1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 #include "md-cluster.h" 40 41 #define UNSUPPORTED_MDDEV_FLAGS \ 42 ((1L << MD_HAS_JOURNAL) | \ 43 (1L << MD_JOURNAL_CLEAN) | \ 44 (1L << MD_HAS_PPL) | \ 45 (1L << MD_HAS_MULTIPLE_PPLS)) 46 47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 49 static void raid1_free(struct mddev *mddev, void *priv); 50 51 #define RAID_1_10_NAME "raid1" 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void *r1bio_pool_alloc(gfp_t gfp_flags, struct r1conf *conf) 131 { 132 int size = offsetof(struct r1bio, bios[conf->raid_disks * 2]); 133 134 /* allocate a r1bio with room for raid_disks entries in the bios array */ 135 return kzalloc(size, gfp_flags); 136 } 137 138 #define RESYNC_DEPTH 32 139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 140 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 141 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 142 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 143 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 144 145 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 146 { 147 struct r1conf *conf = data; 148 struct r1bio *r1_bio; 149 struct bio *bio; 150 int need_pages; 151 int j; 152 struct resync_pages *rps; 153 154 r1_bio = r1bio_pool_alloc(gfp_flags, conf); 155 if (!r1_bio) 156 return NULL; 157 158 rps = kmalloc_array(conf->raid_disks * 2, sizeof(struct resync_pages), 159 gfp_flags); 160 if (!rps) 161 goto out_free_r1bio; 162 163 /* 164 * Allocate bios : 1 for reading, n-1 for writing 165 */ 166 for (j = conf->raid_disks * 2; j-- ; ) { 167 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 168 if (!bio) 169 goto out_free_bio; 170 bio_init_inline(bio, NULL, RESYNC_PAGES, 0); 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &conf->mddev->recovery)) 180 need_pages = conf->raid_disks * 2; 181 else 182 need_pages = 1; 183 for (j = 0; j < conf->raid_disks * 2; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < conf->raid_disks * 2) { 210 bio_uninit(r1_bio->bios[j]); 211 kfree(r1_bio->bios[j]); 212 } 213 kfree(rps); 214 215 out_free_r1bio: 216 rbio_pool_free(r1_bio, data); 217 return NULL; 218 } 219 220 static void r1buf_pool_free(void *__r1_bio, void *data) 221 { 222 struct r1conf *conf = data; 223 int i; 224 struct r1bio *r1bio = __r1_bio; 225 struct resync_pages *rp = NULL; 226 227 for (i = conf->raid_disks * 2; i--; ) { 228 rp = get_resync_pages(r1bio->bios[i]); 229 resync_free_pages(rp); 230 bio_uninit(r1bio->bios[i]); 231 kfree(r1bio->bios[i]); 232 } 233 234 /* resync pages array stored in the 1st bio's .bi_private */ 235 kfree(rp); 236 237 rbio_pool_free(r1bio, data); 238 } 239 240 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->raid_disks * 2; i++) { 245 struct bio **bio = r1_bio->bios + i; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 } 250 } 251 252 static void free_r1bio(struct r1bio *r1_bio) 253 { 254 struct r1conf *conf = r1_bio->mddev->private; 255 256 put_all_bios(conf, r1_bio); 257 mempool_free(r1_bio, conf->r1bio_pool); 258 } 259 260 static void put_buf(struct r1bio *r1_bio) 261 { 262 struct r1conf *conf = r1_bio->mddev->private; 263 sector_t sect = r1_bio->sector; 264 int i; 265 266 for (i = 0; i < conf->raid_disks * 2; i++) { 267 struct bio *bio = r1_bio->bios[i]; 268 if (bio->bi_end_io) 269 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 270 } 271 272 mempool_free(r1_bio, &conf->r1buf_pool); 273 274 lower_barrier(conf, sect); 275 } 276 277 static void reschedule_retry(struct r1bio *r1_bio) 278 { 279 unsigned long flags; 280 struct mddev *mddev = r1_bio->mddev; 281 struct r1conf *conf = mddev->private; 282 int idx; 283 284 idx = sector_to_idx(r1_bio->sector); 285 spin_lock_irqsave(&conf->device_lock, flags); 286 list_add(&r1_bio->retry_list, &conf->retry_list); 287 atomic_inc(&conf->nr_queued[idx]); 288 spin_unlock_irqrestore(&conf->device_lock, flags); 289 290 wake_up(&conf->wait_barrier); 291 md_wakeup_thread(mddev->thread); 292 } 293 294 /* 295 * raid_end_bio_io() is called when we have finished servicing a mirrored 296 * operation and are ready to return a success/failure code to the buffer 297 * cache layer. 298 */ 299 static void call_bio_endio(struct r1bio *r1_bio) 300 { 301 struct bio *bio = r1_bio->master_bio; 302 303 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 304 bio->bi_status = BLK_STS_IOERR; 305 306 bio_endio(bio); 307 } 308 309 static void raid_end_bio_io(struct r1bio *r1_bio) 310 { 311 struct bio *bio = r1_bio->master_bio; 312 struct r1conf *conf = r1_bio->mddev->private; 313 sector_t sector = r1_bio->sector; 314 315 /* if nobody has done the final endio yet, do it now */ 316 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 317 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 318 (bio_data_dir(bio) == WRITE) ? "write" : "read", 319 (unsigned long long) bio->bi_iter.bi_sector, 320 (unsigned long long) bio_end_sector(bio) - 1); 321 322 call_bio_endio(r1_bio); 323 } 324 325 free_r1bio(r1_bio); 326 /* 327 * Wake up any possible resync thread that waits for the device 328 * to go idle. All I/Os, even write-behind writes, are done. 329 */ 330 allow_barrier(conf, sector); 331 } 332 333 /* 334 * Update disk head position estimator based on IRQ completion info. 335 */ 336 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 337 { 338 struct r1conf *conf = r1_bio->mddev->private; 339 340 conf->mirrors[disk].head_position = 341 r1_bio->sector + (r1_bio->sectors); 342 } 343 344 /* 345 * Find the disk number which triggered given bio 346 */ 347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 348 { 349 int mirror; 350 struct r1conf *conf = r1_bio->mddev->private; 351 int raid_disks = conf->raid_disks; 352 353 for (mirror = 0; mirror < raid_disks * 2; mirror++) 354 if (r1_bio->bios[mirror] == bio) 355 break; 356 357 BUG_ON(mirror == raid_disks * 2); 358 update_head_pos(mirror, r1_bio); 359 360 return mirror; 361 } 362 363 static void raid1_end_read_request(struct bio *bio) 364 { 365 int uptodate = !bio->bi_status; 366 struct r1bio *r1_bio = bio->bi_private; 367 struct r1conf *conf = r1_bio->mddev->private; 368 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 369 370 /* 371 * this branch is our 'one mirror IO has finished' event handler: 372 */ 373 update_head_pos(r1_bio->read_disk, r1_bio); 374 375 if (uptodate) { 376 set_bit(R1BIO_Uptodate, &r1_bio->state); 377 } else if (test_bit(FailFast, &rdev->flags) && 378 test_bit(R1BIO_FailFast, &r1_bio->state)) { 379 /* This was a fail-fast read so we definitely 380 * want to retry */ 381 ; 382 } else if (!raid1_should_handle_error(bio)) { 383 uptodate = 1; 384 } else { 385 /* If all other devices have failed, we want to return 386 * the error upwards rather than fail the last device. 387 * Here we redefine "uptodate" to mean "Don't want to retry" 388 */ 389 unsigned long flags; 390 spin_lock_irqsave(&conf->device_lock, flags); 391 if (r1_bio->mddev->degraded == conf->raid_disks || 392 (r1_bio->mddev->degraded == conf->raid_disks-1 && 393 test_bit(In_sync, &rdev->flags))) 394 uptodate = 1; 395 spin_unlock_irqrestore(&conf->device_lock, flags); 396 } 397 398 if (uptodate) { 399 raid_end_bio_io(r1_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error: 404 */ 405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 406 mdname(conf->mddev), 407 rdev->bdev, 408 (unsigned long long)r1_bio->sector); 409 set_bit(R1BIO_ReadError, &r1_bio->state); 410 reschedule_retry(r1_bio); 411 /* don't drop the reference on read_disk yet */ 412 } 413 } 414 415 static void close_write(struct r1bio *r1_bio) 416 { 417 struct mddev *mddev = r1_bio->mddev; 418 419 /* it really is the end of this request */ 420 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 421 bio_free_pages(r1_bio->behind_master_bio); 422 bio_put(r1_bio->behind_master_bio); 423 r1_bio->behind_master_bio = NULL; 424 } 425 426 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 427 mddev->bitmap_ops->end_behind_write(mddev); 428 md_write_end(mddev); 429 } 430 431 static void r1_bio_write_done(struct r1bio *r1_bio) 432 { 433 if (!atomic_dec_and_test(&r1_bio->remaining)) 434 return; 435 436 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 437 reschedule_retry(r1_bio); 438 else { 439 close_write(r1_bio); 440 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 441 reschedule_retry(r1_bio); 442 else 443 raid_end_bio_io(r1_bio); 444 } 445 } 446 447 static void raid1_end_write_request(struct bio *bio) 448 { 449 struct r1bio *r1_bio = bio->bi_private; 450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 451 struct r1conf *conf = r1_bio->mddev->private; 452 struct bio *to_put = NULL; 453 int mirror = find_bio_disk(r1_bio, bio); 454 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 455 sector_t lo = r1_bio->sector; 456 sector_t hi = r1_bio->sector + r1_bio->sectors; 457 bool ignore_error = !raid1_should_handle_error(bio) || 458 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD); 459 460 /* 461 * 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_status && !ignore_error) { 464 set_bit(WriteErrorSeen, &rdev->flags); 465 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 466 set_bit(MD_RECOVERY_NEEDED, & 467 conf->mddev->recovery); 468 469 if (test_bit(FailFast, &rdev->flags) && 470 (bio->bi_opf & MD_FAILFAST) && 471 /* We never try FailFast to WriteMostly devices */ 472 !test_bit(WriteMostly, &rdev->flags)) { 473 md_error(r1_bio->mddev, rdev); 474 } 475 476 /* 477 * When the device is faulty, it is not necessary to 478 * handle write error. 479 */ 480 if (!test_bit(Faulty, &rdev->flags)) 481 set_bit(R1BIO_WriteError, &r1_bio->state); 482 else { 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 r1_bio->bios[mirror] = NULL; 499 to_put = bio; 500 /* 501 * Do not set R1BIO_Uptodate if the current device is 502 * rebuilding or Faulty. This is because we cannot use 503 * such device for properly reading the data back (we could 504 * potentially use it, if the current write would have felt 505 * before rdev->recovery_offset, but for simplicity we don't 506 * check this here. 507 */ 508 if (test_bit(In_sync, &rdev->flags) && 509 !test_bit(Faulty, &rdev->flags)) 510 set_bit(R1BIO_Uptodate, &r1_bio->state); 511 512 /* Maybe we can clear some bad blocks. */ 513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 514 !ignore_error) { 515 r1_bio->bios[mirror] = IO_MADE_GOOD; 516 set_bit(R1BIO_MadeGood, &r1_bio->state); 517 } 518 } 519 520 if (behind) { 521 if (test_bit(CollisionCheck, &rdev->flags)) 522 remove_serial(rdev, lo, hi); 523 if (test_bit(WriteMostly, &rdev->flags)) 524 atomic_dec(&r1_bio->behind_remaining); 525 526 /* 527 * In behind mode, we ACK the master bio once the I/O 528 * has safely reached all non-writemostly 529 * disks. Setting the Returned bit ensures that this 530 * gets done only once -- we don't ever want to return 531 * -EIO here, instead we'll wait 532 */ 533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 534 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 535 /* Maybe we can return now */ 536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 537 struct bio *mbio = r1_bio->master_bio; 538 pr_debug("raid1: behind end write sectors" 539 " %llu-%llu\n", 540 (unsigned long long) mbio->bi_iter.bi_sector, 541 (unsigned long long) bio_end_sector(mbio) - 1); 542 call_bio_endio(r1_bio); 543 } 544 } 545 } else if (test_bit(MD_SERIALIZE_POLICY, &rdev->mddev->flags)) 546 remove_serial(rdev, lo, hi); 547 if (r1_bio->bios[mirror] == NULL) 548 rdev_dec_pending(rdev, conf->mddev); 549 550 /* 551 * Let's see if all mirrored write operations have finished 552 * already. 