xref: /linux/drivers/md/raid1.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static void raid1_end_read_request(struct bio *bio, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	mirror = r1_bio->read_disk;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(mirror, r1_bio);
270 
271 	if (uptodate)
272 		set_bit(R1BIO_Uptodate, &r1_bio->state);
273 	else {
274 		/* If all other devices have failed, we want to return
275 		 * the error upwards rather than fail the last device.
276 		 * Here we redefine "uptodate" to mean "Don't want to retry"
277 		 */
278 		unsigned long flags;
279 		spin_lock_irqsave(&conf->device_lock, flags);
280 		if (r1_bio->mddev->degraded == conf->raid_disks ||
281 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 			uptodate = 1;
284 		spin_unlock_irqrestore(&conf->device_lock, flags);
285 	}
286 
287 	if (uptodate)
288 		raid_end_bio_io(r1_bio);
289 	else {
290 		/*
291 		 * oops, read error:
292 		 */
293 		char b[BDEVNAME_SIZE];
294 		if (printk_ratelimit())
295 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 		reschedule_retry(r1_bio);
298 	}
299 
300 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
301 }
302 
303 static void raid1_end_write_request(struct bio *bio, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 
312 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 		r1_bio->mddev->barriers_work = 0;
320 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
321 	} else {
322 		/*
323 		 * this branch is our 'one mirror IO has finished' event handler:
324 		 */
325 		r1_bio->bios[mirror] = NULL;
326 		to_put = bio;
327 		if (!uptodate) {
328 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 			/* an I/O failed, we can't clear the bitmap */
330 			set_bit(R1BIO_Degraded, &r1_bio->state);
331 		} else
332 			/*
333 			 * Set R1BIO_Uptodate in our master bio, so that
334 			 * we will return a good error code for to the higher
335 			 * levels even if IO on some other mirrored buffer fails.
336 			 *
337 			 * The 'master' represents the composite IO operation to
338 			 * user-side. So if something waits for IO, then it will
339 			 * wait for the 'master' bio.
340 			 */
341 			set_bit(R1BIO_Uptodate, &r1_bio->state);
342 
343 		update_head_pos(mirror, r1_bio);
344 
345 		if (behind) {
346 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 				atomic_dec(&r1_bio->behind_remaining);
348 
349 			/* In behind mode, we ACK the master bio once the I/O has safely
350 			 * reached all non-writemostly disks. Setting the Returned bit
351 			 * ensures that this gets done only once -- we don't ever want to
352 			 * return -EIO here, instead we'll wait */
353 
354 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 				/* Maybe we can return now */
357 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 					struct bio *mbio = r1_bio->master_bio;
359 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 					       (unsigned long long) mbio->bi_sector,
361 					       (unsigned long long) mbio->bi_sector +
362 					       (mbio->bi_size >> 9) - 1);
363 					bio_endio(mbio, 0);
364 				}
365 			}
366 		}
367 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
368 	}
369 	/*
370 	 *
371 	 * Let's see if all mirrored write operations have finished
372 	 * already.
373 	 */
374 	if (atomic_dec_and_test(&r1_bio->remaining)) {
375 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376 			reschedule_retry(r1_bio);
377 		else {
378 			/* it really is the end of this request */
379 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 				/* free extra copy of the data pages */
381 				int i = bio->bi_vcnt;
382 				while (i--)
383 					safe_put_page(bio->bi_io_vec[i].bv_page);
384 			}
385 			/* clear the bitmap if all writes complete successfully */
386 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 					r1_bio->sectors,
388 					!test_bit(R1BIO_Degraded, &r1_bio->state),
389 					behind);
390 			md_write_end(r1_bio->mddev);
391 			raid_end_bio_io(r1_bio);
392 		}
393 	}
394 
395 	if (to_put)
396 		bio_put(to_put);
397 }
398 
399 
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416 	const unsigned long this_sector = r1_bio->sector;
417 	int new_disk = conf->last_used, disk = new_disk;
418 	int wonly_disk = -1;
419 	const int sectors = r1_bio->sectors;
420 	sector_t new_distance, current_distance;
421 	mdk_rdev_t *rdev;
422 
423 	rcu_read_lock();
424 	/*
425 	 * Check if we can balance. We can balance on the whole
426 	 * device if no resync is going on, or below the resync window.
427 	 * We take the first readable disk when above the resync window.
428 	 */
429  retry:
430 	if (conf->mddev->recovery_cp < MaxSector &&
431 	    (this_sector + sectors >= conf->next_resync)) {
432 		/* Choose the first operation device, for consistancy */
433 		new_disk = 0;
434 
435 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
437 		     !rdev || !test_bit(In_sync, &rdev->flags)
438 			     || test_bit(WriteMostly, &rdev->flags);
439 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
440 
441 			if (rdev && test_bit(In_sync, &rdev->flags) &&
442 				r1_bio->bios[new_disk] != IO_BLOCKED)
443 				wonly_disk = new_disk;
444 
445 			if (new_disk == conf->raid_disks - 1) {
446 				new_disk = wonly_disk;
447 				break;
448 			}
449 		}
450 		goto rb_out;
451 	}
452 
453 
454 	/* make sure the disk is operational */
455 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
457 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
458 		     test_bit(WriteMostly, &rdev->flags);
459 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
460 
461 		if (rdev && test_bit(In_sync, &rdev->flags) &&
462 		    r1_bio->bios[new_disk] != IO_BLOCKED)
463 			wonly_disk = new_disk;
464 
465 		if (new_disk <= 0)
466 			new_disk = conf->raid_disks;
467 		new_disk--;
468 		if (new_disk == disk) {
469 			new_disk = wonly_disk;
470 			break;
471 		}
472 	}
473 
474 	if (new_disk < 0)
475 		goto rb_out;
476 
477 	disk = new_disk;
478 	/* now disk == new_disk == starting point for search */
479 
480 	/*
481 	 * Don't change to another disk for sequential reads:
482 	 */
483 	if (conf->next_seq_sect == this_sector)
484 		goto rb_out;
485 	if (this_sector == conf->mirrors[new_disk].head_position)
486 		goto rb_out;
487 
488 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 
490 	/* Find the disk whose head is closest */
491 
492 	do {
493 		if (disk <= 0)
494 			disk = conf->raid_disks;
495 		disk--;
496 
497 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
498 
499 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500 		    !test_bit(In_sync, &rdev->flags) ||
501 		    test_bit(WriteMostly, &rdev->flags))
502 			continue;
503 
504 		if (!atomic_read(&rdev->nr_pending)) {
505 			new_disk = disk;
506 			break;
507 		}
508 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 		if (new_distance < current_distance) {
510 			current_distance = new_distance;
511 			new_disk = disk;
512 		}
513 	} while (disk != conf->last_used);
514 
515  rb_out:
516 
517 
518 	if (new_disk >= 0) {
519 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520 		if (!rdev)
521 			goto retry;
522 		atomic_inc(&rdev->nr_pending);
523 		if (!test_bit(In_sync, &rdev->flags)) {
524 			/* cannot risk returning a device that failed
525 			 * before we inc'ed nr_pending
526 			 */
527 			rdev_dec_pending(rdev, conf->mddev);
528 			goto retry;
529 		}
530 		conf->next_seq_sect = this_sector + sectors;
531 		conf->last_used = new_disk;
532 	}
533 	rcu_read_unlock();
534 
535 	return new_disk;
536 }
537 
538 static void unplug_slaves(mddev_t *mddev)
539 {
540 	conf_t *conf = mddev_to_conf(mddev);
541 	int i;
542 
543 	rcu_read_lock();
544 	for (i=0; i<mddev->raid_disks; i++) {
545 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
548 
549 			atomic_inc(&rdev->nr_pending);
550 			rcu_read_unlock();
551 
552 			if (r_queue->unplug_fn)
553 				r_queue->unplug_fn(r_queue);
554 
555 			rdev_dec_pending(rdev, mddev);
556 			rcu_read_lock();
557 		}
558 	}
559 	rcu_read_unlock();
560 }
561 
562 static void raid1_unplug(struct request_queue *q)
563 {
564 	mddev_t *mddev = q->queuedata;
565 
566 	unplug_slaves(mddev);
567 	md_wakeup_thread(mddev->thread);
568 }
569 
570 static int raid1_issue_flush(struct request_queue *q, struct gendisk *disk,
571 			     sector_t *error_sector)
572 {
573 	mddev_t *mddev = q->queuedata;
574 	conf_t *conf = mddev_to_conf(mddev);
575 	int i, ret = 0;
576 
577 	rcu_read_lock();
578 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
579 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
580 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
581 			struct block_device *bdev = rdev->bdev;
582 			struct request_queue *r_queue = bdev_get_queue(bdev);
583 
584 			if (!r_queue->issue_flush_fn)
585 				ret = -EOPNOTSUPP;
586 			else {
587 				atomic_inc(&rdev->nr_pending);
588 				rcu_read_unlock();
589 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
590 							      error_sector);
591 				rdev_dec_pending(rdev, mddev);
592 				rcu_read_lock();
593 			}
594 		}
595 	}
596 	rcu_read_unlock();
597 	return ret;
598 }
599 
600 static int raid1_congested(void *data, int bits)
601 {
602 	mddev_t *mddev = data;
603 	conf_t *conf = mddev_to_conf(mddev);
604 	int i, ret = 0;
605 
606 	rcu_read_lock();
607 	for (i = 0; i < mddev->raid_disks; i++) {
608 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
609 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
610 			struct request_queue *q = bdev_get_queue(rdev->bdev);
611 
612 			/* Note the '|| 1' - when read_balance prefers
613 			 * non-congested targets, it can be removed
614 			 */
615 			if ((bits & (1<<BDI_write_congested)) || 1)
616 				ret |= bdi_congested(&q->backing_dev_info, bits);
617 			else
618 				ret &= bdi_congested(&q->backing_dev_info, bits);
619 		}
620 	}
621 	rcu_read_unlock();
622 	return ret;
623 }
624 
625 
626 /* Barriers....
