, then there is no hope left.
1555 	 * If we have, then we want to do a comparison
1556 	 * and skip the write if everything is the same.
1557 	 * If any blocks failed to read, then we need to
1558 	 * attempt an over-write
1559 	 */
1560 	mddev_t *mddev = r1_bio->mddev;
1561 	conf_t *conf = mddev->private;
1562 	int primary;
1563 	int i;
1564 
1565 	for (primary = 0; primary < conf->raid_disks; primary++)
1566 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1567 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1568 			r1_bio->bios[primary]->bi_end_io = NULL;
1569 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1570 			break;
1571 		}
1572 	r1_bio->read_disk = primary;
1573 	for (i = 0; i < conf->raid_disks; i++) {
1574 		int j;
1575 		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1576 		struct bio *pbio = r1_bio->bios[primary];
1577 		struct bio *sbio = r1_bio->bios[i];
1578 		int size;
1579 
1580 		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1581 			continue;
1582 
1583 		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1584 			for (j = vcnt; j-- ; ) {
1585 				struct page *p, *s;
1586 				p = pbio->bi_io_vec[j].bv_page;
1587 				s = sbio->bi_io_vec[j].bv_page;
1588 				if (memcmp(page_address(p),
1589 					   page_address(s),
1590 					   PAGE_SIZE))
1591 					break;
1592 			}
1593 		} else
1594 			j = 0;
1595 		if (j >= 0)
1596 			mddev->resync_mismatches += r1_bio->sectors;
1597 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1598 			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1599 			/* No need to write to this device. */
1600 			sbio->bi_end_io = NULL;
1601 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1602 			continue;
1603 		}
1604 		/* fixup the bio for reuse */
1605 		sbio->bi_vcnt = vcnt;
1606 		sbio->bi_size = r1_bio->sectors << 9;
1607 		sbio->bi_idx = 0;
1608 		sbio->bi_phys_segments = 0;
1609 		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1610 		sbio->bi_flags |= 1 << BIO_UPTODATE;
1611 		sbio->bi_next = NULL;
1612 		sbio->bi_sector = r1_bio->sector +
1613 			conf->mirrors[i].rdev->data_offset;
1614 		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1615 		size = sbio->bi_size;
1616 		for (j = 0; j < vcnt ; j++) {
1617 			struct bio_vec *bi;
1618 			bi = &sbio->bi_io_vec[j];
1619 			bi->bv_offset = 0;
1620 			if (size > PAGE_SIZE)
1621 				bi->bv_len = PAGE_SIZE;
1622 			else
1623 				bi->bv_len = size;
1624 			size -= PAGE_SIZE;
1625 			memcpy(page_address(bi->bv_page),
1626 			       page_address(pbio->bi_io_vec[j].bv_page),
1627 			       PAGE_SIZE);
1628 		}
1629 	}
1630 	return 0;
1631 }
1632 
1633 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1634 {
1635 	conf_t *conf = mddev->private;
1636 	int i;
1637 	int disks = conf->raid_disks;
1638 	struct bio *bio, *wbio;
1639 
1640 	bio = r1_bio->bios[r1_bio->read_disk];
1641 
1642 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1643 		/* ouch - failed to read all of that. */
1644 		if (!fix_sync_read_error(r1_bio))
1645 			return;
1646 
1647 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1648 		if (process_checks(r1_bio) < 0)
1649 			return;
1650 	/*
1651 	 * schedule writes
1652 	 */
1653 	atomic_set(&r1_bio->remaining, 1);
1654 	for (i = 0; i < disks ; i++) {
1655 		wbio = r1_bio->bios[i];
1656 		if (wbio->bi_end_io == NULL ||
1657 		    (wbio->bi_end_io == end_sync_read &&
1658 		     (i == r1_bio->read_disk ||
1659 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1660 			continue;
1661 
1662 		wbio->bi_rw = WRITE;
1663 		wbio->bi_end_io = end_sync_write;
1664 		atomic_inc(&r1_bio->remaining);
1665 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1666 
1667 		generic_make_request(wbio);
1668 	}
1669 
1670 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1671 		/* if we're here, all write(s) have completed, so clean up */
1672 		md_done_sync(mddev, r1_bio->sectors, 1);
1673 		put_buf(r1_bio);
1674 	}
1675 }
1676 
1677 /*
1678  * This is a kernel thread which:
1679  *
1680  *	1.	Retries failed read operations on working mirrors.
1681  *	2.	Updates the raid superblock when problems encounter.
1682  *	3.	Performs writes following reads for array synchronising.
1683  */
1684 
1685 static void fix_read_error(conf_t *conf, int read_disk,
1686 			   sector_t sect, int sectors)
1687 {
1688 	mddev_t *mddev = conf->mddev;
1689 	while(sectors) {
1690 		int s = sectors;
1691 		int d = read_disk;
1692 		int success = 0;
1693 		int start;
1694 		mdk_rdev_t *rdev;
1695 
1696 		if (s > (PAGE_SIZE>>9))
1697 			s = PAGE_SIZE >> 9;
1698 
1699 		do {
1700 			/* Note: no rcu protection needed here
1701 			 * as this is synchronous in the raid1d thread
1702 			 * which is the thread that might remove
1703 			 * a device.  If raid1d ever becomes multi-threaded....
