xref: /linux/drivers/md/raid1.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 #include "md-cluster.h"
40 
41 #define UNSUPPORTED_MDDEV_FLAGS		\
42 	((1L << MD_HAS_JOURNAL) |	\
43 	 (1L << MD_JOURNAL_CLEAN) |	\
44 	 (1L << MD_HAS_PPL) |		\
45 	 (1L << MD_HAS_MULTIPLE_PPLS))
46 
47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 static void raid1_free(struct mddev *mddev, void *priv);
50 
51 #define RAID_1_10_NAME "raid1"
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void *r1bio_pool_alloc(gfp_t gfp_flags, struct r1conf *conf)
131 {
132 	int size = offsetof(struct r1bio, bios[conf->raid_disks * 2]);
133 
134 	/* allocate a r1bio with room for raid_disks entries in the bios array */
135 	return kzalloc(size, gfp_flags);
136 }
137 
138 #define RESYNC_DEPTH 32
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
141 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
142 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
143 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
144 
145 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
146 {
147 	struct r1conf *conf = data;
148 	struct r1bio *r1_bio;
149 	struct bio *bio;
150 	int need_pages;
151 	int j;
152 	struct resync_pages *rps;
153 
154 	r1_bio = r1bio_pool_alloc(gfp_flags, conf);
155 	if (!r1_bio)
156 		return NULL;
157 
158 	rps = kmalloc_array(conf->raid_disks * 2, sizeof(struct resync_pages),
159 			    gfp_flags);
160 	if (!rps)
161 		goto out_free_r1bio;
162 
163 	/*
164 	 * Allocate bios : 1 for reading, n-1 for writing
165 	 */
166 	for (j = conf->raid_disks * 2; j-- ; ) {
167 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
168 		if (!bio)
169 			goto out_free_bio;
170 		bio_init_inline(bio, NULL, RESYNC_PAGES, 0);
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &conf->mddev->recovery))
180 		need_pages = conf->raid_disks * 2;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < conf->raid_disks * 2; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < conf->raid_disks * 2) {
210 		bio_uninit(r1_bio->bios[j]);
211 		kfree(r1_bio->bios[j]);
212 	}
213 	kfree(rps);
214 
215 out_free_r1bio:
216 	rbio_pool_free(r1_bio, data);
217 	return NULL;
218 }
219 
220 static void r1buf_pool_free(void *__r1_bio, void *data)
221 {
222 	struct r1conf *conf = data;
223 	int i;
224 	struct r1bio *r1bio = __r1_bio;
225 	struct resync_pages *rp = NULL;
226 
227 	for (i = conf->raid_disks * 2; i--; ) {
228 		rp = get_resync_pages(r1bio->bios[i]);
229 		resync_free_pages(rp);
230 		bio_uninit(r1bio->bios[i]);
231 		kfree(r1bio->bios[i]);
232 	}
233 
234 	/* resync pages array stored in the 1st bio's .bi_private */
235 	kfree(rp);
236 
237 	rbio_pool_free(r1bio, data);
238 }
239 
240 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->raid_disks * 2; i++) {
245 		struct bio **bio = r1_bio->bios + i;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 	}
250 }
251 
252 static void free_r1bio(struct r1bio *r1_bio)
253 {
254 	struct r1conf *conf = r1_bio->mddev->private;
255 
256 	put_all_bios(conf, r1_bio);
257 	mempool_free(r1_bio, conf->r1bio_pool);
258 }
259 
260 static void put_buf(struct r1bio *r1_bio)
261 {
262 	struct r1conf *conf = r1_bio->mddev->private;
263 	sector_t sect = r1_bio->sector;
264 	int i;
265 
266 	for (i = 0; i < conf->raid_disks * 2; i++) {
267 		struct bio *bio = r1_bio->bios[i];
268 		if (bio->bi_end_io)
269 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
270 	}
271 
272 	mempool_free(r1_bio, &conf->r1buf_pool);
273 
274 	lower_barrier(conf, sect);
275 }
276 
277 static void reschedule_retry(struct r1bio *r1_bio)
278 {
279 	unsigned long flags;
280 	struct mddev *mddev = r1_bio->mddev;
281 	struct r1conf *conf = mddev->private;
282 	int idx;
283 
284 	idx = sector_to_idx(r1_bio->sector);
285 	spin_lock_irqsave(&conf->device_lock, flags);
286 	list_add(&r1_bio->retry_list, &conf->retry_list);
287 	atomic_inc(&conf->nr_queued[idx]);
288 	spin_unlock_irqrestore(&conf->device_lock, flags);
289 
290 	wake_up(&conf->wait_barrier);
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
299 static void call_bio_endio(struct r1bio *r1_bio)
300 {
301 	struct bio *bio = r1_bio->master_bio;
302 
303 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
304 		bio->bi_status = BLK_STS_IOERR;
305 
306 	bio_endio(bio);
307 }
308 
309 static void raid_end_bio_io(struct r1bio *r1_bio)
310 {
311 	struct bio *bio = r1_bio->master_bio;
312 	struct r1conf *conf = r1_bio->mddev->private;
313 	sector_t sector = r1_bio->sector;
314 
315 	/* if nobody has done the final endio yet, do it now */
316 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
317 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
318 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
319 			 (unsigned long long) bio->bi_iter.bi_sector,
320 			 (unsigned long long) bio_end_sector(bio) - 1);
321 
322 		call_bio_endio(r1_bio);
323 	}
324 
325 	free_r1bio(r1_bio);
326 	/*
327 	 * Wake up any possible resync thread that waits for the device
328 	 * to go idle.  All I/Os, even write-behind writes, are done.
329 	 */
330 	allow_barrier(conf, sector);
331 }
332 
333 /*
334  * Update disk head position estimator based on IRQ completion info.
335  */
336 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 {
338 	struct r1conf *conf = r1_bio->mddev->private;
339 
340 	conf->mirrors[disk].head_position =
341 		r1_bio->sector + (r1_bio->sectors);
342 }
343 
344 /*
345  * Find the disk number which triggered given bio
346  */
347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 {
349 	int mirror;
350 	struct r1conf *conf = r1_bio->mddev->private;
351 	int raid_disks = conf->raid_disks;
352 
353 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
354 		if (r1_bio->bios[mirror] == bio)
355 			break;
356 
357 	BUG_ON(mirror == raid_disks * 2);
358 	update_head_pos(mirror, r1_bio);
359 
360 	return mirror;
361 }
362 
363 static void raid1_end_read_request(struct bio *bio)
364 {
365 	int uptodate = !bio->bi_status;
366 	struct r1bio *r1_bio = bio->bi_private;
367 	struct r1conf *conf = r1_bio->mddev->private;
368 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
369 
370 	/*
371 	 * this branch is our 'one mirror IO has finished' event handler:
372 	 */
373 	update_head_pos(r1_bio->read_disk, r1_bio);
374 
375 	if (uptodate) {
376 		set_bit(R1BIO_Uptodate, &r1_bio->state);
377 	} else if (test_bit(FailFast, &rdev->flags) &&
378 		 test_bit(R1BIO_FailFast, &r1_bio->state)) {
379 		/* This was a fail-fast read so we definitely
380 		 * want to retry */
381 		;
382 	} else if (!raid1_should_handle_error(bio)) {
383 		uptodate = 1;
384 	} else {
385 		/* If all other devices have failed, we want to return
386 		 * the error upwards rather than fail the last device.
387 		 * Here we redefine "uptodate" to mean "Don't want to retry"
388 		 */
389 		unsigned long flags;
390 		spin_lock_irqsave(&conf->device_lock, flags);
391 		if (r1_bio->mddev->degraded == conf->raid_disks ||
392 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393 		     test_bit(In_sync, &rdev->flags)))
394 			uptodate = 1;
395 		spin_unlock_irqrestore(&conf->device_lock, flags);
396 	}
397 
398 	if (uptodate) {
399 		raid_end_bio_io(r1_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error:
404 		 */
405 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
406 				   mdname(conf->mddev),
407 				   rdev->bdev,
408 				   (unsigned long long)r1_bio->sector);
409 		set_bit(R1BIO_ReadError, &r1_bio->state);
410 		reschedule_retry(r1_bio);
411 		/* don't drop the reference on read_disk yet */
412 	}
413 }
414 
415 static void close_write(struct r1bio *r1_bio)
416 {
417 	struct mddev *mddev = r1_bio->mddev;
418 
419 	/* it really is the end of this request */
420 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
421 		bio_free_pages(r1_bio->behind_master_bio);
422 		bio_put(r1_bio->behind_master_bio);
423 		r1_bio->behind_master_bio = NULL;
424 	}
425 
426 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
427 		mddev->bitmap_ops->end_behind_write(mddev);
428 	md_write_end(mddev);
429 }
430 
431 static void r1_bio_write_done(struct r1bio *r1_bio)
432 {
433 	if (!atomic_dec_and_test(&r1_bio->remaining))
434 		return;
435 
436 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
437 		reschedule_retry(r1_bio);
438 	else {
439 		close_write(r1_bio);
440 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441 			reschedule_retry(r1_bio);
442 		else
443 			raid_end_bio_io(r1_bio);
444 	}
445 }
446 
447 static void raid1_end_write_request(struct bio *bio)
448 {
449 	struct r1bio *r1_bio = bio->bi_private;
450 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
451 	struct r1conf *conf = r1_bio->mddev->private;
452 	struct bio *to_put = NULL;
453 	int mirror = find_bio_disk(r1_bio, bio);
454 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 	bool ignore_error = !raid1_should_handle_error(bio) ||
458 		(bio->bi_status && bio_op(bio) == REQ_OP_DISCARD);
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !ignore_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Finished with this branch */
484 			r1_bio->bios[mirror] = NULL;
485 			to_put = bio;
486 		}
487 	} else {
488 		/*
489 		 * Set R1BIO_Uptodate in our master bio, so that we
490 		 * will return a good error code for to the higher
491 		 * levels even if IO on some other mirrored buffer
492 		 * fails.
493 		 *
494 		 * The 'master' represents the composite IO operation
495 		 * to user-side. So if something waits for IO, then it
496 		 * will wait for the 'master' bio.
497 		 */
498 		r1_bio->bios[mirror] = NULL;
499 		to_put = bio;
500 		/*
501 		 * Do not set R1BIO_Uptodate if the current device is
502 		 * rebuilding or Faulty. This is because we cannot use
503 		 * such device for properly reading the data back (we could
504 		 * potentially use it, if the current write would have felt
505 		 * before rdev->recovery_offset, but for simplicity we don't
506 		 * check this here.
507 		 */
508 		if (test_bit(In_sync, &rdev->flags) &&
509 		    !test_bit(Faulty, &rdev->flags))
510 			set_bit(R1BIO_Uptodate, &r1_bio->state);
511 
512 		/* Maybe we can clear some bad blocks. */
513 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 		    !ignore_error) {
515 			r1_bio->bios[mirror] = IO_MADE_GOOD;
516 			set_bit(R1BIO_MadeGood, &r1_bio->state);
517 		}
518 	}
519 
520 	if (behind) {
521 		if (test_bit(CollisionCheck, &rdev->flags))
522 			remove_serial(rdev, lo, hi);
523 		if (test_bit(WriteMostly, &rdev->flags))
524 			atomic_dec(&r1_bio->behind_remaining);
525 
526 		/*
527 		 * In behind mode, we ACK the master bio once the I/O
528 		 * has safely reached all non-writemostly
529 		 * disks. Setting the Returned bit ensures that this
530 		 * gets done only once -- we don't ever want to return
531 		 * -EIO here, instead we'll wait
532 		 */
533 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 			/* Maybe we can return now */
536 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 				struct bio *mbio = r1_bio->master_bio;
538 				pr_debug("raid1: behind end write sectors"
539 					 " %llu-%llu\n",
540 					 (unsigned long long) mbio->bi_iter.bi_sector,
541 					 (unsigned long long) bio_end_sector(mbio) - 1);
542 				call_bio_endio(r1_bio);
543 			}
544 		}
545 	} else if (test_bit(MD_SERIALIZE_POLICY, &rdev->mddev->flags))
546 		remove_serial(rdev, lo, hi);
547 	if (r1_bio->bios[mirror] == NULL)
548 		rdev_dec_pending(rdev, conf->mddev);
549 
550 	/*
551 	 * Let's see if all mirrored write operations have finished
552 	 * already.
553 	 */
554 	r1_bio_write_done(r1_bio);
555 
556 	if (to_put)
557 		bio_put(to_put);
558 }
559 
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 					  sector_t sectors)
562 {
563 	sector_t len;
564 
565 	WARN_ON(sectors == 0);
566 	/*
567 	 * len is the number of sectors from start_sector to end of the
568 	 * barrier unit which start_sector belongs to.