553 */ 554 r1_bio_write_done(r1_bio); 555 556 if (to_put) 557 bio_put(to_put); 558 } 559 560 static sector_t align_to_barrier_unit_end(sector_t start_sector, 561 sector_t sectors) 562 { 563 sector_t len; 564 565 WARN_ON(sectors == 0); 566 /* 567 * len is the number of sectors from start_sector to end of the 568 * barrier unit which start_sector belongs to. 569 */ 570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 571 start_sector; 572 573 if (len > sectors) 574 len = sectors; 575 576 return len; 577 } 578 579 static void update_read_sectors(struct r1conf *conf, int disk, 580 sector_t this_sector, int len) 581 { 582 struct raid1_info *info = &conf->mirrors[disk]; 583 584 atomic_inc(&info->rdev->nr_pending); 585 if (info->next_seq_sect != this_sector) 586 info->seq_start = this_sector; 587 info->next_seq_sect = this_sector + len; 588 } 589 590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 591 int *max_sectors) 592 { 593 sector_t this_sector = r1_bio->sector; 594 int len = r1_bio->sectors; 595 int disk; 596 597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 598 struct md_rdev *rdev; 599 int read_len; 600 601 if (r1_bio->bios[disk] == IO_BLOCKED) 602 continue; 603 604 rdev = conf->mirrors[disk].rdev; 605 if (!rdev || test_bit(Faulty, &rdev->flags)) 606 continue; 607 608 /* choose the first disk even if it has some bad blocks. */ 609 read_len = raid1_check_read_range(rdev, this_sector, &len); 610 if (read_len > 0) { 611 update_read_sectors(conf, disk, this_sector, read_len); 612 *max_sectors = read_len; 613 return disk; 614 } 615 } 616 617 return -1; 618 } 619 620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) 621 { 622 return !test_bit(In_sync, &rdev->flags) && 623 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; 624 } 625 626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 627 int *max_sectors) 628 { 629 sector_t this_sector = r1_bio->sector; 630 int best_disk = -1; 631 int best_len = 0; 632 int disk; 633 634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 635 struct md_rdev *rdev; 636 int len; 637 int read_len; 638 639 if (r1_bio->bios[disk] == IO_BLOCKED) 640 continue; 641 642 rdev = conf->mirrors[disk].rdev; 643 if (!rdev || test_bit(Faulty, &rdev->flags) || 644 rdev_in_recovery(rdev, r1_bio) || 645 test_bit(WriteMostly, &rdev->flags)) 646 continue; 647 648 /* keep track of the disk with the most readable sectors. */ 649 len = r1_bio->sectors; 650 read_len = raid1_check_read_range(rdev, this_sector, &len); 651 if (read_len > best_len) { 652 best_disk = disk; 653 best_len = read_len; 654 } 655 } 656 657 if (best_disk != -1) { 658 *max_sectors = best_len; 659 update_read_sectors(conf, best_disk, this_sector, best_len); 660 } 661 662 return best_disk; 663 } 664 665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 666 int *max_sectors) 667 { 668 sector_t this_sector = r1_bio->sector; 669 int bb_disk = -1; 670 int bb_read_len = 0; 671 int disk; 672 673 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 674 struct md_rdev *rdev; 675 int len; 676 int read_len; 677 678 if (r1_bio->bios[disk] == IO_BLOCKED) 679 continue; 680 681 rdev = conf->mirrors[disk].rdev; 682 if (!rdev || test_bit(Faulty, &rdev->flags) || 683 !test_bit(WriteMostly, &rdev->flags) || 684 rdev_in_recovery(rdev, r1_bio)) 685 continue; 686 687 /* there are no bad blocks, we can use this disk */ 688 len = r1_bio->sectors; 689 read_len = raid1_check_read_range(rdev, this_sector, &len); 690 if (read_len == r1_bio->sectors) { 691 *max_sectors = read_len; 692 update_read_sectors(conf, disk, this_sector, read_len); 693 return disk; 694 } 695 696 /* 697 * there are partial bad blocks, choose the rdev with largest 698 * read length. 699 */ 700 if (read_len > bb_read_len) { 701 bb_disk = disk; 702 bb_read_len = read_len; 703 } 704 } 705 706 if (bb_disk != -1) { 707 *max_sectors = bb_read_len; 708 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 709 } 710 711 return bb_disk; 712 } 713 714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 715 { 716 /* TODO: address issues with this check and concurrency. */ 717 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 718 conf->mirrors[disk].head_position == r1_bio->sector; 719 } 720 721 /* 722 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 723 * disk. If yes, choose the idle disk. 724 */ 725 static bool should_choose_next(struct r1conf *conf, int disk) 726 { 727 struct raid1_info *mirror = &conf->mirrors[disk]; 728 int opt_iosize; 729 730 if (!test_bit(Nonrot, &mirror->rdev->flags)) 731 return false; 732 733 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 734 return opt_iosize > 0 && mirror->seq_start != MaxSector && 735 mirror->next_seq_sect > opt_iosize && 736 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 737 } 738 739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 740 { 741 if (!rdev || test_bit(Faulty, &rdev->flags)) 742 return false; 743 744 if (rdev_in_recovery(rdev, r1_bio)) 745 return false; 746 747 /* don't read from slow disk unless have to */ 748 if (test_bit(WriteMostly, &rdev->flags)) 749 return false; 750 751 /* don't split IO for bad blocks unless have to */ 752 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 753 return false; 754 755 return true; 756 } 757 758 struct read_balance_ctl { 759 sector_t closest_dist; 760 int closest_dist_disk; 761 int min_pending; 762 int min_pending_disk; 763 int sequential_disk; 764 int readable_disks; 765 }; 766 767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 768 { 769 int disk; 770 struct read_balance_ctl ctl = { 771 .closest_dist_disk = -1, 772 .closest_dist = MaxSector, 773 .min_pending_disk = -1, 774 .min_pending = UINT_MAX, 775 .sequential_disk = -1, 776 }; 777 778 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 779 struct md_rdev *rdev; 780 sector_t dist; 781 unsigned int pending; 782 783 if (r1_bio->bios[disk] == IO_BLOCKED) 784 continue; 785 786 rdev = conf->mirrors[disk].rdev; 787 if (!rdev_readable(rdev, r1_bio)) 788 continue; 789 790 /* At least two disks to choose from so failfast is OK */ 791 if (ctl.readable_disks++ == 1) 792 set_bit(R1BIO_FailFast, &r1_bio->state); 793 794 pending = atomic_read(&rdev->nr_pending); 795 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 796 797 /* Don't change to another disk for sequential reads */ 798 if (is_sequential(conf, disk, r1_bio)) { 799 if (!should_choose_next(conf, disk)) 800 return disk; 801 802 /* 803 * Add 'pending' to avoid choosing this disk if 804 * there is other idle disk. 805 */ 806 pending++; 807 /* 808 * If there is no other idle disk, this disk 809 * will be chosen. 810 */ 811 ctl.sequential_disk = disk; 812 } 813 814 if (ctl.min_pending > pending) { 815 ctl.min_pending = pending; 816 ctl.min_pending_disk = disk; 817 } 818 819 if (ctl.closest_dist > dist) { 820 ctl.closest_dist = dist; 821 ctl.closest_dist_disk = disk; 822 } 823 } 824 825 /* 826 * sequential IO size exceeds optimal iosize, however, there is no other 827 * idle disk, so choose the sequential disk. 828 */ 829 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 830 return ctl.sequential_disk; 831 832 /* 833 * If all disks are rotational, choose the closest disk. If any disk is 834 * non-rotational, choose the disk with less pending request even the 835 * disk is rotational, which might/might not be optimal for raids with 836 * mixed ratation/non-rotational disks depending on workload. 837 */ 838 if (ctl.min_pending_disk != -1 && 839 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 840 return ctl.min_pending_disk; 841 else 842 return ctl.closest_dist_disk; 843 } 844 845 /* 846 * This routine returns the disk from which the requested read should be done. 847 * 848 * 1) If resync is in progress, find the first usable disk and use it even if it 849 * has some bad blocks. 850 * 851 * 2) Now that there is no resync, loop through all disks and skipping slow 852 * disks and disks with bad blocks for now. Only pay attention to key disk 853 * choice. 854 * 855 * 3) If we've made it this far, now look for disks with bad blocks and choose 856 * the one with most number of sectors. 857 * 858 * 4) If we are all the way at the end, we have no choice but to use a disk even 859 * if it is write mostly. 860 * 861 * The rdev for the device selected will have nr_pending incremented. 862 */ 863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 864 int *max_sectors) 865 { 866 int disk; 867 868 clear_bit(R1BIO_FailFast, &r1_bio->state); 869 870 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 871 r1_bio->sectors)) 872 return choose_first_rdev(conf, r1_bio, max_sectors); 873 874 disk = choose_best_rdev(conf, r1_bio); 875 if (disk >= 0) { 876 *max_sectors = r1_bio->sectors; 877 update_read_sectors(conf, disk, r1_bio->sector, 878 r1_bio->sectors); 879 return disk; 880 } 881 882 /* 883 * If we are here it means we didn't find a perfectly good disk so 884 * now spend a bit more time trying to find one with the most good 885 * sectors. 886 */ 887 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 888 if (disk >= 0) 889 return disk; 890 891 return choose_slow_rdev(conf, r1_bio, max_sectors); 892 } 893 894 static void wake_up_barrier(struct r1conf *conf) 895 { 896 if (wq_has_sleeper(&conf->wait_barrier)) 897 wake_up(&conf->wait_barrier); 898 } 899 900 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 901 { 902 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 903 raid1_prepare_flush_writes(conf->mddev); 904 wake_up_barrier(conf); 905 906 while (bio) { /* submit pending writes */ 907 struct bio *next = bio->bi_next; 908 909 raid1_submit_write(bio); 910 bio = next; 911 cond_resched(); 912 } 913 } 914 915 static void flush_pending_writes(struct r1conf *conf) 916 { 917 /* Any writes that have been queued but are awaiting 918 * bitmap updates get flushed here. 919 */ 920 spin_lock_irq(&conf->device_lock); 921 922 if (conf->pending_bio_list.head) { 923 struct blk_plug plug; 924 struct bio *bio; 925 926 bio = bio_list_get(&conf->pending_bio_list); 927 spin_unlock_irq(&conf->device_lock); 928 929 /* 930 * As this is called in a wait_event() loop (see freeze_array), 931 * current->state might be TASK_UNINTERRUPTIBLE which will 932 * cause a warning when we prepare to wait again. As it is 933 * rare that this path is taken, it is perfectly safe to force 934 * us to go around the wait_event() loop again, so the warning 935 * is a false-positive. Silence the warning by resetting 936 * thread state 937 */ 938 __set_current_state(TASK_RUNNING); 939 blk_start_plug(&plug); 940 flush_bio_list(conf, bio); 941 blk_finish_plug(&plug); 942 } else 943 spin_unlock_irq(&conf->device_lock); 944 } 945 946 /* Barriers.... 947 * Sometimes we need to suspend IO while we do something else, 948 * either some resync/recovery, or reconfigure the array. 949 * To do this we raise a 'barrier'. 950 * The 'barrier' is a counter that can be raised multiple times 951 * to count how many activities are happening which preclude 952 * normal IO. 953 * We can only raise the barrier if there is no pending IO. 954 * i.e. if nr_pending == 0. 955 * We choose only to raise the barrier if no-one is waiting for the 956 * barrier to go down. This means that as soon as an IO request 957 * is ready, no other operations which require a barrier will start 958 * until the IO request has had a chance. 959 * 960 * So: regular IO calls 'wait_barrier'. When that returns there 961 * is no backgroup IO happening, It must arrange to call 962 * allow_barrier when it has finished its IO. 963 * backgroup IO calls must call raise_barrier. Once that returns 964 * there is no normal IO happeing. It must arrange to call 965 * lower_barrier when the particular background IO completes. 966 * 967 * If resync/recovery is interrupted, returns -EINTR; 968 * Otherwise, returns 0. 969 */ 970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 971 { 972 int idx = sector_to_idx(sector_nr); 973 974 spin_lock_irq(&conf->resync_lock); 975 976 /* Wait until no block IO is waiting */ 977 wait_event_lock_irq(conf->wait_barrier, 978 !atomic_read(&conf->nr_waiting[idx]), 979 conf->resync_lock); 980 981 /* block any new IO from starting */ 982 atomic_inc(&conf->barrier[idx]); 983 /* 984 * In raise_barrier() we firstly increase conf->barrier[idx] then 985 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 986 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 987 * A memory barrier here to make sure conf->nr_pending[idx] won't 988 * be fetched before conf->barrier[idx] is increased. Otherwise 989 * there will be a race between raise_barrier() and _wait_barrier(). 990 */ 991 smp_mb__after_atomic(); 992 993 /* For these conditions we must wait: 994 * A: while the array is in frozen state 995 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 996 * existing in corresponding I/O barrier bucket. 997 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 998 * max resync count which allowed on current I/O barrier bucket. 