1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #define RAID_1_10_NAME "raid1" 53 #include "raid1-10.c" 54 55 #define START(node) ((node)->start) 56 #define LAST(node) ((node)->last) 57 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 58 START, LAST, static inline, raid1_rb); 59 60 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 61 struct serial_info *si, int idx) 62 { 63 unsigned long flags; 64 int ret = 0; 65 sector_t lo = r1_bio->sector; 66 sector_t hi = lo + r1_bio->sectors; 67 struct serial_in_rdev *serial = &rdev->serial[idx]; 68 69 spin_lock_irqsave(&serial->serial_lock, flags); 70 /* collision happened */ 71 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 72 ret = -EBUSY; 73 else { 74 si->start = lo; 75 si->last = hi; 76 raid1_rb_insert(si, &serial->serial_rb); 77 } 78 spin_unlock_irqrestore(&serial->serial_lock, flags); 79 80 return ret; 81 } 82 83 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 84 { 85 struct mddev *mddev = rdev->mddev; 86 struct serial_info *si; 87 int idx = sector_to_idx(r1_bio->sector); 88 struct serial_in_rdev *serial = &rdev->serial[idx]; 89 90 if (WARN_ON(!mddev->serial_info_pool)) 91 return; 92 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 93 wait_event(serial->serial_io_wait, 94 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 95 } 96 97 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 98 { 99 struct serial_info *si; 100 unsigned long flags; 101 int found = 0; 102 struct mddev *mddev = rdev->mddev; 103 int idx = sector_to_idx(lo); 104 struct serial_in_rdev *serial = &rdev->serial[idx]; 105 106 spin_lock_irqsave(&serial->serial_lock, flags); 107 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 108 si; si = raid1_rb_iter_next(si, lo, hi)) { 109 if (si->start == lo && si->last == hi) { 110 raid1_rb_remove(si, &serial->serial_rb); 111 mempool_free(si, mddev->serial_info_pool); 112 found = 1; 113 break; 114 } 115 } 116 if (!found) 117 WARN(1, "The write IO is not recorded for serialization\n"); 118 spin_unlock_irqrestore(&serial->serial_lock, flags); 119 wake_up(&serial->serial_io_wait); 120 } 121 122 /* 123 * for resync bio, r1bio pointer can be retrieved from the per-bio 124 * 'struct resync_pages'. 125 */ 126 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 127 { 128 return get_resync_pages(bio)->raid_bio; 129 } 130 131 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 132 { 133 struct pool_info *pi = data; 134 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 135 136 /* allocate a r1bio with room for raid_disks entries in the bios array */ 137 return kzalloc(size, gfp_flags); 138 } 139 140 #define RESYNC_DEPTH 32 141 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 142 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 143 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 144 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 146 147 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 148 { 149 struct pool_info *pi = data; 150 struct r1bio *r1_bio; 151 struct bio *bio; 152 int need_pages; 153 int j; 154 struct resync_pages *rps; 155 156 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 157 if (!r1_bio) 158 return NULL; 159 160 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 161 gfp_flags); 162 if (!rps) 163 goto out_free_r1bio; 164 165 /* 166 * Allocate bios : 1 for reading, n-1 for writing 167 */ 168 for (j = pi->raid_disks ; j-- ; ) { 169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 170 if (!bio) 171 goto out_free_bio; 172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 173 r1_bio->bios[j] = bio; 174 } 175 /* 176 * Allocate RESYNC_PAGES data pages and attach them to 177 * the first bio. 178 * If this is a user-requested check/repair, allocate 179 * RESYNC_PAGES for each bio. 180 */ 181 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 182 need_pages = pi->raid_disks; 183 else 184 need_pages = 1; 185 for (j = 0; j < pi->raid_disks; j++) { 186 struct resync_pages *rp = &rps[j]; 187 188 bio = r1_bio->bios[j]; 189 190 if (j < need_pages) { 191 if (resync_alloc_pages(rp, gfp_flags)) 192 goto out_free_pages; 193 } else { 194 memcpy(rp, &rps[0], sizeof(*rp)); 195 resync_get_all_pages(rp); 196 } 197 198 rp->raid_bio = r1_bio; 199 bio->bi_private = rp; 200 } 201 202 r1_bio->master_bio = NULL; 203 204 return r1_bio; 205 206 out_free_pages: 207 while (--j >= 0) 208 resync_free_pages(&rps[j]); 209 210 out_free_bio: 211 while (++j < pi->raid_disks) { 212 bio_uninit(r1_bio->bios[j]); 213 kfree(r1_bio->bios[j]); 214 } 215 kfree(rps); 216 217 out_free_r1bio: 218 rbio_pool_free(r1_bio, data); 219 return NULL; 220 } 221 222 static void r1buf_pool_free(void *__r1_bio, void *data) 223 { 224 struct pool_info *pi = data; 225 int i; 226 struct r1bio *r1bio = __r1_bio; 227 struct resync_pages *rp = NULL; 228 229 for (i = pi->raid_disks; i--; ) { 230 rp = get_resync_pages(r1bio->bios[i]); 231 resync_free_pages(rp); 232 bio_uninit(r1bio->bios[i]); 233 kfree(r1bio->bios[i]); 234 } 235 236 /* resync pages array stored in the 1st bio's .bi_private */ 237 kfree(rp); 238 239 rbio_pool_free(r1bio, data); 240 } 241 242 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 243 { 244 int i; 245 246 for (i = 0; i < conf->raid_disks * 2; i++) { 247 struct bio **bio = r1_bio->bios + i; 248 if (!BIO_SPECIAL(*bio)) 249 bio_put(*bio); 250 *bio = NULL; 251 } 252 } 253 254 static void free_r1bio(struct r1bio *r1_bio) 255 { 256 struct r1conf *conf = r1_bio->mddev->private; 257 258 put_all_bios(conf, r1_bio); 259 mempool_free(r1_bio, &conf->r1bio_pool); 260 } 261 262 static void put_buf(struct r1bio *r1_bio) 263 { 264 struct r1conf *conf = r1_bio->mddev->private; 265 sector_t sect = r1_bio->sector; 266 int i; 267 268 for (i = 0; i < conf->raid_disks * 2; i++) { 269 struct bio *bio = r1_bio->bios[i]; 270 if (bio->bi_end_io) 271 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 272 } 273 274 mempool_free(r1_bio, &conf->r1buf_pool); 275 276 lower_barrier(conf, sect); 277 } 278 279 static void reschedule_retry(struct r1bio *r1_bio) 280 { 281 unsigned long flags; 282 struct mddev *mddev = r1_bio->mddev; 283 struct r1conf *conf = mddev->private; 284 int idx; 285 286 idx = sector_to_idx(r1_bio->sector); 287 spin_lock_irqsave(&conf->device_lock, flags); 288 list_add(&r1_bio->retry_list, &conf->retry_list); 289 atomic_inc(&conf->nr_queued[idx]); 290 spin_unlock_irqrestore(&conf->device_lock, flags); 291 292 wake_up(&conf->wait_barrier); 293 md_wakeup_thread(mddev->thread); 294 } 295 296 /* 297 * raid_end_bio_io() is called when we have finished servicing a mirrored 298 * operation and are ready to return a success/failure code to the buffer 299 * cache layer. 300 */ 301 static void call_bio_endio(struct r1bio *r1_bio) 302 { 303 struct bio *bio = r1_bio->master_bio; 304 305 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 306 bio->bi_status = BLK_STS_IOERR; 307 308 bio_endio(bio); 309 } 310 311 static void raid_end_bio_io(struct r1bio *r1_bio) 312 { 313 struct bio *bio = r1_bio->master_bio; 314 struct r1conf *conf = r1_bio->mddev->private; 315 sector_t sector = r1_bio->sector; 316 317 /* if nobody has done the final endio yet, do it now */ 318 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 319 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 320 (bio_data_dir(bio) == WRITE) ? "write" : "read", 321 (unsigned long long) bio->bi_iter.bi_sector, 322 (unsigned long long) bio_end_sector(bio) - 1); 323 324 call_bio_endio(r1_bio); 325 } 326 327 free_r1bio(r1_bio); 328 /* 329 * Wake up any possible resync thread that waits for the device 330 * to go idle. All I/Os, even write-behind writes, are done. 331 */ 332 allow_barrier(conf, sector); 333 } 334 335 /* 336 * Update disk head position estimator based on IRQ completion info. 337 */ 338 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 339 { 340 struct r1conf *conf = r1_bio->mddev->private; 341 342 conf->mirrors[disk].head_position = 343 r1_bio->sector + (r1_bio->sectors); 344 } 345 346 /* 347 * Find the disk number which triggered given bio 348 */ 349 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 350 { 351 int mirror; 352 struct r1conf *conf = r1_bio->mddev->private; 353 int raid_disks = conf->raid_disks; 354 355 for (mirror = 0; mirror < raid_disks * 2; mirror++) 356 if (r1_bio->bios[mirror] == bio) 357 break; 358 359 BUG_ON(mirror == raid_disks * 2); 360 update_head_pos(mirror, r1_bio); 361 362 return mirror; 363 } 364 365 static void raid1_end_read_request(struct bio *bio) 366 { 367 int uptodate = !bio->bi_status; 368 struct r1bio *r1_bio = bio->bi_private; 369 struct r1conf *conf = r1_bio->mddev->private; 370 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 371 372 /* 373 * this branch is our 'one mirror IO has finished' event handler: 374 */ 375 update_head_pos(r1_bio->read_disk, r1_bio); 376 377 if (uptodate) 378 set_bit(R1BIO_Uptodate, &r1_bio->state); 379 else if (test_bit(FailFast, &rdev->flags) && 380 test_bit(R1BIO_FailFast, &r1_bio->state)) 381 /* This was a fail-fast read so we definitely 382 * want to retry */ 383 ; 384 else { 385 /* If all other devices have failed, we want to return 386 * the error upwards rather than fail the last device. 387 * Here we redefine "uptodate" to mean "Don't want to retry" 388 */ 389 unsigned long flags; 390 spin_lock_irqsave(&conf->device_lock, flags); 391 if (r1_bio->mddev->degraded == conf->raid_disks || 392 (r1_bio->mddev->degraded == conf->raid_disks-1 && 393 test_bit(In_sync, &rdev->flags))) 394 uptodate = 1; 395 spin_unlock_irqrestore(&conf->device_lock, flags); 396 } 397 398 if (uptodate) { 399 raid_end_bio_io(r1_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error: 404 */ 405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 406 mdname(conf->mddev), 407 rdev->bdev, 408 (unsigned long long)r1_bio->sector); 409 set_bit(R1BIO_ReadError, &r1_bio->state); 410 reschedule_retry(r1_bio); 411 /* don't drop the reference on read_disk yet */ 412 } 413 } 414 415 static void close_write(struct r1bio *r1_bio) 416 { 417 /* it really is the end of this request */ 418 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 419 bio_free_pages(r1_bio->behind_master_bio); 420 bio_put(r1_bio->behind_master_bio); 421 r1_bio->behind_master_bio = NULL; 422 } 423 /* clear the bitmap if all writes complete successfully */ 424 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 425 r1_bio->sectors, 426 !test_bit(R1BIO_Degraded, &r1_bio->state), 427 test_bit(R1BIO_BehindIO, &r1_bio->state)); 428 md_write_end(r1_bio->mddev); 429 } 430 431 static void r1_bio_write_done(struct r1bio *r1_bio) 432 { 433 if (!atomic_dec_and_test(&r1_bio->remaining)) 434 return; 435 436 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 437 reschedule_retry(r1_bio); 438 else { 439 close_write(r1_bio); 440 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 441 reschedule_retry(r1_bio); 442 else 443 raid_end_bio_io(r1_bio); 444 } 445 } 446 447 static void raid1_end_write_request(struct bio *bio) 448 { 449 struct r1bio *r1_bio = bio->bi_private; 450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 451 struct r1conf *conf = r1_bio->mddev->private; 452 struct bio *to_put = NULL; 453 int mirror = find_bio_disk(r1_bio, bio); 454 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 455 bool discard_error; 456 sector_t lo = r1_bio->sector; 457 sector_t hi = r1_bio->sector + r1_bio->sectors; 458 459 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 460 461 /* 462 * 'one mirror IO has finished' event handler: 463 */ 464 if (bio->bi_status && !discard_error) { 465 set_bit(WriteErrorSeen, &rdev->flags); 466 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 467 set_bit(MD_RECOVERY_NEEDED, & 468 conf->mddev->recovery); 469 470 if (test_bit(FailFast, &rdev->flags) && 471 (bio->bi_opf & MD_FAILFAST) && 472 /* We never try FailFast to WriteMostly devices */ 473 !test_bit(WriteMostly, &rdev->flags)) { 474 md_error(r1_bio->mddev, rdev); 475 } 476 477 /* 478 * When the device is faulty, it is not necessary to 479 * handle write error. 480 */ 481 if (!test_bit(Faulty, &rdev->flags)) 482 set_bit(R1BIO_WriteError, &r1_bio->state); 483 else { 484 /* Fail the request */ 485 set_bit(R1BIO_Degraded, &r1_bio->state); 486 /* Finished with this branch */ 487 r1_bio->bios[mirror] = NULL; 488 to_put = bio; 489 } 490 } else { 491 /* 492 * Set R1BIO_Uptodate in our master bio, so that we 493 * will return a good error code for to the higher 494 * levels even if IO on some other mirrored buffer 495 * fails. 