569 	 */
570 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 	      start_sector;
572 
573 	if (len > sectors)
574 		len = sectors;
575 
576 	return len;
577 }
578 
579 static void update_read_sectors(struct r1conf *conf, int disk,
580 				sector_t this_sector, int len)
581 {
582 	struct raid1_info *info = &conf->mirrors[disk];
583 
584 	atomic_inc(&info->rdev->nr_pending);
585 	if (info->next_seq_sect != this_sector)
586 		info->seq_start = this_sector;
587 	info->next_seq_sect = this_sector + len;
588 }
589 
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 			     int *max_sectors)
592 {
593 	sector_t this_sector = r1_bio->sector;
594 	int len = r1_bio->sectors;
595 	int disk;
596 
597 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 		struct md_rdev *rdev;
599 		int read_len;
600 
601 		if (r1_bio->bios[disk] == IO_BLOCKED)
602 			continue;
603 
604 		rdev = conf->mirrors[disk].rdev;
605 		if (!rdev || test_bit(Faulty, &rdev->flags))
606 			continue;
607 
608 		/* choose the first disk even if it has some bad blocks. */
609 		read_len = raid1_check_read_range(rdev, this_sector, &len);
610 		if (read_len > 0) {
611 			update_read_sectors(conf, disk, this_sector, read_len);
612 			*max_sectors = read_len;
613 			return disk;
614 		}
615 	}
616 
617 	return -1;
618 }
619 
620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
621 {
622 	return !test_bit(In_sync, &rdev->flags) &&
623 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
624 }
625 
626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
627 			  int *max_sectors)
628 {
629 	sector_t this_sector = r1_bio->sector;
630 	int best_disk = -1;
631 	int best_len = 0;
632 	int disk;
633 
634 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 		struct md_rdev *rdev;
636 		int len;
637 		int read_len;
638 
639 		if (r1_bio->bios[disk] == IO_BLOCKED)
640 			continue;
641 
642 		rdev = conf->mirrors[disk].rdev;
643 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
644 		    rdev_in_recovery(rdev, r1_bio) ||
645 		    test_bit(WriteMostly, &rdev->flags))
646 			continue;
647 
648 		/* keep track of the disk with the most readable sectors. */
649 		len = r1_bio->sectors;
650 		read_len = raid1_check_read_range(rdev, this_sector, &len);
651 		if (read_len > best_len) {
652 			best_disk = disk;
653 			best_len = read_len;
654 		}
655 	}
656 
657 	if (best_disk != -1) {
658 		*max_sectors = best_len;
659 		update_read_sectors(conf, best_disk, this_sector, best_len);
660 	}
661 
662 	return best_disk;
663 }
664 
665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
666 			    int *max_sectors)
667 {
668 	sector_t this_sector = r1_bio->sector;
669 	int bb_disk = -1;
670 	int bb_read_len = 0;
671 	int disk;
672 
673 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
674 		struct md_rdev *rdev;
675 		int len;
676 		int read_len;
677 
678 		if (r1_bio->bios[disk] == IO_BLOCKED)
679 			continue;
680 
681 		rdev = conf->mirrors[disk].rdev;
682 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
683 		    !test_bit(WriteMostly, &rdev->flags) ||
684 		    rdev_in_recovery(rdev, r1_bio))
685 			continue;
686 
687 		/* there are no bad blocks, we can use this disk */
688 		len = r1_bio->sectors;
689 		read_len = raid1_check_read_range(rdev, this_sector, &len);
690 		if (read_len == r1_bio->sectors) {
691 			*max_sectors = read_len;
692 			update_read_sectors(conf, disk, this_sector, read_len);
693 			return disk;
694 		}
695 
696 		/*
697 		 * there are partial bad blocks, choose the rdev with largest
698 		 * read length.
699 		 */
700 		if (read_len > bb_read_len) {
701 			bb_disk = disk;
702 			bb_read_len = read_len;
703 		}
704 	}
705 
706 	if (bb_disk != -1) {
707 		*max_sectors = bb_read_len;
708 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
709 	}
710 
711 	return bb_disk;
712 }
713 
714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
715 {
716 	/* TODO: address issues with this check and concurrency. */
717 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
718 	       conf->mirrors[disk].head_position == r1_bio->sector;
719 }
720 
721 /*
722  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
723  * disk. If yes, choose the idle disk.
724  */
725 static bool should_choose_next(struct r1conf *conf, int disk)
726 {
727 	struct raid1_info *mirror = &conf->mirrors[disk];
728 	int opt_iosize;
729 
730 	if (!test_bit(Nonrot, &mirror->rdev->flags))
731 		return false;
732 
733 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
734 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
735 	       mirror->next_seq_sect > opt_iosize &&
736 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
737 }
738 
739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
740 {
741 	if (!rdev || test_bit(Faulty, &rdev->flags))
742 		return false;
743 
744 	if (rdev_in_recovery(rdev, r1_bio))
745 		return false;
746 
747 	/* don't read from slow disk unless have to */
748 	if (test_bit(WriteMostly, &rdev->flags))
749 		return false;
750 
751 	/* don't split IO for bad blocks unless have to */
752 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
753 		return false;
754 
755 	return true;
756 }
757 
758 struct read_balance_ctl {
759 	sector_t closest_dist;
760 	int closest_dist_disk;
761 	int min_pending;
762 	int min_pending_disk;
763 	int sequential_disk;
764 	int readable_disks;
765 };
766 
767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
768 {
769 	int disk;
770 	struct read_balance_ctl ctl = {
771 		.closest_dist_disk      = -1,
772 		.closest_dist           = MaxSector,
773 		.min_pending_disk       = -1,
774 		.min_pending            = UINT_MAX,
775 		.sequential_disk	= -1,
776 	};
777 
778 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
779 		struct md_rdev *rdev;
780 		sector_t dist;
781 		unsigned int pending;
782 
783 		if (r1_bio->bios[disk] == IO_BLOCKED)
784 			continue;
785 
786 		rdev = conf->mirrors[disk].rdev;
787 		if (!rdev_readable(rdev, r1_bio))
788 			continue;
789 
790 		/* At least two disks to choose from so failfast is OK */
791 		if (ctl.readable_disks++ == 1)
792 			set_bit(R1BIO_FailFast, &r1_bio->state);
793 
794 		pending = atomic_read(&rdev->nr_pending);
795 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
796 
797 		/* Don't change to another disk for sequential reads */
798 		if (is_sequential(conf, disk, r1_bio)) {
799 			if (!should_choose_next(conf, disk))
800 				return disk;
801 
802 			/*
803 			 * Add 'pending' to avoid choosing this disk if
804 			 * there is other idle disk.
805 			 */
806 			pending++;
807 			/*
808 			 * If there is no other idle disk, this disk
809 			 * will be chosen.
810 			 */
811 			ctl.sequential_disk = disk;
812 		}
813 
814 		if (ctl.min_pending > pending) {
815 			ctl.min_pending = pending;
816 			ctl.min_pending_disk = disk;
817 		}
818 
819 		if (ctl.closest_dist > dist) {
820 			ctl.closest_dist = dist;
821 			ctl.closest_dist_disk = disk;
822 		}
823 	}
824 
825 	/*
826 	 * sequential IO size exceeds optimal iosize, however, there is no other
827 	 * idle disk, so choose the sequential disk.
828 	 */
829 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
830 		return ctl.sequential_disk;
831 
832 	/*
833 	 * If all disks are rotational, choose the closest disk. If any disk is
834 	 * non-rotational, choose the disk with less pending request even the
835 	 * disk is rotational, which might/might not be optimal for raids with
836 	 * mixed ratation/non-rotational disks depending on workload.
837 	 */
838 	if (ctl.min_pending_disk != -1 &&
839 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
840 		return ctl.min_pending_disk;
841 	else
842 		return ctl.closest_dist_disk;
843 }
844 
845 /*
846  * This routine returns the disk from which the requested read should be done.
847  *
848  * 1) If resync is in progress, find the first usable disk and use it even if it
849  * has some bad blocks.
850  *
851  * 2) Now that there is no resync, loop through all disks and skipping slow
852  * disks and disks with bad blocks for now. Only pay attention to key disk
853  * choice.
854  *
855  * 3) If we've made it this far, now look for disks with bad blocks and choose
856  * the one with most number of sectors.
857  *
858  * 4) If we are all the way at the end, we have no choice but to use a disk even
859  * if it is write mostly.
860  *
861  * The rdev for the device selected will have nr_pending incremented.
862  */
863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
864 			int *max_sectors)
865 {
866 	int disk;
867 
868 	clear_bit(R1BIO_FailFast, &r1_bio->state);
869 
870 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
871 				    r1_bio->sectors))
872 		return choose_first_rdev(conf, r1_bio, max_sectors);
873 
874 	disk = choose_best_rdev(conf, r1_bio);
875 	if (disk >= 0) {
876 		*max_sectors = r1_bio->sectors;
877 		update_read_sectors(conf, disk, r1_bio->sector,
878 				    r1_bio->sectors);
879 		return disk;
880 	}
881 
882 	/*
883 	 * If we are here it means we didn't find a perfectly good disk so
884 	 * now spend a bit more time trying to find one with the most good
885 	 * sectors.
886 	 */
887 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
888 	if (disk >= 0)
889 		return disk;
890 
891 	return choose_slow_rdev(conf, r1_bio, max_sectors);
892 }
893 
894 static void wake_up_barrier(struct r1conf *conf)
895 {
896 	if (wq_has_sleeper(&conf->wait_barrier))
897 		wake_up(&conf->wait_barrier);
898 }
899 
900 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
901 {
902 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
903 	raid1_prepare_flush_writes(conf->mddev);
904 	wake_up_barrier(conf);
905 
906 	while (bio) { /* submit pending writes */
907 		struct bio *next = bio->bi_next;
908 
909 		raid1_submit_write(bio);
910 		bio = next;
911 		cond_resched();
912 	}
913 }
914 
915 static void flush_pending_writes(struct r1conf *conf)
916 {
917 	/* Any writes that have been queued but are awaiting
918 	 * bitmap updates get flushed here.
919 	 */
920 	spin_lock_irq(&conf->device_lock);
921 
922 	if (conf->pending_bio_list.head) {
923 		struct blk_plug plug;
924 		struct bio *bio;
925 
926 		bio = bio_list_get(&conf->pending_bio_list);
927 		spin_unlock_irq(&conf->device_lock);
928 
929 		/*
930 		 * As this is called in a wait_event() loop (see freeze_array),
931 		 * current->state might be TASK_UNINTERRUPTIBLE which will
932 		 * cause a warning when we prepare to wait again.  As it is
933 		 * rare that this path is taken, it is perfectly safe to force
934 		 * us to go around the wait_event() loop again, so the warning
935 		 * is a false-positive.  Silence the warning by resetting
936 		 * thread state
937 		 */
938 		__set_current_state(TASK_RUNNING);
939 		blk_start_plug(&plug);
940 		flush_bio_list(conf, bio);
941 		blk_finish_plug(&plug);
942 	} else
943 		spin_unlock_irq(&conf->device_lock);
944 }
945 
946 /* Barriers....
947  * Sometimes we need to suspend IO while we do something else,
948  * either some resync/recovery, or reconfigure the array.
949  * To do this we raise a 'barrier'.
950  * The 'barrier' is a counter that can be raised multiple times
951  * to count how many activities are happening which preclude
952  * normal IO.
953  * We can only raise the barrier if there is no pending IO.
954  * i.e. if nr_pending == 0.
955  * We choose only to raise the barrier if no-one is waiting for the
956  * barrier to go down.  This means that as soon as an IO request
957  * is ready, no other operations which require a barrier will start
958  * until the IO request has had a chance.
959  *
960  * So: regular IO calls 'wait_barrier'.  When that returns there
961  *    is no backgroup IO happening,  It must arrange to call
962  *    allow_barrier when it has finished its IO.
963  * backgroup IO calls must call raise_barrier.  Once that returns
964  *    there is no normal IO happeing.  It must arrange to call
965  *    lower_barrier when the particular background IO completes.
966  *
967  * If resync/recovery is interrupted, returns -EINTR;
968  * Otherwise, returns 0.
969  */
970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
971 {
972 	int idx = sector_to_idx(sector_nr);
973 
974 	spin_lock_irq(&conf->resync_lock);
975 
976 	/* Wait until no block IO is waiting */
977 	wait_event_lock_irq(conf->wait_barrier,
978 			    !atomic_read(&conf->nr_waiting[idx]),
979 			    conf->resync_lock);
980 
981 	/* block any new IO from starting */
982 	atomic_inc(&conf->barrier[idx]);
983 	/*
984 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
985 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
986 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
987 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
988 	 * be fetched before conf->barrier[idx] is increased. Otherwise
989 	 * there will be a race between raise_barrier() and _wait_barrier().
990 	 */
991 	smp_mb__after_atomic();
992 
993 	/* For these conditions we must wait:
994 	 * A: while the array is in frozen state
995 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
996 	 *    existing in corresponding I/O barrier bucket.
997 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
998 	 *    max resync count which allowed on current I/O barrier bucket.
999 	 */
1000 	wait_event_lock_irq(conf->wait_barrier,
1001 			    (!conf->array_frozen &&
1002 			     !atomic_read(&conf->nr_pending[idx]) &&
1003 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1004 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1005 			    conf->resync_lock);
1006 
1007 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1008 		atomic_dec(&conf->barrier[idx]);
1009 		spin_unlock_irq(&conf->resync_lock);
1010 		wake_up(&conf->wait_barrier);
1011 		return -EINTR;
1012 	}
1013 
1014 	atomic_inc(&conf->nr_sync_pending);
1015 	spin_unlock_irq(&conf->resync_lock);
1016 
1017 	return 0;
1018 }
1019 
1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1021 {
1022 	int idx = sector_to_idx(sector_nr);
1023 
1024 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1025 
1026 	atomic_dec(&conf->barrier[idx]);
1027 	atomic_dec(&conf->nr_sync_pending);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1032 {
1033 	bool ret = true;
1034 
1035 	/*
1036 	 * We need to increase conf->nr_pending[idx] very early here,
1037 	 * then raise_barrier() can be blocked when it waits for
1038 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1039 	 * conf->resync_lock when there is no barrier raised in same
1040 	 * barrier unit bucket. Also if the array is frozen, I/O
1041 	 * should be blocked until array is unfrozen.
1042 	 */
1043 	atomic_inc(&conf->nr_pending[idx]);
1044 	/*
1045 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1046 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1047 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1048 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1049 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1050 	 * will be a race between _wait_barrier() and raise_barrier().
1051 	 */
1052 	smp_mb__after_atomic();
1053 
1054 	/*
1055 	 * Don't worry about checking two atomic_t variables at same time
1056 	 * here. If during we check conf->barrier[idx], the array is
1057 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1058 	 * 0, it is safe to return and make the I/O continue. Because the
1059 	 * array is frozen, all I/O returned here will eventually complete
1060 	 * or be queued, no race will happen. See code comment in
1061 	 * frozen_array().
