1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * raid1.c : Multiple Devices driver for Linux 4 * 5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 6 * 7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 8 * 9 * RAID-1 management functions. 10 * 11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 12 * 13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 15 * 16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 17 * bitmapped intelligence in resync: 18 * 19 * - bitmap marked during normal i/o 20 * - bitmap used to skip nondirty blocks during sync 21 * 22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 23 * - persistent bitmap code 24 */ 25 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/blkdev.h> 29 #include <linux/module.h> 30 #include <linux/seq_file.h> 31 #include <linux/ratelimit.h> 32 #include <linux/interval_tree_generic.h> 33 34 #include <trace/events/block.h> 35 36 #include "md.h" 37 #include "raid1.h" 38 #include "md-bitmap.h" 39 40 #define UNSUPPORTED_MDDEV_FLAGS \ 41 ((1L << MD_HAS_JOURNAL) | \ 42 (1L << MD_JOURNAL_CLEAN) | \ 43 (1L << MD_HAS_PPL) | \ 44 (1L << MD_HAS_MULTIPLE_PPLS)) 45 46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr); 47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr); 48 49 #define raid1_log(md, fmt, args...) \ 50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0) 51 52 #include "raid1-10.c" 53 54 #define START(node) ((node)->start) 55 #define LAST(node) ((node)->last) 56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last, 57 START, LAST, static inline, raid1_rb); 58 59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio, 60 struct serial_info *si, int idx) 61 { 62 unsigned long flags; 63 int ret = 0; 64 sector_t lo = r1_bio->sector; 65 sector_t hi = lo + r1_bio->sectors; 66 struct serial_in_rdev *serial = &rdev->serial[idx]; 67 68 spin_lock_irqsave(&serial->serial_lock, flags); 69 /* collision happened */ 70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi)) 71 ret = -EBUSY; 72 else { 73 si->start = lo; 74 si->last = hi; 75 raid1_rb_insert(si, &serial->serial_rb); 76 } 77 spin_unlock_irqrestore(&serial->serial_lock, flags); 78 79 return ret; 80 } 81 82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio) 83 { 84 struct mddev *mddev = rdev->mddev; 85 struct serial_info *si; 86 int idx = sector_to_idx(r1_bio->sector); 87 struct serial_in_rdev *serial = &rdev->serial[idx]; 88 89 if (WARN_ON(!mddev->serial_info_pool)) 90 return; 91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO); 92 wait_event(serial->serial_io_wait, 93 check_and_add_serial(rdev, r1_bio, si, idx) == 0); 94 } 95 96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi) 97 { 98 struct serial_info *si; 99 unsigned long flags; 100 int found = 0; 101 struct mddev *mddev = rdev->mddev; 102 int idx = sector_to_idx(lo); 103 struct serial_in_rdev *serial = &rdev->serial[idx]; 104 105 spin_lock_irqsave(&serial->serial_lock, flags); 106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi); 107 si; si = raid1_rb_iter_next(si, lo, hi)) { 108 if (si->start == lo && si->last == hi) { 109 raid1_rb_remove(si, &serial->serial_rb); 110 mempool_free(si, mddev->serial_info_pool); 111 found = 1; 112 break; 113 } 114 } 115 if (!found) 116 WARN(1, "The write IO is not recorded for serialization\n"); 117 spin_unlock_irqrestore(&serial->serial_lock, flags); 118 wake_up(&serial->serial_io_wait); 119 } 120 121 /* 122 * for resync bio, r1bio pointer can be retrieved from the per-bio 123 * 'struct resync_pages'. 124 */ 125 static inline struct r1bio *get_resync_r1bio(struct bio *bio) 126 { 127 return get_resync_pages(bio)->raid_bio; 128 } 129 130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 131 { 132 struct pool_info *pi = data; 133 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 134 135 /* allocate a r1bio with room for raid_disks entries in the bios array */ 136 return kzalloc(size, gfp_flags); 137 } 138 139 #define RESYNC_DEPTH 32 140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW) 144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9) 145 146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 147 { 148 struct pool_info *pi = data; 149 struct r1bio *r1_bio; 150 struct bio *bio; 151 int need_pages; 152 int j; 153 struct resync_pages *rps; 154 155 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 156 if (!r1_bio) 157 return NULL; 158 159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages), 160 gfp_flags); 161 if (!rps) 162 goto out_free_r1bio; 163 164 /* 165 * Allocate bios : 1 for reading, n-1 for writing 166 */ 167 for (j = pi->raid_disks ; j-- ; ) { 168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 169 if (!bio) 170 goto out_free_bio; 171 r1_bio->bios[j] = bio; 172 } 173 /* 174 * Allocate RESYNC_PAGES data pages and attach them to 175 * the first bio. 176 * If this is a user-requested check/repair, allocate 177 * RESYNC_PAGES for each bio. 178 */ 179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 180 need_pages = pi->raid_disks; 181 else 182 need_pages = 1; 183 for (j = 0; j < pi->raid_disks; j++) { 184 struct resync_pages *rp = &rps[j]; 185 186 