xref: /linux/drivers/md/raid1.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob �stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio, bio->bi_size,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	if (bio->bi_size)
266 		return 1;
267 
268 	mirror = r1_bio->read_disk;
269 	/*
270 	 * this branch is our 'one mirror IO has finished' event handler:
271 	 */
272 	update_head_pos(mirror, r1_bio);
273 
274 	if (uptodate || conf->working_disks <= 1) {
275 		/*
276 		 * Set R1BIO_Uptodate in our master bio, so that
277 		 * we will return a good error code for to the higher
278 		 * levels even if IO on some other mirrored buffer fails.
279 		 *
280 		 * The 'master' represents the composite IO operation to
281 		 * user-side. So if something waits for IO, then it will
282 		 * wait for the 'master' bio.
283 		 */
284 		if (uptodate)
285 			set_bit(R1BIO_Uptodate, &r1_bio->state);
286 
287 		raid_end_bio_io(r1_bio);
288 	} else {
289 		/*
290 		 * oops, read error:
291 		 */
292 		char b[BDEVNAME_SIZE];
293 		if (printk_ratelimit())
294 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296 		reschedule_retry(r1_bio);
297 	}
298 
299 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300 	return 0;
301 }
302 
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 	if (bio->bi_size)
312 		return 1;
313 
314 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
315 		if (r1_bio->bios[mirror] == bio)
316 			break;
317 
318 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321 		r1_bio->mddev->barriers_work = 0;
322 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
323 	} else {
324 		/*
325 		 * this branch is our 'one mirror IO has finished' event handler:
326 		 */
327 		r1_bio->bios[mirror] = NULL;
328 		to_put = bio;
329 		if (!uptodate) {
330 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
331 			/* an I/O failed, we can't clear the bitmap */
332 			set_bit(R1BIO_Degraded, &r1_bio->state);
333 		} else
334 			/*
335 			 * Set R1BIO_Uptodate in our master bio, so that
336 			 * we will return a good error code for to the higher
337 			 * levels even if IO on some other mirrored buffer fails.
338 			 *
339 			 * The 'master' represents the composite IO operation to
340 			 * user-side. So if something waits for IO, then it will
341 			 * wait for the 'master' bio.
342 			 */
343 			set_bit(R1BIO_Uptodate, &r1_bio->state);
344 
345 		update_head_pos(mirror, r1_bio);
346 
347 		if (behind) {
348 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
349 				atomic_dec(&r1_bio->behind_remaining);
350 
351 			/* In behind mode, we ACK the master bio once the I/O has safely
352 			 * reached all non-writemostly disks. Setting the Returned bit
353 			 * ensures that this gets done only once -- we don't ever want to
354 			 * return -EIO here, instead we'll wait */
355 
356 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
357 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
358 				/* Maybe we can return now */
359 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
360 					struct bio *mbio = r1_bio->master_bio;
361 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
362 					       (unsigned long long) mbio->bi_sector,
363 					       (unsigned long long) mbio->bi_sector +
364 					       (mbio->bi_size >> 9) - 1);
365 					bio_endio(mbio, mbio->bi_size, 0);
366 				}
367 			}
368 		}
369 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
370 	}
371 	/*
372 	 *
373 	 * Let's see if all mirrored write operations have finished
374 	 * already.
375 	 */
376 	if (atomic_dec_and_test(&r1_bio->remaining)) {
377 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
378 			reschedule_retry(r1_bio);
379 		else {
380 			/* it really is the end of this request */
381 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
382 				/* free extra copy of the data pages */
383 				int i = bio->bi_vcnt;
384 				while (i--)
385 					safe_put_page(bio->bi_io_vec[i].bv_page);
386 			}
387 			/* clear the bitmap if all writes complete successfully */
388 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389 					r1_bio->sectors,
390 					!test_bit(R1BIO_Degraded, &r1_bio->state),
391 					behind);
392 			md_write_end(r1_bio->mddev);
393 			raid_end_bio_io(r1_bio);
394 		}
395 	}
396 
397 	if (to_put)
398 		bio_put(to_put);
399 
400 	return 0;
401 }
402 
403 
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420 	const unsigned long this_sector = r1_bio->sector;
421 	int new_disk = conf->last_used, disk = new_disk;
422 	int wonly_disk = -1;
423 	const int sectors = r1_bio->sectors;
424 	sector_t new_distance, current_distance;
425 	mdk_rdev_t *rdev;
426 
427 	rcu_read_lock();
428 	/*
429 	 * Check if we can balance. We can balance on the whole
430 	 * device if no resync is going on, or below the resync window.
431 	 * We take the first readable disk when above the resync window.
432 	 */
433  retry:
434 	if (conf->mddev->recovery_cp < MaxSector &&
435 	    (this_sector + sectors >= conf->next_resync)) {
436 		/* Choose the first operation device, for consistancy */
437 		new_disk = 0;
438 
439 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
441 		     !rdev || !test_bit(In_sync, &rdev->flags)
442 			     || test_bit(WriteMostly, &rdev->flags);
443 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444 
445 			if (rdev && test_bit(In_sync, &rdev->flags) &&
446 				r1_bio->bios[new_disk] != IO_BLOCKED)
447 				wonly_disk = new_disk;
448 
449 			if (new_disk == conf->raid_disks - 1) {
450 				new_disk = wonly_disk;
451 				break;
452 			}
453 		}
454 		goto rb_out;
455 	}
456 
457 
458 	/* make sure the disk is operational */
459 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
461 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
462 		     test_bit(WriteMostly, &rdev->flags);
463 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464 
465 		if (rdev && test_bit(In_sync, &rdev->flags) &&
466 		    r1_bio->bios[new_disk] != IO_BLOCKED)
467 			wonly_disk = new_disk;
468 
469 		if (new_disk <= 0)
470 			new_disk = conf->raid_disks;
471 		new_disk--;
472 		if (new_disk == disk) {
473 			new_disk = wonly_disk;
474 			break;
475 		}
476 	}
477 
478 	if (new_disk < 0)
479 		goto rb_out;
480 
481 	disk = new_disk;
482 	/* now disk == new_disk == starting point for search */
483 
484 	/*
485 	 * Don't change to another disk for sequential reads:
486 	 */
487 	if (conf->next_seq_sect == this_sector)
488 		goto rb_out;
489 	if (this_sector == conf->mirrors[new_disk].head_position)
490 		goto rb_out;
491 
492 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493 
494 	/* Find the disk whose head is closest */
495 
496 	do {
497 		if (disk <= 0)
498 			disk = conf->raid_disks;
499 		disk--;
500 
501 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
502 
503 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 		    !test_bit(In_sync, &rdev->flags) ||
505 		    test_bit(WriteMostly, &rdev->flags))
506 			continue;
507 
508 		if (!atomic_read(&rdev->nr_pending)) {
509 			new_disk = disk;
510 			break;
511 		}
512 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 		if (new_distance < current_distance) {
514 			current_distance = new_distance;
515 			new_disk = disk;
516 		}
517 	} while (disk != conf->last_used);
518 
519  rb_out:
520 
521 
522 	if (new_disk >= 0) {
523 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 		if (!rdev)
525 			goto retry;
526 		atomic_inc(&rdev->nr_pending);
527 		if (!test_bit(In_sync, &rdev->flags)) {
528 			/* cannot risk returning a device that failed
529 			 * before we inc'ed nr_pending
530 			 */
531 			rdev_dec_pending(rdev, conf->mddev);
532 			goto retry;
533 		}
534 		conf->next_seq_sect = this_sector + sectors;
535 		conf->last_used = new_disk;
536 	}
537 	rcu_read_unlock();
538 
539 	return new_disk;
540 }
541 
542 static void unplug_slaves(mddev_t *mddev)
543 {
544 	conf_t *conf = mddev_to_conf(mddev);
545 	int i;
546 
547 	rcu_read_lock();
548 	for (i=0; i<mddev->raid_disks; i++) {
549 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
552 
553 			atomic_inc(&rdev->nr_pending);
554 			rcu_read_unlock();
555 
556 			if (r_queue->unplug_fn)
557 				r_queue->unplug_fn(r_queue);
558 
559 			rdev_dec_pending(rdev, mddev);
560 			rcu_read_lock();
561 		}
562 	}
563 	rcu_read_unlock();
564 }
565 
566 static void raid1_unplug(request_queue_t *q)
567 {
568 	mddev_t *mddev = q->queuedata;
569 
570 	unplug_slaves(mddev);
571 	md_wakeup_thread(mddev->thread);
572 }
573 
574 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
575 			     sector_t *error_sector)
576 {
577 	mddev_t *mddev = q->queuedata;
578 	conf_t *conf = mddev_to_conf(mddev);
579 	int i, ret = 0;
580 
581 	rcu_read_lock();
582 	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
583 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
584 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
585 			struct block_device *bdev = rdev->bdev;
586 			request_queue_t *r_queue = bdev_get_queue(bdev);
587 
588 			if (!r_queue->issue_flush_fn)
589 				ret = -EOPNOTSUPP;
590 			else {
591 				atomic_inc(&rdev->nr_pending);
592 				rcu_read_unlock();
593 				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
594 							      error_sector);
595 				rdev_dec_pending(rdev, mddev);
596 				rcu_read_lock();
597 			}
598 		}
599 	}
600 	rcu_read_unlock();
601 	return ret;
602 }
603 
604 /* Barriers....