1062 	 */
1063 	if (!READ_ONCE(conf->array_frozen) &&
1064 	    !atomic_read(&conf->barrier[idx]))
1065 		return ret;
1066 
1067 	/*
1068 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1069 	 * should be decreased before waiting for barrier to drop.
1070 	 * Otherwise, we may encounter a race condition because
1071 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1072 	 * to be 0 at same time.
1073 	 */
1074 	spin_lock_irq(&conf->resync_lock);
1075 	atomic_inc(&conf->nr_waiting[idx]);
1076 	atomic_dec(&conf->nr_pending[idx]);
1077 	/*
1078 	 * In case freeze_array() is waiting for
1079 	 * get_unqueued_pending() == extra
1080 	 */
1081 	wake_up_barrier(conf);
1082 	/* Wait for the barrier in same barrier unit bucket to drop. */
1083 
1084 	/* Return false when nowait flag is set */
1085 	if (nowait) {
1086 		ret = false;
1087 	} else {
1088 		wait_event_lock_irq(conf->wait_barrier,
1089 				!conf->array_frozen &&
1090 				!atomic_read(&conf->barrier[idx]),
1091 				conf->resync_lock);
1092 		atomic_inc(&conf->nr_pending[idx]);
1093 	}
1094 
1095 	atomic_dec(&conf->nr_waiting[idx]);
1096 	spin_unlock_irq(&conf->resync_lock);
1097 	return ret;
1098 }
1099 
1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1101 {
1102 	int idx = sector_to_idx(sector_nr);
1103 	bool ret = true;
1104 
1105 	/*
1106 	 * Very similar to _wait_barrier(). The difference is, for read
1107 	 * I/O we don't need wait for sync I/O, but if the whole array
1108 	 * is frozen, the read I/O still has to wait until the array is
1109 	 * unfrozen. Since there is no ordering requirement with
1110 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1111 	 */
1112 	atomic_inc(&conf->nr_pending[idx]);
1113 
1114 	if (!READ_ONCE(conf->array_frozen))
1115 		return ret;
1116 
1117 	spin_lock_irq(&conf->resync_lock);
1118 	atomic_inc(&conf->nr_waiting[idx]);
1119 	atomic_dec(&conf->nr_pending[idx]);
1120 	/*
1121 	 * In case freeze_array() is waiting for
1122 	 * get_unqueued_pending() == extra
1123 	 */
1124 	wake_up_barrier(conf);
1125 	/* Wait for array to be unfrozen */
1126 
1127 	/* Return false when nowait flag is set */
1128 	if (nowait) {
1129 		/* Return false when nowait flag is set */
1130 		ret = false;
1131 	} else {
1132 		wait_event_lock_irq(conf->wait_barrier,
1133 				!conf->array_frozen,
1134 				conf->resync_lock);
1135 		atomic_inc(&conf->nr_pending[idx]);
1136 	}
1137 
1138 	atomic_dec(&conf->nr_waiting[idx]);
1139 	spin_unlock_irq(&conf->resync_lock);
1140 	return ret;
1141 }
1142 
1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1144 {
1145 	int idx = sector_to_idx(sector_nr);
1146 
1147 	return _wait_barrier(conf, idx, nowait);
1148 }
1149 
1150 static void _allow_barrier(struct r1conf *conf, int idx)
1151 {
1152 	atomic_dec(&conf->nr_pending[idx]);
1153 	wake_up_barrier(conf);
1154 }
1155 
1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1157 {
1158 	int idx = sector_to_idx(sector_nr);
1159 
1160 	_allow_barrier(conf, idx);
1161 }
1162 
1163 /* conf->resync_lock should be held */
1164 static int get_unqueued_pending(struct r1conf *conf)
1165 {
1166 	int idx, ret;
1167 
1168 	ret = atomic_read(&conf->nr_sync_pending);
1169 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1170 		ret += atomic_read(&conf->nr_pending[idx]) -
1171 			atomic_read(&conf->nr_queued[idx]);
1172 
1173 	return ret;
1174 }
1175 
1176 static void freeze_array(struct r1conf *conf, int extra)
1177 {
1178 	/* Stop sync I/O and normal I/O and wait for everything to
1179 	 * go quiet.
1180 	 * This is called in two situations:
1181 	 * 1) management command handlers (reshape, remove disk, quiesce).
1182 	 * 2) one normal I/O request failed.
1183 
1184 	 * After array_frozen is set to 1, new sync IO will be blocked at
1185 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1186 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1187 	 * queued. When everything goes quite, there are only queued I/Os left.
1188 
1189 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1190 	 * barrier bucket index which this I/O request hits. When all sync and
1191 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1192 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1193 	 * in handle_read_error(), we may call freeze_array() before trying to
1194 	 * fix the read error. In this case, the error read I/O is not queued,
1195 	 * so get_unqueued_pending() == 1.
1196 	 *
1197 	 * Therefore before this function returns, we need to wait until
1198 	 * get_unqueued_pendings(conf) gets equal to extra. For
1199 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1200 	 */
1201 	spin_lock_irq(&conf->resync_lock);
1202 	conf->array_frozen = 1;
1203 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1204 	wait_event_lock_irq_cmd(
1205 		conf->wait_barrier,
1206 		get_unqueued_pending(conf) == extra,
1207 		conf->resync_lock,
1208 		flush_pending_writes(conf));
1209 	spin_unlock_irq(&conf->resync_lock);
1210 }
1211 static void unfreeze_array(struct r1conf *conf)
1212 {
1213 	/* reverse the effect of the freeze */
1214 	spin_lock_irq(&conf->resync_lock);
1215 	conf->array_frozen = 0;
1216 	spin_unlock_irq(&conf->resync_lock);
1217 	wake_up(&conf->wait_barrier);
1218 }
1219 
1220 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1221 					   struct bio *bio)
1222 {
1223 	int size = bio->bi_iter.bi_size;
1224 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1225 	int i = 0;
1226 	struct bio *behind_bio = NULL;
1227 
1228 	behind_bio = bio_alloc_bioset(NULL, vcnt, bio->bi_opf, GFP_NOIO,
1229 				      &r1_bio->mddev->bio_set);
1230 
1231 	/* discard op, we don't support writezero/writesame yet */
1232 	if (!bio_has_data(bio)) {
1233 		behind_bio->bi_iter.bi_size = size;
1234 		goto skip_copy;
1235 	}
1236 
1237 	while (i < vcnt && size) {
1238 		struct page *page;
1239 		int len = min_t(int, PAGE_SIZE, size);
1240 
1241 		page = alloc_page(GFP_NOIO);
1242 		if (unlikely(!page))
1243 			goto free_pages;
1244 
1245 		if (!bio_add_page(behind_bio, page, len, 0)) {
1246 			put_page(page);
1247 			goto free_pages;
1248 		}
1249 
1250 		size -= len;
1251 		i++;
1252 	}
1253 
1254 	bio_copy_data(behind_bio, bio);
1255 skip_copy:
1256 	r1_bio->behind_master_bio = behind_bio;
1257 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1258 
1259 	return;
1260 
1261 free_pages:
1262 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1263 		 bio->bi_iter.bi_size);
1264 	bio_free_pages(behind_bio);
1265 	bio_put(behind_bio);
1266 }
1267 
1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1269 {
1270 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1271 						  cb);
1272 	struct mddev *mddev = plug->cb.data;
1273 	struct r1conf *conf = mddev->private;
1274 	struct bio *bio;
1275 
1276 	if (from_schedule) {
1277 		spin_lock_irq(&conf->device_lock);
1278 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1279 		spin_unlock_irq(&conf->device_lock);
1280 		wake_up_barrier(conf);
1281 		md_wakeup_thread(mddev->thread);
1282 		kfree(plug);
1283 		return;
1284 	}
1285 
1286 	/* we aren't scheduling, so we can do the write-out directly. */
1287 	bio = bio_list_get(&plug->pending);
1288 	flush_bio_list(conf, bio);
1289 	kfree(plug);
1290 }
1291 
1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1293 {
1294 	r1_bio->master_bio = bio;
1295 	r1_bio->sectors = bio_sectors(bio);
1296 	r1_bio->state = 0;
1297 	r1_bio->mddev = mddev;
1298 	r1_bio->sector = bio->bi_iter.bi_sector;
1299 }
1300 
1301 static inline struct r1bio *
1302 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1303 {
1304 	struct r1conf *conf = mddev->private;
1305 	struct r1bio *r1_bio;
1306 
1307 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1308 	memset(r1_bio, 0, offsetof(struct r1bio, bios[conf->raid_disks * 2]));
1309 	init_r1bio(r1_bio, mddev, bio);
1310 	return r1_bio;
1311 }
1312 
1313 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1314 			       int max_read_sectors, struct r1bio *r1_bio)
1315 {
1316 	struct r1conf *conf = mddev->private;
1317 	struct raid1_info *mirror;
1318 	struct bio *read_bio;
1319 	int max_sectors;
1320 	int rdisk;
1321 	bool r1bio_existed = !!r1_bio;
1322 
1323 	/*
1324 	 * If r1_bio is set, we are blocking the raid1d thread
1325 	 * so there is a tiny risk of deadlock.  So ask for
1326 	 * emergency memory if needed.
1327 	 */
1328 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1329 
1330 	/*
1331 	 * Still need barrier for READ in case that whole
1332 	 * array is frozen.
1333 	 */
1334 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1335 				bio->bi_opf & REQ_NOWAIT)) {
1336 		bio_wouldblock_error(bio);
1337 		return;
1338 	}
1339 
1340 	if (!r1_bio)
1341 		r1_bio = alloc_r1bio(mddev, bio);
1342 	else
1343 		init_r1bio(r1_bio, mddev, bio);
1344 	r1_bio->sectors = max_read_sectors;
1345 
1346 	/*
1347 	 * make_request() can abort the operation when read-ahead is being
1348 	 * used and no empty request is available.
1349 	 */
1350 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1351 	if (rdisk < 0) {
1352 		/* couldn't find anywhere to read from */
1353 		if (r1bio_existed)
1354 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1355 					    mdname(mddev),
1356 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1357 					    r1_bio->sector);
1358 		raid_end_bio_io(r1_bio);
1359 		return;
1360 	}
1361 	mirror = conf->mirrors + rdisk;
1362 
1363 	if (r1bio_existed)
1364 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1365 				    mdname(mddev),
1366 				    (unsigned long long)r1_bio->sector,
1367 				    mirror->rdev->bdev);
1368 
1369 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1370 	    md_bitmap_enabled(mddev, false)) {
1371 		/*
1372 		 * Reading from a write-mostly device must take care not to
1373 		 * over-take any writes that are 'behind'
1374 		 */
1375 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1376 		mddev->bitmap_ops->wait_behind_writes(mddev);
1377 	}
1378 
1379 	if (max_sectors < bio_sectors(bio)) {
1380 		bio = bio_submit_split_bioset(bio, max_sectors,
1381 					      &conf->bio_split);
1382 		if (!bio) {
1383 			set_bit(R1BIO_Returned, &r1_bio->state);
1384 			goto err_handle;
1385 		}
1386 
1387 		r1_bio->master_bio = bio;
1388 		r1_bio->sectors = max_sectors;
1389 	}
1390 
1391 	r1_bio->read_disk = rdisk;
1392 	if (!r1bio_existed) {
1393 		md_account_bio(mddev, &bio);
1394 		r1_bio->master_bio = bio;
1395 	}
1396 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1397 				   &mddev->bio_set);
1398 	read_bio->bi_opf &= ~REQ_NOWAIT;
1399 	r1_bio->bios[rdisk] = read_bio;
1400 
1401 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1402 		mirror->rdev->data_offset;
1403 	read_bio->bi_end_io = raid1_end_read_request;
1404 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1405 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1406 	        read_bio->bi_opf |= MD_FAILFAST;
1407 	read_bio->bi_private = r1_bio;
1408 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1409 	submit_bio_noacct(read_bio);
1410 	return;
1411 
1412 err_handle:
1413 	atomic_dec(&mirror->rdev->nr_pending);
1414 	raid_end_bio_io(r1_bio);
1415 }
1416 
1417 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1418 {
1419 	struct r1conf *conf = mddev->private;
1420 	int disks = conf->raid_disks * 2;
1421 	int i;
1422 
1423 retry:
1424 	for (i = 0; i < disks; i++) {
1425 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1426 
1427 		if (!rdev)
1428 			continue;
1429 
1430 		/* don't write here until the bad block is acknowledged */
1431 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
1432 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1433 				      bio_sectors(bio)) < 0)
1434 			set_bit(BlockedBadBlocks, &rdev->flags);
1435 
1436 		if (rdev_blocked(rdev)) {
1437 			if (bio->bi_opf & REQ_NOWAIT)
1438 				return false;
1439 
1440 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1441 					    rdev->raid_disk);
1442 			atomic_inc(&rdev->nr_pending);
1443 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
1444 			goto retry;
1445 		}
1446 	}
1447 
1448 	return true;
1449 }
1450 
1451 static void raid1_start_write_behind(struct mddev *mddev, struct r1bio *r1_bio,
1452 				     struct bio *bio)
1453 {
1454 	unsigned long max_write_behind = mddev->bitmap_info.max_write_behind;
1455 	struct md_bitmap_stats stats;
1456 	int err;
1457 
1458 	/* behind write rely on bitmap, see bitmap_operations */
1459 	if (!md_bitmap_enabled(mddev, false))
1460 		return;
1461 
1462 	err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1463 	if (err)
1464 		return;
1465 
1466 	/* Don't do behind IO if reader is waiting, or there are too many. */
1467 	if (!stats.behind_wait && stats.behind_writes < max_write_behind)
1468 		alloc_behind_master_bio(r1_bio, bio);
1469 
1470 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
1471 		mddev->bitmap_ops->start_behind_write(mddev);
1472 
1473 }
1474 
1475 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1476 				int max_write_sectors)
1477 {
1478 	struct r1conf *conf = mddev->private;
1479 	struct r1bio *r1_bio;
1480 	int i, disks, k;
1481 	unsigned long flags;
1482 	int first_clone;
1483 	int max_sectors;
1484 	bool write_behind = false;
1485 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1486 
1487 	if (mddev_is_clustered(mddev) &&
1488 	    mddev->cluster_ops->area_resyncing(mddev, WRITE,
1489 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1490 
1491 		DEFINE_WAIT(w);
1492 		if (bio->bi_opf & REQ_NOWAIT) {
1493 			bio_wouldblock_error(bio);
1494 			return;
1495 		}
1496 		for (;;) {
1497 			prepare_to_wait(&conf->wait_barrier,
1498 					&w, TASK_IDLE);
1499 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1500 							bio->bi_iter.bi_sector,
1501 							bio_end_sector(bio)))
1502 				break;
1503 			schedule();
1504 		}
1505 		finish_wait(&conf->wait_barrier, &w);
1506 	}
1507 
1508 	/*
1509 	 * Register the new request and wait if the reconstruction
1510 	 * thread has put up a bar for new requests.