999 */ 1000 wait_event_lock_irq(conf->wait_barrier, 1001 (!conf->array_frozen && 1002 !atomic_read(&conf->nr_pending[idx]) && 1003 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 1004 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 1005 conf->resync_lock); 1006 1007 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1008 atomic_dec(&conf->barrier[idx]); 1009 spin_unlock_irq(&conf->resync_lock); 1010 wake_up(&conf->wait_barrier); 1011 return -EINTR; 1012 } 1013 1014 atomic_inc(&conf->nr_sync_pending); 1015 spin_unlock_irq(&conf->resync_lock); 1016 1017 return 0; 1018 } 1019 1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1021 { 1022 int idx = sector_to_idx(sector_nr); 1023 1024 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1025 1026 atomic_dec(&conf->barrier[idx]); 1027 atomic_dec(&conf->nr_sync_pending); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1032 { 1033 bool ret = true; 1034 1035 /* 1036 * We need to increase conf->nr_pending[idx] very early here, 1037 * then raise_barrier() can be blocked when it waits for 1038 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1039 * conf->resync_lock when there is no barrier raised in same 1040 * barrier unit bucket. Also if the array is frozen, I/O 1041 * should be blocked until array is unfrozen. 1042 */ 1043 atomic_inc(&conf->nr_pending[idx]); 1044 /* 1045 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1046 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1047 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1048 * barrier is necessary here to make sure conf->barrier[idx] won't be 1049 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1050 * will be a race between _wait_barrier() and raise_barrier(). 1051 */ 1052 smp_mb__after_atomic(); 1053 1054 /* 1055 * Don't worry about checking two atomic_t variables at same time 1056 * here. If during we check conf->barrier[idx], the array is 1057 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1058 * 0, it is safe to return and make the I/O continue. Because the 1059 * array is frozen, all I/O returned here will eventually complete 1060 * or be queued, no race will happen. See code comment in 1061 * frozen_array(). 1062 */ 1063 if (!READ_ONCE(conf->array_frozen) && 1064 !atomic_read(&conf->barrier[idx])) 1065 return ret; 1066 1067 /* 1068 * After holding conf->resync_lock, conf->nr_pending[idx] 1069 * should be decreased before waiting for barrier to drop. 1070 * Otherwise, we may encounter a race condition because 1071 * raise_barrer() might be waiting for conf->nr_pending[idx] 1072 * to be 0 at same time. 1073 */ 1074 spin_lock_irq(&conf->resync_lock); 1075 atomic_inc(&conf->nr_waiting[idx]); 1076 atomic_dec(&conf->nr_pending[idx]); 1077 /* 1078 * In case freeze_array() is waiting for 1079 * get_unqueued_pending() == extra 1080 */ 1081 wake_up_barrier(conf); 1082 /* Wait for the barrier in same barrier unit bucket to drop. */ 1083 1084 /* Return false when nowait flag is set */ 1085 if (nowait) { 1086 ret = false; 1087 } else { 1088 wait_event_lock_irq(conf->wait_barrier, 1089 !conf->array_frozen && 1090 !atomic_read(&conf->barrier[idx]), 1091 conf->resync_lock); 1092 atomic_inc(&conf->nr_pending[idx]); 1093 } 1094 1095 atomic_dec(&conf->nr_waiting[idx]); 1096 spin_unlock_irq(&conf->resync_lock); 1097 return ret; 1098 } 1099 1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1101 { 1102 int idx = sector_to_idx(sector_nr); 1103 bool ret = true; 1104 1105 /* 1106 * Very similar to _wait_barrier(). The difference is, for read 1107 * I/O we don't need wait for sync I/O, but if the whole array 1108 * is frozen, the read I/O still has to wait until the array is 1109 * unfrozen. Since there is no ordering requirement with 1110 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1111 */ 1112 atomic_inc(&conf->nr_pending[idx]); 1113 1114 if (!READ_ONCE(conf->array_frozen)) 1115 return ret; 1116 1117 spin_lock_irq(&conf->resync_lock); 1118 atomic_inc(&conf->nr_waiting[idx]); 1119 atomic_dec(&conf->nr_pending[idx]); 1120 /* 1121 * In case freeze_array() is waiting for 1122 * get_unqueued_pending() == extra 1123 */ 1124 wake_up_barrier(conf); 1125 /* Wait for array to be unfrozen */ 1126 1127 /* Return false when nowait flag is set */ 1128 if (nowait) { 1129 /* Return false when nowait flag is set */ 1130 ret = false; 1131 } else { 1132 wait_event_lock_irq(conf->wait_barrier, 1133 !conf->array_frozen, 1134 conf->resync_lock); 1135 atomic_inc(&conf->nr_pending[idx]); 1136 } 1137 1138 atomic_dec(&conf->nr_waiting[idx]); 1139 spin_unlock_irq(&conf->resync_lock); 1140 return ret; 1141 } 1142 1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1144 { 1145 int idx = sector_to_idx(sector_nr); 1146 1147 return _wait_barrier(conf, idx, nowait); 1148 } 1149 1150 static void _allow_barrier(struct r1conf *conf, int idx) 1151 { 1152 atomic_dec(&conf->nr_pending[idx]); 1153 wake_up_barrier(conf); 1154 } 1155 1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1157 { 1158 int idx = sector_to_idx(sector_nr); 1159 1160 _allow_barrier(conf, idx); 1161 } 1162 1163 /* conf->resync_lock should be held */ 1164 static int get_unqueued_pending(struct r1conf *conf) 1165 { 1166 int idx, ret; 1167 1168 ret = atomic_read(&conf->nr_sync_pending); 1169 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1170 ret += atomic_read(&conf->nr_pending[idx]) - 1171 atomic_read(&conf->nr_queued[idx]); 1172 1173 return ret; 1174 } 1175 1176 static void freeze_array(struct r1conf *conf, int extra) 1177 { 1178 /* Stop sync I/O and normal I/O and wait for everything to 1179 * go quiet. 1180 * This is called in two situations: 1181 * 1) management command handlers (reshape, remove disk, quiesce). 1182 * 2) one normal I/O request failed. 1183 1184 * After array_frozen is set to 1, new sync IO will be blocked at 1185 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1186 * or wait_read_barrier(). The flying I/Os will either complete or be 1187 * queued. When everything goes quite, there are only queued I/Os left. 1188 1189 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1190 * barrier bucket index which this I/O request hits. When all sync and 1191 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1192 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1193 * in handle_read_error(), we may call freeze_array() before trying to 1194 * fix the read error. In this case, the error read I/O is not queued, 1195 * so get_unqueued_pending() == 1. 1196 * 1197 * Therefore before this function returns, we need to wait until 1198 * get_unqueued_pendings(conf) gets equal to extra. For 1199 * normal I/O context, extra is 1, in rested situations extra is 0. 1200 */ 1201 spin_lock_irq(&conf->resync_lock); 1202 conf->array_frozen = 1; 1203 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1204 wait_event_lock_irq_cmd( 1205 conf->wait_barrier, 1206 get_unqueued_pending(conf) == extra, 1207 conf->resync_lock, 1208 flush_pending_writes(conf)); 1209 spin_unlock_irq(&conf->resync_lock); 1210 } 1211 static void unfreeze_array(struct r1conf *conf) 1212 { 1213 /* reverse the effect of the freeze */ 1214 spin_lock_irq(&conf->resync_lock); 1215 conf->array_frozen = 0; 1216 spin_unlock_irq(&conf->resync_lock); 1217 wake_up(&conf->wait_barrier); 1218 } 1219 1220 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1221 struct bio *bio) 1222 { 1223 int size = bio->bi_iter.bi_size; 1224 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1225 int i = 0; 1226 struct bio *behind_bio = NULL; 1227 1228 behind_bio = bio_alloc_bioset(NULL, vcnt, bio->bi_opf, GFP_NOIO, 1229 &r1_bio->mddev->bio_set); 1230 1231 /* discard op, we don't support writezero/writesame yet */ 1232 if (!bio_has_data(bio)) { 1233 behind_bio->bi_iter.bi_size = size; 1234 goto skip_copy; 1235 } 1236 1237 while (i < vcnt && size) { 1238 struct page *page; 1239 int len = min_t(int, PAGE_SIZE, size); 1240 1241 page = alloc_page(GFP_NOIO); 1242 if (unlikely(!page)) 1243 goto free_pages; 1244 1245 if (!bio_add_page(behind_bio, page, len, 0)) { 1246 put_page(page); 1247 goto free_pages; 1248 } 1249 1250 size -= len; 1251 i++; 1252 } 1253 1254 bio_copy_data(behind_bio, bio); 1255 skip_copy: 1256 r1_bio->behind_master_bio = behind_bio; 1257 set_bit(R1BIO_BehindIO, &r1_bio->state); 1258 1259 return; 1260 1261 free_pages: 1262 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1263 bio->bi_iter.bi_size); 1264 bio_free_pages(behind_bio); 1265 bio_put(behind_bio); 1266 } 1267 1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1269 { 1270 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1271 cb); 1272 struct mddev *mddev = plug->cb.data; 1273 struct r1conf *conf = mddev->private; 1274 struct bio *bio; 1275 1276 if (from_schedule) { 1277 spin_lock_irq(&conf->device_lock); 1278 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1279 spin_unlock_irq(&conf->device_lock); 1280 wake_up_barrier(conf); 1281 md_wakeup_thread(mddev->thread); 1282 kfree(plug); 1283 return; 1284 } 1285 1286 /* we aren't scheduling, so we can do the write-out directly. */ 1287 bio = bio_list_get(&plug->pending); 1288 flush_bio_list(conf, bio); 1289 kfree(plug); 1290 } 1291 1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1293 { 1294 r1_bio->master_bio = bio; 1295 r1_bio->sectors = bio_sectors(bio); 1296 r1_bio->state = 0; 1297 r1_bio->mddev = mddev; 1298 r1_bio->sector = bio->bi_iter.bi_sector; 1299 } 1300 1301 static inline struct r1bio * 1302 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1303 { 1304 struct r1conf *conf = mddev->private; 1305 struct r1bio *r1_bio; 1306 1307 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1308 memset(r1_bio, 0, offsetof(struct r1bio, bios[conf->raid_disks * 2])); 1309 init_r1bio(r1_bio, mddev, bio); 1310 return r1_bio; 1311 } 1312 1313 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1314 int max_read_sectors, struct r1bio *r1_bio) 1315 { 1316 struct r1conf *conf = mddev->private; 1317 struct raid1_info *mirror; 1318 struct bio *read_bio; 1319 int max_sectors; 1320 int rdisk; 1321 bool r1bio_existed = !!r1_bio; 1322 1323 /* 1324 * If r1_bio is set, we are blocking the raid1d thread 1325 * so there is a tiny risk of deadlock. So ask for 1326 * emergency memory if needed. 1327 */ 1328 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1329 1330 /* 1331 * Still need barrier for READ in case that whole 1332 * array is frozen. 1333 */ 1334 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1335 bio->bi_opf & REQ_NOWAIT)) { 1336 bio_wouldblock_error(bio); 1337 return; 1338 } 1339 1340 if (!r1_bio) 1341 r1_bio = alloc_r1bio(mddev, bio); 1342 else 1343 init_r1bio(r1_bio, mddev, bio); 1344 r1_bio->sectors = max_read_sectors; 1345 1346 /* 1347 * make_request() can abort the operation when read-ahead is being 1348 * used and no empty request is available. 