1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static void raid1_end_read_request(struct bio *bio, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 mirror = r1_bio->read_disk; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(mirror, r1_bio); 270 271 if (uptodate) 272 set_bit(R1BIO_Uptodate, &r1_bio->state); 273 else { 274 /* If all other devices have failed, we want to return 275 * the error upwards rather than fail the last device. 276 * Here we redefine "uptodate" to mean "Don't want to retry" 277 */ 278 unsigned long flags; 279 spin_lock_irqsave(&conf->device_lock, flags); 280 if (r1_bio->mddev->degraded == conf->raid_disks || 281 (r1_bio->mddev->degraded == conf->raid_disks-1 && 282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 283 uptodate = 1; 284 spin_unlock_irqrestore(&conf->device_lock, flags); 285 } 286 287 if (uptodate) 288 raid_end_bio_io(r1_bio); 289 else { 290 /* 291 * oops, read error: 292 */ 293 char b[BDEVNAME_SIZE]; 294 if (printk_ratelimit()) 295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 297 reschedule_retry(r1_bio); 298 } 299 300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 301 } 302 303 static void raid1_end_write_request(struct bio *bio, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 312 for (mirror = 0; mirror < conf->raid_disks; mirror++) 313 if (r1_bio->bios[mirror] == bio) 314 break; 315 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 318 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 319 r1_bio->mddev->barriers_work = 0; 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 321 } else { 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 r1_bio->bios[mirror] = NULL; 326 to_put = bio; 327 if (!uptodate) { 328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 329 /* an I/O failed, we can't clear the bitmap */ 330 set_bit(R1BIO_Degraded, &r1_bio->state); 331 } else 332 /* 333 * Set R1BIO_Uptodate in our master bio, so that 334 * we will return a good error code for to the higher 335 * levels even if IO on some other mirrored buffer fails. 336 * 337 * The 'master' represents the composite IO operation to 338 * user-side. So if something waits for IO, then it will 339 * wait for the 'master' bio. 340 */ 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 343 update_head_pos(mirror, r1_bio); 344 345 if (behind) { 346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 347 atomic_dec(&r1_bio->behind_remaining); 348 349 /* In behind mode, we ACK the master bio once the I/O has safely 350 * reached all non-writemostly disks. Setting the Returned bit 351 * ensures that this gets done only once -- we don't ever want to 352 * return -EIO here, instead we'll wait */ 353 354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 355 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 356 /* Maybe we can return now */ 357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 358 struct bio *mbio = r1_bio->master_bio; 359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 360 (unsigned long long) mbio->bi_sector, 361 (unsigned long long) mbio->bi_sector + 362 (mbio->bi_size >> 9) - 1); 363 bio_endio(mbio, 0); 364 } 365 } 366 } 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 368 } 369 /* 370 * 371 * Let's see if all mirrored write operations have finished 372 * already. 373 */ 374 if (atomic_dec_and_test(&r1_bio->remaining)) { 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else { 378 /* it really is the end of this request */ 379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 380 /* free extra copy of the data pages */ 381 int i = bio->bi_vcnt; 382 while (i--) 383 safe_put_page(bio->bi_io_vec[i].bv_page); 384 } 385 /* clear the bitmap if all writes complete successfully */ 386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 387 r1_bio->sectors, 388 !test_bit(R1BIO_Degraded, &r1_bio->state), 389 behind); 390 md_write_end(r1_bio->mddev); 391 raid_end_bio_io(r1_bio); 392 } 393 } 394 395 if (to_put) 396 bio_put(to_put); 397 } 398 399 400 /* 401 * This routine returns the disk from which the requested read should 402 * be done. There is a per-array 'next expected sequential IO' sector 403 * number - if this matches on the next IO then we use the last disk. 404 * There is also a per-disk 'last know head position' sector that is 405 * maintained from IRQ contexts, both the normal and the resync IO 406 * completion handlers update this position correctly. If there is no 407 * perfect sequential match then we pick the disk whose head is closest. 408 * 409 * If there are 2 mirrors in the same 2 devices, performance degrades 410 * because position is mirror, not device based. 411 * 412 * The rdev for the device selected will have nr_pending incremented. 413 */ 414 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 415 { 416 const unsigned long this_sector = r1_bio->sector; 417 int new_disk = conf->last_used, disk = new_disk; 418 int wonly_disk = -1; 419 const int sectors = r1_bio->sectors; 420 sector_t new_distance, current_distance; 421 mdk_rdev_t *rdev; 422 423 rcu_read_lock(); 424 /* 425 * Check if we can balance. We can balance on the whole 426 * device if no resync is going on, or below the resync window. 427 * We take the first readable disk when above the resync window. 428 */ 429 retry: 430 if (conf->mddev->recovery_cp < MaxSector && 431 (this_sector + sectors >= conf->next_resync)) { 432 /* Choose the first operation device, for consistancy */ 433 new_disk = 0; 434 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 436 r1_bio->bios[new_disk] == IO_BLOCKED || 437 !rdev || !test_bit(In_sync, &rdev->flags) 438 || test_bit(WriteMostly, &rdev->flags); 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 440 441 if (rdev && test_bit(In_sync, &rdev->flags) && 442 r1_bio->bios[new_disk] != IO_BLOCKED) 443 wonly_disk = new_disk; 444 445 if (new_disk == conf->raid_disks - 1) { 446 new_disk = wonly_disk; 447 break; 448 } 449 } 450 goto rb_out; 451 } 452 453 454 /* make sure the disk is operational */ 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 456 r1_bio->bios[new_disk] == IO_BLOCKED || 457 !rdev || !test_bit(In_sync, &rdev->flags) || 458 test_bit(WriteMostly, &rdev->flags); 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 460 461 if (rdev && test_bit(In_sync, &rdev->flags) && 462 r1_bio->bios[new_disk] != IO_BLOCKED) 463 wonly_disk = new_disk; 464 465 if (new_disk <= 0) 466 new_disk = conf->raid_disks; 467 new_disk--; 468 if (new_disk == disk) { 469 new_disk = wonly_disk; 470 break; 471 } 472 } 473 474 if (new_disk < 0) 475 goto rb_out; 476 477 disk = new_disk; 478 /* now disk == new_disk == starting point for search */ 479 480 /* 481 * Don't change to another disk for sequential reads: 482 */ 483 if (conf->next_seq_sect == this_sector) 484 goto rb_out; 485 if (this_sector == conf->mirrors[new_disk].head_position) 486 goto rb_out; 487 488 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 489 490 /* Find the disk whose head is closest */ 491 492 do { 493 if (disk <= 0) 494 disk = conf->raid_disks; 495 disk--; 496 497 rdev = rcu_dereference(conf->mirrors[disk].rdev); 498 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 500 !test_bit(In_sync, &rdev->flags) || 501 test_bit(WriteMostly, &rdev->flags)) 502 continue; 503 504 if (!atomic_read(&rdev->nr_pending)) { 505 new_disk = disk; 506 break; 507 } 508 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 509 if (new_distance < current_distance) { 510 current_distance = new_distance; 511 new_disk = disk; 512 } 513 } while (disk != conf->last_used); 514 515 rb_out: 516 517 518 if (new_disk >= 0) { 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 520 if (!rdev) 521 goto retry; 522 atomic_inc(&rdev->nr_pending); 523 if (!test_bit(In_sync, &rdev->flags)) { 524 /* cannot risk returning a device that failed 525 * before we inc'ed nr_pending 526 */ 527 rdev_dec_pending(rdev, conf->mddev); 528 goto retry; 529 } 530 conf->next_seq_sect = this_sector + sectors; 531 conf->last_used = new_disk; 532 } 533 rcu_read_unlock(); 534 535 return new_disk; 536 } 537 538 static void unplug_slaves(mddev_t *mddev) 539 { 540 conf_t *conf = mddev_to_conf(mddev); 541 int i; 542 543 rcu_read_lock(); 544 for (i=0; i<mddev->raid_disks; i++) { 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 548 549 atomic_inc(&rdev->nr_pending); 550 rcu_read_unlock(); 551 552 if (r_queue->unplug_fn) 553 r_queue->unplug_fn(r_queue); 554 555 rdev_dec_pending(rdev, mddev); 556 rcu_read_lock(); 557 } 558 } 559 rcu_read_unlock(); 560 } 561 562 static void raid1_unplug(struct request_queue *q) 563 { 564 mddev_t *mddev = q->queuedata; 565 566 unplug_slaves(mddev); 567 md_wakeup_thread(mddev->thread); 568 } 569 570 static int raid1_issue_flush(struct request_queue *q, struct gendisk *disk, 571 sector_t *error_sector) 572 { 573 mddev_t *mddev = q->queuedata; 574 conf_t *conf = mddev_to_conf(mddev); 575 int i, ret = 0; 576 577 rcu_read_lock(); 578 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 579 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 580 if (rdev && !test_bit(Faulty, &rdev->flags)) { 581 struct block_device *bdev = rdev->bdev; 582 struct request_queue *r_queue = bdev_get_queue(bdev); 583 584 if (!r_queue->issue_flush_fn) 585 ret = -EOPNOTSUPP; 586 else { 587 atomic_inc(&rdev->nr_pending); 588 rcu_read_unlock(); 589 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 590 error_sector); 591 rdev_dec_pending(rdev, mddev); 592 rcu_read_lock(); 593 } 594 } 595 } 596 rcu_read_unlock(); 597 return ret; 598 } 599 600 static int raid1_congested(void *data, int bits) 601 { 602 mddev_t *mddev = data; 603 conf_t *conf = mddev_to_conf(mddev); 604 int i, ret = 0; 605 606 rcu_read_lock(); 607 for (i = 0; i < mddev->raid_disks; i++) { 608 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 609 if (rdev && !test_bit(Faulty, &rdev->flags)) { 610 struct request_queue *q = bdev_get_queue(rdev->bdev); 611 612 /* Note the '|| 1' - when read_balance prefers 613 * non-congested targets, it can be removed 614 */ 615 if ((bits & (1<<BDI_write_congested)) || 1) 616 ret |= bdi_congested(&q->backing_dev_info, bits); 617 else 618 ret &= bdi_congested(&q->backing_dev_info, bits); 619 } 620 } 621 rcu_read_unlock(); 622 return ret; 623 } 624 625 626 /* Barriers.... 627 * Sometimes we need to suspend IO while we do something else, 628 * either some resync/recovery, or reconfigure the array. 629 * To do this we raise a 'barrier'. 630 * The 'barrier' is a counter that can be raised multiple times 631 * to count how many activities are happening which preclude 632 * normal IO. 633 * We can only raise the barrier if there is no pending IO. 634 * i.e. if nr_pending == 0. 635 * We choose only to raise the barrier if no-one is waiting for the 636 * barrier to go down. This means that as soon as an IO request 637 * is ready, no other operations which require a barrier will start 638 * until the IO request has had a chance. 639 * 640 * So: regular IO calls 'wait_barrier'. When that returns there 641 * is no backgroup IO happening, It must arrange to call 642 * allow_barrier when it has finished its IO. 643 * backgroup IO calls must call raise_barrier. Once that returns 644 * there is no normal IO happeing. It must arrange to call 645 * lower_barrier when the particular background IO completes. 646 */ 647 #define RESYNC_DEPTH 32 648 649 static void raise_barrier(conf_t *conf) 650 { 651 spin_lock_irq(&conf->resync_lock); 652 653 /* Wait until no block IO is waiting */ 654 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 655 conf->resync_lock, 656 raid1_unplug(conf->mddev->queue)); 657 658 /* block any new IO from starting */ 659 conf->barrier++; 660 661 /* No wait for all pending IO to complete */ 662 wait_event_lock_irq(conf->wait_barrier, 663 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 664 conf->resync_lock, 665 raid1_unplug(conf->mddev->queue)); 666 667 spin_unlock_irq(&conf->resync_lock); 668 } 669 670 static void lower_barrier(conf_t *conf) 671 { 672 unsigned long flags; 673 spin_lock_irqsave(&conf->resync_lock, flags); 674 conf->barrier--; 675 spin_unlock_irqrestore(&conf->resync_lock, flags); 676 wake_up(&conf->wait_barrier); 677 } 678 679 static void wait_barrier(conf_t *conf) 680 { 681 spin_lock_irq(&conf->resync_lock); 682 if (conf->barrier) { 683 conf->nr_waiting++; 684 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 685 conf->resync_lock, 686 raid1_unplug(conf->mddev->queue)); 687 conf->nr_waiting--; 688 } 689 conf->nr_pending++; 690 spin_unlock_irq(&conf->resync_lock); 691 } 692 693 static void allow_barrier(conf_t *conf) 694 { 695 unsigned long flags; 696 spin_lock_irqsave(&conf->resync_lock, flags); 697 conf->nr_pending--; 698 spin_unlock_irqrestore(&conf->resync_lock, flags); 699 wake_up(&conf->wait_barrier); 700 } 701 702 static void freeze_array(conf_t *conf) 703 { 704 /* stop syncio and normal IO and wait for everything to 705 * go quite. 706 * We increment barrier and nr_waiting, and then 707 * wait until barrier+nr_pending match nr_queued+2 708 */ 709 spin_lock_irq(&conf->resync_lock); 710 conf->barrier++; 711 conf->nr_waiting++; 712 wait_event_lock_irq(conf->wait_barrier, 713 conf->barrier+conf->nr_pending == conf->nr_queued+2, 714 conf->resync_lock, 715 raid1_unplug(conf->mddev->queue)); 716 spin_unlock_irq(&conf->resync_lock); 717 } 718 static void unfreeze_array(conf_t *conf) 719 { 720 /* reverse the effect of the freeze */ 721 spin_lock_irq(&conf->resync_lock); 722 conf->barrier--; 723 conf->nr_waiting--; 724 wake_up(&conf->wait_barrier); 725 spin_unlock_irq(&conf->resync_lock); 726 } 727 728 729 /* duplicate the data pages for behind I/O */ 730 static struct page **alloc_behind_pages(struct bio *bio) 731 { 732 int i; 733 struct bio_vec *bvec; 734 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 735 GFP_NOIO); 736 if (unlikely(!pages)) 737 goto do_sync_io; 738 739 bio_for_each_segment(bvec, bio, i) { 740 pages[i] = alloc_page(GFP_NOIO); 741 if (unlikely(!pages[i])) 742 goto do_sync_io; 743 memcpy(kmap(pages[i]) + bvec->bv_offset, 744 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 745 kunmap(pages[i]); 746 kunmap(bvec->bv_page); 747 } 748 749 return pages; 750 751 do_sync_io: 752 if (pages) 753 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 754 put_page(pages[i]); 755 kfree(pages); 756 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 757 return NULL; 758 } 759 760 static int make_request(struct request_queue *q, struct bio * bio) 761 { 762 mddev_t *mddev = q->queuedata; 763 conf_t *conf = mddev_to_conf(mddev); 764 mirror_info_t *mirror; 765 r1bio_t *r1_bio; 766 struct bio *read_bio; 767 int i, targets = 0, disks; 768 mdk_rdev_t *rdev; 769 struct bitmap *bitmap = mddev->bitmap; 770 unsigned long flags; 771 struct bio_list bl; 772 struct page **behind_pages = NULL; 773 const int rw = bio_data_dir(bio); 774 const int do_sync = bio_sync(bio); 775 int do_barriers; 776 777 /* 778 * Register the new request and wait if the reconstruction 779 * thread has put up a bar for new requests. 