1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 #include "md-cluster.h" 40 41 #define UNSUPPORTED_MDDEV_FLAGS \ 42 ((1L << MD_HAS_JOURNAL) | \ 43 (1L << MD_JOURNAL_CLEAN) | \ 44 (1L << MD_HAS_PPL) | \ 45 (1L << MD_HAS_MULTIPLE_PPLS)) 46 47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 49 static void raid1_free(struct mddev *mddev, void *priv); 50 51 #define RAID_1_10_NAME "raid1" 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void *r1bio_pool_alloc(gfp_t gfp_flags, struct r1conf *conf) 131 { 132 int size = offsetof(struct r1bio, bios[conf->raid_disks * 2]); 133 134 /* allocate a r1bio with room for raid_disks entries in the bios array */ 135 return kzalloc(size, gfp_flags); 136 } 137 138 #define RESYNC_DEPTH 32 139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 140 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 141 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 142 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 143 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 144 145 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 146 { 147 struct r1conf *conf = data; 148 struct r1bio *r1_bio; 149 struct bio *bio; 150 int need_pages; 151 int j; 152 struct resync_pages *rps; 153 154 r1_bio = r1bio_pool_alloc(gfp_flags, conf); 155 if (!r1_bio) 156 return NULL; 157 158 rps = kmalloc_array(conf->raid_disks * 2, sizeof(struct resync_pages), 159 gfp_flags); 160 if (!rps) 161 goto out_free_r1bio; 162 163 /* 164 * Allocate bios : 1 for reading, n-1 for writing 165 */ 166 for (j = conf->raid_disks * 2; j-- ; ) { 167 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 168 if (!bio) 169 goto out_free_bio; 170 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &conf->mddev->recovery)) 180 need_pages = conf->raid_disks * 2; 181 else 182 need_pages = 1; 183 for (j = 0; j < conf->raid_disks * 2; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < conf->raid_disks * 2) { 210 bio_uninit(r1_bio->bios[j]); 211 kfree(r1_bio->bios[j]); 212 } 213 kfree(rps); 214 215 out_free_r1bio: 216 rbio_pool_free(r1_bio, data); 217 return NULL; 218 } 219 220 static void r1buf_pool_free(void *__r1_bio, void *data) 221 { 222 struct r1conf *conf = data; 223 int i; 224 struct r1bio *r1bio = __r1_bio; 225 struct resync_pages *rp = NULL; 226 227 for (i = conf->raid_disks * 2; i--; ) { 228 rp = get_resync_pages(r1bio->bios[i]); 229 resync_free_pages(rp); 230 bio_uninit(r1bio->bios[i]); 231 kfree(r1bio->bios[i]); 232 } 233 234 /* resync pages array stored in the 1st bio's .bi_private */ 235 kfree(rp); 236 237 rbio_pool_free(r1bio, data); 238 } 239 240 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 241 { 242 int i; 243 244 for (i = 0; i < conf->raid_disks * 2; i++) { 245 struct bio **bio = r1_bio->bios + i; 246 if (!BIO_SPECIAL(*bio)) 247 bio_put(*bio); 248 *bio = NULL; 249 } 250 } 251 252 static void free_r1bio(struct r1bio *r1_bio) 253 { 254 struct r1conf *conf = r1_bio->mddev->private; 255 256 put_all_bios(conf, r1_bio); 257 mempool_free(r1_bio, conf->r1bio_pool); 258 } 259 260 static void put_buf(struct r1bio *r1_bio) 261 { 262 struct r1conf *conf = r1_bio->mddev->private; 263 sector_t sect = r1_bio->sector; 264 int i; 265 266 for (i = 0; i < conf->raid_disks * 2; i++) { 267 struct bio *bio = r1_bio->bios[i]; 268 if (bio->bi_end_io) 269 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 270 } 271 272 mempool_free(r1_bio, &conf->r1buf_pool); 273 274 lower_barrier(conf, sect); 275 } 276 277 static void reschedule_retry(struct r1bio *r1_bio) 278 { 279 unsigned long flags; 280 struct mddev *mddev = r1_bio->mddev; 281 struct r1conf *conf = mddev->private; 282 int idx; 283 284 idx = sector_to_idx(r1_bio->sector); 285 spin_lock_irqsave(&conf->device_lock, flags); 286 list_add(&r1_bio->retry_list, &conf->retry_list); 287 atomic_inc(&conf->nr_queued[idx]); 288 spin_unlock_irqrestore(&conf->device_lock, flags); 289 290 wake_up(&conf->wait_barrier); 291 md_wakeup_thread(mddev->thread); 292 } 293 294 /* 295 * raid_end_bio_io() is called when we have finished servicing a mirrored 296 * operation and are ready to return a success/failure code to the buffer 297 * cache layer. 298 */ 299 static void call_bio_endio(struct r1bio *r1_bio) 300 { 301 struct bio *bio = r1_bio->master_bio; 302 303 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 304 bio->bi_status = BLK_STS_IOERR; 305 306 bio_endio(bio); 307 } 308 309 static void raid_end_bio_io(struct r1bio *r1_bio) 310 { 311 struct bio *bio = r1_bio->master_bio; 312 struct r1conf *conf = r1_bio->mddev->private; 313 sector_t sector = r1_bio->sector; 314 315 /* if nobody has done the final endio yet, do it now */ 316 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 317 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 318 (bio_data_dir(bio) == WRITE) ? "write" : "read", 319 (unsigned long long) bio->bi_iter.bi_sector, 320 (unsigned long long) bio_end_sector(bio) - 1); 321 322 call_bio_endio(r1_bio); 323 } 324 325 free_r1bio(r1_bio); 326 /* 327 * Wake up any possible resync thread that waits for the device 328 * to go idle. All I/Os, even write-behind writes, are done. 329 */ 330 allow_barrier(conf, sector); 331 } 332 333 /* 334 * Update disk head position estimator based on IRQ completion info. 335 */ 336 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 337 { 338 struct r1conf *conf = r1_bio->mddev->private; 339 340 conf->mirrors[disk].head_position = 341 r1_bio->sector + (r1_bio->sectors); 342 } 343 344 /* 345 * Find the disk number which triggered given bio 346 */ 347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 348 { 349 int mirror; 350 struct r1conf *conf = r1_bio->mddev->private; 351 int raid_disks = conf->raid_disks; 352 353 for (mirror = 0; mirror < raid_disks * 2; mirror++) 354 if (r1_bio->bios[mirror] == bio) 355 break; 356 357 BUG_ON(mirror == raid_disks * 2); 358 update_head_pos(mirror, r1_bio); 359 360 return mirror; 361 } 362 363 static void raid1_end_read_request(struct bio *bio) 364 { 365 int uptodate = !bio->bi_status; 366 struct r1bio *r1_bio = bio->bi_private; 367 struct r1conf *conf = r1_bio->mddev->private; 368 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 369 370 /* 371 * this branch is our 'one mirror IO has finished' event handler: 372 */ 373 update_head_pos(r1_bio->read_disk, r1_bio); 374 375 if (uptodate) { 376 set_bit(R1BIO_Uptodate, &r1_bio->state); 377 } else if (test_bit(FailFast, &rdev->flags) && 378 test_bit(R1BIO_FailFast, &r1_bio->state)) { 379 /* This was a fail-fast read so we definitely 380 * want to retry */ 381 ; 382 } else if (!raid1_should_handle_error(bio)) { 383 uptodate = 1; 384 } else { 385 /* If all other devices have failed, we want to return 386 * the error upwards rather than fail the last device. 387 * Here we redefine "uptodate" to mean "Don't want to retry" 388 */ 389 unsigned long flags; 390 spin_lock_irqsave(&conf->device_lock, flags); 391 if (r1_bio->mddev->degraded == conf->raid_disks || 392 (r1_bio->mddev->degraded == conf->raid_disks-1 && 393 test_bit(In_sync, &rdev->flags))) 394 uptodate = 1; 395 spin_unlock_irqrestore(&conf->device_lock, flags); 396 } 397 398 if (uptodate) { 399 raid_end_bio_io(r1_bio); 400 rdev_dec_pending(rdev, conf->mddev); 401 } else { 402 /* 403 * oops, read error: 404 */ 405 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 406 mdname(conf->mddev), 407 rdev->bdev, 408 (unsigned long long)r1_bio->sector); 409 set_bit(R1BIO_ReadError, &r1_bio->state); 410 reschedule_retry(r1_bio); 411 /* don't drop the reference on read_disk yet */ 412 } 413 } 414 415 static void close_write(struct r1bio *r1_bio) 416 { 417 struct mddev *mddev = r1_bio->mddev; 418 419 /* it really is the end of this request */ 420 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 421 bio_free_pages(r1_bio->behind_master_bio); 422 bio_put(r1_bio->behind_master_bio); 423 r1_bio->behind_master_bio = NULL; 424 } 425 426 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 427 mddev->bitmap_ops->end_behind_write(mddev); 428 md_write_end(mddev); 429 } 430 431 static void r1_bio_write_done(struct r1bio *r1_bio) 432 { 433 if (!atomic_dec_and_test(&r1_bio->remaining)) 434 return; 435 436 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 437 reschedule_retry(r1_bio); 438 else { 439 close_write(r1_bio); 440 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 441 reschedule_retry(r1_bio); 442 else 443 raid_end_bio_io(r1_bio); 444 } 445 } 446 447 static void raid1_end_write_request(struct bio *bio) 448 { 449 struct r1bio *r1_bio = bio->bi_private; 450 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 451 struct r1conf *conf = r1_bio->mddev->private; 452 struct bio *to_put = NULL; 453 int mirror = find_bio_disk(r1_bio, bio); 454 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 455 sector_t lo = r1_bio->sector; 456 sector_t hi = r1_bio->sector + r1_bio->sectors; 457 bool ignore_error = !raid1_should_handle_error(bio) || 458 (bio->bi_status && bio_op(bio) == REQ_OP_DISCARD); 459 460 /* 461 * 'one mirror IO has finished' event handler: 462 */ 463 if (bio->bi_status && !ignore_error) { 464 set_bit(WriteErrorSeen, &rdev->flags); 465 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 466 set_bit(MD_RECOVERY_NEEDED, & 467 conf->mddev->recovery); 468 469 if (test_bit(FailFast, &rdev->flags) && 470 (bio->bi_opf & MD_FAILFAST) && 471 /* We never try FailFast to WriteMostly devices */ 472 !test_bit(WriteMostly, &rdev->flags)) { 473 md_error(r1_bio->mddev, rdev); 474 } 475 476 /* 477 * When the device is faulty, it is not necessary to 478 * handle write error. 479 */ 480 if (!test_bit(Faulty, &rdev->flags)) 481 set_bit(R1BIO_WriteError, &r1_bio->state); 482 else { 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 r1_bio->bios[mirror] = NULL; 499 to_put = bio; 500 /* 501 * Do not set R1BIO_Uptodate if the current device is 502 * rebuilding or Faulty. This is because we cannot use 503 * such device for properly reading the data back (we could 504 * potentially use it, if the current write would have felt 505 * before rdev->recovery_offset, but for simplicity we don't 506 * check this here. 507 */ 508 if (test_bit(In_sync, &rdev->flags) && 509 !test_bit(Faulty, &rdev->flags)) 510 set_bit(R1BIO_Uptodate, &r1_bio->state); 511 512 /* Maybe we can clear some bad blocks. */ 513 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 514 !ignore_error) { 515 r1_bio->bios[mirror] = IO_MADE_GOOD; 516 set_bit(R1BIO_MadeGood, &r1_bio->state); 517 } 518 } 519 520 if (behind) { 521 if (test_bit(CollisionCheck, &rdev->flags)) 522 remove_serial(rdev, lo, hi); 523 if (test_bit(WriteMostly, &rdev->flags)) 524 atomic_dec(&r1_bio->behind_remaining); 525 526 /* 527 * In behind mode, we ACK the master bio once the I/O 528 * has safely reached all non-writemostly 529 * disks. Setting the Returned bit ensures that this 530 * gets done only once -- we don't ever want to return 531 * -EIO here, instead we'll wait 532 */ 533 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 534 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 535 /* Maybe we can return now */ 536 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 537 struct bio *mbio = r1_bio->master_bio; 538 pr_debug("raid1: behind end write sectors" 539 " %llu-%llu\n", 540 (unsigned long long) mbio->bi_iter.bi_sector, 541 (unsigned long long) bio_end_sector(mbio) - 1); 542 call_bio_endio(r1_bio); 543 } 544 } 545 } else if (rdev->mddev->serialize_policy) 546 remove_serial(rdev, lo, hi); 547 if (r1_bio->bios[mirror] == NULL) 548 rdev_dec_pending(rdev, conf->mddev); 549 550 /* 551 * Let's see if all mirrored write operations have finished 552 * already. 