1511 	 * Continue immediately if no resync is active currently.
1512 	 */
1513 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1514 				bio->bi_opf & REQ_NOWAIT)) {
1515 		bio_wouldblock_error(bio);
1516 		return;
1517 	}
1518 
1519 	if (!wait_blocked_rdev(mddev, bio)) {
1520 		bio_wouldblock_error(bio);
1521 		return;
1522 	}
1523 
1524 	r1_bio = alloc_r1bio(mddev, bio);
1525 	r1_bio->sectors = max_write_sectors;
1526 
1527 	/* first select target devices under rcu_lock and
1528 	 * inc refcount on their rdev.  Record them by setting
1529 	 * bios[x] to bio
1530 	 * If there are known/acknowledged bad blocks on any device on
1531 	 * which we have seen a write error, we want to avoid writing those
1532 	 * blocks.
1533 	 * This potentially requires several writes to write around
1534 	 * the bad blocks.  Each set of writes gets it's own r1bio
1535 	 * with a set of bios attached.
1536 	 */
1537 
1538 	disks = conf->raid_disks * 2;
1539 	max_sectors = r1_bio->sectors;
1540 	for (i = 0;  i < disks; i++) {
1541 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1542 
1543 		/*
1544 		 * The write-behind io is only attempted on drives marked as
1545 		 * write-mostly, which means we could allocate write behind
1546 		 * bio later.
1547 		 */
1548 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1549 			write_behind = true;
1550 
1551 		r1_bio->bios[i] = NULL;
1552 		if (!rdev || test_bit(Faulty, &rdev->flags))
1553 			continue;
1554 
1555 		atomic_inc(&rdev->nr_pending);
1556 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1557 			sector_t first_bad;
1558 			sector_t bad_sectors;
1559 			int is_bad;
1560 
1561 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1562 					     &first_bad, &bad_sectors);
1563 			if (is_bad && first_bad <= r1_bio->sector) {
1564 				/* Cannot write here at all */
1565 				bad_sectors -= (r1_bio->sector - first_bad);
1566 				if (bad_sectors < max_sectors)
1567 					/* mustn't write more than bad_sectors
1568 					 * to other devices yet
1569 					 */
1570 					max_sectors = bad_sectors;
1571 				rdev_dec_pending(rdev, mddev);
1572 				continue;
1573 			}
1574 			if (is_bad) {
1575 				int good_sectors;
1576 
1577 				/*
1578 				 * We cannot atomically write this, so just
1579 				 * error in that case. It could be possible to
1580 				 * atomically write other mirrors, but the
1581 				 * complexity of supporting that is not worth
1582 				 * the benefit.
1583 				 */
1584 				if (bio->bi_opf & REQ_ATOMIC)
1585 					goto err_handle;
1586 
1587 				good_sectors = first_bad - r1_bio->sector;
1588 				if (good_sectors < max_sectors)
1589 					max_sectors = good_sectors;
1590 			}
1591 		}
1592 		r1_bio->bios[i] = bio;
1593 	}
1594 
1595 	/*
1596 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1597 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1598 	 * at a time and thus needs a new bio that can fit the whole payload
1599 	 * this bio in page sized chunks.
1600 	 */
1601 	if (write_behind && mddev->bitmap)
1602 		max_sectors = min_t(int, max_sectors,
1603 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1604 	if (max_sectors < bio_sectors(bio)) {
1605 		bio = bio_submit_split_bioset(bio, max_sectors,
1606 					      &conf->bio_split);
1607 		if (!bio) {
1608 			set_bit(R1BIO_Returned, &r1_bio->state);
1609 			goto err_handle;
1610 		}
1611 
1612 		r1_bio->master_bio = bio;
1613 		r1_bio->sectors = max_sectors;
1614 	}
1615 
1616 	md_account_bio(mddev, &bio);
1617 	r1_bio->master_bio = bio;
1618 	atomic_set(&r1_bio->remaining, 1);
1619 	atomic_set(&r1_bio->behind_remaining, 0);
1620 
1621 	first_clone = 1;
1622 
1623 	for (i = 0; i < disks; i++) {
1624 		struct bio *mbio = NULL;
1625 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1626 		if (!r1_bio->bios[i])
1627 			continue;
1628 
1629 		if (first_clone) {
1630 			if (write_behind)
1631 				raid1_start_write_behind(mddev, r1_bio, bio);
1632 			first_clone = 0;
1633 		}
1634 
1635 		if (r1_bio->behind_master_bio) {
1636 			mbio = bio_alloc_clone(rdev->bdev,
1637 					       r1_bio->behind_master_bio,
1638 					       GFP_NOIO, &mddev->bio_set);
1639 			if (test_bit(CollisionCheck, &rdev->flags))
1640 				wait_for_serialization(rdev, r1_bio);
1641 			if (test_bit(WriteMostly, &rdev->flags))
1642 				atomic_inc(&r1_bio->behind_remaining);
1643 		} else {
1644 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1645 					       &mddev->bio_set);
1646 
1647 			if (test_bit(MD_SERIALIZE_POLICY, &mddev->flags))
1648 				wait_for_serialization(rdev, r1_bio);
1649 		}
1650 
1651 		mbio->bi_opf &= ~REQ_NOWAIT;
1652 		r1_bio->bios[i] = mbio;
1653 
1654 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1655 		mbio->bi_end_io	= raid1_end_write_request;
1656 		if (test_bit(FailFast, &rdev->flags) &&
1657 		    !test_bit(WriteMostly, &rdev->flags) &&
1658 		    conf->raid_disks - mddev->degraded > 1)
1659 			mbio->bi_opf |= MD_FAILFAST;
1660 		mbio->bi_private = r1_bio;
1661 
1662 		atomic_inc(&r1_bio->remaining);
1663 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1664 		/* flush_pending_writes() needs access to the rdev so...*/
1665 		mbio->bi_bdev = (void *)rdev;
1666 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1667 			spin_lock_irqsave(&conf->device_lock, flags);
1668 			bio_list_add(&conf->pending_bio_list, mbio);
1669 			spin_unlock_irqrestore(&conf->device_lock, flags);
1670 			md_wakeup_thread(mddev->thread);
1671 		}
1672 	}
1673 
1674 	r1_bio_write_done(r1_bio);
1675 
1676 	/* In case raid1d snuck in to freeze_array */
1677 	wake_up_barrier(conf);
1678 	return;
1679 err_handle:
1680 	for (k = 0; k < i; k++) {
1681 		if (r1_bio->bios[k]) {
1682 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1683 			r1_bio->bios[k] = NULL;
1684 		}
1685 	}
1686 
1687 	raid_end_bio_io(r1_bio);
1688 }
1689 
1690 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1691 {
1692 	sector_t sectors;
1693 
1694 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1695 	    && md_flush_request(mddev, bio))
1696 		return true;
1697 
1698 	/*
1699 	 * There is a limit to the maximum size, but
1700 	 * the read/write handler might find a lower limit
1701 	 * due to bad blocks.  To avoid multiple splits,
1702 	 * we pass the maximum number of sectors down
1703 	 * and let the lower level perform the split.
1704 	 */
1705 	sectors = align_to_barrier_unit_end(
1706 		bio->bi_iter.bi_sector, bio_sectors(bio));
1707 
1708 	if (bio_data_dir(bio) == READ)
1709 		raid1_read_request(mddev, bio, sectors, NULL);
1710 	else {
1711 		md_write_start(mddev,bio);
1712 		raid1_write_request(mddev, bio, sectors);
1713 	}
1714 	return true;
1715 }
1716 
1717 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1718 {
1719 	struct r1conf *conf = mddev->private;
1720 	int i;
1721 
1722 	lockdep_assert_held(&mddev->lock);
1723 
1724 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1725 		   conf->raid_disks - mddev->degraded);
1726 	for (i = 0; i < conf->raid_disks; i++) {
1727 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1728 
1729 		seq_printf(seq, "%s",
1730 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1731 	}
1732 	seq_printf(seq, "]");
1733 }
1734 
1735 /**
1736  * raid1_error() - RAID1 error handler.
1737  * @mddev: affected md device.
1738  * @rdev: member device to fail.
1739  *
1740  * The routine acknowledges &rdev failure and determines new @mddev state.
1741  * If it failed, then:
1742  *	- &MD_BROKEN flag is set in &mddev->flags.
1743  *	- recovery is disabled.
1744  * Otherwise, it must be degraded:
1745  *	- recovery is interrupted.
1746  *	- &mddev->degraded is bumped.
1747  *
1748  * @rdev is marked as &Faulty excluding case when array is failed and
1749  * MD_FAILLAST_DEV is not set.
1750  */
1751 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 	struct r1conf *conf = mddev->private;
1754 	unsigned long flags;
1755 
1756 	spin_lock_irqsave(&conf->device_lock, flags);
1757 
1758 	if (test_bit(In_sync, &rdev->flags) &&
1759 	    (conf->raid_disks - mddev->degraded) == 1) {
1760 		set_bit(MD_BROKEN, &mddev->flags);
1761 
1762 		if (!test_bit(MD_FAILLAST_DEV, &mddev->flags)) {
1763 			spin_unlock_irqrestore(&conf->device_lock, flags);
1764 			return;
1765 		}
1766 	}
1767 	set_bit(Blocked, &rdev->flags);
1768 	if (test_and_clear_bit(In_sync, &rdev->flags))
1769 		mddev->degraded++;
1770 	set_bit(Faulty, &rdev->flags);
1771 	spin_unlock_irqrestore(&conf->device_lock, flags);
1772 	/*
1773 	 * if recovery is running, make sure it aborts.
1774 	 */
1775 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1776 	set_mask_bits(&mddev->sb_flags, 0,
1777 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1778 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1779 		"md/raid1:%s: Operation continuing on %d devices.\n",
1780 		mdname(mddev), rdev->bdev,
1781 		mdname(mddev), conf->raid_disks - mddev->degraded);
1782 }
1783 
1784 static void print_conf(struct r1conf *conf)
1785 {
1786 	int i;
1787 
1788 	pr_debug("RAID1 conf printout:\n");
1789 	if (!conf) {
1790 		pr_debug("(!conf)\n");
1791 		return;
1792 	}
1793 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1794 		 conf->raid_disks);
1795 
1796 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1797 	for (i = 0; i < conf->raid_disks; i++) {
1798 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1799 		if (rdev)
1800 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1801 				 i, !test_bit(In_sync, &rdev->flags),
1802 				 !test_bit(Faulty, &rdev->flags),
1803 				 rdev->bdev);
1804 	}
1805 }
1806 
1807 static void close_sync(struct r1conf *conf)
1808 {
1809 	int idx;
1810 
1811 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1812 		_wait_barrier(conf, idx, false);
1813 		_allow_barrier(conf, idx);
1814 	}
1815 
1816 	mempool_exit(&conf->r1buf_pool);
1817 }
1818 
1819 static int raid1_spare_active(struct mddev *mddev)
1820 {
1821 	int i;
1822 	struct r1conf *conf = mddev->private;
1823 	int count = 0;
1824 	unsigned long flags;
1825 
1826 	/*
1827 	 * Find all failed disks within the RAID1 configuration
1828 	 * and mark them readable.
1829 	 * Called under mddev lock, so rcu protection not needed.
1830 	 * device_lock used to avoid races with raid1_end_read_request
1831 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1832 	 */
1833 	spin_lock_irqsave(&conf->device_lock, flags);
1834 	for (i = 0; i < conf->raid_disks; i++) {
1835 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1836 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1837 		if (repl
1838 		    && !test_bit(Candidate, &repl->flags)
1839 		    && repl->recovery_offset == MaxSector
1840 		    && !test_bit(Faulty, &repl->flags)
1841 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1842 			/* replacement has just become active */
1843 			if (!rdev ||
1844 			    !test_and_clear_bit(In_sync, &rdev->flags))
1845 				count++;
1846 			if (rdev) {
1847 				/* Replaced device not technically
1848 				 * faulty, but we need to be sure
1849 				 * it gets removed and never re-added
1850 				 */
1851 				set_bit(Faulty, &rdev->flags);
1852 				sysfs_notify_dirent_safe(
1853 					rdev->sysfs_state);
1854 			}
1855 		}
1856 		if (rdev
1857 		    && rdev->recovery_offset == MaxSector
1858 		    && !test_bit(Faulty, &rdev->flags)
1859 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1860 			count++;
1861 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1862 		}
1863 	}
1864 	mddev->degraded -= count;
1865 	spin_unlock_irqrestore(&conf->device_lock, flags);
1866 
1867 	print_conf(conf);
1868 	return count;
1869 }
1870 
1871 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1872 			   bool replacement)
1873 {
1874 	struct raid1_info *info = conf->mirrors + disk;
1875 
1876 	if (replacement)
1877 		info += conf->raid_disks;
1878 
1879 	if (info->rdev)
1880 		return false;
1881 
1882 	if (bdev_nonrot(rdev->bdev)) {
1883 		set_bit(Nonrot, &rdev->flags);
1884 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1885 	}
1886 
1887 	rdev->raid_disk = disk;
1888 	info->head_position = 0;
1889 	info->seq_start = MaxSector;
1890 	WRITE_ONCE(info->rdev, rdev);
1891 
1892 	return true;
1893 }
1894 
1895 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1896 {
1897 	struct raid1_info *info = conf->mirrors + disk;
1898 	struct md_rdev *rdev = info->rdev;
1899 
1900 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1901 	    atomic_read(&rdev->nr_pending))
1902 		return false;
1903 
1904 	/* Only remove non-faulty devices if recovery is not possible. */
1905 	if (!test_bit(Faulty, &rdev->flags) &&
1906 	    rdev->mddev->degraded < conf->raid_disks)
1907 		return false;
1908 
1909 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1910 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1911 
1912 	WRITE_ONCE(info->rdev, NULL);
1913 	return true;
1914 }
1915 
1916 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 	struct r1conf *conf = mddev->private;
1919 	int err = -EEXIST;
1920 	int mirror = 0, repl_slot = -1;
1921 	struct raid1_info *p;
1922 	int first = 0;
1923 	int last = conf->raid_disks - 1;
1924 
1925 	if (rdev->raid_disk >= 0)
1926 		first = last = rdev->raid_disk;
1927 
1928 	/*
1929 	 * find the disk ... but prefer rdev->saved_raid_disk
1930 	 * if possible.