605  * Sometimes we need to suspend IO while we do something else,
606  * either some resync/recovery, or reconfigure the array.
607  * To do this we raise a 'barrier'.
608  * The 'barrier' is a counter that can be raised multiple times
609  * to count how many activities are happening which preclude
610  * normal IO.
611  * We can only raise the barrier if there is no pending IO.
612  * i.e. if nr_pending == 0.
613  * We choose only to raise the barrier if no-one is waiting for the
614  * barrier to go down.  This means that as soon as an IO request
615  * is ready, no other operations which require a barrier will start
616  * until the IO request has had a chance.
617  *
618  * So: regular IO calls 'wait_barrier'.  When that returns there
619  *    is no backgroup IO happening,  It must arrange to call
620  *    allow_barrier when it has finished its IO.
621  * backgroup IO calls must call raise_barrier.  Once that returns
622  *    there is no normal IO happeing.  It must arrange to call
623  *    lower_barrier when the particular background IO completes.
624  */
625 #define RESYNC_DEPTH 32
626 
627 static void raise_barrier(conf_t *conf)
628 {
629 	spin_lock_irq(&conf->resync_lock);
630 
631 	/* Wait until no block IO is waiting */
632 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
633 			    conf->resync_lock,
634 			    raid1_unplug(conf->mddev->queue));
635 
636 	/* block any new IO from starting */
637 	conf->barrier++;
638 
639 	/* No wait for all pending IO to complete */
640 	wait_event_lock_irq(conf->wait_barrier,
641 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
642 			    conf->resync_lock,
643 			    raid1_unplug(conf->mddev->queue));
644 
645 	spin_unlock_irq(&conf->resync_lock);
646 }
647 
648 static void lower_barrier(conf_t *conf)
649 {
650 	unsigned long flags;
651 	spin_lock_irqsave(&conf->resync_lock, flags);
652 	conf->barrier--;
653 	spin_unlock_irqrestore(&conf->resync_lock, flags);
654 	wake_up(&conf->wait_barrier);
655 }
656 
657 static void wait_barrier(conf_t *conf)
658 {
659 	spin_lock_irq(&conf->resync_lock);
660 	if (conf->barrier) {
661 		conf->nr_waiting++;
662 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
663 				    conf->resync_lock,
664 				    raid1_unplug(conf->mddev->queue));
665 		conf->nr_waiting--;
666 	}
667 	conf->nr_pending++;
668 	spin_unlock_irq(&conf->resync_lock);
669 }
670 
671 static void allow_barrier(conf_t *conf)
672 {
673 	unsigned long flags;
674 	spin_lock_irqsave(&conf->resync_lock, flags);
675 	conf->nr_pending--;
676 	spin_unlock_irqrestore(&conf->resync_lock, flags);
677 	wake_up(&conf->wait_barrier);
678 }
679 
680 static void freeze_array(conf_t *conf)
681 {
682 	/* stop syncio and normal IO and wait for everything to
683 	 * go quite.
684 	 * We increment barrier and nr_waiting, and then
685 	 * wait until barrier+nr_pending match nr_queued+2
686 	 */
687 	spin_lock_irq(&conf->resync_lock);
688 	conf->barrier++;
689 	conf->nr_waiting++;
690 	wait_event_lock_irq(conf->wait_barrier,
691 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
692 			    conf->resync_lock,
693 			    raid1_unplug(conf->mddev->queue));
694 	spin_unlock_irq(&conf->resync_lock);
695 }
696 static void unfreeze_array(conf_t *conf)
697 {
698 	/* reverse the effect of the freeze */
699 	spin_lock_irq(&conf->resync_lock);
700 	conf->barrier--;
701 	conf->nr_waiting--;
702 	wake_up(&conf->wait_barrier);
703 	spin_unlock_irq(&conf->resync_lock);
704 }
705 
706 
707 /* duplicate the data pages for behind I/O */
708 static struct page **alloc_behind_pages(struct bio *bio)
709 {
710 	int i;
711 	struct bio_vec *bvec;
712 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
713 					GFP_NOIO);
714 	if (unlikely(!pages))
715 		goto do_sync_io;
716 
717 	bio_for_each_segment(bvec, bio, i) {
718 		pages[i] = alloc_page(GFP_NOIO);
719 		if (unlikely(!pages[i]))
720 			goto do_sync_io;
721 		memcpy(kmap(pages[i]) + bvec->bv_offset,
722 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
723 		kunmap(pages[i]);
724 		kunmap(bvec->bv_page);
725 	}
726 
727 	return pages;
728 
729 do_sync_io:
730 	if (pages)
731 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
732 			put_page(pages[i]);
733 	kfree(pages);
734 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
735 	return NULL;
736 }
737 
738 static int make_request(request_queue_t *q, struct bio * bio)
739 {
740 	mddev_t *mddev = q->queuedata;
741 	conf_t *conf = mddev_to_conf(mddev);
742 	mirror_info_t *mirror;
743 	r1bio_t *r1_bio;
744 	struct bio *read_bio;
745 	int i, targets = 0, disks;
746 	mdk_rdev_t *rdev;
747 	struct bitmap *bitmap = mddev->bitmap;
748 	unsigned long flags;
749 	struct bio_list bl;
750 	struct page **behind_pages = NULL;
751 	const int rw = bio_data_dir(bio);
752 	int do_barriers;
753 
754 	/*
755 	 * Register the new request and wait if the reconstruction
756 	 * thread has put up a bar for new requests.
757 	 * Continue immediately if no resync is active currently.
758 	 * We test barriers_work *after* md_write_start as md_write_start
759 	 * may cause the first superblock write, and that will check out
760 	 * if barriers work.
761 	 */
762 
763 	md_write_start(mddev, bio); /* wait on superblock update early */
764 
765 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
766 		if (rw == WRITE)
767 			md_write_end(mddev);
768 		bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
769 		return 0;
770 	}
771 
772 	wait_barrier(conf);
773 
774 	disk_stat_inc(mddev->gendisk, ios[rw]);
775 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
776 
777 	/*
778 	 * make_request() can abort the operation when READA is being
779 	 * used and no empty request is available.