553 */ 554 r1_bio_write_done(r1_bio); 555 556 if (to_put) 557 bio_put(to_put); 558 } 559 560 static sector_t align_to_barrier_unit_end(sector_t start_sector, 561 sector_t sectors) 562 { 563 sector_t len; 564 565 WARN_ON(sectors == 0); 566 /* 567 * len is the number of sectors from start_sector to end of the 568 * barrier unit which start_sector belongs to. 569 */ 570 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 571 start_sector; 572 573 if (len > sectors) 574 len = sectors; 575 576 return len; 577 } 578 579 static void update_read_sectors(struct r1conf *conf, int disk, 580 sector_t this_sector, int len) 581 { 582 struct raid1_info *info = &conf->mirrors[disk]; 583 584 atomic_inc(&info->rdev->nr_pending); 585 if (info->next_seq_sect != this_sector) 586 info->seq_start = this_sector; 587 info->next_seq_sect = this_sector + len; 588 } 589 590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio, 591 int *max_sectors) 592 { 593 sector_t this_sector = r1_bio->sector; 594 int len = r1_bio->sectors; 595 int disk; 596 597 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 598 struct md_rdev *rdev; 599 int read_len; 600 601 if (r1_bio->bios[disk] == IO_BLOCKED) 602 continue; 603 604 rdev = conf->mirrors[disk].rdev; 605 if (!rdev || test_bit(Faulty, &rdev->flags)) 606 continue; 607 608 /* choose the first disk even if it has some bad blocks. */ 609 read_len = raid1_check_read_range(rdev, this_sector, &len); 610 if (read_len > 0) { 611 update_read_sectors(conf, disk, this_sector, read_len); 612 *max_sectors = read_len; 613 return disk; 614 } 615 } 616 617 return -1; 618 } 619 620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio) 621 { 622 return !test_bit(In_sync, &rdev->flags) && 623 rdev->recovery_offset < r1_bio->sector + r1_bio->sectors; 624 } 625 626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio, 627 int *max_sectors) 628 { 629 sector_t this_sector = r1_bio->sector; 630 int best_disk = -1; 631 int best_len = 0; 632 int disk; 633 634 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 635 struct md_rdev *rdev; 636 int len; 637 int read_len; 638 639 if (r1_bio->bios[disk] == IO_BLOCKED) 640 continue; 641 642 rdev = conf->mirrors[disk].rdev; 643 if (!rdev || test_bit(Faulty, &rdev->flags) || 644 rdev_in_recovery(rdev, r1_bio) || 645 test_bit(WriteMostly, &rdev->flags)) 646 continue; 647 648 /* keep track of the disk with the most readable sectors. */ 649 len = r1_bio->sectors; 650 read_len = raid1_check_read_range(rdev, this_sector, &len); 651 if (read_len > best_len) { 652 best_disk = disk; 653 best_len = read_len; 654 } 655 } 656 657 if (best_disk != -1) { 658 *max_sectors = best_len; 659 update_read_sectors(conf, best_disk, this_sector, best_len); 660 } 661 662 return best_disk; 663 } 664 665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio, 666 int *max_sectors) 667 { 668 sector_t this_sector = r1_bio->sector; 669 int bb_disk = -1; 670 int bb_read_len = 0; 671 int disk; 672 673 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 674 struct md_rdev *rdev; 675 int len; 676 int read_len; 677 678 if (r1_bio->bios[disk] == IO_BLOCKED) 679 continue; 680 681 rdev = conf->mirrors[disk].rdev; 682 if (!rdev || test_bit(Faulty, &rdev->flags) || 683 !test_bit(WriteMostly, &rdev->flags) || 684 rdev_in_recovery(rdev, r1_bio)) 685 continue; 686 687 /* there are no bad blocks, we can use this disk */ 688 len = r1_bio->sectors; 689 read_len = raid1_check_read_range(rdev, this_sector, &len); 690 if (read_len == r1_bio->sectors) { 691 *max_sectors = read_len; 692 update_read_sectors(conf, disk, this_sector, read_len); 693 return disk; 694 } 695 696 /* 697 * there are partial bad blocks, choose the rdev with largest 698 * read length. 699 */ 700 if (read_len > bb_read_len) { 701 bb_disk = disk; 702 bb_read_len = read_len; 703 } 704 } 705 706 if (bb_disk != -1) { 707 *max_sectors = bb_read_len; 708 update_read_sectors(conf, bb_disk, this_sector, bb_read_len); 709 } 710 711 return bb_disk; 712 } 713 714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio) 715 { 716 /* TODO: address issues with this check and concurrency. */ 717 return conf->mirrors[disk].next_seq_sect == r1_bio->sector || 718 conf->mirrors[disk].head_position == r1_bio->sector; 719 } 720 721 /* 722 * If buffered sequential IO size exceeds optimal iosize, check if there is idle 723 * disk. If yes, choose the idle disk. 724 */ 725 static bool should_choose_next(struct r1conf *conf, int disk) 726 { 727 struct raid1_info *mirror = &conf->mirrors[disk]; 728 int opt_iosize; 729 730 if (!test_bit(Nonrot, &mirror->rdev->flags)) 731 return false; 732 733 opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9; 734 return opt_iosize > 0 && mirror->seq_start != MaxSector && 735 mirror->next_seq_sect > opt_iosize && 736 mirror->next_seq_sect - opt_iosize >= mirror->seq_start; 737 } 738 739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio) 740 { 741 if (!rdev || test_bit(Faulty, &rdev->flags)) 742 return false; 743 744 if (rdev_in_recovery(rdev, r1_bio)) 745 return false; 746 747 /* don't read from slow disk unless have to */ 748 if (test_bit(WriteMostly, &rdev->flags)) 749 return false; 750 751 /* don't split IO for bad blocks unless have to */ 752 if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors)) 753 return false; 754 755 return true; 756 } 757 758 struct read_balance_ctl { 759 sector_t closest_dist; 760 int closest_dist_disk; 761 int min_pending; 762 int min_pending_disk; 763 int sequential_disk; 764 int readable_disks; 765 }; 766 767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio) 768 { 769 int disk; 770 struct read_balance_ctl ctl = { 771 .closest_dist_disk = -1, 772 .closest_dist = MaxSector, 773 .min_pending_disk = -1, 774 .min_pending = UINT_MAX, 775 .sequential_disk = -1, 776 }; 777 778 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 779 struct md_rdev *rdev; 780 sector_t dist; 781 unsigned int pending; 782 783 if (r1_bio->bios[disk] == IO_BLOCKED) 784 continue; 785 786 rdev = conf->mirrors[disk].rdev; 787 if (!rdev_readable(rdev, r1_bio)) 788 continue; 789 790 /* At least two disks to choose from so failfast is OK */ 791 if (ctl.readable_disks++ == 1) 792 set_bit(R1BIO_FailFast, &r1_bio->state); 793 794 pending = atomic_read(&rdev->nr_pending); 795 dist = abs(r1_bio->sector - conf->mirrors[disk].head_position); 796 797 /* Don't change to another disk for sequential reads */ 798 if (is_sequential(conf, disk, r1_bio)) { 799 if (!should_choose_next(conf, disk)) 800 return disk; 801 802 /* 803 * Add 'pending' to avoid choosing this disk if 804 * there is other idle disk. 805 */ 806 pending++; 807 /* 808 * If there is no other idle disk, this disk 809 * will be chosen. 810 */ 811 ctl.sequential_disk = disk; 812 } 813 814 if (ctl.min_pending > pending) { 815 ctl.min_pending = pending; 816 ctl.min_pending_disk = disk; 817 } 818 819 if (ctl.closest_dist > dist) { 820 ctl.closest_dist = dist; 821 ctl.closest_dist_disk = disk; 822 } 823 } 824 825 /* 826 * sequential IO size exceeds optimal iosize, however, there is no other 827 * idle disk, so choose the sequential disk. 828 */ 829 if (ctl.sequential_disk != -1 && ctl.min_pending != 0) 830 return ctl.sequential_disk; 831 832 /* 833 * If all disks are rotational, choose the closest disk. If any disk is 834 * non-rotational, choose the disk with less pending request even the 835 * disk is rotational, which might/might not be optimal for raids with 836 * mixed ratation/non-rotational disks depending on workload. 837 */ 838 if (ctl.min_pending_disk != -1 && 839 (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0)) 840 return ctl.min_pending_disk; 841 else 842 return ctl.closest_dist_disk; 843 } 844 845 /* 846 * This routine returns the disk from which the requested read should be done. 847 * 848 * 1) If resync is in progress, find the first usable disk and use it even if it 849 * has some bad blocks. 850 * 851 * 2) Now that there is no resync, loop through all disks and skipping slow 852 * disks and disks with bad blocks for now. Only pay attention to key disk 853 * choice. 854 * 855 * 3) If we've made it this far, now look for disks with bad blocks and choose 856 * the one with most number of sectors. 857 * 858 * 4) If we are all the way at the end, we have no choice but to use a disk even 859 * if it is write mostly. 860 * 861 * The rdev for the device selected will have nr_pending incremented. 862 */ 863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, 864 int *max_sectors) 865 { 866 int disk; 867 868 clear_bit(R1BIO_FailFast, &r1_bio->state); 869 870 if (raid1_should_read_first(conf->mddev, r1_bio->sector, 871 r1_bio->sectors)) 872 return choose_first_rdev(conf, r1_bio, max_sectors); 873 874 disk = choose_best_rdev(conf, r1_bio); 875 if (disk >= 0) { 876 *max_sectors = r1_bio->sectors; 877 update_read_sectors(conf, disk, r1_bio->sector, 878 r1_bio->sectors); 879 return disk; 880 } 881 882 /* 883 * If we are here it means we didn't find a perfectly good disk so 884 * now spend a bit more time trying to find one with the most good 885 * sectors. 886 */ 887 disk = choose_bb_rdev(conf, r1_bio, max_sectors); 888 if (disk >= 0) 889 return disk; 890 891 return choose_slow_rdev(conf, r1_bio, max_sectors); 892 } 893 894 static void wake_up_barrier(struct r1conf *conf) 895 { 896 if (wq_has_sleeper(&conf->wait_barrier)) 897 wake_up(&conf->wait_barrier); 898 } 899 900 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 901 { 902 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 903 raid1_prepare_flush_writes(conf->mddev); 904 wake_up_barrier(conf); 905 906 while (bio) { /* submit pending writes */ 907 struct bio *next = bio->bi_next; 908 909 raid1_submit_write(bio); 910 bio = next; 911 cond_resched(); 912 } 913 } 914 915 static void flush_pending_writes(struct r1conf *conf) 916 { 917 /* Any writes that have been queued but are awaiting 918 * bitmap updates get flushed here. 919 */ 920 spin_lock_irq(&conf->device_lock); 921 922 if (conf->pending_bio_list.head) { 923 struct blk_plug plug; 924 struct bio *bio; 925 926 bio = bio_list_get(&conf->pending_bio_list); 927 spin_unlock_irq(&conf->device_lock); 928 929 /* 930 * As this is called in a wait_event() loop (see freeze_array), 931 * current->state might be TASK_UNINTERRUPTIBLE which will 932 * cause a warning when we prepare to wait again. As it is 933 * rare that this path is taken, it is perfectly safe to force 934 * us to go around the wait_event() loop again, so the warning 935 * is a false-positive. Silence the warning by resetting 936 * thread state 937 */ 938 __set_current_state(TASK_RUNNING); 939 blk_start_plug(&plug); 940 flush_bio_list(conf, bio); 941 blk_finish_plug(&plug); 942 } else 943 spin_unlock_irq(&conf->device_lock); 944 } 945 946 /* Barriers.... 947 * Sometimes we need to suspend IO while we do something else, 948 * either some resync/recovery, or reconfigure the array. 949 * To do this we raise a 'barrier'. 950 * The 'barrier' is a counter that can be raised multiple times 951 * to count how many activities are happening which preclude 952 * normal IO. 953 * We can only raise the barrier if there is no pending IO. 954 * i.e. if nr_pending == 0. 955 * We choose only to raise the barrier if no-one is waiting for the 956 * barrier to go down. This means that as soon as an IO request 957 * is ready, no other operations which require a barrier will start 958 * until the IO request has had a chance. 959 * 960 * So: regular IO calls 'wait_barrier'. When that returns there 961 * is no backgroup IO happening, It must arrange to call 962 * allow_barrier when it has finished its IO. 963 * backgroup IO calls must call raise_barrier. Once that returns 964 * there is no normal IO happeing. It must arrange to call 965 * lower_barrier when the particular background IO completes. 966 * 967 * If resync/recovery is interrupted, returns -EINTR; 968 * Otherwise, returns 0. 969 */ 970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 971 { 972 int idx = sector_to_idx(sector_nr); 973 974 spin_lock_irq(&conf->resync_lock); 975 976 /* Wait until no block IO is waiting */ 977 wait_event_lock_irq(conf->wait_barrier, 978 !atomic_read(&conf->nr_waiting[idx]), 979 conf->resync_lock); 980 981 /* block any new IO from starting */ 982 atomic_inc(&conf->barrier[idx]); 983 /* 984 * In raise_barrier() we firstly increase conf->barrier[idx] then 985 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 986 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 987 * A memory barrier here to make sure conf->nr_pending[idx] won't 988 * be fetched before conf->barrier[idx] is increased. Otherwise 989 * there will be a race between raise_barrier() and _wait_barrier(). 990 */ 991 smp_mb__after_atomic(); 992 993 /* For these conditions we must wait: 994 * A: while the array is in frozen state 995 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 996 * existing in corresponding I/O barrier bucket. 997 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 998 * max resync count which allowed on current I/O barrier bucket. 