627  * Sometimes we need to suspend IO while we do something else,
628  * either some resync/recovery, or reconfigure the array.
629  * To do this we raise a 'barrier'.
630  * The 'barrier' is a counter that can be raised multiple times
631  * to count how many activities are happening which preclude
632  * normal IO.
633  * We can only raise the barrier if there is no pending IO.
634  * i.e. if nr_pending == 0.
635  * We choose only to raise the barrier if no-one is waiting for the
636  * barrier to go down.  This means that as soon as an IO request
637  * is ready, no other operations which require a barrier will start
638  * until the IO request has had a chance.
639  *
640  * So: regular IO calls 'wait_barrier'.  When that returns there
641  *    is no backgroup IO happening,  It must arrange to call
642  *    allow_barrier when it has finished its IO.
643  * backgroup IO calls must call raise_barrier.  Once that returns
644  *    there is no normal IO happeing.  It must arrange to call
645  *    lower_barrier when the particular background IO completes.
646  */
647 #define RESYNC_DEPTH 32
648 
649 static void raise_barrier(conf_t *conf)
650 {
651 	spin_lock_irq(&conf->resync_lock);
652 
653 	/* Wait until no block IO is waiting */
654 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
655 			    conf->resync_lock,
656 			    raid1_unplug(conf->mddev->queue));
657 
658 	/* block any new IO from starting */
659 	conf->barrier++;
660 
661 	/* No wait for all pending IO to complete */
662 	wait_event_lock_irq(conf->wait_barrier,
663 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
664 			    conf->resync_lock,
665 			    raid1_unplug(conf->mddev->queue));
666 
667 	spin_unlock_irq(&conf->resync_lock);
668 }
669 
670 static void lower_barrier(conf_t *conf)
671 {
672 	unsigned long flags;
673 	spin_lock_irqsave(&conf->resync_lock, flags);
674 	conf->barrier--;
675 	spin_unlock_irqrestore(&conf->resync_lock, flags);
676 	wake_up(&conf->wait_barrier);
677 }
678 
679 static void wait_barrier(conf_t *conf)
680 {
681 	spin_lock_irq(&conf->resync_lock);
682 	if (conf->barrier) {
683 		conf->nr_waiting++;
684 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
685 				    conf->resync_lock,
686 				    raid1_unplug(conf->mddev->queue));
687 		conf->nr_waiting--;
688 	}
689 	conf->nr_pending++;
690 	spin_unlock_irq(&conf->resync_lock);
691 }
692 
693 static void allow_barrier(conf_t *conf)
694 {
695 	unsigned long flags;
696 	spin_lock_irqsave(&conf->resync_lock, flags);
697 	conf->nr_pending--;
698 	spin_unlock_irqrestore(&conf->resync_lock, flags);
699 	wake_up(&conf->wait_barrier);
700 }
701 
702 static void freeze_array(conf_t *conf)
703 {
704 	/* stop syncio and normal IO and wait for everything to
705 	 * go quite.
706 	 * We increment barrier and nr_waiting, and then
707 	 * wait until barrier+nr_pending match nr_queued+2
708 	 */
709 	spin_lock_irq(&conf->resync_lock);
710 	conf->barrier++;
711 	conf->nr_waiting++;
712 	wait_event_lock_irq(conf->wait_barrier,
713 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
714 			    conf->resync_lock,
715 			    raid1_unplug(conf->mddev->queue));
716 	spin_unlock_irq(&conf->resync_lock);
717 }
718 static void unfreeze_array(conf_t *conf)
719 {
720 	/* reverse the effect of the freeze */
721 	spin_lock_irq(&conf->resync_lock);
722 	conf->barrier--;
723 	conf->nr_waiting--;
724 	wake_up(&conf->wait_barrier);
725 	spin_unlock_irq(&conf->resync_lock);
726 }
727 
728 
729 /* duplicate the data pages for behind I/O */
730 static struct page **alloc_behind_pages(struct bio *bio)
731 {
732 	int i;
733 	struct bio_vec *bvec;
734 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
735 					GFP_NOIO);
736 	if (unlikely(!pages))
737 		goto do_sync_io;
738 
739 	bio_for_each_segment(bvec, bio, i) {
740 		pages[i] = alloc_page(GFP_NOIO);
741 		if (unlikely(!pages[i]))
742 			goto do_sync_io;
743 		memcpy(kmap(pages[i]) + bvec->bv_offset,
744 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
745 		kunmap(pages[i]);
746 		kunmap(bvec->bv_page);
747 	}
748 
749 	return pages;
750 
751 do_sync_io:
752 	if (pages)
753 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
754 			put_page(pages[i]);
755 	kfree(pages);
756 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
757 	return NULL;
758 }
759 
760 static int make_request(struct request_queue *q, struct bio * bio)
761 {
762 	mddev_t *mddev = q->queuedata;
763 	conf_t *conf = mddev_to_conf(mddev);
764 	mirror_info_t *mirror;
765 	r1bio_t *r1_bio;
766 	struct bio *read_bio;
767 	int i, targets = 0, disks;
768 	mdk_rdev_t *rdev;
769 	struct bitmap *bitmap = mddev->bitmap;
770 	unsigned long flags;
771 	struct bio_list bl;
772 	struct page **behind_pages = NULL;
773 	const int rw = bio_data_dir(bio);
774 	const int do_sync = bio_sync(bio);
775 	int do_barriers;
776 
777 	/*
778 	 * Register the new request and wait if the reconstruction
779 	 * thread has put up a bar for new requests.
780 	 * Continue immediately if no resync is active currently.
781 	 * We test barriers_work *after* md_write_start as md_write_start
782 	 * may cause the first superblock write, and that will check out
783 	 * if barriers work.
784 	 */
785 
786 	md_write_start(mddev, bio); /* wait on superblock update early */
787 
788 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
789 		if (rw == WRITE)
790 			md_write_end(mddev);
791 		bio_endio(bio, -EOPNOTSUPP);
792 		return 0;
793 	}
794 
795 	wait_barrier(conf);
796 
797 	disk_stat_inc(mddev->gendisk, ios[rw]);
798 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
799 
800 	/*
801 	 * make_request() can abort the operation when READA is being
802 	 * used and no empty request is available.