1349 */ 1350 rdisk = read_balance(conf, r1_bio, &max_sectors); 1351 if (rdisk < 0) { 1352 /* couldn't find anywhere to read from */ 1353 if (r1bio_existed) 1354 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 1355 mdname(mddev), 1356 conf->mirrors[r1_bio->read_disk].rdev->bdev, 1357 r1_bio->sector); 1358 raid_end_bio_io(r1_bio); 1359 return; 1360 } 1361 mirror = conf->mirrors + rdisk; 1362 1363 if (r1bio_existed) 1364 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1365 mdname(mddev), 1366 (unsigned long long)r1_bio->sector, 1367 mirror->rdev->bdev); 1368 1369 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1370 md_bitmap_enabled(mddev, false)) { 1371 /* 1372 * Reading from a write-mostly device must take care not to 1373 * over-take any writes that are 'behind' 1374 */ 1375 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1376 mddev->bitmap_ops->wait_behind_writes(mddev); 1377 } 1378 1379 if (max_sectors < bio_sectors(bio)) { 1380 bio = bio_submit_split_bioset(bio, max_sectors, 1381 &conf->bio_split); 1382 if (!bio) { 1383 set_bit(R1BIO_Returned, &r1_bio->state); 1384 goto err_handle; 1385 } 1386 1387 r1_bio->master_bio = bio; 1388 r1_bio->sectors = max_sectors; 1389 } 1390 1391 r1_bio->read_disk = rdisk; 1392 if (!r1bio_existed) { 1393 md_account_bio(mddev, &bio); 1394 r1_bio->master_bio = bio; 1395 } 1396 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1397 &mddev->bio_set); 1398 read_bio->bi_opf &= ~REQ_NOWAIT; 1399 r1_bio->bios[rdisk] = read_bio; 1400 1401 read_bio->bi_iter.bi_sector = r1_bio->sector + 1402 mirror->rdev->data_offset; 1403 read_bio->bi_end_io = raid1_end_read_request; 1404 if (test_bit(FailFast, &mirror->rdev->flags) && 1405 test_bit(R1BIO_FailFast, &r1_bio->state)) 1406 read_bio->bi_opf |= MD_FAILFAST; 1407 read_bio->bi_private = r1_bio; 1408 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1409 submit_bio_noacct(read_bio); 1410 return; 1411 1412 err_handle: 1413 atomic_dec(&mirror->rdev->nr_pending); 1414 raid_end_bio_io(r1_bio); 1415 } 1416 1417 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio) 1418 { 1419 struct r1conf *conf = mddev->private; 1420 int disks = conf->raid_disks * 2; 1421 int i; 1422 1423 retry: 1424 for (i = 0; i < disks; i++) { 1425 struct md_rdev *rdev = conf->mirrors[i].rdev; 1426 1427 if (!rdev) 1428 continue; 1429 1430 /* don't write here until the bad block is acknowledged */ 1431 if (test_bit(WriteErrorSeen, &rdev->flags) && 1432 rdev_has_badblock(rdev, bio->bi_iter.bi_sector, 1433 bio_sectors(bio)) < 0) 1434 set_bit(BlockedBadBlocks, &rdev->flags); 1435 1436 if (rdev_blocked(rdev)) { 1437 if (bio->bi_opf & REQ_NOWAIT) 1438 return false; 1439 1440 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked", 1441 rdev->raid_disk); 1442 atomic_inc(&rdev->nr_pending); 1443 md_wait_for_blocked_rdev(rdev, rdev->mddev); 1444 goto retry; 1445 } 1446 } 1447 1448 return true; 1449 } 1450 1451 static void raid1_start_write_behind(struct mddev *mddev, struct r1bio *r1_bio, 1452 struct bio *bio) 1453 { 1454 unsigned long max_write_behind = mddev->bitmap_info.max_write_behind; 1455 struct md_bitmap_stats stats; 1456 int err; 1457 1458 /* behind write rely on bitmap, see bitmap_operations */ 1459 if (!md_bitmap_enabled(mddev, false)) 1460 return; 1461 1462 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1463 if (err) 1464 return; 1465 1466 /* Don't do behind IO if reader is waiting, or there are too many. */ 1467 if (!stats.behind_wait && stats.behind_writes < max_write_behind) 1468 alloc_behind_master_bio(r1_bio, bio); 1469 1470 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 1471 mddev->bitmap_ops->start_behind_write(mddev); 1472 1473 } 1474 1475 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1476 int max_write_sectors) 1477 { 1478 struct r1conf *conf = mddev->private; 1479 struct r1bio *r1_bio; 1480 int i, disks, k; 1481 unsigned long flags; 1482 int first_clone; 1483 int max_sectors; 1484 bool write_behind = false; 1485 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1486 1487 if (mddev_is_clustered(mddev) && 1488 mddev->cluster_ops->area_resyncing(mddev, WRITE, 1489 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1490 1491 DEFINE_WAIT(w); 1492 if (bio->bi_opf & REQ_NOWAIT) { 1493 bio_wouldblock_error(bio); 1494 return; 1495 } 1496 for (;;) { 1497 prepare_to_wait(&conf->wait_barrier, 1498 &w, TASK_IDLE); 1499 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE, 1500 bio->bi_iter.bi_sector, 1501 bio_end_sector(bio))) 1502 break; 1503 schedule(); 1504 } 1505 finish_wait(&conf->wait_barrier, &w); 1506 } 1507 1508 /* 1509 * Register the new request and wait if the reconstruction 1510 * thread has put up a bar for new requests. 1511 * Continue immediately if no resync is active currently. 1512 */ 1513 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1514 bio->bi_opf & REQ_NOWAIT)) { 1515 bio_wouldblock_error(bio); 1516 return; 1517 } 1518 1519 if (!wait_blocked_rdev(mddev, bio)) { 1520 bio_wouldblock_error(bio); 1521 return; 1522 } 1523 1524 r1_bio = alloc_r1bio(mddev, bio); 1525 r1_bio->sectors = max_write_sectors; 1526 1527 /* first select target devices under rcu_lock and 1528 * inc refcount on their rdev. Record them by setting 1529 * bios[x] to bio 1530 * If there are known/acknowledged bad blocks on any device on 1531 * which we have seen a write error, we want to avoid writing those 1532 * blocks. 1533 * This potentially requires several writes to write around 1534 * the bad blocks. Each set of writes gets it's own r1bio 1535 * with a set of bios attached. 1536 */ 1537 1538 disks = conf->raid_disks * 2; 1539 max_sectors = r1_bio->sectors; 1540 for (i = 0; i < disks; i++) { 1541 struct md_rdev *rdev = conf->mirrors[i].rdev; 1542 1543 /* 1544 * The write-behind io is only attempted on drives marked as 1545 * write-mostly, which means we could allocate write behind 1546 * bio later. 1547 */ 1548 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1549 write_behind = true; 1550 1551 r1_bio->bios[i] = NULL; 1552 if (!rdev || test_bit(Faulty, &rdev->flags)) 1553 continue; 1554 1555 atomic_inc(&rdev->nr_pending); 1556 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1557 sector_t first_bad; 1558 sector_t bad_sectors; 1559 int is_bad; 1560 1561 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1562 &first_bad, &bad_sectors); 1563 if (is_bad && first_bad <= r1_bio->sector) { 1564 /* Cannot write here at all */ 1565 bad_sectors -= (r1_bio->sector - first_bad); 1566 if (bad_sectors < max_sectors) 1567 /* mustn't write more than bad_sectors 1568 * to other devices yet 1569 */ 1570 max_sectors = bad_sectors; 1571 rdev_dec_pending(rdev, mddev); 1572 continue; 1573 } 1574 if (is_bad) { 1575 int good_sectors; 1576 1577 /* 1578 * We cannot atomically write this, so just 1579 * error in that case. It could be possible to 1580 * atomically write other mirrors, but the 1581 * complexity of supporting that is not worth 1582 * the benefit. 1583 */ 1584 if (bio->bi_opf & REQ_ATOMIC) 1585 goto err_handle; 1586 1587 good_sectors = first_bad - r1_bio->sector; 1588 if (good_sectors < max_sectors) 1589 max_sectors = good_sectors; 1590 } 1591 } 1592 r1_bio->bios[i] = bio; 1593 } 1594 1595 /* 1596 * When using a bitmap, we may call alloc_behind_master_bio below. 1597 * alloc_behind_master_bio allocates a copy of the data payload a page 1598 * at a time and thus needs a new bio that can fit the whole payload 1599 * this bio in page sized chunks. 1600 */ 1601 if (write_behind && mddev->bitmap) 1602 max_sectors = min_t(int, max_sectors, 1603 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1604 if (max_sectors < bio_sectors(bio)) { 1605 bio = bio_submit_split_bioset(bio, max_sectors, 1606 &conf->bio_split); 1607 if (!bio) { 1608 set_bit(R1BIO_Returned, &r1_bio->state); 1609 goto err_handle; 1610 } 1611 1612 r1_bio->master_bio = bio; 1613 r1_bio->sectors = max_sectors; 1614 } 1615 1616 md_account_bio(mddev, &bio); 1617 r1_bio->master_bio = bio; 1618 atomic_set(&r1_bio->remaining, 1); 1619 atomic_set(&r1_bio->behind_remaining, 0); 1620 1621 first_clone = 1; 1622 1623 for (i = 0; i < disks; i++) { 1624 struct bio *mbio = NULL; 1625 struct md_rdev *rdev = conf->mirrors[i].rdev; 1626 if (!r1_bio->bios[i]) 1627 continue; 1628 1629 if (first_clone) { 1630 if (write_behind) 1631 raid1_start_write_behind(mddev, r1_bio, bio); 1632 first_clone = 0; 1633 } 1634 1635 if (r1_bio->behind_master_bio) { 1636 mbio = bio_alloc_clone(rdev->bdev, 1637 r1_bio->behind_master_bio, 1638 GFP_NOIO, &mddev->bio_set); 1639 if (test_bit(CollisionCheck, &rdev->flags)) 1640 wait_for_serialization(rdev, r1_bio); 1641 if (test_bit(WriteMostly, &rdev->flags)) 1642 atomic_inc(&r1_bio->behind_remaining); 1643 } else { 1644 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1645 &mddev->bio_set); 1646 1647 if (test_bit(MD_SERIALIZE_POLICY, &mddev->flags)) 1648 wait_for_serialization(rdev, r1_bio); 1649 } 1650 1651 mbio->bi_opf &= ~REQ_NOWAIT; 1652 r1_bio->bios[i] = mbio; 1653 1654 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1655 mbio->bi_end_io = raid1_end_write_request; 1656 if (test_bit(FailFast, &rdev->flags) && 1657 !test_bit(WriteMostly, &rdev->flags) && 1658 conf->raid_disks - mddev->degraded > 1) 1659 mbio->bi_opf |= MD_FAILFAST; 1660 mbio->bi_private = r1_bio; 1661 1662 atomic_inc(&r1_bio->remaining); 1663 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1664 /* flush_pending_writes() needs access to the rdev so...*/ 1665 mbio->bi_bdev = (void *)rdev; 1666 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1667 spin_lock_irqsave(&conf->device_lock, flags); 1668 bio_list_add(&conf->pending_bio_list, mbio); 1669 spin_unlock_irqrestore(&conf->device_lock, flags); 1670 md_wakeup_thread(mddev->thread); 1671 } 1672 } 1673 1674 r1_bio_write_done(r1_bio); 1675 1676 /* In case raid1d snuck in to freeze_array */ 1677 wake_up_barrier(conf); 1678 return; 1679 err_handle: 1680 for (k = 0; k < i; k++) { 1681 if (r1_bio->bios[k]) { 1682 rdev_dec_pending(conf->mirrors[k].rdev, mddev); 1683 r1_bio->bios[k] = NULL; 1684 } 1685 } 1686 1687 raid_end_bio_io(r1_bio); 1688 } 1689 1690 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1691 { 1692 sector_t sectors; 1693 1694 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1695 && md_flush_request(mddev, bio)) 1696 return true; 1697 1698 /* 1699 * There is a limit to the maximum size, but 1700 * the read/write handler might find a lower limit 1701 * due to bad blocks. To avoid multiple splits, 1702 * we pass the maximum number of sectors down 1703 * and let the lower level perform the split. 1704 */ 1705 sectors = align_to_barrier_unit_end( 1706 bio->bi_iter.bi_sector, bio_sectors(bio)); 1707 1708 if (bio_data_dir(bio) == READ) 1709 raid1_read_request(mddev, bio, sectors, NULL); 1710 else { 1711 md_write_start(mddev,bio); 1712 raid1_write_request(mddev, bio, sectors); 1713 } 1714 return true; 1715 } 1716 1717 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1718 { 1719 struct r1conf *conf = mddev->private; 1720 int i; 1721 1722 lockdep_assert_held(&mddev->lock); 1723 1724 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1725 conf->raid_disks - mddev->degraded); 1726 for (i = 0; i < conf->raid_disks; i++) { 1727 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1728 1729 seq_printf(seq, "%s", 1730 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1731 } 1732 seq_printf(seq, "]"); 1733 } 1734 1735 /** 1736 * raid1_error() - RAID1 error handler. 1737 * @mddev: affected md device. 1738 * @rdev: member device to fail. 1739 * 1740 * The routine acknowledges &rdev failure and determines new @mddev state. 1741 * If it failed, then: 1742 * - &MD_BROKEN flag is set in &mddev->flags. 1743 * - recovery is disabled. 1744 * Otherwise, it must be degraded: 1745 * - recovery is interrupted. 1746 * - &mddev->degraded is bumped. 1747 * 1748 * @rdev is marked as &Faulty excluding case when array is failed and 1749 * MD_FAILLAST_DEV is not set. 1750 */ 1751 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1752 { 1753 struct r1conf *conf = mddev->private; 1754 unsigned long flags; 1755 1756 spin_lock_irqsave(&conf->device_lock, flags); 1757 1758 if (test_bit(In_sync, &rdev->flags) && 1759 (conf->raid_disks - mddev->degraded) == 1) { 1760 set_bit(MD_BROKEN, &mddev->flags); 1761 1762 if (!test_bit(MD_FAILLAST_DEV, &mddev->flags)) { 1763 spin_unlock_irqrestore(&conf->device_lock, flags); 1764 return; 1765 } 1766 } 1767 set_bit(Blocked, &rdev->flags); 1768 if (test_and_clear_bit(In_sync, &rdev->flags)) 1769 mddev->degraded++; 1770 set_bit(Faulty, &rdev->flags); 1771 spin_unlock_irqrestore(&conf->device_lock, flags); 1772 /* 1773 * if recovery is running, make sure it aborts. 1774 */ 1775 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1776 set_mask_bits(&mddev->sb_flags, 0, 1777 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1778 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1779 "md/raid1:%s: Operation continuing on %d devices.\n", 1780 mdname(mddev), rdev->bdev, 1781 mdname(mddev), conf->raid_disks - mddev->degraded); 1782 } 1783 1784 static void print_conf(struct r1conf *conf) 1785 { 1786 int i; 1787 1788 pr_debug("RAID1 conf printout:\n"); 1789 if (!conf) { 1790 pr_debug("(!conf)\n"); 1791 return; 1792 } 1793 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1794 conf->raid_disks); 1795 1796 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1797 for (i = 0; i < conf->raid_disks; i++) { 1798 struct md_rdev *rdev = conf->mirrors[i].rdev; 1799 if (rdev) 1800 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1801 i, !test_bit(In_sync, &rdev->flags), 1802 !test_bit(Faulty, &rdev->flags), 1803 rdev->bdev); 1804 } 1805 } 1806 1807 static void close_sync(struct r1conf *conf) 1808 { 1809 int idx; 1810 1811 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1812 _wait_barrier(conf, idx, false); 1813 _allow_barrier(conf, idx); 1814 } 1815 1816 mempool_exit(&conf->r1buf_pool); 1817 } 1818 1819 static int raid1_spare_active(struct mddev *mddev) 1820 { 1821 int i; 1822 struct r1conf *conf = mddev->private; 1823 int count = 0; 1824 unsigned long flags; 1825 1826 /* 1827 * Find all failed disks within the RAID1 configuration 1828 * and mark them readable. 