780 	 *
781 	 */
782 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
783 
784 	r1_bio->master_bio = bio;
785 	r1_bio->sectors = bio->bi_size >> 9;
786 	r1_bio->state = 0;
787 	r1_bio->mddev = mddev;
788 	r1_bio->sector = bio->bi_sector;
789 
790 	if (rw == READ) {
791 		/*
792 		 * read balancing logic:
793 		 */
794 		int rdisk = read_balance(conf, r1_bio);
795 
796 		if (rdisk < 0) {
797 			/* couldn't find anywhere to read from */
798 			raid_end_bio_io(r1_bio);
799 			return 0;
800 		}
801 		mirror = conf->mirrors + rdisk;
802 
803 		r1_bio->read_disk = rdisk;
804 
805 		read_bio = bio_clone(bio, GFP_NOIO);
806 
807 		r1_bio->bios[rdisk] = read_bio;
808 
809 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
810 		read_bio->bi_bdev = mirror->rdev->bdev;
811 		read_bio->bi_end_io = raid1_end_read_request;
812 		read_bio->bi_rw = READ;
813 		read_bio->bi_private = r1_bio;
814 
815 		generic_make_request(read_bio);
816 		return 0;
817 	}
818 
819 	/*
820 	 * WRITE:
821 	 */
822 	/* first select target devices under spinlock and
823 	 * inc refcount on their rdev.  Record them by setting
824 	 * bios[x] to bio
825 	 */
826 	disks = conf->raid_disks;
827 #if 0
828 	{ static int first=1;
829 	if (first) printk("First Write sector %llu disks %d\n",
830 			  (unsigned long long)r1_bio->sector, disks);
831 	first = 0;
832 	}
833 #endif
834 	rcu_read_lock();
835 	for (i = 0;  i < disks; i++) {
836 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
837 		    !test_bit(Faulty, &rdev->flags)) {
838 			atomic_inc(&rdev->nr_pending);
839 			if (test_bit(Faulty, &rdev->flags)) {
840 				rdev_dec_pending(rdev, mddev);
841 				r1_bio->bios[i] = NULL;
842 			} else
843 				r1_bio->bios[i] = bio;
844 			targets++;
845 		} else
846 			r1_bio->bios[i] = NULL;
847 	}
848 	rcu_read_unlock();
849 
850 	BUG_ON(targets == 0); /* we never fail the last device */
851 
852 	if (targets < conf->raid_disks) {
853 		/* array is degraded, we will not clear the bitmap
854 		 * on I/O completion (see raid1_end_write_request) */
855 		set_bit(R1BIO_Degraded, &r1_bio->state);
856 	}
857 
858 	/* do behind I/O ? */
859 	if (bitmap &&
860 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
861 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
862 		set_bit(R1BIO_BehindIO, &r1_bio->state);
863 
864 	atomic_set(&r1_bio->remaining, 0);
865 	atomic_set(&r1_bio->behind_remaining, 0);
866 
867 	do_barriers = bio_barrier(bio);
868 	if (do_barriers)
869 		set_bit(R1BIO_Barrier, &r1_bio->state);
870 
871 	bio_list_init(&bl);
872 	for (i = 0; i < disks; i++) {
873 		struct bio *mbio;
874 		if (!r1_bio->bios[i])
875 			continue;
876 
877 		mbio = bio_clone(bio, GFP_NOIO);
878 		r1_bio->bios[i] = mbio;
879 
880 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
881 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
882 		mbio->bi_end_io	= raid1_end_write_request;
883 		mbio->bi_rw = WRITE | do_barriers;
884 		mbio->bi_private = r1_bio;
885 
886 		if (behind_pages) {
887 			struct bio_vec *bvec;
888 			int j;
889 
890 			/* Yes, I really want the '__' version so that
891 			 * we clear any unused pointer in the io_vec, rather
892 			 * than leave them unchanged.  This is important
893 			 * because when we come to free the pages, we won't
894 			 * know the originial bi_idx, so we just free
895 			 * them all
896 			 */
897 			__bio_for_each_segment(bvec, mbio, j, 0)
898 				bvec->bv_page = behind_pages[j];
899 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
900 				atomic_inc(&r1_bio->behind_remaining);
901 		}
902 
903 		atomic_inc(&r1_bio->remaining);
904 
905 		bio_list_add(&bl, mbio);
906 	}
907 	kfree(behind_pages); /* the behind pages are attached to the bios now */
908 
909 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
910 				test_bit(R1BIO_BehindIO, &r1_bio->state));
911 	spin_lock_irqsave(&conf->device_lock, flags);
912 	bio_list_merge(&conf->pending_bio_list, &bl);
913 	bio_list_init(&bl);
914 
915 	blk_plug_device(mddev->queue);
916 	spin_unlock_irqrestore(&conf->device_lock, flags);
917 
918 #if 0
919 	while ((bio = bio_list_pop(&bl)) != NULL)
920 		generic_make_request(bio);
921 #endif
922 
923 	return 0;
924 }
925 
926 static void status(struct seq_file *seq, mddev_t *mddev)
927 {
928 	conf_t *conf = mddev_to_conf(mddev);
929 	int i;
930 
931 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
932 						conf->working_disks);
933 	for (i = 0; i < conf->raid_disks; i++)
934 		seq_printf(seq, "%s",
935 			      conf->mirrors[i].rdev &&
936 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
937 	seq_printf(seq, "]");
938 }
939 
940 
941 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
942 {
943 	char b[BDEVNAME_SIZE];
944 	conf_t *conf = mddev_to_conf(mddev);
945 
946 	/*
947 	 * If it is not operational, then we have already marked it as dead
948 	 * else if it is the last working disks, ignore the error, let the
949 	 * next level up know.
950 	 * else mark the drive as failed
951 	 */
952 	if (test_bit(In_sync, &rdev->flags)
953 	    && conf->working_disks == 1)
954 		/*
955 		 * Don't fail the drive, act as though we were just a
956 		 * normal single drive
957 		 */
958 		return;
959 	if (test_bit(In_sync, &rdev->flags)) {
960 		mddev->degraded++;
961 		conf->working_disks--;
962 		/*
963 		 * if recovery is running, make sure it aborts.
964 		 */
965 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
966 	}
967 	clear_bit(In_sync, &rdev->flags);
968 	set_bit(Faulty, &rdev->flags);
969 	mddev->sb_dirty = 1;
970 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
971 		"	Operation continuing on %d devices\n",
972 		bdevname(rdev->bdev,b), conf->working_disks);
973 }
974 
975 static void print_conf(conf_t *conf)
976 {
977 	int i;
978 	mirror_info_t *tmp;
979 
980 	printk("RAID1 conf printout:\n");
981 	if (!conf) {
982 		printk("(!conf)\n");
983 		return;
984 	}
985 	printk(" --- wd:%d rd:%d\n", conf->working_disks,
986 		conf->raid_disks);
987 
988 	for (i = 0; i < conf->raid_disks; i++) {
989 		char b[BDEVNAME_SIZE];
990 		tmp = conf->mirrors + i;
991 		if (tmp->rdev)
992 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
993 				i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
994 				bdevname(tmp->rdev->bdev,b));
995 	}
996 }
997 
998 static void close_sync(conf_t *conf)
999 {
1000 	wait_barrier(conf);
1001 	allow_barrier(conf);
1002 
1003 	mempool_destroy(conf->r1buf_pool);
1004 	conf->r1buf_pool = NULL;
1005 }
1006 
1007 static int raid1_spare_active(mddev_t *mddev)
1008 {
1009 	int i;
1010 	conf_t *conf = mddev->private;
1011 	mirror_info_t *tmp;
1012 
1013 	/*
1014 	 * Find all failed disks within the RAID1 configuration
1015 	 * and mark them readable
1016 	 */
1017 	for (i = 0; i < conf->raid_disks; i++) {
1018 		tmp = conf->mirrors + i;
1019 		if (tmp->rdev
1020 		    && !test_bit(Faulty, &tmp->rdev->flags)
1021 		    && !test_bit(In_sync, &tmp->rdev->flags)) {
1022 			conf->working_disks++;
1023 			mddev->degraded--;
1024 			set_bit(In_sync, &tmp->rdev->flags);
1025 		}
1026 	}
1027 
1028 	print_conf(conf);
1029 	return 0;
1030 }
1031 
1032 
1033 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1034 {
1035 	conf_t *conf = mddev->private;
1036 	int found = 0;
1037 	int mirror = 0;
1038 	mirror_info_t *p;
1039 
1040 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1041 		if ( !(p=conf->mirrors+mirror)->rdev) {
1042 
1043 			blk_queue_stack_limits(mddev->queue,
1044 					       rdev->bdev->bd_disk->queue);
1045 			/* as we don't honour merge_bvec_fn, we must never risk
1046 			 * violating it, so limit ->max_sector to one PAGE, as
1047 			 * a one page request is never in violation.