803 	 *
804 	 */
805 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
806 
807 	r1_bio->master_bio = bio;
808 	r1_bio->sectors = bio->bi_size >> 9;
809 	r1_bio->state = 0;
810 	r1_bio->mddev = mddev;
811 	r1_bio->sector = bio->bi_sector;
812 
813 	if (rw == READ) {
814 		/*
815 		 * read balancing logic:
816 		 */
817 		int rdisk = read_balance(conf, r1_bio);
818 
819 		if (rdisk < 0) {
820 			/* couldn't find anywhere to read from */
821 			raid_end_bio_io(r1_bio);
822 			return 0;
823 		}
824 		mirror = conf->mirrors + rdisk;
825 
826 		r1_bio->read_disk = rdisk;
827 
828 		read_bio = bio_clone(bio, GFP_NOIO);
829 
830 		r1_bio->bios[rdisk] = read_bio;
831 
832 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
833 		read_bio->bi_bdev = mirror->rdev->bdev;
834 		read_bio->bi_end_io = raid1_end_read_request;
835 		read_bio->bi_rw = READ | do_sync;
836 		read_bio->bi_private = r1_bio;
837 
838 		generic_make_request(read_bio);
839 		return 0;
840 	}
841 
842 	/*
843 	 * WRITE:
844 	 */
845 	/* first select target devices under spinlock and
846 	 * inc refcount on their rdev.  Record them by setting
847 	 * bios[x] to bio
848 	 */
849 	disks = conf->raid_disks;
850 #if 0
851 	{ static int first=1;
852 	if (first) printk("First Write sector %llu disks %d\n",
853 			  (unsigned long long)r1_bio->sector, disks);
854 	first = 0;
855 	}
856 #endif
857 	rcu_read_lock();
858 	for (i = 0;  i < disks; i++) {
859 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
860 		    !test_bit(Faulty, &rdev->flags)) {
861 			atomic_inc(&rdev->nr_pending);
862 			if (test_bit(Faulty, &rdev->flags)) {
863 				rdev_dec_pending(rdev, mddev);
864 				r1_bio->bios[i] = NULL;
865 			} else
866 				r1_bio->bios[i] = bio;
867 			targets++;
868 		} else
869 			r1_bio->bios[i] = NULL;
870 	}
871 	rcu_read_unlock();
872 
873 	BUG_ON(targets == 0); /* we never fail the last device */
874 
875 	if (targets < conf->raid_disks) {
876 		/* array is degraded, we will not clear the bitmap
877 		 * on I/O completion (see raid1_end_write_request) */
878 		set_bit(R1BIO_Degraded, &r1_bio->state);
879 	}
880 
881 	/* do behind I/O ? */
882 	if (bitmap &&
883 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
884 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
885 		set_bit(R1BIO_BehindIO, &r1_bio->state);
886 
887 	atomic_set(&r1_bio->remaining, 0);
888 	atomic_set(&r1_bio->behind_remaining, 0);
889 
890 	do_barriers = bio_barrier(bio);
891 	if (do_barriers)
892 		set_bit(R1BIO_Barrier, &r1_bio->state);
893 
894 	bio_list_init(&bl);
895 	for (i = 0; i < disks; i++) {
896 		struct bio *mbio;
897 		if (!r1_bio->bios[i])
898 			continue;
899 
900 		mbio = bio_clone(bio, GFP_NOIO);
901 		r1_bio->bios[i] = mbio;
902 
903 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
904 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
905 		mbio->bi_end_io	= raid1_end_write_request;
906 		mbio->bi_rw = WRITE | do_barriers | do_sync;
907 		mbio->bi_private = r1_bio;
908 
909 		if (behind_pages) {
910 			struct bio_vec *bvec;
911 			int j;
912 
913 			/* Yes, I really want the '__' version so that
914 			 * we clear any unused pointer in the io_vec, rather
915 			 * than leave them unchanged.  This is important
916 			 * because when we come to free the pages, we won't
917 			 * know the originial bi_idx, so we just free
918 			 * them all
919 			 */
920 			__bio_for_each_segment(bvec, mbio, j, 0)
921 				bvec->bv_page = behind_pages[j];
922 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
923 				atomic_inc(&r1_bio->behind_remaining);
924 		}
925 
926 		atomic_inc(&r1_bio->remaining);
927 
928 		bio_list_add(&bl, mbio);
929 	}
930 	kfree(behind_pages); /* the behind pages are attached to the bios now */
931 
932 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
933 				test_bit(R1BIO_BehindIO, &r1_bio->state));
934 	spin_lock_irqsave(&conf->device_lock, flags);
935 	bio_list_merge(&conf->pending_bio_list, &bl);
936 	bio_list_init(&bl);
937 
938 	blk_plug_device(mddev->queue);
939 	spin_unlock_irqrestore(&conf->device_lock, flags);
940 
941 	if (do_sync)
942 		md_wakeup_thread(mddev->thread);
943 #if 0
944 	while ((bio = bio_list_pop(&bl)) != NULL)
945 		generic_make_request(bio);
946 #endif
947 
948 	return 0;
949 }
950 
951 static void status(struct seq_file *seq, mddev_t *mddev)
952 {
953 	conf_t *conf = mddev_to_conf(mddev);
954 	int i;
955 
956 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
957 		   conf->raid_disks - mddev->degraded);
958 	rcu_read_lock();
959 	for (i = 0; i < conf->raid_disks; i++) {
960 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
961 		seq_printf(seq, "%s",
962 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
963 	}
964 	rcu_read_unlock();
965 	seq_printf(seq, "]");
966 }
967 
968 
969 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
970 {
971 	char b[BDEVNAME_SIZE];
972 	conf_t *conf = mddev_to_conf(mddev);
973 
974 	/*
975 	 * If it is not operational, then we have already marked it as dead
976 	 * else if it is the last working disks, ignore the error, let the
977 	 * next level up know.
978 	 * else mark the drive as failed
979 	 */
980 	if (test_bit(In_sync, &rdev->flags)
981 	    && (conf->raid_disks - mddev->degraded) == 1)
982 		/*
983 		 * Don't fail the drive, act as though we were just a
984 		 * normal single drive
985 		 */
986 		return;
987 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
988 		unsigned long flags;
989 		spin_lock_irqsave(&conf->device_lock, flags);
990 		mddev->degraded++;
991 		set_bit(Faulty, &rdev->flags);
992 		spin_unlock_irqrestore(&conf->device_lock, flags);
993 		/*
994 		 * if recovery is running, make sure it aborts.
995 		 */
996 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
997 	} else
998 		set_bit(Faulty, &rdev->flags);
999 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1000 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
1001 		"	Operation continuing on %d devices\n",
1002 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1003 }
1004 
1005 static void print_conf(conf_t *conf)
1006 {
1007 	int i;
1008 
1009 	printk("RAID1 conf printout:\n");
1010 	if (!conf) {
1011 		printk("(!conf)\n");
1012 		return;
1013 	}
1014 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1015 		conf->raid_disks);
1016 
1017 	rcu_read_lock();
1018 	for (i = 0; i < conf->raid_disks; i++) {
1019 		char b[BDEVNAME_SIZE];
1020 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1021 		if (rdev)
1022 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1023 			       i, !test_bit(In_sync, &rdev->flags),
1024 			       !test_bit(Faulty, &rdev->flags),
1025 			       bdevname(rdev->bdev,b));
1026 	}
1027 	rcu_read_unlock();
1028 }
1029 
1030 static void close_sync(conf_t *conf)
1031 {
1032 	wait_barrier(conf);
1033 	allow_barrier(conf);
1034 
1035 	mempool_destroy(conf->r1buf_pool);
1036 	conf->r1buf_pool = NULL;
1037 }
1038 
1039 static int raid1_spare_active(mddev_t *mddev)
1040 {
1041 	int i;
1042 	conf_t *conf = mddev->private;
1043 
1044 	/*
1045 	 * Find all failed disks within the RAID1 configuration
1046 	 * and mark them readable.
1047 	 * Called under mddev lock, so rcu protection not needed.