1931 	 */
1932 	if (rdev->saved_raid_disk >= 0 &&
1933 	    rdev->saved_raid_disk >= first &&
1934 	    rdev->saved_raid_disk < conf->raid_disks &&
1935 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1936 		first = last = rdev->saved_raid_disk;
1937 
1938 	for (mirror = first; mirror <= last; mirror++) {
1939 		p = conf->mirrors + mirror;
1940 		if (!p->rdev) {
1941 			err = mddev_stack_new_rdev(mddev, rdev);
1942 			if (err)
1943 				return err;
1944 
1945 			raid1_add_conf(conf, rdev, mirror, false);
1946 			/* As all devices are equivalent, we don't need a full recovery
1947 			 * if this was recently any drive of the array
1948 			 */
1949 			if (rdev->saved_raid_disk < 0)
1950 				conf->fullsync = 1;
1951 			break;
1952 		}
1953 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1954 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1955 			repl_slot = mirror;
1956 	}
1957 
1958 	if (err && repl_slot >= 0) {
1959 		/* Add this device as a replacement */
1960 		clear_bit(In_sync, &rdev->flags);
1961 		set_bit(Replacement, &rdev->flags);
1962 		raid1_add_conf(conf, rdev, repl_slot, true);
1963 		err = 0;
1964 		conf->fullsync = 1;
1965 	}
1966 
1967 	print_conf(conf);
1968 	return err;
1969 }
1970 
1971 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1972 {
1973 	struct r1conf *conf = mddev->private;
1974 	int err = 0;
1975 	int number = rdev->raid_disk;
1976 	struct raid1_info *p = conf->mirrors + number;
1977 
1978 	if (unlikely(number >= conf->raid_disks))
1979 		goto abort;
1980 
1981 	if (rdev != p->rdev) {
1982 		number += conf->raid_disks;
1983 		p = conf->mirrors + number;
1984 	}
1985 
1986 	print_conf(conf);
1987 	if (rdev == p->rdev) {
1988 		if (!raid1_remove_conf(conf, number)) {
1989 			err = -EBUSY;
1990 			goto abort;
1991 		}
1992 
1993 		if (number < conf->raid_disks &&
1994 		    conf->mirrors[conf->raid_disks + number].rdev) {
1995 			/* We just removed a device that is being replaced.
1996 			 * Move down the replacement.  We drain all IO before
1997 			 * doing this to avoid confusion.
1998 			 */
1999 			struct md_rdev *repl =
2000 				conf->mirrors[conf->raid_disks + number].rdev;
2001 			freeze_array(conf, 0);
2002 			if (atomic_read(&repl->nr_pending)) {
2003 				/* It means that some queued IO of retry_list
2004 				 * hold repl. Thus, we cannot set replacement
2005 				 * as NULL, avoiding rdev NULL pointer
2006 				 * dereference in sync_request_write and
2007 				 * handle_write_finished.
2008 				 */
2009 				err = -EBUSY;
2010 				unfreeze_array(conf);
2011 				goto abort;
2012 			}
2013 			clear_bit(Replacement, &repl->flags);
2014 			WRITE_ONCE(p->rdev, repl);
2015 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2016 			unfreeze_array(conf);
2017 		}
2018 
2019 		clear_bit(WantReplacement, &rdev->flags);
2020 		err = md_integrity_register(mddev);
2021 	}
2022 abort:
2023 
2024 	print_conf(conf);
2025 	return err;
2026 }
2027 
2028 static void end_sync_read(struct bio *bio)
2029 {
2030 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2031 
2032 	update_head_pos(r1_bio->read_disk, r1_bio);
2033 
2034 	/*
2035 	 * we have read a block, now it needs to be re-written,
2036 	 * or re-read if the read failed.
2037 	 * We don't do much here, just schedule handling by raid1d
2038 	 */
2039 	if (!bio->bi_status)
2040 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2041 
2042 	if (atomic_dec_and_test(&r1_bio->remaining))
2043 		reschedule_retry(r1_bio);
2044 }
2045 
2046 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2047 {
2048 	sector_t sync_blocks = 0;
2049 	sector_t s = r1_bio->sector;
2050 	long sectors_to_go = r1_bio->sectors;
2051 
2052 	/* make sure these bits don't get cleared. */
2053 	do {
2054 		md_bitmap_end_sync(mddev, s, &sync_blocks);
2055 		s += sync_blocks;
2056 		sectors_to_go -= sync_blocks;
2057 	} while (sectors_to_go > 0);
2058 }
2059 
2060 static void put_sync_write_buf(struct r1bio *r1_bio)
2061 {
2062 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2063 		struct mddev *mddev = r1_bio->mddev;
2064 		int s = r1_bio->sectors;
2065 
2066 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2067 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2068 			reschedule_retry(r1_bio);
2069 		else {
2070 			put_buf(r1_bio);
2071 			md_done_sync(mddev, s);
2072 		}
2073 	}
2074 }
2075 
2076 static void end_sync_write(struct bio *bio)
2077 {
2078 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2079 	struct mddev *mddev = r1_bio->mddev;
2080 	struct r1conf *conf = mddev->private;
2081 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2082 
2083 	if (bio->bi_status) {
2084 		abort_sync_write(mddev, r1_bio);
2085 		set_bit(WriteErrorSeen, &rdev->flags);
2086 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2087 			set_bit(MD_RECOVERY_NEEDED, &
2088 				mddev->recovery);
2089 		set_bit(R1BIO_WriteError, &r1_bio->state);
2090 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2091 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2092 				      r1_bio->sector, r1_bio->sectors)) {
2093 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2094 	}
2095 
2096 	put_sync_write_buf(r1_bio);
2097 }
2098 
2099 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2100 			   int sectors, struct page *page, blk_opf_t rw)
2101 {
2102 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2103 		/* success */
2104 		return 1;
2105 	if (rw == REQ_OP_WRITE) {
2106 		set_bit(WriteErrorSeen, &rdev->flags);
2107 		if (!test_and_set_bit(WantReplacement,
2108 				      &rdev->flags))
2109 			set_bit(MD_RECOVERY_NEEDED, &
2110 				rdev->mddev->recovery);
2111 	}
2112 	/* need to record an error - either for the block or the device */
2113 	rdev_set_badblocks(rdev, sector, sectors, 0);
2114 	return 0;
2115 }
2116 
2117 static int fix_sync_read_error(struct r1bio *r1_bio)
2118 {
2119 	/* Try some synchronous reads of other devices to get
2120 	 * good data, much like with normal read errors.  Only
2121 	 * read into the pages we already have so we don't
2122 	 * need to re-issue the read request.
2123 	 * We don't need to freeze the array, because being in an
2124 	 * active sync request, there is no normal IO, and
2125 	 * no overlapping syncs.
2126 	 * We don't need to check is_badblock() again as we
2127 	 * made sure that anything with a bad block in range
2128 	 * will have bi_end_io clear.
2129 	 */
2130 	struct mddev *mddev = r1_bio->mddev;
2131 	struct r1conf *conf = mddev->private;
2132 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2133 	struct page **pages = get_resync_pages(bio)->pages;
2134 	sector_t sect = r1_bio->sector;
2135 	int sectors = r1_bio->sectors;
2136 	int idx = 0;
2137 	struct md_rdev *rdev;
2138 
2139 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2140 	if (test_bit(FailFast, &rdev->flags)) {
2141 		/* Don't try recovering from here - just fail it
2142 		 * ... unless it is the last working device of course */
2143 		md_error(mddev, rdev);
2144 		if (test_bit(Faulty, &rdev->flags))
2145 			/* Don't try to read from here, but make sure
2146 			 * put_buf does it's thing
2147 			 */
2148 			bio->bi_end_io = end_sync_write;
2149 	}
2150 
2151 	while(sectors) {
2152 		int s = sectors;
2153 		int d = r1_bio->read_disk;
2154 		int success = 0;
2155 		int start;
2156 
2157 		if (s > (PAGE_SIZE>>9))
2158 			s = PAGE_SIZE >> 9;
2159 		do {
2160 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2161 				/* No rcu protection needed here devices
2162 				 * can only be removed when no resync is
2163 				 * active, and resync is currently active
2164 				 */
2165 				rdev = conf->mirrors[d].rdev;
2166 				if (sync_page_io(rdev, sect, s<<9,
2167 						 pages[idx],
2168 						 REQ_OP_READ, false)) {
2169 					success = 1;
2170 					break;
2171 				}
2172 			}
2173 			d++;
2174 			if (d == conf->raid_disks * 2)
2175 				d = 0;
2176 		} while (!success && d != r1_bio->read_disk);
2177 
2178 		if (!success) {
2179 			int abort = 0;
2180 			/* Cannot read from anywhere, this block is lost.
2181 			 * Record a bad block on each device.  If that doesn't
2182 			 * work just disable and interrupt the recovery.
2183 			 * Don't fail devices as that won't really help.
2184 			 */
2185 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2186 					    mdname(mddev), bio->bi_bdev,
2187 					    (unsigned long long)r1_bio->sector);
2188 			for (d = 0; d < conf->raid_disks * 2; d++) {
2189 				rdev = conf->mirrors[d].rdev;
2190 				if (!rdev || test_bit(Faulty, &rdev->flags))
2191 					continue;
2192 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2193 					abort = 1;
2194 			}
2195 			if (abort)
2196 				return 0;
2197 
2198 			/* Try next page */
2199 			sectors -= s;
2200 			sect += s;
2201 			idx++;
2202 			continue;
2203 		}
2204 
2205 		start = d;
2206 		/* write it back and re-read */
2207 		while (d != r1_bio->read_disk) {
2208 			if (d == 0)
2209 				d = conf->raid_disks * 2;
2210 			d--;
2211 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2212 				continue;
2213 			rdev = conf->mirrors[d].rdev;
2214 			if (r1_sync_page_io(rdev, sect, s,
2215 					    pages[idx],
2216 					    REQ_OP_WRITE) == 0) {
2217 				r1_bio->bios[d]->bi_end_io = NULL;
2218 				rdev_dec_pending(rdev, mddev);
2219 			}
2220 		}
2221 		d = start;
2222 		while (d != r1_bio->read_disk) {
2223 			if (d == 0)
2224 				d = conf->raid_disks * 2;
2225 			d--;
2226 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2227 				continue;
2228 			rdev = conf->mirrors[d].rdev;
2229 			if (r1_sync_page_io(rdev, sect, s,
2230 					    pages[idx],
2231 					    REQ_OP_READ) != 0)
2232 				atomic_add(s, &rdev->corrected_errors);
2233 		}
2234 		sectors -= s;
2235 		sect += s;
2236 		idx ++;
2237 	}
2238 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2239 	bio->bi_status = 0;
2240 	return 1;
2241 }
2242 
2243 static void process_checks(struct r1bio *r1_bio)
2244 {
2245 	/* We have read all readable devices.  If we haven't
2246 	 * got the block, then there is no hope left.
2247 	 * If we have, then we want to do a comparison
2248 	 * and skip the write if everything is the same.