bio = r1_bio->bios[j]; 187 188 if (j < need_pages) { 189 if (resync_alloc_pages(rp, gfp_flags)) 190 goto out_free_pages; 191 } else { 192 memcpy(rp, &rps[0], sizeof(*rp)); 193 resync_get_all_pages(rp); 194 } 195 196 rp->raid_bio = r1_bio; 197 bio->bi_private = rp; 198 } 199 200 r1_bio->master_bio = NULL; 201 202 return r1_bio; 203 204 out_free_pages: 205 while (--j >= 0) 206 resync_free_pages(&rps[j]); 207 208 out_free_bio: 209 while (++j < pi->raid_disks) 210 bio_put(r1_bio->bios[j]); 211 kfree(rps); 212 213 out_free_r1bio: 214 rbio_pool_free(r1_bio, data); 215 return NULL; 216 } 217 218 static void r1buf_pool_free(void *__r1_bio, void *data) 219 { 220 struct pool_info *pi = data; 221 int i; 222 struct r1bio *r1bio = __r1_bio; 223 struct resync_pages *rp = NULL; 224 225 for (i = pi->raid_disks; i--; ) { 226 rp = get_resync_pages(r1bio->bios[i]); 227 resync_free_pages(rp); 228 bio_put(r1bio->bios[i]); 229 } 230 231 /* resync pages array stored in the 1st bio's .bi_private */ 232 kfree(rp); 233 234 rbio_pool_free(r1bio, data); 235 } 236 237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 238 { 239 int i; 240 241 for (i = 0; i < conf->raid_disks * 2; i++) { 242 struct bio **bio = r1_bio->bios + i; 243 if (!BIO_SPECIAL(*bio)) 244 bio_put(*bio); 245 *bio = NULL; 246 } 247 } 248 249 static void free_r1bio(struct r1bio *r1_bio) 250 { 251 struct r1conf *conf = r1_bio->mddev->private; 252 253 put_all_bios(conf, r1_bio); 254 mempool_free(r1_bio, &conf->r1bio_pool); 255 } 256 257 static void put_buf(struct r1bio *r1_bio) 258 { 259 struct r1conf *conf = r1_bio->mddev->private; 260 sector_t sect = r1_bio->sector; 261 int i; 262 263 for (i = 0; i < conf->raid_disks * 2; i++) { 264 struct bio *bio = r1_bio->bios[i]; 265 if (bio->bi_end_io) 266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 267 } 268 269 mempool_free(r1_bio, &conf->r1buf_pool); 270 271 lower_barrier(conf, sect); 272 } 273 274 static void reschedule_retry(struct r1bio *r1_bio) 275 { 276 unsigned long flags; 277 struct mddev *mddev = r1_bio->mddev; 278 struct r1conf *conf = mddev->private; 279 int idx; 280 281 idx = sector_to_idx(r1_bio->sector); 282 spin_lock_irqsave(&conf->device_lock, flags); 283 list_add(&r1_bio->retry_list, &conf->retry_list); 284 atomic_inc(&conf->nr_queued[idx]); 285 spin_unlock_irqrestore(&conf->device_lock, flags); 286 287 wake_up(&conf->wait_barrier); 288 md_wakeup_thread(mddev->thread); 289 } 290 291 /* 292 * raid_end_bio_io() is called when we have finished servicing a mirrored 293 * operation and are ready to return a success/failure code to the buffer 294 * cache layer. 295 */ 296 static void call_bio_endio(struct r1bio *r1_bio) 297 { 298 struct bio *bio = r1_bio->master_bio; 299 300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 301 bio->bi_status = BLK_STS_IOERR; 302 303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 304 bio_end_io_acct(bio, r1_bio->start_time); 305 bio_endio(bio); 306 } 307 308 static void raid_end_bio_io(struct r1bio *r1_bio) 309 { 310 struct bio *bio = r1_bio->master_bio; 311 struct r1conf *conf = r1_bio->mddev->private; 312 313 /* if nobody has done the final endio yet, do it now */ 314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 316 (bio_data_dir(bio) == WRITE) ? "write" : "read", 317 (unsigned long long) bio->bi_iter.bi_sector, 318 (unsigned long long) bio_end_sector(bio) - 1); 319 320 call_bio_endio(r1_bio); 321 } 322 /* 323 * Wake up any possible resync thread that waits for the device 324 * to go idle. All I/Os, even write-behind writes, are done. 325 */ 326 allow_barrier(conf, r1_bio->sector); 327 328 free_r1bio(r1_bio); 329 } 330 331 /* 332 * Update disk head position estimator based on IRQ completion info. 333 */ 334 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 335 { 336 struct r1conf *conf = r1_bio->mddev->private; 337 338 conf->mirrors[disk].head_position = 339 r1_bio->sector + (r1_bio->sectors); 340 } 341 342 /* 343 * Find the disk number which triggered given bio 344 */ 345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 346 { 347 int mirror; 348 struct r1conf *conf = r1_bio->mddev->private; 349 int raid_disks = conf->raid_disks; 350 351 for (mirror = 0; mirror < raid_disks * 2; mirror++) 352 if (r1_bio->bios[mirror] == bio) 353 break; 354 355 BUG_ON(mirror == raid_disks * 2); 356 update_head_pos(mirror, r1_bio); 357 358 return mirror; 359 } 360 361 static void raid1_end_read_request(struct bio *bio) 362 { 363 int uptodate = !bio->bi_status; 364 struct r1bio *r1_bio = bio->bi_private; 365 struct r1conf *conf = r1_bio->mddev->private; 366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev; 367 368 /* 369 * this branch is our 'one mirror IO has finished' event handler: 370 */ 371 update_head_pos(r1_bio->read_disk, r1_bio); 372 373 if (uptodate) 374 set_bit(R1BIO_Uptodate, &r1_bio->state); 375 else if (test_bit(FailFast, &rdev->flags) && 376 test_bit(R1BIO_FailFast, &r1_bio->state)) 377 /* This was a fail-fast read so we definitely 378 * want to retry */ 379 ; 380 else { 381 /* If all other devices have failed, we want to return 382 * the error upwards rather than fail the last device. 