1048 	 */
1049 	for (i = 0; i < conf->raid_disks; i++) {
1050 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1051 		if (rdev
1052 		    && !test_bit(Faulty, &rdev->flags)
1053 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1054 			unsigned long flags;
1055 			spin_lock_irqsave(&conf->device_lock, flags);
1056 			mddev->degraded--;
1057 			spin_unlock_irqrestore(&conf->device_lock, flags);
1058 		}
1059 	}
1060 
1061 	print_conf(conf);
1062 	return 0;
1063 }
1064 
1065 
1066 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1067 {
1068 	conf_t *conf = mddev->private;
1069 	int found = 0;
1070 	int mirror = 0;
1071 	mirror_info_t *p;
1072 
1073 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1074 		if ( !(p=conf->mirrors+mirror)->rdev) {
1075 
1076 			blk_queue_stack_limits(mddev->queue,
1077 					       rdev->bdev->bd_disk->queue);
1078 			/* as we don't honour merge_bvec_fn, we must never risk
1079 			 * violating it, so limit ->max_sector to one PAGE, as
1080 			 * a one page request is never in violation.
1081 			 */
1082 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1083 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1084 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1085 
1086 			p->head_position = 0;
1087 			rdev->raid_disk = mirror;
1088 			found = 1;
1089 			/* As all devices are equivalent, we don't need a full recovery
1090 			 * if this was recently any drive of the array
1091 			 */
1092 			if (rdev->saved_raid_disk < 0)
1093 				conf->fullsync = 1;
1094 			rcu_assign_pointer(p->rdev, rdev);
1095 			break;
1096 		}
1097 
1098 	print_conf(conf);
1099 	return found;
1100 }
1101 
1102 static int raid1_remove_disk(mddev_t *mddev, int number)
1103 {
1104 	conf_t *conf = mddev->private;
1105 	int err = 0;
1106 	mdk_rdev_t *rdev;
1107 	mirror_info_t *p = conf->mirrors+ number;
1108 
1109 	print_conf(conf);
1110 	rdev = p->rdev;
1111 	if (rdev) {
1112 		if (test_bit(In_sync, &rdev->flags) ||
1113 		    atomic_read(&rdev->nr_pending)) {
1114 			err = -EBUSY;
1115 			goto abort;
1116 		}
1117 		p->rdev = NULL;
1118 		synchronize_rcu();
1119 		if (atomic_read(&rdev->nr_pending)) {
1120 			/* lost the race, try later */
1121 			err = -EBUSY;
1122 			p->rdev = rdev;
1123 		}
1124 	}
1125 abort:
1126 
1127 	print_conf(conf);
1128 	return err;
1129 }
1130 
1131 
1132 static void end_sync_read(struct bio *bio, int error)
1133 {
1134 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1135 	int i;
1136 
1137 	for (i=r1_bio->mddev->raid_disks; i--; )
1138 		if (r1_bio->bios[i] == bio)
1139 			break;
1140 	BUG_ON(i < 0);
1141 	update_head_pos(i, r1_bio);
1142 	/*
1143 	 * we have read a block, now it needs to be re-written,
1144 	 * or re-read if the read failed.
1145 	 * We don't do much here, just schedule handling by raid1d
1146 	 */
1147 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1148 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1149 
1150 	if (atomic_dec_and_test(&r1_bio->remaining))
1151 		reschedule_retry(r1_bio);
1152 }
1153 
1154 static void end_sync_write(struct bio *bio, int error)
1155 {
1156 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1157 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1158 	mddev_t *mddev = r1_bio->mddev;
1159 	conf_t *conf = mddev_to_conf(mddev);
1160 	int i;
1161 	int mirror=0;
1162 
1163 	for (i = 0; i < conf->raid_disks; i++)
1164 		if (r1_bio->bios[i] == bio) {
1165 			mirror = i;
1166 			break;
1167 		}
1168 	if (!uptodate) {
1169 		int sync_blocks = 0;
1170 		sector_t s = r1_bio->sector;
1171 		long sectors_to_go = r1_bio->sectors;
1172 		/* make sure these bits doesn't get cleared. */
1173 		do {
1174 			bitmap_end_sync(mddev->bitmap, s,
1175 					&sync_blocks, 1);
1176 			s += sync_blocks;
1177 			sectors_to_go -= sync_blocks;
1178 		} while (sectors_to_go > 0);
1179 		md_error(mddev, conf->mirrors[mirror].rdev);
1180 	}
1181 
1182 	update_head_pos(mirror, r1_bio);
1183 
1184 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1185 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1186 		put_buf(r1_bio);
1187 	}
1188 }
1189 
1190 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1191 {
1192 	conf_t *conf = mddev_to_conf(mddev);
1193 	int i;
1194 	int disks = conf->raid_disks;
1195 	struct bio *bio, *wbio;
1196 
1197 	bio = r1_bio->bios[r1_bio->read_disk];
1198 
1199 
1200 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1201 		/* We have read all readable devices.  If we haven't
1202 		 * got the block, then there is no hope left.
1203 		 * If we have, then we want to do a comparison
1204 		 * and skip the write if everything is the same.
1205 		 * If any blocks failed to read, then we need to
1206 		 * attempt an over-write
1207 		 */
1208 		int primary;
1209 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1210 			for (i=0; i<mddev->raid_disks; i++)
1211 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1212 					md_error(mddev, conf->mirrors[i].rdev);
1213 
1214 			md_done_sync(mddev, r1_bio->sectors, 1);
1215 			put_buf(r1_bio);
1216 			return;
1217 		}
1218 		for (primary=0; primary<mddev->raid_disks; primary++)
1219 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1220 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1221 				r1_bio->bios[primary]->bi_end_io = NULL;
1222 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1223 				break;
1224 			}
1225 		r1_bio->read_disk = primary;
1226 		for (i=0; i<mddev->raid_disks; i++)
1227 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1228 				int j;
1229 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1230 				struct bio *pbio = r1_bio->bios[primary];
1231 				struct bio *sbio = r1_bio->bios[i];
1232 
1233 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1234 					for (j = vcnt; j-- ; ) {
1235 						struct page *p, *s;
1236 						p = pbio->bi_io_vec[j].bv_page;
1237 						s = sbio->bi_io_vec[j].bv_page;
1238 						if (memcmp(page_address(p),
1239 							   page_address(s),
1240 							   PAGE_SIZE))
1241 							break;
1242 					}
1243 				} else
1244 					j = 0;
1245 				if (j >= 0)
1246 					mddev->resync_mismatches += r1_bio->sectors;
1247 				if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1248 					sbio->bi_end_io = NULL;
1249 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1250 				} else {
1251 					/* fixup the bio for reuse */
1252 					sbio->bi_vcnt = vcnt;
1253 					sbio->bi_size = r1_bio->sectors << 9;
1254 					sbio->bi_idx = 0;
1255 					sbio->bi_phys_segments = 0;
1256 					sbio->bi_hw_segments = 0;
1257 					sbio->bi_hw_front_size = 0;
1258 					sbio->bi_hw_back_size = 0;
1259 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1260 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1261 					sbio->bi_next = NULL;
1262 					sbio->bi_sector = r1_bio->sector +
1263 						conf->mirrors[i].rdev->data_offset;
1264 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1265 					for (j = 0; j < vcnt ; j++)
1266 						memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1267 						       page_address(pbio->bi_io_vec[j].bv_page),
1268 						       PAGE_SIZE);
1269 
1270 				}
1271 			}
1272 	}
1273 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1274 		/* ouch - failed to read all of that.
1275 		 * Try some synchronous reads of other devices to get
1276 		 * good data, much like with normal read errors.  Only
1277 		 * read into the pages we already have so we don't
1278 		 * need to re-issue the read request.
1279 		 * We don't need to freeze the array, because being in an
1280 		 * active sync request, there is no normal IO, and
1281 		 * no overlapping syncs.