1704 			 */
1705 			sector_t first_bad;
1706 			int bad_sectors;
1707 
1708 			rdev = conf->mirrors[d].rdev;
1709 			if (rdev &&
1710 			    test_bit(In_sync, &rdev->flags) &&
1711 			    is_badblock(rdev, sect, s,
1712 					&first_bad, &bad_sectors) == 0 &&
1713 			    sync_page_io(rdev, sect, s<<9,
1714 					 conf->tmppage, READ, false))
1715 				success = 1;
1716 			else {
1717 				d++;
1718 				if (d == conf->raid_disks)
1719 					d = 0;
1720 			}
1721 		} while (!success && d != read_disk);
1722 
1723 		if (!success) {
1724 			/* Cannot read from anywhere - mark it bad */
1725 			mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1726 			if (!rdev_set_badblocks(rdev, sect, s, 0))
1727 				md_error(mddev, rdev);
1728 			break;
1729 		}
1730 		/* write it back and re-read */
1731 		start = d;
1732 		while (d != read_disk) {
1733 			if (d==0)
1734 				d = conf->raid_disks;
1735 			d--;
1736 			rdev = conf->mirrors[d].rdev;
1737 			if (rdev &&
1738 			    test_bit(In_sync, &rdev->flags))
1739 				r1_sync_page_io(rdev, sect, s,
1740 						conf->tmppage, WRITE);
1741 		}
1742 		d = start;
1743 		while (d != read_disk) {
1744 			char b[BDEVNAME_SIZE];
1745 			if (d==0)
1746 				d = conf->raid_disks;
1747 			d--;
1748 			rdev = conf->mirrors[d].rdev;
1749 			if (rdev &&
1750 			    test_bit(In_sync, &rdev->flags)) {
1751 				if (r1_sync_page_io(rdev, sect, s,
1752 						    conf->tmppage, READ)) {
1753 					atomic_add(s, &rdev->corrected_errors);
1754 					printk(KERN_INFO
1755 					       "md/raid1:%s: read error corrected "
1756 					       "(%d sectors at %llu on %s)\n",
1757 					       mdname(mddev), s,
1758 					       (unsigned long long)(sect +
1759 					           rdev->data_offset),
1760 					       bdevname(rdev->bdev, b));
1761 				}
1762 			}
1763 		}
1764 		sectors -= s;
1765 		sect += s;
1766 	}
1767 }
1768 
1769 static void bi_complete(struct bio *bio, int error)
1770 {
1771 	complete((struct completion *)bio->bi_private);
1772 }
1773 
1774 static int submit_bio_wait(int rw, struct bio *bio)
1775 {
1776 	struct completion event;
1777 	rw |= REQ_SYNC;
1778 
1779 	init_completion(&event);
1780 	bio->bi_private = &event;
1781 	bio->bi_end_io = bi_complete;
1782 	submit_bio(rw, bio);
1783 	wait_for_completion(&event);
1784 
1785 	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1786 }
1787 
1788 static int narrow_write_error(r1bio_t *r1_bio, int i)
1789 {
1790 	mddev_t *mddev = r1_bio->mddev;
1791 	conf_t *conf = mddev->private;
1792 	mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1793 	int vcnt, idx;
1794 	struct bio_vec *vec;
1795 
1796 	/* bio has the data to be written to device 'i' where
1797 	 * we just recently had a write error.
1798 	 * We repeatedly clone the bio and trim down to one block,
1799 	 * then try the write.  Where the write fails we record
1800 	 * a bad block.
1801 	 * It is conceivable that the bio doesn't exactly align with
1802 	 * blocks.  We must handle this somehow.
1803 	 *
1804 	 * We currently own a reference on the rdev.
1805 	 */
1806 
1807 	int block_sectors;
1808 	sector_t sector;
1809 	int sectors;
1810 	int sect_to_write = r1_bio->sectors;
1811 	int ok = 1;
1812 
1813 	if (rdev->badblocks.shift < 0)
1814 		return 0;
1815 
1816 	block_sectors = 1 << rdev->badblocks.shift;
1817 	sector = r1_bio->sector;
1818 	sectors = ((sector + block_sectors)
1819 		   & ~(sector_t)(block_sectors - 1))
1820 		- sector;
1821 
1822 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1823 		vcnt = r1_bio->behind_page_count;
1824 		vec = r1_bio->behind_bvecs;
1825 		idx = 0;
1826 		while (vec[idx].bv_page == NULL)
1827 			idx++;
1828 	} else {
1829 		vcnt = r1_bio->master_bio->bi_vcnt;
1830 		vec = r1_bio->master_bio->bi_io_vec;
1831 		idx = r1_bio->master_bio->bi_idx;
1832 	}
1833 	while (sect_to_write) {
1834 		struct bio *wbio;
1835 		if (sectors > sect_to_write)
1836 			sectors = sect_to_write;
1837 		/* Write at 'sector' for 'sectors'*/
1838 
1839 		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1840 		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1841 		wbio->bi_sector = r1_bio->sector;
1842 		wbio->bi_rw = WRITE;
1843 		wbio->bi_vcnt = vcnt;
1844 		wbio->bi_size = r1_bio->sectors << 9;
1845 		wbio->bi_idx = idx;
1846 
1847 		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1848 		wbio->bi_sector += rdev->data_offset;
1849 		wbio->bi_bdev = rdev->bdev;
1850 		if (submit_bio_wait(WRITE, wbio) == 0)
1851 			/* failure! */
1852 			ok = rdev_set_badblocks(rdev, sector,
1853 						sectors, 0)
1854 				&& ok;
1855 
1856 		bio_put(wbio);
1857 		sect_to_write -= sectors;
1858 		sector += sectors;
1859 		sectors = block_sectors;
1860 	}
1861 	return ok;
1862 }
1863 
1864 static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1865 {
1866 	int m;
1867 	int s = r1_bio->sectors;
1868 	for (m = 0; m < conf->raid_disks ; m++) {
1869 		mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1870 		struct bio *bio = r1_bio->bios[m];
1871 		if (bio->bi_end_io == NULL)
1872 			continue;
1873 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1874 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1875 			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1876 		}
1877 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1879 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1880 				md_error(conf->mddev, rdev);
1881 		}
1882 	}
1883 	put_buf(r1_bio);
1884 	md_done_sync(conf->mddev, s, 1);
1885 }
1886 
1887 static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1888 {
1889 	int m;
1890 	for (m = 0; m < conf->raid_disks ; m++)
1891 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1892 			mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1893 			rdev_clear_badblocks(rdev,
1894 					     r1_bio->sector,
1895 					     r1_bio->sectors);
1896 			rdev_dec_pending(rdev, conf->mddev);
1897 		} else if (r1_bio->bios[m] != NULL) {
1898 			/* This drive got a write error.  We need to
1899 			 * narrow down and record precise write
1900 			 * errors.