496 * 497 * The 'master' represents the composite IO operation 498 * to user-side. So if something waits for IO, then it 499 * will wait for the 'master' bio. 500 */ 501 sector_t first_bad; 502 int bad_sectors; 503 504 r1_bio->bios[mirror] = NULL; 505 to_put = bio; 506 /* 507 * Do not set R1BIO_Uptodate if the current device is 508 * rebuilding or Faulty. This is because we cannot use 509 * such device for properly reading the data back (we could 510 * potentially use it, if the current write would have felt 511 * before rdev->recovery_offset, but for simplicity we don't 512 * check this here. 513 */ 514 if (test_bit(In_sync, &rdev->flags) && 515 !test_bit(Faulty, &rdev->flags)) 516 set_bit(R1BIO_Uptodate, &r1_bio->state); 517 518 /* Maybe we can clear some bad blocks. */ 519 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 520 &first_bad, &bad_sectors) && !discard_error) { 521 r1_bio->bios[mirror] = IO_MADE_GOOD; 522 set_bit(R1BIO_MadeGood, &r1_bio->state); 523 } 524 } 525 526 if (behind) { 527 if (test_bit(CollisionCheck, &rdev->flags)) 528 remove_serial(rdev, lo, hi); 529 if (test_bit(WriteMostly, &rdev->flags)) 530 atomic_dec(&r1_bio->behind_remaining); 531 532 /* 533 * In behind mode, we ACK the master bio once the I/O 534 * has safely reached all non-writemostly 535 * disks. Setting the Returned bit ensures that this 536 * gets done only once -- we don't ever want to return 537 * -EIO here, instead we'll wait 538 */ 539 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 540 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 541 /* Maybe we can return now */ 542 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 543 struct bio *mbio = r1_bio->master_bio; 544 pr_debug("raid1: behind end write sectors" 545 " %llu-%llu\n", 546 (unsigned long long) mbio->bi_iter.bi_sector, 547 (unsigned long long) bio_end_sector(mbio) - 1); 548 call_bio_endio(r1_bio); 549 } 550 } 551 } else if (rdev->mddev->serialize_policy) 552 remove_serial(rdev, lo, hi); 553 if (r1_bio->bios[mirror] == NULL) 554 rdev_dec_pending(rdev, conf->mddev); 555 556 /* 557 * Let's see if all mirrored write operations have finished 558 * already. 559 */ 560 r1_bio_write_done(r1_bio); 561 562 if (to_put) 563 bio_put(to_put); 564 } 565 566 static sector_t align_to_barrier_unit_end(sector_t start_sector, 567 sector_t sectors) 568 { 569 sector_t len; 570 571 WARN_ON(sectors == 0); 572 /* 573 * len is the number of sectors from start_sector to end of the 574 * barrier unit which start_sector belongs to. 575 */ 576 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 577 start_sector; 578 579 if (len > sectors) 580 len = sectors; 581 582 return len; 583 } 584 585 /* 586 * This routine returns the disk from which the requested read should 587 * be done. There is a per-array 'next expected sequential IO' sector 588 * number - if this matches on the next IO then we use the last disk. 589 * There is also a per-disk 'last know head position' sector that is 590 * maintained from IRQ contexts, both the normal and the resync IO 591 * completion handlers update this position correctly. If there is no 592 * perfect sequential match then we pick the disk whose head is closest. 593 * 594 * If there are 2 mirrors in the same 2 devices, performance degrades 595 * because position is mirror, not device based. 596 * 597 * The rdev for the device selected will have nr_pending incremented. 598 */ 599 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 600 { 601 const sector_t this_sector = r1_bio->sector; 602 int sectors; 603 int best_good_sectors; 604 int best_disk, best_dist_disk, best_pending_disk; 605 int has_nonrot_disk; 606 int disk; 607 sector_t best_dist; 608 unsigned int min_pending; 609 struct md_rdev *rdev; 610 int choose_first; 611 int choose_next_idle; 612 613 /* 614 * Check if we can balance. We can balance on the whole 615 * device if no resync is going on, or below the resync window. 616 * We take the first readable disk when above the resync window. 617 */ 618 retry: 619 sectors = r1_bio->sectors; 620 best_disk = -1; 621 best_dist_disk = -1; 622 best_dist = MaxSector; 623 best_pending_disk = -1; 624 min_pending = UINT_MAX; 625 best_good_sectors = 0; 626 has_nonrot_disk = 0; 627 choose_next_idle = 0; 628 clear_bit(R1BIO_FailFast, &r1_bio->state); 629 630 if ((conf->mddev->recovery_cp < this_sector + sectors) || 631 (mddev_is_clustered(conf->mddev) && 632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 633 this_sector + sectors))) 634 choose_first = 1; 635 else 636 choose_first = 0; 637 638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 639 sector_t dist; 640 sector_t first_bad; 641 int bad_sectors; 642 unsigned int pending; 643 bool nonrot; 644 645 rdev = conf->mirrors[disk].rdev; 646 if (r1_bio->bios[disk] == IO_BLOCKED 647 || rdev == NULL 648 || test_bit(Faulty, &rdev->flags)) 649 continue; 650 if (!test_bit(In_sync, &rdev->flags) && 651 rdev->recovery_offset < this_sector + sectors) 652 continue; 653 if (test_bit(WriteMostly, &rdev->flags)) { 654 /* Don't balance among write-mostly, just 655 * use the first as a last resort */ 656 if (best_dist_disk < 0) { 657 if (is_badblock(rdev, this_sector, sectors, 658 &first_bad, &bad_sectors)) { 659 if (first_bad <= this_sector) 660 /* Cannot use this */ 661 continue; 662 best_good_sectors = first_bad - this_sector; 663 } else 664 best_good_sectors = sectors; 665 best_dist_disk = disk; 666 best_pending_disk = disk; 667 } 668 continue; 669 } 670 /* This is a reasonable device to use. It might 671 * even be best. 672 */ 673 if (is_badblock(rdev, this_sector, sectors, 674 &first_bad, &bad_sectors)) { 675 if (best_dist < MaxSector) 676 /* already have a better device */ 677 continue; 678 if (first_bad <= this_sector) { 679 /* cannot read here. If this is the 'primary' 680 * device, then we must not read beyond 681 * bad_sectors from another device.. 682 */ 683 bad_sectors -= (this_sector - first_bad); 684 if (choose_first && sectors > bad_sectors) 685 sectors = bad_sectors; 686 if (best_good_sectors > sectors) 687 best_good_sectors = sectors; 688 689 } else { 690 sector_t good_sectors = first_bad - this_sector; 691 if (good_sectors > best_good_sectors) { 692 best_good_sectors = good_sectors; 693 best_disk = disk; 694 } 695 if (choose_first) 696 break; 697 } 698 continue; 699 } else { 700 if ((sectors > best_good_sectors) && (best_disk >= 0)) 701 best_disk = -1; 702 best_good_sectors = sectors; 703 } 704 705 if (best_disk >= 0) 706 /* At least two disks to choose from so failfast is OK */ 707 set_bit(R1BIO_FailFast, &r1_bio->state); 708 709 nonrot = bdev_nonrot(rdev->bdev); 710 has_nonrot_disk |= nonrot; 711 pending = atomic_read(&rdev->nr_pending); 712 dist = abs(this_sector - conf->mirrors[disk].head_position); 713 if (choose_first) { 714 best_disk = disk; 715 break; 716 } 717 /* Don't change to another disk for sequential reads */ 718 if (conf->mirrors[disk].next_seq_sect == this_sector 719 || dist == 0) { 720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 721 struct raid1_info *mirror = &conf->mirrors[disk]; 722 723 best_disk = disk; 724 /* 725 * If buffered sequential IO size exceeds optimal 726 * iosize, check if there is idle disk. If yes, choose 727 * the idle disk. read_balance could already choose an 728 * idle disk before noticing it's a sequential IO in 729 * this disk. This doesn't matter because this disk 730 * will idle, next time it will be utilized after the 731 * first disk has IO size exceeds optimal iosize. In 732 * this way, iosize of the first disk will be optimal 733 * iosize at least. iosize of the second disk might be 734 * small, but not a big deal since when the second disk 735 * starts IO, the first disk is likely still busy. 736 */ 737 if (nonrot && opt_iosize > 0 && 738 mirror->seq_start != MaxSector && 739 mirror->next_seq_sect > opt_iosize && 740 mirror->next_seq_sect - opt_iosize >= 741 mirror->seq_start) { 742 choose_next_idle = 1; 743 continue; 744 } 745 break; 746 } 747 748 if (choose_next_idle) 749 continue; 750 751 if (min_pending > pending) { 752 min_pending = pending; 753 best_pending_disk = disk; 754 } 755 756 if (dist < best_dist) { 757 best_dist = dist; 758 best_dist_disk = disk; 759 } 760 } 761 762 /* 763 * If all disks are rotational, choose the closest disk. If any disk is 764 * non-rotational, choose the disk with less pending request even the 765 * disk is rotational, which might/might not be optimal for raids with 766 * mixed ratation/non-rotational disks depending on workload. 767 */ 768 if (best_disk == -1) { 769 if (has_nonrot_disk || min_pending == 0) 770 best_disk = best_pending_disk; 771 else 772 best_disk = best_dist_disk; 773 } 774 775 if (best_disk >= 0) { 776 rdev = conf->mirrors[best_disk].rdev; 777 if (!rdev) 778 goto retry; 779 atomic_inc(&rdev->nr_pending); 780 sectors = best_good_sectors; 781 782 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 783 conf->mirrors[best_disk].seq_start = this_sector; 784 785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 786 } 787 *max_sectors = sectors; 788 789 return best_disk; 790 } 791 792 static void wake_up_barrier(struct r1conf *conf) 793 { 794 if (wq_has_sleeper(&conf->wait_barrier)) 795 wake_up(&conf->wait_barrier); 796 } 797 798 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 799 { 800 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 801 raid1_prepare_flush_writes(conf->mddev->bitmap); 802 wake_up_barrier(conf); 803 804 while (bio) { /* submit pending writes */ 805 struct bio *next = bio->bi_next; 806 807 raid1_submit_write(bio); 808 bio = next; 809 cond_resched(); 810 } 811 } 812 813 static void flush_pending_writes(struct r1conf *conf) 814 { 815 /* Any writes that have been queued but are awaiting 816 * bitmap updates get flushed here. 817 */ 818 spin_lock_irq(&conf->device_lock); 819 820 if (conf->pending_bio_list.head) { 821 struct blk_plug plug; 822 struct bio *bio; 823 824 bio = bio_list_get(&conf->pending_bio_list); 825 spin_unlock_irq(&conf->device_lock); 826 827 /* 828 * As this is called in a wait_event() loop (see freeze_array), 829 * current->state might be TASK_UNINTERRUPTIBLE which will 830 * cause a warning when we prepare to wait again. As it is 831 * rare that this path is taken, it is perfectly safe to force 832 * us to go around the wait_event() loop again, so the warning 833 * is a false-positive. Silence the warning by resetting 834 * thread state 835 */ 836 __set_current_state(TASK_RUNNING); 837 blk_start_plug(&plug); 838 flush_bio_list(conf, bio); 839 blk_finish_plug(&plug); 840 } else 841 spin_unlock_irq(&conf->device_lock); 842 } 843 844 /* Barriers.... 845 * Sometimes we need to suspend IO while we do something else, 846 * either some resync/recovery, or reconfigure the array. 847 * To do this we raise a 'barrier'. 848 * The 'barrier' is a counter that can be raised multiple times 849 * to count how many activities are happening which preclude 850 * normal IO. 851 * We can only raise the barrier if there is no pending IO. 852 * i.e. if nr_pending == 0. 853 * We choose only to raise the barrier if no-one is waiting for the 854 * barrier to go down. This means that as soon as an IO request 855 * is ready, no other operations which require a barrier will start 856 * until the IO request has had a chance. 857 * 858 * So: regular IO calls 'wait_barrier'. When that returns there 859 * is no backgroup IO happening, It must arrange to call 860 * allow_barrier when it has finished its IO. 861 * backgroup IO calls must call raise_barrier. Once that returns 862 * there is no normal IO happeing. It must arrange to call 863 * lower_barrier when the particular background IO completes. 864 * 865 * If resync/recovery is interrupted, returns -EINTR; 866 * Otherwise, returns 0. 867 */ 868 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 869 { 870 int idx = sector_to_idx(sector_nr); 871 872 spin_lock_irq(&conf->resync_lock); 873 874 /* Wait until no block IO is waiting */ 875 wait_event_lock_irq(conf->wait_barrier, 876 !atomic_read(&conf->nr_waiting[idx]), 877 conf->resync_lock); 878 879 /* block any new IO from starting */ 880 atomic_inc(&conf->barrier[idx]); 881 /* 882 * In raise_barrier() we firstly increase conf->barrier[idx] then 883 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 884 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 885 * A memory barrier here to make sure conf->nr_pending[idx] won't 886 * be fetched before conf->barrier[idx] is increased. Otherwise 887 * there will be a race between raise_barrier() and _wait_barrier(). 