1282 		 */
1283 		sector_t sect = r1_bio->sector;
1284 		int sectors = r1_bio->sectors;
1285 		int idx = 0;
1286 
1287 		while(sectors) {
1288 			int s = sectors;
1289 			int d = r1_bio->read_disk;
1290 			int success = 0;
1291 			mdk_rdev_t *rdev;
1292 
1293 			if (s > (PAGE_SIZE>>9))
1294 				s = PAGE_SIZE >> 9;
1295 			do {
1296 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1297 					/* No rcu protection needed here devices
1298 					 * can only be removed when no resync is
1299 					 * active, and resync is currently active
1300 					 */
1301 					rdev = conf->mirrors[d].rdev;
1302 					if (sync_page_io(rdev->bdev,
1303 							 sect + rdev->data_offset,
1304 							 s<<9,
1305 							 bio->bi_io_vec[idx].bv_page,
1306 							 READ)) {
1307 						success = 1;
1308 						break;
1309 					}
1310 				}
1311 				d++;
1312 				if (d == conf->raid_disks)
1313 					d = 0;
1314 			} while (!success && d != r1_bio->read_disk);
1315 
1316 			if (success) {
1317 				int start = d;
1318 				/* write it back and re-read */
1319 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1320 				while (d != r1_bio->read_disk) {
1321 					if (d == 0)
1322 						d = conf->raid_disks;
1323 					d--;
1324 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1325 						continue;
1326 					rdev = conf->mirrors[d].rdev;
1327 					atomic_add(s, &rdev->corrected_errors);
1328 					if (sync_page_io(rdev->bdev,
1329 							 sect + rdev->data_offset,
1330 							 s<<9,
1331 							 bio->bi_io_vec[idx].bv_page,
1332 							 WRITE) == 0)
1333 						md_error(mddev, rdev);
1334 				}
1335 				d = start;
1336 				while (d != r1_bio->read_disk) {
1337 					if (d == 0)
1338 						d = conf->raid_disks;
1339 					d--;
1340 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1341 						continue;
1342 					rdev = conf->mirrors[d].rdev;
1343 					if (sync_page_io(rdev->bdev,
1344 							 sect + rdev->data_offset,
1345 							 s<<9,
1346 							 bio->bi_io_vec[idx].bv_page,
1347 							 READ) == 0)
1348 						md_error(mddev, rdev);
1349 				}
1350 			} else {
1351 				char b[BDEVNAME_SIZE];
1352 				/* Cannot read from anywhere, array is toast */
1353 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1354 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1355 				       " for block %llu\n",
1356 				       bdevname(bio->bi_bdev,b),
1357 				       (unsigned long long)r1_bio->sector);
1358 				md_done_sync(mddev, r1_bio->sectors, 0);
1359 				put_buf(r1_bio);
1360 				return;
1361 			}
1362 			sectors -= s;
1363 			sect += s;
1364 			idx ++;
1365 		}
1366 	}
1367 
1368 	/*
1369 	 * schedule writes
1370 	 */
1371 	atomic_set(&r1_bio->remaining, 1);
1372 	for (i = 0; i < disks ; i++) {
1373 		wbio = r1_bio->bios[i];
1374 		if (wbio->bi_end_io == NULL ||
1375 		    (wbio->bi_end_io == end_sync_read &&
1376 		     (i == r1_bio->read_disk ||
1377 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1378 			continue;
1379 
1380 		wbio->bi_rw = WRITE;
1381 		wbio->bi_end_io = end_sync_write;
1382 		atomic_inc(&r1_bio->remaining);
1383 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1384 
1385 		generic_make_request(wbio);
1386 	}
1387 
1388 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1389 		/* if we're here, all write(s) have completed, so clean up */
1390 		md_done_sync(mddev, r1_bio->sectors, 1);
1391 		put_buf(r1_bio);
1392 	}
1393 }
1394 
1395 /*
1396  * This is a kernel thread which:
1397  *
1398  *	1.	Retries failed read operations on working mirrors.
1399  *	2.	Updates the raid superblock when problems encounter.
1400  *	3.	Performs writes following reads for array syncronising.
1401  */
1402 
1403 static void fix_read_error(conf_t *conf, int read_disk,
1404 			   sector_t sect, int sectors)
1405 {
1406 	mddev_t *mddev = conf->mddev;
1407 	while(sectors) {
1408 		int s = sectors;
1409 		int d = read_disk;
1410 		int success = 0;
1411 		int start;
1412 		mdk_rdev_t *rdev;
1413 
1414 		if (s > (PAGE_SIZE>>9))
1415 			s = PAGE_SIZE >> 9;
1416 
1417 		do {
1418 			/* Note: no rcu protection needed here
1419 			 * as this is synchronous in the raid1d thread
1420 			 * which is the thread that might remove
1421 			 * a device.  If raid1d ever becomes multi-threaded....
1422 			 */
1423 			rdev = conf->mirrors[d].rdev;
1424 			if (rdev &&
1425 			    test_bit(In_sync, &rdev->flags) &&
1426 			    sync_page_io(rdev->bdev,
1427 					 sect + rdev->data_offset,
1428 					 s<<9,
1429 					 conf->tmppage, READ))
1430 				success = 1;
1431 			else {
1432 				d++;
1433 				if (d == conf->raid_disks)
1434 					d = 0;
1435 			}
1436 		} while (!success && d != read_disk);
1437 
1438 		if (!success) {
1439 			/* Cannot read from anywhere -- bye bye array */
1440 			md_error(mddev, conf->mirrors[read_disk].rdev);
1441 			break;
1442 		}
1443 		/* write it back and re-read */
1444 		start = d;
1445 		while (d != read_disk) {
1446 			if (d==0)
1447 				d = conf->raid_disks;
1448 			d--;
1449 			rdev = conf->mirrors[d].rdev;
1450 			if (rdev &&
1451 			    test_bit(In_sync, &rdev->flags)) {
1452 				if (sync_page_io(rdev->bdev,
1453 						 sect + rdev->data_offset,
1454 						 s<<9, conf->tmppage, WRITE)
1455 				    == 0)
1456 					/* Well, this device is dead */
1457 					md_error(mddev, rdev);
1458 			}
1459 		}
1460 		d = start;
1461 		while (d != read_disk) {
1462 			char b[BDEVNAME_SIZE];
1463 			if (d==0)
1464 				d = conf->raid_disks;
1465 			d--;
1466 			rdev = conf->mirrors[d].rdev;
1467 			if (rdev &&
1468 			    test_bit(In_sync, &rdev->flags)) {
1469 				if (sync_page_io(rdev->bdev,
1470 						 sect + rdev->data_offset,
1471 						 s<<9, conf->tmppage, READ)
1472 				    == 0)
1473 					/* Well, this device is dead */
1474 					md_error(mddev, rdev);
1475 				else {
1476 					atomic_add(s, &rdev->corrected_errors);
1477 					printk(KERN_INFO
1478 					       "raid1:%s: read error corrected "
1479 					       "(%d sectors at %llu on %s)\n",
1480 					       mdname(mddev), s,
1481 					       (unsigned long long)(sect +
1482 					           rdev->data_offset),
1483 					       bdevname(rdev->bdev, b));
1484 				}
1485 			}
1486 		}
1487 		sectors -= s;
1488 		sect += s;
1489 	}
1490 }
1491 
1492 static void raid1d(mddev_t *mddev)
1493 {
1494 	r1bio_t *r1_bio;
1495 	struct bio *bio;
1496 	unsigned long flags;
1497 	conf_t *conf = mddev_to_conf(mddev);
1498 	struct list_head *head = &conf->retry_list;
1499 	int unplug=0;
1500 	mdk_rdev_t *rdev;
1501 
1502 	md_check_recovery(mddev);
1503 
1504 	for (;;) {
1505 		char b[BDEVNAME_SIZE];
1506 		spin_lock_irqsave(&conf->device_lock, flags);
1507 
1508 		if (conf->pending_bio_list.head) {
1509 			bio = bio_list_get(&conf->pending_bio_list);
1510 			blk_remove_plug(mddev->queue);
1511 			spin_unlock_irqrestore(&conf->device_lock, flags);
1512 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1513 			bitmap_unplug(mddev->bitmap);
1514 
1515 			while (bio) { /* submit pending writes */
1516 				struct bio *next = bio->bi_next;
1517 				bio->bi_next = NULL;
1518 				generic_make_request(bio);
1519 				bio = next;
1520 			}
1521 			unplug = 1;
1522 
1523 			continue;
1524 		}
1525 
1526 		if (list_empty(head))
1527 			break;
1528 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1529 		list_del(head->prev);
1530 		conf->nr_queued--;
1531 		spin_unlock_irqrestore(&conf->device_lock, flags);
1532 
1533 		mddev = r1_bio->mddev;
1534 		conf = mddev_to_conf(mddev);
1535 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1536 			sync_request_write(mddev, r1_bio);
1537 			unplug = 1;
1538 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1539 			/* some requests in the r1bio were BIO_RW_BARRIER
1540 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1541 			 * Better resubmit without the barrier.