1901 			 */
1902 			if (!narrow_write_error(r1_bio, m)) {
1903 				md_error(conf->mddev,
1904 					 conf->mirrors[m].rdev);
1905 				/* an I/O failed, we can't clear the bitmap */
1906 				set_bit(R1BIO_Degraded, &r1_bio->state);
1907 			}
1908 			rdev_dec_pending(conf->mirrors[m].rdev,
1909 					 conf->mddev);
1910 		}
1911 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1912 		close_write(r1_bio);
1913 	raid_end_bio_io(r1_bio);
1914 }
1915 
1916 static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1917 {
1918 	int disk;
1919 	int max_sectors;
1920 	mddev_t *mddev = conf->mddev;
1921 	struct bio *bio;
1922 	char b[BDEVNAME_SIZE];
1923 	mdk_rdev_t *rdev;
1924 
1925 	clear_bit(R1BIO_ReadError, &r1_bio->state);
1926 	/* we got a read error. Maybe the drive is bad.  Maybe just
1927 	 * the block and we can fix it.
1928 	 * We freeze all other IO, and try reading the block from
1929 	 * other devices.  When we find one, we re-write
1930 	 * and check it that fixes the read error.
1931 	 * This is all done synchronously while the array is
1932 	 * frozen
1933 	 */
1934 	if (mddev->ro == 0) {
1935 		freeze_array(conf);
1936 		fix_read_error(conf, r1_bio->read_disk,
1937 			       r1_bio->sector, r1_bio->sectors);
1938 		unfreeze_array(conf);
1939 	} else
1940 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1941 
1942 	bio = r1_bio->bios[r1_bio->read_disk];
1943 	bdevname(bio->bi_bdev, b);
1944 read_more:
1945 	disk = read_balance(conf, r1_bio, &max_sectors);
1946 	if (disk == -1) {
1947 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1948 		       " read error for block %llu\n",
1949 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1950 		raid_end_bio_io(r1_bio);
1951 	} else {
1952 		const unsigned long do_sync
1953 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
1954 		if (bio) {
1955 			r1_bio->bios[r1_bio->read_disk] =
1956 				mddev->ro ? IO_BLOCKED : NULL;
1957 			bio_put(bio);
1958 		}
1959 		r1_bio->read_disk = disk;
1960 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1961 		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1962 		r1_bio->bios[r1_bio->read_disk] = bio;
1963 		rdev = conf->mirrors[disk].rdev;
1964 		printk_ratelimited(KERN_ERR
1965 				   "md/raid1:%s: redirecting sector %llu"
1966 				   " to other mirror: %s\n",
1967 				   mdname(mddev),
1968 				   (unsigned long long)r1_bio->sector,
1969 				   bdevname(rdev->bdev, b));
1970 		bio->bi_sector = r1_bio->sector + rdev->data_offset;
1971 		bio->bi_bdev = rdev->bdev;
1972 		bio->bi_end_io = raid1_end_read_request;
1973 		bio->bi_rw = READ | do_sync;
1974 		bio->bi_private = r1_bio;
1975 		if (max_sectors < r1_bio->sectors) {
1976 			/* Drat - have to split this up more */
1977 			struct bio *mbio = r1_bio->master_bio;
1978 			int sectors_handled = (r1_bio->sector + max_sectors
1979 					       - mbio->bi_sector);
1980 			r1_bio->sectors = max_sectors;
1981 			spin_lock_irq(&conf->device_lock);
1982 			if (mbio->bi_phys_segments == 0)
1983 				mbio->bi_phys_segments = 2;
1984 			else
1985 				mbio->bi_phys_segments++;
1986 			spin_unlock_irq(&conf->device_lock);
1987 			generic_make_request(bio);
1988 			bio = NULL;
1989 
1990 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1991 
1992 			r1_bio->master_bio = mbio;
1993 			r1_bio->sectors = (mbio->bi_size >> 9)
1994 					  - sectors_handled;
1995 			r1_bio->state = 0;
1996 			set_bit(R1BIO_ReadError, &r1_bio->state);
1997 			r1_bio->mddev = mddev;
1998 			r1_bio->sector = mbio->bi_sector + sectors_handled;
1999 
2000 			goto read_more;
2001 		} else
2002 			generic_make_request(bio);
2003 	}
2004 }
2005 
2006 static void raid1d(mddev_t *mddev)
2007 {
2008 	r1bio_t *r1_bio;
2009 	unsigned long flags;
2010 	conf_t *conf = mddev->private;
2011 	struct list_head *head = &conf->retry_list;
2012 	struct blk_plug plug;
2013 
2014 	md_check_recovery(mddev);
2015 
2016 	blk_start_plug(&plug);
2017 	for (;;) {
2018 
2019 		if (atomic_read(&mddev->plug_cnt) == 0)
2020 			flush_pending_writes(conf);
2021 
2022 		spin_lock_irqsave(&conf->device_lock, flags);
2023 		if (list_empty(head)) {
2024 			spin_unlock_irqrestore(&conf->device_lock, flags);
2025 			break;
2026 		}
2027 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2028 		list_del(head->prev);
2029 		conf->nr_queued--;
