1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags); 169 if (!bio) 170 goto out_free_bio; 171 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0); 172 r1_bio->bios[j] = bio; 173 } 174 /* 175 * Allocate RESYNC_PAGES data pages and attach them to 176 * the first bio. 177 * If this is a user-requested check/repair, allocate 178 * RESYNC_PAGES for each bio. 179 */ 180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 181 need_pages = pi->raid_disks; 182 else 183 need_pages = 1; 184 for (j = 0; j < pi->raid_disks; j++) { 185 struct resync_pages *rp = &rps[j]; 186 187 bio = r1_bio->bios[j]; 188 189 if (j < need_pages) { 190 if (resync_alloc_pages(rp, gfp_flags)) 191 goto out_free_pages; 192 } else { 193 memcpy(rp, &rps[0], sizeof(*rp)); 194 resync_get_all_pages(rp); 195 } 196 197 rp->raid_bio = r1_bio; 198 bio->bi_private = rp; 199 } 200 201 r1_bio->master_bio = NULL; 202 203 return r1_bio; 204 205 out_free_pages: 206 while (--j >= 0) 207 resync_free_pages(&rps[j]); 208 209 out_free_bio: 210 while (++j < pi->raid_disks) { 211 bio_uninit(r1_bio->bios[j]); 212 kfree(r1_bio->bios[j]); 213 } 214 kfree(rps); 215 216 out_free_r1bio: 217 rbio_pool_free(r1_bio, data); 218 return NULL; 219 } 220 221 static void r1buf_pool_free(void *__r1_bio, void *data) 222 { 223 struct pool_info *pi = data; 224 int i; 225 struct r1bio *r1bio = __r1_bio; 226 struct resync_pages *rp = NULL; 227 228 for (i = pi->raid_disks; i--; ) { 229 rp = get_resync_pages(r1bio->bios[i]); 230 resync_free_pages(rp); 231 bio_uninit(r1bio->bios[i]); 232 kfree(r1bio->bios[i]); 233 } 234 235 /* resync pages array stored in the 1st bio's .bi_private */ 236 kfree(rp); 237 238 rbio_pool_free(r1bio, data); 239 } 240 241 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 242 { 243 int i; 244 245 for (i = 0; i < conf->raid_disks * 2; i++) { 246 struct bio **bio = r1_bio->bios + i; 247 if (!BIO_SPECIAL(*bio)) 248 bio_put(*bio); 249 *bio = NULL; 250 } 251 } 252 253 static void free_r1bio(struct r1bio *r1_bio) 254 { 255 struct r1conf *conf = r1_bio->mddev->private; 256 257 put_all_bios(conf, r1_bio); 258 mempool_free(r1_bio, &conf->r1bio_pool); 259 } 260 261 static void put_buf(struct r1bio *r1_bio) 262 { 263 struct r1conf *conf = r1_bio->mddev->private; 264 sector_t sect = r1_bio->sector; 265 int i; 266 267 for (i = 0; i < conf->raid_disks * 2; i++) { 268 struct bio *bio = r1_bio->bios[i]; 269 if (bio->bi_end_io) 270 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 271 } 272 273 mempool_free(r1_bio, &conf->r1buf_pool); 274 275 lower_barrier(conf, sect); 276 } 277 278 static void reschedule_retry(struct r1bio *r1_bio) 279 { 280 unsigned long flags; 281 struct mddev *mddev = r1_bio->mddev; 282 struct r1conf *conf = mddev->private; 283 int idx; 284 285 idx = sector_to_idx(r1_bio->sector); 286 spin_lock_irqsave(&conf->device_lock, flags); 287 list_add(&r1_bio->retry_list, &conf->retry_list); 288 atomic_inc(&conf->nr_queued[idx]); 289 spin_unlock_irqrestore(&conf->device_lock, flags); 290 291 wake_up(&conf->wait_barrier); 292 md_wakeup_thread(mddev->thread); 293 } 294 295 /* 296 * raid_end_bio_io() is called when we have finished servicing a mirrored 297 * operation and are ready to return a success/failure code to the buffer 298 * cache layer. 299 */ 300 static void call_bio_endio(struct r1bio *r1_bio) 301 { 302 struct bio *bio = r1_bio->master_bio; 303 304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 305 bio->bi_status = BLK_STS_IOERR; 306 307 bio_endio(bio); 308 } 309 310 static void raid_end_bio_io(struct r1bio *r1_bio) 311 { 312 struct bio *bio = r1_bio->master_bio; 313 struct r1conf *conf = r1_bio->mddev->private; 314 315 /* if nobody has done the final endio yet, do it now */ 316 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 317 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 318 (bio_data_dir(bio) == WRITE) ? "write" : "read", 319 (unsigned long long) bio->bi_iter.bi_sector, 320 (unsigned long long) bio_end_sector(bio) - 1); 321 322 call_bio_endio(r1_bio); 323 } 324 /* 325 * Wake up any possible resync thread that waits for the device 326 * to go idle. All I/Os, even write-behind writes, are done. 327 */ 328 allow_barrier(conf, r1_bio->sector); 329 330 free_r1bio(r1_bio); 331 } 332 333 /* 334 * Update disk head position estimator based on IRQ completion info. 335 */ 336 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 337 { 338 struct r1conf *conf = r1_bio->mddev->private; 339 340 conf->mirrors[disk].head_position = 341 r1_bio->sector + (r1_bio->sectors); 342 } 343 344 /* 345 * Find the disk number which triggered given bio 346 */ 347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 348 { 349 int mirror; 350 struct r1conf *conf = r1_bio->mddev->private; 351 int raid_disks = conf->raid_disks; 352 353 for (mirror = 0; mirror < raid_disks * 2; mirror++) 354 if (r1_bio->bios[mirror] == bio) 355 break; 356 357 BUG_ON(mirror == raid_disks * 2); 358 update_head_pos(mirror, r1_bio); 359 360 return mirror; 361 } 362 363 static void raid1_end_read_request(struct bio *bio) 364 { 365 int uptodate = !bio->bi_status; 366 struct r1bio *r1_bio = bio->bi_private; 367 struct r1conf *conf = r1_bio->mddev->private; 368 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 369 370 /* 371 * this branch is our 'one mirror IO has finished' event handler: 372 */ 373 update_head_pos(r1_bio->read_disk, r1_bio); 374 375 if (uptodate) 376 set_bit(R1BIO_Uptodate, &r1_bio->state); 377 else if (test_bit(FailFast, &rdev->flags) && 378 test_bit(R1BIO_FailFast, &r1_bio->state)) 379 /* This was a fail-fast read so we definitely 380 * want to retry */ 381 ; 382 else { 383 /* If all other devices have failed, we want to return 384 * the error upwards rather than fail the last device. 385 * Here we redefine "uptodate" to mean "Don't want to retry" 386 */ 387 unsigned long flags; 388 spin_lock_irqsave(&conf->device_lock, flags); 389 if (r1_bio->mddev->degraded == conf->raid_disks || 390 (r1_bio->mddev->degraded == conf->raid_disks-1 && 391 test_bit(In_sync, &rdev->flags))) 392 uptodate = 1; 393 spin_unlock_irqrestore(&conf->device_lock, flags); 394 } 395 396 if (uptodate) { 397 raid_end_bio_io(r1_bio); 398 rdev_dec_pending(rdev, conf->mddev); 399 } else { 400 /* 401 * oops, read error: 402 */ 403 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n", 404 mdname(conf->mddev), 405 rdev->bdev, 406 (unsigned long long)r1_bio->sector); 407 set_bit(R1BIO_ReadError, &r1_bio->state); 408 reschedule_retry(r1_bio); 409 /* don't drop the reference on read_disk yet */ 410 } 411 } 412 413 static void close_write(struct r1bio *r1_bio) 414 { 415 /* it really is the end of this request */ 416 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 417 bio_free_pages(r1_bio->behind_master_bio); 418 bio_put(r1_bio->behind_master_bio); 419 r1_bio->behind_master_bio = NULL; 420 } 421 /* clear the bitmap if all writes complete successfully */ 422 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 423 r1_bio->sectors, 424 !test_bit(R1BIO_Degraded, &r1_bio->state), 425 test_bit(R1BIO_BehindIO, &r1_bio->state)); 426 md_write_end(r1_bio->mddev); 427 } 428 429 static void r1_bio_write_done(struct r1bio *r1_bio) 430 { 431 if (!atomic_dec_and_test(&r1_bio->remaining)) 432 return; 433 434 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 435 reschedule_retry(r1_bio); 436 else { 437 close_write(r1_bio); 438 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 439 reschedule_retry(r1_bio); 440 else 441 raid_end_bio_io(r1_bio); 442 } 443 } 444 445 static void raid1_end_write_request(struct bio *bio) 446 { 447 struct r1bio *r1_bio = bio->bi_private; 448 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 449 struct r1conf *conf = r1_bio->mddev->private; 450 struct bio *to_put = NULL; 451 int mirror = find_bio_disk(r1_bio, bio); 452 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 453 bool discard_error; 454 sector_t lo = r1_bio->sector; 455 sector_t hi = r1_bio->sector + r1_bio->sectors; 456 457 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 458 459 /* 460 * 'one mirror IO has finished' event handler: 461 */ 462 if (bio->bi_status && !discard_error) { 463 set_bit(WriteErrorSeen, &rdev->flags); 464 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 465 set_bit(MD_RECOVERY_NEEDED, & 466 conf->mddev->recovery); 467 468 if (test_bit(FailFast, &rdev->flags) && 469 (bio->bi_opf & MD_FAILFAST) && 470 /* We never try FailFast to WriteMostly devices */ 471 !test_bit(WriteMostly, &rdev->flags)) { 472 md_error(r1_bio->mddev, rdev); 473 } 474 475 /* 476 * When the device is faulty, it is not necessary to 477 * handle write error. 478 */ 479 if (!test_bit(Faulty, &rdev->flags)) 480 set_bit(R1BIO_WriteError, &r1_bio->state); 481 else { 482 /* Fail the request */ 483 set_bit(R1BIO_Degraded, &r1_bio->state); 484 /* Finished with this branch */ 485 r1_bio->bios[mirror] = NULL; 486 to_put = bio; 487 } 488 } else { 489 /* 490 * Set R1BIO_Uptodate in our master bio, so that we 491 * will return a good error code for to the higher 492 * levels even if IO on some other mirrored buffer 493 * fails. 494 * 495 * The 'master' represents the composite IO operation 496 * to user-side. So if something waits for IO, then it 497 * will wait for the 'master' bio. 498 */ 499 sector_t first_bad; 500 int bad_sectors; 501 502 r1_bio->bios[mirror] = NULL; 503 to_put = bio; 504 /* 505 * Do not set R1BIO_Uptodate if the current device is 506 * rebuilding or Faulty. This is because we cannot use 507 * such device for properly reading the data back (we could 508 * potentially use it, if the current write would have felt 509 * before rdev->recovery_offset, but for simplicity we don't 510 * check this here. 511 */ 512 if (test_bit(In_sync, &rdev->flags) && 513 !test_bit(Faulty, &rdev->flags)) 514 set_bit(R1BIO_Uptodate, &r1_bio->state); 515 516 /* Maybe we can clear some bad blocks. */ 517 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 518 &first_bad, &bad_sectors) && !discard_error) { 519 r1_bio->bios[mirror] = IO_MADE_GOOD; 520 set_bit(R1BIO_MadeGood, &r1_bio->state); 521 } 522 } 523 524 if (behind) { 525 if (test_bit(CollisionCheck, &rdev->flags)) 526 remove_serial(rdev, lo, hi); 527 if (test_bit(WriteMostly, &rdev->flags)) 528 atomic_dec(&r1_bio->behind_remaining); 529 530 /* 531 * In behind mode, we ACK the master bio once the I/O 532 * has safely reached all non-writemostly 533 * disks. Setting the Returned bit ensures that this 534 * gets done only once -- we don't ever want to return 535 * -EIO here, instead we'll wait 536 */ 537 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 538 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 539 /* Maybe we can return now */ 540 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 541 struct bio *mbio = r1_bio->master_bio; 542 pr_debug("raid1: behind end write sectors" 543 " %llu-%llu\n", 544 (unsigned long long) mbio->bi_iter.bi_sector, 545 (unsigned long long) bio_end_sector(mbio) - 1); 546 call_bio_endio(r1_bio); 547 } 548 } 549 } else if (rdev->mddev->serialize_policy) 550 remove_serial(rdev, lo, hi); 551 if (r1_bio->bios[mirror] == NULL) 552 rdev_dec_pending(rdev, conf->mddev); 553 554 /* 555 * Let's see if all mirrored write operations have finished 556 * already. 557 */ 558 r1_bio_write_done(r1_bio); 559 560 if (to_put) 561 bio_put(to_put); 562 } 563 564 static sector_t align_to_barrier_unit_end(sector_t start_sector, 565 sector_t sectors) 566 { 567 sector_t len; 568 569 WARN_ON(sectors == 0); 570 /* 571 * len is the number of sectors from start_sector to end of the 572 * barrier unit which start_sector belongs to. 573 */ 574 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 575 start_sector; 576 577 if (len > sectors) 578 len = sectors; 579 580 return len; 581 } 582 583 /* 584 * This routine returns the disk from which the requested read should 585 * be done. There is a per-array 'next expected sequential IO' sector 586 * number - if this matches on the next IO then we use the last disk. 587 * There is also a per-disk 'last know head position' sector that is 588 * maintained from IRQ contexts, both the normal and the resync IO 589 * completion handlers update this position correctly. If there is no 590 * perfect sequential match then we pick the disk whose head is closest. 