1829 * Called under mddev lock, so rcu protection not needed. 1830 * device_lock used to avoid races with raid1_end_read_request 1831 * which expects 'In_sync' flags and ->degraded to be consistent. 1832 */ 1833 spin_lock_irqsave(&conf->device_lock, flags); 1834 for (i = 0; i < conf->raid_disks; i++) { 1835 struct md_rdev *rdev = conf->mirrors[i].rdev; 1836 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1837 if (repl 1838 && !test_bit(Candidate, &repl->flags) 1839 && repl->recovery_offset == MaxSector 1840 && !test_bit(Faulty, &repl->flags) 1841 && !test_and_set_bit(In_sync, &repl->flags)) { 1842 /* replacement has just become active */ 1843 if (!rdev || 1844 !test_and_clear_bit(In_sync, &rdev->flags)) 1845 count++; 1846 if (rdev) { 1847 /* Replaced device not technically 1848 * faulty, but we need to be sure 1849 * it gets removed and never re-added 1850 */ 1851 set_bit(Faulty, &rdev->flags); 1852 sysfs_notify_dirent_safe( 1853 rdev->sysfs_state); 1854 } 1855 } 1856 if (rdev 1857 && rdev->recovery_offset == MaxSector 1858 && !test_bit(Faulty, &rdev->flags) 1859 && !test_and_set_bit(In_sync, &rdev->flags)) { 1860 count++; 1861 sysfs_notify_dirent_safe(rdev->sysfs_state); 1862 } 1863 } 1864 mddev->degraded -= count; 1865 spin_unlock_irqrestore(&conf->device_lock, flags); 1866 1867 print_conf(conf); 1868 return count; 1869 } 1870 1871 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1872 bool replacement) 1873 { 1874 struct raid1_info *info = conf->mirrors + disk; 1875 1876 if (replacement) 1877 info += conf->raid_disks; 1878 1879 if (info->rdev) 1880 return false; 1881 1882 if (bdev_nonrot(rdev->bdev)) { 1883 set_bit(Nonrot, &rdev->flags); 1884 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1885 } 1886 1887 rdev->raid_disk = disk; 1888 info->head_position = 0; 1889 info->seq_start = MaxSector; 1890 WRITE_ONCE(info->rdev, rdev); 1891 1892 return true; 1893 } 1894 1895 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1896 { 1897 struct raid1_info *info = conf->mirrors + disk; 1898 struct md_rdev *rdev = info->rdev; 1899 1900 if (!rdev || test_bit(In_sync, &rdev->flags) || 1901 atomic_read(&rdev->nr_pending)) 1902 return false; 1903 1904 /* Only remove non-faulty devices if recovery is not possible. */ 1905 if (!test_bit(Faulty, &rdev->flags) && 1906 rdev->mddev->degraded < conf->raid_disks) 1907 return false; 1908 1909 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1910 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1911 1912 WRITE_ONCE(info->rdev, NULL); 1913 return true; 1914 } 1915 1916 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1917 { 1918 struct r1conf *conf = mddev->private; 1919 int err = -EEXIST; 1920 int mirror = 0, repl_slot = -1; 1921 struct raid1_info *p; 1922 int first = 0; 1923 int last = conf->raid_disks - 1; 1924 1925 if (rdev->raid_disk >= 0) 1926 first = last = rdev->raid_disk; 1927 1928 /* 1929 * find the disk ... but prefer rdev->saved_raid_disk 1930 * if possible. 1931 */ 1932 if (rdev->saved_raid_disk >= 0 && 1933 rdev->saved_raid_disk >= first && 1934 rdev->saved_raid_disk < conf->raid_disks && 1935 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1936 first = last = rdev->saved_raid_disk; 1937 1938 for (mirror = first; mirror <= last; mirror++) { 1939 p = conf->mirrors + mirror; 1940 if (!p->rdev) { 1941 err = mddev_stack_new_rdev(mddev, rdev); 1942 if (err) 1943 return err; 1944 1945 raid1_add_conf(conf, rdev, mirror, false); 1946 /* As all devices are equivalent, we don't need a full recovery 1947 * if this was recently any drive of the array 1948 */ 1949 if (rdev->saved_raid_disk < 0) 1950 conf->fullsync = 1; 1951 break; 1952 } 1953 if (test_bit(WantReplacement, &p->rdev->flags) && 1954 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1955 repl_slot = mirror; 1956 } 1957 1958 if (err && repl_slot >= 0) { 1959 /* Add this device as a replacement */ 1960 clear_bit(In_sync, &rdev->flags); 1961 set_bit(Replacement, &rdev->flags); 1962 raid1_add_conf(conf, rdev, repl_slot, true); 1963 err = 0; 1964 conf->fullsync = 1; 1965 } 1966 1967 print_conf(conf); 1968 return err; 1969 } 1970 1971 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1972 { 1973 struct r1conf *conf = mddev->private; 1974 int err = 0; 1975 int number = rdev->raid_disk; 1976 struct raid1_info *p = conf->mirrors + number; 1977 1978 if (unlikely(number >= conf->raid_disks)) 1979 goto abort; 1980 1981 if (rdev != p->rdev) { 1982 number += conf->raid_disks; 1983 p = conf->mirrors + number; 1984 } 1985 1986 print_conf(conf); 1987 if (rdev == p->rdev) { 1988 if (!raid1_remove_conf(conf, number)) { 1989 err = -EBUSY; 1990 goto abort; 1991 } 1992 1993 if (number < conf->raid_disks && 1994 conf->mirrors[conf->raid_disks + number].rdev) { 1995 /* We just removed a device that is being replaced. 1996 * Move down the replacement. We drain all IO before 1997 * doing this to avoid confusion. 1998 */ 1999 struct md_rdev *repl = 2000 conf->mirrors[conf->raid_disks + number].rdev; 2001 freeze_array(conf, 0); 2002 if (atomic_read(&repl->nr_pending)) { 2003 /* It means that some queued IO of retry_list 2004 * hold repl. Thus, we cannot set replacement 2005 * as NULL, avoiding rdev NULL pointer 2006 * dereference in sync_request_write and 2007 * handle_write_finished. 2008 */ 2009 err = -EBUSY; 2010 unfreeze_array(conf); 2011 goto abort; 2012 } 2013 clear_bit(Replacement, &repl->flags); 2014 WRITE_ONCE(p->rdev, repl); 2015 conf->mirrors[conf->raid_disks + number].rdev = NULL; 2016 unfreeze_array(conf); 2017 } 2018 2019 clear_bit(WantReplacement, &rdev->flags); 2020 err = md_integrity_register(mddev); 2021 } 2022 abort: 2023 2024 print_conf(conf); 2025 return err; 2026 } 2027 2028 static void end_sync_read(struct bio *bio) 2029 { 2030 struct r1bio *r1_bio = get_resync_r1bio(bio); 2031 2032 update_head_pos(r1_bio->read_disk, r1_bio); 2033 2034 /* 2035 * we have read a block, now it needs to be re-written, 2036 * or re-read if the read failed. 2037 * We don't do much here, just schedule handling by raid1d 2038 */ 2039 if (!bio->bi_status) 2040 set_bit(R1BIO_Uptodate, &r1_bio->state); 2041 2042 if (atomic_dec_and_test(&r1_bio->remaining)) 2043 reschedule_retry(r1_bio); 2044 } 2045 2046 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2047 { 2048 sector_t sync_blocks = 0; 2049 sector_t s = r1_bio->sector; 2050 long sectors_to_go = r1_bio->sectors; 2051 2052 /* make sure these bits don't get cleared. */ 2053 do { 2054 md_bitmap_end_sync(mddev, s, &sync_blocks); 2055 s += sync_blocks; 2056 sectors_to_go -= sync_blocks; 2057 } while (sectors_to_go > 0); 2058 } 2059 2060 static void put_sync_write_buf(struct r1bio *r1_bio) 2061 { 2062 if (atomic_dec_and_test(&r1_bio->remaining)) { 2063 struct mddev *mddev = r1_bio->mddev; 2064 int s = r1_bio->sectors; 2065 2066 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2067 test_bit(R1BIO_WriteError, &r1_bio->state)) 2068 reschedule_retry(r1_bio); 2069 else { 2070 put_buf(r1_bio); 2071 md_done_sync(mddev, s); 2072 } 2073 } 2074 } 2075 2076 static void end_sync_write(struct bio *bio) 2077 { 2078 struct r1bio *r1_bio = get_resync_r1bio(bio); 2079 struct mddev *mddev = r1_bio->mddev; 2080 struct r1conf *conf = mddev->private; 2081 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2082 2083 if (bio->bi_status) { 2084 abort_sync_write(mddev, r1_bio); 2085 set_bit(WriteErrorSeen, &rdev->flags); 2086 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2087 set_bit(MD_RECOVERY_NEEDED, & 2088 mddev->recovery); 2089 set_bit(R1BIO_WriteError, &r1_bio->state); 2090 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2091 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2092 r1_bio->sector, r1_bio->sectors)) { 2093 set_bit(R1BIO_MadeGood, &r1_bio->state); 2094 } 2095 2096 put_sync_write_buf(r1_bio); 2097 } 2098 2099 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2100 int sectors, struct page *page, blk_opf_t rw) 2101 { 2102 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2103 /* success */ 2104 return 1; 2105 if (rw == REQ_OP_WRITE) { 2106 set_bit(WriteErrorSeen, &rdev->flags); 2107 if (!test_and_set_bit(WantReplacement, 2108 &rdev->flags)) 2109 set_bit(MD_RECOVERY_NEEDED, & 2110 rdev->mddev->recovery); 2111 } 2112 /* need to record an error - either for the block or the device */ 2113 rdev_set_badblocks(rdev, sector, sectors, 0); 2114 return 0; 2115 } 2116 2117 static int fix_sync_read_error(struct r1bio *r1_bio) 2118 { 2119 /* Try some synchronous reads of other devices to get 2120 * good data, much like with normal read errors. Only 2121 * read into the pages we already have so we don't 2122 * need to re-issue the read request. 2123 * We don't need to freeze the array, because being in an 2124 * active sync request, there is no normal IO, and 2125 * no overlapping syncs. 2126 * We don't need to check is_badblock() again as we 2127 * made sure that anything with a bad block in range 2128 * will have bi_end_io clear. 2129 */ 2130 struct mddev *mddev = r1_bio->mddev; 2131 struct r1conf *conf = mddev->private; 2132 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2133 struct page **pages = get_resync_pages(bio)->pages; 2134 sector_t sect = r1_bio->sector; 2135 int sectors = r1_bio->sectors; 2136 int idx = 0; 2137 struct md_rdev *rdev; 2138 2139 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2140 if (test_bit(FailFast, &rdev->flags)) { 2141 /* Don't try recovering from here - just fail it 2142 * ... unless it is the last working device of course */ 2143 md_error(mddev, rdev); 2144 if (test_bit(Faulty, &rdev->flags)) 2145 /* Don't try to read from here, but make sure 2146 * put_buf does it's thing 2147 */ 2148 bio->bi_end_io = end_sync_write; 2149 } 2150 2151 while(sectors) { 2152 int s = sectors; 2153 int d = r1_bio->read_disk; 2154 int success = 0; 2155 int start; 2156 2157 if (s > (PAGE_SIZE>>9)) 2158 s = PAGE_SIZE >> 9; 2159 do { 2160 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2161 /* No rcu protection needed here devices 2162 * can only be removed when no resync is 2163 * active, and resync is currently active 2164 */ 2165 rdev = conf->mirrors[d].rdev; 2166 if (sync_page_io(rdev, sect, s<<9, 2167 pages[idx], 2168 REQ_OP_READ, false)) { 2169 success = 1; 2170 break; 2171 } 2172 } 2173 d++; 2174 if (d == conf->raid_disks * 2) 2175 d = 0; 2176 } while (!success && d != r1_bio->read_disk); 2177 2178 if (!success) { 2179 int abort = 0; 2180 /* Cannot read from anywhere, this block is lost. 2181 * Record a bad block on each device. If that doesn't 2182 * work just disable and interrupt the recovery. 