383 * Here we redefine "uptodate" to mean "Don't want to retry" 384 */ 385 unsigned long flags; 386 spin_lock_irqsave(&conf->device_lock, flags); 387 if (r1_bio->mddev->degraded == conf->raid_disks || 388 (r1_bio->mddev->degraded == conf->raid_disks-1 && 389 test_bit(In_sync, &rdev->flags))) 390 uptodate = 1; 391 spin_unlock_irqrestore(&conf->device_lock, flags); 392 } 393 394 if (uptodate) { 395 raid_end_bio_io(r1_bio); 396 rdev_dec_pending(rdev, conf->mddev); 397 } else { 398 /* 399 * oops, read error: 400 */ 401 char b[BDEVNAME_SIZE]; 402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n", 403 mdname(conf->mddev), 404 bdevname(rdev->bdev, b), 405 (unsigned long long)r1_bio->sector); 406 set_bit(R1BIO_ReadError, &r1_bio->state); 407 reschedule_retry(r1_bio); 408 /* don't drop the reference on read_disk yet */ 409 } 410 } 411 412 static void close_write(struct r1bio *r1_bio) 413 { 414 /* it really is the end of this request */ 415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 416 bio_free_pages(r1_bio->behind_master_bio); 417 bio_put(r1_bio->behind_master_bio); 418 r1_bio->behind_master_bio = NULL; 419 } 420 /* clear the bitmap if all writes complete successfully */ 421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 422 r1_bio->sectors, 423 !test_bit(R1BIO_Degraded, &r1_bio->state), 424 test_bit(R1BIO_BehindIO, &r1_bio->state)); 425 md_write_end(r1_bio->mddev); 426 } 427 428 static void r1_bio_write_done(struct r1bio *r1_bio) 429 { 430 if (!atomic_dec_and_test(&r1_bio->remaining)) 431 return; 432 433 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 434 reschedule_retry(r1_bio); 435 else { 436 close_write(r1_bio); 437 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 438 reschedule_retry(r1_bio); 439 else 440 raid_end_bio_io(r1_bio); 441 } 442 } 443 444 static void raid1_end_write_request(struct bio *bio) 445 { 446 struct r1bio *r1_bio = bio->bi_private; 447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 448 struct r1conf *conf = r1_bio->mddev->private; 449 struct bio *to_put = NULL; 450 int mirror = find_bio_disk(r1_bio, bio); 451 struct md_rdev *rdev = conf->mirrors[mirror].rdev; 452 bool discard_error; 453 sector_t lo = r1_bio->sector; 454 sector_t hi = r1_bio->sector + r1_bio->sectors; 455 456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD; 457 458 /* 459 * 'one mirror IO has finished' event handler: 460 */ 461 if (bio->bi_status && !discard_error) { 462 set_bit(WriteErrorSeen, &rdev->flags); 463 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 464 set_bit(MD_RECOVERY_NEEDED, & 465 conf->mddev->recovery); 466 467 if (test_bit(FailFast, &rdev->flags) && 468 (bio->bi_opf & MD_FAILFAST) && 469 /* We never try FailFast to WriteMostly devices */ 470 !test_bit(WriteMostly, &rdev->flags)) { 471 md_error(r1_bio->mddev, rdev); 472 } 473 474 /* 475 * When the device is faulty, it is not necessary to 476 * handle write error. 477 */ 478 if (!test_bit(Faulty, &rdev->flags)) 479 set_bit(R1BIO_WriteError, &r1_bio->state); 480 else { 481 /* Fail the request */ 482 set_bit(R1BIO_Degraded, &r1_bio->state); 483 /* Finished with this branch */ 484 r1_bio->bios[mirror] = NULL; 485 to_put = bio; 486 } 487 } else { 488 /* 489 * Set R1BIO_Uptodate in our master bio, so that we 490 * will return a good error code for to the higher 491 * levels even if IO on some other mirrored buffer 492 * fails. 493 * 494 * The 'master' represents the composite IO operation 495 * to user-side. So if something waits for IO, then it 496 * will wait for the 'master' bio. 497 */ 498 sector_t first_bad; 499 int bad_sectors; 500 501 r1_bio->bios[mirror] = NULL; 502 to_put = bio; 503 /* 504 * Do not set R1BIO_Uptodate if the current device is 505 * rebuilding or Faulty. This is because we cannot use 506 * such device for properly reading the data back (we could 507 * potentially use it, if the current write would have felt 508 * before rdev->recovery_offset, but for simplicity we don't 509 * check this here. 510 */ 511 if (test_bit(In_sync, &rdev->flags) && 512 !test_bit(Faulty, &rdev->flags)) 513 set_bit(R1BIO_Uptodate, &r1_bio->state); 514 515 /* Maybe we can clear some bad blocks. */ 516 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 517 &first_bad, &bad_sectors) && !discard_error) { 518 r1_bio->bios[mirror] = IO_MADE_GOOD; 519 set_bit(R1BIO_MadeGood, &r1_bio->state); 520 } 521 } 522 523 if (behind) { 524 if (test_bit(CollisionCheck, &rdev->flags)) 525 remove_serial(rdev, lo, hi); 526 if (test_bit(WriteMostly, &rdev->flags)) 527 atomic_dec(&r1_bio->behind_remaining); 528 529 /* 530 * In behind mode, we ACK the master bio once the I/O 531 * has safely reached all non-writemostly 532 * disks. Setting the Returned bit ensures that this 533 * gets done only once -- we don't ever want to return 534 * -EIO here, instead we'll wait 535 */ 536 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 537 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 538 /* Maybe we can return now */ 539 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 540 struct bio *mbio = r1_bio->master_bio; 541 pr_debug("raid1: behind end write sectors" 542 " %llu-%llu\n", 543 (unsigned long long) mbio->bi_iter.bi_sector, 544 (unsigned long long) bio_end_sector(mbio) - 1); 545 call_bio_endio(r1_bio); 546 } 547 } 548 } else if (rdev->mddev->serialize_policy) 549 remove_serial(rdev, lo, hi); 550 if (r1_bio->bios[mirror] == NULL) 551 rdev_dec_pending(rdev, conf->mddev); 552 553 /* 554 * Let's see if all mirrored write operations have finished 555 * already. 