591 * 592 * If there are 2 mirrors in the same 2 devices, performance degrades 593 * because position is mirror, not device based. 594 * 595 * The rdev for the device selected will have nr_pending incremented. 596 */ 597 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 598 { 599 const sector_t this_sector = r1_bio->sector; 600 int sectors; 601 int best_good_sectors; 602 int best_disk, best_dist_disk, best_pending_disk; 603 int has_nonrot_disk; 604 int disk; 605 sector_t best_dist; 606 unsigned int min_pending; 607 struct md_rdev *rdev; 608 int choose_first; 609 int choose_next_idle; 610 611 rcu_read_lock(); 612 /* 613 * Check if we can balance. We can balance on the whole 614 * device if no resync is going on, or below the resync window. 615 * We take the first readable disk when above the resync window. 616 */ 617 retry: 618 sectors = r1_bio->sectors; 619 best_disk = -1; 620 best_dist_disk = -1; 621 best_dist = MaxSector; 622 best_pending_disk = -1; 623 min_pending = UINT_MAX; 624 best_good_sectors = 0; 625 has_nonrot_disk = 0; 626 choose_next_idle = 0; 627 clear_bit(R1BIO_FailFast, &r1_bio->state); 628 629 if ((conf->mddev->recovery_cp < this_sector + sectors) || 630 (mddev_is_clustered(conf->mddev) && 631 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 632 this_sector + sectors))) 633 choose_first = 1; 634 else 635 choose_first = 0; 636 637 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 638 sector_t dist; 639 sector_t first_bad; 640 int bad_sectors; 641 unsigned int pending; 642 bool nonrot; 643 644 rdev = rcu_dereference(conf->mirrors[disk].rdev); 645 if (r1_bio->bios[disk] == IO_BLOCKED 646 || rdev == NULL 647 || test_bit(Faulty, &rdev->flags)) 648 continue; 649 if (!test_bit(In_sync, &rdev->flags) && 650 rdev->recovery_offset < this_sector + sectors) 651 continue; 652 if (test_bit(WriteMostly, &rdev->flags)) { 653 /* Don't balance among write-mostly, just 654 * use the first as a last resort */ 655 if (best_dist_disk < 0) { 656 if (is_badblock(rdev, this_sector, sectors, 657 &first_bad, &bad_sectors)) { 658 if (first_bad <= this_sector) 659 /* Cannot use this */ 660 continue; 661 best_good_sectors = first_bad - this_sector; 662 } else 663 best_good_sectors = sectors; 664 best_dist_disk = disk; 665 best_pending_disk = disk; 666 } 667 continue; 668 } 669 /* This is a reasonable device to use. It might 670 * even be best. 671 */ 672 if (is_badblock(rdev, this_sector, sectors, 673 &first_bad, &bad_sectors)) { 674 if (best_dist < MaxSector) 675 /* already have a better device */ 676 continue; 677 if (first_bad <= this_sector) { 678 /* cannot read here. If this is the 'primary' 679 * device, then we must not read beyond 680 * bad_sectors from another device.. 681 */ 682 bad_sectors -= (this_sector - first_bad); 683 if (choose_first && sectors > bad_sectors) 684 sectors = bad_sectors; 685 if (best_good_sectors > sectors) 686 best_good_sectors = sectors; 687 688 } else { 689 sector_t good_sectors = first_bad - this_sector; 690 if (good_sectors > best_good_sectors) { 691 best_good_sectors = good_sectors; 692 best_disk = disk; 693 } 694 if (choose_first) 695 break; 696 } 697 continue; 698 } else { 699 if ((sectors > best_good_sectors) && (best_disk >= 0)) 700 best_disk = -1; 701 best_good_sectors = sectors; 702 } 703 704 if (best_disk >= 0) 705 /* At least two disks to choose from so failfast is OK */ 706 set_bit(R1BIO_FailFast, &r1_bio->state); 707 708 nonrot = bdev_nonrot(rdev->bdev); 709 has_nonrot_disk |= nonrot; 710 pending = atomic_read(&rdev->nr_pending); 711 dist = abs(this_sector - conf->mirrors[disk].head_position); 712 if (choose_first) { 713 best_disk = disk; 714 break; 715 } 716 /* Don't change to another disk for sequential reads */ 717 if (conf->mirrors[disk].next_seq_sect == this_sector 718 || dist == 0) { 719 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 720 struct raid1_info *mirror = &conf->mirrors[disk]; 721 722 best_disk = disk; 723 /* 724 * If buffered sequential IO size exceeds optimal 725 * iosize, check if there is idle disk. If yes, choose 726 * the idle disk. read_balance could already choose an 727 * idle disk before noticing it's a sequential IO in 728 * this disk. This doesn't matter because this disk 729 * will idle, next time it will be utilized after the 730 * first disk has IO size exceeds optimal iosize. In 731 * this way, iosize of the first disk will be optimal 732 * iosize at least. iosize of the second disk might be 733 * small, but not a big deal since when the second disk 734 * starts IO, the first disk is likely still busy. 735 */ 736 if (nonrot && opt_iosize > 0 && 737 mirror->seq_start != MaxSector && 738 mirror->next_seq_sect > opt_iosize && 739 mirror->next_seq_sect - opt_iosize >= 740 mirror->seq_start) { 741 choose_next_idle = 1; 742 continue; 743 } 744 break; 745 } 746 747 if (choose_next_idle) 748 continue; 749 750 if (min_pending > pending) { 751 min_pending = pending; 752 best_pending_disk = disk; 753 } 754 755 if (dist < best_dist) { 756 best_dist = dist; 757 best_dist_disk = disk; 758 } 759 } 760 761 /* 762 * If all disks are rotational, choose the closest disk. If any disk is 763 * non-rotational, choose the disk with less pending request even the 764 * disk is rotational, which might/might not be optimal for raids with 765 * mixed ratation/non-rotational disks depending on workload. 766 */ 767 if (best_disk == -1) { 768 if (has_nonrot_disk || min_pending == 0) 769 best_disk = best_pending_disk; 770 else 771 best_disk = best_dist_disk; 772 } 773 774 if (best_disk >= 0) { 775 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 776 if (!rdev) 777 goto retry; 778 atomic_inc(&rdev->nr_pending); 779 sectors = best_good_sectors; 780 781 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 782 conf->mirrors[best_disk].seq_start = this_sector; 783 784 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 785 } 786 rcu_read_unlock(); 787 *max_sectors = sectors; 788 789 return best_disk; 790 } 791 792 static void wake_up_barrier(struct r1conf *conf) 793 { 794 if (wq_has_sleeper(&conf->wait_barrier)) 795 wake_up(&conf->wait_barrier); 796 } 797 798 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 799 { 800 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 801 raid1_prepare_flush_writes(conf->mddev->bitmap); 802 wake_up_barrier(conf); 803 804 while (bio) { /* submit pending writes */ 805 struct bio *next = bio->bi_next; 806 807 raid1_submit_write(bio); 808 bio = next; 809 cond_resched(); 810 } 811 } 812 813 static void flush_pending_writes(struct r1conf *conf) 814 { 815 /* Any writes that have been queued but are awaiting 816 * bitmap updates get flushed here. 817 */ 818 spin_lock_irq(&conf->device_lock); 819 820 if (conf->pending_bio_list.head) { 821 struct blk_plug plug; 822 struct bio *bio; 823 824 bio = bio_list_get(&conf->pending_bio_list); 825 spin_unlock_irq(&conf->device_lock); 826 827 /* 828 * As this is called in a wait_event() loop (see freeze_array), 829 * current->state might be TASK_UNINTERRUPTIBLE which will 830 * cause a warning when we prepare to wait again. As it is 831 * rare that this path is taken, it is perfectly safe to force 832 * us to go around the wait_event() loop again, so the warning 833 * is a false-positive. Silence the warning by resetting 834 * thread state 835 */ 836 __set_current_state(TASK_RUNNING); 837 blk_start_plug(&plug); 838 flush_bio_list(conf, bio); 839 blk_finish_plug(&plug); 840 } else 841 spin_unlock_irq(&conf->device_lock); 842 } 843 844 /* Barriers.... 845 * Sometimes we need to suspend IO while we do something else, 846 * either some resync/recovery, or reconfigure the array. 847 * To do this we raise a 'barrier'. 848 * The 'barrier' is a counter that can be raised multiple times 849 * to count how many activities are happening which preclude 850 * normal IO. 851 * We can only raise the barrier if there is no pending IO. 852 * i.e. if nr_pending == 0. 853 * We choose only to raise the barrier if no-one is waiting for the 854 * barrier to go down. This means that as soon as an IO request 855 * is ready, no other operations which require a barrier will start 856 * until the IO request has had a chance. 857 * 858 * So: regular IO calls 'wait_barrier'. When that returns there 859 * is no backgroup IO happening, It must arrange to call 860 * allow_barrier when it has finished its IO. 861 * backgroup IO calls must call raise_barrier. Once that returns 862 * there is no normal IO happeing. It must arrange to call 863 * lower_barrier when the particular background IO completes. 864 * 865 * If resync/recovery is interrupted, returns -EINTR; 866 * Otherwise, returns 0. 867 */ 868 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 869 { 870 int idx = sector_to_idx(sector_nr); 871 872 spin_lock_irq(&conf->resync_lock); 873 874 /* Wait until no block IO is waiting */ 875 wait_event_lock_irq(conf->wait_barrier, 876 !atomic_read(&conf->nr_waiting[idx]), 877 conf->resync_lock); 878 879 /* block any new IO from starting */ 880 atomic_inc(&conf->barrier[idx]); 881 /* 882 * In raise_barrier() we firstly increase conf->barrier[idx] then 883 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 884 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 885 * A memory barrier here to make sure conf->nr_pending[idx] won't 886 * be fetched before conf->barrier[idx] is increased. Otherwise 887 * there will be a race between raise_barrier() and _wait_barrier(). 888 */ 889 smp_mb__after_atomic(); 890 891 /* For these conditions we must wait: 892 * A: while the array is in frozen state 893 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 894 * existing in corresponding I/O barrier bucket. 895 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 896 * max resync count which allowed on current I/O barrier bucket. 897 */ 898 wait_event_lock_irq(conf->wait_barrier, 899 (!conf->array_frozen && 900 !atomic_read(&conf->nr_pending[idx]) && 901 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 902 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 903 conf->resync_lock); 904 905 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 906 atomic_dec(&conf->barrier[idx]); 907 spin_unlock_irq(&conf->resync_lock); 908 wake_up(&conf->wait_barrier); 909 return -EINTR; 910 } 911 912 atomic_inc(&conf->nr_sync_pending); 913 spin_unlock_irq(&conf->resync_lock); 914 915 return 0; 916 } 917 918 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 919 { 920 int idx = sector_to_idx(sector_nr); 921 922 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 923 924 atomic_dec(&conf->barrier[idx]); 925 atomic_dec(&conf->nr_sync_pending); 926 wake_up(&conf->wait_barrier); 927 } 928 929 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 930 { 931 bool ret = true; 932 933 /* 934 * We need to increase conf->nr_pending[idx] very early here, 935 * then raise_barrier() can be blocked when it waits for 936 * conf->nr_pending[idx] to be 0. Then we can avoid holding 937 * conf->resync_lock when there is no barrier raised in same 938 * barrier unit bucket. Also if the array is frozen, I/O 939 * should be blocked until array is unfrozen. 940 */ 941 atomic_inc(&conf->nr_pending[idx]); 942 /* 943 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 944 * check conf->barrier[idx]. In raise_barrier() we firstly increase 945 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 946 * barrier is necessary here to make sure conf->barrier[idx] won't be 947 * fetched before conf->nr_pending[idx] is increased. Otherwise there 948 * will be a race between _wait_barrier() and raise_barrier(). 949 */ 950 smp_mb__after_atomic(); 951 952 /* 953 * Don't worry about checking two atomic_t variables at same time 954 * here. If during we check conf->barrier[idx], the array is 955 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 956 * 0, it is safe to return and make the I/O continue. Because the 957 * array is frozen, all I/O returned here will eventually complete 958 * or be queued, no race will happen. See code comment in 959 * frozen_array(). 