888 */ 889 smp_mb__after_atomic(); 890 891 /* For these conditions we must wait: 892 * A: while the array is in frozen state 893 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 894 * existing in corresponding I/O barrier bucket. 895 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 896 * max resync count which allowed on current I/O barrier bucket. 897 */ 898 wait_event_lock_irq(conf->wait_barrier, 899 (!conf->array_frozen && 900 !atomic_read(&conf->nr_pending[idx]) && 901 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 902 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 903 conf->resync_lock); 904 905 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 906 atomic_dec(&conf->barrier[idx]); 907 spin_unlock_irq(&conf->resync_lock); 908 wake_up(&conf->wait_barrier); 909 return -EINTR; 910 } 911 912 atomic_inc(&conf->nr_sync_pending); 913 spin_unlock_irq(&conf->resync_lock); 914 915 return 0; 916 } 917 918 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 919 { 920 int idx = sector_to_idx(sector_nr); 921 922 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 923 924 atomic_dec(&conf->barrier[idx]); 925 atomic_dec(&conf->nr_sync_pending); 926 wake_up(&conf->wait_barrier); 927 } 928 929 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 930 { 931 bool ret = true; 932 933 /* 934 * We need to increase conf->nr_pending[idx] very early here, 935 * then raise_barrier() can be blocked when it waits for 936 * conf->nr_pending[idx] to be 0. Then we can avoid holding 937 * conf->resync_lock when there is no barrier raised in same 938 * barrier unit bucket. Also if the array is frozen, I/O 939 * should be blocked until array is unfrozen. 940 */ 941 atomic_inc(&conf->nr_pending[idx]); 942 /* 943 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 944 * check conf->barrier[idx]. In raise_barrier() we firstly increase 945 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 946 * barrier is necessary here to make sure conf->barrier[idx] won't be 947 * fetched before conf->nr_pending[idx] is increased. Otherwise there 948 * will be a race between _wait_barrier() and raise_barrier(). 949 */ 950 smp_mb__after_atomic(); 951 952 /* 953 * Don't worry about checking two atomic_t variables at same time 954 * here. If during we check conf->barrier[idx], the array is 955 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 956 * 0, it is safe to return and make the I/O continue. Because the 957 * array is frozen, all I/O returned here will eventually complete 958 * or be queued, no race will happen. See code comment in 959 * frozen_array(). 960 */ 961 if (!READ_ONCE(conf->array_frozen) && 962 !atomic_read(&conf->barrier[idx])) 963 return ret; 964 965 /* 966 * After holding conf->resync_lock, conf->nr_pending[idx] 967 * should be decreased before waiting for barrier to drop. 968 * Otherwise, we may encounter a race condition because 969 * raise_barrer() might be waiting for conf->nr_pending[idx] 970 * to be 0 at same time. 971 */ 972 spin_lock_irq(&conf->resync_lock); 973 atomic_inc(&conf->nr_waiting[idx]); 974 atomic_dec(&conf->nr_pending[idx]); 975 /* 976 * In case freeze_array() is waiting for 977 * get_unqueued_pending() == extra 978 */ 979 wake_up_barrier(conf); 980 /* Wait for the barrier in same barrier unit bucket to drop. */ 981 982 /* Return false when nowait flag is set */ 983 if (nowait) { 984 ret = false; 985 } else { 986 wait_event_lock_irq(conf->wait_barrier, 987 !conf->array_frozen && 988 !atomic_read(&conf->barrier[idx]), 989 conf->resync_lock); 990 atomic_inc(&conf->nr_pending[idx]); 991 } 992 993 atomic_dec(&conf->nr_waiting[idx]); 994 spin_unlock_irq(&conf->resync_lock); 995 return ret; 996 } 997 998 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 999 { 1000 int idx = sector_to_idx(sector_nr); 1001 bool ret = true; 1002 1003 /* 1004 * Very similar to _wait_barrier(). The difference is, for read 1005 * I/O we don't need wait for sync I/O, but if the whole array 1006 * is frozen, the read I/O still has to wait until the array is 1007 * unfrozen. Since there is no ordering requirement with 1008 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1009 */ 1010 atomic_inc(&conf->nr_pending[idx]); 1011 1012 if (!READ_ONCE(conf->array_frozen)) 1013 return ret; 1014 1015 spin_lock_irq(&conf->resync_lock); 1016 atomic_inc(&conf->nr_waiting[idx]); 1017 atomic_dec(&conf->nr_pending[idx]); 1018 /* 1019 * In case freeze_array() is waiting for 1020 * get_unqueued_pending() == extra 1021 */ 1022 wake_up_barrier(conf); 1023 /* Wait for array to be unfrozen */ 1024 1025 /* Return false when nowait flag is set */ 1026 if (nowait) { 1027 /* Return false when nowait flag is set */ 1028 ret = false; 1029 } else { 1030 wait_event_lock_irq(conf->wait_barrier, 1031 !conf->array_frozen, 1032 conf->resync_lock); 1033 atomic_inc(&conf->nr_pending[idx]); 1034 } 1035 1036 atomic_dec(&conf->nr_waiting[idx]); 1037 spin_unlock_irq(&conf->resync_lock); 1038 return ret; 1039 } 1040 1041 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1042 { 1043 int idx = sector_to_idx(sector_nr); 1044 1045 return _wait_barrier(conf, idx, nowait); 1046 } 1047 1048 static void _allow_barrier(struct r1conf *conf, int idx) 1049 { 1050 atomic_dec(&conf->nr_pending[idx]); 1051 wake_up_barrier(conf); 1052 } 1053 1054 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1055 { 1056 int idx = sector_to_idx(sector_nr); 1057 1058 _allow_barrier(conf, idx); 1059 } 1060 1061 /* conf->resync_lock should be held */ 1062 static int get_unqueued_pending(struct r1conf *conf) 1063 { 1064 int idx, ret; 1065 1066 ret = atomic_read(&conf->nr_sync_pending); 1067 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1068 ret += atomic_read(&conf->nr_pending[idx]) - 1069 atomic_read(&conf->nr_queued[idx]); 1070 1071 return ret; 1072 } 1073 1074 static void freeze_array(struct r1conf *conf, int extra) 1075 { 1076 /* Stop sync I/O and normal I/O and wait for everything to 1077 * go quiet. 1078 * This is called in two situations: 1079 * 1) management command handlers (reshape, remove disk, quiesce). 1080 * 2) one normal I/O request failed. 1081 1082 * After array_frozen is set to 1, new sync IO will be blocked at 1083 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1084 * or wait_read_barrier(). The flying I/Os will either complete or be 1085 * queued. When everything goes quite, there are only queued I/Os left. 1086 1087 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1088 * barrier bucket index which this I/O request hits. When all sync and 1089 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1090 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1091 * in handle_read_error(), we may call freeze_array() before trying to 1092 * fix the read error. In this case, the error read I/O is not queued, 1093 * so get_unqueued_pending() == 1. 1094 * 1095 * Therefore before this function returns, we need to wait until 1096 * get_unqueued_pendings(conf) gets equal to extra. For 1097 * normal I/O context, extra is 1, in rested situations extra is 0. 1098 */ 1099 spin_lock_irq(&conf->resync_lock); 1100 conf->array_frozen = 1; 1101 raid1_log(conf->mddev, "wait freeze"); 1102 wait_event_lock_irq_cmd( 1103 conf->wait_barrier, 1104 get_unqueued_pending(conf) == extra, 1105 conf->resync_lock, 1106 flush_pending_writes(conf)); 1107 spin_unlock_irq(&conf->resync_lock); 1108 } 1109 static void unfreeze_array(struct r1conf *conf) 1110 { 1111 /* reverse the effect of the freeze */ 1112 spin_lock_irq(&conf->resync_lock); 1113 conf->array_frozen = 0; 1114 spin_unlock_irq(&conf->resync_lock); 1115 wake_up(&conf->wait_barrier); 1116 } 1117 1118 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1119 struct bio *bio) 1120 { 1121 int size = bio->bi_iter.bi_size; 1122 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1123 int i = 0; 1124 struct bio *behind_bio = NULL; 1125 1126 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1127 &r1_bio->mddev->bio_set); 1128 1129 /* discard op, we don't support writezero/writesame yet */ 1130 if (!bio_has_data(bio)) { 1131 behind_bio->bi_iter.bi_size = size; 1132 goto skip_copy; 1133 } 1134 1135 while (i < vcnt && size) { 1136 struct page *page; 1137 int len = min_t(int, PAGE_SIZE, size); 1138 1139 page = alloc_page(GFP_NOIO); 1140 if (unlikely(!page)) 1141 goto free_pages; 1142 1143 if (!bio_add_page(behind_bio, page, len, 0)) { 1144 put_page(page); 1145 goto free_pages; 1146 } 1147 1148 size -= len; 1149 i++; 1150 } 1151 1152 bio_copy_data(behind_bio, bio); 1153 skip_copy: 1154 r1_bio->behind_master_bio = behind_bio; 1155 set_bit(R1BIO_BehindIO, &r1_bio->state); 1156 1157 return; 1158 1159 free_pages: 1160 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1161 bio->bi_iter.bi_size); 1162 bio_free_pages(behind_bio); 1163 bio_put(behind_bio); 1164 } 1165 1166 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1167 { 1168 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1169 cb); 1170 struct mddev *mddev = plug->cb.data; 1171 struct r1conf *conf = mddev->private; 1172 struct bio *bio; 1173 1174 if (from_schedule) { 1175 spin_lock_irq(&conf->device_lock); 1176 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1177 spin_unlock_irq(&conf->device_lock); 1178 wake_up_barrier(conf); 1179 md_wakeup_thread(mddev->thread); 1180 kfree(plug); 1181 return; 1182 } 1183 1184 /* we aren't scheduling, so we can do the write-out directly. */ 1185 bio = bio_list_get(&plug->pending); 1186 flush_bio_list(conf, bio); 1187 kfree(plug); 1188 } 1189 1190 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1191 { 1192 r1_bio->master_bio = bio; 1193 r1_bio->sectors = bio_sectors(bio); 1194 r1_bio->state = 0; 1195 r1_bio->mddev = mddev; 1196 r1_bio->sector = bio->bi_iter.bi_sector; 1197 } 1198 1199 static inline struct r1bio * 1200 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1201 { 1202 struct r1conf *conf = mddev->private; 1203 struct r1bio *r1_bio; 1204 1205 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1206 /* Ensure no bio records IO_BLOCKED */ 1207 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1208 init_r1bio(r1_bio, mddev, bio); 1209 return r1_bio; 1210 } 1211 1212 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1213 int max_read_sectors, struct r1bio *r1_bio) 1214 { 1215 struct r1conf *conf = mddev->private; 1216 struct raid1_info *mirror; 1217 struct bio *read_bio; 1218 struct bitmap *bitmap = mddev->bitmap; 1219 const enum req_op op = bio_op(bio); 1220 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1221 int max_sectors; 1222 int rdisk; 1223 bool r1bio_existed = !!r1_bio; 1224 char b[BDEVNAME_SIZE]; 1225 1226 /* 1227 * If r1_bio is set, we are blocking the raid1d thread 1228 * so there is a tiny risk of deadlock. So ask for 1229 * emergency memory if needed. 1230 */ 1231 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1232 1233 if (r1bio_existed) { 1234 /* Need to get the block device name carefully */ 1235 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 1236 1237 if (rdev) 1238 snprintf(b, sizeof(b), "%pg", rdev->bdev); 1239 else 1240 strcpy(b, "???"); 1241 } 1242 1243 /* 1244 * Still need barrier for READ in case that whole 1245 * array is frozen. 1246 */ 1247 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1248 bio->bi_opf & REQ_NOWAIT)) { 1249 bio_wouldblock_error(bio); 1250 return; 1251 } 1252 1253 if (!r1_bio) 1254 r1_bio = alloc_r1bio(mddev, bio); 1255 else 1256 init_r1bio(r1_bio, mddev, bio); 1257 r1_bio->sectors = max_read_sectors; 1258 1259 /* 1260 * make_request() can abort the operation when read-ahead is being 1261 * used and no empty request is available. 