1048 			 */
1049 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1050 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1051 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1052 
1053 			p->head_position = 0;
1054 			rdev->raid_disk = mirror;
1055 			found = 1;
1056 			/* As all devices are equivalent, we don't need a full recovery
1057 			 * if this was recently any drive of the array
1058 			 */
1059 			if (rdev->saved_raid_disk < 0)
1060 				conf->fullsync = 1;
1061 			rcu_assign_pointer(p->rdev, rdev);
1062 			break;
1063 		}
1064 
1065 	print_conf(conf);
1066 	return found;
1067 }
1068 
1069 static int raid1_remove_disk(mddev_t *mddev, int number)
1070 {
1071 	conf_t *conf = mddev->private;
1072 	int err = 0;
1073 	mdk_rdev_t *rdev;
1074 	mirror_info_t *p = conf->mirrors+ number;
1075 
1076 	print_conf(conf);
1077 	rdev = p->rdev;
1078 	if (rdev) {
1079 		if (test_bit(In_sync, &rdev->flags) ||
1080 		    atomic_read(&rdev->nr_pending)) {
1081 			err = -EBUSY;
1082 			goto abort;
1083 		}
1084 		p->rdev = NULL;
1085 		synchronize_rcu();
1086 		if (atomic_read(&rdev->nr_pending)) {
1087 			/* lost the race, try later */
1088 			err = -EBUSY;
1089 			p->rdev = rdev;
1090 		}
1091 	}
1092 abort:
1093 
1094 	print_conf(conf);
1095 	return err;
1096 }
1097 
1098 
1099 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1100 {
1101 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1102 	int i;
1103 
1104 	if (bio->bi_size)
1105 		return 1;
1106 
1107 	for (i=r1_bio->mddev->raid_disks; i--; )
1108 		if (r1_bio->bios[i] == bio)
1109 			break;
1110 	BUG_ON(i < 0);
1111 	update_head_pos(i, r1_bio);
1112 	/*
1113 	 * we have read a block, now it needs to be re-written,
1114 	 * or re-read if the read failed.
1115 	 * We don't do much here, just schedule handling by raid1d
1116 	 */
1117 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1118 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1119 
1120 	if (atomic_dec_and_test(&r1_bio->remaining))
1121 		reschedule_retry(r1_bio);
1122 	return 0;
1123 }
1124 
1125 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1126 {
1127 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1128 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1129 	mddev_t *mddev = r1_bio->mddev;
1130 	conf_t *conf = mddev_to_conf(mddev);
1131 	int i;
1132 	int mirror=0;
1133 
1134 	if (bio->bi_size)
1135 		return 1;
1136 
1137 	for (i = 0; i < conf->raid_disks; i++)
1138 		if (r1_bio->bios[i] == bio) {
1139 			mirror = i;
1140 			break;
1141 		}
1142 	if (!uptodate) {
1143 		int sync_blocks = 0;
1144 		sector_t s = r1_bio->sector;
1145 		long sectors_to_go = r1_bio->sectors;
1146 		/* make sure these bits doesn't get cleared. */
1147 		do {
1148 			bitmap_end_sync(mddev->bitmap, s,
1149 					&sync_blocks, 1);
1150 			s += sync_blocks;
1151 			sectors_to_go -= sync_blocks;
1152 		} while (sectors_to_go > 0);
1153 		md_error(mddev, conf->mirrors[mirror].rdev);
1154 	}
1155 
1156 	update_head_pos(mirror, r1_bio);
1157 
1158 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1159 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1160 		put_buf(r1_bio);
1161 	}
1162 	return 0;
1163 }
1164 
1165 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1166 {
1167 	conf_t *conf = mddev_to_conf(mddev);
1168 	int i;
1169 	int disks = conf->raid_disks;
1170 	struct bio *bio, *wbio;
1171 
1172 	bio = r1_bio->bios[r1_bio->read_disk];
1173 
1174 
1175 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1176 		/* We have read all readable devices.  If we haven't
1177 		 * got the block, then there is no hope left.
1178 		 * If we have, then we want to do a comparison
1179 		 * and skip the write if everything is the same.
1180 		 * If any blocks failed to read, then we need to
1181 		 * attempt an over-write
1182 		 */
1183 		int primary;
1184 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1185 			for (i=0; i<mddev->raid_disks; i++)
1186 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1187 					md_error(mddev, conf->mirrors[i].rdev);
1188 
1189 			md_done_sync(mddev, r1_bio->sectors, 1);
1190 			put_buf(r1_bio);
1191 			return;
1192 		}
1193 		for (primary=0; primary<mddev->raid_disks; primary++)
1194 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1195 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1196 				r1_bio->bios[primary]->bi_end_io = NULL;
1197 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1198 				break;
1199 			}
1200 		r1_bio->read_disk = primary;
1201 		for (i=0; i<mddev->raid_disks; i++)
1202 			if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1203 			    test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1204 				int j;
1205 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1206 				struct bio *pbio = r1_bio->bios[primary];
1207 				struct bio *sbio = r1_bio->bios[i];
1208 				for (j = vcnt; j-- ; )
1209 					if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1210 						   page_address(sbio->bi_io_vec[j].bv_page),
1211 						   PAGE_SIZE))
1212 						break;
1213 				if (j >= 0)
1214 					mddev->resync_mismatches += r1_bio->sectors;
1215 				if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1216 					sbio->bi_end_io = NULL;
1217 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1218 				} else {
1219 					/* fixup the bio for reuse */
1220 					sbio->bi_vcnt = vcnt;
1221 					sbio->bi_size = r1_bio->sectors << 9;
1222 					sbio->bi_idx = 0;
1223 					sbio->bi_phys_segments = 0;
1224 					sbio->bi_hw_segments = 0;
1225 					sbio->bi_hw_front_size = 0;
1226 					sbio->bi_hw_back_size = 0;
1227 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1228 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1229 					sbio->bi_next = NULL;
1230 					sbio->bi_sector = r1_bio->sector +
1231 						conf->mirrors[i].rdev->data_offset;
1232 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1233 				}
1234 			}
1235 	}
1236 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1237 		/* ouch - failed to read all of that.
1238 		 * Try some synchronous reads of other devices to get
1239 		 * good data, much like with normal read errors.  Only
1240 		 * read into the pages we already have so they we don't
1241 		 * need to re-issue the read request.
1242 		 * We don't need to freeze the array, because being in an
1243 		 * active sync request, there is no normal IO, and
1244 		 * no overlapping syncs.