960 */ 961 if (!READ_ONCE(conf->array_frozen) && 962 !atomic_read(&conf->barrier[idx])) 963 return ret; 964 965 /* 966 * After holding conf->resync_lock, conf->nr_pending[idx] 967 * should be decreased before waiting for barrier to drop. 968 * Otherwise, we may encounter a race condition because 969 * raise_barrer() might be waiting for conf->nr_pending[idx] 970 * to be 0 at same time. 971 */ 972 spin_lock_irq(&conf->resync_lock); 973 atomic_inc(&conf->nr_waiting[idx]); 974 atomic_dec(&conf->nr_pending[idx]); 975 /* 976 * In case freeze_array() is waiting for 977 * get_unqueued_pending() == extra 978 */ 979 wake_up_barrier(conf); 980 /* Wait for the barrier in same barrier unit bucket to drop. */ 981 982 /* Return false when nowait flag is set */ 983 if (nowait) { 984 ret = false; 985 } else { 986 wait_event_lock_irq(conf->wait_barrier, 987 !conf->array_frozen && 988 !atomic_read(&conf->barrier[idx]), 989 conf->resync_lock); 990 atomic_inc(&conf->nr_pending[idx]); 991 } 992 993 atomic_dec(&conf->nr_waiting[idx]); 994 spin_unlock_irq(&conf->resync_lock); 995 return ret; 996 } 997 998 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 999 { 1000 int idx = sector_to_idx(sector_nr); 1001 bool ret = true; 1002 1003 /* 1004 * Very similar to _wait_barrier(). The difference is, for read 1005 * I/O we don't need wait for sync I/O, but if the whole array 1006 * is frozen, the read I/O still has to wait until the array is 1007 * unfrozen. Since there is no ordering requirement with 1008 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1009 */ 1010 atomic_inc(&conf->nr_pending[idx]); 1011 1012 if (!READ_ONCE(conf->array_frozen)) 1013 return ret; 1014 1015 spin_lock_irq(&conf->resync_lock); 1016 atomic_inc(&conf->nr_waiting[idx]); 1017 atomic_dec(&conf->nr_pending[idx]); 1018 /* 1019 * In case freeze_array() is waiting for 1020 * get_unqueued_pending() == extra 1021 */ 1022 wake_up_barrier(conf); 1023 /* Wait for array to be unfrozen */ 1024 1025 /* Return false when nowait flag is set */ 1026 if (nowait) { 1027 /* Return false when nowait flag is set */ 1028 ret = false; 1029 } else { 1030 wait_event_lock_irq(conf->wait_barrier, 1031 !conf->array_frozen, 1032 conf->resync_lock); 1033 atomic_inc(&conf->nr_pending[idx]); 1034 } 1035 1036 atomic_dec(&conf->nr_waiting[idx]); 1037 spin_unlock_irq(&conf->resync_lock); 1038 return ret; 1039 } 1040 1041 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1042 { 1043 int idx = sector_to_idx(sector_nr); 1044 1045 return _wait_barrier(conf, idx, nowait); 1046 } 1047 1048 static void _allow_barrier(struct r1conf *conf, int idx) 1049 { 1050 atomic_dec(&conf->nr_pending[idx]); 1051 wake_up_barrier(conf); 1052 } 1053 1054 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1055 { 1056 int idx = sector_to_idx(sector_nr); 1057 1058 _allow_barrier(conf, idx); 1059 } 1060 1061 /* conf->resync_lock should be held */ 1062 static int get_unqueued_pending(struct r1conf *conf) 1063 { 1064 int idx, ret; 1065 1066 ret = atomic_read(&conf->nr_sync_pending); 1067 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1068 ret += atomic_read(&conf->nr_pending[idx]) - 1069 atomic_read(&conf->nr_queued[idx]); 1070 1071 return ret; 1072 } 1073 1074 static void freeze_array(struct r1conf *conf, int extra) 1075 { 1076 /* Stop sync I/O and normal I/O and wait for everything to 1077 * go quiet. 1078 * This is called in two situations: 1079 * 1) management command handlers (reshape, remove disk, quiesce). 1080 * 2) one normal I/O request failed. 1081 1082 * After array_frozen is set to 1, new sync IO will be blocked at 1083 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1084 * or wait_read_barrier(). The flying I/Os will either complete or be 1085 * queued. When everything goes quite, there are only queued I/Os left. 1086 1087 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1088 * barrier bucket index which this I/O request hits. When all sync and 1089 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1090 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1091 * in handle_read_error(), we may call freeze_array() before trying to 1092 * fix the read error. In this case, the error read I/O is not queued, 1093 * so get_unqueued_pending() == 1. 1094 * 1095 * Therefore before this function returns, we need to wait until 1096 * get_unqueued_pendings(conf) gets equal to extra. For 1097 * normal I/O context, extra is 1, in rested situations extra is 0. 1098 */ 1099 spin_lock_irq(&conf->resync_lock); 1100 conf->array_frozen = 1; 1101 raid1_log(conf->mddev, "wait freeze"); 1102 wait_event_lock_irq_cmd( 1103 conf->wait_barrier, 1104 get_unqueued_pending(conf) == extra, 1105 conf->resync_lock, 1106 flush_pending_writes(conf)); 1107 spin_unlock_irq(&conf->resync_lock); 1108 } 1109 static void unfreeze_array(struct r1conf *conf) 1110 { 1111 /* reverse the effect of the freeze */ 1112 spin_lock_irq(&conf->resync_lock); 1113 conf->array_frozen = 0; 1114 spin_unlock_irq(&conf->resync_lock); 1115 wake_up(&conf->wait_barrier); 1116 } 1117 1118 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1119 struct bio *bio) 1120 { 1121 int size = bio->bi_iter.bi_size; 1122 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1123 int i = 0; 1124 struct bio *behind_bio = NULL; 1125 1126 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1127 &r1_bio->mddev->bio_set); 1128 if (!behind_bio) 1129 return; 1130 1131 /* discard op, we don't support writezero/writesame yet */ 1132 if (!bio_has_data(bio)) { 1133 behind_bio->bi_iter.bi_size = size; 1134 goto skip_copy; 1135 } 1136 1137 while (i < vcnt && size) { 1138 struct page *page; 1139 int len = min_t(int, PAGE_SIZE, size); 1140 1141 page = alloc_page(GFP_NOIO); 1142 if (unlikely(!page)) 1143 goto free_pages; 1144 1145 if (!bio_add_page(behind_bio, page, len, 0)) { 1146 put_page(page); 1147 goto free_pages; 1148 } 1149 1150 size -= len; 1151 i++; 1152 } 1153 1154 bio_copy_data(behind_bio, bio); 1155 skip_copy: 1156 r1_bio->behind_master_bio = behind_bio; 1157 set_bit(R1BIO_BehindIO, &r1_bio->state); 1158 1159 return; 1160 1161 free_pages: 1162 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1163 bio->bi_iter.bi_size); 1164 bio_free_pages(behind_bio); 1165 bio_put(behind_bio); 1166 } 1167 1168 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1169 { 1170 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1171 cb); 1172 struct mddev *mddev = plug->cb.data; 1173 struct r1conf *conf = mddev->private; 1174 struct bio *bio; 1175 1176 if (from_schedule) { 1177 spin_lock_irq(&conf->device_lock); 1178 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1179 spin_unlock_irq(&conf->device_lock); 1180 wake_up_barrier(conf); 1181 md_wakeup_thread(mddev->thread); 1182 kfree(plug); 1183 return; 1184 } 1185 1186 /* we aren't scheduling, so we can do the write-out directly. */ 1187 bio = bio_list_get(&plug->pending); 1188 flush_bio_list(conf, bio); 1189 kfree(plug); 1190 } 1191 1192 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1193 { 1194 r1_bio->master_bio = bio; 1195 r1_bio->sectors = bio_sectors(bio); 1196 r1_bio->state = 0; 1197 r1_bio->mddev = mddev; 1198 r1_bio->sector = bio->bi_iter.bi_sector; 1199 } 1200 1201 static inline struct r1bio * 1202 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1203 { 1204 struct r1conf *conf = mddev->private; 1205 struct r1bio *r1_bio; 1206 1207 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1208 /* Ensure no bio records IO_BLOCKED */ 1209 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1210 init_r1bio(r1_bio, mddev, bio); 1211 return r1_bio; 1212 } 1213 1214 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1215 int max_read_sectors, struct r1bio *r1_bio) 1216 { 1217 struct r1conf *conf = mddev->private; 1218 struct raid1_info *mirror; 1219 struct bio *read_bio; 1220 struct bitmap *bitmap = mddev->bitmap; 1221 const enum req_op op = bio_op(bio); 1222 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC; 1223 int max_sectors; 1224 int rdisk; 1225 bool r1bio_existed = !!r1_bio; 1226 char b[BDEVNAME_SIZE]; 1227 1228 /* 1229 * If r1_bio is set, we are blocking the raid1d thread 1230 * so there is a tiny risk of deadlock. So ask for 1231 * emergency memory if needed. 1232 */ 1233 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1234 1235 if (r1bio_existed) { 1236 /* Need to get the block device name carefully */ 1237 struct md_rdev *rdev; 1238 rcu_read_lock(); 1239 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1240 if (rdev) 1241 snprintf(b, sizeof(b), "%pg", rdev->bdev); 1242 else 1243 strcpy(b, "???"); 1244 rcu_read_unlock(); 1245 } 1246 1247 /* 1248 * Still need barrier for READ in case that whole 1249 * array is frozen. 1250 */ 1251 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1252 bio->bi_opf & REQ_NOWAIT)) { 1253 bio_wouldblock_error(bio); 1254 return; 1255 } 1256 1257 if (!r1_bio) 1258 r1_bio = alloc_r1bio(mddev, bio); 1259 else 1260 init_r1bio(r1_bio, mddev, bio); 1261 r1_bio->sectors = max_read_sectors; 1262 1263 /* 1264 * make_request() can abort the operation when read-ahead is being 1265 * used and no empty request is available. 1266 */ 1267 rdisk = read_balance(conf, r1_bio, &max_sectors); 1268 1269 if (rdisk < 0) { 1270 /* couldn't find anywhere to read from */ 1271 if (r1bio_existed) { 1272 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1273 mdname(mddev), 1274 b, 1275 (unsigned long long)r1_bio->sector); 1276 } 1277 raid_end_bio_io(r1_bio); 1278 return; 1279 } 1280 mirror = conf->mirrors + rdisk; 1281 1282 if (r1bio_existed) 1283 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n", 1284 mdname(mddev), 1285 (unsigned long long)r1_bio->sector, 1286 mirror->rdev->bdev); 1287 1288 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1289 bitmap) { 1290 /* 1291 * Reading from a write-mostly device must take care not to 1292 * over-take any writes that are 'behind' 1293 */ 1294 raid1_log(mddev, "wait behind writes"); 1295 wait_event(bitmap->behind_wait, 1296 atomic_read(&bitmap->behind_writes) == 0); 1297 } 1298 1299 if (max_sectors < bio_sectors(bio)) { 1300 struct bio *split = bio_split(bio, max_sectors, 1301 gfp, &conf->bio_split); 1302 bio_chain(split, bio); 1303 submit_bio_noacct(bio); 1304 bio = split; 1305 r1_bio->master_bio = bio; 1306 r1_bio->sectors = max_sectors; 1307 } 1308 1309 r1_bio->read_disk = rdisk; 1310 if (!r1bio_existed) { 1311 md_account_bio(mddev, &bio); 1312 r1_bio->master_bio = bio; 1313 } 1314 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1315 &mddev->bio_set); 1316 1317 r1_bio->bios[rdisk] = read_bio; 1318 1319 read_bio->bi_iter.bi_sector = r1_bio->sector + 1320 mirror->rdev->data_offset; 1321 read_bio->bi_end_io = raid1_end_read_request; 1322 read_bio->bi_opf = op | do_sync; 1323 if (test_bit(FailFast, &mirror->rdev->flags) && 1324 test_bit(R1BIO_FailFast, &r1_bio->state)) 1325 read_bio->bi_opf |= MD_FAILFAST; 1326 read_bio->bi_private = r1_bio; 1327 1328 if (mddev->gendisk) 1329 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1330 r1_bio->sector); 1331 1332 submit_bio_noacct(read_bio); 1333 } 1334 1335 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1336 int max_write_sectors) 1337 { 1338 struct r1conf *conf = mddev->private; 1339 struct r1bio *r1_bio; 1340 int i, disks; 1341 struct bitmap *bitmap = mddev->bitmap; 1342 unsigned long flags; 1343 struct md_rdev *blocked_rdev; 1344 int first_clone; 1345 int max_sectors; 1346 bool write_behind = false; 1347 1348 if (mddev_is_clustered(mddev) && 1349 md_cluster_ops->area_resyncing(mddev, WRITE, 1350 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1351 1352 DEFINE_WAIT(w); 1353 if (bio->bi_opf & REQ_NOWAIT) { 1354 bio_wouldblock_error(bio); 1355 return; 1356 } 1357 for (;;) { 1358 prepare_to_wait(&conf->wait_barrier, 1359 &w, TASK_IDLE); 1360 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1361 bio->bi_iter.bi_sector, 1362 bio_end_sector(bio))) 1363 break; 1364 schedule(); 1365 } 1366 finish_wait(&conf->wait_barrier, &w); 1367 } 1368 1369 /* 1370 * Register the new request and wait if the reconstruction 1371 * thread has put up a bar for new requests. 