2249 	 * If any blocks failed to read, then we need to
2250 	 * attempt an over-write
2251 	 */
2252 	struct mddev *mddev = r1_bio->mddev;
2253 	struct r1conf *conf = mddev->private;
2254 	int primary;
2255 	int i;
2256 	int vcnt;
2257 
2258 	/* Fix variable parts of all bios */
2259 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2260 	for (i = 0; i < conf->raid_disks * 2; i++) {
2261 		blk_status_t status;
2262 		struct bio *b = r1_bio->bios[i];
2263 		struct resync_pages *rp = get_resync_pages(b);
2264 		if (b->bi_end_io != end_sync_read)
2265 			continue;
2266 		/* fixup the bio for reuse, but preserve errno */
2267 		status = b->bi_status;
2268 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2269 		b->bi_status = status;
2270 		b->bi_iter.bi_sector = r1_bio->sector +
2271 			conf->mirrors[i].rdev->data_offset;
2272 		b->bi_end_io = end_sync_read;
2273 		rp->raid_bio = r1_bio;
2274 		b->bi_private = rp;
2275 
2276 		/* initialize bvec table again */
2277 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2278 	}
2279 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2280 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2281 		    !r1_bio->bios[primary]->bi_status) {
2282 			r1_bio->bios[primary]->bi_end_io = NULL;
2283 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2284 			break;
2285 		}
2286 	r1_bio->read_disk = primary;
2287 	for (i = 0; i < conf->raid_disks * 2; i++) {
2288 		int j = 0;
2289 		struct bio *pbio = r1_bio->bios[primary];
2290 		struct bio *sbio = r1_bio->bios[i];
2291 		blk_status_t status = sbio->bi_status;
2292 		struct page **ppages = get_resync_pages(pbio)->pages;
2293 		struct page **spages = get_resync_pages(sbio)->pages;
2294 		struct bio_vec *bi;
2295 		int page_len[RESYNC_PAGES] = { 0 };
2296 		struct bvec_iter_all iter_all;
2297 
2298 		if (sbio->bi_end_io != end_sync_read)
2299 			continue;
2300 		/* Now we can 'fixup' the error value */
2301 		sbio->bi_status = 0;
2302 
2303 		bio_for_each_segment_all(bi, sbio, iter_all)
2304 			page_len[j++] = bi->bv_len;
2305 
2306 		if (!status) {
2307 			for (j = vcnt; j-- ; ) {
2308 				if (memcmp(page_address(ppages[j]),
2309 					   page_address(spages[j]),
2310 					   page_len[j]))
2311 					break;
2312 			}
2313 		} else
2314 			j = 0;
2315 		if (j >= 0)
2316 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2317 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2318 			      && !status)) {
2319 			/* No need to write to this device. */
2320 			sbio->bi_end_io = NULL;
2321 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2322 			continue;
2323 		}
2324 
2325 		bio_copy_data(sbio, pbio);
2326 	}
2327 }
2328 
2329 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2330 {
2331 	struct r1conf *conf = mddev->private;
2332 	int i;
2333 	int disks = conf->raid_disks * 2;
2334 	struct bio *wbio;
2335 
2336 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
2337 		/*
2338 		 * ouch - failed to read all of that.
2339 		 * No need to fix read error for check/repair
2340 		 * because all member disks are read.
2341 		 */
2342 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) ||
2343 		    !fix_sync_read_error(r1_bio)) {
2344 			md_done_sync(mddev, r1_bio->sectors);
2345 			md_sync_error(mddev);
2346 			put_buf(r1_bio);
2347 			return;
2348 		}
2349 	}
2350 
2351 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2352 		process_checks(r1_bio);
2353 
2354 	/*
2355 	 * schedule writes
2356 	 */
2357 	atomic_set(&r1_bio->remaining, 1);
2358 	for (i = 0; i < disks ; i++) {
2359 		wbio = r1_bio->bios[i];
2360 		if (wbio->bi_end_io == NULL ||
2361 		    (wbio->bi_end_io == end_sync_read &&
2362 		     (i == r1_bio->read_disk ||
2363 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2364 			continue;
2365 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2366 			abort_sync_write(mddev, r1_bio);
2367 			continue;
2368 		}
2369 
2370 		wbio->bi_opf = REQ_OP_WRITE;
2371 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2372 			wbio->bi_opf |= MD_FAILFAST;
2373 
2374 		wbio->bi_end_io = end_sync_write;
2375 		atomic_inc(&r1_bio->remaining);
2376 
2377 		submit_bio_noacct(wbio);
2378 	}
2379 
2380 	put_sync_write_buf(r1_bio);
2381 }
2382 
2383 /*
2384  * This is a kernel thread which:
2385  *
2386  *	1.	Retries failed read operations on working mirrors.
2387  *	2.	Updates the raid superblock when problems encounter.
2388  *	3.	Performs writes following reads for array synchronising.
2389  */
2390 
2391 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2392 {
2393 	sector_t sect = r1_bio->sector;
2394 	int sectors = r1_bio->sectors;
2395 	int read_disk = r1_bio->read_disk;
2396 	struct mddev *mddev = conf->mddev;
2397 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2398 
2399 	if (exceed_read_errors(mddev, rdev)) {
2400 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2401 		return;
2402 	}
2403 
2404 	while(sectors) {
2405 		int s = sectors;
2406 		int d = read_disk;
2407 		int success = 0;
2408 		int start;
2409 
2410 		if (s > (PAGE_SIZE>>9))
2411 			s = PAGE_SIZE >> 9;
2412 
2413 		do {
2414 			rdev = conf->mirrors[d].rdev;
2415 			if (rdev &&
2416 			    (test_bit(In_sync, &rdev->flags) ||
2417 			     (!test_bit(Faulty, &rdev->flags) &&
2418 			      rdev->recovery_offset >= sect + s)) &&
2419 			    rdev_has_badblock(rdev, sect, s) == 0) {
2420 				atomic_inc(&rdev->nr_pending);
2421 				if (sync_page_io(rdev, sect, s<<9,
2422 					 conf->tmppage, REQ_OP_READ, false))
2423 					success = 1;
2424 				rdev_dec_pending(rdev, mddev);
2425 				if (success)
2426 					break;
2427 			}
2428 
2429 			d++;
2430 			if (d == conf->raid_disks * 2)
2431 				d = 0;
2432 		} while (d != read_disk);
2433 
2434 		if (!success) {
2435 			/* Cannot read from anywhere - mark it bad */
2436 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2437 			rdev_set_badblocks(rdev, sect, s, 0);
2438 			break;
2439 		}
2440 		/* write it back and re-read */
2441 		start = d;
2442 		while (d != read_disk) {
2443 			if (d==0)
2444 				d = conf->raid_disks * 2;
2445 			d--;
2446 			rdev = conf->mirrors[d].rdev;
2447 			if (rdev &&
2448 			    !test_bit(Faulty, &rdev->flags)) {
2449 				atomic_inc(&rdev->nr_pending);
2450 				r1_sync_page_io(rdev, sect, s,
2451 						conf->tmppage, REQ_OP_WRITE);
2452 				rdev_dec_pending(rdev, mddev);
2453 			}
2454 		}
2455 		d = start;
2456 		while (d != read_disk) {
2457 			if (d==0)
2458 				d = conf->raid_disks * 2;
2459 			d--;
2460 			rdev = conf->mirrors[d].rdev;
2461 			if (rdev &&
2462 			    !test_bit(Faulty, &rdev->flags)) {
2463 				atomic_inc(&rdev->nr_pending);
2464 				if (r1_sync_page_io(rdev, sect, s,
2465 						conf->tmppage, REQ_OP_READ)) {
2466 					atomic_add(s, &rdev->corrected_errors);
2467 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2468 						mdname(mddev), s,
2469 						(unsigned long long)(sect +
2470 								     rdev->data_offset),
2471 						rdev->bdev);
2472 				}
2473 				rdev_dec_pending(rdev, mddev);
2474 			}
2475 		}
2476 		sectors -= s;
2477 		sect += s;
2478 	}
2479 }
2480 
2481 static void narrow_write_error(struct r1bio *r1_bio, int i)
2482 {
2483 	struct mddev *mddev = r1_bio->mddev;
2484 	struct r1conf *conf = mddev->private;
2485 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2486 
2487 	/* bio has the data to be written to device 'i' where
2488 	 * we just recently had a write error.
2489 	 * We repeatedly clone the bio and trim down to one block,
2490 	 * then try the write.  Where the write fails we record
2491 	 * a bad block.
2492 	 * It is conceivable that the bio doesn't exactly align with
2493 	 * blocks.  We must handle this somehow.
2494 	 *
2495 	 * We currently own a reference on the rdev.
2496 	 */
2497 
2498 	int block_sectors, lbs = bdev_logical_block_size(rdev->bdev) >> 9;
2499 	sector_t sector;
2500 	int sectors;
2501 	int sect_to_write = r1_bio->sectors;
2502 
2503 	if (rdev->badblocks.shift < 0)
2504 		block_sectors = lbs;
2505 	else
2506 		block_sectors = roundup(1 << rdev->badblocks.shift, lbs);
2507 
2508 	sector = r1_bio->sector;
2509 	sectors = ((sector + block_sectors)
2510 		   & ~(sector_t)(block_sectors - 1))
2511 		- sector;
2512 
2513 	while (sect_to_write) {
2514 		struct bio *wbio;
2515 		if (sectors > sect_to_write)
2516 			sectors = sect_to_write;
2517 		/* Write at 'sector' for 'sectors'*/
2518 
2519 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2520 			wbio = bio_alloc_clone(rdev->bdev,
2521 					       r1_bio->behind_master_bio,
2522 					       GFP_NOIO, &mddev->bio_set);
2523 		} else {
2524 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2525 					       GFP_NOIO, &mddev->bio_set);
2526 		}
2527 
2528 		wbio->bi_opf = REQ_OP_WRITE;
2529 		wbio->bi_iter.bi_sector = r1_bio->sector;
2530 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2531 
2532 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2533 		wbio->bi_iter.bi_sector += rdev->data_offset;
2534 
2535 		if (submit_bio_wait(wbio) &&
2536 		    !rdev_set_badblocks(rdev, sector, sectors, 0)) {
2537 			/*
2538 			 * Badblocks set failed, disk marked Faulty.
2539 			 * No further operations needed.
2540 			 */
2541 			bio_put(wbio);
2542 			break;
2543 		}
2544 
2545 		bio_put(wbio);
2546 		sect_to_write -= sectors;
2547 		sector += sectors;
2548 		sectors = block_sectors;
2549 	}
2550 }
2551 
2552 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2553 {
2554 	int m;
2555 	int s = r1_bio->sectors;
2556 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2557 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2558 		struct bio *bio = r1_bio->bios[m];
2559 		if (bio->bi_end_io == NULL)
2560 			continue;
2561 		if (!bio->bi_status &&
2562 		    test_bit(R1BIO_MadeGood, &r1_bio->state))
2563 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2564 		if (bio->bi_status &&
2565 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2566 			rdev_set_badblocks(rdev, r1_bio->sector, s, 0);
2567 	}
2568 	put_buf(r1_bio);
2569 	md_done_sync(conf->mddev, s);
2570 }
2571 
2572 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2573 {
2574 	int m, idx;
2575 	bool fail = false;
2576 
2577 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2578 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2579 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2580 			rdev_clear_badblocks(rdev,
2581 					     r1_bio->sector,
2582 					     r1_bio->sectors, 0);
2583 			rdev_dec_pending(rdev, conf->mddev);
2584 		} else if (r1_bio->bios[m] != NULL) {
2585 			/* This drive got a write error.  We need to
2586 			 * narrow down and record precise write
2587 			 * errors.
2588 			 */
2589 			fail = true;
2590 			narrow_write_error(r1_bio, m);
2591 			rdev_dec_pending(conf->mirrors[m].rdev,
2592 					 conf->mddev);
2593 		}
2594 	if (fail) {
2595 		spin_lock_irq(&conf->device_lock);
2596 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2597 		idx = sector_to_idx(r1_bio->sector);
2598 		atomic_inc(&conf->nr_queued[idx]);
2599 		spin_unlock_irq(&conf->device_lock);
2600 		/*
2601 		 * In case freeze_array() is waiting for condition
2602 		 * get_unqueued_pending() == extra to be true.
2603 		 */
2604 		wake_up(&conf->wait_barrier);
2605 		md_wakeup_thread(conf->mddev->thread);
2606 	} else {
2607 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2608 			close_write(r1_bio);
2609 		raid_end_bio_io(r1_bio);
2610 	}
2611 }
2612 
2613 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2614 {
2615 	struct mddev *mddev = conf->mddev;
2616 	struct bio *bio;
2617 	struct md_rdev *rdev;
2618 	sector_t sector;
2619 
2620 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2621 	/* we got a read error. Maybe the drive is bad.  Maybe just
2622 	 * the block and we can fix it.
2623 	 * We freeze all other IO, and try reading the block from
2624 	 * other devices.  When we find one, we re-write
2625 	 * and check it that fixes the read error.
2626 	 * This is all done synchronously while the array is
2627 	 * frozen
2628 	 */
2629 
2630 	bio = r1_bio->bios[r1_bio->read_disk];
2631 	bio_put(bio);
2632 	r1_bio->bios[r1_bio->read_disk] = NULL;
2633 
2634 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2635 	if (mddev->ro == 0
2636 	    && !test_bit(FailFast, &rdev->flags)) {
2637 		freeze_array(conf, 1);
2638 		fix_read_error(conf, r1_bio);
2639 		unfreeze_array(conf);
2640 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2641 		md_error(mddev, rdev);
2642 	} else {
2643 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2644 	}
2645 
2646 	rdev_dec_pending(rdev, conf->mddev);
2647 	sector = r1_bio->sector;
2648 	bio = r1_bio->master_bio;
2649 
2650 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2651 	r1_bio->state = 0;
2652 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2653 	allow_barrier(conf, sector);
2654 }
2655 
2656 static void raid1d(struct md_thread *thread)
2657 {
2658 	struct mddev *mddev = thread->mddev;
2659 	struct r1bio *r1_bio;
2660 	unsigned long flags;
2661 	struct r1conf *conf = mddev->private;
2662 	struct list_head *head = &conf->retry_list;
2663 	struct blk_plug plug;
2664 	int idx;
2665 
2666 	md_check_recovery(mddev);
2667 
2668 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2669 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2670 		LIST_HEAD(tmp);
2671 		spin_lock_irqsave(&conf->device_lock, flags);
2672 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2673 			list_splice_init(&conf->bio_end_io_list, &tmp);
2674 		spin_unlock_irqrestore(&conf->device_lock, flags);
2675 		while (!list_empty(&tmp)) {
2676 			r1_bio = list_first_entry(&tmp, struct r1bio,
2677 						  retry_list);
2678 			list_del(&r1_bio->retry_list);
2679 			idx = sector_to_idx(r1_bio->sector);
2680 			atomic_dec(&conf->nr_queued[idx]);
2681 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2682 				close_write(r1_bio);
2683 			raid_end_bio_io(r1_bio);
2684 		}
2685 	}
2686 
2687 	blk_start_plug(&plug);
2688 	for (;;) {
2689 
2690 		flush_pending_writes(conf);
2691 
2692 		spin_lock_irqsave(&conf->device_lock, flags);
2693 		if (list_empty(head)) {
2694 			spin_unlock_irqrestore(&conf->device_lock, flags);
2695 			break;
2696 		}
2697 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2698 		list_del(head->prev);
2699 		idx = sector_to_idx(r1_bio->sector);
2700 		atomic_dec(&conf->nr_queued[idx]);
2701 		spin_unlock_irqrestore(&conf->device_lock, flags);
2702 
2703 		mddev = r1_bio->mddev;
2704 		conf = mddev->private;
2705 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2706 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2707 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2708 				handle_sync_write_finished(conf, r1_bio);
2709 			else
2710 				sync_request_write(mddev, r1_bio);
2711 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2712 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2713 			handle_write_finished(conf, r1_bio);
2714 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2715 			handle_read_error(conf, r1_bio);
2716 		else
2717 			WARN_ON_ONCE(1);
2718 
2719 		cond_resched();
2720 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2721 			md_check_recovery(mddev);
2722 	}
2723 	blk_finish_plug(&plug);
2724 }
2725 
2726 static int init_resync(struct r1conf *conf)
2727 {
2728 	int buffs;
2729 
2730 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2731 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2732 
2733 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2734 			    r1buf_pool_free, conf);
2735 }
2736 
2737 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2738 {
2739 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2740 	struct resync_pages *rps;
2741 	struct bio *bio;
2742 	int i;
2743 
2744 	for (i = conf->raid_disks * 2; i--; ) {
2745 		bio = r1bio->bios[i];
2746 		rps = bio->bi_private;
2747 		bio_reset(bio, NULL, 0);
2748 		bio->bi_private = rps;
2749 	}
2750 	r1bio->master_bio = NULL;
2751 	return r1bio;
2752 }
2753 
2754 /*
2755  * perform a "sync" on one "block"
2756  *
2757  * We need to make sure that no normal I/O request - particularly write
2758  * requests - conflict with active sync requests.