2030 		spin_unlock_irqrestore(&conf->device_lock, flags);
2031 
2032 		mddev = r1_bio->mddev;
2033 		conf = mddev->private;
2034 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2035 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2036 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2037 				handle_sync_write_finished(conf, r1_bio);
2038 			else
2039 				sync_request_write(mddev, r1_bio);
2040 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2041 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2042 			handle_write_finished(conf, r1_bio);
2043 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2044 			handle_read_error(conf, r1_bio);
2045 		else
2046 			/* just a partial read to be scheduled from separate
2047 			 * context
2048 			 */
2049 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2050 
2051 		cond_resched();
2052 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2053 			md_check_recovery(mddev);
2054 	}
2055 	blk_finish_plug(&plug);
2056 }
2057 
2058 
2059 static int init_resync(conf_t *conf)
2060 {
2061 	int buffs;
2062 
2063 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2064 	BUG_ON(conf->r1buf_pool);
2065 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2066 					  conf->poolinfo);
2067 	if (!conf->r1buf_pool)
2068 		return -ENOMEM;
2069 	conf->next_resync = 0;
2070 	return 0;
2071 }
2072 
2073 /*
2074  * perform a "sync" on one "block"
2075  *
2076  * We need to make sure that no normal I/O request - particularly write
2077  * requests - conflict with active sync requests.
2078  *
2079  * This is achieved by tracking pending requests and a 'barrier' concept
2080  * that can be installed to exclude normal IO requests.
2081  */
2082 
2083 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2084 {
2085 	conf_t *conf = mddev->private;
2086 	r1bio_t *r1_bio;
2087 	struct bio *bio;
2088 	sector_t max_sector, nr_sectors;
2089 	int disk = -1;
2090 	int i;
2091 	int wonly = -1;
2092 	int write_targets = 0, read_targets = 0;
2093 	sector_t sync_blocks;
2094 	int still_degraded = 0;
2095 	int good_sectors = RESYNC_SECTORS;
2096 	int min_bad = 0; /* number of sectors that are bad in all devices */
2097 
2098 	if (!conf->r1buf_pool)
2099 		if (init_resync(conf))
2100 			return 0;
2101 
2102 	max_sector = mddev->dev_sectors;
2103 	if (sector_nr >= max_sector) {
2104 		/* If we aborted, we need to abort the
2105 		 * sync on the 'current' bitmap chunk (there will
2106 		 * only be one in raid1 resync.
2107 		 * We can find the current addess in mddev->curr_resync
2108 		 */
2109 		if (mddev->curr_resync < max_sector) /* aborted */
2110 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2111 						&sync_blocks, 1);
2112 		else /* completed sync */
2113 			conf->fullsync = 0;
2114 
2115 		bitmap_close_sync(mddev->bitmap);
2116 		close_sync(conf);
2117 		return 0;
2118 	}
2119 
2120 	if (mddev->bitmap == NULL &&
2121 	    mddev->recovery_cp == MaxSector &&
2122 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2123 	    conf->fullsync == 0) {
2124 		*skipped = 1;
2125 		return max_sector - sector_nr;
2126 	}
2127 	/* before building a request, check if we can skip these blocks..
2128 	 * This call the bitmap_start_sync doesn't actually record anything
2129 	 */
2130 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2131 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2132 		/* We can skip this block, and probably several more */
2133 		*skipped = 1;
2134 		return sync_blocks;
2135 	}
2136 	/*
2137 	 * If there is non-resync activity waiting for a turn,
2138 	 * and resync is going fast enough,
2139 	 * then let it though before starting on this new sync request.
2140 	 */
2141 	if (!go_faster && conf->nr_waiting)
2142 		msleep_interruptible(1000);
2143 
2144 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2145 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2146 	raise_barrier(conf);
2147 
2148 	conf->next_resync = sector_nr;
2149 
2150 	rcu_read_lock();
2151 	/*
2152 	 * If we get a correctably read error during resync or recovery,
2153 	 * we might want to read from a different device.  So we
2154 	 * flag all drives that could conceivably be read from for READ,
2155 	 * and any others (which will be non-In_sync devices) for WRITE.
2156 	 * If a read fails, we try reading from something else for which READ
2157 	 * is OK.