1372 * Continue immediately if no resync is active currently. 1373 */ 1374 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1375 bio->bi_opf & REQ_NOWAIT)) { 1376 bio_wouldblock_error(bio); 1377 return; 1378 } 1379 1380 r1_bio = alloc_r1bio(mddev, bio); 1381 r1_bio->sectors = max_write_sectors; 1382 1383 /* first select target devices under rcu_lock and 1384 * inc refcount on their rdev. Record them by setting 1385 * bios[x] to bio 1386 * If there are known/acknowledged bad blocks on any device on 1387 * which we have seen a write error, we want to avoid writing those 1388 * blocks. 1389 * This potentially requires several writes to write around 1390 * the bad blocks. Each set of writes gets it's own r1bio 1391 * with a set of bios attached. 1392 */ 1393 1394 disks = conf->raid_disks * 2; 1395 retry_write: 1396 blocked_rdev = NULL; 1397 rcu_read_lock(); 1398 max_sectors = r1_bio->sectors; 1399 for (i = 0; i < disks; i++) { 1400 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1401 1402 /* 1403 * The write-behind io is only attempted on drives marked as 1404 * write-mostly, which means we could allocate write behind 1405 * bio later. 1406 */ 1407 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1408 write_behind = true; 1409 1410 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1411 atomic_inc(&rdev->nr_pending); 1412 blocked_rdev = rdev; 1413 break; 1414 } 1415 r1_bio->bios[i] = NULL; 1416 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1417 if (i < conf->raid_disks) 1418 set_bit(R1BIO_Degraded, &r1_bio->state); 1419 continue; 1420 } 1421 1422 atomic_inc(&rdev->nr_pending); 1423 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1424 sector_t first_bad; 1425 int bad_sectors; 1426 int is_bad; 1427 1428 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1429 &first_bad, &bad_sectors); 1430 if (is_bad < 0) { 1431 /* mustn't write here until the bad block is 1432 * acknowledged*/ 1433 set_bit(BlockedBadBlocks, &rdev->flags); 1434 blocked_rdev = rdev; 1435 break; 1436 } 1437 if (is_bad && first_bad <= r1_bio->sector) { 1438 /* Cannot write here at all */ 1439 bad_sectors -= (r1_bio->sector - first_bad); 1440 if (bad_sectors < max_sectors) 1441 /* mustn't write more than bad_sectors 1442 * to other devices yet 1443 */ 1444 max_sectors = bad_sectors; 1445 rdev_dec_pending(rdev, mddev); 1446 /* We don't set R1BIO_Degraded as that 1447 * only applies if the disk is 1448 * missing, so it might be re-added, 1449 * and we want to know to recover this 1450 * chunk. 1451 * In this case the device is here, 1452 * and the fact that this chunk is not 1453 * in-sync is recorded in the bad 1454 * block log 1455 */ 1456 continue; 1457 } 1458 if (is_bad) { 1459 int good_sectors = first_bad - r1_bio->sector; 1460 if (good_sectors < max_sectors) 1461 max_sectors = good_sectors; 1462 } 1463 } 1464 r1_bio->bios[i] = bio; 1465 } 1466 rcu_read_unlock(); 1467 1468 if (unlikely(blocked_rdev)) { 1469 /* Wait for this device to become unblocked */ 1470 int j; 1471 1472 for (j = 0; j < i; j++) 1473 if (r1_bio->bios[j]) 1474 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1475 r1_bio->state = 0; 1476 allow_barrier(conf, bio->bi_iter.bi_sector); 1477 1478 if (bio->bi_opf & REQ_NOWAIT) { 1479 bio_wouldblock_error(bio); 1480 return; 1481 } 1482 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1483 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1484 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1485 goto retry_write; 1486 } 1487 1488 /* 1489 * When using a bitmap, we may call alloc_behind_master_bio below. 1490 * alloc_behind_master_bio allocates a copy of the data payload a page 1491 * at a time and thus needs a new bio that can fit the whole payload 1492 * this bio in page sized chunks. 1493 */ 1494 if (write_behind && bitmap) 1495 max_sectors = min_t(int, max_sectors, 1496 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1497 if (max_sectors < bio_sectors(bio)) { 1498 struct bio *split = bio_split(bio, max_sectors, 1499 GFP_NOIO, &conf->bio_split); 1500 bio_chain(split, bio); 1501 submit_bio_noacct(bio); 1502 bio = split; 1503 r1_bio->master_bio = bio; 1504 r1_bio->sectors = max_sectors; 1505 } 1506 1507 md_account_bio(mddev, &bio); 1508 r1_bio->master_bio = bio; 1509 atomic_set(&r1_bio->remaining, 1); 1510 atomic_set(&r1_bio->behind_remaining, 0); 1511 1512 first_clone = 1; 1513 1514 for (i = 0; i < disks; i++) { 1515 struct bio *mbio = NULL; 1516 struct md_rdev *rdev = conf->mirrors[i].rdev; 1517 if (!r1_bio->bios[i]) 1518 continue; 1519 1520 if (first_clone) { 1521 /* do behind I/O ? 1522 * Not if there are too many, or cannot 1523 * allocate memory, or a reader on WriteMostly 1524 * is waiting for behind writes to flush */ 1525 if (bitmap && 1526 test_bit(WriteMostly, &rdev->flags) && 1527 (atomic_read(&bitmap->behind_writes) 1528 < mddev->bitmap_info.max_write_behind) && 1529 !waitqueue_active(&bitmap->behind_wait)) { 1530 alloc_behind_master_bio(r1_bio, bio); 1531 } 1532 1533 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1534 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1535 first_clone = 0; 1536 } 1537 1538 if (r1_bio->behind_master_bio) { 1539 mbio = bio_alloc_clone(rdev->bdev, 1540 r1_bio->behind_master_bio, 1541 GFP_NOIO, &mddev->bio_set); 1542 if (test_bit(CollisionCheck, &rdev->flags)) 1543 wait_for_serialization(rdev, r1_bio); 1544 if (test_bit(WriteMostly, &rdev->flags)) 1545 atomic_inc(&r1_bio->behind_remaining); 1546 } else { 1547 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1548 &mddev->bio_set); 1549 1550 if (mddev->serialize_policy) 1551 wait_for_serialization(rdev, r1_bio); 1552 } 1553 1554 r1_bio->bios[i] = mbio; 1555 1556 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1557 mbio->bi_end_io = raid1_end_write_request; 1558 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1559 if (test_bit(FailFast, &rdev->flags) && 1560 !test_bit(WriteMostly, &rdev->flags) && 1561 conf->raid_disks - mddev->degraded > 1) 1562 mbio->bi_opf |= MD_FAILFAST; 1563 mbio->bi_private = r1_bio; 1564 1565 atomic_inc(&r1_bio->remaining); 1566 1567 if (mddev->gendisk) 1568 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1569 r1_bio->sector); 1570 /* flush_pending_writes() needs access to the rdev so...*/ 1571 mbio->bi_bdev = (void *)rdev; 1572 if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) { 1573 spin_lock_irqsave(&conf->device_lock, flags); 1574 bio_list_add(&conf->pending_bio_list, mbio); 1575 spin_unlock_irqrestore(&conf->device_lock, flags); 1576 md_wakeup_thread(mddev->thread); 1577 } 1578 } 1579 1580 r1_bio_write_done(r1_bio); 1581 1582 /* In case raid1d snuck in to freeze_array */ 1583 wake_up_barrier(conf); 1584 } 1585 1586 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1587 { 1588 sector_t sectors; 1589 1590 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1591 && md_flush_request(mddev, bio)) 1592 return true; 1593 1594 /* 1595 * There is a limit to the maximum size, but 1596 * the read/write handler might find a lower limit 1597 * due to bad blocks. To avoid multiple splits, 1598 * we pass the maximum number of sectors down 1599 * and let the lower level perform the split. 1600 */ 1601 sectors = align_to_barrier_unit_end( 1602 bio->bi_iter.bi_sector, bio_sectors(bio)); 1603 1604 if (bio_data_dir(bio) == READ) 1605 raid1_read_request(mddev, bio, sectors, NULL); 1606 else { 1607 if (!md_write_start(mddev,bio)) 1608 return false; 1609 raid1_write_request(mddev, bio, sectors); 1610 } 1611 return true; 1612 } 1613 1614 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1615 { 1616 struct r1conf *conf = mddev->private; 1617 int i; 1618 1619 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1620 conf->raid_disks - mddev->degraded); 1621 rcu_read_lock(); 1622 for (i = 0; i < conf->raid_disks; i++) { 1623 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1624 seq_printf(seq, "%s", 1625 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1626 } 1627 rcu_read_unlock(); 1628 seq_printf(seq, "]"); 1629 } 1630 1631 /** 1632 * raid1_error() - RAID1 error handler. 1633 * @mddev: affected md device. 1634 * @rdev: member device to fail. 1635 * 1636 * The routine acknowledges &rdev failure and determines new @mddev state. 1637 * If it failed, then: 1638 * - &MD_BROKEN flag is set in &mddev->flags. 1639 * - recovery is disabled. 1640 * Otherwise, it must be degraded: 1641 * - recovery is interrupted. 1642 * - &mddev->degraded is bumped. 1643 * 1644 * @rdev is marked as &Faulty excluding case when array is failed and 1645 * &mddev->fail_last_dev is off. 1646 */ 1647 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1648 { 1649 struct r1conf *conf = mddev->private; 1650 unsigned long flags; 1651 1652 spin_lock_irqsave(&conf->device_lock, flags); 1653 1654 if (test_bit(In_sync, &rdev->flags) && 1655 (conf->raid_disks - mddev->degraded) == 1) { 1656 set_bit(MD_BROKEN, &mddev->flags); 1657 1658 if (!mddev->fail_last_dev) { 1659 conf->recovery_disabled = mddev->recovery_disabled; 1660 spin_unlock_irqrestore(&conf->device_lock, flags); 1661 return; 1662 } 1663 } 1664 set_bit(Blocked, &rdev->flags); 1665 if (test_and_clear_bit(In_sync, &rdev->flags)) 1666 mddev->degraded++; 1667 set_bit(Faulty, &rdev->flags); 1668 spin_unlock_irqrestore(&conf->device_lock, flags); 1669 /* 1670 * if recovery is running, make sure it aborts. 1671 */ 1672 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1673 set_mask_bits(&mddev->sb_flags, 0, 1674 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1675 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n" 1676 "md/raid1:%s: Operation continuing on %d devices.\n", 1677 mdname(mddev), rdev->bdev, 1678 mdname(mddev), conf->raid_disks - mddev->degraded); 1679 } 1680 1681 static void print_conf(struct r1conf *conf) 1682 { 1683 int i; 1684 1685 pr_debug("RAID1 conf printout:\n"); 1686 if (!conf) { 1687 pr_debug("(!conf)\n"); 1688 return; 1689 } 1690 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1691 conf->raid_disks); 1692 1693 rcu_read_lock(); 1694 for (i = 0; i < conf->raid_disks; i++) { 1695 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1696 if (rdev) 1697 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n", 1698 i, !test_bit(In_sync, &rdev->flags), 1699 !test_bit(Faulty, &rdev->flags), 1700 rdev->bdev); 1701 } 1702 rcu_read_unlock(); 1703 } 1704 1705 static void close_sync(struct r1conf *conf) 1706 { 1707 int idx; 1708 1709 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1710 _wait_barrier(conf, idx, false); 1711 _allow_barrier(conf, idx); 1712 } 1713 1714 mempool_exit(&conf->r1buf_pool); 1715 } 1716 1717 static int raid1_spare_active(struct mddev *mddev) 1718 { 1719 int i; 1720 struct r1conf *conf = mddev->private; 1721 int count = 0; 1722 unsigned long flags; 1723 1724 /* 1725 * Find all failed disks within the RAID1 configuration 1726 * and mark them readable. 1727 * Called under mddev lock, so rcu protection not needed. 1728 * device_lock used to avoid races with raid1_end_read_request 1729 * which expects 'In_sync' flags and ->degraded to be consistent. 1730 */ 1731 spin_lock_irqsave(&conf->device_lock, flags); 1732 for (i = 0; i < conf->raid_disks; i++) { 1733 struct md_rdev *rdev = conf->mirrors[i].rdev; 1734 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1735 if (repl 1736 && !test_bit(Candidate, &repl->flags) 1737 && repl->recovery_offset == MaxSector 1738 && !test_bit(Faulty, &repl->flags) 1739 && !test_and_set_bit(In_sync, &repl->flags)) { 1740 /* replacement has just become active */ 1741 if (!rdev || 1742 !test_and_clear_bit(In_sync, &rdev->flags)) 1743 count++; 1744 if (rdev) { 1745 /* Replaced device not technically 1746 * faulty, but we need to be sure 1747 * it gets removed and never re-added 1748 */ 1749 set_bit(Faulty, &rdev->flags); 1750 sysfs_notify_dirent_safe( 1751 rdev->sysfs_state); 1752 } 1753 } 1754 if (rdev 1755 && rdev->recovery_offset == MaxSector 1756 && !test_bit(Faulty, &rdev->flags) 1757 && !test_and_set_bit(In_sync, &rdev->flags)) { 1758 count++; 1759 sysfs_notify_dirent_safe(rdev->sysfs_state); 1760 } 1761 } 1762 mddev->degraded -= count; 1763 spin_unlock_irqrestore(&conf->device_lock, flags); 1764 1765 print_conf(conf); 1766 return count; 1767 } 1768 1769 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1770 { 1771 struct r1conf *conf = mddev->private; 1772 int err = -EEXIST; 1773 int mirror = 0, repl_slot = -1; 1774 struct raid1_info *p; 1775 int first = 0; 1776 int last = conf->raid_disks - 1; 1777 1778 if (mddev->recovery_disabled == conf->recovery_disabled) 1779 return -EBUSY; 1780 1781 if (md_integrity_add_rdev(rdev, mddev)) 1782 return -ENXIO; 1783 1784 if (rdev->raid_disk >= 0) 1785 first = last = rdev->raid_disk; 1786 1787 /* 1788 * find the disk ... but prefer rdev->saved_raid_disk 1789 * if possible. 