780 * Continue immediately if no resync is active currently. 781 * We test barriers_work *after* md_write_start as md_write_start 782 * may cause the first superblock write, and that will check out 783 * if barriers work. 784 */ 785 786 md_write_start(mddev, bio); /* wait on superblock update early */ 787 788 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 789 if (rw == WRITE) 790 md_write_end(mddev); 791 bio_endio(bio, -EOPNOTSUPP); 792 return 0; 793 } 794 795 wait_barrier(conf); 796 797 disk_stat_inc(mddev->gendisk, ios[rw]); 798 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 799 800 /* 801 * make_request() can abort the operation when READA is being 802 * used and no empty request is available. 803 * 804 */ 805 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 806 807 r1_bio->master_bio = bio; 808 r1_bio->sectors = bio->bi_size >> 9; 809 r1_bio->state = 0; 810 r1_bio->mddev = mddev; 811 r1_bio->sector = bio->bi_sector; 812 813 if (rw == READ) { 814 /* 815 * read balancing logic: 816 */ 817 int rdisk = read_balance(conf, r1_bio); 818 819 if (rdisk < 0) { 820 /* couldn't find anywhere to read from */ 821 raid_end_bio_io(r1_bio); 822 return 0; 823 } 824 mirror = conf->mirrors + rdisk; 825 826 r1_bio->read_disk = rdisk; 827 828 read_bio = bio_clone(bio, GFP_NOIO); 829 830 r1_bio->bios[rdisk] = read_bio; 831 832 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 833 read_bio->bi_bdev = mirror->rdev->bdev; 834 read_bio->bi_end_io = raid1_end_read_request; 835 read_bio->bi_rw = READ | do_sync; 836 read_bio->bi_private = r1_bio; 837 838 generic_make_request(read_bio); 839 return 0; 840 } 841 842 /* 843 * WRITE: 844 */ 845 /* first select target devices under spinlock and 846 * inc refcount on their rdev. Record them by setting 847 * bios[x] to bio 848 */ 849 disks = conf->raid_disks; 850 #if 0 851 { static int first=1; 852 if (first) printk("First Write sector %llu disks %d\n", 853 (unsigned long long)r1_bio->sector, disks); 854 first = 0; 855 } 856 #endif 857 rcu_read_lock(); 858 for (i = 0; i < disks; i++) { 859 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 860 !test_bit(Faulty, &rdev->flags)) { 861 atomic_inc(&rdev->nr_pending); 862 if (test_bit(Faulty, &rdev->flags)) { 863 rdev_dec_pending(rdev, mddev); 864 r1_bio->bios[i] = NULL; 865 } else 866 r1_bio->bios[i] = bio; 867 targets++; 868 } else 869 r1_bio->bios[i] = NULL; 870 } 871 rcu_read_unlock(); 872 873 BUG_ON(targets == 0); /* we never fail the last device */ 874 875 if (targets < conf->raid_disks) { 876 /* array is degraded, we will not clear the bitmap 877 * on I/O completion (see raid1_end_write_request) */ 878 set_bit(R1BIO_Degraded, &r1_bio->state); 879 } 880 881 /* do behind I/O ? */ 882 if (bitmap && 883 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 884 (behind_pages = alloc_behind_pages(bio)) != NULL) 885 set_bit(R1BIO_BehindIO, &r1_bio->state); 886 887 atomic_set(&r1_bio->remaining, 0); 888 atomic_set(&r1_bio->behind_remaining, 0); 889 890 do_barriers = bio_barrier(bio); 891 if (do_barriers) 892 set_bit(R1BIO_Barrier, &r1_bio->state); 893 894 bio_list_init(&bl); 895 for (i = 0; i < disks; i++) { 896 struct bio *mbio; 897 if (!r1_bio->bios[i]) 898 continue; 899 900 mbio = bio_clone(bio, GFP_NOIO); 901 r1_bio->bios[i] = mbio; 902 903 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 904 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 905 mbio->bi_end_io = raid1_end_write_request; 906 mbio->bi_rw = WRITE | do_barriers | do_sync; 907 mbio->bi_private = r1_bio; 908 909 if (behind_pages) { 910 struct bio_vec *bvec; 911 int j; 912 913 /* Yes, I really want the '__' version so that 914 * we clear any unused pointer in the io_vec, rather 915 * than leave them unchanged. This is important 916 * because when we come to free the pages, we won't 917 * know the originial bi_idx, so we just free 918 * them all 919 */ 920 __bio_for_each_segment(bvec, mbio, j, 0) 921 bvec->bv_page = behind_pages[j]; 922 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 923 atomic_inc(&r1_bio->behind_remaining); 924 } 925 926 atomic_inc(&r1_bio->remaining); 927 928 bio_list_add(&bl, mbio); 929 } 930 kfree(behind_pages); /* the behind pages are attached to the bios now */ 931 932 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 933 test_bit(R1BIO_BehindIO, &r1_bio->state)); 934 spin_lock_irqsave(&conf->device_lock, flags); 935 bio_list_merge(&conf->pending_bio_list, &bl); 936 bio_list_init(&bl); 937 938 blk_plug_device(mddev->queue); 939 spin_unlock_irqrestore(&conf->device_lock, flags); 940 941 if (do_sync) 942 md_wakeup_thread(mddev->thread); 943 #if 0 944 while ((bio = bio_list_pop(&bl)) != NULL) 945 generic_make_request(bio); 946 #endif 947 948 return 0; 949 } 950 951 static void status(struct seq_file *seq, mddev_t *mddev) 952 { 953 conf_t *conf = mddev_to_conf(mddev); 954 int i; 955 956 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 957 conf->raid_disks - mddev->degraded); 958 rcu_read_lock(); 959 for (i = 0; i < conf->raid_disks; i++) { 960 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 961 seq_printf(seq, "%s", 962 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 963 } 964 rcu_read_unlock(); 965 seq_printf(seq, "]"); 966 } 967 968 969 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 970 { 971 char b[BDEVNAME_SIZE]; 972 conf_t *conf = mddev_to_conf(mddev); 973 974 /* 975 * If it is not operational, then we have already marked it as dead 976 * else if it is the last working disks, ignore the error, let the 977 * next level up know. 978 * else mark the drive as failed 979 */ 980 if (test_bit(In_sync, &rdev->flags) 981 && (conf->raid_disks - mddev->degraded) == 1) 982 /* 983 * Don't fail the drive, act as though we were just a 984 * normal single drive 985 */ 986 return; 987 if (test_and_clear_bit(In_sync, &rdev->flags)) { 988 unsigned long flags; 989 spin_lock_irqsave(&conf->device_lock, flags); 990 mddev->degraded++; 991 set_bit(Faulty, &rdev->flags); 992 spin_unlock_irqrestore(&conf->device_lock, flags); 993 /* 994 * if recovery is running, make sure it aborts. 