2158 	 */
2159 
2160 	r1_bio->mddev = mddev;
2161 	r1_bio->sector = sector_nr;
2162 	r1_bio->state = 0;
2163 	set_bit(R1BIO_IsSync, &r1_bio->state);
2164 
2165 	for (i=0; i < conf->raid_disks; i++) {
2166 		mdk_rdev_t *rdev;
2167 		bio = r1_bio->bios[i];
2168 
2169 		/* take from bio_init */
2170 		bio->bi_next = NULL;
2171 		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2172 		bio->bi_flags |= 1 << BIO_UPTODATE;
2173 		bio->bi_comp_cpu = -1;
2174 		bio->bi_rw = READ;
2175 		bio->bi_vcnt = 0;
2176 		bio->bi_idx = 0;
2177 		bio->bi_phys_segments = 0;
2178 		bio->bi_size = 0;
2179 		bio->bi_end_io = NULL;
2180 		bio->bi_private = NULL;
2181 
2182 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2183 		if (rdev == NULL ||
2184 		    test_bit(Faulty, &rdev->flags)) {
2185 			still_degraded = 1;
2186 		} else if (!test_bit(In_sync, &rdev->flags)) {
2187 			bio->bi_rw = WRITE;
2188 			bio->bi_end_io = end_sync_write;
2189 			write_targets ++;
2190 		} else {
2191 			/* may need to read from here */
2192 			sector_t first_bad = MaxSector;
2193 			int bad_sectors;
2194 
2195 			if (is_badblock(rdev, sector_nr, good_sectors,
2196 					&first_bad, &bad_sectors)) {
2197 				if (first_bad > sector_nr)
2198 					good_sectors = first_bad - sector_nr;
2199 				else {
2200 					bad_sectors -= (sector_nr - first_bad);
2201 					if (min_bad == 0 ||
2202 					    min_bad > bad_sectors)
2203 						min_bad = bad_sectors;
2204 				}
2205 			}
2206 			if (sector_nr < first_bad) {
2207 				if (test_bit(WriteMostly, &rdev->flags)) {
2208 					if (wonly < 0)
2209 						wonly = i;
2210 				} else {
2211 					if (disk < 0)
2212 						disk = i;
2213 				}
2214 				bio->bi_rw = READ;
2215 				bio->bi_end_io = end_sync_read;
2216 				read_targets++;
2217 			}
2218 		}
2219 		if (bio->bi_end_io) {
2220 			atomic_inc(&rdev->nr_pending);
2221 			bio->bi_sector = sector_nr + rdev->data_offset;
2222 			bio->bi_bdev = rdev->bdev;
2223 			bio->bi_private = r1_bio;
2224 		}
2225 	}
2226 	rcu_read_unlock();
2227 	if (disk < 0)
2228 		disk = wonly;
2229 	r1_bio->read_disk = disk;
2230 
2231 	if (read_targets == 0 && min_bad > 0) {
2232 		/* These sectors are bad on all InSync devices, so we
2233 		 * need to mark them bad on all write targets
2234 		 */
2235 		int ok = 1;
2236 		for (i = 0 ; i < conf->raid_disks ; i++)
2237 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2238 				mdk_rdev_t *rdev =
2239 					rcu_dereference(conf->mirrors[i].rdev);
2240 				ok = rdev_set_badblocks(rdev, sector_nr,
2241 							min_bad, 0
2242 					) && ok;
2243 			}
2244 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2245 		*skipped = 1;
2246 		put_buf(r1_bio);
2247 
2248 		if (!ok) {
2249 			/* Cannot record the badblocks, so need to
2250 			 * abort the resync.
2251 			 * If there are multiple read targets, could just
2252 			 * fail the really bad ones ???
2253 			 */
2254 			conf->recovery_disabled = mddev->recovery_disabled;
2255 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2256 			return 0;
2257 		} else
2258 			return min_bad;
2259 
2260 	}
2261 	if (min_bad > 0 && min_bad < good_sectors) {
2262 		/* only resync enough to reach the next bad->good
2263 		 * transition */
2264 		good_sectors = min_bad;
2265 	}
2266 
2267 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2268 		/* extra read targets are also write targets */
2269 		write_targets += read_targets-1;
2270 
2271 	if (write_targets == 0 || read_targets == 0) {
2272 		/* There is nowhere to write, so all non-sync
2273 		 * drives must be failed - so we are finished
2274 		 */
2275 		sector_t rv = max_sector - sector_nr;
2276 		*skipped = 1;
2277 		put_buf(r1_bio);
2278 		return rv;
2279 	}
2280 
2281 	if (max_sector > mddev->resync_max)
2282 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2283 	if (max_sector > sector_nr + good_sectors)
2284 		max_sector = sector_nr + good_sectors;
2285 	nr_sectors = 0;
2286 	sync_blocks = 0;
2287 	do {
2288 		struct page *page;
2289 		int len = PAGE_SIZE;
2290 		if (sector_nr + (len>>9) > max_sector)
2291 			len = (max_sector - sector_nr) << 9;
2292 		if (len == 0)
2293 			break;
2294 		if (sync_blocks == 0) {
2295 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2296 					       &sync_blocks, still_degraded) &&
2297 			    !conf->fullsync &&
2298 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2299 				break;
2300 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2301 			if ((len >> 9) > sync_blocks)
2302 				len = sync_blocks<<9;
2303 		}
2304 
2305 		for (i=0 ; i < conf->raid_disks; i++) {
2306 			bio = r1_bio->bios[i];
2307 			if (bio->bi_end_io) {
2308 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2309 				if (bio_add_page(bio, page, len, 0) == 0) {
2310 					/* stop here */
2311 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2312 					while (i > 0) {
2313 						i--;
2314 						bio = r1_bio->bios[i];
2315 						if (bio->bi_end_io==NULL)
2316 							continue;
2317 						/* remove last page from this bio */
2318 						bio->bi_vcnt--;