1542 			 * We know which devices to resubmit for, because
1543 			 * all others have had their bios[] entry cleared.
1544 			 * We already have a nr_pending reference on these rdevs.
1545 			 */
1546 			int i;
1547 			const int do_sync = bio_sync(r1_bio->master_bio);
1548 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1549 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1550 			for (i=0; i < conf->raid_disks; i++)
1551 				if (r1_bio->bios[i])
1552 					atomic_inc(&r1_bio->remaining);
1553 			for (i=0; i < conf->raid_disks; i++)
1554 				if (r1_bio->bios[i]) {
1555 					struct bio_vec *bvec;
1556 					int j;
1557 
1558 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1559 					/* copy pages from the failed bio, as
1560 					 * this might be a write-behind device */
1561 					__bio_for_each_segment(bvec, bio, j, 0)
1562 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1563 					bio_put(r1_bio->bios[i]);
1564 					bio->bi_sector = r1_bio->sector +
1565 						conf->mirrors[i].rdev->data_offset;
1566 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1567 					bio->bi_end_io = raid1_end_write_request;
1568 					bio->bi_rw = WRITE | do_sync;
1569 					bio->bi_private = r1_bio;
1570 					r1_bio->bios[i] = bio;
1571 					generic_make_request(bio);
1572 				}
1573 		} else {
1574 			int disk;
1575 
1576 			/* we got a read error. Maybe the drive is bad.  Maybe just
1577 			 * the block and we can fix it.
1578 			 * We freeze all other IO, and try reading the block from
1579 			 * other devices.  When we find one, we re-write
1580 			 * and check it that fixes the read error.
1581 			 * This is all done synchronously while the array is
1582 			 * frozen
1583 			 */
1584 			if (mddev->ro == 0) {
1585 				freeze_array(conf);
1586 				fix_read_error(conf, r1_bio->read_disk,
1587 					       r1_bio->sector,
1588 					       r1_bio->sectors);
1589 				unfreeze_array(conf);
1590 			}
1591 
1592 			bio = r1_bio->bios[r1_bio->read_disk];
1593 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1594 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1595 				       " read error for block %llu\n",
1596 				       bdevname(bio->bi_bdev,b),
1597 				       (unsigned long long)r1_bio->sector);
1598 				raid_end_bio_io(r1_bio);
1599 			} else {
1600 				const int do_sync = bio_sync(r1_bio->master_bio);
1601 				r1_bio->bios[r1_bio->read_disk] =
1602 					mddev->ro ? IO_BLOCKED : NULL;
1603 				r1_bio->read_disk = disk;
1604 				bio_put(bio);
1605 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1606 				r1_bio->bios[r1_bio->read_disk] = bio;
1607 				rdev = conf->mirrors[disk].rdev;
1608 				if (printk_ratelimit())
1609 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1610 					       " another mirror\n",
1611 					       bdevname(rdev->bdev,b),
1612 					       (unsigned long long)r1_bio->sector);
1613 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1614 				bio->bi_bdev = rdev->bdev;
1615 				bio->bi_end_io = raid1_end_read_request;
1616 				bio->bi_rw = READ | do_sync;
1617 				bio->bi_private = r1_bio;
1618 				unplug = 1;
1619 				generic_make_request(bio);
1620 			}
1621 		}
1622 	}
1623 	spin_unlock_irqrestore(&conf->device_lock, flags);
1624 	if (unplug)
1625 		unplug_slaves(mddev);
1626 }
1627 
1628 
1629 static int init_resync(conf_t *conf)
1630 {
1631 	int buffs;
1632 
1633 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1634 	BUG_ON(conf->r1buf_pool);
1635 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1636 					  conf->poolinfo);
1637 	if (!conf->r1buf_pool)
1638 		return -ENOMEM;
1639 	conf->next_resync = 0;
1640 	return 0;
1641 }
1642 
1643 /*
1644  * perform a "sync" on one "block"
1645  *
1646  * We need to make sure that no normal I/O request - particularly write
1647  * requests - conflict with active sync requests.
1648  *
1649  * This is achieved by tracking pending requests and a 'barrier' concept
1650  * that can be installed to exclude normal IO requests.
1651  */
1652 
1653 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1654 {
1655 	conf_t *conf = mddev_to_conf(mddev);
1656 	r1bio_t *r1_bio;
1657 	struct bio *bio;
1658 	sector_t max_sector, nr_sectors;
1659 	int disk = -1;
1660 	int i;
1661 	int wonly = -1;
1662 	int write_targets = 0, read_targets = 0;
1663 	int sync_blocks;
1664 	int still_degraded = 0;
1665 
1666 	if (!conf->r1buf_pool)
1667 	{
1668 /*
1669 		printk("sync start - bitmap %p\n", mddev->bitmap);
1670 */
1671 		if (init_resync(conf))
1672 			return 0;
1673 	}
1674 
1675 	max_sector = mddev->size << 1;
1676 	if (sector_nr >= max_sector) {
1677 		/* If we aborted, we need to abort the
1678 		 * sync on the 'current' bitmap chunk (there will
1679 		 * only be one in raid1 resync.
1680 		 * We can find the current addess in mddev->curr_resync
1681 		 */
1682 		if (mddev->curr_resync < max_sector) /* aborted */
1683 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1684 						&sync_blocks, 1);
1685 		else /* completed sync */
1686 			conf->fullsync = 0;
1687 
1688 		bitmap_close_sync(mddev->bitmap);
1689 		close_sync(conf);
1690 		return 0;
1691 	}
1692 
1693 	if (mddev->bitmap == NULL &&
1694 	    mddev->recovery_cp == MaxSector &&
1695 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1696 	    conf->fullsync == 0) {
1697 		*skipped = 1;
1698 		return max_sector - sector_nr;
1699 	}
1700 	/* before building a request, check if we can skip these blocks..
1701 	 * This call the bitmap_start_sync doesn't actually record anything
1702 	 */
1703 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1704 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1705 		/* We can skip this block, and probably several more */
1706 		*skipped = 1;
1707 		return sync_blocks;
1708 	}
1709 	/*
1710 	 * If there is non-resync activity waiting for a turn,
1711 	 * and resync is going fast enough,
1712 	 * then let it though before starting on this new sync request.
1713 	 */
1714 	if (!go_faster && conf->nr_waiting)
1715 		msleep_interruptible(1000);
1716 
1717 	raise_barrier(conf);
1718 
1719 	conf->next_resync = sector_nr;
1720 
1721 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1722 	rcu_read_lock();
1723 	/*
1724 	 * If we get a correctably read error during resync or recovery,
1725 	 * we might want to read from a different device.  So we
1726 	 * flag all drives that could conceivably be read from for READ,
1727 	 * and any others (which will be non-In_sync devices) for WRITE.
1728 	 * If a read fails, we try reading from something else for which READ
1729 	 * is OK.