1262 */ 1263 rdisk = read_balance(conf, r1_bio, &max_sectors); 1264 1265 if (rdisk < 0) { 1266 /* couldn't find anywhere to read from */ 1267 if (r1bio_existed) { 1268 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1269 mdname(mddev), 1270 b, 1271 (unsigned long long)r1_bio->sector); 1272 } 1273 raid_end_bio_io(r1_bio); 1274 return; 1275 } 1276 mirror = conf->mirrors + rdisk; 1277 1278 if (r1bio_existed) 1279 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1280 mdname(mddev), 1281 (unsigned long long)r1_bio->sector, 1282 mirror->rdev->bdev); 1283 1284 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1285 bitmap) { 1286 /* 1287 * Reading from a write-mostly device must take care not to 1288 * over-take any writes that are 'behind' 1289 */ 1290 raid1_log(mddev, "wait behind writes"); 1291 wait_event(bitmap->behind_wait, 1292 atomic_read(&bitmap->behind_writes) == 0); 1293 } 1294 1295 if (max_sectors < bio_sectors(bio)) { 1296 struct bio *split = bio_split(bio, max_sectors, 1297 gfp, &conf->bio_split); 1298 bio_chain(split, bio); 1299 submit_bio_noacct(bio); 1300 bio = split; 1301 r1_bio->master_bio = bio; 1302 r1_bio->sectors = max_sectors; 1303 } 1304 1305 r1_bio->read_disk = rdisk; 1306 if (!r1bio_existed) { 1307 md_account_bio(mddev, &bio); 1308 r1_bio->master_bio = bio; 1309 } 1310 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1311 &mddev->bio_set); 1312 1313 r1_bio->bios[rdisk] = read_bio; 1314 1315 read_bio->bi_iter.bi_sector = r1_bio->sector + 1316 mirror->rdev->data_offset; 1317 read_bio->bi_end_io = raid1_end_read_request; 1318 read_bio->bi_opf = op | do_sync; 1319 if (test_bit(FailFast, &mirror->rdev->flags) && 1320 test_bit(R1BIO_FailFast, &r1_bio->state)) 1321 read_bio->bi_opf |= MD_FAILFAST; 1322 read_bio->bi_private = r1_bio; 1323 1324 if (mddev->gendisk) 1325 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1326 r1_bio->sector); 1327 1328 submit_bio_noacct(read_bio); 1329 } 1330 1331 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1332 int max_write_sectors) 1333 { 1334 struct r1conf *conf = mddev->private; 1335 struct r1bio *r1_bio; 1336 int i, disks; 1337 struct bitmap *bitmap = mddev->bitmap; 1338 unsigned long flags; 1339 struct md_rdev *blocked_rdev; 1340 int first_clone; 1341 int max_sectors; 1342 bool write_behind = false; 1343 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1344 1345 if (mddev_is_clustered(mddev) && 1346 md_cluster_ops->area_resyncing(mddev, WRITE, 1347 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1348 1349 DEFINE_WAIT(w); 1350 if (bio->bi_opf & REQ_NOWAIT) { 1351 bio_wouldblock_error(bio); 1352 return; 1353 } 1354 for (;;) { 1355 prepare_to_wait(&conf->wait_barrier, 1356 &w, TASK_IDLE); 1357 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1358 bio->bi_iter.bi_sector, 1359 bio_end_sector(bio))) 1360 break; 1361 schedule(); 1362 } 1363 finish_wait(&conf->wait_barrier, &w); 1364 } 1365 1366 /* 1367 * Register the new request and wait if the reconstruction 1368 * thread has put up a bar for new requests. 1369 * Continue immediately if no resync is active currently. 1370 */ 1371 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1372 bio->bi_opf & REQ_NOWAIT)) { 1373 bio_wouldblock_error(bio); 1374 return; 1375 } 1376 1377 retry_write: 1378 r1_bio = alloc_r1bio(mddev, bio); 1379 r1_bio->sectors = max_write_sectors; 1380 1381 /* first select target devices under rcu_lock and 1382 * inc refcount on their rdev. Record them by setting 1383 * bios[x] to bio 1384 * If there are known/acknowledged bad blocks on any device on 1385 * which we have seen a write error, we want to avoid writing those 1386 * blocks. 1387 * This potentially requires several writes to write around 1388 * the bad blocks. Each set of writes gets it's own r1bio 1389 * with a set of bios attached. 1390 */ 1391 1392 disks = conf->raid_disks * 2; 1393 blocked_rdev = NULL; 1394 max_sectors = r1_bio->sectors; 1395 for (i = 0; i < disks; i++) { 1396 struct md_rdev *rdev = conf->mirrors[i].rdev; 1397 1398 /* 1399 * The write-behind io is only attempted on drives marked as 1400 * write-mostly, which means we could allocate write behind 1401 * bio later. 1402 */ 1403 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1404 write_behind = true; 1405 1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1407 atomic_inc(&rdev->nr_pending); 1408 blocked_rdev = rdev; 1409 break; 1410 } 1411 r1_bio->bios[i] = NULL; 1412 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1413 if (i < conf->raid_disks) 1414 set_bit(R1BIO_Degraded, &r1_bio->state); 1415 continue; 1416 } 1417 1418 atomic_inc(&rdev->nr_pending); 1419 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1420 sector_t first_bad; 1421 int bad_sectors; 1422 int is_bad; 1423 1424 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1425 &first_bad, &bad_sectors); 1426 if (is_bad < 0) { 1427 /* mustn't write here until the bad block is 1428 * acknowledged*/ 1429 set_bit(BlockedBadBlocks, &rdev->flags); 1430 blocked_rdev = rdev; 1431 break; 1432 } 1433 if (is_bad && first_bad <= r1_bio->sector) { 1434 /* Cannot write here at all */ 1435 bad_sectors -= (r1_bio->sector - first_bad); 1436 if (bad_sectors < max_sectors) 1437 /* mustn't write more than bad_sectors 1438 * to other devices yet 1439 */ 1440 max_sectors = bad_sectors; 1441 rdev_dec_pending(rdev, mddev); 1442 /* We don't set R1BIO_Degraded as that 1443 * only applies if the disk is 1444 * missing, so it might be re-added, 1445 * and we want to know to recover this 1446 * chunk. 1447 * In this case the device is here, 1448 * and the fact that this chunk is not 1449 * in-sync is recorded in the bad 1450 * block log 1451 */ 1452 continue; 1453 } 1454 if (is_bad) { 1455 int good_sectors = first_bad - r1_bio->sector; 1456 if (good_sectors < max_sectors) 1457 max_sectors = good_sectors; 1458 } 1459 } 1460 r1_bio->bios[i] = bio; 1461 } 1462 1463 if (unlikely(blocked_rdev)) { 1464 /* Wait for this device to become unblocked */ 1465 int j; 1466 1467 for (j = 0; j < i; j++) 1468 if (r1_bio->bios[j]) 1469 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1470 free_r1bio(r1_bio); 1471 allow_barrier(conf, bio->bi_iter.bi_sector); 1472 1473 if (bio->bi_opf & REQ_NOWAIT) { 1474 bio_wouldblock_error(bio); 1475 return; 1476 } 1477 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1478 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1479 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1480 goto retry_write; 1481 } 1482 1483 /* 1484 * When using a bitmap, we may call alloc_behind_master_bio below. 1485 * alloc_behind_master_bio allocates a copy of the data payload a page 1486 * at a time and thus needs a new bio that can fit the whole payload 1487 * this bio in page sized chunks. 1488 */ 1489 if (write_behind && bitmap) 1490 max_sectors = min_t(int, max_sectors, 1491 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1492 if (max_sectors < bio_sectors(bio)) { 1493 struct bio *split = bio_split(bio, max_sectors, 1494 GFP_NOIO, &conf->bio_split); 1495 bio_chain(split, bio); 1496 submit_bio_noacct(bio); 1497 bio = split; 1498 r1_bio->master_bio = bio; 1499 r1_bio->sectors = max_sectors; 1500 } 1501 1502 md_account_bio(mddev, &bio); 1503 r1_bio->master_bio = bio; 1504 atomic_set(&r1_bio->remaining, 1); 1505 atomic_set(&r1_bio->behind_remaining, 0); 1506 1507 first_clone = 1; 1508 1509 for (i = 0; i < disks; i++) { 1510 struct bio *mbio = NULL; 1511 struct md_rdev *rdev = conf->mirrors[i].rdev; 1512 if (!r1_bio->bios[i]) 1513 continue; 1514 1515 if (first_clone) { 1516 /* do behind I/O ? 1517 * Not if there are too many, or cannot 1518 * allocate memory, or a reader on WriteMostly 1519 * is waiting for behind writes to flush */ 1520 if (bitmap && write_behind && 1521 (atomic_read(&bitmap->behind_writes) 1522 < mddev->bitmap_info.max_write_behind) && 1523 !waitqueue_active(&bitmap->behind_wait)) { 1524 alloc_behind_master_bio(r1_bio, bio); 1525 } 1526 1527 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1528 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1529 first_clone = 0; 1530 } 1531 1532 if (r1_bio->behind_master_bio) { 1533 mbio = bio_alloc_clone(rdev->bdev, 1534 r1_bio->behind_master_bio, 1535 GFP_NOIO, &mddev->bio_set); 1536 if (test_bit(CollisionCheck, &rdev->flags)) 1537 wait_for_serialization(rdev, r1_bio); 1538 if (test_bit(WriteMostly, &rdev->flags)) 1539 atomic_inc(&r1_bio->behind_remaining); 1540 } else { 1541 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1542 &mddev->bio_set); 1543 1544 if (mddev->serialize_policy) 1545 wait_for_serialization(rdev, r1_bio); 1546 } 1547 1548 r1_bio->bios[i] = mbio; 1549 1550 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1551 mbio->bi_end_io = raid1_end_write_request; 1552 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1553 if (test_bit(FailFast, &rdev->flags) && 1554 !test_bit(WriteMostly, &rdev->flags) && 1555 conf->raid_disks - mddev->degraded > 1) 1556 mbio->bi_opf |= MD_FAILFAST; 1557 mbio->bi_private = r1_bio; 1558 1559 atomic_inc(&r1_bio->remaining); 1560 1561 if (mddev->gendisk) 1562 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1563 r1_bio->sector); 1564 /* flush_pending_writes() needs access to the rdev so...*/ 1565 mbio->bi_bdev = (void *)rdev; 1566 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1567 spin_lock_irqsave(&conf->device_lock, flags); 1568 bio_list_add(&conf->pending_bio_list, mbio); 1569 spin_unlock_irqrestore(&conf->device_lock, flags); 1570 md_wakeup_thread(mddev->thread); 1571 } 1572 } 1573 1574 r1_bio_write_done(r1_bio); 1575 1576 /* In case raid1d snuck in to freeze_array */ 1577 wake_up_barrier(conf); 1578 } 1579 1580 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1581 { 1582 sector_t sectors; 1583 1584 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1585 && md_flush_request(mddev, bio)) 1586 return true; 1587 1588 /* 1589 * There is a limit to the maximum size, but 1590 * the read/write handler might find a lower limit 1591 * due to bad blocks. To avoid multiple splits, 1592 * we pass the maximum number of sectors down 1593 * and let the lower level perform the split. 1594 */ 1595 sectors = align_to_barrier_unit_end( 1596 bio->bi_iter.bi_sector, bio_sectors(bio)); 1597 1598 if (bio_data_dir(bio) == READ) 1599 raid1_read_request(mddev, bio, sectors, NULL); 1600 else { 1601 if (!md_write_start(mddev,bio)) 1602 return false; 1603 raid1_write_request(mddev, bio, sectors); 1604 } 1605 return true; 1606 } 1607 1608 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1609 { 1610 struct r1conf *conf = mddev->private; 1611 int i; 1612 1613 lockdep_assert_held(&mddev->lock); 1614 1615 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1616 conf->raid_disks - mddev->degraded); 1617 for (i = 0; i < conf->raid_disks; i++) { 1618 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1619 1620 seq_printf(seq, "%s", 1621 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1622 } 1623 seq_printf(seq, "]"); 1624 } 1625 1626 /** 1627 * raid1_error() - RAID1 error handler. 1628 * @mddev: affected md device. 1629 * @rdev: member device to fail. 1630 * 1631 * The routine acknowledges &rdev failure and determines new @mddev state. 1632 * If it failed, then: 1633 * - &MD_BROKEN flag is set in &mddev->flags. 1634 * - recovery is disabled. 1635 * Otherwise, it must be degraded: 1636 * - recovery is interrupted. 1637 * - &mddev->degraded is bumped. 1638 * 1639 * @rdev is marked as &Faulty excluding case when array is failed and 1640 * &mddev->fail_last_dev is off. 1641 */ 1642 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1643 { 1644 struct r1conf *conf = mddev->private; 1645 unsigned long flags; 1646 1647 spin_lock_irqsave(&conf->device_lock, flags); 1648 1649 if (test_bit(In_sync, &rdev->flags) && 1650 (conf->raid_disks - mddev->degraded) == 1) { 1651 set_bit(MD_BROKEN, &mddev->flags); 1652 1653 if (!mddev->fail_last_dev) { 1654 conf->recovery_disabled = mddev->recovery_disabled; 1655 spin_unlock_irqrestore(&conf->device_lock, flags); 1656 return; 1657 } 1658 } 1659 set_bit(Blocked, &rdev->flags); 1660 if (test_and_clear_bit(In_sync, &rdev->flags)) 1661 mddev->degraded++; 1662 set_bit(Faulty, &rdev->flags); 1663 spin_unlock_irqrestore(&conf->device_lock, flags); 1664 /* 1665 * if recovery is running, make sure it aborts. 1666 */ 1667 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1668 set_mask_bits(&mddev->sb_flags, 0, 1669 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1670 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1671 "md/raid1:%s: Operation continuing on %d devices.\n", 1672 mdname(mddev), rdev->bdev, 1673 mdname(mddev), conf->raid_disks - mddev->degraded); 1674 } 1675 1676 static void print_conf(struct r1conf *conf) 1677 { 1678 int i; 1679 1680 pr_debug("RAID1 conf printout:\n"); 1681 if (!conf) { 1682 pr_debug("(!conf)\n"); 1683 return; 1684 } 1685 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1686 conf->raid_disks); 1687 1688 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1689 for (i = 0; i < conf->raid_disks; i++) { 1690 struct md_rdev *rdev = conf->mirrors[i].rdev; 1691 if (rdev) 1692 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1693 i, !test_bit(In_sync, &rdev->flags), 1694 !test_bit(Faulty, &rdev->flags), 1695 rdev->bdev); 1696 } 1697 } 1698 1699 static void close_sync(struct r1conf *conf) 1700 { 1701 int idx; 1702 1703 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1704 _wait_barrier(conf, idx, false); 1705 _allow_barrier(conf, idx); 1706 } 1707 1708 mempool_exit(&conf->r1buf_pool); 1709 } 1710 1711 static int raid1_spare_active(struct mddev *mddev) 1712 { 1713 int i; 1714 struct r1conf *conf = mddev->private; 1715 int count = 0; 1716 unsigned long flags; 1717 1718 /* 1719 * Find all failed disks within the RAID1 configuration 1720 * and mark them readable. 