2319 						bio->bi_size -= len;
2320 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2321 					}
2322 					goto bio_full;
2323 				}
2324 			}
2325 		}
2326 		nr_sectors += len>>9;
2327 		sector_nr += len>>9;
2328 		sync_blocks -= (len>>9);
2329 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2330  bio_full:
2331 	r1_bio->sectors = nr_sectors;
2332 
2333 	/* For a user-requested sync, we read all readable devices and do a
2334 	 * compare
2335 	 */
2336 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2337 		atomic_set(&r1_bio->remaining, read_targets);
2338 		for (i=0; i<conf->raid_disks; i++) {
2339 			bio = r1_bio->bios[i];
2340 			if (bio->bi_end_io == end_sync_read) {
2341 				md_sync_acct(bio->bi_bdev, nr_sectors);
2342 				generic_make_request(bio);
2343 			}
2344 		}
2345 	} else {
2346 		atomic_set(&r1_bio->remaining, 1);
2347 		bio = r1_bio->bios[r1_bio->read_disk];
2348 		md_sync_acct(bio->bi_bdev, nr_sectors);
2349 		generic_make_request(bio);
2350 
2351 	}
2352 	return nr_sectors;
2353 }
2354 
2355 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2356 {
2357 	if (sectors)
2358 		return sectors;
2359 
2360 	return mddev->dev_sectors;
2361 }
2362 
2363 static conf_t *setup_conf(mddev_t *mddev)
2364 {
2365 	conf_t *conf;
2366 	int i;
2367 	mirror_info_t *disk;
2368 	mdk_rdev_t *rdev;
2369 	int err = -ENOMEM;
2370 
2371 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2372 	if (!conf)
2373 		goto abort;
2374 
2375 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2376 				 GFP_KERNEL);
2377 	if (!conf->mirrors)
2378 		goto abort;
2379 
2380 	conf->tmppage = alloc_page(GFP_KERNEL);
2381 	if (!conf->tmppage)
2382 		goto abort;
2383 
2384 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2385 	if (!conf->poolinfo)
2386 		goto abort;
2387 	conf->poolinfo->raid_disks = mddev->raid_disks;
2388 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2389 					  r1bio_pool_free,
2390 					  conf->poolinfo);
2391 	if (!conf->r1bio_pool)
2392 		goto abort;
2393 
2394 	conf->poolinfo->mddev = mddev;
2395 
2396 	spin_lock_init(&conf->device_lock);
2397 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2398 		int disk_idx = rdev->raid_disk;
2399 		if (disk_idx >= mddev->raid_disks
2400 		    || disk_idx < 0)
2401 			continue;
2402 		disk = conf->mirrors + disk_idx;
2403 
2404 		disk->rdev = rdev;
2405 
2406 		disk->head_position = 0;
2407 	}
2408 	conf->raid_disks = mddev->raid_disks;
2409 	conf->mddev = mddev;
2410 	INIT_LIST_HEAD(&conf->retry_list);
2411 
2412 	spin_lock_init(&conf->resync_lock);
2413 	init_waitqueue_head(&conf->wait_barrier);
2414 
2415 	bio_list_init(&conf->pending_bio_list);
2416 
2417 	conf->last_used = -1;
2418 	for (i = 0; i < conf->raid_disks; i++) {
2419 
2420 		disk = conf->mirrors + i;
2421 
2422 		if (!disk->rdev ||
2423 		    !test_bit(In_sync, &disk->rdev->flags)) {
2424 			disk->head_position = 0;
2425 			if (disk->rdev)
2426 				conf->fullsync = 1;
2427 		} else if (conf->last_used < 0)
2428 			/*
2429 			 * The first working device is used as a
2430 			 * starting point to read balancing.
2431 			 */
2432 			conf->last_used = i;
2433 	}
2434 
2435 	err = -EIO;
2436 	if (conf->last_used < 0) {
2437 		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2438 		       mdname(mddev));
2439 		goto abort;
2440 	}
2441 	err = -ENOMEM;
2442 	conf->thread = md_register_thread(raid1d, mddev, NULL);
2443 	if (!conf->thread) {
2444 		printk(KERN_ERR
2445 		       "md/raid1:%s: couldn't allocate thread\n",
2446 		       mdname(mddev));
2447 		goto abort;
2448 	}
2449 
2450 	return conf;
2451 
2452  abort:
2453 	if (conf) {
2454 		if (conf->r1bio_pool)
2455 			mempool_destroy(conf->r1bio_pool);
2456 		kfree(conf->mirrors);
2457 		safe_put_page(conf->tmppage);
2458 		kfree(conf->poolinfo);
2459 		kfree(conf);
2460 	}
2461 	return ERR_PTR(err);
2462 }
2463 
2464 static int run(mddev_t *mddev)
2465 {
2466 	conf_t *conf;
2467 	int i;
2468 	mdk_rdev_t *rdev;
2469 
2470 	if (mddev->level != 1) {
2471 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2472 		       mdname(mddev), mddev->level);
2473 		return -EIO;
2474 	}
2475 	if (mddev->reshape_position != MaxSector) {
2476 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2477 		       mdname(mddev));
2478 		return -EIO;
2479 	}
2480 	/*
2481 	 * copy the already verified devices into our private RAID1
2482 	 * bookkeeping area. [whatever we allocate in run(),
2483 	 * should be freed in stop()]
2484 	 */
2485 	if (mddev->private == NULL)
2486 		conf = setup_conf(mddev);
2487 	else
2488 		conf = mddev->private;
2489 
2490 	if (IS_ERR(conf))
2491 		return PTR_ERR(conf);
2492 
2493 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2494 		if (!mddev->gendisk)
2495 			continue;
2496 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2497 				  rdev->data_offset << 9);
2498 		/* as we don't honour merge_bvec_fn, we must never risk
2499 		 * violating it, so limit ->max_segments to 1 lying within
2500 		 * a single page, as a one page request is never in violation.