999 */ 1000 wait_event_lock_irq(conf->wait_barrier, 1001 (!conf->array_frozen && 1002 !atomic_read(&conf->nr_pending[idx]) && 1003 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 1004 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 1005 conf->resync_lock); 1006 1007 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 1008 atomic_dec(&conf->barrier[idx]); 1009 spin_unlock_irq(&conf->resync_lock); 1010 wake_up(&conf->wait_barrier); 1011 return -EINTR; 1012 } 1013 1014 atomic_inc(&conf->nr_sync_pending); 1015 spin_unlock_irq(&conf->resync_lock); 1016 1017 return 0; 1018 } 1019 1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 1021 { 1022 int idx = sector_to_idx(sector_nr); 1023 1024 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 1025 1026 atomic_dec(&conf->barrier[idx]); 1027 atomic_dec(&conf->nr_sync_pending); 1028 wake_up(&conf->wait_barrier); 1029 } 1030 1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 1032 { 1033 bool ret = true; 1034 1035 /* 1036 * We need to increase conf->nr_pending[idx] very early here, 1037 * then raise_barrier() can be blocked when it waits for 1038 * conf->nr_pending[idx] to be 0. Then we can avoid holding 1039 * conf->resync_lock when there is no barrier raised in same 1040 * barrier unit bucket. Also if the array is frozen, I/O 1041 * should be blocked until array is unfrozen. 1042 */ 1043 atomic_inc(&conf->nr_pending[idx]); 1044 /* 1045 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 1046 * check conf->barrier[idx]. In raise_barrier() we firstly increase 1047 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 1048 * barrier is necessary here to make sure conf->barrier[idx] won't be 1049 * fetched before conf->nr_pending[idx] is increased. Otherwise there 1050 * will be a race between _wait_barrier() and raise_barrier(). 1051 */ 1052 smp_mb__after_atomic(); 1053 1054 /* 1055 * Don't worry about checking two atomic_t variables at same time 1056 * here. If during we check conf->barrier[idx], the array is 1057 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 1058 * 0, it is safe to return and make the I/O continue. Because the 1059 * array is frozen, all I/O returned here will eventually complete 1060 * or be queued, no race will happen. See code comment in 1061 * frozen_array(). 1062 */ 1063 if (!READ_ONCE(conf->array_frozen) && 1064 !atomic_read(&conf->barrier[idx])) 1065 return ret; 1066 1067 /* 1068 * After holding conf->resync_lock, conf->nr_pending[idx] 1069 * should be decreased before waiting for barrier to drop. 1070 * Otherwise, we may encounter a race condition because 1071 * raise_barrer() might be waiting for conf->nr_pending[idx] 1072 * to be 0 at same time. 1073 */ 1074 spin_lock_irq(&conf->resync_lock); 1075 atomic_inc(&conf->nr_waiting[idx]); 1076 atomic_dec(&conf->nr_pending[idx]); 1077 /* 1078 * In case freeze_array() is waiting for 1079 * get_unqueued_pending() == extra 1080 */ 1081 wake_up_barrier(conf); 1082 /* Wait for the barrier in same barrier unit bucket to drop. */ 1083 1084 /* Return false when nowait flag is set */ 1085 if (nowait) { 1086 ret = false; 1087 } else { 1088 wait_event_lock_irq(conf->wait_barrier, 1089 !conf->array_frozen && 1090 !atomic_read(&conf->barrier[idx]), 1091 conf->resync_lock); 1092 atomic_inc(&conf->nr_pending[idx]); 1093 } 1094 1095 atomic_dec(&conf->nr_waiting[idx]); 1096 spin_unlock_irq(&conf->resync_lock); 1097 return ret; 1098 } 1099 1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1101 { 1102 int idx = sector_to_idx(sector_nr); 1103 bool ret = true; 1104 1105 /* 1106 * Very similar to _wait_barrier(). The difference is, for read 1107 * I/O we don't need wait for sync I/O, but if the whole array 1108 * is frozen, the read I/O still has to wait until the array is 1109 * unfrozen. Since there is no ordering requirement with 1110 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1111 */ 1112 atomic_inc(&conf->nr_pending[idx]); 1113 1114 if (!READ_ONCE(conf->array_frozen)) 1115 return ret; 1116 1117 spin_lock_irq(&conf->resync_lock); 1118 atomic_inc(&conf->nr_waiting[idx]); 1119 atomic_dec(&conf->nr_pending[idx]); 1120 /* 1121 * In case freeze_array() is waiting for 1122 * get_unqueued_pending() == extra 1123 */ 1124 wake_up_barrier(conf); 1125 /* Wait for array to be unfrozen */ 1126 1127 /* Return false when nowait flag is set */ 1128 if (nowait) { 1129 /* Return false when nowait flag is set */ 1130 ret = false; 1131 } else { 1132 wait_event_lock_irq(conf->wait_barrier, 1133 !conf->array_frozen, 1134 conf->resync_lock); 1135 atomic_inc(&conf->nr_pending[idx]); 1136 } 1137 1138 atomic_dec(&conf->nr_waiting[idx]); 1139 spin_unlock_irq(&conf->resync_lock); 1140 return ret; 1141 } 1142 1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1144 { 1145 int idx = sector_to_idx(sector_nr); 1146 1147 return _wait_barrier(conf, idx, nowait); 1148 } 1149 1150 static void _allow_barrier(struct r1conf *conf, int idx) 1151 { 1152 atomic_dec(&conf->nr_pending[idx]); 1153 wake_up_barrier(conf); 1154 } 1155 1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1157 { 1158 int idx = sector_to_idx(sector_nr); 1159 1160 _allow_barrier(conf, idx); 1161 } 1162 1163 /* conf->resync_lock should be held */ 1164 static int get_unqueued_pending(struct r1conf *conf) 1165 { 1166 int idx, ret; 1167 1168 ret = atomic_read(&conf->nr_sync_pending); 1169 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1170 ret += atomic_read(&conf->nr_pending[idx]) - 1171 atomic_read(&conf->nr_queued[idx]); 1172 1173 return ret; 1174 } 1175 1176 static void freeze_array(struct r1conf *conf, int extra) 1177 { 1178 /* Stop sync I/O and normal I/O and wait for everything to 1179 * go quiet. 1180 * This is called in two situations: 1181 * 1) management command handlers (reshape, remove disk, quiesce). 1182 * 2) one normal I/O request failed. 1183 1184 * After array_frozen is set to 1, new sync IO will be blocked at 1185 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1186 * or wait_read_barrier(). The flying I/Os will either complete or be 1187 * queued. When everything goes quite, there are only queued I/Os left. 1188 1189 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1190 * barrier bucket index which this I/O request hits. When all sync and 1191 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1192 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1193 * in handle_read_error(), we may call freeze_array() before trying to 1194 * fix the read error. In this case, the error read I/O is not queued, 1195 * so get_unqueued_pending() == 1. 1196 * 1197 * Therefore before this function returns, we need to wait until 1198 * get_unqueued_pendings(conf) gets equal to extra. For 1199 * normal I/O context, extra is 1, in rested situations extra is 0. 1200 */ 1201 spin_lock_irq(&conf->resync_lock); 1202 conf->array_frozen = 1; 1203 mddev_add_trace_msg(conf->mddev, "raid1 wait freeze"); 1204 wait_event_lock_irq_cmd( 1205 conf->wait_barrier, 1206 get_unqueued_pending(conf) == extra, 1207 conf->resync_lock, 1208 flush_pending_writes(conf)); 1209 spin_unlock_irq(&conf->resync_lock); 1210 } 1211 static void unfreeze_array(struct r1conf *conf) 1212 { 1213 /* reverse the effect of the freeze */ 1214 spin_lock_irq(&conf->resync_lock); 1215 conf->array_frozen = 0; 1216 spin_unlock_irq(&conf->resync_lock); 1217 wake_up(&conf->wait_barrier); 1218 } 1219 1220 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1221 struct bio *bio) 1222 { 1223 int size = bio->bi_iter.bi_size; 1224 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1225 int i = 0; 1226 struct bio *behind_bio = NULL; 1227 1228 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1229 &r1_bio->mddev->bio_set); 1230 1231 /* discard op, we don't support writezero/writesame yet */ 1232 if (!bio_has_data(bio)) { 1233 behind_bio->bi_iter.bi_size = size; 1234 goto skip_copy; 1235 } 1236 1237 while (i < vcnt && size) { 1238 struct page *page; 1239 int len = min_t(int, PAGE_SIZE, size); 1240 1241 page = alloc_page(GFP_NOIO); 1242 if (unlikely(!page)) 1243 goto free_pages; 1244 1245 if (!bio_add_page(behind_bio, page, len, 0)) { 1246 put_page(page); 1247 goto free_pages; 1248 } 1249 1250 size -= len; 1251 i++; 1252 } 1253 1254 bio_copy_data(behind_bio, bio); 1255 skip_copy: 1256 r1_bio->behind_master_bio = behind_bio; 1257 set_bit(R1BIO_BehindIO, &r1_bio->state); 1258 1259 return; 1260 1261 free_pages: 1262 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1263 bio->bi_iter.bi_size); 1264 bio_free_pages(behind_bio); 1265 bio_put(behind_bio); 1266 } 1267 1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1269 { 1270 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1271 cb); 1272 struct mddev *mddev = plug->cb.data; 1273 struct r1conf *conf = mddev->private; 1274 struct bio *bio; 1275 1276 if (from_schedule) { 1277 spin_lock_irq(&conf->device_lock); 1278 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1279 spin_unlock_irq(&conf->device_lock); 1280 wake_up_barrier(conf); 1281 md_wakeup_thread(mddev->thread); 1282 kfree(plug); 1283 return; 1284 } 1285 1286 /* we aren't scheduling, so we can do the write-out directly. */ 1287 bio = bio_list_get(&plug->pending); 1288 flush_bio_list(conf, bio); 1289 kfree(plug); 1290 } 1291 1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1293 { 1294 r1_bio->master_bio = bio; 1295 r1_bio->sectors = bio_sectors(bio); 1296 r1_bio->state = 0; 1297 r1_bio->mddev = mddev; 1298 r1_bio->sector = bio->bi_iter.bi_sector; 1299 } 1300 1301 static inline struct r1bio * 1302 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1303 { 1304 struct r1conf *conf = mddev->private; 1305 struct r1bio *r1_bio; 1306 1307 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1308 memset(r1_bio, 0, offsetof(struct r1bio, bios[conf->raid_disks * 2])); 1309 init_r1bio(r1_bio, mddev, bio); 1310 return r1_bio; 1311 } 1312 1313 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1314 int max_read_sectors, struct r1bio *r1_bio) 1315 { 1316 struct r1conf *conf = mddev->private; 1317 struct raid1_info *mirror; 1318 struct bio *read_bio; 1319 int max_sectors; 1320 int rdisk, error; 1321 bool r1bio_existed = !!r1_bio; 1322 1323 /* 1324 * If r1_bio is set, we are blocking the raid1d thread 1325 * so there is a tiny risk of deadlock. So ask for 1326 * emergency memory if needed. 1327 */ 1328 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1329 1330 /* 1331 * Still need barrier for READ in case that whole 1332 * array is frozen. 1333 */ 1334 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1335 bio->bi_opf & REQ_NOWAIT)) { 1336 bio_wouldblock_error(bio); 1337 return; 1338 } 1339 1340 if (!r1_bio) 1341 r1_bio = alloc_r1bio(mddev, bio); 1342 else 1343 init_r1bio(r1_bio, mddev, bio); 1344 r1_bio->sectors = max_read_sectors; 1345 1346 /* 1347 * make_request() can abort the operation when read-ahead is being 1348 * used and no empty request is available. 