556 */ 557 r1_bio_write_done(r1_bio); 558 559 if (to_put) 560 bio_put(to_put); 561 } 562 563 static sector_t align_to_barrier_unit_end(sector_t start_sector, 564 sector_t sectors) 565 { 566 sector_t len; 567 568 WARN_ON(sectors == 0); 569 /* 570 * len is the number of sectors from start_sector to end of the 571 * barrier unit which start_sector belongs to. 572 */ 573 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) - 574 start_sector; 575 576 if (len > sectors) 577 len = sectors; 578 579 return len; 580 } 581 582 /* 583 * This routine returns the disk from which the requested read should 584 * be done. There is a per-array 'next expected sequential IO' sector 585 * number - if this matches on the next IO then we use the last disk. 586 * There is also a per-disk 'last know head position' sector that is 587 * maintained from IRQ contexts, both the normal and the resync IO 588 * completion handlers update this position correctly. If there is no 589 * perfect sequential match then we pick the disk whose head is closest. 590 * 591 * If there are 2 mirrors in the same 2 devices, performance degrades 592 * because position is mirror, not device based. 593 * 594 * The rdev for the device selected will have nr_pending incremented. 595 */ 596 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 597 { 598 const sector_t this_sector = r1_bio->sector; 599 int sectors; 600 int best_good_sectors; 601 int best_disk, best_dist_disk, best_pending_disk; 602 int has_nonrot_disk; 603 int disk; 604 sector_t best_dist; 605 unsigned int min_pending; 606 struct md_rdev *rdev; 607 int choose_first; 608 int choose_next_idle; 609 610 rcu_read_lock(); 611 /* 612 * Check if we can balance. We can balance on the whole 613 * device if no resync is going on, or below the resync window. 614 * We take the first readable disk when above the resync window. 615 */ 616 retry: 617 sectors = r1_bio->sectors; 618 best_disk = -1; 619 best_dist_disk = -1; 620 best_dist = MaxSector; 621 best_pending_disk = -1; 622 min_pending = UINT_MAX; 623 best_good_sectors = 0; 624 has_nonrot_disk = 0; 625 choose_next_idle = 0; 626 clear_bit(R1BIO_FailFast, &r1_bio->state); 627 628 if ((conf->mddev->recovery_cp < this_sector + sectors) || 629 (mddev_is_clustered(conf->mddev) && 630 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector, 631 this_sector + sectors))) 632 choose_first = 1; 633 else 634 choose_first = 0; 635 636 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 637 sector_t dist; 638 sector_t first_bad; 639 int bad_sectors; 640 unsigned int pending; 641 bool nonrot; 642 643 rdev = rcu_dereference(conf->mirrors[disk].rdev); 644 if (r1_bio->bios[disk] == IO_BLOCKED 645 || rdev == NULL 646 || test_bit(Faulty, &rdev->flags)) 647 continue; 648 if (!test_bit(In_sync, &rdev->flags) && 649 rdev->recovery_offset < this_sector + sectors) 650 continue; 651 if (test_bit(WriteMostly, &rdev->flags)) { 652 /* Don't balance among write-mostly, just 653 * use the first as a last resort */ 654 if (best_dist_disk < 0) { 655 if (is_badblock(rdev, this_sector, sectors, 656 &first_bad, &bad_sectors)) { 657 if (first_bad <= this_sector) 658 /* Cannot use this */ 659 continue; 660 best_good_sectors = first_bad - this_sector; 661 } else 662 best_good_sectors = sectors; 663 best_dist_disk = disk; 664 best_pending_disk = disk; 665 } 666 continue; 667 } 668 /* This is a reasonable device to use. It might 669 * even be best. 670 */ 671 if (is_badblock(rdev, this_sector, sectors, 672 &first_bad, &bad_sectors)) { 673 if (best_dist < MaxSector) 674 /* already have a better device */ 675 continue; 676 if (first_bad <= this_sector) { 677 /* cannot read here. If this is the 'primary' 678 * device, then we must not read beyond 679 * bad_sectors from another device.. 680 */ 681 bad_sectors -= (this_sector - first_bad); 682 if (choose_first && sectors > bad_sectors) 683 sectors = bad_sectors; 684 if (best_good_sectors > sectors) 685 best_good_sectors = sectors; 686 687 } else { 688 sector_t good_sectors = first_bad - this_sector; 689 if (good_sectors > best_good_sectors) { 690 best_good_sectors = good_sectors; 691 best_disk = disk; 692 } 693 if (choose_first) 694 break; 695 } 696 continue; 697 } else { 698 if ((sectors > best_good_sectors) && (best_disk >= 0)) 699 best_disk = -1; 700 best_good_sectors = sectors; 701 } 702 703 if (best_disk >= 0) 704 /* At least two disks to choose from so failfast is OK */ 705 set_bit(R1BIO_FailFast, &r1_bio->state); 706 707 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 708 has_nonrot_disk |= nonrot; 709 pending = atomic_read(&rdev->nr_pending); 710 dist = abs(this_sector - conf->mirrors[disk].head_position); 711 if (choose_first) { 712 best_disk = disk; 713 break; 714 } 715 /* Don't change to another disk for sequential reads */ 716 if (conf->mirrors[disk].next_seq_sect == this_sector 717 || dist == 0) { 718 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 719 struct raid1_info *mirror = &conf->mirrors[disk]; 720 721 best_disk = disk; 722 /* 723 * If buffered sequential IO size exceeds optimal 724 * iosize, check if there is idle disk. If yes, choose 725 * the idle disk. read_balance could already choose an 726 * idle disk before noticing it's a sequential IO in 727 * this disk. This doesn't matter because this disk 728 * will idle, next time it will be utilized after the 729 * first disk has IO size exceeds optimal iosize. In 730 * this way, iosize of the first disk will be optimal 731 * iosize at least. iosize of the second disk might be 732 * small, but not a big deal since when the second disk 733 * starts IO, the first disk is likely still busy. 734 */ 735 if (nonrot && opt_iosize > 0 && 736 mirror->seq_start != MaxSector && 737 mirror->next_seq_sect > opt_iosize && 738 mirror->next_seq_sect - opt_iosize >= 739 mirror->seq_start) { 740 choose_next_idle = 1; 741 continue; 742 } 743 break; 744 } 745 746 if (choose_next_idle) 747 continue; 748 749 if (min_pending > pending) { 750 min_pending = pending; 751 best_pending_disk = disk; 752 } 753 754 if (dist < best_dist) { 755 best_dist = dist; 756 best_dist_disk = disk; 757 } 758 } 759 760 /* 761 * If all disks are rotational, choose the closest disk. If any disk is 762 * non-rotational, choose the disk with less pending request even the 763 * disk is rotational, which might/might not be optimal for raids with 764 * mixed ratation/non-rotational disks depending on workload. 765 */ 766 if (best_disk == -1) { 767 if (has_nonrot_disk || min_pending == 0) 768 best_disk = best_pending_disk; 769 else 770 best_disk = best_dist_disk; 771 } 772 773 if (best_disk >= 0) { 774 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 775 if (!rdev) 776 goto retry; 777 atomic_inc(&rdev->nr_pending); 778 sectors = best_good_sectors; 779 780 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 781 conf->mirrors[best_disk].seq_start = this_sector; 782 783 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 784 } 785 rcu_read_unlock(); 786 *max_sectors = sectors; 787 788 return best_disk; 789 } 790 791 static void flush_bio_list(struct r1conf *conf, struct bio *bio) 792 { 793 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 794 md_bitmap_unplug(conf->mddev->bitmap); 795 wake_up(&conf->wait_barrier); 796 797 while (bio) { /* submit pending writes */ 798 struct bio *next = bio->bi_next; 799 struct md_rdev *rdev = (void *)bio->bi_bdev; 800 bio->bi_next = NULL; 801 bio_set_dev(bio, rdev->bdev); 802 if (test_bit(Faulty, &rdev->flags)) { 803 bio_io_error(bio); 804 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) && 805 !blk_queue_discard(bio->bi_bdev->bd_disk->queue))) 806 /* Just ignore it */ 807 bio_endio(bio); 808 else 809 submit_bio_noacct(bio); 810 bio = next; 811 cond_resched(); 812 } 813 } 814 815 static void flush_pending_writes(struct r1conf *conf) 816 { 817 /* Any writes that have been queued but are awaiting 818 * bitmap updates get flushed here. 819 */ 820 spin_lock_irq(&conf->device_lock); 821 822 if (conf->pending_bio_list.head) { 823 struct blk_plug plug; 824 struct bio *bio; 825 826 bio = bio_list_get(&conf->pending_bio_list); 827 spin_unlock_irq(&conf->device_lock); 828 829 /* 830 * As this is called in a wait_event() loop (see freeze_array), 831 * current->state might be TASK_UNINTERRUPTIBLE which will 832 * cause a warning when we prepare to wait again. As it is 833 * rare that this path is taken, it is perfectly safe to force 834 * us to go around the wait_event() loop again, so the warning 835 * is a false-positive. Silence the warning by resetting 836 * thread state 837 */ 838 __set_current_state(TASK_RUNNING); 839 blk_start_plug(&plug); 840 flush_bio_list(conf, bio); 841 blk_finish_plug(&plug); 842 } else 843 spin_unlock_irq(&conf->device_lock); 844 } 845 846 /* Barriers.... 847 * Sometimes we need to suspend IO while we do something else, 848 * either some resync/recovery, or reconfigure the array. 849 * To do this we raise a 'barrier'. 850 * The 'barrier' is a counter that can be raised multiple times 851 * to count how many activities are happening which preclude 852 * normal IO. 853 * We can only raise the barrier if there is no pending IO. 854 * i.e. if nr_pending == 0. 855 * We choose only to raise the barrier if no-one is waiting for the 856 * barrier to go down. This means that as soon as an IO request 857 * is ready, no other operations which require a barrier will start 858 * until the IO request has had a chance. 859 * 860 * So: regular IO calls 'wait_barrier'. When that returns there 861 * is no backgroup IO happening, It must arrange to call 862 * allow_barrier when it has finished its IO. 863 * backgroup IO calls must call raise_barrier. Once that returns 864 * there is no normal IO happeing. It must arrange to call 865 * lower_barrier when the particular background IO completes. 866 * 867 * If resync/recovery is interrupted, returns -EINTR; 868 * Otherwise, returns 0. 