995 */ 996 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 997 } else 998 set_bit(Faulty, &rdev->flags); 999 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1000 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 1001 " Operation continuing on %d devices\n", 1002 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 1003 } 1004 1005 static void print_conf(conf_t *conf) 1006 { 1007 int i; 1008 1009 printk("RAID1 conf printout:\n"); 1010 if (!conf) { 1011 printk("(!conf)\n"); 1012 return; 1013 } 1014 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1015 conf->raid_disks); 1016 1017 rcu_read_lock(); 1018 for (i = 0; i < conf->raid_disks; i++) { 1019 char b[BDEVNAME_SIZE]; 1020 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 1021 if (rdev) 1022 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 1023 i, !test_bit(In_sync, &rdev->flags), 1024 !test_bit(Faulty, &rdev->flags), 1025 bdevname(rdev->bdev,b)); 1026 } 1027 rcu_read_unlock(); 1028 } 1029 1030 static void close_sync(conf_t *conf) 1031 { 1032 wait_barrier(conf); 1033 allow_barrier(conf); 1034 1035 mempool_destroy(conf->r1buf_pool); 1036 conf->r1buf_pool = NULL; 1037 } 1038 1039 static int raid1_spare_active(mddev_t *mddev) 1040 { 1041 int i; 1042 conf_t *conf = mddev->private; 1043 1044 /* 1045 * Find all failed disks within the RAID1 configuration 1046 * and mark them readable. 1047 * Called under mddev lock, so rcu protection not needed. 1048 */ 1049 for (i = 0; i < conf->raid_disks; i++) { 1050 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1051 if (rdev 1052 && !test_bit(Faulty, &rdev->flags) 1053 && !test_and_set_bit(In_sync, &rdev->flags)) { 1054 unsigned long flags; 1055 spin_lock_irqsave(&conf->device_lock, flags); 1056 mddev->degraded--; 1057 spin_unlock_irqrestore(&conf->device_lock, flags); 1058 } 1059 } 1060 1061 print_conf(conf); 1062 return 0; 1063 } 1064 1065 1066 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1067 { 1068 conf_t *conf = mddev->private; 1069 int found = 0; 1070 int mirror = 0; 1071 mirror_info_t *p; 1072 1073 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1074 if ( !(p=conf->mirrors+mirror)->rdev) { 1075 1076 blk_queue_stack_limits(mddev->queue, 1077 rdev->bdev->bd_disk->queue); 1078 /* as we don't honour merge_bvec_fn, we must never risk 1079 * violating it, so limit ->max_sector to one PAGE, as 1080 * a one page request is never in violation. 1081 */ 1082 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1083 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1084 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1085 1086 p->head_position = 0; 1087 rdev->raid_disk = mirror; 1088 found = 1; 1089 /* As all devices are equivalent, we don't need a full recovery 1090 * if this was recently any drive of the array 1091 */ 1092 if (rdev->saved_raid_disk < 0) 1093 conf->fullsync = 1; 1094 rcu_assign_pointer(p->rdev, rdev); 1095 break; 1096 } 1097 1098 print_conf(conf); 1099 return found; 1100 } 1101 1102 static int raid1_remove_disk(mddev_t *mddev, int number) 1103 { 1104 conf_t *conf = mddev->private; 1105 int err = 0; 1106 mdk_rdev_t *rdev; 1107 mirror_info_t *p = conf->mirrors+ number; 1108 1109 print_conf(conf); 1110 rdev = p->rdev; 1111 if (rdev) { 1112 if (test_bit(In_sync, &rdev->flags) || 1113 atomic_read(&rdev->nr_pending)) { 1114 err = -EBUSY; 1115 goto abort; 1116 } 1117 p->rdev = NULL; 1118 synchronize_rcu(); 1119 if (atomic_read(&rdev->nr_pending)) { 1120 /* lost the race, try later */ 1121 err = -EBUSY; 1122 p->rdev = rdev; 1123 } 1124 } 1125 abort: 1126 1127 print_conf(conf); 1128 return err; 1129 } 1130 1131 1132 static void end_sync_read(struct bio *bio, int error) 1133 { 1134 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1135 int i; 1136 1137 for (i=r1_bio->mddev->raid_disks; i--; ) 1138 if (r1_bio->bios[i] == bio) 1139 break; 1140 BUG_ON(i < 0); 1141 update_head_pos(i, r1_bio); 1142 /* 1143 * we have read a block, now it needs to be re-written, 1144 * or re-read if the read failed. 1145 * We don't do much here, just schedule handling by raid1d 1146 */ 1147 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1148 set_bit(R1BIO_Uptodate, &r1_bio->state); 1149 1150 if (atomic_dec_and_test(&r1_bio->remaining)) 1151 reschedule_retry(r1_bio); 1152 } 1153 1154 static void end_sync_write(struct bio *bio, int error) 1155 { 1156 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1157 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1158 mddev_t *mddev = r1_bio->mddev; 1159 conf_t *conf = mddev_to_conf(mddev); 1160 int i; 1161 int mirror=0; 1162 1163 for (i = 0; i < conf->raid_disks; i++) 1164 if (r1_bio->bios[i] == bio) { 1165 mirror = i; 1166 break; 1167 } 1168 if (!uptodate) { 1169 int sync_blocks = 0; 1170 sector_t s = r1_bio->sector; 1171 long sectors_to_go = r1_bio->sectors; 1172 /* make sure these bits doesn't get cleared. */ 1173 do { 1174 bitmap_end_sync(mddev->bitmap, s, 1175 &sync_blocks, 1); 1176 s += sync_blocks; 1177 sectors_to_go -= sync_blocks; 1178 } while (sectors_to_go > 0); 1179 md_error(mddev, conf->mirrors[mirror].rdev); 1180 } 1181 1182 update_head_pos(mirror, r1_bio); 1183 1184 if (atomic_dec_and_test(&r1_bio->remaining)) { 1185 md_done_sync(mddev, r1_bio->sectors, uptodate); 1186 put_buf(r1_bio); 1187 } 1188 } 1189 1190 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1191 { 1192 conf_t *conf = mddev_to_conf(mddev); 1193 int i; 1194 int disks = conf->raid_disks; 1195 struct bio *bio, *wbio; 1196 1197 bio = r1_bio->bios[r1_bio->read_disk]; 1198 1199 1200 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1201 /* We have read all readable devices. If we haven't 1202 * got the block, then there is no hope left. 1203 * If we have, then we want to do a comparison 1204 * and skip the write if everything is the same. 1205 * If any blocks failed to read, then we need to 1206 * attempt an over-write 1207 */ 1208 int primary; 1209 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1210 for (i=0; i<mddev->raid_disks; i++) 1211 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1212 md_error(mddev, conf->mirrors[i].rdev); 1213 1214 md_done_sync(mddev, r1_bio->sectors, 1); 1215 put_buf(r1_bio); 1216 return; 1217 } 1218 for (primary=0; primary<mddev->raid_disks; primary++) 1219 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1220 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1221 r1_bio->bios[primary]->bi_end_io = NULL; 1222 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1223 break; 1224 } 1225 r1_bio->read_disk = primary; 1226 for (i=0; i<mddev->raid_disks; i++) 1227 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1228 int j; 1229 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1230 struct bio *pbio = r1_bio->bios[primary]; 1231 struct bio *sbio = r1_bio->bios[i]; 1232 1233 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1234 for (j = vcnt; j-- ; ) { 1235 struct page *p, *s; 1236 p = pbio->bi_io_vec[j].bv_page; 1237 s = sbio->bi_io_vec[j].bv_page; 1238 if (memcmp(page_address(p), 1239 page_address(s), 1240 PAGE_SIZE)) 1241 break; 1242 } 1243 } else 1244 j = 0; 1245 if (j >= 0) 1246 mddev->resync_mismatches += r1_bio->sectors; 1247 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 