1349 */ 1350 rdisk = read_balance(conf, r1_bio, &max_sectors); 1351 if (rdisk < 0) { 1352 /* couldn't find anywhere to read from */ 1353 if (r1bio_existed) 1354 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 1355 mdname(mddev), 1356 conf->mirrors[r1_bio->read_disk].rdev->bdev, 1357 r1_bio->sector); 1358 raid_end_bio_io(r1_bio); 1359 return; 1360 } 1361 mirror = conf->mirrors + rdisk; 1362 1363 if (r1bio_existed) 1364 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1365 mdname(mddev), 1366 (unsigned long long)r1_bio->sector, 1367 mirror->rdev->bdev); 1368 1369 if (test_bit(WriteMostly, &mirror->rdev->flags)) { 1370 /* 1371 * Reading from a write-mostly device must take care not to 1372 * over-take any writes that are 'behind' 1373 */ 1374 mddev_add_trace_msg(mddev, "raid1 wait behind writes"); 1375 mddev->bitmap_ops->wait_behind_writes(mddev); 1376 } 1377 1378 if (max_sectors < bio_sectors(bio)) { 1379 struct bio *split = bio_split(bio, max_sectors, 1380 gfp, &conf->bio_split); 1381 1382 if (IS_ERR(split)) { 1383 error = PTR_ERR(split); 1384 goto err_handle; 1385 } 1386 bio_chain(split, bio); 1387 submit_bio_noacct(bio); 1388 bio = split; 1389 r1_bio->master_bio = bio; 1390 r1_bio->sectors = max_sectors; 1391 } 1392 1393 r1_bio->read_disk = rdisk; 1394 if (!r1bio_existed) { 1395 md_account_bio(mddev, &bio); 1396 r1_bio->master_bio = bio; 1397 } 1398 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1399 &mddev->bio_set); 1400 read_bio->bi_opf &= ~REQ_NOWAIT; 1401 r1_bio->bios[rdisk] = read_bio; 1402 1403 read_bio->bi_iter.bi_sector = r1_bio->sector + 1404 mirror->rdev->data_offset; 1405 read_bio->bi_end_io = raid1_end_read_request; 1406 if (test_bit(FailFast, &mirror->rdev->flags) && 1407 test_bit(R1BIO_FailFast, &r1_bio->state)) 1408 read_bio->bi_opf |= MD_FAILFAST; 1409 read_bio->bi_private = r1_bio; 1410 mddev_trace_remap(mddev, read_bio, r1_bio->sector); 1411 submit_bio_noacct(read_bio); 1412 return; 1413 1414 err_handle: 1415 atomic_dec(&mirror->rdev->nr_pending); 1416 bio->bi_status = errno_to_blk_status(error); 1417 set_bit(R1BIO_Uptodate, &r1_bio->state); 1418 raid_end_bio_io(r1_bio); 1419 } 1420 1421 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio) 1422 { 1423 struct r1conf *conf = mddev->private; 1424 int disks = conf->raid_disks * 2; 1425 int i; 1426 1427 retry: 1428 for (i = 0; i < disks; i++) { 1429 struct md_rdev *rdev = conf->mirrors[i].rdev; 1430 1431 if (!rdev) 1432 continue; 1433 1434 /* don't write here until the bad block is acknowledged */ 1435 if (test_bit(WriteErrorSeen, &rdev->flags) && 1436 rdev_has_badblock(rdev, bio->bi_iter.bi_sector, 1437 bio_sectors(bio)) < 0) 1438 set_bit(BlockedBadBlocks, &rdev->flags); 1439 1440 if (rdev_blocked(rdev)) { 1441 if (bio->bi_opf & REQ_NOWAIT) 1442 return false; 1443 1444 mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked", 1445 rdev->raid_disk); 1446 atomic_inc(&rdev->nr_pending); 1447 md_wait_for_blocked_rdev(rdev, rdev->mddev); 1448 goto retry; 1449 } 1450 } 1451 1452 return true; 1453 } 1454 1455 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1456 int max_write_sectors) 1457 { 1458 struct r1conf *conf = mddev->private; 1459 struct r1bio *r1_bio; 1460 int i, disks, k, error; 1461 unsigned long flags; 1462 int first_clone; 1463 int max_sectors; 1464 bool write_behind = false; 1465 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD); 1466 1467 if (mddev_is_clustered(mddev) && 1468 mddev->cluster_ops->area_resyncing(mddev, WRITE, 1469 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1470 1471 DEFINE_WAIT(w); 1472 if (bio->bi_opf & REQ_NOWAIT) { 1473 bio_wouldblock_error(bio); 1474 return; 1475 } 1476 for (;;) { 1477 prepare_to_wait(&conf->wait_barrier, 1478 &w, TASK_IDLE); 1479 if (!mddev->cluster_ops->area_resyncing(mddev, WRITE, 1480 bio->bi_iter.bi_sector, 1481 bio_end_sector(bio))) 1482 break; 1483 schedule(); 1484 } 1485 finish_wait(&conf->wait_barrier, &w); 1486 } 1487 1488 /* 1489 * Register the new request and wait if the reconstruction 1490 * thread has put up a bar for new requests. 1491 * Continue immediately if no resync is active currently. 1492 */ 1493 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1494 bio->bi_opf & REQ_NOWAIT)) { 1495 bio_wouldblock_error(bio); 1496 return; 1497 } 1498 1499 if (!wait_blocked_rdev(mddev, bio)) { 1500 bio_wouldblock_error(bio); 1501 return; 1502 } 1503 1504 r1_bio = alloc_r1bio(mddev, bio); 1505 r1_bio->sectors = max_write_sectors; 1506 1507 /* first select target devices under rcu_lock and 1508 * inc refcount on their rdev. Record them by setting 1509 * bios[x] to bio 1510 * If there are known/acknowledged bad blocks on any device on 1511 * which we have seen a write error, we want to avoid writing those 1512 * blocks. 1513 * This potentially requires several writes to write around 1514 * the bad blocks. Each set of writes gets it's own r1bio 1515 * with a set of bios attached. 1516 */ 1517 1518 disks = conf->raid_disks * 2; 1519 max_sectors = r1_bio->sectors; 1520 for (i = 0; i < disks; i++) { 1521 struct md_rdev *rdev = conf->mirrors[i].rdev; 1522 1523 /* 1524 * The write-behind io is only attempted on drives marked as 1525 * write-mostly, which means we could allocate write behind 1526 * bio later. 1527 */ 1528 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags)) 1529 write_behind = true; 1530 1531 r1_bio->bios[i] = NULL; 1532 if (!rdev || test_bit(Faulty, &rdev->flags)) 1533 continue; 1534 1535 atomic_inc(&rdev->nr_pending); 1536 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1537 sector_t first_bad; 1538 sector_t bad_sectors; 1539 int is_bad; 1540 1541 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1542 &first_bad, &bad_sectors); 1543 if (is_bad && first_bad <= r1_bio->sector) { 1544 /* Cannot write here at all */ 1545 bad_sectors -= (r1_bio->sector - first_bad); 1546 if (bad_sectors < max_sectors) 1547 /* mustn't write more than bad_sectors 1548 * to other devices yet 1549 */ 1550 max_sectors = bad_sectors; 1551 rdev_dec_pending(rdev, mddev); 1552 continue; 1553 } 1554 if (is_bad) { 1555 int good_sectors; 1556 1557 /* 1558 * We cannot atomically write this, so just 1559 * error in that case. It could be possible to 1560 * atomically write other mirrors, but the 1561 * complexity of supporting that is not worth 1562 * the benefit. 1563 */ 1564 if (bio->bi_opf & REQ_ATOMIC) { 1565 error = -EIO; 1566 goto err_handle; 1567 } 1568 1569 good_sectors = first_bad - r1_bio->sector; 1570 if (good_sectors < max_sectors) 1571 max_sectors = good_sectors; 1572 } 1573 } 1574 r1_bio->bios[i] = bio; 1575 } 1576 1577 /* 1578 * When using a bitmap, we may call alloc_behind_master_bio below. 1579 * alloc_behind_master_bio allocates a copy of the data payload a page 1580 * at a time and thus needs a new bio that can fit the whole payload 1581 * this bio in page sized chunks. 1582 */ 1583 if (write_behind && mddev->bitmap) 1584 max_sectors = min_t(int, max_sectors, 1585 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1586 if (max_sectors < bio_sectors(bio)) { 1587 struct bio *split = bio_split(bio, max_sectors, 1588 GFP_NOIO, &conf->bio_split); 1589 1590 if (IS_ERR(split)) { 1591 error = PTR_ERR(split); 1592 goto err_handle; 1593 } 1594 bio_chain(split, bio); 1595 submit_bio_noacct(bio); 1596 bio = split; 1597 r1_bio->master_bio = bio; 1598 r1_bio->sectors = max_sectors; 1599 } 1600 1601 md_account_bio(mddev, &bio); 1602 r1_bio->master_bio = bio; 1603 atomic_set(&r1_bio->remaining, 1); 1604 atomic_set(&r1_bio->behind_remaining, 0); 1605 1606 first_clone = 1; 1607 1608 for (i = 0; i < disks; i++) { 1609 struct bio *mbio = NULL; 1610 struct md_rdev *rdev = conf->mirrors[i].rdev; 1611 if (!r1_bio->bios[i]) 1612 continue; 1613 1614 if (first_clone) { 1615 unsigned long max_write_behind = 1616 mddev->bitmap_info.max_write_behind; 1617 struct md_bitmap_stats stats; 1618 int err; 1619 1620 /* do behind I/O ? 1621 * Not if there are too many, or cannot 1622 * allocate memory, or a reader on WriteMostly 1623 * is waiting for behind writes to flush */ 1624 err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats); 1625 if (!err && write_behind && !stats.behind_wait && 1626 stats.behind_writes < max_write_behind) 1627 alloc_behind_master_bio(r1_bio, bio); 1628 1629 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) 1630 mddev->bitmap_ops->start_behind_write(mddev); 1631 first_clone = 0; 1632 } 1633 1634 if (r1_bio->behind_master_bio) { 1635 mbio = bio_alloc_clone(rdev->bdev, 1636 r1_bio->behind_master_bio, 1637 GFP_NOIO, &mddev->bio_set); 1638 if (test_bit(CollisionCheck, &rdev->flags)) 1639 wait_for_serialization(rdev, r1_bio); 1640 if (test_bit(WriteMostly, &rdev->flags)) 1641 atomic_inc(&r1_bio->behind_remaining); 1642 } else { 1643 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1644 &mddev->bio_set); 1645 1646 if (mddev->serialize_policy) 1647 wait_for_serialization(rdev, r1_bio); 1648 } 1649 1650 mbio->bi_opf &= ~REQ_NOWAIT; 1651 r1_bio->bios[i] = mbio; 1652 1653 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1654 mbio->bi_end_io = raid1_end_write_request; 1655 if (test_bit(FailFast, &rdev->flags) && 1656 !test_bit(WriteMostly, &rdev->flags) && 1657 conf->raid_disks - mddev->degraded > 1) 1658 mbio->bi_opf |= MD_FAILFAST; 1659 mbio->bi_private = r1_bio; 1660 1661 atomic_inc(&r1_bio->remaining); 1662 mddev_trace_remap(mddev, mbio, r1_bio->sector); 1663 /* flush_pending_writes() needs access to the rdev so...*/ 1664 mbio->bi_bdev = (void *)rdev; 1665 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1666 spin_lock_irqsave(&conf->device_lock, flags); 1667 bio_list_add(&conf->pending_bio_list, mbio); 1668 spin_unlock_irqrestore(&conf->device_lock, flags); 1669 md_wakeup_thread(mddev->thread); 1670 } 1671 } 1672 1673 r1_bio_write_done(r1_bio); 1674 1675 /* In case raid1d snuck in to freeze_array */ 1676 wake_up_barrier(conf); 1677 return; 1678 err_handle: 1679 for (k = 0; k < i; k++) { 1680 if (r1_bio->bios[k]) { 1681 rdev_dec_pending(conf->mirrors[k].rdev, mddev); 1682 r1_bio->bios[k] = NULL; 1683 } 1684 } 1685 1686 bio->bi_status = errno_to_blk_status(error); 1687 set_bit(R1BIO_Uptodate, &r1_bio->state); 1688 raid_end_bio_io(r1_bio); 1689 } 1690 1691 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1692 { 1693 sector_t sectors; 1694 1695 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1696 && md_flush_request(mddev, bio)) 1697 return true; 1698 1699 /* 1700 * There is a limit to the maximum size, but 1701 * the read/write handler might find a lower limit 1702 * due to bad blocks. To avoid multiple splits, 1703 * we pass the maximum number of sectors down 1704 * and let the lower level perform the split. 1705 */ 1706 sectors = align_to_barrier_unit_end( 1707 bio->bi_iter.bi_sector, bio_sectors(bio)); 1708 1709 if (bio_data_dir(bio) == READ) 1710 raid1_read_request(mddev, bio, sectors, NULL); 1711 else { 1712 md_write_start(mddev,bio); 1713 raid1_write_request(mddev, bio, sectors); 1714 } 1715 return true; 1716 } 1717 1718 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1719 { 1720 struct r1conf *conf = mddev->private; 1721 int i; 1722 1723 lockdep_assert_held(&mddev->lock); 1724 1725 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1726 conf->raid_disks - mddev->degraded); 1727 for (i = 0; i < conf->raid_disks; i++) { 1728 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev); 1729 1730 seq_printf(seq, "%s", 1731 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1732 } 1733 seq_printf(seq, "]"); 1734 } 1735 1736 /** 1737 * raid1_error() - RAID1 error handler. 1738 * @mddev: affected md device. 1739 * @rdev: member device to fail. 1740 * 1741 * The routine acknowledges &rdev failure and determines new @mddev state. 1742 * If it failed, then: 1743 * - &MD_BROKEN flag is set in &mddev->flags. 1744 * - recovery is disabled. 1745 * Otherwise, it must be degraded: 1746 * - recovery is interrupted. 1747 * - &mddev->degraded is bumped. 1748 * 1749 * @rdev is marked as &Faulty excluding case when array is failed and 1750 * &mddev->fail_last_dev is off. 1751 */ 1752 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1753 { 1754 struct r1conf *conf = mddev->private; 1755 unsigned long flags; 1756 1757 spin_lock_irqsave(&conf->device_lock, flags); 1758 1759 if (test_bit(In_sync, &rdev->flags) && 1760 (conf->raid_disks - mddev->degraded) == 1) { 1761 set_bit(MD_BROKEN, &mddev->flags); 1762 1763 if (!mddev->fail_last_dev) { 1764 conf->recovery_disabled = mddev->recovery_disabled; 1765 spin_unlock_irqrestore(&conf->device_lock, flags); 1766 return; 1767 } 1768 } 1769 set_bit(Blocked, &rdev->flags); 1770 if (test_and_clear_bit(In_sync, &rdev->flags)) 1771 mddev->degraded++; 1772 set_bit(Faulty, &rdev->flags); 1773 spin_unlock_irqrestore(&conf->device_lock, flags); 1774 /* 1775 * if recovery is running, make sure it aborts. 1776 */ 1777 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1778 set_mask_bits(&mddev->sb_flags, 0, 1779 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1780 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1781 "md/raid1:%s: Operation continuing on %d devices.\n", 1782 mdname(mddev), rdev->bdev, 1783 mdname(mddev), conf->raid_disks - mddev->degraded); 1784 } 1785 1786 static void print_conf(struct r1conf *conf) 1787 { 1788 int i; 1789 1790 pr_debug("RAID1 conf printout:\n"); 1791 if (!conf) { 1792 pr_debug("(!conf)\n"); 1793 return; 1794 } 1795 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1796 conf->raid_disks); 1797 1798 lockdep_assert_held(&conf->mddev->reconfig_mutex); 1799 for (i = 0; i < conf->raid_disks; i++) { 1800 struct md_rdev *rdev = conf->mirrors[i].rdev; 1801 if (rdev) 1802 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1803 i, !test_bit(In_sync, &rdev->flags), 1804 !test_bit(Faulty, &rdev->flags), 1805 rdev->bdev); 1806 } 1807 } 1808 1809 static void close_sync(struct r1conf *conf) 1810 { 1811 int idx; 1812 1813 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1814 _wait_barrier(conf, idx, false); 1815 _allow_barrier(conf, idx); 1816 } 1817 1818 mempool_exit(&conf->r1buf_pool); 1819 } 1820 1821 static int raid1_spare_active(struct mddev *mddev) 1822 { 1823 int i; 1824 struct r1conf *conf = mddev->private; 1825 int count = 0; 1826 unsigned long flags; 1827 1828 /* 1829 * Find all failed disks within the RAID1 configuration 1830 * and mark them readable. 