869 */ 870 static int raise_barrier(struct r1conf *conf, sector_t sector_nr) 871 { 872 int idx = sector_to_idx(sector_nr); 873 874 spin_lock_irq(&conf->resync_lock); 875 876 /* Wait until no block IO is waiting */ 877 wait_event_lock_irq(conf->wait_barrier, 878 !atomic_read(&conf->nr_waiting[idx]), 879 conf->resync_lock); 880 881 /* block any new IO from starting */ 882 atomic_inc(&conf->barrier[idx]); 883 /* 884 * In raise_barrier() we firstly increase conf->barrier[idx] then 885 * check conf->nr_pending[idx]. In _wait_barrier() we firstly 886 * increase conf->nr_pending[idx] then check conf->barrier[idx]. 887 * A memory barrier here to make sure conf->nr_pending[idx] won't 888 * be fetched before conf->barrier[idx] is increased. Otherwise 889 * there will be a race between raise_barrier() and _wait_barrier(). 890 */ 891 smp_mb__after_atomic(); 892 893 /* For these conditions we must wait: 894 * A: while the array is in frozen state 895 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O 896 * existing in corresponding I/O barrier bucket. 897 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches 898 * max resync count which allowed on current I/O barrier bucket. 899 */ 900 wait_event_lock_irq(conf->wait_barrier, 901 (!conf->array_frozen && 902 !atomic_read(&conf->nr_pending[idx]) && 903 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) || 904 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery), 905 conf->resync_lock); 906 907 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 908 atomic_dec(&conf->barrier[idx]); 909 spin_unlock_irq(&conf->resync_lock); 910 wake_up(&conf->wait_barrier); 911 return -EINTR; 912 } 913 914 atomic_inc(&conf->nr_sync_pending); 915 spin_unlock_irq(&conf->resync_lock); 916 917 return 0; 918 } 919 920 static void lower_barrier(struct r1conf *conf, sector_t sector_nr) 921 { 922 int idx = sector_to_idx(sector_nr); 923 924 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0); 925 926 atomic_dec(&conf->barrier[idx]); 927 atomic_dec(&conf->nr_sync_pending); 928 wake_up(&conf->wait_barrier); 929 } 930 931 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait) 932 { 933 bool ret = true; 934 935 /* 936 * We need to increase conf->nr_pending[idx] very early here, 937 * then raise_barrier() can be blocked when it waits for 938 * conf->nr_pending[idx] to be 0. Then we can avoid holding 939 * conf->resync_lock when there is no barrier raised in same 940 * barrier unit bucket. Also if the array is frozen, I/O 941 * should be blocked until array is unfrozen. 942 */ 943 atomic_inc(&conf->nr_pending[idx]); 944 /* 945 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then 946 * check conf->barrier[idx]. In raise_barrier() we firstly increase 947 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory 948 * barrier is necessary here to make sure conf->barrier[idx] won't be 949 * fetched before conf->nr_pending[idx] is increased. Otherwise there 950 * will be a race between _wait_barrier() and raise_barrier(). 951 */ 952 smp_mb__after_atomic(); 953 954 /* 955 * Don't worry about checking two atomic_t variables at same time 956 * here. If during we check conf->barrier[idx], the array is 957 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is 958 * 0, it is safe to return and make the I/O continue. Because the 959 * array is frozen, all I/O returned here will eventually complete 960 * or be queued, no race will happen. See code comment in 961 * frozen_array(). 962 */ 963 if (!READ_ONCE(conf->array_frozen) && 964 !atomic_read(&conf->barrier[idx])) 965 return ret; 966 967 /* 968 * After holding conf->resync_lock, conf->nr_pending[idx] 969 * should be decreased before waiting for barrier to drop. 970 * Otherwise, we may encounter a race condition because 971 * raise_barrer() might be waiting for conf->nr_pending[idx] 972 * to be 0 at same time. 973 */ 974 spin_lock_irq(&conf->resync_lock); 975 atomic_inc(&conf->nr_waiting[idx]); 976 atomic_dec(&conf->nr_pending[idx]); 977 /* 978 * In case freeze_array() is waiting for 979 * get_unqueued_pending() == extra 980 */ 981 wake_up(&conf->wait_barrier); 982 /* Wait for the barrier in same barrier unit bucket to drop. */ 983 984 /* Return false when nowait flag is set */ 985 if (nowait) { 986 ret = false; 987 } else { 988 wait_event_lock_irq(conf->wait_barrier, 989 !conf->array_frozen && 990 !atomic_read(&conf->barrier[idx]), 991 conf->resync_lock); 992 atomic_inc(&conf->nr_pending[idx]); 993 } 994 995 atomic_dec(&conf->nr_waiting[idx]); 996 spin_unlock_irq(&conf->resync_lock); 997 return ret; 998 } 999 1000 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1001 { 1002 int idx = sector_to_idx(sector_nr); 1003 bool ret = true; 1004 1005 /* 1006 * Very similar to _wait_barrier(). The difference is, for read 1007 * I/O we don't need wait for sync I/O, but if the whole array 1008 * is frozen, the read I/O still has to wait until the array is 1009 * unfrozen. Since there is no ordering requirement with 1010 * conf->barrier[idx] here, memory barrier is unnecessary as well. 1011 */ 1012 atomic_inc(&conf->nr_pending[idx]); 1013 