1245 		 */
1246 		sector_t sect = r1_bio->sector;
1247 		int sectors = r1_bio->sectors;
1248 		int idx = 0;
1249 
1250 		while(sectors) {
1251 			int s = sectors;
1252 			int d = r1_bio->read_disk;
1253 			int success = 0;
1254 			mdk_rdev_t *rdev;
1255 
1256 			if (s > (PAGE_SIZE>>9))
1257 				s = PAGE_SIZE >> 9;
1258 			do {
1259 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1260 					rdev = conf->mirrors[d].rdev;
1261 					if (sync_page_io(rdev->bdev,
1262 							 sect + rdev->data_offset,
1263 							 s<<9,
1264 							 bio->bi_io_vec[idx].bv_page,
1265 							 READ)) {
1266 						success = 1;
1267 						break;
1268 					}
1269 				}
1270 				d++;
1271 				if (d == conf->raid_disks)
1272 					d = 0;
1273 			} while (!success && d != r1_bio->read_disk);
1274 
1275 			if (success) {
1276 				int start = d;
1277 				/* write it back and re-read */
1278 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1279 				while (d != r1_bio->read_disk) {
1280 					if (d == 0)
1281 						d = conf->raid_disks;
1282 					d--;
1283 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1284 						continue;
1285 					rdev = conf->mirrors[d].rdev;
1286 					atomic_add(s, &rdev->corrected_errors);
1287 					if (sync_page_io(rdev->bdev,
1288 							 sect + rdev->data_offset,
1289 							 s<<9,
1290 							 bio->bi_io_vec[idx].bv_page,
1291 							 WRITE) == 0)
1292 						md_error(mddev, rdev);
1293 				}
1294 				d = start;
1295 				while (d != r1_bio->read_disk) {
1296 					if (d == 0)
1297 						d = conf->raid_disks;
1298 					d--;
1299 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1300 						continue;
1301 					rdev = conf->mirrors[d].rdev;
1302 					if (sync_page_io(rdev->bdev,
1303 							 sect + rdev->data_offset,
1304 							 s<<9,
1305 							 bio->bi_io_vec[idx].bv_page,
1306 							 READ) == 0)
1307 						md_error(mddev, rdev);
1308 				}
1309 			} else {
1310 				char b[BDEVNAME_SIZE];
1311 				/* Cannot read from anywhere, array is toast */
1312 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1313 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1314 				       " for block %llu\n",
1315 				       bdevname(bio->bi_bdev,b),
1316 				       (unsigned long long)r1_bio->sector);
1317 				md_done_sync(mddev, r1_bio->sectors, 0);
1318 				put_buf(r1_bio);
1319 				return;
1320 			}
1321 			sectors -= s;
1322 			sect += s;
1323 			idx ++;
1324 		}
1325 	}
1326 
1327 	/*
1328 	 * schedule writes
1329 	 */
1330 	atomic_set(&r1_bio->remaining, 1);
1331 	for (i = 0; i < disks ; i++) {
1332 		wbio = r1_bio->bios[i];
1333 		if (wbio->bi_end_io == NULL ||
1334 		    (wbio->bi_end_io == end_sync_read &&
1335 		     (i == r1_bio->read_disk ||
1336 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1337 			continue;
1338 
1339 		wbio->bi_rw = WRITE;
1340 		wbio->bi_end_io = end_sync_write;
1341 		atomic_inc(&r1_bio->remaining);
1342 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1343 
1344 		generic_make_request(wbio);
1345 	}
1346 
1347 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1348 		/* if we're here, all write(s) have completed, so clean up */
1349 		md_done_sync(mddev, r1_bio->sectors, 1);
1350 		put_buf(r1_bio);
1351 	}
1352 }
1353 
1354 /*
1355  * This is a kernel thread which:
1356  *
1357  *	1.	Retries failed read operations on working mirrors.
1358  *	2.	Updates the raid superblock when problems encounter.
1359  *	3.	Performs writes following reads for array syncronising.
1360  */
1361 
1362 static void raid1d(mddev_t *mddev)
1363 {
1364 	r1bio_t *r1_bio;
1365 	struct bio *bio;
1366 	unsigned long flags;
1367 	conf_t *conf = mddev_to_conf(mddev);
1368 	struct list_head *head = &conf->retry_list;
1369 	int unplug=0;
1370 	mdk_rdev_t *rdev;
1371 
1372 	md_check_recovery(mddev);
1373 
1374 	for (;;) {
1375 		char b[BDEVNAME_SIZE];
1376 		spin_lock_irqsave(&conf->device_lock, flags);
1377 
1378 		if (conf->pending_bio_list.head) {
1379 			bio = bio_list_get(&conf->pending_bio_list);
1380 			blk_remove_plug(mddev->queue);
1381 			spin_unlock_irqrestore(&conf->device_lock, flags);
1382 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1383 			if (bitmap_unplug(mddev->bitmap) != 0)
1384 				printk("%s: bitmap file write failed!\n", mdname(mddev));
1385 
1386 			while (bio) { /* submit pending writes */
1387 				struct bio *next = bio->bi_next;
1388 				bio->bi_next = NULL;
1389 				generic_make_request(bio);
1390 				bio = next;
1391 			}
1392 			unplug = 1;
1393 
1394 			continue;
1395 		}
1396 
1397 		if (list_empty(head))
1398 			break;
1399 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1400 		list_del(head->prev);
1401 		conf->nr_queued--;
1402 		spin_unlock_irqrestore(&conf->device_lock, flags);
1403 
1404 		mddev = r1_bio->mddev;
1405 		conf = mddev_to_conf(mddev);
1406 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1407 			sync_request_write(mddev, r1_bio);
1408 			unplug = 1;
1409 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1410 			/* some requests in the r1bio were BIO_RW_BARRIER
1411 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1412 			 * Better resubmit without the barrier.
1413 			 * We know which devices to resubmit for, because
1414 			 * all others have had their bios[] entry cleared.
1415 			 * We already have a nr_pending reference on these rdevs.
1416 			 */
1417 			int i;
1418 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1419 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1420 			for (i=0; i < conf->raid_disks; i++)
1421 				if (r1_bio->bios[i])
1422 					atomic_inc(&r1_bio->remaining);
1423 			for (i=0; i < conf->raid_disks; i++)
1424 				if (r1_bio->bios[i]) {
1425 					struct bio_vec *bvec;
1426 					int j;
1427 
1428 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1429 					/* copy pages from the failed bio, as
1430 					 * this might be a write-behind device */
1431 					__bio_for_each_segment(bvec, bio, j, 0)
1432 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1433 					bio_put(r1_bio->bios[i]);
1434 					bio->bi_sector = r1_bio->sector +
1435 						conf->mirrors[i].rdev->data_offset;
1436 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1437 					bio->bi_end_io = raid1_end_write_request;
1438 					bio->bi_rw = WRITE;
1439 					bio->bi_private = r1_bio;
1440 					r1_bio->bios[i] = bio;
1441 					generic_make_request(bio);
1442 				}
1443 		} else {
1444 			int disk;
1445 
1446 			/* we got a read error. Maybe the drive is bad.  Maybe just
1447 			 * the block and we can fix it.
1448 			 * We freeze all other IO, and try reading the block from
1449 			 * other devices.  When we find one, we re-write
1450 			 * and check it that fixes the read error.