1721 * Called under mddev lock, so rcu protection not needed. 1722 * device_lock used to avoid races with raid1_end_read_request 1723 * which expects 'In_sync' flags and ->degraded to be consistent. 1724 */ 1725 spin_lock_irqsave(&conf->device_lock, flags); 1726 for (i = 0; i < conf->raid_disks; i++) { 1727 struct md_rdev *rdev = conf->mirrors[i].rdev; 1728 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1729 if (repl 1730 && !test_bit(Candidate, &repl->flags) 1731 && repl->recovery_offset == MaxSector 1732 && !test_bit(Faulty, &repl->flags) 1733 && !test_and_set_bit(In_sync, &repl->flags)) { 1734 /* replacement has just become active */ 1735 if (!rdev || 1736 !test_and_clear_bit(In_sync, &rdev->flags)) 1737 count++; 1738 if (rdev) { 1739 /* Replaced device not technically 1740 * faulty, but we need to be sure 1741 * it gets removed and never re-added 1742 */ 1743 set_bit(Faulty, &rdev->flags); 1744 sysfs_notify_dirent_safe( 1745 rdev->sysfs_state); 1746 } 1747 } 1748 if (rdev 1749 && rdev->recovery_offset == MaxSector 1750 && !test_bit(Faulty, &rdev->flags) 1751 && !test_and_set_bit(In_sync, &rdev->flags)) { 1752 count++; 1753 sysfs_notify_dirent_safe(rdev->sysfs_state); 1754 } 1755 } 1756 mddev->degraded -= count; 1757 spin_unlock_irqrestore(&conf->device_lock, flags); 1758 1759 print_conf(conf); 1760 return count; 1761 } 1762 1763 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1764 { 1765 struct r1conf *conf = mddev->private; 1766 int err = -EEXIST; 1767 int mirror = 0, repl_slot = -1; 1768 struct raid1_info *p; 1769 int first = 0; 1770 int last = conf->raid_disks - 1; 1771 1772 if (mddev->recovery_disabled == conf->recovery_disabled) 1773 return -EBUSY; 1774 1775 if (md_integrity_add_rdev(rdev, mddev)) 1776 return -ENXIO; 1777 1778 if (rdev->raid_disk >= 0) 1779 first = last = rdev->raid_disk; 1780 1781 /* 1782 * find the disk ... but prefer rdev->saved_raid_disk 1783 * if possible. 1784 */ 1785 if (rdev->saved_raid_disk >= 0 && 1786 rdev->saved_raid_disk >= first && 1787 rdev->saved_raid_disk < conf->raid_disks && 1788 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1789 first = last = rdev->saved_raid_disk; 1790 1791 for (mirror = first; mirror <= last; mirror++) { 1792 p = conf->mirrors + mirror; 1793 if (!p->rdev) { 1794 if (mddev->gendisk) 1795 disk_stack_limits(mddev->gendisk, rdev->bdev, 1796 rdev->data_offset << 9); 1797 1798 p->head_position = 0; 1799 rdev->raid_disk = mirror; 1800 err = 0; 1801 /* As all devices are equivalent, we don't need a full recovery 1802 * if this was recently any drive of the array 1803 */ 1804 if (rdev->saved_raid_disk < 0) 1805 conf->fullsync = 1; 1806 WRITE_ONCE(p->rdev, rdev); 1807 break; 1808 } 1809 if (test_bit(WantReplacement, &p->rdev->flags) && 1810 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1811 repl_slot = mirror; 1812 } 1813 1814 if (err && repl_slot >= 0) { 1815 /* Add this device as a replacement */ 1816 p = conf->mirrors + repl_slot; 1817 clear_bit(In_sync, &rdev->flags); 1818 set_bit(Replacement, &rdev->flags); 1819 rdev->raid_disk = repl_slot; 1820 err = 0; 1821 conf->fullsync = 1; 1822 WRITE_ONCE(p[conf->raid_disks].rdev, rdev); 1823 } 1824 1825 print_conf(conf); 1826 return err; 1827 } 1828 1829 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1830 { 1831 struct r1conf *conf = mddev->private; 1832 int err = 0; 1833 int number = rdev->raid_disk; 1834 struct raid1_info *p = conf->mirrors + number; 1835 1836 if (unlikely(number >= conf->raid_disks)) 1837 goto abort; 1838 1839 if (rdev != p->rdev) 1840 p = conf->mirrors + conf->raid_disks + number; 1841 1842 print_conf(conf); 1843 if (rdev == p->rdev) { 1844 if (test_bit(In_sync, &rdev->flags) || 1845 atomic_read(&rdev->nr_pending)) { 1846 err = -EBUSY; 1847 goto abort; 1848 } 1849 /* Only remove non-faulty devices if recovery 1850 * is not possible. 1851 */ 1852 if (!test_bit(Faulty, &rdev->flags) && 1853 mddev->recovery_disabled != conf->recovery_disabled && 1854 mddev->degraded < conf->raid_disks) { 1855 err = -EBUSY; 1856 goto abort; 1857 } 1858 WRITE_ONCE(p->rdev, NULL); 1859 if (conf->mirrors[conf->raid_disks + number].rdev) { 1860 /* We just removed a device that is being replaced. 1861 * Move down the replacement. We drain all IO before 1862 * doing this to avoid confusion. 1863 */ 1864 struct md_rdev *repl = 1865 conf->mirrors[conf->raid_disks + number].rdev; 1866 freeze_array(conf, 0); 1867 if (atomic_read(&repl->nr_pending)) { 1868 /* It means that some queued IO of retry_list 1869 * hold repl. Thus, we cannot set replacement 1870 * as NULL, avoiding rdev NULL pointer 1871 * dereference in sync_request_write and 1872 * handle_write_finished. 1873 */ 1874 err = -EBUSY; 1875 unfreeze_array(conf); 1876 goto abort; 1877 } 1878 clear_bit(Replacement, &repl->flags); 1879 WRITE_ONCE(p->rdev, repl); 1880 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1881 unfreeze_array(conf); 1882 } 1883 1884 clear_bit(WantReplacement, &rdev->flags); 1885 err = md_integrity_register(mddev); 1886 } 1887 abort: 1888 1889 print_conf(conf); 1890 return err; 1891 } 1892 1893 static void end_sync_read(struct bio *bio) 1894 { 1895 struct r1bio *r1_bio = get_resync_r1bio(bio); 1896 1897 update_head_pos(r1_bio->read_disk, r1_bio); 1898 1899 /* 1900 * we have read a block, now it needs to be re-written, 1901 * or re-read if the read failed. 1902 * We don't do much here, just schedule handling by raid1d 1903 */ 1904 if (!bio->bi_status) 1905 set_bit(R1BIO_Uptodate, &r1_bio->state); 1906 1907 if (atomic_dec_and_test(&r1_bio->remaining)) 1908 reschedule_retry(r1_bio); 1909 } 1910 1911 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1912 { 1913 sector_t sync_blocks = 0; 1914 sector_t s = r1_bio->sector; 1915 long sectors_to_go = r1_bio->sectors; 1916 1917 /* make sure these bits don't get cleared. */ 1918 do { 1919 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1920 s += sync_blocks; 1921 sectors_to_go -= sync_blocks; 1922 } while (sectors_to_go > 0); 1923 } 1924 1925 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1926 { 1927 if (atomic_dec_and_test(&r1_bio->remaining)) { 1928 struct mddev *mddev = r1_bio->mddev; 1929 int s = r1_bio->sectors; 1930 1931 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1932 test_bit(R1BIO_WriteError, &r1_bio->state)) 1933 reschedule_retry(r1_bio); 1934 else { 1935 put_buf(r1_bio); 1936 md_done_sync(mddev, s, uptodate); 1937 } 1938 } 1939 } 1940 1941 static void end_sync_write(struct bio *bio) 1942 { 1943 int uptodate = !bio->bi_status; 1944 struct r1bio *r1_bio = get_resync_r1bio(bio); 1945 struct mddev *mddev = r1_bio->mddev; 1946 struct r1conf *conf = mddev->private; 1947 sector_t first_bad; 1948 int bad_sectors; 1949 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1950 1951 if (!uptodate) { 1952 abort_sync_write(mddev, r1_bio); 1953 set_bit(WriteErrorSeen, &rdev->flags); 1954 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1955 set_bit(MD_RECOVERY_NEEDED, & 1956 mddev->recovery); 1957 set_bit(R1BIO_WriteError, &r1_bio->state); 1958 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1959 &first_bad, &bad_sectors) && 1960 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1961 r1_bio->sector, 1962 r1_bio->sectors, 1963 &first_bad, &bad_sectors) 1964 ) 1965 set_bit(R1BIO_MadeGood, &r1_bio->state); 1966 1967 put_sync_write_buf(r1_bio, uptodate); 1968 } 1969 1970 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1971 int sectors, struct page *page, blk_opf_t rw) 1972 { 1973 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1974 /* success */ 1975 return 1; 1976 if (rw == REQ_OP_WRITE) { 1977 set_bit(WriteErrorSeen, &rdev->flags); 1978 if (!test_and_set_bit(WantReplacement, 1979 &rdev->flags)) 1980 set_bit(MD_RECOVERY_NEEDED, & 1981 rdev->mddev->recovery); 1982 } 1983 /* need to record an error - either for the block or the device */ 1984 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1985 md_error(rdev->mddev, rdev); 1986 return 0; 1987 } 1988 1989 static int fix_sync_read_error(struct r1bio *r1_bio) 1990 { 1991 /* Try some synchronous reads of other devices to get 1992 * good data, much like with normal read errors. Only 1993 * read into the pages we already have so we don't 1994 * need to re-issue the read request. 1995 * We don't need to freeze the array, because being in an 1996 * active sync request, there is no normal IO, and 1997 * no overlapping syncs. 1998 * We don't need to check is_badblock() again as we 1999 * made sure that anything with a bad block in range 2000 * will have bi_end_io clear. 2001 */ 2002 struct mddev *mddev = r1_bio->mddev; 2003 struct r1conf *conf = mddev->private; 2004 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2005 struct page **pages = get_resync_pages(bio)->pages; 2006 sector_t sect = r1_bio->sector; 2007 int sectors = r1_bio->sectors; 2008 int idx = 0; 2009 struct md_rdev *rdev; 2010 2011 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2012 if (test_bit(FailFast, &rdev->flags)) { 2013 /* Don't try recovering from here - just fail it 2014 * ... unless it is the last working device of course */ 2015 md_error(mddev, rdev); 2016 if (test_bit(Faulty, &rdev->flags)) 2017 /* Don't try to read from here, but make sure 2018 * put_buf does it's thing 2019 */ 2020 bio->bi_end_io = end_sync_write; 2021 } 2022 2023 while(sectors) { 2024 int s = sectors; 2025 int d = r1_bio->read_disk; 2026 int success = 0; 2027 int start; 2028 2029 if (s > (PAGE_SIZE>>9)) 2030 s = PAGE_SIZE >> 9; 2031 do { 2032 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2033 /* No rcu protection needed here devices 2034 * can only be removed when no resync is 2035 * active, and resync is currently active 2036 */ 2037 rdev = conf->mirrors[d].rdev; 2038 if (sync_page_io(rdev, sect, s<<9, 2039 pages[idx], 2040 REQ_OP_READ, false)) { 2041 success = 1; 2042 break; 2043 } 2044 } 2045 d++; 2046 if (d == conf->raid_disks * 2) 2047 d = 0; 2048 } while (!success && d != r1_bio->read_disk); 2049 2050 if (!success) { 2051 int abort = 0; 2052 /* Cannot read from anywhere, this block is lost. 2053 * Record a bad block on each device. If that doesn't 2054 * work just disable and interrupt the recovery. 