2501 		 */
2502 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2503 			blk_queue_max_segments(mddev->queue, 1);
2504 			blk_queue_segment_boundary(mddev->queue,
2505 						   PAGE_CACHE_SIZE - 1);
2506 		}
2507 	}
2508 
2509 	mddev->degraded = 0;
2510 	for (i=0; i < conf->raid_disks; i++)
2511 		if (conf->mirrors[i].rdev == NULL ||
2512 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2513 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2514 			mddev->degraded++;
2515 
2516 	if (conf->raid_disks - mddev->degraded == 1)
2517 		mddev->recovery_cp = MaxSector;
2518 
2519 	if (mddev->recovery_cp != MaxSector)
2520 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2521 		       " -- starting background reconstruction\n",
2522 		       mdname(mddev));
2523 	printk(KERN_INFO
2524 		"md/raid1:%s: active with %d out of %d mirrors\n",
2525 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2526 		mddev->raid_disks);
2527 
2528 	/*
2529 	 * Ok, everything is just fine now
2530 	 */
2531 	mddev->thread = conf->thread;
2532 	conf->thread = NULL;
2533 	mddev->private = conf;
2534 
2535 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2536 
2537 	if (mddev->queue) {
2538 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2539 		mddev->queue->backing_dev_info.congested_data = mddev;
2540 	}
2541 	return md_integrity_register(mddev);
2542 }
2543 
2544 static int stop(mddev_t *mddev)
2545 {
2546 	conf_t *conf = mddev->private;
2547 	struct bitmap *bitmap = mddev->bitmap;
2548 
2549 	/* wait for behind writes to complete */
2550 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2551 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2552 		       mdname(mddev));
2553 		/* need to kick something here to make sure I/O goes? */
2554 		wait_event(bitmap->behind_wait,
2555 			   atomic_read(&bitmap->behind_writes) == 0);
2556 	}
2557 
2558 	raise_barrier(conf);
2559 	lower_barrier(conf);
2560 
2561 	md_unregister_thread(mddev->thread);
2562 	mddev->thread = NULL;
2563 	if (conf->r1bio_pool)
2564 		mempool_destroy(conf->r1bio_pool);
2565 	kfree(conf->mirrors);
2566 	kfree(conf->poolinfo);
2567 	kfree(conf);
2568 	mddev->private = NULL;
2569 	return 0;
2570 }
2571 
2572 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2573 {
2574 	/* no resync is happening, and there is enough space
2575 	 * on all devices, so we can resize.
2576 	 * We need to make sure resync covers any new space.
2577 	 * If the array is shrinking we should possibly wait until
2578 	 * any io in the removed space completes, but it hardly seems
2579 	 * worth it.
2580 	 */
2581 	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2582 	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2583 		return -EINVAL;
2584 	set_capacity(mddev->gendisk, mddev->array_sectors);
2585 	revalidate_disk(mddev->gendisk);
2586 	if (sectors > mddev->dev_sectors &&
2587 	    mddev->recovery_cp > mddev->dev_sectors) {
2588 		mddev->recovery_cp = mddev->dev_sectors;
2589 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2590 	}
2591 	mddev->dev_sectors = sectors;
2592 	mddev->resync_max_sectors = sectors;
2593 	return 0;
2594 }
2595 
2596 static int raid1_reshape(mddev_t *mddev)
2597 {
2598 	/* We need to:
2599 	 * 1/ resize the r1bio_pool
2600 	 * 2/ resize conf->mirrors
2601 	 *
2602 	 * We allocate a new r1bio_pool if we can.
2603 	 * Then raise a device barrier and wait until all IO stops.
2604 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2605 	 *
2606 	 * At the same time, we "pack" the devices so that all the missing
2607 	 * devices have the higher raid_disk numbers.