1248 sbio->bi_end_io = NULL; 1249 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1250 } else { 1251 /* fixup the bio for reuse */ 1252 sbio->bi_vcnt = vcnt; 1253 sbio->bi_size = r1_bio->sectors << 9; 1254 sbio->bi_idx = 0; 1255 sbio->bi_phys_segments = 0; 1256 sbio->bi_hw_segments = 0; 1257 sbio->bi_hw_front_size = 0; 1258 sbio->bi_hw_back_size = 0; 1259 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1260 sbio->bi_flags |= 1 << BIO_UPTODATE; 1261 sbio->bi_next = NULL; 1262 sbio->bi_sector = r1_bio->sector + 1263 conf->mirrors[i].rdev->data_offset; 1264 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1265 for (j = 0; j < vcnt ; j++) 1266 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1267 page_address(pbio->bi_io_vec[j].bv_page), 1268 PAGE_SIZE); 1269 1270 } 1271 } 1272 } 1273 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1274 /* ouch - failed to read all of that. 1275 * Try some synchronous reads of other devices to get 1276 * good data, much like with normal read errors. Only 1277 * read into the pages we already have so we don't 1278 * need to re-issue the read request. 1279 * We don't need to freeze the array, because being in an 1280 * active sync request, there is no normal IO, and 1281 * no overlapping syncs. 1282 */ 1283 sector_t sect = r1_bio->sector; 1284 int sectors = r1_bio->sectors; 1285 int idx = 0; 1286 1287 while(sectors) { 1288 int s = sectors; 1289 int d = r1_bio->read_disk; 1290 int success = 0; 1291 mdk_rdev_t *rdev; 1292 1293 if (s > (PAGE_SIZE>>9)) 1294 s = PAGE_SIZE >> 9; 1295 do { 1296 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1297 /* No rcu protection needed here devices 1298 * can only be removed when no resync is 1299 * active, and resync is currently active 1300 */ 1301 rdev = conf->mirrors[d].rdev; 1302 if (sync_page_io(rdev->bdev, 1303 sect + rdev->data_offset, 1304 s<<9, 1305 bio->bi_io_vec[idx].bv_page, 1306 READ)) { 1307 success = 1; 1308 break; 1309 } 1310 } 1311 d++; 1312 if (d == conf->raid_disks) 1313 d = 0; 1314 } while (!success && d != r1_bio->read_disk); 1315 1316 if (success) { 1317 int start = d; 1318 /* write it back and re-read */ 1319 set_bit(R1BIO_Uptodate, &r1_bio->state); 1320 while (d != r1_bio->read_disk) { 1321 if (d == 0) 1322 d = conf->raid_disks; 1323 d--; 1324 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1325 continue; 1326 rdev = conf->mirrors[d].rdev; 1327 atomic_add(s, &rdev->corrected_errors); 1328 if (sync_page_io(rdev->bdev, 1329 sect + rdev->data_offset, 1330 s<<9, 1331 bio->bi_io_vec[idx].bv_page, 1332 WRITE) == 0) 1333 md_error(mddev, rdev); 1334 } 1335 d = start; 1336 while (d != r1_bio->read_disk) { 1337 if (d == 0) 1338 d = conf->raid_disks; 1339 d--; 1340 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1341 continue; 1342 rdev = conf->mirrors[d].rdev; 1343 if (sync_page_io(rdev->bdev, 1344 sect + rdev->data_offset, 1345 s<<9, 1346 bio->bi_io_vec[idx].bv_page, 1347 READ) == 0) 1348 md_error(mddev, rdev); 1349 } 1350 } else { 1351 char b[BDEVNAME_SIZE]; 1352 /* Cannot read from anywhere, array is toast */ 1353 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1354 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1355 " for block %llu\n", 1356 bdevname(bio->bi_bdev,b), 1357 (unsigned long long)r1_bio->sector); 1358 md_done_sync(mddev, r1_bio->sectors, 0); 1359 put_buf(r1_bio); 1360 return; 1361 } 1362 sectors -= s; 1363 sect += s; 1364 idx ++; 1365 } 1366 } 1367 1368 /* 1369 * schedule writes 1370 */ 1371 atomic_set(&r1_bio->remaining, 1); 1372 for (i = 0; i < disks ; i++) { 1373 wbio = r1_bio->bios[i]; 1374 if (wbio->bi_end_io == NULL || 1375 (wbio->bi_end_io == end_sync_read && 1376 (i == r1_bio->read_disk || 1377 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1378 continue; 1379 1380 wbio->bi_rw = WRITE; 1381 wbio->bi_end_io = end_sync_write; 1382 atomic_inc(&r1_bio->remaining); 1383 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1384 1385 generic_make_request(wbio); 1386 } 1387 1388 if (atomic_dec_and_test(&r1_bio->remaining)) { 1389 /* if we're here, all write(s) have completed, so clean up */ 1390 md_done_sync(mddev, r1_bio->sectors, 1); 1391 put_buf(r1_bio); 1392 } 1393 } 1394 1395 /* 1396 * This is a kernel thread which: 1397 * 1398 * 1. Retries failed read operations on working mirrors. 1399 * 2. Updates the raid superblock when problems encounter. 1400 * 3. Performs writes following reads for array syncronising. 1401 */ 1402 1403 static void fix_read_error(conf_t *conf, int read_disk, 1404 sector_t sect, int sectors) 1405 { 1406 mddev_t *mddev = conf->mddev; 1407 while(sectors) { 1408 int s = sectors; 1409 int d = read_disk; 1410 int success = 0; 1411 int start; 1412 mdk_rdev_t *rdev; 1413 1414 if (s > (PAGE_SIZE>>9)) 1415 s = PAGE_SIZE >> 9; 1416 1417 do { 1418 /* Note: no rcu protection needed here 1419 * as this is synchronous in the raid1d thread 1420 * which is the thread that might remove 1421 * a device. If raid1d ever becomes multi-threaded.... 1422 */ 1423 rdev = conf->mirrors[d].rdev; 1424 if (rdev && 1425 test_bit(In_sync, &rdev->flags) && 1426 sync_page_io(rdev->bdev, 1427 sect + rdev->data_offset, 1428 s<<9, 1429 conf->tmppage, READ)) 1430 success = 1; 1431 else { 1432 d++; 1433 if (d == conf->raid_disks) 1434 d = 0; 1435 } 1436 } while (!success && d != read_disk); 1437 1438 if (!success) { 1439 /* Cannot read from anywhere -- bye bye array */ 1440 md_error(mddev, conf->mirrors[read_disk].rdev); 1441 break; 1442 } 1443 /* write it back and re-read */ 1444 start = d; 1445 while (d != read_disk) { 1446 if (d==0) 1447 d = conf->raid_disks; 1448 d--; 1449 rdev = conf->mirrors[d].rdev; 1450 if (rdev && 1451 test_bit(In_sync, &rdev->flags)) { 1452 if (sync_page_io(rdev->bdev, 1453 sect + rdev->data_offset, 1454 s<<9, conf->tmppage, WRITE) 1455 == 0) 1456 /* Well, this device is dead */ 1457 md_error(mddev, rdev); 1458 } 1459 } 1460 d = start; 1461 while (d != read_disk) { 1462 char b[BDEVNAME_SIZE]; 1463 if (d==0) 1464 d = conf->raid_disks; 1465 d--; 1466 rdev = conf->mirrors[d].rdev; 1467 if (rdev && 1468 test_bit(In_sync, &rdev->flags)) { 1469 if (sync_page_io(rdev->bdev, 1470 sect + rdev->data_offset, 1471 s<<9, conf->tmppage, READ) 1472 == 0) 1473 /* Well, this device is dead */ 1474 md_error(mddev, rdev); 1475 else { 1476 atomic_add(s, &rdev->corrected_errors); 1477 printk(KERN_INFO 1478 "raid1:%s: read error corrected " 1479 "(%d sectors at %llu on %s)\n", 1480 mdname(mddev), s, 1481 (unsigned long long)(sect + 1482 rdev->data_offset), 1483 bdevname(rdev->bdev, b)); 1484 } 1485 } 1486 } 1487 sectors -= s; 1488 sect += s; 1489 } 1490 } 1491 1492 static void raid1d(mddev_t *mddev) 1493 { 1494 r1bio_t *r1_bio; 1495 struct bio *bio; 1496 unsigned long flags; 1497 conf_t *conf = mddev_to_conf(mddev); 1498 struct list_head *head = &conf->retry_list; 1499 int unplug=0; 1500 mdk_rdev_t *rdev; 1501 1502 md_check_recovery(mddev); 1503 1504 for (;;) { 1505 char b[BDEVNAME_SIZE]; 1506 spin_lock_irqsave(&conf->device_lock, flags); 1507 1508 if (conf->pending_bio_list.head) { 1509 bio = bio_list_get(&conf->pending_bio_list); 1510 blk_remove_plug(mddev->queue); 1511 spin_unlock_irqrestore(&conf->device_lock, flags); 1512 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1513 bitmap_unplug(mddev->bitmap); 1514 1515 while (bio) { /* submit pending writes */ 1516 struct bio *next = bio->bi_next; 1517 bio->bi_next = NULL; 1518 generic_make_request(bio); 1519 bio = next; 1520 } 1521 unplug = 1; 1522 1523 continue; 1524 } 1525 1526 if (list_empty(head)) 1527 break; 1528 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1529 list_del(head->prev); 1530 conf->nr_queued--; 1531 spin_unlock_irqrestore(&conf->device_lock, flags); 1532 1533 mddev = r1_bio->mddev; 1534 conf = mddev_to_conf(mddev); 1535 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1536 sync_request_write(mddev, r1_bio); 1537 unplug = 1; 1538 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1539 /* some requests in the r1bio were BIO_RW_BARRIER 1540 * requests which failed with -EOPNOTSUPP. Hohumm.. 