1730 	 */
1731 
1732 	r1_bio->mddev = mddev;
1733 	r1_bio->sector = sector_nr;
1734 	r1_bio->state = 0;
1735 	set_bit(R1BIO_IsSync, &r1_bio->state);
1736 
1737 	for (i=0; i < conf->raid_disks; i++) {
1738 		mdk_rdev_t *rdev;
1739 		bio = r1_bio->bios[i];
1740 
1741 		/* take from bio_init */
1742 		bio->bi_next = NULL;
1743 		bio->bi_flags |= 1 << BIO_UPTODATE;
1744 		bio->bi_rw = READ;
1745 		bio->bi_vcnt = 0;
1746 		bio->bi_idx = 0;
1747 		bio->bi_phys_segments = 0;
1748 		bio->bi_hw_segments = 0;
1749 		bio->bi_size = 0;
1750 		bio->bi_end_io = NULL;
1751 		bio->bi_private = NULL;
1752 
1753 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1754 		if (rdev == NULL ||
1755 			   test_bit(Faulty, &rdev->flags)) {
1756 			still_degraded = 1;
1757 			continue;
1758 		} else if (!test_bit(In_sync, &rdev->flags)) {
1759 			bio->bi_rw = WRITE;
1760 			bio->bi_end_io = end_sync_write;
1761 			write_targets ++;
1762 		} else {
1763 			/* may need to read from here */
1764 			bio->bi_rw = READ;
1765 			bio->bi_end_io = end_sync_read;
1766 			if (test_bit(WriteMostly, &rdev->flags)) {
1767 				if (wonly < 0)
1768 					wonly = i;
1769 			} else {
1770 				if (disk < 0)
1771 					disk = i;
1772 			}
1773 			read_targets++;
1774 		}
1775 		atomic_inc(&rdev->nr_pending);
1776 		bio->bi_sector = sector_nr + rdev->data_offset;
1777 		bio->bi_bdev = rdev->bdev;
1778 		bio->bi_private = r1_bio;
1779 	}
1780 	rcu_read_unlock();
1781 	if (disk < 0)
1782 		disk = wonly;
1783 	r1_bio->read_disk = disk;
1784 
1785 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1786 		/* extra read targets are also write targets */
1787 		write_targets += read_targets-1;
1788 
1789 	if (write_targets == 0 || read_targets == 0) {
1790 		/* There is nowhere to write, so all non-sync
1791 		 * drives must be failed - so we are finished
1792 		 */
1793 		sector_t rv = max_sector - sector_nr;
1794 		*skipped = 1;
1795 		put_buf(r1_bio);
1796 		return rv;
1797 	}
1798 
1799 	nr_sectors = 0;
1800 	sync_blocks = 0;
1801 	do {
1802 		struct page *page;
1803 		int len = PAGE_SIZE;
1804 		if (sector_nr + (len>>9) > max_sector)
1805 			len = (max_sector - sector_nr) << 9;
1806 		if (len == 0)
1807 			break;
1808 		if (sync_blocks == 0) {
1809 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1810 					       &sync_blocks, still_degraded) &&
1811 			    !conf->fullsync &&
1812 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1813 				break;
1814 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1815 			if (len > (sync_blocks<<9))
1816 				len = sync_blocks<<9;
1817 		}
1818 
1819 		for (i=0 ; i < conf->raid_disks; i++) {
1820 			bio = r1_bio->bios[i];
1821 			if (bio->bi_end_io) {
1822 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1823 				if (bio_add_page(bio, page, len, 0) == 0) {
1824 					/* stop here */
1825 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1826 					while (i > 0) {
1827 						i--;
1828 						bio = r1_bio->bios[i];
1829 						if (bio->bi_end_io==NULL)
1830 							continue;
1831 						/* remove last page from this bio */
1832 						bio->bi_vcnt--;
1833 						bio->bi_size -= len;
1834 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1835 					}
1836 					goto bio_full;
1837 				}
1838 			}
1839 		}
1840 		nr_sectors += len>>9;
1841 		sector_nr += len>>9;
1842 		sync_blocks -= (len>>9);
1843 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1844  bio_full:
1845 	r1_bio->sectors = nr_sectors;
1846 
1847 	/* For a user-requested sync, we read all readable devices and do a
1848 	 * compare
1849 	 */
1850 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1851 		atomic_set(&r1_bio->remaining, read_targets);
1852 		for (i=0; i<conf->raid_disks; i++) {
1853 			bio = r1_bio->bios[i];
1854 			if (bio->bi_end_io == end_sync_read) {
1855 				md_sync_acct(bio->bi_bdev, nr_sectors);
1856 				generic_make_request(bio);
1857 			}
1858 		}
1859 	} else {
1860 		atomic_set(&r1_bio->remaining, 1);
1861 		bio = r1_bio->bios[r1_bio->read_disk];
1862 		md_sync_acct(bio->bi_bdev, nr_sectors);
1863 		generic_make_request(bio);
1864 
1865 	}
1866 	return nr_sectors;
1867 }
1868 
1869 static int run(mddev_t *mddev)
1870 {
1871 	conf_t *conf;
1872 	int i, j, disk_idx;
1873 	mirror_info_t *disk;
1874 	mdk_rdev_t *rdev;
1875 	struct list_head *tmp;
1876 
1877 	if (mddev->level != 1) {
1878 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1879 		       mdname(mddev), mddev->level);
1880 		goto out;
1881 	}
1882 	if (mddev->reshape_position != MaxSector) {
1883 		printk("raid1: %s: reshape_position set but not supported\n",
1884 		       mdname(mddev));
1885 		goto out;
1886 	}
1887 	/*
1888 	 * copy the already verified devices into our private RAID1
1889 	 * bookkeeping area. [whatever we allocate in run(),
1890 	 * should be freed in stop()]
1891 	 */
1892 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1893 	mddev->private = conf;
1894 	if (!conf)
1895 		goto out_no_mem;
1896 
1897 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1898 				 GFP_KERNEL);
1899 	if (!conf->mirrors)
1900 		goto out_no_mem;
1901 
1902 	conf->tmppage = alloc_page(GFP_KERNEL);
1903 	if (!conf->tmppage)
1904 		goto out_no_mem;
1905 
1906 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1907 	if (!conf->poolinfo)
1908 		goto out_no_mem;
1909 	conf->poolinfo->mddev = mddev;
1910 	conf->poolinfo->raid_disks = mddev->raid_disks;
1911 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1912 					  r1bio_pool_free,
1913 					  conf->poolinfo);
1914 	if (!conf->r1bio_pool)
1915 		goto out_no_mem;
1916 
1917 	ITERATE_RDEV(mddev, rdev, tmp) {
1918 		disk_idx = rdev->raid_disk;
1919 		if (disk_idx >= mddev->raid_disks
1920 		    || disk_idx < 0)
1921 			continue;
1922 		disk = conf->mirrors + disk_idx;
1923 
1924 		disk->rdev = rdev;
1925 
1926 		blk_queue_stack_limits(mddev->queue,
1927 				       rdev->bdev->bd_disk->queue);
1928 		/* as we don't honour merge_bvec_fn, we must never risk
1929 		 * violating it, so limit ->max_sector to one PAGE, as
1930 		 * a one page request is never in violation.
1931 		 */
1932 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1933 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1934 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1935 
1936 		disk->head_position = 0;
1937 	}
1938 	conf->raid_disks = mddev->raid_disks;
1939 	conf->mddev = mddev;
1940 	spin_lock_init(&conf->device_lock);
1941 	INIT_LIST_HEAD(&conf->retry_list);
1942 
1943 	spin_lock_init(&conf->resync_lock);
1944 	init_waitqueue_head(&conf->wait_barrier);
1945 
1946 	bio_list_init(&conf->pending_bio_list);
1947 	bio_list_init(&conf->flushing_bio_list);
1948 
1949 
1950 	mddev->degraded = 0;
1951 	for (i = 0; i < conf->raid_disks; i++) {
1952 
1953 		disk = conf->mirrors + i;
1954 
1955 		if (!disk->rdev ||
1956 		    !test_bit(In_sync, &disk->rdev->flags)) {
1957 			disk->head_position = 0;
1958 			mddev->degraded++;
1959 			if (disk->rdev)
1960 				conf->fullsync = 1;
1961 		}
1962 	}
1963 	if (mddev->degraded == conf->raid_disks) {
1964 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1965 			mdname(mddev));
1966 		goto out_free_conf;
1967 	}
1968 	if (conf->raid_disks - mddev->degraded == 1)
1969 		mddev->recovery_cp = MaxSector;
1970 
1971 	/*
1972 	 * find the first working one and use it as a starting point
1973 	 * to read balancing.