1451 			 * This is all done synchronously while the array is
1452 			 * frozen
1453 			 */
1454 			sector_t sect = r1_bio->sector;
1455 			int sectors = r1_bio->sectors;
1456 			freeze_array(conf);
1457 			if (mddev->ro == 0) while(sectors) {
1458 				int s = sectors;
1459 				int d = r1_bio->read_disk;
1460 				int success = 0;
1461 
1462 				if (s > (PAGE_SIZE>>9))
1463 					s = PAGE_SIZE >> 9;
1464 
1465 				do {
1466 					rdev = conf->mirrors[d].rdev;
1467 					if (rdev &&
1468 					    test_bit(In_sync, &rdev->flags) &&
1469 					    sync_page_io(rdev->bdev,
1470 							 sect + rdev->data_offset,
1471 							 s<<9,
1472 							 conf->tmppage, READ))
1473 						success = 1;
1474 					else {
1475 						d++;
1476 						if (d == conf->raid_disks)
1477 							d = 0;
1478 					}
1479 				} while (!success && d != r1_bio->read_disk);
1480 
1481 				if (success) {
1482 					/* write it back and re-read */
1483 					int start = d;
1484 					while (d != r1_bio->read_disk) {
1485 						if (d==0)
1486 							d = conf->raid_disks;
1487 						d--;
1488 						rdev = conf->mirrors[d].rdev;
1489 						atomic_add(s, &rdev->corrected_errors);
1490 						if (rdev &&
1491 						    test_bit(In_sync, &rdev->flags)) {
1492 							if (sync_page_io(rdev->bdev,
1493 									 sect + rdev->data_offset,
1494 									 s<<9, conf->tmppage, WRITE) == 0)
1495 								/* Well, this device is dead */
1496 								md_error(mddev, rdev);
1497 						}
1498 					}
1499 					d = start;
1500 					while (d != r1_bio->read_disk) {
1501 						if (d==0)
1502 							d = conf->raid_disks;
1503 						d--;
1504 						rdev = conf->mirrors[d].rdev;
1505 						if (rdev &&
1506 						    test_bit(In_sync, &rdev->flags)) {
1507 							if (sync_page_io(rdev->bdev,
1508 									 sect + rdev->data_offset,
1509 									 s<<9, conf->tmppage, READ) == 0)
1510 								/* Well, this device is dead */
1511 								md_error(mddev, rdev);
1512 							else
1513 								printk(KERN_INFO "raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
1514 								       mdname(mddev), s, (unsigned long long)(sect + rdev->data_offset), bdevname(rdev->bdev, b));
1515 						}
1516 					}
1517 				} else {
1518 					/* Cannot read from anywhere -- bye bye array */
1519 					md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1520 					break;
1521 				}
1522 				sectors -= s;
1523 				sect += s;
1524 			}
1525 
1526 			unfreeze_array(conf);
1527 
1528 			bio = r1_bio->bios[r1_bio->read_disk];
1529 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1530 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1531 				       " read error for block %llu\n",
1532 				       bdevname(bio->bi_bdev,b),
1533 				       (unsigned long long)r1_bio->sector);
1534 				raid_end_bio_io(r1_bio);
1535 			} else {
1536 				r1_bio->bios[r1_bio->read_disk] =
1537 					mddev->ro ? IO_BLOCKED : NULL;
1538 				r1_bio->read_disk = disk;
1539 				bio_put(bio);
1540 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1541 				r1_bio->bios[r1_bio->read_disk] = bio;
1542 				rdev = conf->mirrors[disk].rdev;
1543 				if (printk_ratelimit())
1544 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1545 					       " another mirror\n",
1546 					       bdevname(rdev->bdev,b),
1547 					       (unsigned long long)r1_bio->sector);
1548 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1549 				bio->bi_bdev = rdev->bdev;
1550 				bio->bi_end_io = raid1_end_read_request;
1551 				bio->bi_rw = READ;
1552 				bio->bi_private = r1_bio;
1553 				unplug = 1;
1554 				generic_make_request(bio);
1555 			}
1556 		}
1557 	}
1558 	spin_unlock_irqrestore(&conf->device_lock, flags);
1559 	if (unplug)
1560 		unplug_slaves(mddev);
1561 }
1562 
1563 
1564 static int init_resync(conf_t *conf)
1565 {
1566 	int buffs;
1567 
1568 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1569 	BUG_ON(conf->r1buf_pool);
1570 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1571 					  conf->poolinfo);
1572 	if (!conf->r1buf_pool)
1573 		return -ENOMEM;
1574 	conf->next_resync = 0;
1575 	return 0;
1576 }
1577 
1578 /*
1579  * perform a "sync" on one "block"
1580  *
1581  * We need to make sure that no normal I/O request - particularly write
1582  * requests - conflict with active sync requests.
1583  *
1584  * This is achieved by tracking pending requests and a 'barrier' concept
1585  * that can be installed to exclude normal IO requests.
1586  */
1587 
1588 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1589 {
1590 	conf_t *conf = mddev_to_conf(mddev);
1591 	r1bio_t *r1_bio;
1592 	struct bio *bio;
1593 	sector_t max_sector, nr_sectors;
1594 	int disk = -1;
1595 	int i;
1596 	int wonly = -1;
1597 	int write_targets = 0, read_targets = 0;
1598 	int sync_blocks;
1599 	int still_degraded = 0;
1600 
1601 	if (!conf->r1buf_pool)
1602 	{
1603 /*
1604 		printk("sync start - bitmap %p\n", mddev->bitmap);
1605 */
1606 		if (init_resync(conf))
1607 			return 0;
1608 	}
1609 
1610 	max_sector = mddev->size << 1;
1611 	if (sector_nr >= max_sector) {
1612 		/* If we aborted, we need to abort the
1613 		 * sync on the 'current' bitmap chunk (there will
1614 		 * only be one in raid1 resync.
1615 		 * We can find the current addess in mddev->curr_resync
1616 		 */
1617 		if (mddev->curr_resync < max_sector) /* aborted */
1618 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1619 						&sync_blocks, 1);
1620 		else /* completed sync */
1621 			conf->fullsync = 0;
1622 
1623 		bitmap_close_sync(mddev->bitmap);
1624 		close_sync(conf);
1625 		return 0;
1626 	}
1627 
1628 	/* before building a request, check if we can skip these blocks..
1629 	 * This call the bitmap_start_sync doesn't actually record anything
1630 	 */
1631 	if (mddev->bitmap == NULL &&
1632 	    mddev->recovery_cp == MaxSector &&
1633 	    conf->fullsync == 0) {
1634 		*skipped = 1;
1635 		return max_sector - sector_nr;
1636 	}
1637 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1638 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1639 		/* We can skip this block, and probably several more */
1640 		*skipped = 1;
1641 		return sync_blocks;
1642 	}
1643 	/*
1644 	 * If there is non-resync activity waiting for a turn,
1645 	 * and resync is going fast enough,
1646 	 * then let it though before starting on this new sync request.
1647 	 */
1648 	if (!go_faster && conf->nr_waiting)
1649 		msleep_interruptible(1000);
1650 
1651 	raise_barrier(conf);
1652 
1653 	conf->next_resync = sector_nr;
1654 
1655 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1656 	rcu_read_lock();
1657 	/*
1658 	 * If we get a correctably read error during resync or recovery,
1659 	 * we might want to read from a different device.  So we
1660 	 * flag all drives that could conceivably be read from for READ,
1661 	 * and any others (which will be non-In_sync devices) for WRITE.
1662 	 * If a read fails, we try reading from something else for which READ
1663 	 * is OK.