2183 * Don't fail devices as that won't really help. 2184 */ 2185 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2186 mdname(mddev), bio->bi_bdev, 2187 (unsigned long long)r1_bio->sector); 2188 for (d = 0; d < conf->raid_disks * 2; d++) { 2189 rdev = conf->mirrors[d].rdev; 2190 if (!rdev || test_bit(Faulty, &rdev->flags)) 2191 continue; 2192 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2193 abort = 1; 2194 } 2195 if (abort) 2196 return 0; 2197 2198 /* Try next page */ 2199 sectors -= s; 2200 sect += s; 2201 idx++; 2202 continue; 2203 } 2204 2205 start = d; 2206 /* write it back and re-read */ 2207 while (d != r1_bio->read_disk) { 2208 if (d == 0) 2209 d = conf->raid_disks * 2; 2210 d--; 2211 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2212 continue; 2213 rdev = conf->mirrors[d].rdev; 2214 if (r1_sync_page_io(rdev, sect, s, 2215 pages[idx], 2216 REQ_OP_WRITE) == 0) { 2217 r1_bio->bios[d]->bi_end_io = NULL; 2218 rdev_dec_pending(rdev, mddev); 2219 } 2220 } 2221 d = start; 2222 while (d != r1_bio->read_disk) { 2223 if (d == 0) 2224 d = conf->raid_disks * 2; 2225 d--; 2226 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2227 continue; 2228 rdev = conf->mirrors[d].rdev; 2229 if (r1_sync_page_io(rdev, sect, s, 2230 pages[idx], 2231 REQ_OP_READ) != 0) 2232 atomic_add(s, &rdev->corrected_errors); 2233 } 2234 sectors -= s; 2235 sect += s; 2236 idx ++; 2237 } 2238 set_bit(R1BIO_Uptodate, &r1_bio->state); 2239 bio->bi_status = 0; 2240 return 1; 2241 } 2242 2243 static void process_checks(struct r1bio *r1_bio) 2244 { 2245 /* We have read all readable devices. If we haven't 2246 * got the block, then there is no hope left. 2247 * If we have, then we want to do a comparison 2248 * and skip the write if everything is the same. 2249 * If any blocks failed to read, then we need to 2250 * attempt an over-write 2251 */ 2252 struct mddev *mddev = r1_bio->mddev; 2253 struct r1conf *conf = mddev->private; 2254 int primary; 2255 int i; 2256 int vcnt; 2257 2258 /* Fix variable parts of all bios */ 2259 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2260 for (i = 0; i < conf->raid_disks * 2; i++) { 2261 blk_status_t status; 2262 struct bio *b = r1_bio->bios[i]; 2263 struct resync_pages *rp = get_resync_pages(b); 2264 if (b->bi_end_io != end_sync_read) 2265 continue; 2266 /* fixup the bio for reuse, but preserve errno */ 2267 status = b->bi_status; 2268 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2269 b->bi_status = status; 2270 b->bi_iter.bi_sector = r1_bio->sector + 2271 conf->mirrors[i].rdev->data_offset; 2272 b->bi_end_io = end_sync_read; 2273 rp->raid_bio = r1_bio; 2274 b->bi_private = rp; 2275 2276 /* initialize bvec table again */ 2277 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2278 } 2279 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2280 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2281 !r1_bio->bios[primary]->bi_status) { 2282 r1_bio->bios[primary]->bi_end_io = NULL; 2283 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2284 break; 2285 } 2286 r1_bio->read_disk = primary; 2287 for (i = 0; i < conf->raid_disks * 2; i++) { 2288 int j = 0; 2289 struct bio *pbio = r1_bio->bios[primary]; 2290 struct bio *sbio = r1_bio->bios[i]; 2291 blk_status_t status = sbio->bi_status; 2292 struct page **ppages = get_resync_pages(pbio)->pages; 2293 struct page **spages = get_resync_pages(sbio)->pages; 2294 struct bio_vec *bi; 2295 int page_len[RESYNC_PAGES] = { 0 }; 2296 struct bvec_iter_all iter_all; 2297 2298 if (sbio->bi_end_io != end_sync_read) 2299 continue; 2300 /* Now we can 'fixup' the error value */ 2301 sbio->bi_status = 0; 2302 2303 bio_for_each_segment_all(bi, sbio, iter_all) 2304 page_len[j++] = bi->bv_len; 2305 2306 if (!status) { 2307 for (j = vcnt; j-- ; ) { 2308 if (memcmp(page_address(ppages[j]), 2309 page_address(spages[j]), 2310 page_len[j])) 2311 break; 2312 } 2313 } else 2314 j = 0; 2315 if (j >= 0) 2316 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2317 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2318 && !status)) { 2319 /* No need to write to this device. */ 2320 sbio->bi_end_io = NULL; 2321 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2322 continue; 2323 } 2324 2325 bio_copy_data(sbio, pbio); 2326 } 2327 } 2328 2329 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2330 { 2331 struct r1conf *conf = mddev->private; 2332 int i; 2333 int disks = conf->raid_disks * 2; 2334 struct bio *wbio; 2335 2336 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 2337 /* 2338 * ouch - failed to read all of that. 2339 * No need to fix read error for check/repair 2340 * because all member disks are read. 2341 */ 2342 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) || 2343 !fix_sync_read_error(r1_bio)) { 2344 md_done_sync(mddev, r1_bio->sectors); 2345 md_sync_error(mddev); 2346 put_buf(r1_bio); 2347 return; 2348 } 2349 } 2350 2351 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2352 process_checks(r1_bio); 2353 2354 /* 2355 * schedule writes 2356 */ 2357 atomic_set(&r1_bio->remaining, 1); 2358 for (i = 0; i < disks ; i++) { 2359 wbio = r1_bio->bios[i]; 2360 if (wbio->bi_end_io == NULL || 2361 (wbio->bi_end_io == end_sync_read && 2362 (i == r1_bio->read_disk || 2363 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2364 continue; 2365 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2366 abort_sync_write(mddev, r1_bio); 2367 continue; 2368 } 2369 2370 wbio->bi_opf = REQ_OP_WRITE; 2371 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2372 wbio->bi_opf |= MD_FAILFAST; 2373 2374 wbio->bi_end_io = end_sync_write; 2375 atomic_inc(&r1_bio->remaining); 2376 2377 submit_bio_noacct(wbio); 2378 } 2379 2380 put_sync_write_buf(r1_bio); 2381 } 2382 2383 /* 2384 * This is a kernel thread which: 2385 * 2386 * 1. Retries failed read operations on working mirrors. 2387 * 2. Updates the raid superblock when problems encounter. 2388 * 3. Performs writes following reads for array synchronising. 2389 */ 2390 2391 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2392 { 2393 sector_t sect = r1_bio->sector; 2394 int sectors = r1_bio->sectors; 2395 int read_disk = r1_bio->read_disk; 2396 struct mddev *mddev = conf->mddev; 2397 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2398 2399 if (exceed_read_errors(mddev, rdev)) { 2400 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2401 return; 2402 } 2403 2404 while(sectors) { 2405 int s = sectors; 2406 int d = read_disk; 2407 int success = 0; 2408 int start; 2409 2410 if (s > (PAGE_SIZE>>9)) 2411 s = PAGE_SIZE >> 9; 2412 2413 do { 2414 rdev = conf->mirrors[d].rdev; 2415 if (rdev && 2416 (test_bit(In_sync, &rdev->flags) || 2417 (!test_bit(Faulty, &rdev->flags) && 2418 rdev->recovery_offset >= sect + s)) && 2419 rdev_has_badblock(rdev, sect, s) == 0) { 2420 atomic_inc(&rdev->nr_pending); 2421 if (sync_page_io(rdev, sect, s<<9, 2422 conf->tmppage, REQ_OP_READ, false)) 2423 success = 1; 2424 rdev_dec_pending(rdev, mddev); 2425 if (success) 2426 break; 2427 } 2428 2429 d++; 2430 if (d == conf->raid_disks * 2) 2431 d = 0; 2432 } while (d != read_disk); 2433 2434 if (!success) { 2435 /* Cannot read from anywhere - mark it bad */ 2436 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2437 rdev_set_badblocks(rdev, sect, s, 0); 2438 break; 2439 } 2440 /* write it back and re-read */ 2441 start = d; 2442 while (d != read_disk) { 2443 if (d==0) 2444 d = conf->raid_disks * 2; 2445 d--; 2446 rdev = conf->mirrors[d].rdev; 2447 if (rdev && 2448 !test_bit(Faulty, &rdev->flags)) { 2449 atomic_inc(&rdev->nr_pending); 2450 r1_sync_page_io(rdev, sect, s, 2451 conf->tmppage, REQ_OP_WRITE); 2452 rdev_dec_pending(rdev, mddev); 2453 } 2454 } 2455 d = start; 2456 while (d != read_disk) { 2457 if (d==0) 2458 d = conf->raid_disks * 2; 2459 d--; 2460 rdev = conf->mirrors[d].rdev; 2461 if (rdev && 2462 !test_bit(Faulty, &rdev->flags)) { 2463 atomic_inc(&rdev->nr_pending); 2464 if (r1_sync_page_io(rdev, sect, s, 2465 conf->tmppage, REQ_OP_READ)) { 2466 atomic_add(s, &rdev->corrected_errors); 2467 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2468 mdname(mddev), s, 2469 (unsigned long long)(sect + 2470 rdev->data_offset), 2471 rdev->bdev); 2472 } 2473 rdev_dec_pending(rdev, mddev); 2474 } 2475 } 2476 sectors -= s; 2477 sect += s; 2478 } 2479 } 2480 2481 static void narrow_write_error(struct r1bio *r1_bio, int i) 2482 { 2483 struct mddev *mddev = r1_bio->mddev; 2484 struct r1conf *conf = mddev->private; 2485 struct md_rdev *rdev = conf->mirrors[i].rdev; 2486 2487 /* bio has the data to be written to device 'i' where 2488 * we just recently had a write error. 2489 * We repeatedly clone the bio and trim down to one block, 2490 * then try the write. Where the write fails we record 2491 * a bad block. 2492 * It is conceivable that the bio doesn't exactly align with 2493 * blocks. We must handle this somehow. 2494 * 2495 * We currently own a reference on the rdev. 2496 */ 2497 2498 int block_sectors, lbs = bdev_logical_block_size(rdev->bdev) >> 9; 2499 sector_t sector; 2500 int sectors; 2501 int sect_to_write = r1_bio->sectors; 2502 2503 if (rdev->badblocks.shift < 0) 2504 block_sectors = lbs; 2505 else 2506 block_sectors = roundup(1 << rdev->badblocks.shift, lbs); 2507 2508 sector = r1_bio->sector; 2509 sectors = ((sector + block_sectors) 2510 & ~(sector_t)(block_sectors - 1)) 2511 - sector; 2512 2513 while (sect_to_write) { 2514 struct bio *wbio; 2515 if (sectors > sect_to_write) 2516 sectors = sect_to_write; 2517 /* Write at 'sector' for 'sectors'*/ 2518 2519 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2520 wbio = bio_alloc_clone(rdev->bdev, 2521 r1_bio->behind_master_bio, 2522 GFP_NOIO, &mddev->bio_set); 2523 } else { 2524 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2525 GFP_NOIO, &mddev->bio_set); 2526 } 2527 2528 wbio->bi_opf = REQ_OP_WRITE; 2529 wbio->bi_iter.bi_sector = r1_bio->sector; 2530 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2531 2532 bio_trim(wbio, sector - r1_bio->sector, sectors); 2533 wbio->bi_iter.bi_sector += rdev->data_offset; 2534 2535 if (submit_bio_wait(wbio) && 2536 !rdev_set_badblocks(rdev, sector, sectors, 0)) { 2537 /* 2538 * Badblocks set failed, disk marked Faulty. 2539 * No further operations needed. 2540 */ 2541 bio_put(wbio); 2542 break; 2543 } 2544 2545 bio_put(wbio); 2546 sect_to_write -= sectors; 2547 sector += sectors; 2548 sectors = block_sectors; 2549 } 2550 } 2551 2552 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2553 { 2554 int m; 2555 int s = r1_bio->sectors; 2556 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2557 struct md_rdev *rdev = conf->mirrors[m].rdev; 2558 struct bio *bio = r1_bio->bios[m]; 2559 if (bio->bi_end_io == NULL) 2560 continue; 2561 if (!bio->bi_status && 2562 test_bit(R1BIO_MadeGood, &r1_bio->state)) 2563 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2564 if (bio->bi_status && 2565 test_bit(R1BIO_WriteError, &r1_bio->state)) 2566 rdev_set_badblocks(rdev, r1_bio->sector, s, 0); 2567 } 2568 put_buf(r1_bio); 2569 md_done_sync(conf->mddev, s); 2570 } 2571 2572 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2573 { 2574 int m, idx; 2575 bool fail = false; 2576 2577 for (m = 0; m < conf->raid_disks * 2 ; m++) 2578 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2579 struct md_rdev *rdev = conf->mirrors[m].rdev; 2580 rdev_clear_badblocks(rdev, 2581 r1_bio->sector, 2582 r1_bio->sectors, 0); 2583 rdev_dec_pending(rdev, conf->mddev); 2584 } else if (r1_bio->bios[m] != NULL) { 2585 /* This drive got a write error. We need to 2586 * narrow down and record precise write 2587 * errors. 2588 */ 2589 fail = true; 2590 narrow_write_error(r1_bio, m); 2591 rdev_dec_pending(conf->mirrors[m].rdev, 2592 conf->mddev); 2593 } 2594 if (fail) { 2595 spin_lock_irq(&conf->device_lock); 2596 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2597 idx = sector_to_idx(r1_bio->sector); 2598 atomic_inc(&conf->nr_queued[idx]); 2599 spin_unlock_irq(&conf->device_lock); 2600 /* 2601 * In case freeze_array() is waiting for condition 2602 * get_unqueued_pending() == extra to be true. 2603 */ 2604 wake_up(&conf->wait_barrier); 2605 md_wakeup_thread(conf->mddev->thread); 2606 } else { 2607 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2608 close_write(r1_bio); 2609 raid_end_bio_io(r1_bio); 2610 } 2611 } 2612 2613 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2614 { 2615 struct mddev *mddev = conf->mddev; 2616 struct bio *bio; 2617 struct md_rdev *rdev; 2618 sector_t sector; 2619 2620 clear_bit(R1BIO_ReadError, &r1_bio->state); 2621 /* we got a read error. Maybe the drive is bad. Maybe just 2622 * the block and we can fix it. 2623 * We freeze all other IO, and try reading the block from 2624 * other devices. When we find one, we re-write 2625 * and check it that fixes the read error. 