1831 * Called under mddev lock, so rcu protection not needed. 1832 * device_lock used to avoid races with raid1_end_read_request 1833 * which expects 'In_sync' flags and ->degraded to be consistent. 1834 */ 1835 spin_lock_irqsave(&conf->device_lock, flags); 1836 for (i = 0; i < conf->raid_disks; i++) { 1837 struct md_rdev *rdev = conf->mirrors[i].rdev; 1838 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1839 if (repl 1840 && !test_bit(Candidate, &repl->flags) 1841 && repl->recovery_offset == MaxSector 1842 && !test_bit(Faulty, &repl->flags) 1843 && !test_and_set_bit(In_sync, &repl->flags)) { 1844 /* replacement has just become active */ 1845 if (!rdev || 1846 !test_and_clear_bit(In_sync, &rdev->flags)) 1847 count++; 1848 if (rdev) { 1849 /* Replaced device not technically 1850 * faulty, but we need to be sure 1851 * it gets removed and never re-added 1852 */ 1853 set_bit(Faulty, &rdev->flags); 1854 sysfs_notify_dirent_safe( 1855 rdev->sysfs_state); 1856 } 1857 } 1858 if (rdev 1859 && rdev->recovery_offset == MaxSector 1860 && !test_bit(Faulty, &rdev->flags) 1861 && !test_and_set_bit(In_sync, &rdev->flags)) { 1862 count++; 1863 sysfs_notify_dirent_safe(rdev->sysfs_state); 1864 } 1865 } 1866 mddev->degraded -= count; 1867 spin_unlock_irqrestore(&conf->device_lock, flags); 1868 1869 print_conf(conf); 1870 return count; 1871 } 1872 1873 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk, 1874 bool replacement) 1875 { 1876 struct raid1_info *info = conf->mirrors + disk; 1877 1878 if (replacement) 1879 info += conf->raid_disks; 1880 1881 if (info->rdev) 1882 return false; 1883 1884 if (bdev_nonrot(rdev->bdev)) { 1885 set_bit(Nonrot, &rdev->flags); 1886 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1); 1887 } 1888 1889 rdev->raid_disk = disk; 1890 info->head_position = 0; 1891 info->seq_start = MaxSector; 1892 WRITE_ONCE(info->rdev, rdev); 1893 1894 return true; 1895 } 1896 1897 static bool raid1_remove_conf(struct r1conf *conf, int disk) 1898 { 1899 struct raid1_info *info = conf->mirrors + disk; 1900 struct md_rdev *rdev = info->rdev; 1901 1902 if (!rdev || test_bit(In_sync, &rdev->flags) || 1903 atomic_read(&rdev->nr_pending)) 1904 return false; 1905 1906 /* Only remove non-faulty devices if recovery is not possible. */ 1907 if (!test_bit(Faulty, &rdev->flags) && 1908 rdev->mddev->recovery_disabled != conf->recovery_disabled && 1909 rdev->mddev->degraded < conf->raid_disks) 1910 return false; 1911 1912 if (test_and_clear_bit(Nonrot, &rdev->flags)) 1913 WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1); 1914 1915 WRITE_ONCE(info->rdev, NULL); 1916 return true; 1917 } 1918 1919 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1920 { 1921 struct r1conf *conf = mddev->private; 1922 int err = -EEXIST; 1923 int mirror = 0, repl_slot = -1; 1924 struct raid1_info *p; 1925 int first = 0; 1926 int last = conf->raid_disks - 1; 1927 1928 if (mddev->recovery_disabled == conf->recovery_disabled) 1929 return -EBUSY; 1930 1931 if (rdev->raid_disk >= 0) 1932 first = last = rdev->raid_disk; 1933 1934 /* 1935 * find the disk ... but prefer rdev->saved_raid_disk 1936 * if possible. 1937 */ 1938 if (rdev->saved_raid_disk >= 0 && 1939 rdev->saved_raid_disk >= first && 1940 rdev->saved_raid_disk < conf->raid_disks && 1941 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1942 first = last = rdev->saved_raid_disk; 1943 1944 for (mirror = first; mirror <= last; mirror++) { 1945 p = conf->mirrors + mirror; 1946 if (!p->rdev) { 1947 err = mddev_stack_new_rdev(mddev, rdev); 1948 if (err) 1949 return err; 1950 1951 raid1_add_conf(conf, rdev, mirror, false); 1952 /* As all devices are equivalent, we don't need a full recovery 1953 * if this was recently any drive of the array 1954 */ 1955 if (rdev->saved_raid_disk < 0) 1956 conf->fullsync = 1; 1957 break; 1958 } 1959 if (test_bit(WantReplacement, &p->rdev->flags) && 1960 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1961 repl_slot = mirror; 1962 } 1963 1964 if (err && repl_slot >= 0) { 1965 /* Add this device as a replacement */ 1966 clear_bit(In_sync, &rdev->flags); 1967 set_bit(Replacement, &rdev->flags); 1968 raid1_add_conf(conf, rdev, repl_slot, true); 1969 err = 0; 1970 conf->fullsync = 1; 1971 } 1972 1973 print_conf(conf); 1974 return err; 1975 } 1976 1977 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1978 { 1979 struct r1conf *conf = mddev->private; 1980 int err = 0; 1981 int number = rdev->raid_disk; 1982 struct raid1_info *p = conf->mirrors + number; 1983 1984 if (unlikely(number >= conf->raid_disks)) 1985 goto abort; 1986 1987 if (rdev != p->rdev) { 1988 number += conf->raid_disks; 1989 p = conf->mirrors + number; 1990 } 1991 1992 print_conf(conf); 1993 if (rdev == p->rdev) { 1994 if (!raid1_remove_conf(conf, number)) { 1995 err = -EBUSY; 1996 goto abort; 1997 } 1998 1999 if (number < conf->raid_disks && 2000 conf->mirrors[conf->raid_disks + number].rdev) { 2001 /* We just removed a device that is being replaced. 2002 * Move down the replacement. We drain all IO before 2003 * doing this to avoid confusion. 2004 */ 2005 struct md_rdev *repl = 2006 conf->mirrors[conf->raid_disks + number].rdev; 2007 freeze_array(conf, 0); 2008 if (atomic_read(&repl->nr_pending)) { 2009 /* It means that some queued IO of retry_list 2010 * hold repl. Thus, we cannot set replacement 2011 * as NULL, avoiding rdev NULL pointer 2012 * dereference in sync_request_write and 2013 * handle_write_finished. 2014 */ 2015 err = -EBUSY; 2016 unfreeze_array(conf); 2017 goto abort; 2018 } 2019 clear_bit(Replacement, &repl->flags); 2020 WRITE_ONCE(p->rdev, repl); 2021 conf->mirrors[conf->raid_disks + number].rdev = NULL; 2022 unfreeze_array(conf); 2023 } 2024 2025 clear_bit(WantReplacement, &rdev->flags); 2026 err = md_integrity_register(mddev); 2027 } 2028 abort: 2029 2030 print_conf(conf); 2031 return err; 2032 } 2033 2034 static void end_sync_read(struct bio *bio) 2035 { 2036 struct r1bio *r1_bio = get_resync_r1bio(bio); 2037 2038 update_head_pos(r1_bio->read_disk, r1_bio); 2039 2040 /* 2041 * we have read a block, now it needs to be re-written, 2042 * or re-read if the read failed. 2043 * We don't do much here, just schedule handling by raid1d 2044 */ 2045 if (!bio->bi_status) 2046 set_bit(R1BIO_Uptodate, &r1_bio->state); 2047 2048 if (atomic_dec_and_test(&r1_bio->remaining)) 2049 reschedule_retry(r1_bio); 2050 } 2051 2052 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 2053 { 2054 sector_t sync_blocks = 0; 2055 sector_t s = r1_bio->sector; 2056 long sectors_to_go = r1_bio->sectors; 2057 2058 /* make sure these bits don't get cleared. */ 2059 do { 2060 mddev->bitmap_ops->end_sync(mddev, s, &sync_blocks); 2061 s += sync_blocks; 2062 sectors_to_go -= sync_blocks; 2063 } while (sectors_to_go > 0); 2064 } 2065 2066 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 2067 { 2068 if (atomic_dec_and_test(&r1_bio->remaining)) { 2069 struct mddev *mddev = r1_bio->mddev; 2070 int s = r1_bio->sectors; 2071 2072 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2073 test_bit(R1BIO_WriteError, &r1_bio->state)) 2074 reschedule_retry(r1_bio); 2075 else { 2076 put_buf(r1_bio); 2077 md_done_sync(mddev, s, uptodate); 2078 } 2079 } 2080 } 2081 2082 static void end_sync_write(struct bio *bio) 2083 { 2084 int uptodate = !bio->bi_status; 2085 struct r1bio *r1_bio = get_resync_r1bio(bio); 2086 struct mddev *mddev = r1_bio->mddev; 2087 struct r1conf *conf = mddev->private; 2088 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 2089 2090 if (!uptodate) { 2091 abort_sync_write(mddev, r1_bio); 2092 set_bit(WriteErrorSeen, &rdev->flags); 2093 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2094 set_bit(MD_RECOVERY_NEEDED, & 2095 mddev->recovery); 2096 set_bit(R1BIO_WriteError, &r1_bio->state); 2097 } else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) && 2098 !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev, 2099 r1_bio->sector, r1_bio->sectors)) { 2100 set_bit(R1BIO_MadeGood, &r1_bio->state); 2101 } 2102 2103 put_sync_write_buf(r1_bio, uptodate); 2104 } 2105 2106 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 2107 int sectors, struct page *page, blk_opf_t rw) 2108 { 2109 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 2110 /* success */ 2111 return 1; 2112 if (rw == REQ_OP_WRITE) { 2113 set_bit(WriteErrorSeen, &rdev->flags); 2114 if (!test_and_set_bit(WantReplacement, 2115 &rdev->flags)) 2116 set_bit(MD_RECOVERY_NEEDED, & 2117 rdev->mddev->recovery); 2118 } 2119 /* need to record an error - either for the block or the device */ 2120 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2121 md_error(rdev->mddev, rdev); 2122 return 0; 2123 } 2124 2125 static int fix_sync_read_error(struct r1bio *r1_bio) 2126 { 2127 /* Try some synchronous reads of other devices to get 2128 * good data, much like with normal read errors. Only 2129 * read into the pages we already have so we don't 2130 * need to re-issue the read request. 2131 * We don't need to freeze the array, because being in an 2132 * active sync request, there is no normal IO, and 2133 * no overlapping syncs. 2134 * We don't need to check is_badblock() again as we 2135 * made sure that anything with a bad block in range 2136 * will have bi_end_io clear. 2137 */ 2138 struct mddev *mddev = r1_bio->mddev; 2139 struct r1conf *conf = mddev->private; 2140 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2141 struct page **pages = get_resync_pages(bio)->pages; 2142 sector_t sect = r1_bio->sector; 2143 int sectors = r1_bio->sectors; 2144 int idx = 0; 2145 struct md_rdev *rdev; 2146 2147 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2148 if (test_bit(FailFast, &rdev->flags)) { 2149 /* Don't try recovering from here - just fail it 2150 * ... unless it is the last working device of course */ 2151 md_error(mddev, rdev); 2152 if (test_bit(Faulty, &rdev->flags)) 2153 /* Don't try to read from here, but make sure 2154 * put_buf does it's thing 2155 */ 2156 bio->bi_end_io = end_sync_write; 2157 } 2158 2159 while(sectors) { 2160 int s = sectors; 2161 int d = r1_bio->read_disk; 2162 int success = 0; 2163 int start; 2164 2165 if (s > (PAGE_SIZE>>9)) 2166 s = PAGE_SIZE >> 9; 2167 do { 2168 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2169 /* No rcu protection needed here devices 2170 * can only be removed when no resync is 2171 * active, and resync is currently active 2172 */ 2173 rdev = conf->mirrors[d].rdev; 2174 if (sync_page_io(rdev, sect, s<<9, 2175 pages[idx], 2176 REQ_OP_READ, false)) { 2177 success = 1; 2178 break; 2179 } 2180 } 2181 d++; 2182 if (d == conf->raid_disks * 2) 2183 d = 0; 2184 } while (!success && d != r1_bio->read_disk); 2185 2186 if (!success) { 2187 int abort = 0; 2188 /* Cannot read from anywhere, this block is lost. 2189 * Record a bad block on each device. If that doesn't 2190 * work just disable and interrupt the recovery. 