1541 * Better resubmit without the barrier. 1542 * We know which devices to resubmit for, because 1543 * all others have had their bios[] entry cleared. 1544 * We already have a nr_pending reference on these rdevs. 1545 */ 1546 int i; 1547 const int do_sync = bio_sync(r1_bio->master_bio); 1548 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1549 clear_bit(R1BIO_Barrier, &r1_bio->state); 1550 for (i=0; i < conf->raid_disks; i++) 1551 if (r1_bio->bios[i]) 1552 atomic_inc(&r1_bio->remaining); 1553 for (i=0; i < conf->raid_disks; i++) 1554 if (r1_bio->bios[i]) { 1555 struct bio_vec *bvec; 1556 int j; 1557 1558 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1559 /* copy pages from the failed bio, as 1560 * this might be a write-behind device */ 1561 __bio_for_each_segment(bvec, bio, j, 0) 1562 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1563 bio_put(r1_bio->bios[i]); 1564 bio->bi_sector = r1_bio->sector + 1565 conf->mirrors[i].rdev->data_offset; 1566 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1567 bio->bi_end_io = raid1_end_write_request; 1568 bio->bi_rw = WRITE | do_sync; 1569 bio->bi_private = r1_bio; 1570 r1_bio->bios[i] = bio; 1571 generic_make_request(bio); 1572 } 1573 } else { 1574 int disk; 1575 1576 /* we got a read error. Maybe the drive is bad. Maybe just 1577 * the block and we can fix it. 1578 * We freeze all other IO, and try reading the block from 1579 * other devices. When we find one, we re-write 1580 * and check it that fixes the read error. 1581 * This is all done synchronously while the array is 1582 * frozen 1583 */ 1584 if (mddev->ro == 0) { 1585 freeze_array(conf); 1586 fix_read_error(conf, r1_bio->read_disk, 1587 r1_bio->sector, 1588 r1_bio->sectors); 1589 unfreeze_array(conf); 1590 } 1591 1592 bio = r1_bio->bios[r1_bio->read_disk]; 1593 if ((disk=read_balance(conf, r1_bio)) == -1) { 1594 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1595 " read error for block %llu\n", 1596 bdevname(bio->bi_bdev,b), 1597 (unsigned long long)r1_bio->sector); 1598 raid_end_bio_io(r1_bio); 1599 } else { 1600 const int do_sync = bio_sync(r1_bio->master_bio); 1601 r1_bio->bios[r1_bio->read_disk] = 1602 mddev->ro ? IO_BLOCKED : NULL; 1603 r1_bio->read_disk = disk; 1604 bio_put(bio); 1605 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1606 r1_bio->bios[r1_bio->read_disk] = bio; 1607 rdev = conf->mirrors[disk].rdev; 1608 if (printk_ratelimit()) 1609 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1610 " another mirror\n", 1611 bdevname(rdev->bdev,b), 1612 (unsigned long long)r1_bio->sector); 1613 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1614 bio->bi_bdev = rdev->bdev; 1615 bio->bi_end_io = raid1_end_read_request; 1616 bio->bi_rw = READ | do_sync; 1617 bio->bi_private = r1_bio; 1618 unplug = 1; 1619 generic_make_request(bio); 1620 } 1621 } 1622 } 1623 spin_unlock_irqrestore(&conf->device_lock, flags); 1624 if (unplug) 1625 unplug_slaves(mddev); 1626 } 1627 1628 1629 static int init_resync(conf_t *conf) 1630 { 1631 int buffs; 1632 1633 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1634 BUG_ON(conf->r1buf_pool); 1635 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1636 conf->poolinfo); 1637 if (!conf->r1buf_pool) 1638 return -ENOMEM; 1639 conf->next_resync = 0; 1640 return 0; 1641 } 1642 1643 /* 1644 * perform a "sync" on one "block" 1645 * 1646 * We need to make sure that no normal I/O request - particularly write 1647 * requests - conflict with active sync requests. 1648 * 1649 * This is achieved by tracking pending requests and a 'barrier' concept 1650 * that can be installed to exclude normal IO requests. 1651 */ 1652 1653 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1654 { 1655 conf_t *conf = mddev_to_conf(mddev); 1656 r1bio_t *r1_bio; 1657 struct bio *bio; 1658 sector_t max_sector, nr_sectors; 1659 int disk = -1; 1660 int i; 1661 int wonly = -1; 1662 int write_targets = 0, read_targets = 0; 1663 int sync_blocks; 1664 int still_degraded = 0; 1665 1666 if (!conf->r1buf_pool) 1667 { 1668 /* 1669 printk("sync start - bitmap %p\n", mddev->bitmap); 1670 */ 1671 if (init_resync(conf)) 1672 return 0; 1673 } 1674 1675 max_sector = mddev->size << 1; 1676 if (sector_nr >= max_sector) { 1677 /* If we aborted, we need to abort the 1678 * sync on the 'current' bitmap chunk (there will 1679 * only be one in raid1 resync. 1680 * We can find the current addess in mddev->curr_resync 1681 */ 1682 if (mddev->curr_resync < max_sector) /* aborted */ 1683 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1684 &sync_blocks, 1); 1685 else /* completed sync */ 1686 conf->fullsync = 0; 1687 1688 bitmap_close_sync(mddev->bitmap); 1689 close_sync(conf); 1690 return 0; 1691 } 1692 1693 if (mddev->bitmap == NULL && 1694 mddev->recovery_cp == MaxSector && 1695 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1696 conf->fullsync == 0) { 1697 *skipped = 1; 1698 return max_sector - sector_nr; 1699 } 1700 /* before building a request, check if we can skip these blocks.. 1701 * This call the bitmap_start_sync doesn't actually record anything 1702 */ 1703 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1704 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1705 /* We can skip this block, and probably several more */ 1706 *skipped = 1; 1707 return sync_blocks; 1708 } 1709 /* 1710 * If there is non-resync activity waiting for a turn, 1711 * and resync is going fast enough, 1712 * then let it though before starting on this new sync request. 1713 */ 1714 if (!go_faster && conf->nr_waiting) 1715 msleep_interruptible(1000); 1716 1717 raise_barrier(conf); 1718 1719 conf->next_resync = sector_nr; 1720 1721 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1722 rcu_read_lock(); 1723 /* 1724 * If we get a correctably read error during resync or recovery, 1725 * we might want to read from a different device. So we 1726 * flag all drives that could conceivably be read from for READ, 1727 * and any others (which will be non-In_sync devices) for WRITE. 