1014 if (!READ_ONCE(conf->array_frozen)) 1015 return ret; 1016 1017 spin_lock_irq(&conf->resync_lock); 1018 atomic_inc(&conf->nr_waiting[idx]); 1019 atomic_dec(&conf->nr_pending[idx]); 1020 /* 1021 * In case freeze_array() is waiting for 1022 * get_unqueued_pending() == extra 1023 */ 1024 wake_up(&conf->wait_barrier); 1025 /* Wait for array to be unfrozen */ 1026 1027 /* Return false when nowait flag is set */ 1028 if (nowait) { 1029 /* Return false when nowait flag is set */ 1030 ret = false; 1031 } else { 1032 wait_event_lock_irq(conf->wait_barrier, 1033 !conf->array_frozen, 1034 conf->resync_lock); 1035 atomic_inc(&conf->nr_pending[idx]); 1036 } 1037 1038 atomic_dec(&conf->nr_waiting[idx]); 1039 spin_unlock_irq(&conf->resync_lock); 1040 return ret; 1041 } 1042 1043 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait) 1044 { 1045 int idx = sector_to_idx(sector_nr); 1046 1047 return _wait_barrier(conf, idx, nowait); 1048 } 1049 1050 static void _allow_barrier(struct r1conf *conf, int idx) 1051 { 1052 atomic_dec(&conf->nr_pending[idx]); 1053 wake_up(&conf->wait_barrier); 1054 } 1055 1056 static void allow_barrier(struct r1conf *conf, sector_t sector_nr) 1057 { 1058 int idx = sector_to_idx(sector_nr); 1059 1060 _allow_barrier(conf, idx); 1061 } 1062 1063 /* conf->resync_lock should be held */ 1064 static int get_unqueued_pending(struct r1conf *conf) 1065 { 1066 int idx, ret; 1067 1068 ret = atomic_read(&conf->nr_sync_pending); 1069 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) 1070 ret += atomic_read(&conf->nr_pending[idx]) - 1071 atomic_read(&conf->nr_queued[idx]); 1072 1073 return ret; 1074 } 1075 1076 static void freeze_array(struct r1conf *conf, int extra) 1077 { 1078 /* Stop sync I/O and normal I/O and wait for everything to 1079 * go quiet. 1080 * This is called in two situations: 1081 * 1) management command handlers (reshape, remove disk, quiesce). 1082 * 2) one normal I/O request failed. 1083 1084 * After array_frozen is set to 1, new sync IO will be blocked at 1085 * raise_barrier(), and new normal I/O will blocked at _wait_barrier() 1086 * or wait_read_barrier(). The flying I/Os will either complete or be 1087 * queued. When everything goes quite, there are only queued I/Os left. 1088 1089 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the 1090 * barrier bucket index which this I/O request hits. When all sync and 1091 * normal I/O are queued, sum of all conf->nr_pending[] will match sum 1092 * of all conf->nr_queued[]. But normal I/O failure is an exception, 1093 * in handle_read_error(), we may call freeze_array() before trying to 1094 * fix the read error. In this case, the error read I/O is not queued, 1095 * so get_unqueued_pending() == 1. 1096 * 1097 * Therefore before this function returns, we need to wait until 1098 * get_unqueued_pendings(conf) gets equal to extra. For 1099 * normal I/O context, extra is 1, in rested situations extra is 0. 1100 */ 1101 spin_lock_irq(&conf->resync_lock); 1102 conf->array_frozen = 1; 1103 raid1_log(conf->mddev, "wait freeze"); 1104 wait_event_lock_irq_cmd( 1105 conf->wait_barrier, 1106 get_unqueued_pending(conf) == extra, 1107 conf->resync_lock, 1108 flush_pending_writes(conf)); 1109 spin_unlock_irq(&conf->resync_lock); 1110 } 1111 static void unfreeze_array(struct r1conf *conf) 1112 { 1113 /* reverse the effect of the freeze */ 1114 spin_lock_irq(&conf->resync_lock); 1115 conf->array_frozen = 0; 1116 spin_unlock_irq(&conf->resync_lock); 1117 wake_up(&conf->wait_barrier); 1118 } 1119 1120 static void alloc_behind_master_bio(struct r1bio *r1_bio, 1121 struct bio *bio) 1122 { 1123 int size = bio->bi_iter.bi_size; 1124 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1125 int i = 0; 1126 struct bio *behind_bio = NULL; 1127 1128 behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO, 1129 &r1_bio->mddev->bio_set); 1130 if (!behind_bio) 1131 return; 1132 1133 /* discard op, we don't support writezero/writesame yet */ 1134 if (!bio_has_data(bio)) { 1135 behind_bio->bi_iter.bi_size = size; 1136 goto skip_copy; 1137 } 1138 1139 while (i < vcnt && size) { 1140 struct page *page; 1141 int len = min_t(int, PAGE_SIZE, size); 1142 1143 page = alloc_page(GFP_NOIO); 1144 if (unlikely(!page)) 1145 goto free_pages; 1146 1147 bio_add_page(behind_bio, page, len, 0); 1148 1149 size -= len; 1150 i++; 1151 } 1152 1153 bio_copy_data(behind_bio, bio); 1154 skip_copy: 1155 r1_bio->behind_master_bio = behind_bio; 1156 set_bit(R1BIO_BehindIO, &r1_bio->state); 1157 1158 return; 1159 1160 free_pages: 1161 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1162 bio->bi_iter.bi_size); 1163 bio_free_pages(behind_bio); 1164 bio_put(behind_bio); 1165 } 1166 1167 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1168 { 1169 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1170 cb); 1171 struct mddev *mddev = plug->cb.data; 1172 struct r1conf *conf = mddev->private; 1173 struct bio *bio; 1174 1175 if (from_schedule || current->bio_list) { 1176 spin_lock_irq(&conf->device_lock); 1177 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1178 spin_unlock_irq(&conf->device_lock); 1179 