2191 * Don't fail devices as that won't really help. 2192 */ 2193 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2194 mdname(mddev), bio->bi_bdev, 2195 (unsigned long long)r1_bio->sector); 2196 for (d = 0; d < conf->raid_disks * 2; d++) { 2197 rdev = conf->mirrors[d].rdev; 2198 if (!rdev || test_bit(Faulty, &rdev->flags)) 2199 continue; 2200 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2201 abort = 1; 2202 } 2203 if (abort) 2204 return 0; 2205 2206 /* Try next page */ 2207 sectors -= s; 2208 sect += s; 2209 idx++; 2210 continue; 2211 } 2212 2213 start = d; 2214 /* write it back and re-read */ 2215 while (d != r1_bio->read_disk) { 2216 if (d == 0) 2217 d = conf->raid_disks * 2; 2218 d--; 2219 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2220 continue; 2221 rdev = conf->mirrors[d].rdev; 2222 if (r1_sync_page_io(rdev, sect, s, 2223 pages[idx], 2224 REQ_OP_WRITE) == 0) { 2225 r1_bio->bios[d]->bi_end_io = NULL; 2226 rdev_dec_pending(rdev, mddev); 2227 } 2228 } 2229 d = start; 2230 while (d != r1_bio->read_disk) { 2231 if (d == 0) 2232 d = conf->raid_disks * 2; 2233 d--; 2234 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2235 continue; 2236 rdev = conf->mirrors[d].rdev; 2237 if (r1_sync_page_io(rdev, sect, s, 2238 pages[idx], 2239 REQ_OP_READ) != 0) 2240 atomic_add(s, &rdev->corrected_errors); 2241 } 2242 sectors -= s; 2243 sect += s; 2244 idx ++; 2245 } 2246 set_bit(R1BIO_Uptodate, &r1_bio->state); 2247 bio->bi_status = 0; 2248 return 1; 2249 } 2250 2251 static void process_checks(struct r1bio *r1_bio) 2252 { 2253 /* We have read all readable devices. If we haven't 2254 * got the block, then there is no hope left. 2255 * If we have, then we want to do a comparison 2256 * and skip the write if everything is the same. 2257 * If any blocks failed to read, then we need to 2258 * attempt an over-write 2259 */ 2260 struct mddev *mddev = r1_bio->mddev; 2261 struct r1conf *conf = mddev->private; 2262 int primary; 2263 int i; 2264 int vcnt; 2265 2266 /* Fix variable parts of all bios */ 2267 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2268 for (i = 0; i < conf->raid_disks * 2; i++) { 2269 blk_status_t status; 2270 struct bio *b = r1_bio->bios[i]; 2271 struct resync_pages *rp = get_resync_pages(b); 2272 if (b->bi_end_io != end_sync_read) 2273 continue; 2274 /* fixup the bio for reuse, but preserve errno */ 2275 status = b->bi_status; 2276 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2277 b->bi_status = status; 2278 b->bi_iter.bi_sector = r1_bio->sector + 2279 conf->mirrors[i].rdev->data_offset; 2280 b->bi_end_io = end_sync_read; 2281 rp->raid_bio = r1_bio; 2282 b->bi_private = rp; 2283 2284 /* initialize bvec table again */ 2285 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2286 } 2287 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2288 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2289 !r1_bio->bios[primary]->bi_status) { 2290 r1_bio->bios[primary]->bi_end_io = NULL; 2291 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2292 break; 2293 } 2294 r1_bio->read_disk = primary; 2295 for (i = 0; i < conf->raid_disks * 2; i++) { 2296 int j = 0; 2297 struct bio *pbio = r1_bio->bios[primary]; 2298 struct bio *sbio = r1_bio->bios[i]; 2299 blk_status_t status = sbio->bi_status; 2300 struct page **ppages = get_resync_pages(pbio)->pages; 2301 struct page **spages = get_resync_pages(sbio)->pages; 2302 struct bio_vec *bi; 2303 int page_len[RESYNC_PAGES] = { 0 }; 2304 struct bvec_iter_all iter_all; 2305 2306 if (sbio->bi_end_io != end_sync_read) 2307 continue; 2308 /* Now we can 'fixup' the error value */ 2309 sbio->bi_status = 0; 2310 2311 bio_for_each_segment_all(bi, sbio, iter_all) 2312 page_len[j++] = bi->bv_len; 2313 2314 if (!status) { 2315 for (j = vcnt; j-- ; ) { 2316 if (memcmp(page_address(ppages[j]), 2317 page_address(spages[j]), 2318 page_len[j])) 2319 break; 2320 } 2321 } else 2322 j = 0; 2323 if (j >= 0) 2324 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2325 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2326 && !status)) { 2327 /* No need to write to this device. */ 2328 sbio->bi_end_io = NULL; 2329 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2330 continue; 2331 } 2332 2333 bio_copy_data(sbio, pbio); 2334 } 2335 } 2336 2337 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2338 { 2339 struct r1conf *conf = mddev->private; 2340 int i; 2341 int disks = conf->raid_disks * 2; 2342 struct bio *wbio; 2343 2344 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 2345 /* 2346 * ouch - failed to read all of that. 2347 * No need to fix read error for check/repair 2348 * because all member disks are read. 2349 */ 2350 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) || 2351 !fix_sync_read_error(r1_bio)) { 2352 conf->recovery_disabled = mddev->recovery_disabled; 2353 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2354 md_done_sync(mddev, r1_bio->sectors, 0); 2355 put_buf(r1_bio); 2356 return; 2357 } 2358 } 2359 2360 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2361 process_checks(r1_bio); 2362 2363 /* 2364 * schedule writes 2365 */ 2366 atomic_set(&r1_bio->remaining, 1); 2367 for (i = 0; i < disks ; i++) { 2368 wbio = r1_bio->bios[i]; 2369 if (wbio->bi_end_io == NULL || 2370 (wbio->bi_end_io == end_sync_read && 2371 (i == r1_bio->read_disk || 2372 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2373 continue; 2374 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2375 abort_sync_write(mddev, r1_bio); 2376 continue; 2377 } 2378 2379 wbio->bi_opf = REQ_OP_WRITE; 2380 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2381 wbio->bi_opf |= MD_FAILFAST; 2382 2383 wbio->bi_end_io = end_sync_write; 2384 atomic_inc(&r1_bio->remaining); 2385 2386 submit_bio_noacct(wbio); 2387 } 2388 2389 put_sync_write_buf(r1_bio, 1); 2390 } 2391 2392 /* 2393 * This is a kernel thread which: 2394 * 2395 * 1. Retries failed read operations on working mirrors. 2396 * 2. Updates the raid superblock when problems encounter. 2397 * 3. Performs writes following reads for array synchronising. 2398 */ 2399 2400 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2401 { 2402 sector_t sect = r1_bio->sector; 2403 int sectors = r1_bio->sectors; 2404 int read_disk = r1_bio->read_disk; 2405 struct mddev *mddev = conf->mddev; 2406 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2407 2408 if (exceed_read_errors(mddev, rdev)) { 2409 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2410 return; 2411 } 2412 2413 while(sectors) { 2414 int s = sectors; 2415 int d = read_disk; 2416 int success = 0; 2417 int start; 2418 2419 if (s > (PAGE_SIZE>>9)) 2420 s = PAGE_SIZE >> 9; 2421 2422 do { 2423 rdev = conf->mirrors[d].rdev; 2424 if (rdev && 2425 (test_bit(In_sync, &rdev->flags) || 2426 (!test_bit(Faulty, &rdev->flags) && 2427 rdev->recovery_offset >= sect + s)) && 2428 rdev_has_badblock(rdev, sect, s) == 0) { 2429 atomic_inc(&rdev->nr_pending); 2430 if (sync_page_io(rdev, sect, s<<9, 2431 conf->tmppage, REQ_OP_READ, false)) 2432 success = 1; 2433 rdev_dec_pending(rdev, mddev); 2434 if (success) 2435 break; 2436 } 2437 2438 d++; 2439 if (d == conf->raid_disks * 2) 2440 d = 0; 2441 } while (d != read_disk); 2442 2443 if (!success) { 2444 /* Cannot read from anywhere - mark it bad */ 2445 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2446 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2447 md_error(mddev, rdev); 2448 break; 2449 } 2450 /* write it back and re-read */ 2451 start = d; 2452 while (d != read_disk) { 2453 if (d==0) 2454 d = conf->raid_disks * 2; 2455 d--; 2456 rdev = conf->mirrors[d].rdev; 2457 if (rdev && 2458 !test_bit(Faulty, &rdev->flags)) { 2459 atomic_inc(&rdev->nr_pending); 2460 r1_sync_page_io(rdev, sect, s, 2461 conf->tmppage, REQ_OP_WRITE); 2462 rdev_dec_pending(rdev, mddev); 2463 } 2464 } 2465 d = start; 2466 while (d != read_disk) { 2467 if (d==0) 2468 d = conf->raid_disks * 2; 2469 d--; 2470 rdev = conf->mirrors[d].rdev; 2471 if (rdev && 2472 !test_bit(Faulty, &rdev->flags)) { 2473 atomic_inc(&rdev->nr_pending); 2474 if (r1_sync_page_io(rdev, sect, s, 2475 conf->tmppage, REQ_OP_READ)) { 2476 atomic_add(s, &rdev->corrected_errors); 2477 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2478 mdname(mddev), s, 2479 (unsigned long long)(sect + 2480 rdev->data_offset), 2481 rdev->bdev); 2482 } 2483 rdev_dec_pending(rdev, mddev); 2484 } 2485 } 2486 sectors -= s; 2487 sect += s; 2488 } 2489 } 2490 2491 static bool narrow_write_error(struct r1bio *r1_bio, int i) 2492 { 2493 struct mddev *mddev = r1_bio->mddev; 2494 struct r1conf *conf = mddev->private; 2495 struct md_rdev *rdev = conf->mirrors[i].rdev; 2496 2497 /* bio has the data to be written to device 'i' where 2498 * we just recently had a write error. 2499 * We repeatedly clone the bio and trim down to one block, 2500 * then try the write. Where the write fails we record 2501 * a bad block. 2502 * It is conceivable that the bio doesn't exactly align with 2503 * blocks. We must handle this somehow. 2504 * 2505 * We currently own a reference on the rdev. 2506 */ 2507 2508 int block_sectors; 2509 sector_t sector; 2510 int sectors; 2511 int sect_to_write = r1_bio->sectors; 2512 bool ok = true; 2513 2514 if (rdev->badblocks.shift < 0) 2515 return false; 2516 2517 block_sectors = roundup(1 << rdev->badblocks.shift, 2518 bdev_logical_block_size(rdev->bdev) >> 9); 2519 sector = r1_bio->sector; 2520 sectors = ((sector + block_sectors) 2521 & ~(sector_t)(block_sectors - 1)) 2522 - sector; 2523 2524 while (sect_to_write) { 2525 struct bio *wbio; 2526 if (sectors > sect_to_write) 2527 sectors = sect_to_write; 2528 /* Write at 'sector' for 'sectors'*/ 2529 2530 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2531 wbio = bio_alloc_clone(rdev->bdev, 2532 r1_bio->behind_master_bio, 2533 GFP_NOIO, &mddev->bio_set); 2534 } else { 2535 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2536 GFP_NOIO, &mddev->bio_set); 2537 } 2538 2539 wbio->bi_opf = REQ_OP_WRITE; 2540 wbio->bi_iter.bi_sector = r1_bio->sector; 2541 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2542 2543 bio_trim(wbio, sector - r1_bio->sector, sectors); 2544 wbio->bi_iter.bi_sector += rdev->data_offset; 2545 2546 if (submit_bio_wait(wbio) < 0) 2547 /* failure! */ 2548 ok = rdev_set_badblocks(rdev, sector, 2549 sectors, 0) 2550 && ok; 2551 2552 bio_put(wbio); 2553 sect_to_write -= sectors; 2554 sector += sectors; 2555 sectors = block_sectors; 2556 } 2557 return ok; 2558 } 2559 2560 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2561 { 2562 int m; 2563 int s = r1_bio->sectors; 2564 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2565 struct md_rdev *rdev = conf->mirrors[m].rdev; 2566 struct bio *bio = r1_bio->bios[m]; 2567 if (bio->bi_end_io == NULL) 2568 continue; 2569 if (!bio->bi_status && 2570 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2571 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2572 } 2573 if (bio->bi_status && 2574 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2575 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2576 md_error(conf->mddev, rdev); 2577 } 2578 } 2579 put_buf(r1_bio); 2580 md_done_sync(conf->mddev, s, 1); 2581 } 2582 2583 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2584 { 2585 int m, idx; 2586 bool fail = false; 2587 2588 for (m = 0; m < conf->raid_disks * 2 ; m++) 2589 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2590 struct md_rdev *rdev = conf->mirrors[m].rdev; 2591 rdev_clear_badblocks(rdev, 2592 r1_bio->sector, 2593 r1_bio->sectors, 0); 2594 rdev_dec_pending(rdev, conf->mddev); 2595 } else if (r1_bio->bios[m] != NULL) { 2596 /* This drive got a write error. We need to 2597 * narrow down and record precise write 2598 * errors. 2599 */ 2600 fail = true; 2601 if (!narrow_write_error(r1_bio, m)) 2602 md_error(conf->mddev, 2603 conf->mirrors[m].rdev); 2604 /* an I/O failed, we can't clear the bitmap */ 2605 rdev_dec_pending(conf->mirrors[m].rdev, 2606 conf->mddev); 2607 } 2608 if (fail) { 2609 spin_lock_irq(&conf->device_lock); 2610 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2611 idx = sector_to_idx(r1_bio->sector); 2612 atomic_inc(&conf->nr_queued[idx]); 2613 spin_unlock_irq(&conf->device_lock); 2614 /* 2615 * In case freeze_array() is waiting for condition 2616 * get_unqueued_pending() == extra to be true. 2617 */ 2618 wake_up(&conf->wait_barrier); 2619 md_wakeup_thread(conf->mddev->thread); 2620 } else { 2621 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2622 close_write(r1_bio); 2623 raid_end_bio_io(r1_bio); 2624 } 2625 } 2626 2627 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2628 { 2629 struct mddev *mddev = conf->mddev; 2630 struct bio *bio; 2631 struct md_rdev *rdev; 2632 sector_t sector; 2633 2634 clear_bit(R1BIO_ReadError, &r1_bio->state); 2635 /* we got a read error. Maybe the drive is bad. Maybe just 2636 * the block and we can fix it. 2637 * We freeze all other IO, and try reading the block from 2638 * other devices. When we find one, we re-write 2639 * and check it that fixes the read error. 