2626 * This is all done synchronously while the array is 2627 * frozen 2628 */ 2629 2630 bio = r1_bio->bios[r1_bio->read_disk]; 2631 bio_put(bio); 2632 r1_bio->bios[r1_bio->read_disk] = NULL; 2633 2634 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2635 if (mddev->ro == 0 2636 && !test_bit(FailFast, &rdev->flags)) { 2637 freeze_array(conf, 1); 2638 fix_read_error(conf, r1_bio); 2639 unfreeze_array(conf); 2640 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2641 md_error(mddev, rdev); 2642 } else { 2643 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2644 } 2645 2646 rdev_dec_pending(rdev, conf->mddev); 2647 sector = r1_bio->sector; 2648 bio = r1_bio->master_bio; 2649 2650 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2651 r1_bio->state = 0; 2652 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2653 allow_barrier(conf, sector); 2654 } 2655 2656 static void raid1d(struct md_thread *thread) 2657 { 2658 struct mddev *mddev = thread->mddev; 2659 struct r1bio *r1_bio; 2660 unsigned long flags; 2661 struct r1conf *conf = mddev->private; 2662 struct list_head *head = &conf->retry_list; 2663 struct blk_plug plug; 2664 int idx; 2665 2666 md_check_recovery(mddev); 2667 2668 if (!list_empty_careful(&conf->bio_end_io_list) && 2669 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2670 LIST_HEAD(tmp); 2671 spin_lock_irqsave(&conf->device_lock, flags); 2672 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2673 list_splice_init(&conf->bio_end_io_list, &tmp); 2674 spin_unlock_irqrestore(&conf->device_lock, flags); 2675 while (!list_empty(&tmp)) { 2676 r1_bio = list_first_entry(&tmp, struct r1bio, 2677 retry_list); 2678 list_del(&r1_bio->retry_list); 2679 idx = sector_to_idx(r1_bio->sector); 2680 atomic_dec(&conf->nr_queued[idx]); 2681 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2682 close_write(r1_bio); 2683 raid_end_bio_io(r1_bio); 2684 } 2685 } 2686 2687 blk_start_plug(&plug); 2688 for (;;) { 2689 2690 flush_pending_writes(conf); 2691 2692 spin_lock_irqsave(&conf->device_lock, flags); 2693 if (list_empty(head)) { 2694 spin_unlock_irqrestore(&conf->device_lock, flags); 2695 break; 2696 } 2697 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2698 list_del(head->prev); 2699 idx = sector_to_idx(r1_bio->sector); 2700 atomic_dec(&conf->nr_queued[idx]); 2701 spin_unlock_irqrestore(&conf->device_lock, flags); 2702 2703 mddev = r1_bio->mddev; 2704 conf = mddev->private; 2705 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2706 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2707 test_bit(R1BIO_WriteError, &r1_bio->state)) 2708 handle_sync_write_finished(conf, r1_bio); 2709 else 2710 sync_request_write(mddev, r1_bio); 2711 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2712 test_bit(R1BIO_WriteError, &r1_bio->state)) 2713 handle_write_finished(conf, r1_bio); 2714 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2715 handle_read_error(conf, r1_bio); 2716 else 2717 WARN_ON_ONCE(1); 2718 2719 cond_resched(); 2720 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2721 md_check_recovery(mddev); 2722 } 2723 blk_finish_plug(&plug); 2724 } 2725 2726 static int init_resync(struct r1conf *conf) 2727 { 2728 int buffs; 2729 2730 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2731 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2732 2733 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2734 r1buf_pool_free, conf); 2735 } 2736 2737 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2738 { 2739 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2740 struct resync_pages *rps; 2741 struct bio *bio; 2742 int i; 2743 2744 for (i = conf->raid_disks * 2; i--; ) { 2745 bio = r1bio->bios[i]; 2746 rps = bio->bi_private; 2747 bio_reset(bio, NULL, 0); 2748 bio->bi_private = rps; 2749 } 2750 r1bio->master_bio = NULL; 2751 return r1bio; 2752 } 2753 2754 /* 2755 * perform a "sync" on one "block" 2756 * 2757 * We need to make sure that no normal I/O request - particularly write 2758 * requests - conflict with active sync requests. 2759 * 2760 * This is achieved by tracking pending requests and a 'barrier' concept 2761 * that can be installed to exclude normal IO requests. 2762 */ 2763 2764 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2765 sector_t max_sector, int *skipped) 2766 { 2767 struct r1conf *conf = mddev->private; 2768 struct r1bio *r1_bio; 2769 struct bio *bio; 2770 sector_t nr_sectors; 2771 int disk = -1; 2772 int i; 2773 int wonly = -1; 2774 int write_targets = 0, read_targets = 0; 2775 sector_t sync_blocks; 2776 bool still_degraded = false; 2777 int good_sectors = RESYNC_SECTORS; 2778 int min_bad = 0; /* number of sectors that are bad in all devices */ 2779 int idx = sector_to_idx(sector_nr); 2780 int page_idx = 0; 2781 2782 if (!mempool_initialized(&conf->r1buf_pool)) 2783 if (init_resync(conf)) 2784 return 0; 2785 2786 if (sector_nr >= max_sector) { 2787 /* If we aborted, we need to abort the 2788 * sync on the 'current' bitmap chunk (there will 2789 * only be one in raid1 resync. 2790 * We can find the current addess in mddev->curr_resync 2791 */ 2792 if (mddev->curr_resync < max_sector) /* aborted */ 2793 md_bitmap_end_sync(mddev, mddev->curr_resync, 2794 &sync_blocks); 2795 else /* completed sync */ 2796 conf->fullsync = 0; 2797 2798 if (md_bitmap_enabled(mddev, false)) 2799 mddev->bitmap_ops->close_sync(mddev); 2800 close_sync(conf); 2801 2802 if (mddev_is_clustered(mddev)) { 2803 conf->cluster_sync_low = 0; 2804 conf->cluster_sync_high = 0; 2805 } 2806 return 0; 2807 } 2808 2809 if (mddev->bitmap == NULL && 2810 mddev->resync_offset == MaxSector && 2811 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2812 conf->fullsync == 0) { 2813 *skipped = 1; 2814 return max_sector - sector_nr; 2815 } 2816 /* before building a request, check if we can skip these blocks.. 2817 * This call the bitmap_start_sync doesn't actually record anything 2818 */ 2819 if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, true) && 2820 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2821 /* We can skip this block, and probably several more */ 2822 *skipped = 1; 2823 return sync_blocks; 2824 } 2825 2826 /* 2827 * If there is non-resync activity waiting for a turn, then let it 2828 * though before starting on this new sync request. 2829 */ 2830 if (atomic_read(&conf->nr_waiting[idx])) 2831 schedule_timeout_uninterruptible(1); 2832 2833 /* we are incrementing sector_nr below. To be safe, we check against 2834 * sector_nr + two times RESYNC_SECTORS 2835 */ 2836 if (md_bitmap_enabled(mddev, false)) 2837 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 2838 mddev_is_clustered(mddev) && 2839 (sector_nr + 2 * RESYNC_SECTORS > 2840 conf->cluster_sync_high)); 2841 2842 if (raise_barrier(conf, sector_nr)) 2843 return 0; 2844 2845 r1_bio = raid1_alloc_init_r1buf(conf); 2846 2847 /* 2848 * If we get a correctably read error during resync or recovery, 2849 * we might want to read from a different device. So we 2850 * flag all drives that could conceivably be read from for READ, 2851 * and any others (which will be non-In_sync devices) for WRITE. 2852 * If a read fails, we try reading from something else for which READ 2853 * is OK. 2854 */ 2855 2856 r1_bio->mddev = mddev; 2857 r1_bio->sector = sector_nr; 2858 r1_bio->state = 0; 2859 set_bit(R1BIO_IsSync, &r1_bio->state); 2860 /* make sure good_sectors won't go across barrier unit boundary */ 2861 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2862 2863 for (i = 0; i < conf->raid_disks * 2; i++) { 2864 struct md_rdev *rdev; 2865 bio = r1_bio->bios[i]; 2866 2867 rdev = conf->mirrors[i].rdev; 2868 if (rdev == NULL || 2869 test_bit(Faulty, &rdev->flags)) { 2870 if (i < conf->raid_disks) 2871 still_degraded = true; 2872 } else if (!test_bit(In_sync, &rdev->flags)) { 2873 bio->bi_opf = REQ_OP_WRITE; 2874 bio->bi_end_io = end_sync_write; 2875 write_targets ++; 2876 } else { 2877 /* may need to read from here */ 2878 sector_t first_bad = MaxSector; 2879 sector_t bad_sectors; 2880 2881 if (is_badblock(rdev, sector_nr, good_sectors, 2882 &first_bad, &bad_sectors)) { 2883 if (first_bad > sector_nr) 2884 good_sectors = first_bad - sector_nr; 2885 else { 2886 bad_sectors -= (sector_nr - first_bad); 2887 if (min_bad == 0 || 2888 min_bad > bad_sectors) 2889 min_bad = bad_sectors; 2890 } 2891 } 2892 if (sector_nr < first_bad) { 2893 if (test_bit(WriteMostly, &rdev->flags)) { 2894 if (wonly < 0) 2895 wonly = i; 2896 } else { 2897 if (disk < 0) 2898 disk = i; 2899 } 2900 bio->bi_opf = REQ_OP_READ; 2901 bio->bi_end_io = end_sync_read; 2902 read_targets++; 2903 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2904 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2905 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2906 /* 2907 * The device is suitable for reading (InSync), 2908 * but has bad block(s) here. Let's try to correct them, 2909 * if we are doing resync or repair. Otherwise, leave 2910 * this device alone for this sync request. 2911 */ 2912 bio->bi_opf = REQ_OP_WRITE; 2913 bio->bi_end_io = end_sync_write; 2914 write_targets++; 2915 } 2916 } 2917 if (rdev && bio->bi_end_io) { 2918 atomic_inc(&rdev->nr_pending); 2919 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2920 bio_set_dev(bio, rdev->bdev); 2921 if (test_bit(FailFast, &rdev->flags)) 2922 bio->bi_opf |= MD_FAILFAST; 2923 } 2924 } 2925 if (disk < 0) 2926 disk = wonly; 2927 r1_bio->read_disk = disk; 2928 2929 if (read_targets == 0 && min_bad > 0) { 2930 /* These sectors are bad on all InSync devices, so we 2931 * need to mark them bad on all write targets 2932 */ 2933 int ok = 1; 2934 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2935 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2936 struct md_rdev *rdev = conf->mirrors[i].rdev; 2937 ok = rdev_set_badblocks(rdev, sector_nr, 2938 min_bad, 0 2939 ) && ok; 2940 } 2941 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2942 *skipped = 1; 2943 put_buf(r1_bio); 2944 2945 if (!ok) 2946 /* Cannot record the badblocks, md_error has set INTR, 2947 * abort the resync. 2948 */ 2949 return 0; 2950 else 2951 return min_bad; 2952 2953 } 2954 if (min_bad > 0 && min_bad < good_sectors) { 2955 /* only resync enough to reach the next bad->good 2956 * transition */ 2957 good_sectors = min_bad; 2958 } 2959 2960 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2961 /* extra read targets are also write targets */ 2962 write_targets += read_targets-1; 2963 2964 if (write_targets == 0 || read_targets == 0) { 2965 /* There is nowhere to write, so all non-sync 2966 * drives must be failed - so we are finished 2967 */ 2968 sector_t rv; 2969 if (min_bad > 0) 2970 max_sector = sector_nr + min_bad; 2971 rv = max_sector - sector_nr; 2972 *skipped = 1; 2973 put_buf(r1_bio); 2974 return rv; 2975 } 2976 2977 if (max_sector > mddev->resync_max) 2978 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2979 if (max_sector > sector_nr + good_sectors) 2980 max_sector = sector_nr + good_sectors; 2981 nr_sectors = 0; 2982 sync_blocks = 0; 2983 do { 2984 struct page *page; 2985 int len = PAGE_SIZE; 2986 if (sector_nr + (len>>9) > max_sector) 2987 len = (max_sector - sector_nr) << 9; 2988 if (len == 0) 2989 break; 2990 if (sync_blocks == 0) { 2991 if (!md_bitmap_start_sync(mddev, sector_nr, 2992 &sync_blocks, still_degraded) && 2993 !conf->fullsync && 2994 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2995 break; 2996 if ((len >> 9) > sync_blocks) 2997 len = sync_blocks<<9; 2998 } 2999 3000 for (i = 0 ; i < conf->raid_disks * 2; i++) { 3001 struct resync_pages *rp; 3002 3003 bio = r1_bio->bios[i]; 3004 rp = get_resync_pages(bio); 3005 if (bio->bi_end_io) { 3006 page = resync_fetch_page(rp, page_idx); 3007 3008 /* 3009 * won't fail because the vec table is big 3010 * enough to hold all these pages 3011 */ 3012 __bio_add_page(bio, page, len, 0); 3013 } 3014 } 3015 nr_sectors += len>>9; 3016 sector_nr += len>>9; 3017 sync_blocks -= (len>>9); 3018 } while (++page_idx < RESYNC_PAGES); 3019 3020 r1_bio->sectors = nr_sectors; 3021 3022 if (mddev_is_clustered(mddev) && 3023 conf->cluster_sync_high < sector_nr + nr_sectors) { 3024 conf->cluster_sync_low = mddev->curr_resync_completed; 3025 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3026 /* Send resync message */ 3027 mddev->cluster_ops->resync_info_update(mddev, 3028 conf->cluster_sync_low, 3029 conf->cluster_sync_high); 3030 } 3031 3032 /* For a user-requested sync, we read all readable devices and do a 3033 * compare 3034 */ 3035 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3036 atomic_set(&r1_bio->remaining, read_targets); 3037 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3038 bio = r1_bio->bios[i]; 3039 if (bio->bi_end_io == end_sync_read) { 3040 read_targets--; 3041 if (read_targets == 1) 3042 bio->bi_opf &= ~MD_FAILFAST; 3043 submit_bio_noacct(bio); 3044 } 3045 } 3046 } else { 3047 atomic_set(&r1_bio->remaining, 1); 3048 bio = r1_bio->bios[r1_bio->read_disk]; 3049 if (read_targets == 1) 3050 bio->bi_opf &= ~MD_FAILFAST; 3051 submit_bio_noacct(bio); 3052 } 3053 return nr_sectors; 3054 } 3055 3056 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3057 { 3058 if (sectors) 3059 return sectors; 3060 3061 return mddev->dev_sectors; 3062 } 3063 3064 static struct r1conf *setup_conf(struct mddev *mddev) 3065 { 