1790 */ 1791 if (rdev->saved_raid_disk >= 0 && 1792 rdev->saved_raid_disk >= first && 1793 rdev->saved_raid_disk < conf->raid_disks && 1794 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1795 first = last = rdev->saved_raid_disk; 1796 1797 for (mirror = first; mirror <= last; mirror++) { 1798 p = conf->mirrors + mirror; 1799 if (!p->rdev) { 1800 if (mddev->gendisk) 1801 disk_stack_limits(mddev->gendisk, rdev->bdev, 1802 rdev->data_offset << 9); 1803 1804 p->head_position = 0; 1805 rdev->raid_disk = mirror; 1806 err = 0; 1807 /* As all devices are equivalent, we don't need a full recovery 1808 * if this was recently any drive of the array 1809 */ 1810 if (rdev->saved_raid_disk < 0) 1811 conf->fullsync = 1; 1812 rcu_assign_pointer(p->rdev, rdev); 1813 break; 1814 } 1815 if (test_bit(WantReplacement, &p->rdev->flags) && 1816 p[conf->raid_disks].rdev == NULL && repl_slot < 0) 1817 repl_slot = mirror; 1818 } 1819 1820 if (err && repl_slot >= 0) { 1821 /* Add this device as a replacement */ 1822 p = conf->mirrors + repl_slot; 1823 clear_bit(In_sync, &rdev->flags); 1824 set_bit(Replacement, &rdev->flags); 1825 rdev->raid_disk = repl_slot; 1826 err = 0; 1827 conf->fullsync = 1; 1828 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1829 } 1830 1831 print_conf(conf); 1832 return err; 1833 } 1834 1835 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1836 { 1837 struct r1conf *conf = mddev->private; 1838 int err = 0; 1839 int number = rdev->raid_disk; 1840 1841 if (unlikely(number >= conf->raid_disks)) 1842 goto abort; 1843 1844 struct raid1_info *p = conf->mirrors + number; 1845 1846 if (rdev != p->rdev) 1847 p = conf->mirrors + conf->raid_disks + number; 1848 1849 print_conf(conf); 1850 if (rdev == p->rdev) { 1851 if (test_bit(In_sync, &rdev->flags) || 1852 atomic_read(&rdev->nr_pending)) { 1853 err = -EBUSY; 1854 goto abort; 1855 } 1856 /* Only remove non-faulty devices if recovery 1857 * is not possible. 1858 */ 1859 if (!test_bit(Faulty, &rdev->flags) && 1860 mddev->recovery_disabled != conf->recovery_disabled && 1861 mddev->degraded < conf->raid_disks) { 1862 err = -EBUSY; 1863 goto abort; 1864 } 1865 p->rdev = NULL; 1866 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1867 synchronize_rcu(); 1868 if (atomic_read(&rdev->nr_pending)) { 1869 /* lost the race, try later */ 1870 err = -EBUSY; 1871 p->rdev = rdev; 1872 goto abort; 1873 } 1874 } 1875 if (conf->mirrors[conf->raid_disks + number].rdev) { 1876 /* We just removed a device that is being replaced. 1877 * Move down the replacement. We drain all IO before 1878 * doing this to avoid confusion. 1879 */ 1880 struct md_rdev *repl = 1881 conf->mirrors[conf->raid_disks + number].rdev; 1882 freeze_array(conf, 0); 1883 if (atomic_read(&repl->nr_pending)) { 1884 /* It means that some queued IO of retry_list 1885 * hold repl. Thus, we cannot set replacement 1886 * as NULL, avoiding rdev NULL pointer 1887 * dereference in sync_request_write and 1888 * handle_write_finished. 1889 */ 1890 err = -EBUSY; 1891 unfreeze_array(conf); 1892 goto abort; 1893 } 1894 clear_bit(Replacement, &repl->flags); 1895 p->rdev = repl; 1896 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1897 unfreeze_array(conf); 1898 } 1899 1900 clear_bit(WantReplacement, &rdev->flags); 1901 err = md_integrity_register(mddev); 1902 } 1903 abort: 1904 1905 print_conf(conf); 1906 return err; 1907 } 1908 1909 static void end_sync_read(struct bio *bio) 1910 { 1911 struct r1bio *r1_bio = get_resync_r1bio(bio); 1912 1913 update_head_pos(r1_bio->read_disk, r1_bio); 1914 1915 /* 1916 * we have read a block, now it needs to be re-written, 1917 * or re-read if the read failed. 1918 * We don't do much here, just schedule handling by raid1d 1919 */ 1920 if (!bio->bi_status) 1921 set_bit(R1BIO_Uptodate, &r1_bio->state); 1922 1923 if (atomic_dec_and_test(&r1_bio->remaining)) 1924 reschedule_retry(r1_bio); 1925 } 1926 1927 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1928 { 1929 sector_t sync_blocks = 0; 1930 sector_t s = r1_bio->sector; 1931 long sectors_to_go = r1_bio->sectors; 1932 1933 /* make sure these bits don't get cleared. */ 1934 do { 1935 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1936 s += sync_blocks; 1937 sectors_to_go -= sync_blocks; 1938 } while (sectors_to_go > 0); 1939 } 1940 1941 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1942 { 1943 if (atomic_dec_and_test(&r1_bio->remaining)) { 1944 struct mddev *mddev = r1_bio->mddev; 1945 int s = r1_bio->sectors; 1946 1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1948 test_bit(R1BIO_WriteError, &r1_bio->state)) 1949 reschedule_retry(r1_bio); 1950 else { 1951 put_buf(r1_bio); 1952 md_done_sync(mddev, s, uptodate); 1953 } 1954 } 1955 } 1956 1957 static void end_sync_write(struct bio *bio) 1958 { 1959 int uptodate = !bio->bi_status; 1960 struct r1bio *r1_bio = get_resync_r1bio(bio); 1961 struct mddev *mddev = r1_bio->mddev; 1962 struct r1conf *conf = mddev->private; 1963 sector_t first_bad; 1964 int bad_sectors; 1965 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1966 1967 if (!uptodate) { 1968 abort_sync_write(mddev, r1_bio); 1969 set_bit(WriteErrorSeen, &rdev->flags); 1970 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1971 set_bit(MD_RECOVERY_NEEDED, & 1972 mddev->recovery); 1973 set_bit(R1BIO_WriteError, &r1_bio->state); 1974 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1975 &first_bad, &bad_sectors) && 1976 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1977 r1_bio->sector, 1978 r1_bio->sectors, 1979 &first_bad, &bad_sectors) 1980 ) 1981 set_bit(R1BIO_MadeGood, &r1_bio->state); 1982 1983 put_sync_write_buf(r1_bio, uptodate); 1984 } 1985 1986 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1987 int sectors, struct page *page, int rw) 1988 { 1989 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1990 /* success */ 1991 return 1; 1992 if (rw == WRITE) { 1993 set_bit(WriteErrorSeen, &rdev->flags); 1994 if (!test_and_set_bit(WantReplacement, 1995 &rdev->flags)) 1996 set_bit(MD_RECOVERY_NEEDED, & 1997 rdev->mddev->recovery); 1998 } 1999 /* need to record an error - either for the block or the device */ 2000 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 2001 md_error(rdev->mddev, rdev); 2002 return 0; 2003 } 2004 2005 static int fix_sync_read_error(struct r1bio *r1_bio) 2006 { 2007 /* Try some synchronous reads of other devices to get 2008 * good data, much like with normal read errors. Only 2009 * read into the pages we already have so we don't 2010 * need to re-issue the read request. 2011 * We don't need to freeze the array, because being in an 2012 * active sync request, there is no normal IO, and 2013 * no overlapping syncs. 2014 * We don't need to check is_badblock() again as we 2015 * made sure that anything with a bad block in range 2016 * will have bi_end_io clear. 2017 */ 2018 struct mddev *mddev = r1_bio->mddev; 2019 struct r1conf *conf = mddev->private; 2020 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2021 struct page **pages = get_resync_pages(bio)->pages; 2022 sector_t sect = r1_bio->sector; 2023 int sectors = r1_bio->sectors; 2024 int idx = 0; 2025 struct md_rdev *rdev; 2026 2027 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2028 if (test_bit(FailFast, &rdev->flags)) { 2029 /* Don't try recovering from here - just fail it 2030 * ... unless it is the last working device of course */ 2031 md_error(mddev, rdev); 2032 if (test_bit(Faulty, &rdev->flags)) 2033 /* Don't try to read from here, but make sure 2034 * put_buf does it's thing 2035 */ 2036 bio->bi_end_io = end_sync_write; 2037 } 2038 2039 while(sectors) { 2040 int s = sectors; 2041 int d = r1_bio->read_disk; 2042 int success = 0; 2043 int start; 2044 2045 if (s > (PAGE_SIZE>>9)) 2046 s = PAGE_SIZE >> 9; 2047 do { 2048 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2049 /* No rcu protection needed here devices 2050 * can only be removed when no resync is 2051 * active, and resync is currently active 2052 */ 2053 rdev = conf->mirrors[d].rdev; 2054 if (sync_page_io(rdev, sect, s<<9, 2055 pages[idx], 2056 REQ_OP_READ, false)) { 2057 success = 1; 2058 break; 2059 } 2060 } 2061 d++; 2062 if (d == conf->raid_disks * 2) 2063 d = 0; 2064 } while (!success && d != r1_bio->read_disk); 2065 2066 if (!success) { 2067 int abort = 0; 2068 /* Cannot read from anywhere, this block is lost. 2069 * Record a bad block on each device. If that doesn't 2070 * work just disable and interrupt the recovery. 2071 * Don't fail devices as that won't really help. 2072 */ 2073 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2074 mdname(mddev), bio->bi_bdev, 2075 (unsigned long long)r1_bio->sector); 2076 for (d = 0; d < conf->raid_disks * 2; d++) { 2077 rdev = conf->mirrors[d].rdev; 2078 if (!rdev || test_bit(Faulty, &rdev->flags)) 2079 continue; 2080 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2081 abort = 1; 2082 } 2083 if (abort) { 2084 conf->recovery_disabled = 2085 mddev->recovery_disabled; 2086 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2087 md_done_sync(mddev, r1_bio->sectors, 0); 2088 put_buf(r1_bio); 2089 return 0; 2090 } 2091 /* Try next page */ 2092 sectors -= s; 2093 sect += s; 2094 idx++; 2095 continue; 2096 } 2097 2098 start = d; 2099 /* write it back and re-read */ 2100 while (d != r1_bio->read_disk) { 2101 if (d == 0) 2102 d = conf->raid_disks * 2; 2103 d--; 2104 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2105 continue; 2106 rdev = conf->mirrors[d].rdev; 2107 if (r1_sync_page_io(rdev, sect, s, 2108 pages[idx], 2109 WRITE) == 0) { 2110 r1_bio->bios[d]->bi_end_io = NULL; 2111 rdev_dec_pending(rdev, mddev); 2112 } 2113 } 2114 d = start; 2115 while (d != r1_bio->read_disk) { 2116 if (d == 0) 2117 d = conf->raid_disks * 2; 2118 d--; 2119 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2120 continue; 2121 rdev = conf->mirrors[d].rdev; 2122 if (r1_sync_page_io(rdev, sect, s, 2123 pages[idx], 2124 READ) != 0) 2125 atomic_add(s, &rdev->corrected_errors); 2126 } 2127 sectors -= s; 2128 sect += s; 2129 idx ++; 2130 } 2131 set_bit(R1BIO_Uptodate, &r1_bio->state); 2132 bio->bi_status = 0; 2133 return 1; 2134 } 2135 2136 static void process_checks(struct r1bio *r1_bio) 2137 { 2138 /* We have read all readable devices. If we haven't 2139 * got the block, then there is no hope left. 2140 * If we have, then we want to do a comparison 2141 * and skip the write if everything is the same. 2142 * If any blocks failed to read, then we need to 2143 * attempt an over-write 2144 */ 2145 struct mddev *mddev = r1_bio->mddev; 2146 struct r1conf *conf = mddev->private; 2147 int primary; 2148 int i; 2149 int vcnt; 2150 2151 /* Fix variable parts of all bios */ 2152 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2153 for (i = 0; i < conf->raid_disks * 2; i++) { 2154 blk_status_t status; 2155 struct bio *b = r1_bio->bios[i]; 2156 struct resync_pages *rp = get_resync_pages(b); 2157 if (b->bi_end_io != end_sync_read) 2158 continue; 2159 /* fixup the bio for reuse, but preserve errno */ 2160 status = b->bi_status; 2161 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2162 b->bi_status = status; 2163 b->bi_iter.bi_sector = r1_bio->sector + 2164 conf->mirrors[i].rdev->data_offset; 2165 b->bi_end_io = end_sync_read; 2166 rp->raid_bio = r1_bio; 2167 b->bi_private = rp; 2168 2169 /* initialize bvec table again */ 2170 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2171 } 2172 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2173 