2640 * This is all done synchronously while the array is 2641 * frozen 2642 */ 2643 2644 bio = r1_bio->bios[r1_bio->read_disk]; 2645 bio_put(bio); 2646 r1_bio->bios[r1_bio->read_disk] = NULL; 2647 2648 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2649 if (mddev->ro == 0 2650 && !test_bit(FailFast, &rdev->flags)) { 2651 freeze_array(conf, 1); 2652 fix_read_error(conf, r1_bio); 2653 unfreeze_array(conf); 2654 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2655 md_error(mddev, rdev); 2656 } else { 2657 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2658 } 2659 2660 rdev_dec_pending(rdev, conf->mddev); 2661 sector = r1_bio->sector; 2662 bio = r1_bio->master_bio; 2663 2664 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2665 r1_bio->state = 0; 2666 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2667 allow_barrier(conf, sector); 2668 } 2669 2670 static void raid1d(struct md_thread *thread) 2671 { 2672 struct mddev *mddev = thread->mddev; 2673 struct r1bio *r1_bio; 2674 unsigned long flags; 2675 struct r1conf *conf = mddev->private; 2676 struct list_head *head = &conf->retry_list; 2677 struct blk_plug plug; 2678 int idx; 2679 2680 md_check_recovery(mddev); 2681 2682 if (!list_empty_careful(&conf->bio_end_io_list) && 2683 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2684 LIST_HEAD(tmp); 2685 spin_lock_irqsave(&conf->device_lock, flags); 2686 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2687 list_splice_init(&conf->bio_end_io_list, &tmp); 2688 spin_unlock_irqrestore(&conf->device_lock, flags); 2689 while (!list_empty(&tmp)) { 2690 r1_bio = list_first_entry(&tmp, struct r1bio, 2691 retry_list); 2692 list_del(&r1_bio->retry_list); 2693 idx = sector_to_idx(r1_bio->sector); 2694 atomic_dec(&conf->nr_queued[idx]); 2695 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2696 close_write(r1_bio); 2697 raid_end_bio_io(r1_bio); 2698 } 2699 } 2700 2701 blk_start_plug(&plug); 2702 for (;;) { 2703 2704 flush_pending_writes(conf); 2705 2706 spin_lock_irqsave(&conf->device_lock, flags); 2707 if (list_empty(head)) { 2708 spin_unlock_irqrestore(&conf->device_lock, flags); 2709 break; 2710 } 2711 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2712 list_del(head->prev); 2713 idx = sector_to_idx(r1_bio->sector); 2714 atomic_dec(&conf->nr_queued[idx]); 2715 spin_unlock_irqrestore(&conf->device_lock, flags); 2716 2717 mddev = r1_bio->mddev; 2718 conf = mddev->private; 2719 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2720 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2721 test_bit(R1BIO_WriteError, &r1_bio->state)) 2722 handle_sync_write_finished(conf, r1_bio); 2723 else 2724 sync_request_write(mddev, r1_bio); 2725 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2726 test_bit(R1BIO_WriteError, &r1_bio->state)) 2727 handle_write_finished(conf, r1_bio); 2728 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2729 handle_read_error(conf, r1_bio); 2730 else 2731 WARN_ON_ONCE(1); 2732 2733 cond_resched(); 2734 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2735 md_check_recovery(mddev); 2736 } 2737 blk_finish_plug(&plug); 2738 } 2739 2740 static int init_resync(struct r1conf *conf) 2741 { 2742 int buffs; 2743 2744 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2745 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2746 2747 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2748 r1buf_pool_free, conf); 2749 } 2750 2751 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2752 { 2753 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2754 struct resync_pages *rps; 2755 struct bio *bio; 2756 int i; 2757 2758 for (i = conf->raid_disks * 2; i--; ) { 2759 bio = r1bio->bios[i]; 2760 rps = bio->bi_private; 2761 bio_reset(bio, NULL, 0); 2762 bio->bi_private = rps; 2763 } 2764 r1bio->master_bio = NULL; 2765 return r1bio; 2766 } 2767 2768 /* 2769 * perform a "sync" on one "block" 2770 * 2771 * We need to make sure that no normal I/O request - particularly write 2772 * requests - conflict with active sync requests. 2773 * 2774 * This is achieved by tracking pending requests and a 'barrier' concept 2775 * that can be installed to exclude normal IO requests. 2776 */ 2777 2778 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2779 sector_t max_sector, int *skipped) 2780 { 2781 struct r1conf *conf = mddev->private; 2782 struct r1bio *r1_bio; 2783 struct bio *bio; 2784 sector_t nr_sectors; 2785 int disk = -1; 2786 int i; 2787 int wonly = -1; 2788 int write_targets = 0, read_targets = 0; 2789 sector_t sync_blocks; 2790 bool still_degraded = false; 2791 int good_sectors = RESYNC_SECTORS; 2792 int min_bad = 0; /* number of sectors that are bad in all devices */ 2793 int idx = sector_to_idx(sector_nr); 2794 int page_idx = 0; 2795 2796 if (!mempool_initialized(&conf->r1buf_pool)) 2797 if (init_resync(conf)) 2798 return 0; 2799 2800 if (sector_nr >= max_sector) { 2801 /* If we aborted, we need to abort the 2802 * sync on the 'current' bitmap chunk (there will 2803 * only be one in raid1 resync. 2804 * We can find the current addess in mddev->curr_resync 2805 */ 2806 if (mddev->curr_resync < max_sector) /* aborted */ 2807 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync, 2808 &sync_blocks); 2809 else /* completed sync */ 2810 conf->fullsync = 0; 2811 2812 mddev->bitmap_ops->close_sync(mddev); 2813 close_sync(conf); 2814 2815 if (mddev_is_clustered(mddev)) { 2816 conf->cluster_sync_low = 0; 2817 conf->cluster_sync_high = 0; 2818 } 2819 return 0; 2820 } 2821 2822 if (mddev->bitmap == NULL && 2823 mddev->resync_offset == MaxSector && 2824 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2825 conf->fullsync == 0) { 2826 *skipped = 1; 2827 return max_sector - sector_nr; 2828 } 2829 /* before building a request, check if we can skip these blocks.. 2830 * This call the bitmap_start_sync doesn't actually record anything 2831 */ 2832 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks, true) && 2833 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2834 /* We can skip this block, and probably several more */ 2835 *skipped = 1; 2836 return sync_blocks; 2837 } 2838 2839 /* 2840 * If there is non-resync activity waiting for a turn, then let it 2841 * though before starting on this new sync request. 2842 */ 2843 if (atomic_read(&conf->nr_waiting[idx])) 2844 schedule_timeout_uninterruptible(1); 2845 2846 /* we are incrementing sector_nr below. To be safe, we check against 2847 * sector_nr + two times RESYNC_SECTORS 2848 */ 2849 2850 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, 2851 mddev_is_clustered(mddev) && 2852 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2853 2854 if (raise_barrier(conf, sector_nr)) 2855 return 0; 2856 2857 r1_bio = raid1_alloc_init_r1buf(conf); 2858 2859 /* 2860 * If we get a correctably read error during resync or recovery, 2861 * we might want to read from a different device. So we 2862 * flag all drives that could conceivably be read from for READ, 2863 * and any others (which will be non-In_sync devices) for WRITE. 2864 * If a read fails, we try reading from something else for which READ 2865 * is OK. 2866 */ 2867 2868 r1_bio->mddev = mddev; 2869 r1_bio->sector = sector_nr; 2870 r1_bio->state = 0; 2871 set_bit(R1BIO_IsSync, &r1_bio->state); 2872 /* make sure good_sectors won't go across barrier unit boundary */ 2873 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2874 2875 for (i = 0; i < conf->raid_disks * 2; i++) { 2876 struct md_rdev *rdev; 2877 bio = r1_bio->bios[i]; 2878 2879 rdev = conf->mirrors[i].rdev; 2880 if (rdev == NULL || 2881 test_bit(Faulty, &rdev->flags)) { 2882 if (i < conf->raid_disks) 2883 still_degraded = true; 2884 } else if (!test_bit(In_sync, &rdev->flags)) { 2885 bio->bi_opf = REQ_OP_WRITE; 2886 bio->bi_end_io = end_sync_write; 2887 write_targets ++; 2888 } else { 2889 /* may need to read from here */ 2890 sector_t first_bad = MaxSector; 2891 sector_t bad_sectors; 2892 2893 if (is_badblock(rdev, sector_nr, good_sectors, 2894 &first_bad, &bad_sectors)) { 2895 if (first_bad > sector_nr) 2896 good_sectors = first_bad - sector_nr; 2897 else { 2898 bad_sectors -= (sector_nr - first_bad); 2899 if (min_bad == 0 || 2900 min_bad > bad_sectors) 2901 min_bad = bad_sectors; 2902 } 2903 } 2904 if (sector_nr < first_bad) { 2905 if (test_bit(WriteMostly, &rdev->flags)) { 2906 if (wonly < 0) 2907 wonly = i; 2908 } else { 2909 if (disk < 0) 2910 disk = i; 2911 } 2912 bio->bi_opf = REQ_OP_READ; 2913 bio->bi_end_io = end_sync_read; 2914 read_targets++; 2915 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2916 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2917 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2918 /* 2919 * The device is suitable for reading (InSync), 2920 * but has bad block(s) here. Let's try to correct them, 2921 * if we are doing resync or repair. Otherwise, leave 2922 * this device alone for this sync request. 2923 */ 2924 bio->bi_opf = REQ_OP_WRITE; 2925 bio->bi_end_io = end_sync_write; 2926 write_targets++; 2927 } 2928 } 2929 if (rdev && bio->bi_end_io) { 2930 atomic_inc(&rdev->nr_pending); 2931 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2932 bio_set_dev(bio, rdev->bdev); 2933 if (test_bit(FailFast, &rdev->flags)) 2934 bio->bi_opf |= MD_FAILFAST; 2935 } 2936 } 2937 if (disk < 0) 2938 disk = wonly; 2939 r1_bio->read_disk = disk; 2940 2941 if (read_targets == 0 && min_bad > 0) { 2942 /* These sectors are bad on all InSync devices, so we 2943 * need to mark them bad on all write targets 2944 */ 2945 int ok = 1; 2946 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2947 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2948 struct md_rdev *rdev = conf->mirrors[i].rdev; 2949 ok = rdev_set_badblocks(rdev, sector_nr, 2950 min_bad, 0 2951 ) && ok; 2952 } 2953 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2954 *skipped = 1; 2955 put_buf(r1_bio); 2956 2957 if (!ok) { 2958 /* Cannot record the badblocks, so need to 2959 * abort the resync. 2960 * If there are multiple read targets, could just 2961 * fail the really bad ones ??? 2962 */ 2963 conf->recovery_disabled = mddev->recovery_disabled; 2964 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2965 return 0; 2966 } else 2967 return min_bad; 2968 2969 } 2970 if (min_bad > 0 && min_bad < good_sectors) { 2971 /* only resync enough to reach the next bad->good 2972 * transition */ 2973 good_sectors = min_bad; 2974 } 2975 2976 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2977 /* extra read targets are also write targets */ 2978 write_targets += read_targets-1; 2979 2980 if (write_targets == 0 || read_targets == 0) { 2981 /* There is nowhere to write, so all non-sync 2982 * drives must be failed - so we are finished 2983 */ 2984 sector_t rv; 2985 if (min_bad > 0) 2986 max_sector = sector_nr + min_bad; 2987 rv = max_sector - sector_nr; 2988 *skipped = 1; 2989 put_buf(r1_bio); 2990 return rv; 2991 } 2992 2993 if (max_sector > mddev->resync_max) 2994 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2995 if (max_sector > sector_nr + good_sectors) 2996 max_sector = sector_nr + good_sectors; 2997 nr_sectors = 0; 2998 sync_blocks = 0; 2999 do { 3000 struct page *page; 3001 int len = PAGE_SIZE; 3002 if (sector_nr + (len>>9) > max_sector) 3003 len = (max_sector - sector_nr) << 9; 3004 if (len == 0) 3005 break; 3006 if (sync_blocks == 0) { 3007 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr, 3008 &sync_blocks, still_degraded) && 3009 !conf->fullsync && 3010 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3011 break; 3012 if ((len >> 9) > sync_blocks) 3013 len = sync_blocks<<9; 3014 } 3015 3016 for (i = 0 ; i < conf->raid_disks * 2; i++) { 3017 struct resync_pages *rp; 3018 3019 bio = r1_bio->bios[i]; 3020 rp = get_resync_pages(bio); 3021 if (bio->bi_end_io) { 3022 page = resync_fetch_page(rp, page_idx); 3023 3024 /* 3025 * won't fail because the vec table is big 3026 * enough to hold all these pages 3027 */ 3028 __bio_add_page(bio, page, len, 0); 3029 } 3030 } 3031 nr_sectors += len>>9; 3032 sector_nr += len>>9; 3033 sync_blocks -= (len>>9); 3034 } while (++page_idx < RESYNC_PAGES); 3035 3036 r1_bio->sectors = nr_sectors; 3037 3038 if (mddev_is_clustered(mddev) && 3039 conf->cluster_sync_high < sector_nr + nr_sectors) { 3040 conf->cluster_sync_low = mddev->curr_resync_completed; 3041 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 3042 /* Send resync message */ 3043 mddev->cluster_ops->resync_info_update(mddev, 3044 conf->cluster_sync_low, 3045 conf->cluster_sync_high); 3046 } 3047 3048 /* For a user-requested sync, we read all readable devices and do a 3049 * compare 3050 */ 3051 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 3052 atomic_set(&r1_bio->remaining, read_targets); 3053 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 3054 bio = r1_bio->bios[i]; 3055 if (bio->bi_end_io == end_sync_read) { 3056 read_targets--; 3057 if (read_targets == 1) 3058 bio->bi_opf &= ~MD_FAILFAST; 3059 submit_bio_noacct(bio); 3060 } 3061 } 3062 } else { 3063 atomic_set(&r1_bio->remaining, 1); 3064 bio = r1_bio->bios[r1_bio->read_disk]; 3065 if (read_targets == 1) 3066 bio->bi_opf &= ~MD_FAILFAST; 3067 submit_bio_noacct(bio); 3068 } 3069 return nr_sectors; 