1664 	 */
1665 
1666 	r1_bio->mddev = mddev;
1667 	r1_bio->sector = sector_nr;
1668 	r1_bio->state = 0;
1669 	set_bit(R1BIO_IsSync, &r1_bio->state);
1670 
1671 	for (i=0; i < conf->raid_disks; i++) {
1672 		mdk_rdev_t *rdev;
1673 		bio = r1_bio->bios[i];
1674 
1675 		/* take from bio_init */
1676 		bio->bi_next = NULL;
1677 		bio->bi_flags |= 1 << BIO_UPTODATE;
1678 		bio->bi_rw = 0;
1679 		bio->bi_vcnt = 0;
1680 		bio->bi_idx = 0;
1681 		bio->bi_phys_segments = 0;
1682 		bio->bi_hw_segments = 0;
1683 		bio->bi_size = 0;
1684 		bio->bi_end_io = NULL;
1685 		bio->bi_private = NULL;
1686 
1687 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1688 		if (rdev == NULL ||
1689 			   test_bit(Faulty, &rdev->flags)) {
1690 			still_degraded = 1;
1691 			continue;
1692 		} else if (!test_bit(In_sync, &rdev->flags)) {
1693 			bio->bi_rw = WRITE;
1694 			bio->bi_end_io = end_sync_write;
1695 			write_targets ++;
1696 		} else {
1697 			/* may need to read from here */
1698 			bio->bi_rw = READ;
1699 			bio->bi_end_io = end_sync_read;
1700 			if (test_bit(WriteMostly, &rdev->flags)) {
1701 				if (wonly < 0)
1702 					wonly = i;
1703 			} else {
1704 				if (disk < 0)
1705 					disk = i;
1706 			}
1707 			read_targets++;
1708 		}
1709 		atomic_inc(&rdev->nr_pending);
1710 		bio->bi_sector = sector_nr + rdev->data_offset;
1711 		bio->bi_bdev = rdev->bdev;
1712 		bio->bi_private = r1_bio;
1713 	}
1714 	rcu_read_unlock();
1715 	if (disk < 0)
1716 		disk = wonly;
1717 	r1_bio->read_disk = disk;
1718 
1719 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1720 		/* extra read targets are also write targets */
1721 		write_targets += read_targets-1;
1722 
1723 	if (write_targets == 0 || read_targets == 0) {
1724 		/* There is nowhere to write, so all non-sync
1725 		 * drives must be failed - so we are finished
1726 		 */
1727 		sector_t rv = max_sector - sector_nr;
1728 		*skipped = 1;
1729 		put_buf(r1_bio);
1730 		return rv;
1731 	}
1732 
1733 	nr_sectors = 0;
1734 	sync_blocks = 0;
1735 	do {
1736 		struct page *page;
1737 		int len = PAGE_SIZE;
1738 		if (sector_nr + (len>>9) > max_sector)
1739 			len = (max_sector - sector_nr) << 9;
1740 		if (len == 0)
1741 			break;
1742 		if (sync_blocks == 0) {
1743 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1744 					       &sync_blocks, still_degraded) &&
1745 			    !conf->fullsync &&
1746 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1747 				break;
1748 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1749 			if (len > (sync_blocks<<9))
1750 				len = sync_blocks<<9;
1751 		}
1752 
1753 		for (i=0 ; i < conf->raid_disks; i++) {
1754 			bio = r1_bio->bios[i];
1755 			if (bio->bi_end_io) {
1756 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1757 				if (bio_add_page(bio, page, len, 0) == 0) {
1758 					/* stop here */
1759 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1760 					while (i > 0) {
1761 						i--;
1762 						bio = r1_bio->bios[i];
1763 						if (bio->bi_end_io==NULL)
1764 							continue;
1765 						/* remove last page from this bio */
1766 						bio->bi_vcnt--;
1767 						bio->bi_size -= len;
1768 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1769 					}
1770 					goto bio_full;
1771 				}
1772 			}
1773 		}
1774 		nr_sectors += len>>9;
1775 		sector_nr += len>>9;
1776 		sync_blocks -= (len>>9);
1777 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1778  bio_full:
1779 	r1_bio->sectors = nr_sectors;
1780 
1781 	/* For a user-requested sync, we read all readable devices and do a
1782 	 * compare
1783 	 */
1784 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1785 		atomic_set(&r1_bio->remaining, read_targets);
1786 		for (i=0; i<conf->raid_disks; i++) {
1787 			bio = r1_bio->bios[i];
1788 			if (bio->bi_end_io == end_sync_read) {
1789 				md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1790 				generic_make_request(bio);
1791 			}
1792 		}
1793 	} else {
1794 		atomic_set(&r1_bio->remaining, 1);
1795 		bio = r1_bio->bios[r1_bio->read_disk];
1796 		md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1797 			     nr_sectors);
1798 		generic_make_request(bio);
1799 
1800 	}
1801 
1802 	return nr_sectors;
1803 }
1804 
1805 static int run(mddev_t *mddev)
1806 {
1807 	conf_t *conf;
1808 	int i, j, disk_idx;
1809 	mirror_info_t *disk;
1810 	mdk_rdev_t *rdev;
1811 	struct list_head *tmp;
1812 
1813 	if (mddev->level != 1) {
1814 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1815 		       mdname(mddev), mddev->level);
1816 		goto out;
1817 	}
1818 	if (mddev->reshape_position != MaxSector) {
1819 		printk("raid1: %s: reshape_position set but not supported\n",
1820 		       mdname(mddev));
1821 		goto out;
1822 	}
1823 	/*
1824 	 * copy the already verified devices into our private RAID1
1825 	 * bookkeeping area. [whatever we allocate in run(),
1826 	 * should be freed in stop()]
1827 	 */
1828 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1829 	mddev->private = conf;
1830 	if (!conf)
1831 		goto out_no_mem;
1832 
1833 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1834 				 GFP_KERNEL);
1835 	if (!conf->mirrors)
1836 		goto out_no_mem;
1837 
1838 	conf->tmppage = alloc_page(GFP_KERNEL);
1839 	if (!conf->tmppage)
1840 		goto out_no_mem;
1841 
1842 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1843 	if (!conf->poolinfo)
1844 		goto out_no_mem;
1845 	conf->poolinfo->mddev = mddev;
1846 	conf->poolinfo->raid_disks = mddev->raid_disks;
1847 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1848 					  r1bio_pool_free,
1849 					  conf->poolinfo);
1850 	if (!conf->r1bio_pool)
1851 		goto out_no_mem;
1852 
1853 	ITERATE_RDEV(mddev, rdev, tmp) {
1854 		disk_idx = rdev->raid_disk;
1855 		if (disk_idx >= mddev->raid_disks
1856 		    || disk_idx < 0)
1857 			continue;
1858 		disk = conf->mirrors + disk_idx;
1859 
1860 		disk->rdev = rdev;
1861 
1862 		blk_queue_stack_limits(mddev->queue,
1863 				       rdev->bdev->bd_disk->queue);
1864 		/* as we don't honour merge_bvec_fn, we must never risk
1865 		 * violating it, so limit ->max_sector to one PAGE, as
1866 		 * a one page request is never in violation.
1867 		 */
1868 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1869 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1870 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1871 
1872 		disk->head_position = 0;
1873 		if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1874 			conf->working_disks++;
1875 	}
1876 	conf->raid_disks = mddev->raid_disks;
1877 	conf->mddev = mddev;
1878 	spin_lock_init(&conf->device_lock);
1879 	INIT_LIST_HEAD(&conf->retry_list);
1880 	if (conf->working_disks == 1)
1881 		mddev->recovery_cp = MaxSector;
1882 
1883 	spin_lock_init(&conf->resync_lock);
1884 	init_waitqueue_head(&conf->wait_barrier);
1885 
1886 	bio_list_init(&conf->pending_bio_list);
1887 	bio_list_init(&conf->flushing_bio_list);
1888 
1889 	if (!conf->working_disks) {
1890 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1891 			mdname(mddev));
1892 		goto out_free_conf;
1893 	}
1894 
1895 	mddev->degraded = 0;
1896 	for (i = 0; i < conf->raid_disks; i++) {
1897 
1898 		disk = conf->mirrors + i;
1899 
1900 		if (!disk->rdev ||
1901 		    !test_bit(In_sync, &disk->rdev->flags)) {
1902 			disk->head_position = 0;
1903 			mddev->degraded++;
1904 		}
1905 	}
1906 
1907 	/*
1908 	 * find the first working one and use it as a starting point
1909 	 * to read balancing.