1728 * If a read fails, we try reading from something else for which READ 1729 * is OK. 1730 */ 1731 1732 r1_bio->mddev = mddev; 1733 r1_bio->sector = sector_nr; 1734 r1_bio->state = 0; 1735 set_bit(R1BIO_IsSync, &r1_bio->state); 1736 1737 for (i=0; i < conf->raid_disks; i++) { 1738 mdk_rdev_t *rdev; 1739 bio = r1_bio->bios[i]; 1740 1741 /* take from bio_init */ 1742 bio->bi_next = NULL; 1743 bio->bi_flags |= 1 << BIO_UPTODATE; 1744 bio->bi_rw = READ; 1745 bio->bi_vcnt = 0; 1746 bio->bi_idx = 0; 1747 bio->bi_phys_segments = 0; 1748 bio->bi_hw_segments = 0; 1749 bio->bi_size = 0; 1750 bio->bi_end_io = NULL; 1751 bio->bi_private = NULL; 1752 1753 rdev = rcu_dereference(conf->mirrors[i].rdev); 1754 if (rdev == NULL || 1755 test_bit(Faulty, &rdev->flags)) { 1756 still_degraded = 1; 1757 continue; 1758 } else if (!test_bit(In_sync, &rdev->flags)) { 1759 bio->bi_rw = WRITE; 1760 bio->bi_end_io = end_sync_write; 1761 write_targets ++; 1762 } else { 1763 /* may need to read from here */ 1764 bio->bi_rw = READ; 1765 bio->bi_end_io = end_sync_read; 1766 if (test_bit(WriteMostly, &rdev->flags)) { 1767 if (wonly < 0) 1768 wonly = i; 1769 } else { 1770 if (disk < 0) 1771 disk = i; 1772 } 1773 read_targets++; 1774 } 1775 atomic_inc(&rdev->nr_pending); 1776 bio->bi_sector = sector_nr + rdev->data_offset; 1777 bio->bi_bdev = rdev->bdev; 1778 bio->bi_private = r1_bio; 1779 } 1780 rcu_read_unlock(); 1781 if (disk < 0) 1782 disk = wonly; 1783 r1_bio->read_disk = disk; 1784 1785 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1786 /* extra read targets are also write targets */ 1787 write_targets += read_targets-1; 1788 1789 if (write_targets == 0 || read_targets == 0) { 1790 /* There is nowhere to write, so all non-sync 1791 * drives must be failed - so we are finished 1792 */ 1793 sector_t rv = max_sector - sector_nr; 1794 *skipped = 1; 1795 put_buf(r1_bio); 1796 return rv; 1797 } 1798 1799 nr_sectors = 0; 1800 sync_blocks = 0; 1801 do { 1802 struct page *page; 1803 int len = PAGE_SIZE; 1804 if (sector_nr + (len>>9) > max_sector) 1805 len = (max_sector - sector_nr) << 9; 1806 if (len == 0) 1807 break; 1808 if (sync_blocks == 0) { 1809 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1810 &sync_blocks, still_degraded) && 1811 !conf->fullsync && 1812 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1813 break; 1814 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1815 if (len > (sync_blocks<<9)) 1816 len = sync_blocks<<9; 1817 } 1818 1819 for (i=0 ; i < conf->raid_disks; i++) { 1820 bio = r1_bio->bios[i]; 1821 if (bio->bi_end_io) { 1822 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1823 if (bio_add_page(bio, page, len, 0) == 0) { 1824 /* stop here */ 1825 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1826 while (i > 0) { 1827 i--; 1828 bio = r1_bio->bios[i]; 1829 if (bio->bi_end_io==NULL) 1830 continue; 1831 /* remove last page from this bio */ 1832 bio->bi_vcnt--; 1833 bio->bi_size -= len; 1834 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1835 } 1836 goto bio_full; 1837 } 1838 } 1839 } 1840 nr_sectors += len>>9; 1841 sector_nr += len>>9; 1842 sync_blocks -= (len>>9); 1843 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1844 bio_full: 1845 r1_bio->sectors = nr_sectors; 1846 1847 /* For a user-requested sync, we read all readable devices and do a 1848 * compare 1849 */ 1850 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1851 atomic_set(&r1_bio->remaining, read_targets); 1852 for (i=0; i<conf->raid_disks; i++) { 1853 bio = r1_bio->bios[i]; 1854 if (bio->bi_end_io == end_sync_read) { 1855 md_sync_acct(bio->bi_bdev, nr_sectors); 1856 generic_make_request(bio); 1857 } 1858 } 1859 } else { 1860 atomic_set(&r1_bio->remaining, 1); 1861 bio = r1_bio->bios[r1_bio->read_disk]; 1862 md_sync_acct(bio->bi_bdev, nr_sectors); 1863 generic_make_request(bio); 1864 1865 } 1866 return nr_sectors; 1867 } 1868 1869 static int run(mddev_t *mddev) 1870 { 1871 conf_t *conf; 1872 int i, j, disk_idx; 1873 mirror_info_t *disk; 1874 mdk_rdev_t *rdev; 1875 struct list_head *tmp; 1876 1877 if (mddev->level != 1) { 1878 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1879 mdname(mddev), mddev->level); 1880 goto out; 1881 } 1882 if (mddev->reshape_position != MaxSector) { 1883 printk("raid1: %s: reshape_position set but not supported\n", 1884 mdname(mddev)); 1885 goto out; 1886 } 1887 /* 1888 * copy the already verified devices into our private RAID1 1889 * bookkeeping area. [whatever we allocate in run(), 1890 * should be freed in stop()] 1891 */ 1892 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1893 mddev->private = conf; 1894 if (!conf) 1895 goto out_no_mem; 1896 1897 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1898 GFP_KERNEL); 1899 if (!conf->mirrors) 1900 goto out_no_mem; 1901 1902 conf->tmppage = alloc_page(GFP_KERNEL); 1903 if (!conf->tmppage) 1904 goto out_no_mem; 1905 1906 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1907 if (!conf->poolinfo) 1908 goto out_no_mem; 1909 conf->poolinfo->mddev = mddev; 1910 conf->poolinfo->raid_disks = mddev->raid_disks; 1911 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1912 r1bio_pool_free, 1913 conf->poolinfo); 1914 if (!conf->r1bio_pool) 1915 goto out_no_mem; 1916 1917 ITERATE_RDEV(mddev, rdev, tmp) { 1918 disk_idx = rdev->raid_disk; 1919 if (disk_idx >= mddev->raid_disks 1920 || disk_idx < 0) 1921 continue; 1922 disk = conf->mirrors + disk_idx; 1923 1924 disk->rdev = rdev; 1925 1926 blk_queue_stack_limits(mddev->queue, 1927 rdev->bdev->bd_disk->queue); 1928 /* as we don't honour merge_bvec_fn, we must never risk 1929 * violating it, so limit ->max_sector to one PAGE, as 1930 * a one page request is never in violation. 1931 */ 1932 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1933 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1934 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1935 1936 disk->head_position = 0; 1937 } 1938 conf->raid_disks = mddev->raid_disks; 1939 conf->mddev = mddev; 1940 spin_lock_init(&conf->device_lock); 1941 INIT_LIST_HEAD(&conf->retry_list); 1942 1943 spin_lock_init(&conf->resync_lock); 1944 init_waitqueue_head(&conf->wait_barrier); 1945 1946 bio_list_init(&conf->pending_bio_list); 1947 bio_list_init(&conf->flushing_bio_list); 1948 1949 1950 mddev->degraded = 0; 1951 for (i = 0; i < conf->raid_disks; i++) { 1952 1953 disk = conf->mirrors + i; 1954 1955 if (!disk->rdev || 1956 !test_bit(In_sync, &disk->rdev->flags)) { 1957 disk->head_position = 0; 1958 mddev->degraded++; 1959 if (disk->rdev) 1960 conf->fullsync = 1; 1961 } 1962 } 1963 if (mddev->degraded == conf->raid_disks) { 1964 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1965 mdname(mddev)); 1966 goto out_free_conf; 1967 } 1968 if (conf->raid_disks - mddev->degraded == 1) 1969 mddev->recovery_cp = MaxSector; 1970 1971 /* 1972 * find the first working one and use it as a starting point 1973 * to read balancing. 