2055 * Don't fail devices as that won't really help. 2056 */ 2057 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2058 mdname(mddev), bio->bi_bdev, 2059 (unsigned long long)r1_bio->sector); 2060 for (d = 0; d < conf->raid_disks * 2; d++) { 2061 rdev = conf->mirrors[d].rdev; 2062 if (!rdev || test_bit(Faulty, &rdev->flags)) 2063 continue; 2064 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2065 abort = 1; 2066 } 2067 if (abort) { 2068 conf->recovery_disabled = 2069 mddev->recovery_disabled; 2070 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2071 md_done_sync(mddev, r1_bio->sectors, 0); 2072 put_buf(r1_bio); 2073 return 0; 2074 } 2075 /* Try next page */ 2076 sectors -= s; 2077 sect += s; 2078 idx++; 2079 continue; 2080 } 2081 2082 start = d; 2083 /* write it back and re-read */ 2084 while (d != r1_bio->read_disk) { 2085 if (d == 0) 2086 d = conf->raid_disks * 2; 2087 d--; 2088 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2089 continue; 2090 rdev = conf->mirrors[d].rdev; 2091 if (r1_sync_page_io(rdev, sect, s, 2092 pages[idx], 2093 REQ_OP_WRITE) == 0) { 2094 r1_bio->bios[d]->bi_end_io = NULL; 2095 rdev_dec_pending(rdev, mddev); 2096 } 2097 } 2098 d = start; 2099 while (d != r1_bio->read_disk) { 2100 if (d == 0) 2101 d = conf->raid_disks * 2; 2102 d--; 2103 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2104 continue; 2105 rdev = conf->mirrors[d].rdev; 2106 if (r1_sync_page_io(rdev, sect, s, 2107 pages[idx], 2108 REQ_OP_READ) != 0) 2109 atomic_add(s, &rdev->corrected_errors); 2110 } 2111 sectors -= s; 2112 sect += s; 2113 idx ++; 2114 } 2115 set_bit(R1BIO_Uptodate, &r1_bio->state); 2116 bio->bi_status = 0; 2117 return 1; 2118 } 2119 2120 static void process_checks(struct r1bio *r1_bio) 2121 { 2122 /* We have read all readable devices. If we haven't 2123 * got the block, then there is no hope left. 2124 * If we have, then we want to do a comparison 2125 * and skip the write if everything is the same. 2126 * If any blocks failed to read, then we need to 2127 * attempt an over-write 2128 */ 2129 struct mddev *mddev = r1_bio->mddev; 2130 struct r1conf *conf = mddev->private; 2131 int primary; 2132 int i; 2133 int vcnt; 2134 2135 /* Fix variable parts of all bios */ 2136 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2137 for (i = 0; i < conf->raid_disks * 2; i++) { 2138 blk_status_t status; 2139 struct bio *b = r1_bio->bios[i]; 2140 struct resync_pages *rp = get_resync_pages(b); 2141 if (b->bi_end_io != end_sync_read) 2142 continue; 2143 /* fixup the bio for reuse, but preserve errno */ 2144 status = b->bi_status; 2145 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2146 b->bi_status = status; 2147 b->bi_iter.bi_sector = r1_bio->sector + 2148 conf->mirrors[i].rdev->data_offset; 2149 b->bi_end_io = end_sync_read; 2150 rp->raid_bio = r1_bio; 2151 b->bi_private = rp; 2152 2153 /* initialize bvec table again */ 2154 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2155 } 2156 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2157 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2158 !r1_bio->bios[primary]->bi_status) { 2159 r1_bio->bios[primary]->bi_end_io = NULL; 2160 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2161 break; 2162 } 2163 r1_bio->read_disk = primary; 2164 for (i = 0; i < conf->raid_disks * 2; i++) { 2165 int j = 0; 2166 struct bio *pbio = r1_bio->bios[primary]; 2167 struct bio *sbio = r1_bio->bios[i]; 2168 blk_status_t status = sbio->bi_status; 2169 struct page **ppages = get_resync_pages(pbio)->pages; 2170 struct page **spages = get_resync_pages(sbio)->pages; 2171 struct bio_vec *bi; 2172 int page_len[RESYNC_PAGES] = { 0 }; 2173 struct bvec_iter_all iter_all; 2174 2175 if (sbio->bi_end_io != end_sync_read) 2176 continue; 2177 /* Now we can 'fixup' the error value */ 2178 sbio->bi_status = 0; 2179 2180 bio_for_each_segment_all(bi, sbio, iter_all) 2181 page_len[j++] = bi->bv_len; 2182 2183 if (!status) { 2184 for (j = vcnt; j-- ; ) { 2185 if (memcmp(page_address(ppages[j]), 2186 page_address(spages[j]), 2187 page_len[j])) 2188 break; 2189 } 2190 } else 2191 j = 0; 2192 if (j >= 0) 2193 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2194 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2195 && !status)) { 2196 /* No need to write to this device. */ 2197 sbio->bi_end_io = NULL; 2198 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2199 continue; 2200 } 2201 2202 bio_copy_data(sbio, pbio); 2203 } 2204 } 2205 2206 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2207 { 2208 struct r1conf *conf = mddev->private; 2209 int i; 2210 int disks = conf->raid_disks * 2; 2211 struct bio *wbio; 2212 2213 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2214 /* ouch - failed to read all of that. */ 2215 if (!fix_sync_read_error(r1_bio)) 2216 return; 2217 2218 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2219 process_checks(r1_bio); 2220 2221 /* 2222 * schedule writes 2223 */ 2224 atomic_set(&r1_bio->remaining, 1); 2225 for (i = 0; i < disks ; i++) { 2226 wbio = r1_bio->bios[i]; 2227 if (wbio->bi_end_io == NULL || 2228 (wbio->bi_end_io == end_sync_read && 2229 (i == r1_bio->read_disk || 2230 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2231 continue; 2232 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2233 abort_sync_write(mddev, r1_bio); 2234 continue; 2235 } 2236 2237 wbio->bi_opf = REQ_OP_WRITE; 2238 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2239 wbio->bi_opf |= MD_FAILFAST; 2240 2241 wbio->bi_end_io = end_sync_write; 2242 atomic_inc(&r1_bio->remaining); 2243 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2244 2245 submit_bio_noacct(wbio); 2246 } 2247 2248 put_sync_write_buf(r1_bio, 1); 2249 } 2250 2251 /* 2252 * This is a kernel thread which: 2253 * 2254 * 1. Retries failed read operations on working mirrors. 2255 * 2. Updates the raid superblock when problems encounter. 2256 * 3. Performs writes following reads for array synchronising. 2257 */ 2258 2259 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2260 { 2261 sector_t sect = r1_bio->sector; 2262 int sectors = r1_bio->sectors; 2263 int read_disk = r1_bio->read_disk; 2264 struct mddev *mddev = conf->mddev; 2265 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2266 2267 if (exceed_read_errors(mddev, rdev)) { 2268 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2269 return; 2270 } 2271 2272 while(sectors) { 2273 int s = sectors; 2274 int d = read_disk; 2275 int success = 0; 2276 int start; 2277 2278 if (s > (PAGE_SIZE>>9)) 2279 s = PAGE_SIZE >> 9; 2280 2281 do { 2282 sector_t first_bad; 2283 int bad_sectors; 2284 2285 rdev = conf->mirrors[d].rdev; 2286 if (rdev && 2287 (test_bit(In_sync, &rdev->flags) || 2288 (!test_bit(Faulty, &rdev->flags) && 2289 rdev->recovery_offset >= sect + s)) && 2290 is_badblock(rdev, sect, s, 2291 &first_bad, &bad_sectors) == 0) { 2292 atomic_inc(&rdev->nr_pending); 2293 if (sync_page_io(rdev, sect, s<<9, 2294 conf->tmppage, REQ_OP_READ, false)) 2295 success = 1; 2296 rdev_dec_pending(rdev, mddev); 2297 if (success) 2298 break; 2299 } 2300 2301 d++; 2302 if (d == conf->raid_disks * 2) 2303 d = 0; 2304 } while (d != read_disk); 2305 2306 if (!success) { 2307 /* Cannot read from anywhere - mark it bad */ 2308 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2309 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2310 md_error(mddev, rdev); 2311 break; 2312 } 2313 /* write it back and re-read */ 2314 start = d; 2315 while (d != read_disk) { 2316 if (d==0) 2317 d = conf->raid_disks * 2; 2318 d--; 2319 rdev = conf->mirrors[d].rdev; 2320 if (rdev && 2321 !test_bit(Faulty, &rdev->flags)) { 2322 atomic_inc(&rdev->nr_pending); 2323 r1_sync_page_io(rdev, sect, s, 2324 conf->tmppage, REQ_OP_WRITE); 2325 rdev_dec_pending(rdev, mddev); 2326 } 2327 } 2328 d = start; 2329 while (d != read_disk) { 2330 if (d==0) 2331 d = conf->raid_disks * 2; 2332 d--; 2333 rdev = conf->mirrors[d].rdev; 2334 if (rdev && 2335 !test_bit(Faulty, &rdev->flags)) { 2336 atomic_inc(&rdev->nr_pending); 2337 if (r1_sync_page_io(rdev, sect, s, 2338 conf->tmppage, REQ_OP_READ)) { 2339 atomic_add(s, &rdev->corrected_errors); 2340 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2341 mdname(mddev), s, 2342 (unsigned long long)(sect + 2343 rdev->data_offset), 2344 rdev->bdev); 2345 } 2346 rdev_dec_pending(rdev, mddev); 2347 } 2348 } 2349 sectors -= s; 2350 sect += s; 2351 } 2352 } 2353 2354 static int narrow_write_error(struct r1bio *r1_bio, int i) 2355 { 2356 struct mddev *mddev = r1_bio->mddev; 2357 struct r1conf *conf = mddev->private; 2358 struct md_rdev *rdev = conf->mirrors[i].rdev; 2359 2360 /* bio has the data to be written to device 'i' where 2361 * we just recently had a write error. 2362 * We repeatedly clone the bio and trim down to one block, 2363 * then try the write. Where the write fails we record 2364 * a bad block. 2365 * It is conceivable that the bio doesn't exactly align with 2366 * blocks. We must handle this somehow. 2367 * 2368 * We currently own a reference on the rdev. 2369 */ 2370 2371 int block_sectors; 2372 sector_t sector; 2373 int sectors; 2374 int sect_to_write = r1_bio->sectors; 2375 int ok = 1; 2376 2377 if (rdev->badblocks.shift < 0) 2378 return 0; 2379 2380 block_sectors = roundup(1 << rdev->badblocks.shift, 2381 bdev_logical_block_size(rdev->bdev) >> 9); 2382 sector = r1_bio->sector; 2383 sectors = ((sector + block_sectors) 2384 & ~(sector_t)(block_sectors - 1)) 2385 - sector; 2386 2387 while (sect_to_write) { 2388 struct bio *wbio; 2389 if (sectors > sect_to_write) 2390 sectors = sect_to_write; 2391 /* Write at 'sector' for 'sectors'*/ 2392 2393 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2394 wbio = bio_alloc_clone(rdev->bdev, 2395 r1_bio->behind_master_bio, 2396 GFP_NOIO, &mddev->bio_set); 2397 } else { 2398 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2399 GFP_NOIO, &mddev->bio_set); 2400 } 2401 2402 wbio->bi_opf = REQ_OP_WRITE; 2403 wbio->bi_iter.bi_sector = r1_bio->sector; 2404 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2405 2406 bio_trim(wbio, sector - r1_bio->sector, sectors); 2407 wbio->bi_iter.bi_sector += rdev->data_offset; 2408 2409 if (submit_bio_wait(wbio) < 0) 2410 /* failure! */ 2411 ok = rdev_set_badblocks(rdev, sector, 2412 sectors, 0) 2413 && ok; 2414 2415 bio_put(wbio); 2416 sect_to_write -= sectors; 2417 sector += sectors; 2418 sectors = block_sectors; 2419 } 2420 return ok; 2421 } 2422 2423 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2424 { 2425 int m; 2426 int s = r1_bio->sectors; 2427 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2428 struct md_rdev *rdev = conf->mirrors[m].rdev; 2429 struct bio *bio = r1_bio->bios[m]; 2430 if (bio->bi_end_io == NULL) 2431 continue; 2432 if (!bio->bi_status && 2433 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2434 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2435 } 2436 if (bio->bi_status && 2437 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2438 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2439 md_error(conf->mddev, rdev); 2440 } 2441 } 2442 put_buf(r1_bio); 2443 md_done_sync(conf->mddev, s, 1); 2444 } 2445 2446 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2447 { 2448 int m, idx; 2449 bool fail = false; 2450 2451 for (m = 0; m < conf->raid_disks * 2 ; m++) 2452 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2453 struct md_rdev *rdev = conf->mirrors[m].rdev; 2454 rdev_clear_badblocks(rdev, 2455 r1_bio->sector, 2456 r1_bio->sectors, 0); 2457 rdev_dec_pending(rdev, conf->mddev); 2458 } else if (r1_bio->bios[m] != NULL) { 2459 /* This drive got a write error. We need to 2460 * narrow down and record precise write 2461 * errors. 2462 */ 2463 fail = true; 2464 if (!narrow_write_error(r1_bio, m)) { 2465 md_error(conf->mddev, 2466 conf->mirrors[m].rdev); 2467 /* an I/O failed, we can't clear the bitmap */ 2468 set_bit(R1BIO_Degraded, &r1_bio->state); 2469 } 2470 rdev_dec_pending(conf->mirrors[m].rdev, 2471 conf->mddev); 2472 } 2473 if (fail) { 2474 spin_lock_irq(&conf->device_lock); 2475 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2476 idx = sector_to_idx(r1_bio->sector); 2477 atomic_inc(&conf->nr_queued[idx]); 2478 spin_unlock_irq(&conf->device_lock); 2479 /* 2480 * In case freeze_array() is waiting for condition 2481 * get_unqueued_pending() == extra to be true. 2482 */ 2483 wake_up(&conf->wait_barrier); 2484 md_wakeup_thread(conf->mddev->thread); 2485 } else { 2486 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2487 close_write(r1_bio); 2488 raid_end_bio_io(r1_bio); 2489 } 2490 } 2491 2492 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2493 { 2494 struct mddev *mddev = conf->mddev; 2495 struct bio *bio; 2496 struct md_rdev *rdev; 2497 sector_t sector; 2498 2499 clear_bit(R1BIO_ReadError, &r1_bio->state); 2500 /* we got a read error. Maybe the drive is bad. Maybe just 2501 * the block and we can fix it. 2502 * We freeze all other IO, and try reading the block from 2503 * other devices. When we find one, we re-write 2504 * and check it that fixes the read error. 