2759  *
2760  * This is achieved by tracking pending requests and a 'barrier' concept
2761  * that can be installed to exclude normal IO requests.
2762  */
2763 
2764 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2765 				   sector_t max_sector, int *skipped)
2766 {
2767 	struct r1conf *conf = mddev->private;
2768 	struct r1bio *r1_bio;
2769 	struct bio *bio;
2770 	sector_t nr_sectors;
2771 	int disk = -1;
2772 	int i;
2773 	int wonly = -1;
2774 	int write_targets = 0, read_targets = 0;
2775 	sector_t sync_blocks;
2776 	bool still_degraded = false;
2777 	int good_sectors = RESYNC_SECTORS;
2778 	int min_bad = 0; /* number of sectors that are bad in all devices */
2779 	int idx = sector_to_idx(sector_nr);
2780 	int page_idx = 0;
2781 
2782 	if (!mempool_initialized(&conf->r1buf_pool))
2783 		if (init_resync(conf))
2784 			return 0;
2785 
2786 	if (sector_nr >= max_sector) {
2787 		/* If we aborted, we need to abort the
2788 		 * sync on the 'current' bitmap chunk (there will
2789 		 * only be one in raid1 resync.
2790 		 * We can find the current addess in mddev->curr_resync
2791 		 */
2792 		if (mddev->curr_resync < max_sector) /* aborted */
2793 			md_bitmap_end_sync(mddev, mddev->curr_resync,
2794 					   &sync_blocks);
2795 		else /* completed sync */
2796 			conf->fullsync = 0;
2797 
2798 		if (md_bitmap_enabled(mddev, false))
2799 			mddev->bitmap_ops->close_sync(mddev);
2800 		close_sync(conf);
2801 
2802 		if (mddev_is_clustered(mddev)) {
2803 			conf->cluster_sync_low = 0;
2804 			conf->cluster_sync_high = 0;
2805 		}
2806 		return 0;
2807 	}
2808 
2809 	if (mddev->bitmap == NULL &&
2810 	    mddev->resync_offset == MaxSector &&
2811 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2812 	    conf->fullsync == 0) {
2813 		*skipped = 1;
2814 		return max_sector - sector_nr;
2815 	}
2816 	/* before building a request, check if we can skip these blocks..
2817 	 * This call the bitmap_start_sync doesn't actually record anything
2818 	 */
2819 	if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, true) &&
2820 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2821 		/* We can skip this block, and probably several more */
2822 		*skipped = 1;
2823 		return sync_blocks;
2824 	}
2825 
2826 	/*
2827 	 * If there is non-resync activity waiting for a turn, then let it
2828 	 * though before starting on this new sync request.
2829 	 */
2830 	if (atomic_read(&conf->nr_waiting[idx]))
2831 		schedule_timeout_uninterruptible(1);
2832 
2833 	/* we are incrementing sector_nr below. To be safe, we check against
2834 	 * sector_nr + two times RESYNC_SECTORS
2835 	 */
2836 	if (md_bitmap_enabled(mddev, false))
2837 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2838 			mddev_is_clustered(mddev) &&
2839 			(sector_nr + 2 * RESYNC_SECTORS >
2840 			 conf->cluster_sync_high));
2841 
2842 	if (raise_barrier(conf, sector_nr))
2843 		return 0;
2844 
2845 	r1_bio = raid1_alloc_init_r1buf(conf);
2846 
2847 	/*
2848 	 * If we get a correctably read error during resync or recovery,
2849 	 * we might want to read from a different device.  So we
2850 	 * flag all drives that could conceivably be read from for READ,
2851 	 * and any others (which will be non-In_sync devices) for WRITE.
2852 	 * If a read fails, we try reading from something else for which READ
2853 	 * is OK.
2854 	 */
2855 
2856 	r1_bio->mddev = mddev;
2857 	r1_bio->sector = sector_nr;
2858 	r1_bio->state = 0;
2859 	set_bit(R1BIO_IsSync, &r1_bio->state);
2860 	/* make sure good_sectors won't go across barrier unit boundary */
2861 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2862 
2863 	for (i = 0; i < conf->raid_disks * 2; i++) {
2864 		struct md_rdev *rdev;
2865 		bio = r1_bio->bios[i];
2866 
2867 		rdev = conf->mirrors[i].rdev;
2868 		if (rdev == NULL ||
2869 		    test_bit(Faulty, &rdev->flags)) {
2870 			if (i < conf->raid_disks)
2871 				still_degraded = true;
2872 		} else if (!test_bit(In_sync, &rdev->flags)) {
2873 			bio->bi_opf = REQ_OP_WRITE;
2874 			bio->bi_end_io = end_sync_write;
2875 			write_targets ++;
2876 		} else {
2877 			/* may need to read from here */
2878 			sector_t first_bad = MaxSector;
2879 			sector_t bad_sectors;
2880 
2881 			if (is_badblock(rdev, sector_nr, good_sectors,
2882 					&first_bad, &bad_sectors)) {
2883 				if (first_bad > sector_nr)
2884 					good_sectors = first_bad - sector_nr;
2885 				else {
2886 					bad_sectors -= (sector_nr - first_bad);
2887 					if (min_bad == 0 ||
2888 					    min_bad > bad_sectors)
2889 						min_bad = bad_sectors;
2890 				}
2891 			}
2892 			if (sector_nr < first_bad) {
2893 				if (test_bit(WriteMostly, &rdev->flags)) {
2894 					if (wonly < 0)
2895 						wonly = i;
2896 				} else {
2897 					if (disk < 0)
2898 						disk = i;
2899 				}
2900 				bio->bi_opf = REQ_OP_READ;
2901 				bio->bi_end_io = end_sync_read;
2902 				read_targets++;
2903 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2904 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2905 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2906 				/*
2907 				 * The device is suitable for reading (InSync),
2908 				 * but has bad block(s) here. Let's try to correct them,
2909 				 * if we are doing resync or repair. Otherwise, leave
2910 				 * this device alone for this sync request.
2911 				 */
2912 				bio->bi_opf = REQ_OP_WRITE;
2913 				bio->bi_end_io = end_sync_write;
2914 				write_targets++;
2915 			}
2916 		}
2917 		if (rdev && bio->bi_end_io) {
2918 			atomic_inc(&rdev->nr_pending);
2919 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2920 			bio_set_dev(bio, rdev->bdev);
2921 			if (test_bit(FailFast, &rdev->flags))
2922 				bio->bi_opf |= MD_FAILFAST;
2923 		}
2924 	}
2925 	if (disk < 0)
2926 		disk = wonly;
2927 	r1_bio->read_disk = disk;
2928 
2929 	if (read_targets == 0 && min_bad > 0) {
2930 		/* These sectors are bad on all InSync devices, so we
2931 		 * need to mark them bad on all write targets
2932 		 */
2933 		int ok = 1;
2934 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2935 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2936 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2937 				ok = rdev_set_badblocks(rdev, sector_nr,
2938 							min_bad, 0
2939 					) && ok;
2940 			}
2941 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2942 		*skipped = 1;
2943 		put_buf(r1_bio);
2944 
2945 		if (!ok)
2946 			/* Cannot record the badblocks, md_error has set INTR,
2947 			 * abort the resync.
2948 			 */
2949 			return 0;
2950 		else
2951 			return min_bad;
2952 
2953 	}
2954 	if (min_bad > 0 && min_bad < good_sectors) {
2955 		/* only resync enough to reach the next bad->good
2956 		 * transition */
2957 		good_sectors = min_bad;
2958 	}
2959 
2960 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2961 		/* extra read targets are also write targets */
2962 		write_targets += read_targets-1;
2963 
2964 	if (write_targets == 0 || read_targets == 0) {
2965 		/* There is nowhere to write, so all non-sync
2966 		 * drives must be failed - so we are finished
2967 		 */
2968 		sector_t rv;
2969 		if (min_bad > 0)
2970 			max_sector = sector_nr + min_bad;
2971 		rv = max_sector - sector_nr;
2972 		*skipped = 1;
2973 		put_buf(r1_bio);
2974 		return rv;
2975 	}
2976 
2977 	if (max_sector > mddev->resync_max)
2978 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2979 	if (max_sector > sector_nr + good_sectors)
2980 		max_sector = sector_nr + good_sectors;
2981 	nr_sectors = 0;
2982 	sync_blocks = 0;
2983 	do {
2984 		struct page *page;
2985 		int len = PAGE_SIZE;
2986 		if (sector_nr + (len>>9) > max_sector)
2987 			len = (max_sector - sector_nr) << 9;
2988 		if (len == 0)
2989 			break;
2990 		if (sync_blocks == 0) {
2991 			if (!md_bitmap_start_sync(mddev, sector_nr,
2992 						  &sync_blocks, still_degraded) &&
2993 			    !conf->fullsync &&
2994 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2995 				break;
2996 			if ((len >> 9) > sync_blocks)
2997 				len = sync_blocks<<9;
2998 		}
2999 
3000 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3001 			struct resync_pages *rp;
3002 
3003 			bio = r1_bio->bios[i];
3004 			rp = get_resync_pages(bio);
3005 			if (bio->bi_end_io) {
3006 				page = resync_fetch_page(rp, page_idx);
3007 
3008 				/*
3009 				 * won't fail because the vec table is big
3010 				 * enough to hold all these pages
3011 				 */
3012 				__bio_add_page(bio, page, len, 0);
3013 			}
3014 		}
3015 		nr_sectors += len>>9;
3016 		sector_nr += len>>9;
3017 		sync_blocks -= (len>>9);
3018 	} while (++page_idx < RESYNC_PAGES);
3019 
3020 	r1_bio->sectors = nr_sectors;
3021 
3022 	if (mddev_is_clustered(mddev) &&
3023 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3024 		conf->cluster_sync_low = mddev->curr_resync_completed;
3025 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3026 		/* Send resync message */
3027 		mddev->cluster_ops->resync_info_update(mddev,
3028 						       conf->cluster_sync_low,
3029 						       conf->cluster_sync_high);
3030 	}
3031 
3032 	/* For a user-requested sync, we read all readable devices and do a
3033 	 * compare
3034 	 */
3035 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3036 		atomic_set(&r1_bio->remaining, read_targets);
3037 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3038 			bio = r1_bio->bios[i];
3039 			if (bio->bi_end_io == end_sync_read) {
3040 				read_targets--;
3041 				if (read_targets == 1)
3042 					bio->bi_opf &= ~MD_FAILFAST;
3043 				submit_bio_noacct(bio);
3044 			}
3045 		}
3046 	} else {
3047 		atomic_set(&r1_bio->remaining, 1);
3048 		bio = r1_bio->bios[r1_bio->read_disk];
3049 		if (read_targets == 1)
3050 			bio->bi_opf &= ~MD_FAILFAST;
3051 		submit_bio_noacct(bio);
3052 	}
3053 	return nr_sectors;
3054 }
3055 
3056 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3057 {
3058 	if (sectors)
3059 		return sectors;
3060 
3061 	return mddev->dev_sectors;
3062 }
3063 
3064 static struct r1conf *setup_conf(struct mddev *mddev)
3065 {
3066 	struct r1conf *conf;
3067 	int i;
3068 	struct raid1_info *disk;
3069 	struct md_rdev *rdev;
3070 	size_t r1bio_size;
3071 	int err = -ENOMEM;
3072 
3073 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3074 	if (!conf)
3075 		goto abort;
3076 
3077 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3078 				   sizeof(atomic_t), GFP_KERNEL);
3079 	if (!conf->nr_pending)
3080 		goto abort;
3081 
3082 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3083 				   sizeof(atomic_t), GFP_KERNEL);
3084 	if (!conf->nr_waiting)
3085 		goto abort;
3086 
3087 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3088 				  sizeof(atomic_t), GFP_KERNEL);
3089 	if (!conf->nr_queued)
3090 		goto abort;
3091 
3092 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3093 				sizeof(atomic_t), GFP_KERNEL);
3094 	if (!conf->barrier)
3095 		goto abort;
3096 
3097 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3098 					    mddev->raid_disks, 2),
3099 				GFP_KERNEL);
3100 	if (!conf->mirrors)
3101 		goto abort;
3102 
3103 	conf->tmppage = alloc_page(GFP_KERNEL);
3104 	if (!conf->tmppage)
3105 		goto abort;
3106 
3107 	r1bio_size = offsetof(struct r1bio, bios[mddev->raid_disks * 2]);
3108 	conf->r1bio_pool = mempool_create_kmalloc_pool(NR_RAID_BIOS, r1bio_size);
3109 	if (!conf->r1bio_pool)
3110 		goto abort;
3111 
3112 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3113 	if (err)
3114 		goto abort;
3115 
3116 	err = -EINVAL;
3117 	spin_lock_init(&conf->device_lock);
3118 	conf->raid_disks = mddev->raid_disks;