1910 	 */
1911 	for (j = 0; j < conf->raid_disks &&
1912 		     (!conf->mirrors[j].rdev ||
1913 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1914 		/* nothing */;
1915 	conf->last_used = j;
1916 
1917 
1918 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1919 	if (!mddev->thread) {
1920 		printk(KERN_ERR
1921 		       "raid1: couldn't allocate thread for %s\n",
1922 		       mdname(mddev));
1923 		goto out_free_conf;
1924 	}
1925 
1926 	printk(KERN_INFO
1927 		"raid1: raid set %s active with %d out of %d mirrors\n",
1928 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1929 		mddev->raid_disks);
1930 	/*
1931 	 * Ok, everything is just fine now
1932 	 */
1933 	mddev->array_size = mddev->size;
1934 
1935 	mddev->queue->unplug_fn = raid1_unplug;
1936 	mddev->queue->issue_flush_fn = raid1_issue_flush;
1937 
1938 	return 0;
1939 
1940 out_no_mem:
1941 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1942 	       mdname(mddev));
1943 
1944 out_free_conf:
1945 	if (conf) {
1946 		if (conf->r1bio_pool)
1947 			mempool_destroy(conf->r1bio_pool);
1948 		kfree(conf->mirrors);
1949 		safe_put_page(conf->tmppage);
1950 		kfree(conf->poolinfo);
1951 		kfree(conf);
1952 		mddev->private = NULL;
1953 	}
1954 out:
1955 	return -EIO;
1956 }
1957 
1958 static int stop(mddev_t *mddev)
1959 {
1960 	conf_t *conf = mddev_to_conf(mddev);
1961 	struct bitmap *bitmap = mddev->bitmap;
1962 	int behind_wait = 0;
1963 
1964 	/* wait for behind writes to complete */
1965 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1966 		behind_wait++;
1967 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1968 		set_current_state(TASK_UNINTERRUPTIBLE);
1969 		schedule_timeout(HZ); /* wait a second */
1970 		/* need to kick something here to make sure I/O goes? */
1971 	}
1972 
1973 	md_unregister_thread(mddev->thread);
1974 	mddev->thread = NULL;
1975 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1976 	if (conf->r1bio_pool)
1977 		mempool_destroy(conf->r1bio_pool);
1978 	kfree(conf->mirrors);
1979 	kfree(conf->poolinfo);
1980 	kfree(conf);
1981 	mddev->private = NULL;
1982 	return 0;
1983 }
1984 
1985 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1986 {
1987 	/* no resync is happening, and there is enough space
1988 	 * on all devices, so we can resize.
1989 	 * We need to make sure resync covers any new space.
1990 	 * If the array is shrinking we should possibly wait until
1991 	 * any io in the removed space completes, but it hardly seems
1992 	 * worth it.
1993 	 */
1994 	mddev->array_size = sectors>>1;
1995 	set_capacity(mddev->gendisk, mddev->array_size << 1);
1996 	mddev->changed = 1;
1997 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1998 		mddev->recovery_cp = mddev->size << 1;
1999 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2000 	}
2001 	mddev->size = mddev->array_size;
2002 	mddev->resync_max_sectors = sectors;
2003 	return 0;
2004 }
2005 
2006 static int raid1_reshape(mddev_t *mddev)
2007 {
2008 	/* We need to:
2009 	 * 1/ resize the r1bio_pool
2010 	 * 2/ resize conf->mirrors
2011 	 *
2012 	 * We allocate a new r1bio_pool if we can.
2013 	 * Then raise a device barrier and wait until all IO stops.
2014 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2015 	 *
2016 	 * At the same time, we "pack" the devices so that all the missing
2017 	 * devices have the higher raid_disk numbers.
2018 	 */
2019 	mempool_t *newpool, *oldpool;
2020 	struct pool_info *newpoolinfo;
2021 	mirror_info_t *newmirrors;
2022 	conf_t *conf = mddev_to_conf(mddev);
2023 	int cnt, raid_disks;
2024 
2025 	int d, d2;
2026 
2027 	/* Cannot change chunk_size, layout, or level */
2028 	if (mddev->chunk_size != mddev->new_chunk ||
2029 	    mddev->layout != mddev->new_layout ||
2030 	    mddev->level != mddev->new_level) {
2031 		mddev->new_chunk = mddev->chunk_size;
2032 		mddev->new_layout = mddev->layout;
2033 		mddev->new_level = mddev->level;
2034 		return -EINVAL;
2035 	}
2036 
2037 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2038 
2039 	if (raid_disks < conf->raid_disks) {
2040 		cnt=0;
2041 		for (d= 0; d < conf->raid_disks; d++)
2042 			if (conf->mirrors[d].rdev)
2043 				cnt++;
2044 		if (cnt > raid_disks)
2045 			return -EBUSY;
2046 	}
2047 
2048 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2049 	if (!newpoolinfo)
2050 		return -ENOMEM;
2051 	newpoolinfo->mddev = mddev;
2052 	newpoolinfo->raid_disks = raid_disks;
2053 
2054 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2055 				 r1bio_pool_free, newpoolinfo);
2056 	if (!newpool) {
2057 		kfree(newpoolinfo);
2058 		return -ENOMEM;
2059 	}
2060 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2061 	if (!newmirrors) {
2062 		kfree(newpoolinfo);
2063 		mempool_destroy(newpool);
2064 		return -ENOMEM;
2065 	}
2066 
2067 	raise_barrier(conf);
2068 
2069 	/* ok, everything is stopped */
2070 	oldpool = conf->r1bio_pool;
2071 	conf->r1bio_pool = newpool;
2072 
2073 	for (d=d2=0; d < conf->raid_disks; d++)
2074 		if (conf->mirrors[d].rdev) {
2075 			conf->mirrors[d].rdev->raid_disk = d2;
2076 			newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2077 		}
2078 	kfree(conf->mirrors);
2079 	conf->mirrors = newmirrors;
2080 	kfree(conf->poolinfo);
2081 	conf->poolinfo = newpoolinfo;
2082 
2083 	mddev->degraded += (raid_disks - conf->raid_disks);
2084 	conf->raid_disks = mddev->raid_disks = raid_disks;
2085 	mddev->delta_disks = 0;
2086 
2087 	conf->last_used = 0; /* just make sure it is in-range */
2088 	lower_barrier(conf);
2089 
2090 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2091 	md_wakeup_thread(mddev->thread);
2092 
2093 	mempool_destroy(oldpool);
2094 	return 0;
2095 }
2096 
2097 static void raid1_quiesce(mddev_t *mddev, int state)
2098 {
2099 	conf_t *conf = mddev_to_conf(mddev);
2100 
2101 	switch(state) {
2102 	case 1:
2103 		raise_barrier(conf);
2104 		break;
2105 	case 0:
2106 		lower_barrier(conf);
2107 		break;
2108 	}
2109 }
2110 
2111 
2112 static struct mdk_personality raid1_personality =
2113 {
2114 	.name		= "raid1",
2115 	.level		= 1,
2116 	.owner		= THIS_MODULE,
2117 	.make_request	= make_request,
2118 	.run		= run,
2119 	.stop		= stop,
2120 	.status		= status,
2121 	.error_handler	= error,
2122 	.hot_add_disk	= raid1_add_disk,
2123 	.hot_remove_disk= raid1_remove_disk,
2124 	.spare_active	= raid1_spare_active,
2125 	.sync_request	= sync_request,
2126 	.resize		= raid1_resize,
2127 	.check_reshape	= raid1_reshape,
2128 	.quiesce	= raid1_quiesce,
2129 };
2130 
2131 static int __init raid_init(void)
2132 {
2133 	return register_md_personality(&raid1_personality);
2134 }
2135 
2136 static void raid_exit(void)
2137 {
2138 	unregister_md_personality(&raid1_personality);
2139 }
2140 
2141 module_init(raid_init);
2142 module_exit(raid_exit);
2143 MODULE_LICENSE("GPL");
2144 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2145 MODULE_ALIAS("md-raid1");
2146 MODULE_ALIAS("md-level-1");
2147