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2174 !r1_bio->bios[primary]->bi_status) { 2175 r1_bio->bios[primary]->bi_end_io = NULL; 2176 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2177 break; 2178 } 2179 r1_bio->read_disk = primary; 2180 for (i = 0; i < conf->raid_disks * 2; i++) { 2181 int j = 0; 2182 struct bio *pbio = r1_bio->bios[primary]; 2183 struct bio *sbio = r1_bio->bios[i]; 2184 blk_status_t status = sbio->bi_status; 2185 struct page **ppages = get_resync_pages(pbio)->pages; 2186 struct page **spages = get_resync_pages(sbio)->pages; 2187 struct bio_vec *bi; 2188 int page_len[RESYNC_PAGES] = { 0 }; 2189 struct bvec_iter_all iter_all; 2190 2191 if (sbio->bi_end_io != end_sync_read) 2192 continue; 2193 /* Now we can 'fixup' the error value */ 2194 sbio->bi_status = 0; 2195 2196 bio_for_each_segment_all(bi, sbio, iter_all) 2197 page_len[j++] = bi->bv_len; 2198 2199 if (!status) { 2200 for (j = vcnt; j-- ; ) { 2201 if (memcmp(page_address(ppages[j]), 2202 page_address(spages[j]), 2203 page_len[j])) 2204 break; 2205 } 2206 } else 2207 j = 0; 2208 if (j >= 0) 2209 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2210 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2211 && !status)) { 2212 /* No need to write to this device. */ 2213 sbio->bi_end_io = NULL; 2214 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2215 continue; 2216 } 2217 2218 bio_copy_data(sbio, pbio); 2219 } 2220 } 2221 2222 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2223 { 2224 struct r1conf *conf = mddev->private; 2225 int i; 2226 int disks = conf->raid_disks * 2; 2227 struct bio *wbio; 2228 2229 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2230 /* ouch - failed to read all of that. */ 2231 if (!fix_sync_read_error(r1_bio)) 2232 return; 2233 2234 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2235 process_checks(r1_bio); 2236 2237 /* 2238 * schedule writes 2239 */ 2240 atomic_set(&r1_bio->remaining, 1); 2241 for (i = 0; i < disks ; i++) { 2242 wbio = r1_bio->bios[i]; 2243 if (wbio->bi_end_io == NULL || 2244 (wbio->bi_end_io == end_sync_read && 2245 (i == r1_bio->read_disk || 2246 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2247 continue; 2248 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2249 abort_sync_write(mddev, r1_bio); 2250 continue; 2251 } 2252 2253 wbio->bi_opf = REQ_OP_WRITE; 2254 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2255 wbio->bi_opf |= MD_FAILFAST; 2256 2257 wbio->bi_end_io = end_sync_write; 2258 atomic_inc(&r1_bio->remaining); 2259 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2260 2261 submit_bio_noacct(wbio); 2262 } 2263 2264 put_sync_write_buf(r1_bio, 1); 2265 } 2266 2267 /* 2268 * This is a kernel thread which: 2269 * 2270 * 1. Retries failed read operations on working mirrors. 2271 * 2. Updates the raid superblock when problems encounter. 2272 * 3. Performs writes following reads for array synchronising. 2273 */ 2274 2275 static void fix_read_error(struct r1conf *conf, int read_disk, 2276 sector_t sect, int sectors) 2277 { 2278 struct mddev *mddev = conf->mddev; 2279 while(sectors) { 2280 int s = sectors; 2281 int d = read_disk; 2282 int success = 0; 2283 int start; 2284 struct md_rdev *rdev; 2285 2286 if (s > (PAGE_SIZE>>9)) 2287 s = PAGE_SIZE >> 9; 2288 2289 do { 2290 sector_t first_bad; 2291 int bad_sectors; 2292 2293 rcu_read_lock(); 2294 rdev = rcu_dereference(conf->mirrors[d].rdev); 2295 if (rdev && 2296 (test_bit(In_sync, &rdev->flags) || 2297 (!test_bit(Faulty, &rdev->flags) && 2298 rdev->recovery_offset >= sect + s)) && 2299 is_badblock(rdev, sect, s, 2300 &first_bad, &bad_sectors) == 0) { 2301 atomic_inc(&rdev->nr_pending); 2302 rcu_read_unlock(); 2303 if (sync_page_io(rdev, sect, s<<9, 2304 conf->tmppage, REQ_OP_READ, false)) 2305 success = 1; 2306 rdev_dec_pending(rdev, mddev); 2307 if (success) 2308 break; 2309 } else 2310 rcu_read_unlock(); 2311 d++; 2312 if (d == conf->raid_disks * 2) 2313 d = 0; 2314 } while (d != read_disk); 2315 2316 if (!success) { 2317 /* Cannot read from anywhere - mark it bad */ 2318 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2319 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2320 md_error(mddev, rdev); 2321 break; 2322 } 2323 /* write it back and re-read */ 2324 start = d; 2325 while (d != read_disk) { 2326 if (d==0) 2327 d = conf->raid_disks * 2; 2328 d--; 2329 rcu_read_lock(); 2330 rdev = rcu_dereference(conf->mirrors[d].rdev); 2331 if (rdev && 2332 !test_bit(Faulty, &rdev->flags)) { 2333 atomic_inc(&rdev->nr_pending); 2334 rcu_read_unlock(); 2335 r1_sync_page_io(rdev, sect, s, 2336 conf->tmppage, WRITE); 2337 rdev_dec_pending(rdev, mddev); 2338 } else 2339 rcu_read_unlock(); 2340 } 2341 d = start; 2342 while (d != read_disk) { 2343 if (d==0) 2344 d = conf->raid_disks * 2; 2345 d--; 2346 rcu_read_lock(); 2347 rdev = rcu_dereference(conf->mirrors[d].rdev); 2348 if (rdev && 2349 !test_bit(Faulty, &rdev->flags)) { 2350 atomic_inc(&rdev->nr_pending); 2351 rcu_read_unlock(); 2352 if (r1_sync_page_io(rdev, sect, s, 2353 conf->tmppage, READ)) { 2354 atomic_add(s, &rdev->corrected_errors); 2355 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n", 2356 mdname(mddev), s, 2357 (unsigned long long)(sect + 2358 rdev->data_offset), 2359 rdev->bdev); 2360 } 2361 rdev_dec_pending(rdev, mddev); 2362 } else 2363 rcu_read_unlock(); 2364 } 2365 sectors -= s; 2366 sect += s; 2367 } 2368 } 2369 2370 static int narrow_write_error(struct r1bio *r1_bio, int i) 2371 { 2372 struct mddev *mddev = r1_bio->mddev; 2373 struct r1conf *conf = mddev->private; 2374 struct md_rdev *rdev = conf->mirrors[i].rdev; 2375 2376 /* bio has the data to be written to device 'i' where 2377 * we just recently had a write error. 2378 * We repeatedly clone the bio and trim down to one block, 2379 * then try the write. Where the write fails we record 2380 * a bad block. 2381 * It is conceivable that the bio doesn't exactly align with 2382 * blocks. We must handle this somehow. 2383 * 2384 * We currently own a reference on the rdev. 2385 */ 2386 2387 int block_sectors; 2388 sector_t sector; 2389 int sectors; 2390 int sect_to_write = r1_bio->sectors; 2391 int ok = 1; 2392 2393 if (rdev->badblocks.shift < 0) 2394 return 0; 2395 2396 block_sectors = roundup(1 << rdev->badblocks.shift, 2397 bdev_logical_block_size(rdev->bdev) >> 9); 2398 sector = r1_bio->sector; 2399 sectors = ((sector + block_sectors) 2400 & ~(sector_t)(block_sectors - 1)) 2401 - sector; 2402 2403 while (sect_to_write) { 2404 struct bio *wbio; 2405 if (sectors > sect_to_write) 2406 sectors = sect_to_write; 2407 /* Write at 'sector' for 'sectors'*/ 2408 2409 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2410 wbio = bio_alloc_clone(rdev->bdev, 2411 r1_bio->behind_master_bio, 2412 GFP_NOIO, &mddev->bio_set); 2413 } else { 2414 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2415 GFP_NOIO, &mddev->bio_set); 2416 } 2417 2418 wbio->bi_opf = REQ_OP_WRITE; 2419 wbio->bi_iter.bi_sector = r1_bio->sector; 2420 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2421 2422 bio_trim(wbio, sector - r1_bio->sector, sectors); 2423 wbio->bi_iter.bi_sector += rdev->data_offset; 2424 2425 if (submit_bio_wait(wbio) < 0) 2426 /* failure! */ 2427 ok = rdev_set_badblocks(rdev, sector, 2428 sectors, 0) 2429 && ok; 2430 2431 bio_put(wbio); 2432 sect_to_write -= sectors; 2433 sector += sectors; 2434 sectors = block_sectors; 2435 } 2436 return ok; 2437 } 2438 2439 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2440 { 2441 int m; 2442 int s = r1_bio->sectors; 2443 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2444 struct md_rdev *rdev = conf->mirrors[m].rdev; 2445 struct bio *bio = r1_bio->bios[m]; 2446 if (bio->bi_end_io == NULL) 2447 continue; 2448 if (!bio->bi_status && 2449 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2450 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2451 } 2452 if (bio->bi_status && 2453 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2454 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2455 md_error(conf->mddev, rdev); 2456 } 2457 } 2458 put_buf(r1_bio); 2459 md_done_sync(conf->mddev, s, 1); 2460 } 2461 2462 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2463 { 2464 int m, idx; 2465 bool fail = false; 2466 2467 for (m = 0; m < conf->raid_disks * 2 ; m++) 2468 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2469 struct md_rdev *rdev = conf->mirrors[m].rdev; 2470 rdev_clear_badblocks(rdev, 2471 r1_bio->sector, 2472 r1_bio->sectors, 0); 2473 rdev_dec_pending(rdev, conf->mddev); 2474 } else if (r1_bio->bios[m] != NULL) { 2475 /* This drive got a write error. We need to 2476 * narrow down and record precise write 2477 * errors. 2478 */ 2479 fail = true; 2480 if (!narrow_write_error(r1_bio, m)) { 2481 md_error(conf->mddev, 2482 conf->mirrors[m].rdev); 2483 /* an I/O failed, we can't clear the bitmap */ 2484 set_bit(R1BIO_Degraded, &r1_bio->state); 2485 } 2486 rdev_dec_pending(conf->mirrors[m].rdev, 2487 conf->mddev); 2488 } 2489 if (fail) { 2490 spin_lock_irq(&conf->device_lock); 2491 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2492 idx = sector_to_idx(r1_bio->sector); 2493 atomic_inc(&conf->nr_queued[idx]); 2494 spin_unlock_irq(&conf->device_lock); 2495 /* 2496 * In case freeze_array() is waiting for condition 2497 * get_unqueued_pending() == extra to be true. 2498 */ 2499 wake_up(&conf->wait_barrier); 2500 md_wakeup_thread(conf->mddev->thread); 2501 } else { 2502 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2503 close_write(r1_bio); 2504 raid_end_bio_io(r1_bio); 2505 } 2506 } 2507 2508 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2509 { 2510 struct mddev *mddev = conf->mddev; 2511 struct bio *bio; 2512 struct md_rdev *rdev; 2513 2514 clear_bit(R1BIO_ReadError, &r1_bio->state); 2515 /* we got a read error. Maybe the drive is bad. Maybe just 2516 * the block and we can fix it. 2517 * We freeze all other IO, and try reading the block from 2518 * other devices. When we find one, we re-write 2519 * and check it that fixes the read error. 2520 * This is all done synchronously while the array is 2521 * frozen 2522 */ 2523 2524 bio = r1_bio->bios[r1_bio->read_disk]; 2525 bio_put(bio); 2526 r1_bio->bios[r1_bio->read_disk] = NULL; 2527 2528 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2529 if (mddev->ro == 0 2530 && !test_bit(FailFast, &rdev->flags)) { 2531 freeze_array(conf, 1); 2532 fix_read_error(conf, r1_bio->read_disk, 2533 r1_bio->sector, r1_bio->sectors); 2534 unfreeze_array(conf); 2535 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2536 md_error(mddev, rdev); 2537 } else { 2538 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2539 } 2540 2541 rdev_dec_pending(rdev, conf->mddev); 2542 allow_barrier(conf, r1_bio->sector); 2543 bio = r1_bio->master_bio; 2544 2545 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2546 r1_bio->state = 0; 2547 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2548 } 2549 2550 static void raid1d(struct md_thread *thread) 2551 { 2552 struct mddev *mddev = thread->mddev; 2553 struct r1bio *r1_bio; 2554 unsigned long flags; 2555 struct r1conf *conf = mddev->private; 2556 struct list_head *head = &conf->retry_list; 2557 struct blk_plug plug; 2558 int idx; 2559 2560 md_check_recovery(mddev); 2561 2562 if (!list_empty_careful(&conf->bio_end_io_list) && 2563 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2564 LIST_HEAD(tmp); 2565 spin_lock_irqsave(&conf->device_lock, flags); 2566 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2567 list_splice_init(&conf->bio_end_io_list, &tmp); 2568 spin_unlock_irqrestore(&conf->device_lock, flags); 2569 while (!list_empty(&tmp)) { 2570 r1_bio = list_first_entry(&tmp, struct r1bio, 2571 retry_list); 2572 list_del(&r1_bio->retry_list); 2573 idx = sector_to_idx(r1_bio->sector); 2574 atomic_dec(&conf->nr_queued[idx]); 2575 if (mddev->degraded) 2576 set_bit(R1BIO_Degraded, &r1_bio->state); 2577 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2578 close_write(r1_bio); 2579 raid_end_bio_io(r1_bio); 2580 } 2581 } 2582 2583 blk_start_plug(&plug); 2584 for (;;) { 2585 2586 