3066 struct r1conf *conf; 3067 int i; 3068 struct raid1_info *disk; 3069 struct md_rdev *rdev; 3070 size_t r1bio_size; 3071 int err = -ENOMEM; 3072 3073 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3074 if (!conf) 3075 goto abort; 3076 3077 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3078 sizeof(atomic_t), GFP_KERNEL); 3079 if (!conf->nr_pending) 3080 goto abort; 3081 3082 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3083 sizeof(atomic_t), GFP_KERNEL); 3084 if (!conf->nr_waiting) 3085 goto abort; 3086 3087 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3088 sizeof(atomic_t), GFP_KERNEL); 3089 if (!conf->nr_queued) 3090 goto abort; 3091 3092 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3093 sizeof(atomic_t), GFP_KERNEL); 3094 if (!conf->barrier) 3095 goto abort; 3096 3097 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3098 mddev->raid_disks, 2), 3099 GFP_KERNEL); 3100 if (!conf->mirrors) 3101 goto abort; 3102 3103 conf->tmppage = alloc_page(GFP_KERNEL); 3104 if (!conf->tmppage) 3105 goto abort; 3106 3107 r1bio_size = offsetof(struct r1bio, bios[mddev->raid_disks * 2]); 3108 conf->r1bio_pool = mempool_create_kmalloc_pool(NR_RAID_BIOS, r1bio_size); 3109 if (!conf->r1bio_pool) 3110 goto abort; 3111 3112 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3113 if (err) 3114 goto abort; 3115 3116 err = -EINVAL; 3117 spin_lock_init(&conf->device_lock); 3118 conf->raid_disks = mddev->raid_disks; 3119 rdev_for_each(rdev, mddev) { 3120 int disk_idx = rdev->raid_disk; 3121 3122 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3123 continue; 3124 3125 if (!raid1_add_conf(conf, rdev, disk_idx, 3126 test_bit(Replacement, &rdev->flags))) 3127 goto abort; 3128 } 3129 conf->mddev = mddev; 3130 INIT_LIST_HEAD(&conf->retry_list); 3131 INIT_LIST_HEAD(&conf->bio_end_io_list); 3132 3133 spin_lock_init(&conf->resync_lock); 3134 init_waitqueue_head(&conf->wait_barrier); 3135 3136 bio_list_init(&conf->pending_bio_list); 3137 3138 err = -EIO; 3139 for (i = 0; i < conf->raid_disks * 2; i++) { 3140 3141 disk = conf->mirrors + i; 3142 3143 if (i < conf->raid_disks && 3144 disk[conf->raid_disks].rdev) { 3145 /* This slot has a replacement. */ 3146 if (!disk->rdev) { 3147 /* No original, just make the replacement 3148 * a recovering spare 3149 */ 3150 disk->rdev = 3151 disk[conf->raid_disks].rdev; 3152 disk[conf->raid_disks].rdev = NULL; 3153 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3154 /* Original is not in_sync - bad */ 3155 goto abort; 3156 } 3157 3158 if (!disk->rdev || 3159 !test_bit(In_sync, &disk->rdev->flags)) { 3160 disk->head_position = 0; 3161 if (disk->rdev && 3162 (disk->rdev->saved_raid_disk < 0)) 3163 conf->fullsync = 1; 3164 } 3165 } 3166 3167 err = -ENOMEM; 3168 rcu_assign_pointer(conf->thread, 3169 md_register_thread(raid1d, mddev, "raid1")); 3170 if (!conf->thread) 3171 goto abort; 3172 3173 return conf; 3174 3175 abort: 3176 if (conf) { 3177 mempool_destroy(conf->r1bio_pool); 3178 kfree(conf->mirrors); 3179 safe_put_page(conf->tmppage); 3180 kfree(conf->nr_pending); 3181 kfree(conf->nr_waiting); 3182 kfree(conf->nr_queued); 3183 kfree(conf->barrier); 3184 bioset_exit(&conf->bio_split); 3185 kfree(conf); 3186 } 3187 return ERR_PTR(err); 3188 } 3189 3190 static int raid1_set_limits(struct mddev *mddev) 3191 { 3192 struct queue_limits lim; 3193 int err; 3194 3195 md_init_stacking_limits(&lim); 3196 lim.max_write_zeroes_sectors = 0; 3197 lim.max_hw_wzeroes_unmap_sectors = 0; 3198 lim.logical_block_size = mddev->logical_block_size; 3199 lim.features |= BLK_FEAT_ATOMIC_WRITES; 3200 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3201 if (err) 3202 return err; 3203 return queue_limits_set(mddev->gendisk->queue, &lim); 3204 } 3205 3206 static int raid1_run(struct mddev *mddev) 3207 { 3208 struct r1conf *conf; 3209 int i; 3210 int ret; 3211 3212 if (mddev->level != 1) { 3213 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3214 mdname(mddev), mddev->level); 3215 return -EIO; 3216 } 3217 if (mddev->reshape_position != MaxSector) { 3218 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3219 mdname(mddev)); 3220 return -EIO; 3221 } 3222 3223 /* 3224 * copy the already verified devices into our private RAID1 3225 * bookkeeping area. [whatever we allocate in run(), 3226 * should be freed in raid1_free()] 3227 */ 3228 if (mddev->private == NULL) 3229 conf = setup_conf(mddev); 3230 else 3231 conf = mddev->private; 3232 3233 if (IS_ERR(conf)) 3234 return PTR_ERR(conf); 3235 3236 if (!mddev_is_dm(mddev)) { 3237 ret = raid1_set_limits(mddev); 3238 if (ret) { 3239 md_unregister_thread(mddev, &conf->thread); 3240 if (!mddev->private) 3241 raid1_free(mddev, conf); 3242 return ret; 3243 } 3244 } 3245 3246 mddev->degraded = 0; 3247 for (i = 0; i < conf->raid_disks; i++) 3248 if (conf->mirrors[i].rdev == NULL || 3249 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3250 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3251 mddev->degraded++; 3252 /* 3253 * RAID1 needs at least one disk in active 3254 */ 3255 if (conf->raid_disks - mddev->degraded < 1) { 3256 md_unregister_thread(mddev, &conf->thread); 3257 if (!mddev->private) 3258 raid1_free(mddev, conf); 3259 return -EINVAL; 3260 } 3261 3262 if (conf->raid_disks - mddev->degraded == 1) 3263 mddev->resync_offset = MaxSector; 3264 3265 if (mddev->resync_offset != MaxSector) 3266 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3267 mdname(mddev)); 3268 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3269 mdname(mddev), mddev->raid_disks - mddev->degraded, 3270 mddev->raid_disks); 3271 3272 /* 3273 * Ok, everything is just fine now 3274 */ 3275 rcu_assign_pointer(mddev->thread, conf->thread); 3276 rcu_assign_pointer(conf->thread, NULL); 3277 mddev->private = conf; 3278 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3279 3280 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3281 3282 ret = md_integrity_register(mddev); 3283 if (ret) 3284 md_unregister_thread(mddev, &mddev->thread); 3285 return ret; 3286 } 3287 3288 static void raid1_free(struct mddev *mddev, void *priv) 3289 { 3290 struct r1conf *conf = priv; 3291 3292 mempool_destroy(conf->r1bio_pool); 3293 kfree(conf->mirrors); 3294 safe_put_page(conf->tmppage); 3295 kfree(conf->nr_pending); 3296 kfree(conf->nr_waiting); 3297 kfree(conf->nr_queued); 3298 kfree(conf->barrier); 3299 bioset_exit(&conf->bio_split); 3300 kfree(conf); 3301 } 3302 3303 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3304 { 3305 /* no resync is happening, and there is enough space 3306 * on all devices, so we can resize. 3307 * We need to make sure resync covers any new space. 3308 * If the array is shrinking we should possibly wait until 3309 * any io in the removed space completes, but it hardly seems 3310 * worth it. 3311 */ 3312 sector_t newsize = raid1_size(mddev, sectors, 0); 3313 3314 if (mddev->external_size && 3315 mddev->array_sectors > newsize) 3316 return -EINVAL; 3317 3318 if (md_bitmap_enabled(mddev, false)) { 3319 int ret = mddev->bitmap_ops->resize(mddev, newsize, 0); 3320 3321 if (ret) 3322 return ret; 3323 } 3324 3325 md_set_array_sectors(mddev, newsize); 3326 if (sectors > mddev->dev_sectors && 3327 mddev->resync_offset > mddev->dev_sectors) { 3328 mddev->resync_offset = mddev->dev_sectors; 3329 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3330 } 3331 mddev->dev_sectors = sectors; 3332 mddev->resync_max_sectors = sectors; 3333 return 0; 3334 } 3335 3336 static int raid1_reshape(struct mddev *mddev) 3337 { 3338 /* We need to: 3339 * 1/ resize the r1bio_pool 3340 * 2/ resize conf->mirrors 3341 * 3342 * We allocate a new r1bio_pool if we can. 3343 * Then raise a device barrier and wait until all IO stops. 3344 * Then resize conf->mirrors and swap in the new r1bio pool. 3345 * 3346 * At the same time, we "pack" the devices so that all the missing 3347 * devices have the higher raid_disk numbers. 3348 */ 3349 mempool_t *newpool, *oldpool; 3350 size_t new_r1bio_size; 3351 struct raid1_info *newmirrors; 3352 struct r1conf *conf = mddev->private; 3353 int cnt, raid_disks; 3354 unsigned long flags; 3355 int d, d2; 3356 3357 /* Cannot change chunk_size, layout, or level */ 3358 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3359 mddev->layout != mddev->new_layout || 3360 mddev->level != mddev->new_level) { 3361 mddev->new_chunk_sectors = mddev->chunk_sectors; 3362 mddev->new_layout = mddev->layout; 3363 mddev->new_level = mddev->level; 3364 return -EINVAL; 3365 } 3366 3367 if (!mddev_is_clustered(mddev)) 3368 md_allow_write(mddev); 3369 3370 raid_disks = mddev->raid_disks + mddev->delta_disks; 3371 3372 if (raid_disks < conf->raid_disks) { 3373 cnt=0; 3374 for (d= 0; d < conf->raid_disks; d++) 3375 if (conf->mirrors[d].rdev) 3376 cnt++; 3377 if (cnt > raid_disks) 3378 return -EBUSY; 3379 } 3380 3381 new_r1bio_size = offsetof(struct r1bio, bios[raid_disks * 2]); 3382 newpool = mempool_create_kmalloc_pool(NR_RAID_BIOS, new_r1bio_size); 3383 if (!newpool) { 3384 return -ENOMEM; 3385 } 3386 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3387 raid_disks, 2), 3388 GFP_KERNEL); 3389 if (!newmirrors) { 3390 mempool_destroy(newpool); 3391 return -ENOMEM; 3392 } 3393 3394 freeze_array(conf, 0); 3395 3396 /* ok, everything is stopped */ 3397 oldpool = conf->r1bio_pool; 3398 conf->r1bio_pool = newpool; 3399 3400 for (d = d2 = 0; d < conf->raid_disks; d++) { 3401 struct md_rdev *rdev = conf->mirrors[d].rdev; 3402 if (rdev && rdev->raid_disk != d2) { 3403 sysfs_unlink_rdev(mddev, rdev); 3404 rdev->raid_disk = d2; 3405 sysfs_unlink_rdev(mddev, rdev); 3406 if (sysfs_link_rdev(mddev, rdev)) 3407 pr_warn("md/raid1:%s: cannot register rd%d\n", 3408 mdname(mddev), rdev->raid_disk); 3409 } 3410 if (rdev) 3411 newmirrors[d2++].rdev = rdev; 3412 } 3413 kfree(conf->mirrors); 3414 conf->mirrors = newmirrors; 3415 3416 spin_lock_irqsave(&conf->device_lock, flags); 3417 mddev->degraded += (raid_disks - conf->raid_disks); 3418 spin_unlock_irqrestore(&conf->device_lock, flags); 3419 conf->raid_disks = mddev->raid_disks = raid_disks; 3420 mddev->delta_disks = 0; 3421 3422 unfreeze_array(conf); 3423 3424 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3425 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3426 md_wakeup_thread(mddev->thread); 3427 3428 mempool_destroy(oldpool); 3429 return 0; 3430 } 3431 3432 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3433 { 3434 struct r1conf *conf = mddev->private; 3435 3436 if (quiesce) 3437 freeze_array(conf, 0); 3438 else 3439 unfreeze_array(conf); 3440 } 3441 3442 static void *raid1_takeover(struct mddev *mddev) 3443 { 3444 /* raid1 can take over: 3445 * raid5 with 2 devices, any layout or chunk size 3446 */ 3447 if (mddev->level == 5 && mddev->raid_disks == 2) { 3448 struct r1conf *conf; 3449 mddev->new_level = 1; 3450 mddev->new_layout = 0; 3451 mddev->new_chunk_sectors = 0; 3452 conf = setup_conf(mddev); 3453 if (!IS_ERR(conf)) { 3454 /* Array must appear to be quiesced */ 3455 conf->array_frozen = 1; 3456 mddev_clear_unsupported_flags(mddev, 3457 UNSUPPORTED_MDDEV_FLAGS); 3458 } 3459 return conf; 3460 } 3461 return ERR_PTR(-EINVAL); 3462 } 3463 3464 static struct md_personality raid1_personality = 3465 { 3466 .head = { 3467 .type = MD_PERSONALITY, 3468 .id = ID_RAID1, 3469 .name = "raid1", 3470 .owner = THIS_MODULE, 3471 }, 3472 3473 .make_request = raid1_make_request, 3474 .run = raid1_run, 3475 .free = raid1_free, 3476 .status = raid1_status, 3477 .error_handler = raid1_error, 3478 .hot_add_disk = raid1_add_disk, 3479 .hot_remove_disk= raid1_remove_disk, 3480 .spare_active = raid1_spare_active, 3481 .sync_request = raid1_sync_request, 3482 .resize = raid1_resize, 3483 .size = raid1_size, 3484 .check_reshape = raid1_reshape, 3485 .quiesce = raid1_quiesce, 3486 .takeover = raid1_takeover, 3487 }; 3488 3489 static int __init raid1_init(void) 3490 { 3491 return register_md_submodule(&raid1_personality.head); 3492 } 3493 3494 static void __exit raid1_exit(void) 3495 { 3496 unregister_md_submodule(&raid1_personality.head); 3497 } 3498 3499 module_init(raid1_init); 3500 module_exit(raid1_exit); 3501 MODULE_LICENSE("GPL"); 3502 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3503 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3504 MODULE_ALIAS("md-raid1"); 3505 MODULE_ALIAS("md-level-1"); 3506