2608 	 */
2609 	mempool_t *newpool, *oldpool;
2610 	struct pool_info *newpoolinfo;
2611 	mirror_info_t *newmirrors;
2612 	conf_t *conf = mddev->private;
2613 	int cnt, raid_disks;
2614 	unsigned long flags;
2615 	int d, d2, err;
2616 
2617 	/* Cannot change chunk_size, layout, or level */
2618 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2619 	    mddev->layout != mddev->new_layout ||
2620 	    mddev->level != mddev->new_level) {
2621 		mddev->new_chunk_sectors = mddev->chunk_sectors;
2622 		mddev->new_layout = mddev->layout;
2623 		mddev->new_level = mddev->level;
2624 		return -EINVAL;
2625 	}
2626 
2627 	err = md_allow_write(mddev);
2628 	if (err)
2629 		return err;
2630 
2631 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2632 
2633 	if (raid_disks < conf->raid_disks) {
2634 		cnt=0;
2635 		for (d= 0; d < conf->raid_disks; d++)
2636 			if (conf->mirrors[d].rdev)
2637 				cnt++;
2638 		if (cnt > raid_disks)
2639 			return -EBUSY;
2640 	}
2641 
2642 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2643 	if (!newpoolinfo)
2644 		return -ENOMEM;
2645 	newpoolinfo->mddev = mddev;
2646 	newpoolinfo->raid_disks = raid_disks;
2647 
2648 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2649 				 r1bio_pool_free, newpoolinfo);
2650 	if (!newpool) {
2651 		kfree(newpoolinfo);
2652 		return -ENOMEM;
2653 	}
2654 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2655 	if (!newmirrors) {
2656 		kfree(newpoolinfo);
2657 		mempool_destroy(newpool);
2658 		return -ENOMEM;
2659 	}
2660 
2661 	raise_barrier(conf);
2662 
2663 	/* ok, everything is stopped */
2664 	oldpool = conf->r1bio_pool;
2665 	conf->r1bio_pool = newpool;
2666 
2667 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2668 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2669 		if (rdev && rdev->raid_disk != d2) {
2670 			sysfs_unlink_rdev(mddev, rdev);
2671 			rdev->raid_disk = d2;
2672 			sysfs_unlink_rdev(mddev, rdev);
2673 			if (sysfs_link_rdev(mddev, rdev))
2674 				printk(KERN_WARNING
2675 				       "md/raid1:%s: cannot register rd%d\n",
2676 				       mdname(mddev), rdev->raid_disk);
2677 		}
2678 		if (rdev)
2679 			newmirrors[d2++].rdev = rdev;
2680 	}
2681 	kfree(conf->mirrors);
2682 	conf->mirrors = newmirrors;
2683 	kfree(conf->poolinfo);
2684 	conf->poolinfo = newpoolinfo;
2685 
2686 	spin_lock_irqsave(&conf->device_lock, flags);
2687 	mddev->degraded += (raid_disks - conf->raid_disks);
2688 	spin_unlock_irqrestore(&conf->device_lock, flags);
2689 	conf->raid_disks = mddev->raid_disks = raid_disks;
2690 	mddev->delta_disks = 0;
2691 
2692 	conf->last_used = 0; /* just make sure it is in-range */
2693 	lower_barrier(conf);
2694 
2695 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2696 	md_wakeup_thread(mddev->thread);
2697 
2698 	mempool_destroy(oldpool);
2699 	return 0;
2700 }
2701 
2702 static void raid1_quiesce(mddev_t *mddev, int state)
2703 {
2704 	conf_t *conf = mddev->private;
2705 
2706 	switch(state) {
2707 	case 2: /* wake for suspend */
2708 		wake_up(&conf->wait_barrier);
2709 		break;
2710 	case 1:
2711 		raise_barrier(conf);
2712 		break;
2713 	case 0:
2714 		lower_barrier(conf);
2715 		break;
2716 	}
2717 }
2718 
2719 static void *raid1_takeover(mddev_t *mddev)
2720 {
2721 	/* raid1 can take over:
2722 	 *  raid5 with 2 devices, any layout or chunk size
2723 	 */
2724 	if (mddev->level == 5 && mddev->raid_disks == 2) {
2725 		conf_t *conf;
2726 		mddev->new_level = 1;
2727 		mddev->new_layout = 0;
2728 		mddev->new_chunk_sectors = 0;
2729 		conf = setup_conf(mddev);
2730 		if (!IS_ERR(conf))
2731 			conf->barrier = 1;
2732 		return conf;
2733 	}
2734 	return ERR_PTR(-EINVAL);
2735 }
2736 
2737 static struct mdk_personality raid1_personality =
2738 {
2739 	.name		= "raid1",
2740 	.level		= 1,
2741 	.owner		= THIS_MODULE,
2742 	.make_request	= make_request,
2743 	.run		= run,
2744 	.stop		= stop,
2745 	.status		= status,
2746 	.error_handler	= error,
2747 	.hot_add_disk	= raid1_add_disk,
2748 	.hot_remove_disk= raid1_remove_disk,
2749 	.spare_active	= raid1_spare_active,
2750 	.sync_request	= sync_request,
2751 	.resize		= raid1_resize,
2752 	.size		= raid1_size,
2753 	.check_reshape	= raid1_reshape,
2754 	.quiesce	= raid1_quiesce,
2755 	.takeover	= raid1_takeover,
2756 };
2757 
2758 static int __init raid_init(void)
2759 {
2760 	return register_md_personality(&raid1_personality);
2761 }
2762 
2763 static void raid_exit(void)
2764 {
2765 	unregister_md_personality(&raid1_personality);
2766 }
2767 
2768 module_init(raid_init);
2769 module_exit(raid_exit);
2770 MODULE_LICENSE("GPL");
2771 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2772 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2773 MODULE_ALIAS("md-raid1");
2774 MODULE_ALIAS("md-level-1");
2775