flush_pending_writes(conf); 2587 2588 spin_lock_irqsave(&conf->device_lock, flags); 2589 if (list_empty(head)) { 2590 spin_unlock_irqrestore(&conf->device_lock, flags); 2591 break; 2592 } 2593 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2594 list_del(head->prev); 2595 idx = sector_to_idx(r1_bio->sector); 2596 atomic_dec(&conf->nr_queued[idx]); 2597 spin_unlock_irqrestore(&conf->device_lock, flags); 2598 2599 mddev = r1_bio->mddev; 2600 conf = mddev->private; 2601 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2602 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2603 test_bit(R1BIO_WriteError, &r1_bio->state)) 2604 handle_sync_write_finished(conf, r1_bio); 2605 else 2606 sync_request_write(mddev, r1_bio); 2607 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2608 test_bit(R1BIO_WriteError, &r1_bio->state)) 2609 handle_write_finished(conf, r1_bio); 2610 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2611 handle_read_error(conf, r1_bio); 2612 else 2613 WARN_ON_ONCE(1); 2614 2615 cond_resched(); 2616 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2617 md_check_recovery(mddev); 2618 } 2619 blk_finish_plug(&plug); 2620 } 2621 2622 static int init_resync(struct r1conf *conf) 2623 { 2624 int buffs; 2625 2626 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2627 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2628 2629 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2630 r1buf_pool_free, conf->poolinfo); 2631 } 2632 2633 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2634 { 2635 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2636 struct resync_pages *rps; 2637 struct bio *bio; 2638 int i; 2639 2640 for (i = conf->poolinfo->raid_disks; i--; ) { 2641 bio = r1bio->bios[i]; 2642 rps = bio->bi_private; 2643 bio_reset(bio, NULL, 0); 2644 bio->bi_private = rps; 2645 } 2646 r1bio->master_bio = NULL; 2647 return r1bio; 2648 } 2649 2650 /* 2651 * perform a "sync" on one "block" 2652 * 2653 * We need to make sure that no normal I/O request - particularly write 2654 * requests - conflict with active sync requests. 2655 * 2656 * This is achieved by tracking pending requests and a 'barrier' concept 2657 * that can be installed to exclude normal IO requests. 2658 */ 2659 2660 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2661 int *skipped) 2662 { 2663 struct r1conf *conf = mddev->private; 2664 struct r1bio *r1_bio; 2665 struct bio *bio; 2666 sector_t max_sector, nr_sectors; 2667 int disk = -1; 2668 int i; 2669 int wonly = -1; 2670 int write_targets = 0, read_targets = 0; 2671 sector_t sync_blocks; 2672 int still_degraded = 0; 2673 int good_sectors = RESYNC_SECTORS; 2674 int min_bad = 0; /* number of sectors that are bad in all devices */ 2675 int idx = sector_to_idx(sector_nr); 2676 int page_idx = 0; 2677 2678 if (!mempool_initialized(&conf->r1buf_pool)) 2679 if (init_resync(conf)) 2680 return 0; 2681 2682 max_sector = mddev->dev_sectors; 2683 if (sector_nr >= max_sector) { 2684 /* If we aborted, we need to abort the 2685 * sync on the 'current' bitmap chunk (there will 2686 * only be one in raid1 resync. 2687 * We can find the current addess in mddev->curr_resync 2688 */ 2689 if (mddev->curr_resync < max_sector) /* aborted */ 2690 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2691 &sync_blocks, 1); 2692 else /* completed sync */ 2693 conf->fullsync = 0; 2694 2695 md_bitmap_close_sync(mddev->bitmap); 2696 close_sync(conf); 2697 2698 if (mddev_is_clustered(mddev)) { 2699 conf->cluster_sync_low = 0; 2700 conf->cluster_sync_high = 0; 2701 } 2702 return 0; 2703 } 2704 2705 if (mddev->bitmap == NULL && 2706 mddev->recovery_cp == MaxSector && 2707 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2708 conf->fullsync == 0) { 2709 *skipped = 1; 2710 return max_sector - sector_nr; 2711 } 2712 /* before building a request, check if we can skip these blocks.. 2713 * This call the bitmap_start_sync doesn't actually record anything 2714 */ 2715 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2716 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2717 /* We can skip this block, and probably several more */ 2718 *skipped = 1; 2719 return sync_blocks; 2720 } 2721 2722 /* 2723 * If there is non-resync activity waiting for a turn, then let it 2724 * though before starting on this new sync request. 2725 */ 2726 if (atomic_read(&conf->nr_waiting[idx])) 2727 schedule_timeout_uninterruptible(1); 2728 2729 /* we are incrementing sector_nr below. To be safe, we check against 2730 * sector_nr + two times RESYNC_SECTORS 2731 */ 2732 2733 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2734 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2735 2736 2737 if (raise_barrier(conf, sector_nr)) 2738 return 0; 2739 2740 r1_bio = raid1_alloc_init_r1buf(conf); 2741 2742 rcu_read_lock(); 2743 /* 2744 * If we get a correctably read error during resync or recovery, 2745 * we might want to read from a different device. So we 2746 * flag all drives that could conceivably be read from for READ, 2747 * and any others (which will be non-In_sync devices) for WRITE. 2748 * If a read fails, we try reading from something else for which READ 2749 * is OK. 2750 */ 2751 2752 r1_bio->mddev = mddev; 2753 r1_bio->sector = sector_nr; 2754 r1_bio->state = 0; 2755 set_bit(R1BIO_IsSync, &r1_bio->state); 2756 /* make sure good_sectors won't go across barrier unit boundary */ 2757 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2758 2759 for (i = 0; i < conf->raid_disks * 2; i++) { 2760 struct md_rdev *rdev; 2761 bio = r1_bio->bios[i]; 2762 2763 rdev = rcu_dereference(conf->mirrors[i].rdev); 2764 if (rdev == NULL || 2765 test_bit(Faulty, &rdev->flags)) { 2766 if (i < conf->raid_disks) 2767 still_degraded = 1; 2768 } else if (!test_bit(In_sync, &rdev->flags)) { 2769 bio->bi_opf = REQ_OP_WRITE; 2770 bio->bi_end_io = end_sync_write; 2771 write_targets ++; 2772 } else { 2773 /* may need to read from here */ 2774 sector_t first_bad = MaxSector; 2775 int bad_sectors; 2776 2777 if (is_badblock(rdev, sector_nr, good_sectors, 2778 &first_bad, &bad_sectors)) { 2779 if (first_bad > sector_nr) 2780 good_sectors = first_bad - sector_nr; 2781 else { 2782 bad_sectors -= (sector_nr - first_bad); 2783 if (min_bad == 0 || 2784 min_bad > bad_sectors) 2785 min_bad = bad_sectors; 2786 } 2787 } 2788 if (sector_nr < first_bad) { 2789 if (test_bit(WriteMostly, &rdev->flags)) { 2790 if (wonly < 0) 2791 wonly = i; 2792 } else { 2793 if (disk < 0) 2794 disk = i; 2795 } 2796 bio->bi_opf = REQ_OP_READ; 2797 bio->bi_end_io = end_sync_read; 2798 read_targets++; 2799 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2800 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2801 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2802 /* 2803 * The device is suitable for reading (InSync), 2804 * but has bad block(s) here. Let's try to correct them, 2805 * if we are doing resync or repair. Otherwise, leave 2806 * this device alone for this sync request. 2807 */ 2808 bio->bi_opf = REQ_OP_WRITE; 2809 bio->bi_end_io = end_sync_write; 2810 write_targets++; 2811 } 2812 } 2813 if (rdev && bio->bi_end_io) { 2814 atomic_inc(&rdev->nr_pending); 2815 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2816 bio_set_dev(bio, rdev->bdev); 2817 if (test_bit(FailFast, &rdev->flags)) 2818 bio->bi_opf |= MD_FAILFAST; 2819 } 2820 } 2821 rcu_read_unlock(); 2822 if (disk < 0) 2823 disk = wonly; 2824 r1_bio->read_disk = disk; 2825 2826 if (read_targets == 0 && min_bad > 0) { 2827 /* These sectors are bad on all InSync devices, so we 2828 * need to mark them bad on all write targets 2829 */ 2830 int ok = 1; 2831 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2832 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2833 struct md_rdev *rdev = conf->mirrors[i].rdev; 2834 ok = rdev_set_badblocks(rdev, sector_nr, 2835 min_bad, 0 2836 ) && ok; 2837 } 2838 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2839 *skipped = 1; 2840 put_buf(r1_bio); 2841 2842 if (!ok) { 2843 /* Cannot record the badblocks, so need to 2844 * abort the resync. 2845 * If there are multiple read targets, could just 2846 * fail the really bad ones ??? 2847 */ 2848 conf->recovery_disabled = mddev->recovery_disabled; 2849 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2850 return 0; 2851 } else 2852 return min_bad; 2853 2854 } 2855 if (min_bad > 0 && min_bad < good_sectors) { 2856 /* only resync enough to reach the next bad->good 2857 * transition */ 2858 good_sectors = min_bad; 2859 } 2860 2861 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2862 /* extra read targets are also write targets */ 2863 write_targets += read_targets-1; 2864 2865 if (write_targets == 0 || read_targets == 0) { 2866 /* There is nowhere to write, so all non-sync 2867 * drives must be failed - so we are finished 2868 */ 2869 sector_t rv; 2870 if (min_bad > 0) 2871 max_sector = sector_nr + min_bad; 2872 rv = max_sector - sector_nr; 2873 *skipped = 1; 2874 put_buf(r1_bio); 2875 return rv; 2876 } 2877 2878 if (max_sector > mddev->resync_max) 2879 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2880 if (max_sector > sector_nr + good_sectors) 2881 max_sector = sector_nr + good_sectors; 2882 nr_sectors = 0; 2883 sync_blocks = 0; 2884 do { 2885 struct page *page; 2886 int len = PAGE_SIZE; 2887 if (sector_nr + (len>>9) > max_sector) 2888 len = (max_sector - sector_nr) << 9; 2889 if (len == 0) 2890 break; 2891 if (sync_blocks == 0) { 2892 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2893 &sync_blocks, still_degraded) && 2894 !conf->fullsync && 2895 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2896 break; 2897 if ((len >> 9) > sync_blocks) 2898 len = sync_blocks<<9; 2899 } 2900 2901 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2902 struct resync_pages *rp; 2903 2904 bio = r1_bio->bios[i]; 2905 rp = get_resync_pages(bio); 2906 if (bio->bi_end_io) { 2907 page = resync_fetch_page(rp, page_idx); 2908 2909 /* 2910 * won't fail because the vec table is big 2911 * enough to hold all these pages 2912 */ 2913 __bio_add_page(bio, page, len, 0); 2914 } 2915 } 2916 nr_sectors += len>>9; 2917 sector_nr += len>>9; 2918 sync_blocks -= (len>>9); 2919 } while (++page_idx < RESYNC_PAGES); 2920 2921 r1_bio->sectors = nr_sectors; 2922 2923 if (mddev_is_clustered(mddev) && 2924 conf->cluster_sync_high < sector_nr + nr_sectors) { 2925 conf->cluster_sync_low = mddev->curr_resync_completed; 2926 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2927 /* Send resync message */ 2928 md_cluster_ops->resync_info_update(mddev, 2929 conf->cluster_sync_low, 2930 conf->cluster_sync_high); 2931 } 2932 2933 /* For a user-requested sync, we read all readable devices and do a 2934 * compare 2935 */ 2936 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2937 atomic_set(&r1_bio->remaining, read_targets); 2938 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2939 bio = r1_bio->bios[i]; 2940 if (bio->bi_end_io == end_sync_read) { 2941 read_targets--; 2942 md_sync_acct_bio(bio, nr_sectors); 2943 if (read_targets == 1) 2944 bio->bi_opf &= ~MD_FAILFAST; 2945 submit_bio_noacct(bio); 2946 } 2947 } 2948 } else { 2949 atomic_set(&r1_bio->remaining, 1); 2950 bio = r1_bio->bios[r1_bio->read_disk]; 2951 md_sync_acct_bio(bio, nr_sectors); 2952 if (read_targets == 1) 2953 bio->bi_opf &= ~MD_FAILFAST; 2954 submit_bio_noacct(bio); 2955 } 2956 return nr_sectors; 2957 } 2958 2959 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2960 { 2961 if (sectors) 2962 return sectors; 2963 2964 return mddev->dev_sectors; 2965 } 2966 2967 static struct r1conf *setup_conf(struct mddev *mddev) 2968 { 2969 struct r1conf *conf; 2970 int i; 2971 struct raid1_info *disk; 2972 struct md_rdev *rdev; 2973 int err = -ENOMEM; 2974 2975 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2976 if (!conf) 2977 goto abort; 2978 2979 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2980 sizeof(atomic_t), GFP_KERNEL); 2981 if (!conf->nr_pending) 2982 goto abort; 2983 2984 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2985 sizeof(atomic_t), GFP_KERNEL); 2986 if (!conf->nr_waiting) 2987 goto abort; 2988 2989 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2990 