3119 	rdev_for_each(rdev, mddev) {
3120 		int disk_idx = rdev->raid_disk;
3121 
3122 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3123 			continue;
3124 
3125 		if (!raid1_add_conf(conf, rdev, disk_idx,
3126 				    test_bit(Replacement, &rdev->flags)))
3127 			goto abort;
3128 	}
3129 	conf->mddev = mddev;
3130 	INIT_LIST_HEAD(&conf->retry_list);
3131 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3132 
3133 	spin_lock_init(&conf->resync_lock);
3134 	init_waitqueue_head(&conf->wait_barrier);
3135 
3136 	bio_list_init(&conf->pending_bio_list);
3137 
3138 	err = -EIO;
3139 	for (i = 0; i < conf->raid_disks * 2; i++) {
3140 
3141 		disk = conf->mirrors + i;
3142 
3143 		if (i < conf->raid_disks &&
3144 		    disk[conf->raid_disks].rdev) {
3145 			/* This slot has a replacement. */
3146 			if (!disk->rdev) {
3147 				/* No original, just make the replacement
3148 				 * a recovering spare
3149 				 */
3150 				disk->rdev =
3151 					disk[conf->raid_disks].rdev;
3152 				disk[conf->raid_disks].rdev = NULL;
3153 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3154 				/* Original is not in_sync - bad */
3155 				goto abort;
3156 		}
3157 
3158 		if (!disk->rdev ||
3159 		    !test_bit(In_sync, &disk->rdev->flags)) {
3160 			disk->head_position = 0;
3161 			if (disk->rdev &&
3162 			    (disk->rdev->saved_raid_disk < 0))
3163 				conf->fullsync = 1;
3164 		}
3165 	}
3166 
3167 	err = -ENOMEM;
3168 	rcu_assign_pointer(conf->thread,
3169 			   md_register_thread(raid1d, mddev, "raid1"));
3170 	if (!conf->thread)
3171 		goto abort;
3172 
3173 	return conf;
3174 
3175  abort:
3176 	if (conf) {
3177 		mempool_destroy(conf->r1bio_pool);
3178 		kfree(conf->mirrors);
3179 		safe_put_page(conf->tmppage);
3180 		kfree(conf->nr_pending);
3181 		kfree(conf->nr_waiting);
3182 		kfree(conf->nr_queued);
3183 		kfree(conf->barrier);
3184 		bioset_exit(&conf->bio_split);
3185 		kfree(conf);
3186 	}
3187 	return ERR_PTR(err);
3188 }
3189 
3190 static int raid1_set_limits(struct mddev *mddev)
3191 {
3192 	struct queue_limits lim;
3193 	int err;
3194 
3195 	md_init_stacking_limits(&lim);
3196 	lim.max_write_zeroes_sectors = 0;
3197 	lim.max_hw_wzeroes_unmap_sectors = 0;
3198 	lim.logical_block_size = mddev->logical_block_size;
3199 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
3200 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3201 	if (err)
3202 		return err;
3203 	return queue_limits_set(mddev->gendisk->queue, &lim);
3204 }
3205 
3206 static int raid1_run(struct mddev *mddev)
3207 {
3208 	struct r1conf *conf;
3209 	int i;
3210 	int ret;
3211 
3212 	if (mddev->level != 1) {
3213 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3214 			mdname(mddev), mddev->level);
3215 		return -EIO;
3216 	}
3217 	if (mddev->reshape_position != MaxSector) {
3218 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3219 			mdname(mddev));
3220 		return -EIO;
3221 	}
3222 
3223 	/*
3224 	 * copy the already verified devices into our private RAID1
3225 	 * bookkeeping area. [whatever we allocate in run(),
3226 	 * should be freed in raid1_free()]
3227 	 */
3228 	if (mddev->private == NULL)
3229 		conf = setup_conf(mddev);
3230 	else
3231 		conf = mddev->private;
3232 
3233 	if (IS_ERR(conf))
3234 		return PTR_ERR(conf);
3235 
3236 	if (!mddev_is_dm(mddev)) {
3237 		ret = raid1_set_limits(mddev);
3238 		if (ret) {
3239 			md_unregister_thread(mddev, &conf->thread);
3240 			if (!mddev->private)
3241 				raid1_free(mddev, conf);
3242 			return ret;
3243 		}
3244 	}
3245 
3246 	mddev->degraded = 0;
3247 	for (i = 0; i < conf->raid_disks; i++)
3248 		if (conf->mirrors[i].rdev == NULL ||
3249 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3250 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3251 			mddev->degraded++;
3252 	/*
3253 	 * RAID1 needs at least one disk in active
3254 	 */
3255 	if (conf->raid_disks - mddev->degraded < 1) {
3256 		md_unregister_thread(mddev, &conf->thread);
3257 		if (!mddev->private)
3258 			raid1_free(mddev, conf);
3259 		return -EINVAL;
3260 	}
3261 
3262 	if (conf->raid_disks - mddev->degraded == 1)
3263 		mddev->resync_offset = MaxSector;
3264 
3265 	if (mddev->resync_offset != MaxSector)
3266 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3267 			mdname(mddev));
3268 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3269 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3270 		mddev->raid_disks);
3271 
3272 	/*
3273 	 * Ok, everything is just fine now
3274 	 */
3275 	rcu_assign_pointer(mddev->thread, conf->thread);
3276 	rcu_assign_pointer(conf->thread, NULL);
3277 	mddev->private = conf;
3278 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3279 
3280 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3281 
3282 	ret = md_integrity_register(mddev);
3283 	if (ret)
3284 		md_unregister_thread(mddev, &mddev->thread);
3285 	return ret;
3286 }
3287 
3288 static void raid1_free(struct mddev *mddev, void *priv)
3289 {
3290 	struct r1conf *conf = priv;
3291 
3292 	mempool_destroy(conf->r1bio_pool);
3293 	kfree(conf->mirrors);
3294 	safe_put_page(conf->tmppage);
3295 	kfree(conf->nr_pending);
3296 	kfree(conf->nr_waiting);
3297 	kfree(conf->nr_queued);
3298 	kfree(conf->barrier);
3299 	bioset_exit(&conf->bio_split);
3300 	kfree(conf);
3301 }
3302 
3303 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3304 {
3305 	/* no resync is happening, and there is enough space
3306 	 * on all devices, so we can resize.
3307 	 * We need to make sure resync covers any new space.
3308 	 * If the array is shrinking we should possibly wait until
3309 	 * any io in the removed space completes, but it hardly seems
3310 	 * worth it.
3311 	 */
3312 	sector_t newsize = raid1_size(mddev, sectors, 0);
3313 
3314 	if (mddev->external_size &&
3315 	    mddev->array_sectors > newsize)
3316 		return -EINVAL;
3317 
3318 	if (md_bitmap_enabled(mddev, false)) {
3319 		int ret = mddev->bitmap_ops->resize(mddev, newsize, 0);
3320 
3321 		if (ret)
3322 			return ret;
3323 	}
3324 
3325 	md_set_array_sectors(mddev, newsize);
3326 	if (sectors > mddev->dev_sectors &&
3327 	    mddev->resync_offset > mddev->dev_sectors) {
3328 		mddev->resync_offset = mddev->dev_sectors;
3329 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3330 	}
3331 	mddev->dev_sectors = sectors;
3332 	mddev->resync_max_sectors = sectors;
3333 	return 0;
3334 }
3335 
3336 static int raid1_reshape(struct mddev *mddev)
3337 {
3338 	/* We need to:
3339 	 * 1/ resize the r1bio_pool
3340 	 * 2/ resize conf->mirrors
3341 	 *
3342 	 * We allocate a new r1bio_pool if we can.
3343 	 * Then raise a device barrier and wait until all IO stops.
3344 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3345 	 *
3346 	 * At the same time, we "pack" the devices so that all the missing
3347 	 * devices have the higher raid_disk numbers.
3348 	 */
3349 	mempool_t *newpool, *oldpool;
3350 	size_t new_r1bio_size;
3351 	struct raid1_info *newmirrors;
3352 	struct r1conf *conf = mddev->private;
3353 	int cnt, raid_disks;
3354 	unsigned long flags;
3355 	int d, d2;
3356 
3357 	/* Cannot change chunk_size, layout, or level */
3358 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3359 	    mddev->layout != mddev->new_layout ||
3360 	    mddev->level != mddev->new_level) {
3361 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3362 		mddev->new_layout = mddev->layout;
3363 		mddev->new_level = mddev->level;
3364 		return -EINVAL;
3365 	}
3366 
3367 	if (!mddev_is_clustered(mddev))
3368 		md_allow_write(mddev);
3369 
3370 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3371 
3372 	if (raid_disks < conf->raid_disks) {
3373 		cnt=0;
3374 		for (d= 0; d < conf->raid_disks; d++)
3375 			if (conf->mirrors[d].rdev)
3376 				cnt++;
3377 		if (cnt > raid_disks)
3378 			return -EBUSY;
3379 	}
3380 
3381 	new_r1bio_size = offsetof(struct r1bio, bios[raid_disks * 2]);
3382 	newpool = mempool_create_kmalloc_pool(NR_RAID_BIOS, new_r1bio_size);
3383 	if (!newpool) {
3384 		return -ENOMEM;
3385 	}
3386 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3387 					 raid_disks, 2),
3388 			     GFP_KERNEL);
3389 	if (!newmirrors) {
3390 		mempool_destroy(newpool);
3391 		return -ENOMEM;
3392 	}
3393 
3394 	freeze_array(conf, 0);
3395 
3396 	/* ok, everything is stopped */
3397 	oldpool = conf->r1bio_pool;
3398 	conf->r1bio_pool = newpool;
3399 
3400 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3401 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3402 		if (rdev && rdev->raid_disk != d2) {
3403 			sysfs_unlink_rdev(mddev, rdev);
3404 			rdev->raid_disk = d2;
3405 			sysfs_unlink_rdev(mddev, rdev);
3406 			if (sysfs_link_rdev(mddev, rdev))
3407 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3408 					mdname(mddev), rdev->raid_disk);
3409 		}
3410 		if (rdev)
3411 			newmirrors[d2++].rdev = rdev;
3412 	}
3413 	kfree(conf->mirrors);
3414 	conf->mirrors = newmirrors;
3415 
3416 	spin_lock_irqsave(&conf->device_lock, flags);
3417 	mddev->degraded += (raid_disks - conf->raid_disks);
3418 	spin_unlock_irqrestore(&conf->device_lock, flags);
3419 	conf->raid_disks = mddev->raid_disks = raid_disks;
3420 	mddev->delta_disks = 0;
3421 
3422 	unfreeze_array(conf);
3423 
3424 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3425 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3426 	md_wakeup_thread(mddev->thread);
3427 
3428 	mempool_destroy(oldpool);
3429 	return 0;
3430 }
3431 
3432 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3433 {
3434 	struct r1conf *conf = mddev->private;
3435 
3436 	if (quiesce)
3437 		freeze_array(conf, 0);
3438 	else
3439 		unfreeze_array(conf);
3440 }
3441 
3442 static void *raid1_takeover(struct mddev *mddev)
3443 {
3444 	/* raid1 can take over:
3445 	 *  raid5 with 2 devices, any layout or chunk size
3446 	 */
3447 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3448 		struct r1conf *conf;
3449 		mddev->new_level = 1;
3450 		mddev->new_layout = 0;
3451 		mddev->new_chunk_sectors = 0;
3452 		conf = setup_conf(mddev);
3453 		if (!IS_ERR(conf)) {
3454 			/* Array must appear to be quiesced */
3455 			conf->array_frozen = 1;
3456 			mddev_clear_unsupported_flags(mddev,
3457 				UNSUPPORTED_MDDEV_FLAGS);
3458 		}
3459 		return conf;
3460 	}
3461 	return ERR_PTR(-EINVAL);
3462 }
3463 
3464 static struct md_personality raid1_personality =
3465 {
3466 	.head = {
3467 		.type	= MD_PERSONALITY,
3468 		.id	= ID_RAID1,
3469 		.name	= "raid1",
3470 		.owner	= THIS_MODULE,
3471 	},
3472 
3473 	.make_request	= raid1_make_request,
3474 	.run		= raid1_run,
3475 	.free		= raid1_free,
3476 	.status		= raid1_status,
3477 	.error_handler	= raid1_error,
3478 	.hot_add_disk	= raid1_add_disk,
3479 	.hot_remove_disk= raid1_remove_disk,
3480 	.spare_active	= raid1_spare_active,
3481 	.sync_request	= raid1_sync_request,
3482 	.resize		= raid1_resize,
3483 	.size		= raid1_size,
3484 	.check_reshape	= raid1_reshape,
3485 	.quiesce	= raid1_quiesce,
3486 	.takeover	= raid1_takeover,
3487 };
3488 
3489 static int __init raid1_init(void)
3490 {
3491 	return register_md_submodule(&raid1_personality.head);
3492 }
3493 
3494 static void __exit raid1_exit(void)
3495 {
3496 	unregister_md_submodule(&raid1_personality.head);
3497 }
3498 
3499 module_init(raid1_init);
3500 module_exit(raid1_exit);
3501 MODULE_LICENSE("GPL");
3502 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3503 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3504 MODULE_ALIAS("md-raid1");
3505 MODULE_ALIAS("md-level-1");
3506