1974 */ 1975 for (j = 0; j < conf->raid_disks && 1976 (!conf->mirrors[j].rdev || 1977 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1978 /* nothing */; 1979 conf->last_used = j; 1980 1981 1982 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1983 if (!mddev->thread) { 1984 printk(KERN_ERR 1985 "raid1: couldn't allocate thread for %s\n", 1986 mdname(mddev)); 1987 goto out_free_conf; 1988 } 1989 1990 printk(KERN_INFO 1991 "raid1: raid set %s active with %d out of %d mirrors\n", 1992 mdname(mddev), mddev->raid_disks - mddev->degraded, 1993 mddev->raid_disks); 1994 /* 1995 * Ok, everything is just fine now 1996 */ 1997 mddev->array_size = mddev->size; 1998 1999 mddev->queue->unplug_fn = raid1_unplug; 2000 mddev->queue->issue_flush_fn = raid1_issue_flush; 2001 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 2002 mddev->queue->backing_dev_info.congested_data = mddev; 2003 2004 return 0; 2005 2006 out_no_mem: 2007 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 2008 mdname(mddev)); 2009 2010 out_free_conf: 2011 if (conf) { 2012 if (conf->r1bio_pool) 2013 mempool_destroy(conf->r1bio_pool); 2014 kfree(conf->mirrors); 2015 safe_put_page(conf->tmppage); 2016 kfree(conf->poolinfo); 2017 kfree(conf); 2018 mddev->private = NULL; 2019 } 2020 out: 2021 return -EIO; 2022 } 2023 2024 static int stop(mddev_t *mddev) 2025 { 2026 conf_t *conf = mddev_to_conf(mddev); 2027 struct bitmap *bitmap = mddev->bitmap; 2028 int behind_wait = 0; 2029 2030 /* wait for behind writes to complete */ 2031 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2032 behind_wait++; 2033 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2034 set_current_state(TASK_UNINTERRUPTIBLE); 2035 schedule_timeout(HZ); /* wait a second */ 2036 /* need to kick something here to make sure I/O goes? */ 2037 } 2038 2039 md_unregister_thread(mddev->thread); 2040 mddev->thread = NULL; 2041 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2042 if (conf->r1bio_pool) 2043 mempool_destroy(conf->r1bio_pool); 2044 kfree(conf->mirrors); 2045 kfree(conf->poolinfo); 2046 kfree(conf); 2047 mddev->private = NULL; 2048 return 0; 2049 } 2050 2051 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2052 { 2053 /* no resync is happening, and there is enough space 2054 * on all devices, so we can resize. 2055 * We need to make sure resync covers any new space. 2056 * If the array is shrinking we should possibly wait until 2057 * any io in the removed space completes, but it hardly seems 2058 * worth it. 2059 */ 2060 mddev->array_size = sectors>>1; 2061 set_capacity(mddev->gendisk, mddev->array_size << 1); 2062 mddev->changed = 1; 2063 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2064 mddev->recovery_cp = mddev->size << 1; 2065 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2066 } 2067 mddev->size = mddev->array_size; 2068 mddev->resync_max_sectors = sectors; 2069 return 0; 2070 } 2071 2072 static int raid1_reshape(mddev_t *mddev) 2073 { 2074 /* We need to: 2075 * 1/ resize the r1bio_pool 2076 * 2/ resize conf->mirrors 2077 * 2078 * We allocate a new r1bio_pool if we can. 2079 * Then raise a device barrier and wait until all IO stops. 2080 * Then resize conf->mirrors and swap in the new r1bio pool. 2081 * 2082 * At the same time, we "pack" the devices so that all the missing 2083 * devices have the higher raid_disk numbers. 2084 */ 2085 mempool_t *newpool, *oldpool; 2086 struct pool_info *newpoolinfo; 2087 mirror_info_t *newmirrors; 2088 conf_t *conf = mddev_to_conf(mddev); 2089 int cnt, raid_disks; 2090 unsigned long flags; 2091 int d, d2; 2092 2093 /* Cannot change chunk_size, layout, or level */ 2094 if (mddev->chunk_size != mddev->new_chunk || 2095 mddev->layout != mddev->new_layout || 2096 mddev->level != mddev->new_level) { 2097 mddev->new_chunk = mddev->chunk_size; 2098 mddev->new_layout = mddev->layout; 2099 mddev->new_level = mddev->level; 2100 return -EINVAL; 2101 } 2102 2103 md_allow_write(mddev); 2104 2105 raid_disks = mddev->raid_disks + mddev->delta_disks; 2106 2107 if (raid_disks < conf->raid_disks) { 2108 cnt=0; 2109 for (d= 0; d < conf->raid_disks; d++) 2110 if (conf->mirrors[d].rdev) 2111 cnt++; 2112 if (cnt > raid_disks) 2113 return -EBUSY; 2114 } 2115 2116 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2117 if (!newpoolinfo) 2118 return -ENOMEM; 2119 newpoolinfo->mddev = mddev; 2120 newpoolinfo->raid_disks = raid_disks; 2121 2122 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2123 r1bio_pool_free, newpoolinfo); 2124 if (!newpool) { 2125 kfree(newpoolinfo); 2126 return -ENOMEM; 2127 } 2128 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2129 if (!newmirrors) { 2130 kfree(newpoolinfo); 2131 mempool_destroy(newpool); 2132 return -ENOMEM; 2133 } 2134 2135 raise_barrier(conf); 2136 2137 /* ok, everything is stopped */ 2138 oldpool = conf->r1bio_pool; 2139 conf->r1bio_pool = newpool; 2140 2141 for (d = d2 = 0; d < conf->raid_disks; d++) { 2142 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2143 if (rdev && rdev->raid_disk != d2) { 2144 char nm[20]; 2145 sprintf(nm, "rd%d", rdev->raid_disk); 2146 sysfs_remove_link(&mddev->kobj, nm); 2147 rdev->raid_disk = d2; 2148 sprintf(nm, "rd%d", rdev->raid_disk); 2149 sysfs_remove_link(&mddev->kobj, nm); 2150 if (sysfs_create_link(&mddev->kobj, 2151 &rdev->kobj, nm)) 2152 printk(KERN_WARNING 2153 "md/raid1: cannot register " 2154 "%s for %s\n", 2155 nm, mdname(mddev)); 2156 } 2157 if (rdev) 2158 newmirrors[d2++].rdev = rdev; 2159 } 2160 kfree(conf->mirrors); 2161 conf->mirrors = newmirrors; 2162 kfree(conf->poolinfo); 2163 conf->poolinfo = newpoolinfo; 2164 2165 spin_lock_irqsave(&conf->device_lock, flags); 2166 mddev->degraded += (raid_disks - conf->raid_disks); 2167 spin_unlock_irqrestore(&conf->device_lock, flags); 2168 conf->raid_disks = mddev->raid_disks = raid_disks; 2169 mddev->delta_disks = 0; 2170 2171 conf->last_used = 0; /* just make sure it is in-range */ 2172 lower_barrier(conf); 2173 2174 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2175 md_wakeup_thread(mddev->thread); 2176 2177 mempool_destroy(oldpool); 2178 return 0; 2179 } 2180 2181 static void raid1_quiesce(mddev_t *mddev, int state) 2182 { 2183 conf_t *conf = mddev_to_conf(mddev); 2184 2185 switch(state) { 2186 case 1: 2187 raise_barrier(conf); 2188 break; 2189 case 0: 2190 lower_barrier(conf); 2191 break; 2192 } 2193 } 2194 2195 2196 static struct mdk_personality raid1_personality = 2197 { 2198 .name = "raid1", 2199 .level = 1, 2200 .owner = THIS_MODULE, 2201 .make_request = make_request, 2202 .run = run, 2203 .stop = stop, 2204 .status = status, 2205 .error_handler = error, 2206 .hot_add_disk = raid1_add_disk, 2207 .hot_remove_disk= raid1_remove_disk, 2208 .spare_active = raid1_spare_active, 2209 .sync_request = sync_request, 2210 .resize = raid1_resize, 2211 .check_reshape = raid1_reshape, 2212 .quiesce = raid1_quiesce, 2213 }; 2214 2215 static int __init raid_init(void) 2216 { 2217 return register_md_personality(&raid1_personality); 2218 } 2219 2220 static void raid_exit(void) 2221 { 2222 unregister_md_personality(&raid1_personality); 2223 } 2224 2225 module_init(raid_init); 2226 module_exit(raid_exit); 2227 MODULE_LICENSE("GPL"); 2228 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2229 MODULE_ALIAS("md-raid1"); 2230 MODULE_ALIAS("md-level-1"); 2231