3070 } 3071 3072 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 3073 { 3074 if (sectors) 3075 return sectors; 3076 3077 return mddev->dev_sectors; 3078 } 3079 3080 static struct r1conf *setup_conf(struct mddev *mddev) 3081 { 3082 struct r1conf *conf; 3083 int i; 3084 struct raid1_info *disk; 3085 struct md_rdev *rdev; 3086 size_t r1bio_size; 3087 int err = -ENOMEM; 3088 3089 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 3090 if (!conf) 3091 goto abort; 3092 3093 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 3094 sizeof(atomic_t), GFP_KERNEL); 3095 if (!conf->nr_pending) 3096 goto abort; 3097 3098 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 3099 sizeof(atomic_t), GFP_KERNEL); 3100 if (!conf->nr_waiting) 3101 goto abort; 3102 3103 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 3104 sizeof(atomic_t), GFP_KERNEL); 3105 if (!conf->nr_queued) 3106 goto abort; 3107 3108 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 3109 sizeof(atomic_t), GFP_KERNEL); 3110 if (!conf->barrier) 3111 goto abort; 3112 3113 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3114 mddev->raid_disks, 2), 3115 GFP_KERNEL); 3116 if (!conf->mirrors) 3117 goto abort; 3118 3119 conf->tmppage = alloc_page(GFP_KERNEL); 3120 if (!conf->tmppage) 3121 goto abort; 3122 3123 r1bio_size = offsetof(struct r1bio, bios[mddev->raid_disks * 2]); 3124 conf->r1bio_pool = mempool_create_kmalloc_pool(NR_RAID_BIOS, r1bio_size); 3125 if (!conf->r1bio_pool) 3126 goto abort; 3127 3128 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3129 if (err) 3130 goto abort; 3131 3132 err = -EINVAL; 3133 spin_lock_init(&conf->device_lock); 3134 conf->raid_disks = mddev->raid_disks; 3135 rdev_for_each(rdev, mddev) { 3136 int disk_idx = rdev->raid_disk; 3137 3138 if (disk_idx >= conf->raid_disks || disk_idx < 0) 3139 continue; 3140 3141 if (!raid1_add_conf(conf, rdev, disk_idx, 3142 test_bit(Replacement, &rdev->flags))) 3143 goto abort; 3144 } 3145 conf->mddev = mddev; 3146 INIT_LIST_HEAD(&conf->retry_list); 3147 INIT_LIST_HEAD(&conf->bio_end_io_list); 3148 3149 spin_lock_init(&conf->resync_lock); 3150 init_waitqueue_head(&conf->wait_barrier); 3151 3152 bio_list_init(&conf->pending_bio_list); 3153 conf->recovery_disabled = mddev->recovery_disabled - 1; 3154 3155 err = -EIO; 3156 for (i = 0; i < conf->raid_disks * 2; i++) { 3157 3158 disk = conf->mirrors + i; 3159 3160 if (i < conf->raid_disks && 3161 disk[conf->raid_disks].rdev) { 3162 /* This slot has a replacement. */ 3163 if (!disk->rdev) { 3164 /* No original, just make the replacement 3165 * a recovering spare 3166 */ 3167 disk->rdev = 3168 disk[conf->raid_disks].rdev; 3169 disk[conf->raid_disks].rdev = NULL; 3170 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3171 /* Original is not in_sync - bad */ 3172 goto abort; 3173 } 3174 3175 if (!disk->rdev || 3176 !test_bit(In_sync, &disk->rdev->flags)) { 3177 disk->head_position = 0; 3178 if (disk->rdev && 3179 (disk->rdev->saved_raid_disk < 0)) 3180 conf->fullsync = 1; 3181 } 3182 } 3183 3184 err = -ENOMEM; 3185 rcu_assign_pointer(conf->thread, 3186 md_register_thread(raid1d, mddev, "raid1")); 3187 if (!conf->thread) 3188 goto abort; 3189 3190 return conf; 3191 3192 abort: 3193 if (conf) { 3194 mempool_destroy(conf->r1bio_pool); 3195 kfree(conf->mirrors); 3196 safe_put_page(conf->tmppage); 3197 kfree(conf->nr_pending); 3198 kfree(conf->nr_waiting); 3199 kfree(conf->nr_queued); 3200 kfree(conf->barrier); 3201 bioset_exit(&conf->bio_split); 3202 kfree(conf); 3203 } 3204 return ERR_PTR(err); 3205 } 3206 3207 static int raid1_set_limits(struct mddev *mddev) 3208 { 3209 struct queue_limits lim; 3210 int err; 3211 3212 md_init_stacking_limits(&lim); 3213 lim.max_write_zeroes_sectors = 0; 3214 lim.features |= BLK_FEAT_ATOMIC_WRITES; 3215 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY); 3216 if (err) 3217 return err; 3218 return queue_limits_set(mddev->gendisk->queue, &lim); 3219 } 3220 3221 static int raid1_run(struct mddev *mddev) 3222 { 3223 struct r1conf *conf; 3224 int i; 3225 int ret; 3226 3227 if (mddev->level != 1) { 3228 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3229 mdname(mddev), mddev->level); 3230 return -EIO; 3231 } 3232 if (mddev->reshape_position != MaxSector) { 3233 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3234 mdname(mddev)); 3235 return -EIO; 3236 } 3237 3238 /* 3239 * copy the already verified devices into our private RAID1 3240 * bookkeeping area. [whatever we allocate in run(), 3241 * should be freed in raid1_free()] 3242 */ 3243 if (mddev->private == NULL) 3244 conf = setup_conf(mddev); 3245 else 3246 conf = mddev->private; 3247 3248 if (IS_ERR(conf)) 3249 return PTR_ERR(conf); 3250 3251 if (!mddev_is_dm(mddev)) { 3252 ret = raid1_set_limits(mddev); 3253 if (ret) { 3254 if (!mddev->private) 3255 raid1_free(mddev, conf); 3256 return ret; 3257 } 3258 } 3259 3260 mddev->degraded = 0; 3261 for (i = 0; i < conf->raid_disks; i++) 3262 if (conf->mirrors[i].rdev == NULL || 3263 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3264 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3265 mddev->degraded++; 3266 /* 3267 * RAID1 needs at least one disk in active 3268 */ 3269 if (conf->raid_disks - mddev->degraded < 1) { 3270 md_unregister_thread(mddev, &conf->thread); 3271 if (!mddev->private) 3272 raid1_free(mddev, conf); 3273 return -EINVAL; 3274 } 3275 3276 if (conf->raid_disks - mddev->degraded == 1) 3277 mddev->resync_offset = MaxSector; 3278 3279 if (mddev->resync_offset != MaxSector) 3280 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3281 mdname(mddev)); 3282 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3283 mdname(mddev), mddev->raid_disks - mddev->degraded, 3284 mddev->raid_disks); 3285 3286 /* 3287 * Ok, everything is just fine now 3288 */ 3289 rcu_assign_pointer(mddev->thread, conf->thread); 3290 rcu_assign_pointer(conf->thread, NULL); 3291 mddev->private = conf; 3292 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3293 3294 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3295 3296 ret = md_integrity_register(mddev); 3297 if (ret) 3298 md_unregister_thread(mddev, &mddev->thread); 3299 return ret; 3300 } 3301 3302 static void raid1_free(struct mddev *mddev, void *priv) 3303 { 3304 struct r1conf *conf = priv; 3305 3306 mempool_destroy(conf->r1bio_pool); 3307 kfree(conf->mirrors); 3308 safe_put_page(conf->tmppage); 3309 kfree(conf->nr_pending); 3310 kfree(conf->nr_waiting); 3311 kfree(conf->nr_queued); 3312 kfree(conf->barrier); 3313 bioset_exit(&conf->bio_split); 3314 kfree(conf); 3315 } 3316 3317 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3318 { 3319 /* no resync is happening, and there is enough space 3320 * on all devices, so we can resize. 3321 * We need to make sure resync covers any new space. 3322 * If the array is shrinking we should possibly wait until 3323 * any io in the removed space completes, but it hardly seems 3324 * worth it. 3325 */ 3326 sector_t newsize = raid1_size(mddev, sectors, 0); 3327 int ret; 3328 3329 if (mddev->external_size && 3330 mddev->array_sectors > newsize) 3331 return -EINVAL; 3332 3333 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false); 3334 if (ret) 3335 return ret; 3336 3337 md_set_array_sectors(mddev, newsize); 3338 if (sectors > mddev->dev_sectors && 3339 mddev->resync_offset > mddev->dev_sectors) { 3340 mddev->resync_offset = mddev->dev_sectors; 3341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3342 } 3343 mddev->dev_sectors = sectors; 3344 mddev->resync_max_sectors = sectors; 3345 return 0; 3346 } 3347 3348 static int raid1_reshape(struct mddev *mddev) 3349 { 3350 /* We need to: 3351 * 1/ resize the r1bio_pool 3352 * 2/ resize conf->mirrors 3353 * 3354 * We allocate a new r1bio_pool if we can. 3355 * Then raise a device barrier and wait until all IO stops. 3356 * Then resize conf->mirrors and swap in the new r1bio pool. 3357 * 3358 * At the same time, we "pack" the devices so that all the missing 3359 * devices have the higher raid_disk numbers. 3360 */ 3361 mempool_t *newpool, *oldpool; 3362 size_t new_r1bio_size; 3363 struct raid1_info *newmirrors; 3364 struct r1conf *conf = mddev->private; 3365 int cnt, raid_disks; 3366 unsigned long flags; 3367 int d, d2; 3368 3369 /* Cannot change chunk_size, layout, or level */ 3370 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3371 mddev->layout != mddev->new_layout || 3372 mddev->level != mddev->new_level) { 3373 mddev->new_chunk_sectors = mddev->chunk_sectors; 3374 mddev->new_layout = mddev->layout; 3375 mddev->new_level = mddev->level; 3376 return -EINVAL; 3377 } 3378 3379 if (!mddev_is_clustered(mddev)) 3380 md_allow_write(mddev); 3381 3382 raid_disks = mddev->raid_disks + mddev->delta_disks; 3383 3384 if (raid_disks < conf->raid_disks) { 3385 cnt=0; 3386 for (d= 0; d < conf->raid_disks; d++) 3387 if (conf->mirrors[d].rdev) 3388 cnt++; 3389 if (cnt > raid_disks) 3390 return -EBUSY; 3391 } 3392 3393 new_r1bio_size = offsetof(struct r1bio, bios[raid_disks * 2]); 3394 newpool = mempool_create_kmalloc_pool(NR_RAID_BIOS, new_r1bio_size); 3395 if (!newpool) { 3396 return -ENOMEM; 3397 } 3398 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3399 raid_disks, 2), 3400 GFP_KERNEL); 3401 if (!newmirrors) { 3402 mempool_destroy(newpool); 3403 return -ENOMEM; 3404 } 3405 3406 freeze_array(conf, 0); 3407 3408 /* ok, everything is stopped */ 3409 oldpool = conf->r1bio_pool; 3410 conf->r1bio_pool = newpool; 3411 3412 for (d = d2 = 0; d < conf->raid_disks; d++) { 3413 struct md_rdev *rdev = conf->mirrors[d].rdev; 3414 if (rdev && rdev->raid_disk != d2) { 3415 sysfs_unlink_rdev(mddev, rdev); 3416 rdev->raid_disk = d2; 3417 sysfs_unlink_rdev(mddev, rdev); 3418 if (sysfs_link_rdev(mddev, rdev)) 3419 pr_warn("md/raid1:%s: cannot register rd%d\n", 3420 mdname(mddev), rdev->raid_disk); 3421 } 3422 if (rdev) 3423 newmirrors[d2++].rdev = rdev; 3424 } 3425 kfree(conf->mirrors); 3426 conf->mirrors = newmirrors; 3427 3428 spin_lock_irqsave(&conf->device_lock, flags); 3429 mddev->degraded += (raid_disks - conf->raid_disks); 3430 spin_unlock_irqrestore(&conf->device_lock, flags); 3431 conf->raid_disks = mddev->raid_disks = raid_disks; 3432 mddev->delta_disks = 0; 3433 3434 unfreeze_array(conf); 3435 3436 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3437 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3438 md_wakeup_thread(mddev->thread); 3439 3440 mempool_destroy(oldpool); 3441 return 0; 3442 } 3443 3444 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3445 { 3446 struct r1conf *conf = mddev->private; 3447 3448 if (quiesce) 3449 freeze_array(conf, 0); 3450 else 3451 unfreeze_array(conf); 3452 } 3453 3454 static void *raid1_takeover(struct mddev *mddev) 3455 { 3456 /* raid1 can take over: 3457 * raid5 with 2 devices, any layout or chunk size 3458 */ 3459 if (mddev->level == 5 && mddev->raid_disks == 2) { 3460 struct r1conf *conf; 3461 mddev->new_level = 1; 3462 mddev->new_layout = 0; 3463 mddev->new_chunk_sectors = 0; 3464 conf = setup_conf(mddev); 3465 if (!IS_ERR(conf)) { 3466 /* Array must appear to be quiesced */ 3467 conf->array_frozen = 1; 3468 mddev_clear_unsupported_flags(mddev, 3469 UNSUPPORTED_MDDEV_FLAGS); 3470 } 3471 return conf; 3472 } 3473 return ERR_PTR(-EINVAL); 3474 } 3475 3476 static struct md_personality raid1_personality = 3477 { 3478 .head = { 3479 .type = MD_PERSONALITY, 3480 .id = ID_RAID1, 3481 .name = "raid1", 3482 .owner = THIS_MODULE, 3483 }, 3484 3485 .make_request = raid1_make_request, 3486 .run = raid1_run, 3487 .free = raid1_free, 3488 .status = raid1_status, 3489 .error_handler = raid1_error, 3490 .hot_add_disk = raid1_add_disk, 3491 .hot_remove_disk= raid1_remove_disk, 3492 .spare_active = raid1_spare_active, 3493 .sync_request = raid1_sync_request, 3494 .resize = raid1_resize, 3495 .size = raid1_size, 3496 .check_reshape = raid1_reshape, 3497 .quiesce = raid1_quiesce, 3498 .takeover = raid1_takeover, 3499 }; 3500 3501 static int __init raid1_init(void) 3502 { 3503 return register_md_submodule(&raid1_personality.head); 3504 } 3505 3506 static void __exit raid1_exit(void) 3507 { 3508 unregister_md_submodule(&raid1_personality.head); 3509 } 3510 3511 module_init(raid1_init); 3512 module_exit(raid1_exit); 3513 MODULE_LICENSE("GPL"); 3514 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3515 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3516 MODULE_ALIAS("md-raid1"); 3517 MODULE_ALIAS("md-level-1"); 3518