sizeof(atomic_t), GFP_KERNEL); 2991 if (!conf->nr_queued) 2992 goto abort; 2993 2994 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2995 sizeof(atomic_t), GFP_KERNEL); 2996 if (!conf->barrier) 2997 goto abort; 2998 2999 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3000 mddev->raid_disks, 2), 3001 GFP_KERNEL); 3002 if (!conf->mirrors) 3003 goto abort; 3004 3005 conf->tmppage = alloc_page(GFP_KERNEL); 3006 if (!conf->tmppage) 3007 goto abort; 3008 3009 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3010 if (!conf->poolinfo) 3011 goto abort; 3012 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3013 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3014 rbio_pool_free, conf->poolinfo); 3015 if (err) 3016 goto abort; 3017 3018 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3019 if (err) 3020 goto abort; 3021 3022 conf->poolinfo->mddev = mddev; 3023 3024 err = -EINVAL; 3025 spin_lock_init(&conf->device_lock); 3026 rdev_for_each(rdev, mddev) { 3027 int disk_idx = rdev->raid_disk; 3028 if (disk_idx >= mddev->raid_disks 3029 || disk_idx < 0) 3030 continue; 3031 if (test_bit(Replacement, &rdev->flags)) 3032 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3033 else 3034 disk = conf->mirrors + disk_idx; 3035 3036 if (disk->rdev) 3037 goto abort; 3038 disk->rdev = rdev; 3039 disk->head_position = 0; 3040 disk->seq_start = MaxSector; 3041 } 3042 conf->raid_disks = mddev->raid_disks; 3043 conf->mddev = mddev; 3044 INIT_LIST_HEAD(&conf->retry_list); 3045 INIT_LIST_HEAD(&conf->bio_end_io_list); 3046 3047 spin_lock_init(&conf->resync_lock); 3048 init_waitqueue_head(&conf->wait_barrier); 3049 3050 bio_list_init(&conf->pending_bio_list); 3051 conf->recovery_disabled = mddev->recovery_disabled - 1; 3052 3053 err = -EIO; 3054 for (i = 0; i < conf->raid_disks * 2; i++) { 3055 3056 disk = conf->mirrors + i; 3057 3058 if (i < conf->raid_disks && 3059 disk[conf->raid_disks].rdev) { 3060 /* This slot has a replacement. */ 3061 if (!disk->rdev) { 3062 /* No original, just make the replacement 3063 * a recovering spare 3064 */ 3065 disk->rdev = 3066 disk[conf->raid_disks].rdev; 3067 disk[conf->raid_disks].rdev = NULL; 3068 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3069 /* Original is not in_sync - bad */ 3070 goto abort; 3071 } 3072 3073 if (!disk->rdev || 3074 !test_bit(In_sync, &disk->rdev->flags)) { 3075 disk->head_position = 0; 3076 if (disk->rdev && 3077 (disk->rdev->saved_raid_disk < 0)) 3078 conf->fullsync = 1; 3079 } 3080 } 3081 3082 err = -ENOMEM; 3083 rcu_assign_pointer(conf->thread, 3084 md_register_thread(raid1d, mddev, "raid1")); 3085 if (!conf->thread) 3086 goto abort; 3087 3088 return conf; 3089 3090 abort: 3091 if (conf) { 3092 mempool_exit(&conf->r1bio_pool); 3093 kfree(conf->mirrors); 3094 safe_put_page(conf->tmppage); 3095 kfree(conf->poolinfo); 3096 kfree(conf->nr_pending); 3097 kfree(conf->nr_waiting); 3098 kfree(conf->nr_queued); 3099 kfree(conf->barrier); 3100 bioset_exit(&conf->bio_split); 3101 kfree(conf); 3102 } 3103 return ERR_PTR(err); 3104 } 3105 3106 static void raid1_free(struct mddev *mddev, void *priv); 3107 static int raid1_run(struct mddev *mddev) 3108 { 3109 struct r1conf *conf; 3110 int i; 3111 struct md_rdev *rdev; 3112 int ret; 3113 3114 if (mddev->level != 1) { 3115 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3116 mdname(mddev), mddev->level); 3117 return -EIO; 3118 } 3119 if (mddev->reshape_position != MaxSector) { 3120 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3121 mdname(mddev)); 3122 return -EIO; 3123 } 3124 if (mddev_init_writes_pending(mddev) < 0) 3125 return -ENOMEM; 3126 /* 3127 * copy the already verified devices into our private RAID1 3128 * bookkeeping area. [whatever we allocate in run(), 3129 * should be freed in raid1_free()] 3130 */ 3131 if (mddev->private == NULL) 3132 conf = setup_conf(mddev); 3133 else 3134 conf = mddev->private; 3135 3136 if (IS_ERR(conf)) 3137 return PTR_ERR(conf); 3138 3139 if (mddev->queue) 3140 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3141 3142 rdev_for_each(rdev, mddev) { 3143 if (!mddev->gendisk) 3144 continue; 3145 disk_stack_limits(mddev->gendisk, rdev->bdev, 3146 rdev->data_offset << 9); 3147 } 3148 3149 mddev->degraded = 0; 3150 for (i = 0; i < conf->raid_disks; i++) 3151 if (conf->mirrors[i].rdev == NULL || 3152 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3153 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3154 mddev->degraded++; 3155 /* 3156 * RAID1 needs at least one disk in active 3157 */ 3158 if (conf->raid_disks - mddev->degraded < 1) { 3159 md_unregister_thread(mddev, &conf->thread); 3160 ret = -EINVAL; 3161 goto abort; 3162 } 3163 3164 if (conf->raid_disks - mddev->degraded == 1) 3165 mddev->recovery_cp = MaxSector; 3166 3167 if (mddev->recovery_cp != MaxSector) 3168 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3169 mdname(mddev)); 3170 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3171 mdname(mddev), mddev->raid_disks - mddev->degraded, 3172 mddev->raid_disks); 3173 3174 /* 3175 * Ok, everything is just fine now 3176 */ 3177 rcu_assign_pointer(mddev->thread, conf->thread); 3178 rcu_assign_pointer(conf->thread, NULL); 3179 mddev->private = conf; 3180 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3181 3182 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3183 3184 ret = md_integrity_register(mddev); 3185 if (ret) { 3186 md_unregister_thread(mddev, &mddev->thread); 3187 goto abort; 3188 } 3189 return 0; 3190 3191 abort: 3192 raid1_free(mddev, conf); 3193 return ret; 3194 } 3195 3196 static void raid1_free(struct mddev *mddev, void *priv) 3197 { 3198 struct r1conf *conf = priv; 3199 3200 mempool_exit(&conf->r1bio_pool); 3201 kfree(conf->mirrors); 3202 safe_put_page(conf->tmppage); 3203 kfree(conf->poolinfo); 3204 kfree(conf->nr_pending); 3205 kfree(conf->nr_waiting); 3206 kfree(conf->nr_queued); 3207 kfree(conf->barrier); 3208 bioset_exit(&conf->bio_split); 3209 kfree(conf); 3210 } 3211 3212 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3213 { 3214 /* no resync is happening, and there is enough space 3215 * on all devices, so we can resize. 3216 * We need to make sure resync covers any new space. 3217 * If the array is shrinking we should possibly wait until 3218 * any io in the removed space completes, but it hardly seems 3219 * worth it. 3220 */ 3221 sector_t newsize = raid1_size(mddev, sectors, 0); 3222 if (mddev->external_size && 3223 mddev->array_sectors > newsize) 3224 return -EINVAL; 3225 if (mddev->bitmap) { 3226 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3227 if (ret) 3228 return ret; 3229 } 3230 md_set_array_sectors(mddev, newsize); 3231 if (sectors > mddev->dev_sectors && 3232 mddev->recovery_cp > mddev->dev_sectors) { 3233 mddev->recovery_cp = mddev->dev_sectors; 3234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3235 } 3236 mddev->dev_sectors = sectors; 3237 mddev->resync_max_sectors = sectors; 3238 return 0; 3239 } 3240 3241 static int raid1_reshape(struct mddev *mddev) 3242 { 3243 /* We need to: 3244 * 1/ resize the r1bio_pool 3245 * 2/ resize conf->mirrors 3246 * 3247 * We allocate a new r1bio_pool if we can. 3248 * Then raise a device barrier and wait until all IO stops. 3249 * Then resize conf->mirrors and swap in the new r1bio pool. 3250 * 3251 * At the same time, we "pack" the devices so that all the missing 3252 * devices have the higher raid_disk numbers. 3253 */ 3254 mempool_t newpool, oldpool; 3255 struct pool_info *newpoolinfo; 3256 struct raid1_info *newmirrors; 3257 struct r1conf *conf = mddev->private; 3258 int cnt, raid_disks; 3259 unsigned long flags; 3260 int d, d2; 3261 int ret; 3262 3263 memset(&newpool, 0, sizeof(newpool)); 3264 memset(&oldpool, 0, sizeof(oldpool)); 3265 3266 /* Cannot change chunk_size, layout, or level */ 3267 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3268 mddev->layout != mddev->new_layout || 3269 mddev->level != mddev->new_level) { 3270 mddev->new_chunk_sectors = mddev->chunk_sectors; 3271 mddev->new_layout = mddev->layout; 3272 mddev->new_level = mddev->level; 3273 return -EINVAL; 3274 } 3275 3276 if (!mddev_is_clustered(mddev)) 3277 md_allow_write(mddev); 3278 3279 raid_disks = mddev->raid_disks + mddev->delta_disks; 3280 3281 if (raid_disks < conf->raid_disks) { 3282 cnt=0; 3283 for (d= 0; d < conf->raid_disks; d++) 3284 if (conf->mirrors[d].rdev) 3285 cnt++; 3286 if (cnt > raid_disks) 3287 return -EBUSY; 3288 } 3289 3290 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3291 if (!newpoolinfo) 3292 return -ENOMEM; 3293 newpoolinfo->mddev = mddev; 3294 newpoolinfo->raid_disks = raid_disks * 2; 3295 3296 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3297 rbio_pool_free, newpoolinfo); 3298 if (ret) { 3299 kfree(newpoolinfo); 3300 return ret; 3301 } 3302 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3303 raid_disks, 2), 3304 GFP_KERNEL); 3305 if (!newmirrors) { 3306 kfree(newpoolinfo); 3307 mempool_exit(&newpool); 3308 return -ENOMEM; 3309 } 3310 3311 freeze_array(conf, 0); 3312 3313 /* ok, everything is stopped */ 3314 oldpool = conf->r1bio_pool; 3315 conf->r1bio_pool = newpool; 3316 3317 for (d = d2 = 0; d < conf->raid_disks; d++) { 3318 struct md_rdev *rdev = conf->mirrors[d].rdev; 3319 if (rdev && rdev->raid_disk != d2) { 3320 sysfs_unlink_rdev(mddev, rdev); 3321 rdev->raid_disk = d2; 3322 sysfs_unlink_rdev(mddev, rdev); 3323 if (sysfs_link_rdev(mddev, rdev)) 3324 pr_warn("md/raid1:%s: cannot register rd%d\n", 3325 mdname(mddev), rdev->raid_disk); 3326 } 3327 if (rdev) 3328 newmirrors[d2++].rdev = rdev; 3329 } 3330 kfree(conf->mirrors); 3331 conf->mirrors = newmirrors; 3332 kfree(conf->poolinfo); 3333 conf->poolinfo = newpoolinfo; 3334 3335 spin_lock_irqsave(&conf->device_lock, flags); 3336 mddev->degraded += (raid_disks - conf->raid_disks); 3337 spin_unlock_irqrestore(&conf->device_lock, flags); 3338 conf->raid_disks = mddev->raid_disks = raid_disks; 3339 mddev->delta_disks = 0; 3340 3341 unfreeze_array(conf); 3342 3343 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3344 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3345 md_wakeup_thread(mddev->thread); 3346 3347 mempool_exit(&oldpool); 3348 return 0; 3349 } 3350 3351 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3352 { 3353 struct r1conf *conf = mddev->private; 3354 3355 if (quiesce) 3356 freeze_array(conf, 0); 3357 else 3358 unfreeze_array(conf); 3359 } 3360 3361 static void *raid1_takeover(struct mddev *mddev) 3362 { 3363 /* raid1 can take over: 3364 * raid5 with 2 devices, any layout or chunk size 3365 */ 3366 if (mddev->level == 5 && mddev->raid_disks == 2) { 3367 struct r1conf *conf; 3368 mddev->new_level = 1; 3369 mddev->new_layout = 0; 3370 mddev->new_chunk_sectors = 0; 3371 conf = setup_conf(mddev); 3372 if (!IS_ERR(conf)) { 3373 /* Array must appear to be quiesced */ 3374 conf->array_frozen = 1; 3375 mddev_clear_unsupported_flags(mddev, 3376 UNSUPPORTED_MDDEV_FLAGS); 3377 } 3378 return conf; 3379 } 3380 return ERR_PTR(-EINVAL); 3381 } 3382 3383 static struct md_personality raid1_personality = 3384 { 3385 .name = "raid1", 3386 .level = 1, 3387 .owner = THIS_MODULE, 3388 .make_request = raid1_make_request, 3389 .run = raid1_run, 3390 .free = raid1_free, 3391 .status = raid1_status, 3392 .error_handler = raid1_error, 3393 .hot_add_disk = raid1_add_disk, 3394 .hot_remove_disk= raid1_remove_disk, 3395 .spare_active = raid1_spare_active, 3396 .sync_request = raid1_sync_request, 3397 .resize = raid1_resize, 3398 .size = raid1_size, 3399 .check_reshape = raid1_reshape, 3400 .quiesce = raid1_quiesce, 3401 .takeover = raid1_takeover, 3402 }; 3403 3404 static int __init raid_init(void) 3405 { 3406 return register_md_personality(&raid1_personality); 3407 } 3408 3409 static void raid_exit(void) 3410 { 3411 unregister_md_personality(&raid1_personality); 3412 } 3413 3414 module_init(raid_init); 3415 module_exit(raid_exit); 3416 MODULE_LICENSE("GPL"); 3417 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3418 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3419 MODULE_ALIAS("md-raid1"); 3420 MODULE_ALIAS("md-level-1"); 3421