1974 	 */
1975 	for (j = 0; j < conf->raid_disks &&
1976 		     (!conf->mirrors[j].rdev ||
1977 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1978 		/* nothing */;
1979 	conf->last_used = j;
1980 
1981 
1982 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1983 	if (!mddev->thread) {
1984 		printk(KERN_ERR
1985 		       "raid1: couldn't allocate thread for %s\n",
1986 		       mdname(mddev));
1987 		goto out_free_conf;
1988 	}
1989 
1990 	printk(KERN_INFO
1991 		"raid1: raid set %s active with %d out of %d mirrors\n",
1992 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1993 		mddev->raid_disks);
1994 	/*
1995 	 * Ok, everything is just fine now
1996 	 */
1997 	mddev->array_size = mddev->size;
1998 
1999 	mddev->queue->unplug_fn = raid1_unplug;
2000 	mddev->queue->issue_flush_fn = raid1_issue_flush;
2001 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2002 	mddev->queue->backing_dev_info.congested_data = mddev;
2003 
2004 	return 0;
2005 
2006 out_no_mem:
2007 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2008 	       mdname(mddev));
2009 
2010 out_free_conf:
2011 	if (conf) {
2012 		if (conf->r1bio_pool)
2013 			mempool_destroy(conf->r1bio_pool);
2014 		kfree(conf->mirrors);
2015 		safe_put_page(conf->tmppage);
2016 		kfree(conf->poolinfo);
2017 		kfree(conf);
2018 		mddev->private = NULL;
2019 	}
2020 out:
2021 	return -EIO;
2022 }
2023 
2024 static int stop(mddev_t *mddev)
2025 {
2026 	conf_t *conf = mddev_to_conf(mddev);
2027 	struct bitmap *bitmap = mddev->bitmap;
2028 	int behind_wait = 0;
2029 
2030 	/* wait for behind writes to complete */
2031 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2032 		behind_wait++;
2033 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2034 		set_current_state(TASK_UNINTERRUPTIBLE);
2035 		schedule_timeout(HZ); /* wait a second */
2036 		/* need to kick something here to make sure I/O goes? */
2037 	}
2038 
2039 	md_unregister_thread(mddev->thread);
2040 	mddev->thread = NULL;
2041 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2042 	if (conf->r1bio_pool)
2043 		mempool_destroy(conf->r1bio_pool);
2044 	kfree(conf->mirrors);
2045 	kfree(conf->poolinfo);
2046 	kfree(conf);
2047 	mddev->private = NULL;
2048 	return 0;
2049 }
2050 
2051 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2052 {
2053 	/* no resync is happening, and there is enough space
2054 	 * on all devices, so we can resize.
2055 	 * We need to make sure resync covers any new space.
2056 	 * If the array is shrinking we should possibly wait until
2057 	 * any io in the removed space completes, but it hardly seems
2058 	 * worth it.
2059 	 */
2060 	mddev->array_size = sectors>>1;
2061 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2062 	mddev->changed = 1;
2063 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2064 		mddev->recovery_cp = mddev->size << 1;
2065 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2066 	}
2067 	mddev->size = mddev->array_size;
2068 	mddev->resync_max_sectors = sectors;
2069 	return 0;
2070 }
2071 
2072 static int raid1_reshape(mddev_t *mddev)
2073 {
2074 	/* We need to:
2075 	 * 1/ resize the r1bio_pool
2076 	 * 2/ resize conf->mirrors
2077 	 *
2078 	 * We allocate a new r1bio_pool if we can.
2079 	 * Then raise a device barrier and wait until all IO stops.
2080 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2081 	 *
2082 	 * At the same time, we "pack" the devices so that all the missing
2083 	 * devices have the higher raid_disk numbers.
2084 	 */
2085 	mempool_t *newpool, *oldpool;
2086 	struct pool_info *newpoolinfo;
2087 	mirror_info_t *newmirrors;
2088 	conf_t *conf = mddev_to_conf(mddev);
2089 	int cnt, raid_disks;
2090 	unsigned long flags;
2091 	int d, d2;
2092 
2093 	/* Cannot change chunk_size, layout, or level */
2094 	if (mddev->chunk_size != mddev->new_chunk ||
2095 	    mddev->layout != mddev->new_layout ||
2096 	    mddev->level != mddev->new_level) {
2097 		mddev->new_chunk = mddev->chunk_size;
2098 		mddev->new_layout = mddev->layout;
2099 		mddev->new_level = mddev->level;
2100 		return -EINVAL;
2101 	}
2102 
2103 	md_allow_write(mddev);
2104 
2105 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2106 
2107 	if (raid_disks < conf->raid_disks) {
2108 		cnt=0;
2109 		for (d= 0; d < conf->raid_disks; d++)
2110 			if (conf->mirrors[d].rdev)
2111 				cnt++;
2112 		if (cnt > raid_disks)
2113 			return -EBUSY;
2114 	}
2115 
2116 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2117 	if (!newpoolinfo)
2118 		return -ENOMEM;
2119 	newpoolinfo->mddev = mddev;
2120 	newpoolinfo->raid_disks = raid_disks;
2121 
2122 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2123 				 r1bio_pool_free, newpoolinfo);
2124 	if (!newpool) {
2125 		kfree(newpoolinfo);
2126 		return -ENOMEM;
2127 	}
2128 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2129 	if (!newmirrors) {
2130 		kfree(newpoolinfo);
2131 		mempool_destroy(newpool);
2132 		return -ENOMEM;
2133 	}
2134 
2135 	raise_barrier(conf);
2136 
2137 	/* ok, everything is stopped */
2138 	oldpool = conf->r1bio_pool;
2139 	conf->r1bio_pool = newpool;
2140 
2141 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2142 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2143 		if (rdev && rdev->raid_disk != d2) {
2144 			char nm[20];
2145 			sprintf(nm, "rd%d", rdev->raid_disk);
2146 			sysfs_remove_link(&mddev->kobj, nm);
2147 			rdev->raid_disk = d2;
2148 			sprintf(nm, "rd%d", rdev->raid_disk);
2149 			sysfs_remove_link(&mddev->kobj, nm);
2150 			if (sysfs_create_link(&mddev->kobj,
2151 					      &rdev->kobj, nm))
2152 				printk(KERN_WARNING
2153 				       "md/raid1: cannot register "
2154 				       "%s for %s\n",
2155 				       nm, mdname(mddev));
2156 		}
2157 		if (rdev)
2158 			newmirrors[d2++].rdev = rdev;
2159 	}
2160 	kfree(conf->mirrors);
2161 	conf->mirrors = newmirrors;
2162 	kfree(conf->poolinfo);
2163 	conf->poolinfo = newpoolinfo;
2164 
2165 	spin_lock_irqsave(&conf->device_lock, flags);
2166 	mddev->degraded += (raid_disks - conf->raid_disks);
2167 	spin_unlock_irqrestore(&conf->device_lock, flags);
2168 	conf->raid_disks = mddev->raid_disks = raid_disks;
2169 	mddev->delta_disks = 0;
2170 
2171 	conf->last_used = 0; /* just make sure it is in-range */
2172 	lower_barrier(conf);
2173 
2174 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2175 	md_wakeup_thread(mddev->thread);
2176 
2177 	mempool_destroy(oldpool);
2178 	return 0;
2179 }
2180 
2181 static void raid1_quiesce(mddev_t *mddev, int state)
2182 {
2183 	conf_t *conf = mddev_to_conf(mddev);
2184 
2185 	switch(state) {
2186 	case 1:
2187 		raise_barrier(conf);
2188 		break;
2189 	case 0:
2190 		lower_barrier(conf);
2191 		break;
2192 	}
2193 }
2194 
2195 
2196 static struct mdk_personality raid1_personality =
2197 {
2198 	.name		= "raid1",
2199 	.level		= 1,
2200 	.owner		= THIS_MODULE,
2201 	.make_request	= make_request,
2202 	.run		= run,
2203 	.stop		= stop,
2204 	.status		= status,
2205 	.error_handler	= error,
2206 	.hot_add_disk	= raid1_add_disk,
2207 	.hot_remove_disk= raid1_remove_disk,
2208 	.spare_active	= raid1_spare_active,
2209 	.sync_request	= sync_request,
2210 	.resize		= raid1_resize,
2211 	.check_reshape	= raid1_reshape,
2212 	.quiesce	= raid1_quiesce,
2213 };
2214 
2215 static int __init raid_init(void)
2216 {
2217 	return register_md_personality(&raid1_personality);
2218 }
2219 
2220 static void raid_exit(void)
2221 {
2222 	unregister_md_personality(&raid1_personality);
2223 }
2224 
2225 module_init(raid_init);
2226 module_exit(raid_exit);
2227 MODULE_LICENSE("GPL");
2228 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2229 MODULE_ALIAS("md-raid1");
2230 MODULE_ALIAS("md-level-1");
2231