2505 * This is all done synchronously while the array is 2506 * frozen 2507 */ 2508 2509 bio = r1_bio->bios[r1_bio->read_disk]; 2510 bio_put(bio); 2511 r1_bio->bios[r1_bio->read_disk] = NULL; 2512 2513 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2514 if (mddev->ro == 0 2515 && !test_bit(FailFast, &rdev->flags)) { 2516 freeze_array(conf, 1); 2517 fix_read_error(conf, r1_bio); 2518 unfreeze_array(conf); 2519 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2520 md_error(mddev, rdev); 2521 } else { 2522 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2523 } 2524 2525 rdev_dec_pending(rdev, conf->mddev); 2526 sector = r1_bio->sector; 2527 bio = r1_bio->master_bio; 2528 2529 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2530 r1_bio->state = 0; 2531 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2532 allow_barrier(conf, sector); 2533 } 2534 2535 static void raid1d(struct md_thread *thread) 2536 { 2537 struct mddev *mddev = thread->mddev; 2538 struct r1bio *r1_bio; 2539 unsigned long flags; 2540 struct r1conf *conf = mddev->private; 2541 struct list_head *head = &conf->retry_list; 2542 struct blk_plug plug; 2543 int idx; 2544 2545 md_check_recovery(mddev); 2546 2547 if (!list_empty_careful(&conf->bio_end_io_list) && 2548 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2549 LIST_HEAD(tmp); 2550 spin_lock_irqsave(&conf->device_lock, flags); 2551 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2552 list_splice_init(&conf->bio_end_io_list, &tmp); 2553 spin_unlock_irqrestore(&conf->device_lock, flags); 2554 while (!list_empty(&tmp)) { 2555 r1_bio = list_first_entry(&tmp, struct r1bio, 2556 retry_list); 2557 list_del(&r1_bio->retry_list); 2558 idx = sector_to_idx(r1_bio->sector); 2559 atomic_dec(&conf->nr_queued[idx]); 2560 if (mddev->degraded) 2561 set_bit(R1BIO_Degraded, &r1_bio->state); 2562 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2563 close_write(r1_bio); 2564 raid_end_bio_io(r1_bio); 2565 } 2566 } 2567 2568 blk_start_plug(&plug); 2569 for (;;) { 2570 2571 flush_pending_writes(conf); 2572 2573 spin_lock_irqsave(&conf->device_lock, flags); 2574 if (list_empty(head)) { 2575 spin_unlock_irqrestore(&conf->device_lock, flags); 2576 break; 2577 } 2578 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2579 list_del(head->prev); 2580 idx = sector_to_idx(r1_bio->sector); 2581 atomic_dec(&conf->nr_queued[idx]); 2582 spin_unlock_irqrestore(&conf->device_lock, flags); 2583 2584 mddev = r1_bio->mddev; 2585 conf = mddev->private; 2586 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2587 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2588 test_bit(R1BIO_WriteError, &r1_bio->state)) 2589 handle_sync_write_finished(conf, r1_bio); 2590 else 2591 sync_request_write(mddev, r1_bio); 2592 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2593 test_bit(R1BIO_WriteError, &r1_bio->state)) 2594 handle_write_finished(conf, r1_bio); 2595 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2596 handle_read_error(conf, r1_bio); 2597 else 2598 WARN_ON_ONCE(1); 2599 2600 cond_resched(); 2601 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2602 md_check_recovery(mddev); 2603 } 2604 blk_finish_plug(&plug); 2605 } 2606 2607 static int init_resync(struct r1conf *conf) 2608 { 2609 int buffs; 2610 2611 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2612 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2613 2614 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2615 r1buf_pool_free, conf->poolinfo); 2616 } 2617 2618 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2619 { 2620 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2621 struct resync_pages *rps; 2622 struct bio *bio; 2623 int i; 2624 2625 for (i = conf->poolinfo->raid_disks; i--; ) { 2626 bio = r1bio->bios[i]; 2627 rps = bio->bi_private; 2628 bio_reset(bio, NULL, 0); 2629 bio->bi_private = rps; 2630 } 2631 r1bio->master_bio = NULL; 2632 return r1bio; 2633 } 2634 2635 /* 2636 * perform a "sync" on one "block" 2637 * 2638 * We need to make sure that no normal I/O request - particularly write 2639 * requests - conflict with active sync requests. 2640 * 2641 * This is achieved by tracking pending requests and a 'barrier' concept 2642 * that can be installed to exclude normal IO requests. 2643 */ 2644 2645 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2646 int *skipped) 2647 { 2648 struct r1conf *conf = mddev->private; 2649 struct r1bio *r1_bio; 2650 struct bio *bio; 2651 sector_t max_sector, nr_sectors; 2652 int disk = -1; 2653 int i; 2654 int wonly = -1; 2655 int write_targets = 0, read_targets = 0; 2656 sector_t sync_blocks; 2657 int still_degraded = 0; 2658 int good_sectors = RESYNC_SECTORS; 2659 int min_bad = 0; /* number of sectors that are bad in all devices */ 2660 int idx = sector_to_idx(sector_nr); 2661 int page_idx = 0; 2662 2663 if (!mempool_initialized(&conf->r1buf_pool)) 2664 if (init_resync(conf)) 2665 return 0; 2666 2667 max_sector = mddev->dev_sectors; 2668 if (sector_nr >= max_sector) { 2669 /* If we aborted, we need to abort the 2670 * sync on the 'current' bitmap chunk (there will 2671 * only be one in raid1 resync. 2672 * We can find the current addess in mddev->curr_resync 2673 */ 2674 if (mddev->curr_resync < max_sector) /* aborted */ 2675 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2676 &sync_blocks, 1); 2677 else /* completed sync */ 2678 conf->fullsync = 0; 2679 2680 md_bitmap_close_sync(mddev->bitmap); 2681 close_sync(conf); 2682 2683 if (mddev_is_clustered(mddev)) { 2684 conf->cluster_sync_low = 0; 2685 conf->cluster_sync_high = 0; 2686 } 2687 return 0; 2688 } 2689 2690 if (mddev->bitmap == NULL && 2691 mddev->recovery_cp == MaxSector && 2692 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2693 conf->fullsync == 0) { 2694 *skipped = 1; 2695 return max_sector - sector_nr; 2696 } 2697 /* before building a request, check if we can skip these blocks.. 2698 * This call the bitmap_start_sync doesn't actually record anything 2699 */ 2700 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2701 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2702 /* We can skip this block, and probably several more */ 2703 *skipped = 1; 2704 return sync_blocks; 2705 } 2706 2707 /* 2708 * If there is non-resync activity waiting for a turn, then let it 2709 * though before starting on this new sync request. 2710 */ 2711 if (atomic_read(&conf->nr_waiting[idx])) 2712 schedule_timeout_uninterruptible(1); 2713 2714 /* we are incrementing sector_nr below. To be safe, we check against 2715 * sector_nr + two times RESYNC_SECTORS 2716 */ 2717 2718 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2719 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2720 2721 2722 if (raise_barrier(conf, sector_nr)) 2723 return 0; 2724 2725 r1_bio = raid1_alloc_init_r1buf(conf); 2726 2727 /* 2728 * If we get a correctably read error during resync or recovery, 2729 * we might want to read from a different device. So we 2730 * flag all drives that could conceivably be read from for READ, 2731 * and any others (which will be non-In_sync devices) for WRITE. 2732 * If a read fails, we try reading from something else for which READ 2733 * is OK. 2734 */ 2735 2736 r1_bio->mddev = mddev; 2737 r1_bio->sector = sector_nr; 2738 r1_bio->state = 0; 2739 set_bit(R1BIO_IsSync, &r1_bio->state); 2740 /* make sure good_sectors won't go across barrier unit boundary */ 2741 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2742 2743 for (i = 0; i < conf->raid_disks * 2; i++) { 2744 struct md_rdev *rdev; 2745 bio = r1_bio->bios[i]; 2746 2747 rdev = conf->mirrors[i].rdev; 2748 if (rdev == NULL || 2749 test_bit(Faulty, &rdev->flags)) { 2750 if (i < conf->raid_disks) 2751 still_degraded = 1; 2752 } else if (!test_bit(In_sync, &rdev->flags)) { 2753 bio->bi_opf = REQ_OP_WRITE; 2754 bio->bi_end_io = end_sync_write; 2755 write_targets ++; 2756 } else { 2757 /* may need to read from here */ 2758 sector_t first_bad = MaxSector; 2759 int bad_sectors; 2760 2761 if (is_badblock(rdev, sector_nr, good_sectors, 2762 &first_bad, &bad_sectors)) { 2763 if (first_bad > sector_nr) 2764 good_sectors = first_bad - sector_nr; 2765 else { 2766 bad_sectors -= (sector_nr - first_bad); 2767 if (min_bad == 0 || 2768 min_bad > bad_sectors) 2769 min_bad = bad_sectors; 2770 } 2771 } 2772 if (sector_nr < first_bad) { 2773 if (test_bit(WriteMostly, &rdev->flags)) { 2774 if (wonly < 0) 2775 wonly = i; 2776 } else { 2777 if (disk < 0) 2778 disk = i; 2779 } 2780 bio->bi_opf = REQ_OP_READ; 2781 bio->bi_end_io = end_sync_read; 2782 read_targets++; 2783 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2784 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2785 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2786 /* 2787 * The device is suitable for reading (InSync), 2788 * but has bad block(s) here. Let's try to correct them, 2789 * if we are doing resync or repair. Otherwise, leave 2790 * this device alone for this sync request. 2791 */ 2792 bio->bi_opf = REQ_OP_WRITE; 2793 bio->bi_end_io = end_sync_write; 2794 write_targets++; 2795 } 2796 } 2797 if (rdev && bio->bi_end_io) { 2798 atomic_inc(&rdev->nr_pending); 2799 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2800 bio_set_dev(bio, rdev->bdev); 2801 if (test_bit(FailFast, &rdev->flags)) 2802 bio->bi_opf |= MD_FAILFAST; 2803 } 2804 } 2805 if (disk < 0) 2806 disk = wonly; 2807 r1_bio->read_disk = disk; 2808 2809 if (read_targets == 0 && min_bad > 0) { 2810 /* These sectors are bad on all InSync devices, so we 2811 * need to mark them bad on all write targets 2812 */ 2813 int ok = 1; 2814 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2815 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2816 struct md_rdev *rdev = conf->mirrors[i].rdev; 2817 ok = rdev_set_badblocks(rdev, sector_nr, 2818 min_bad, 0 2819 ) && ok; 2820 } 2821 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2822 *skipped = 1; 2823 put_buf(r1_bio); 2824 2825 if (!ok) { 2826 /* Cannot record the badblocks, so need to 2827 * abort the resync. 2828 * If there are multiple read targets, could just 2829 * fail the really bad ones ??? 2830 */ 2831 conf->recovery_disabled = mddev->recovery_disabled; 2832 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2833 return 0; 2834 } else 2835 return min_bad; 2836 2837 } 2838 if (min_bad > 0 && min_bad < good_sectors) { 2839 /* only resync enough to reach the next bad->good 2840 * transition */ 2841 good_sectors = min_bad; 2842 } 2843 2844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2845 /* extra read targets are also write targets */ 2846 write_targets += read_targets-1; 2847 2848 if (write_targets == 0 || read_targets == 0) { 2849 /* There is nowhere to write, so all non-sync 2850 * drives must be failed - so we are finished 2851 */ 2852 sector_t rv; 2853 if (min_bad > 0) 2854 max_sector = sector_nr + min_bad; 2855 rv = max_sector - sector_nr; 2856 *skipped = 1; 2857 put_buf(r1_bio); 2858 return rv; 2859 } 2860 2861 if (max_sector > mddev->resync_max) 2862 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2863 if (max_sector > sector_nr + good_sectors) 2864 max_sector = sector_nr + good_sectors; 2865 nr_sectors = 0; 2866 sync_blocks = 0; 2867 do { 2868 struct page *page; 2869 int len = PAGE_SIZE; 2870 if (sector_nr + (len>>9) > max_sector) 2871 len = (max_sector - sector_nr) << 9; 2872 if (len == 0) 2873 break; 2874 if (sync_blocks == 0) { 2875 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2876 &sync_blocks, still_degraded) && 2877 !conf->fullsync && 2878 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2879 break; 2880 if ((len >> 9) > sync_blocks) 2881 len = sync_blocks<<9; 2882 } 2883 2884 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2885 struct resync_pages *rp; 2886 2887 bio = r1_bio->bios[i]; 2888 rp = get_resync_pages(bio); 2889 if (bio->bi_end_io) { 2890 page = resync_fetch_page(rp, page_idx); 2891 2892 /* 2893 * won't fail because the vec table is big 2894 * enough to hold all these pages 2895 */ 2896 __bio_add_page(bio, page, len, 0); 2897 } 2898 } 2899 nr_sectors += len>>9; 2900 sector_nr += len>>9; 2901 sync_blocks -= (len>>9); 2902 } while (++page_idx < RESYNC_PAGES); 2903 2904 r1_bio->sectors = nr_sectors; 2905 2906 if (mddev_is_clustered(mddev) && 2907 conf->cluster_sync_high < sector_nr + nr_sectors) { 2908 conf->cluster_sync_low = mddev->curr_resync_completed; 2909 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2910 /* Send resync message */ 2911 md_cluster_ops->resync_info_update(mddev, 2912 conf->cluster_sync_low, 2913 conf->cluster_sync_high); 2914 } 2915 2916 /* For a user-requested sync, we read all readable devices and do a 2917 * compare 2918 */ 2919 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2920 atomic_set(&r1_bio->remaining, read_targets); 2921 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2922 bio = r1_bio->bios[i]; 2923 if (bio->bi_end_io == end_sync_read) { 2924 read_targets--; 2925 md_sync_acct_bio(bio, nr_sectors); 2926 if (read_targets == 1) 2927 bio->bi_opf &= ~MD_FAILFAST; 2928 submit_bio_noacct(bio); 2929 } 2930 } 2931 } else { 2932 atomic_set(&r1_bio->remaining, 1); 2933 bio = r1_bio->bios[r1_bio->read_disk]; 2934 md_sync_acct_bio(bio, nr_sectors); 2935 if (read_targets == 1) 2936 bio->bi_opf &= ~MD_FAILFAST; 2937 submit_bio_noacct(bio); 2938 } 2939 return nr_sectors; 2940 } 2941 2942 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2943 { 2944 if (sectors) 2945 return sectors; 2946 2947 return mddev->dev_sectors; 2948 } 2949 2950 static struct r1conf *setup_conf(struct mddev *mddev) 2951 { 2952 struct r1conf *conf; 2953 int i; 2954 struct raid1_info *disk; 2955 struct md_rdev *rdev; 2956 int err = -ENOMEM; 2957 2958 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2959 if (!conf) 2960 goto abort; 2961 2962 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2963 sizeof(atomic_t), GFP_KERNEL); 2964 if (!conf->nr_pending) 2965 goto abort; 2966 2967 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2968 sizeof(atomic_t), GFP_KERNEL); 2969 if (!conf->nr_waiting) 2970 goto abort; 2971 2972 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2973 sizeof(atomic_t), GFP_KERNEL); 2974 if (!conf->nr_queued) 2975 goto abort; 2976 2977 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2978 sizeof(atomic_t), GFP_KERNEL); 2979 if (!conf->barrier) 2980 goto abort; 2981 2982 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2983 mddev->raid_disks, 2), 2984 GFP_KERNEL); 2985 if (!conf->mirrors) 2986 goto abort; 2987 2988 conf->tmppage = alloc_page(GFP_KERNEL); 2989 if (!conf->tmppage) 2990 goto abort; 2991 2992 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2993 if (!conf->poolinfo) 2994 goto abort; 2995 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2996 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 2997 rbio_pool_free, conf->poolinfo); 2998 if (err) 2999 goto abort; 3000 3001 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3002 if (err) 3003 goto abort; 3004 3005 conf->poolinfo->mddev = mddev; 3006 3007 err = -EINVAL; 3008 spin_lock_init(&conf->device_lock); 3009 rdev_for_each(rdev, mddev) { 3010 int disk_idx = rdev->raid_disk; 3011 if (disk_idx >= mddev->raid_disks 3012 || disk_idx < 0) 3013 continue; 3014 if (test_bit(Replacement, &rdev->flags)) 3015 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3016 else 3017 disk = conf->mirrors + disk_idx; 3018 3019 if (disk->rdev) 3020 goto abort; 3021 disk->rdev = rdev; 3022 disk->head_position = 0; 3023 disk->seq_start = MaxSector; 3024 } 3025 conf->raid_disks = mddev->raid_disks; 3026 conf->mddev = mddev; 3027 INIT_LIST_HEAD(&conf->retry_list); 3028 INIT_LIST_HEAD(&conf->bio_end_io_list); 3029 3030 spin_lock_init(&conf->resync_lock); 3031 init_waitqueue_head(&conf->wait_barrier); 3032 3033 bio_list_init(&conf->pending_bio_list); 3034 conf->recovery_disabled = mddev->recovery_disabled - 1; 3035 3036 err = -EIO; 3037 for (i = 0; i < conf->raid_disks * 2; i++) { 3038 3039 disk = conf->mirrors + i; 3040 3041 if (i < conf->raid_disks && 3042 disk[conf->raid_disks].rdev) { 3043 /* This slot has a replacement. */ 3044 if (!disk->rdev) { 3045 /* No original, just make the replacement 3046 * a recovering spare 3047 */ 3048 disk->rdev = 3049 disk[conf->raid_disks].rdev; 3050 disk[conf->raid_disks].rdev = NULL; 3051 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3052 /* Original is not in_sync - bad */ 3053 goto abort; 3054 } 3055 3056 if (!disk->rdev || 3057 !test_bit(In_sync, &disk->rdev->flags)) { 3058 disk->head_position = 0; 3059 if (disk->rdev && 3060 (disk->rdev->saved_raid_disk < 0)) 3061 conf->fullsync = 1; 3062 } 3063 } 3064 3065 err = -ENOMEM; 3066 rcu_assign_pointer(conf->thread, 3067 md_register_thread(raid1d, mddev, "raid1")); 3068 if (!conf->thread) 3069 goto abort; 3070 3071 return conf; 3072 3073 abort: 3074 if (conf) { 3075 mempool_exit(&conf->r1bio_pool); 3076 kfree(conf->mirrors); 3077 safe_put_page(conf->tmppage); 3078 kfree(conf->poolinfo); 3079 kfree(conf->nr_pending); 3080 kfree(conf->nr_waiting); 3081 kfree(conf->nr_queued); 3082 kfree(conf->barrier); 3083 bioset_exit(&conf->bio_split); 3084 kfree(conf); 3085 } 3086 return ERR_PTR(err); 3087 } 3088 3089 static void raid1_free(struct mddev *mddev, void *priv); 3090 static int raid1_run(struct mddev *mddev) 3091 { 3092 struct r1conf *conf; 3093 int i; 3094 struct md_rdev *rdev; 3095 int ret; 3096 3097 if (mddev->level != 1) { 3098 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3099 mdname(mddev), mddev->level); 3100 return -EIO; 3101 } 3102 if (mddev->reshape_position != MaxSector) { 3103 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3104 mdname(mddev)); 3105 return -EIO; 3106 } 3107 3108 /* 3109 * copy the already verified devices into our private RAID1 3110 * bookkeeping area. [whatever we allocate in run(), 3111 * should be freed in raid1_free()] 3112 */ 3113 if (mddev->private == NULL) 3114 conf = setup_conf(mddev); 3115 else 3116 conf = mddev->private; 3117 3118 if (IS_ERR(conf)) 3119 return PTR_ERR(conf); 3120 3121 if (mddev->queue) 3122 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3123 3124 rdev_for_each(rdev, mddev) { 3125 if (!mddev->gendisk) 3126 continue; 3127 disk_stack_limits(mddev->gendisk, rdev->bdev, 3128 rdev->data_offset << 9); 3129 } 3130 3131 mddev->degraded = 0; 3132 for (i = 0; i < conf->raid_disks; i++) 3133 if (conf->mirrors[i].rdev == NULL || 3134 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3135 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3136 mddev->degraded++; 3137 /* 3138 * RAID1 needs at least one disk in active 3139 */ 3140 if (conf->raid_disks - mddev->degraded < 1) { 3141 md_unregister_thread(mddev, &conf->thread); 3142 ret = -EINVAL; 3143 goto abort; 3144 } 3145 3146 if (conf->raid_disks - mddev->degraded == 1) 3147 mddev->recovery_cp = MaxSector; 3148 3149 if (mddev->recovery_cp != MaxSector) 3150 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3151 mdname(mddev)); 3152 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3153 mdname(mddev), mddev->raid_disks - mddev->degraded, 3154 mddev->raid_disks); 3155 3156 /* 3157 * Ok, everything is just fine now 3158 */ 3159 rcu_assign_pointer(mddev->thread, conf->thread); 3160 rcu_assign_pointer(conf->thread, NULL); 3161 mddev->private = conf; 3162 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3163 3164 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3165 3166 ret = md_integrity_register(mddev); 3167 if (ret) { 3168 md_unregister_thread(mddev, &mddev->thread); 3169 goto abort; 3170 } 3171 return 0; 3172 3173 abort: 3174 raid1_free(mddev, conf); 3175 return ret; 3176 } 3177 3178 static void raid1_free(struct mddev *mddev, void *priv) 3179 { 3180 struct r1conf *conf = priv; 3181 3182 mempool_exit(&conf->r1bio_pool); 3183 kfree(conf->mirrors); 3184 safe_put_page(conf->tmppage); 3185 kfree(conf->poolinfo); 3186 kfree(conf->nr_pending); 3187 kfree(conf->nr_waiting); 3188 kfree(conf->nr_queued); 3189 kfree(conf->barrier); 3190 bioset_exit(&conf->bio_split); 3191 kfree(conf); 3192 } 3193 3194 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3195 { 3196 /* no resync is happening, and there is enough space 3197 * on all devices, so we can resize. 3198 * We need to make sure resync covers any new space. 3199 * If the array is shrinking we should possibly wait until 3200 * any io in the removed space completes, but it hardly seems 3201 * worth it. 3202 */ 3203 sector_t newsize = raid1_size(mddev, sectors, 0); 3204 if (mddev->external_size && 3205 mddev->array_sectors > newsize) 3206 return -EINVAL; 3207 if (mddev->bitmap) { 3208 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3209 if (ret) 3210 return ret; 3211 } 3212 md_set_array_sectors(mddev, newsize); 3213 if (sectors > mddev->dev_sectors && 3214 mddev->recovery_cp > mddev->dev_sectors) { 3215 mddev->recovery_cp = mddev->dev_sectors; 3216 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3217 } 3218 mddev->dev_sectors = sectors; 3219 mddev->resync_max_sectors = sectors; 3220 return 0; 3221 } 3222 3223 static int raid1_reshape(struct mddev *mddev) 3224 { 3225 /* We need to: 3226 * 1/ resize the r1bio_pool 3227 * 2/ resize conf->mirrors 3228 * 3229 * We allocate a new r1bio_pool if we can. 3230 * Then raise a device barrier and wait until all IO stops. 3231 * Then resize conf->mirrors and swap in the new r1bio pool. 3232 * 3233 * At the same time, we "pack" the devices so that all the missing 3234 * devices have the higher raid_disk numbers. 3235 */ 3236 mempool_t newpool, oldpool; 3237 struct pool_info *newpoolinfo; 3238 struct raid1_info *newmirrors; 3239 struct r1conf *conf = mddev->private; 3240 int cnt, raid_disks; 3241 unsigned long flags; 3242 int d, d2; 3243 int ret; 3244 3245 memset(&newpool, 0, sizeof(newpool)); 3246 memset(&oldpool, 0, sizeof(oldpool)); 3247 3248 /* Cannot change chunk_size, layout, or level */ 3249 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3250 mddev->layout != mddev->new_layout || 3251 mddev->level != mddev->new_level) { 3252 mddev->new_chunk_sectors = mddev->chunk_sectors; 3253 mddev->new_layout = mddev->layout; 3254 mddev->new_level = mddev->level; 3255 return -EINVAL; 3256 } 3257 3258 if (!mddev_is_clustered(mddev)) 3259 md_allow_write(mddev); 3260 3261 raid_disks = mddev->raid_disks + mddev->delta_disks; 3262 3263 if (raid_disks < conf->raid_disks) { 3264 cnt=0; 3265 for (d= 0; d < conf->raid_disks; d++) 3266 if (conf->mirrors[d].rdev) 3267 cnt++; 3268 if (cnt > raid_disks) 3269 return -EBUSY; 3270 } 3271 3272 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3273 if (!newpoolinfo) 3274 return -ENOMEM; 3275 newpoolinfo->mddev = mddev; 3276 newpoolinfo->raid_disks = raid_disks * 2; 3277 3278 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3279 rbio_pool_free, newpoolinfo); 3280 if (ret) { 3281 kfree(newpoolinfo); 3282 return ret; 3283 } 3284 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3285 raid_disks, 2), 3286 GFP_KERNEL); 3287 if (!newmirrors) { 3288 kfree(newpoolinfo); 3289 mempool_exit(&newpool); 3290 return -ENOMEM; 3291 } 3292 3293 freeze_array(conf, 0); 3294 3295 /* ok, everything is stopped */ 3296 oldpool = conf->r1bio_pool; 3297 conf->r1bio_pool = newpool; 3298 3299 for (d = d2 = 0; d < conf->raid_disks; d++) { 3300 struct md_rdev *rdev = conf->mirrors[d].rdev; 3301 if (rdev && rdev->raid_disk != d2) { 3302 sysfs_unlink_rdev(mddev, rdev); 3303 rdev->raid_disk = d2; 3304 sysfs_unlink_rdev(mddev, rdev); 3305 if (sysfs_link_rdev(mddev, rdev)) 3306 pr_warn("md/raid1:%s: cannot register rd%d\n", 3307 mdname(mddev), rdev->raid_disk); 3308 } 3309 if (rdev) 3310 newmirrors[d2++].rdev = rdev; 3311 } 3312 kfree(conf->mirrors); 3313 conf->mirrors = newmirrors; 3314 kfree(conf->poolinfo); 3315 conf->poolinfo = newpoolinfo; 3316 3317 spin_lock_irqsave(&conf->device_lock, flags); 3318 mddev->degraded += (raid_disks - conf->raid_disks); 3319 spin_unlock_irqrestore(&conf->device_lock, flags); 3320 conf->raid_disks = mddev->raid_disks = raid_disks; 3321 mddev->delta_disks = 0; 3322 3323 unfreeze_array(conf); 3324 3325 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3327 md_wakeup_thread(mddev->thread); 3328 3329 mempool_exit(&oldpool); 3330 return 0; 3331 } 3332 3333 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3334 { 3335 struct r1conf *conf = mddev->private; 3336 3337 if (quiesce) 3338 freeze_array(conf, 0); 3339 else 3340 unfreeze_array(conf); 3341 } 3342 3343 static void *raid1_takeover(struct mddev *mddev) 3344 { 3345 /* raid1 can take over: 3346 * raid5 with 2 devices, any layout or chunk size 3347 */ 3348 if (mddev->level == 5 && mddev->raid_disks == 2) { 3349 struct r1conf *conf; 3350 mddev->new_level = 1; 3351 mddev->new_layout = 0; 3352 mddev->new_chunk_sectors = 0; 3353 conf = setup_conf(mddev); 3354 if (!IS_ERR(conf)) { 3355 /* Array must appear to be quiesced */ 3356 conf->array_frozen = 1; 3357 mddev_clear_unsupported_flags(mddev, 3358 UNSUPPORTED_MDDEV_FLAGS); 3359 } 3360 return conf; 3361 } 3362 return ERR_PTR(-EINVAL); 3363 } 3364 3365 static struct md_personality raid1_personality = 3366 { 3367 .name = "raid1", 3368 .level = 1, 3369 .owner = THIS_MODULE, 3370 .make_request = raid1_make_request, 3371 .run = raid1_run, 3372 .free = raid1_free, 3373 .status = raid1_status, 3374 .error_handler = raid1_error, 3375 .hot_add_disk = raid1_add_disk, 3376 .hot_remove_disk= raid1_remove_disk, 3377 .spare_active = raid1_spare_active, 3378 .sync_request = raid1_sync_request, 3379 .resize = raid1_resize, 3380 .size = raid1_size, 3381 .check_reshape = raid1_reshape, 3382 .quiesce = raid1_quiesce, 3383 .takeover = raid1_takeover, 3384 }; 3385 3386 static int __init raid_init(void) 3387 { 3388 return register_md_personality(&raid1_personality); 3389 } 3390 3391 static void raid_exit(void) 3392 { 3393 unregister_md_personality(&raid1_personality); 3394 } 3395 3396 module_init(raid_init); 3397 module_exit(raid_exit); 3398 MODULE_LICENSE("GPL"); 3399 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3400 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3401 MODULE_ALIAS("md-raid1"); 3402 MODULE_ALIAS("md-level-1"); 3403