wake_up(&conf->wait_barrier); 1180 md_wakeup_thread(mddev->thread); 1181 kfree(plug); 1182 return; 1183 } 1184 1185 /* we aren't scheduling, so we can do the write-out directly. */ 1186 bio = bio_list_get(&plug->pending); 1187 flush_bio_list(conf, bio); 1188 kfree(plug); 1189 } 1190 1191 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio) 1192 { 1193 r1_bio->master_bio = bio; 1194 r1_bio->sectors = bio_sectors(bio); 1195 r1_bio->state = 0; 1196 r1_bio->mddev = mddev; 1197 r1_bio->sector = bio->bi_iter.bi_sector; 1198 } 1199 1200 static inline struct r1bio * 1201 alloc_r1bio(struct mddev *mddev, struct bio *bio) 1202 { 1203 struct r1conf *conf = mddev->private; 1204 struct r1bio *r1_bio; 1205 1206 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO); 1207 /* Ensure no bio records IO_BLOCKED */ 1208 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0])); 1209 init_r1bio(r1_bio, mddev, bio); 1210 return r1_bio; 1211 } 1212 1213 static void raid1_read_request(struct mddev *mddev, struct bio *bio, 1214 int max_read_sectors, struct r1bio *r1_bio) 1215 { 1216 struct r1conf *conf = mddev->private; 1217 struct raid1_info *mirror; 1218 struct bio *read_bio; 1219 struct bitmap *bitmap = mddev->bitmap; 1220 const int op = bio_op(bio); 1221 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC); 1222 int max_sectors; 1223 int rdisk; 1224 bool r1bio_existed = !!r1_bio; 1225 char b[BDEVNAME_SIZE]; 1226 1227 /* 1228 * If r1_bio is set, we are blocking the raid1d thread 1229 * so there is a tiny risk of deadlock. So ask for 1230 * emergency memory if needed. 1231 */ 1232 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO; 1233 1234 if (r1bio_existed) { 1235 /* Need to get the block device name carefully */ 1236 struct md_rdev *rdev; 1237 rcu_read_lock(); 1238 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev); 1239 if (rdev) 1240 bdevname(rdev->bdev, b); 1241 else 1242 strcpy(b, "???"); 1243 rcu_read_unlock(); 1244 } 1245 1246 /* 1247 * Still need barrier for READ in case that whole 1248 * array is frozen. 1249 */ 1250 if (!wait_read_barrier(conf, bio->bi_iter.bi_sector, 1251 bio->bi_opf & REQ_NOWAIT)) { 1252 bio_wouldblock_error(bio); 1253 return; 1254 } 1255 1256 if (!r1_bio) 1257 r1_bio = alloc_r1bio(mddev, bio); 1258 else 1259 init_r1bio(r1_bio, mddev, bio); 1260 r1_bio->sectors = max_read_sectors; 1261 1262 /* 1263 * make_request() can abort the operation when read-ahead is being 1264 * used and no empty request is available. 1265 */ 1266 rdisk = read_balance(conf, r1_bio, &max_sectors); 1267 1268 if (rdisk < 0) { 1269 /* couldn't find anywhere to read from */ 1270 if (r1bio_existed) { 1271 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n", 1272 mdname(mddev), 1273 b, 1274 (unsigned long long)r1_bio->sector); 1275 } 1276 raid_end_bio_io(r1_bio); 1277 return; 1278 } 1279 mirror = conf->mirrors + rdisk; 1280 1281 if (r1bio_existed) 1282 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n", 1283 mdname(mddev), 1284 (unsigned long long)r1_bio->sector, 1285 bdevname(mirror->rdev->bdev, b)); 1286 1287 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1288 bitmap) { 1289 /* 1290 * Reading from a write-mostly device must take care not to 1291 * over-take any writes that are 'behind' 1292 */ 1293 raid1_log(mddev, "wait behind writes"); 1294 wait_event(bitmap->behind_wait, 1295 atomic_read(&bitmap->behind_writes) == 0); 1296 } 1297 1298 if (max_sectors < bio_sectors(bio)) { 1299 struct bio *split = bio_split(bio, max_sectors, 1300 gfp, &conf->bio_split); 1301 bio_chain(split, bio); 1302 submit_bio_noacct(bio); 1303 bio = split; 1304 r1_bio->master_bio = bio; 1305 r1_bio->sectors = max_sectors; 1306 } 1307 1308 r1_bio->read_disk = rdisk; 1309 1310 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1311 r1_bio->start_time = bio_start_io_acct(bio); 1312 1313 read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp, 1314 &mddev->bio_set); 1315 1316 r1_bio->bios[rdisk] = read_bio; 1317 1318 read_bio->bi_iter.bi_sector = r1_bio->sector + 1319 mirror->rdev->data_offset; 1320 read_bio->bi_end_io = raid1_end_read_request; 1321 bio_set_op_attrs(read_bio, op, do_sync); 1322 if (test_bit(FailFast, &mirror->rdev->flags) && 1323 test_bit(R1BIO_FailFast, &r1_bio->state)) 1324 read_bio->bi_opf |= MD_FAILFAST; 1325 read_bio->bi_private = r1_bio; 1326 1327 if (mddev->gendisk) 1328 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk), 1329 r1_bio->sector); 1330 1331 submit_bio_noacct(read_bio); 1332 } 1333 1334 static void raid1_write_request(struct mddev *mddev, struct bio *bio, 1335 int max_write_sectors) 1336 { 1337 struct r1conf *conf = mddev->private; 1338 struct r1bio *r1_bio; 1339 int i, disks; 1340 struct bitmap *bitmap = mddev->bitmap; 1341 unsigned long flags; 1342 struct md_rdev *blocked_rdev; 1343 struct blk_plug_cb *cb; 1344 struct raid1_plug_cb *plug = NULL; 1345 int first_clone; 1346 int max_sectors; 1347 bool write_behind = false; 1348 1349 if (mddev_is_clustered(mddev) && 1350 md_cluster_ops->area_resyncing(mddev, WRITE, 1351 bio->bi_iter.bi_sector, bio_end_sector(bio))) { 1352 1353 DEFINE_WAIT(w); 1354 if (bio->bi_opf & REQ_NOWAIT) { 1355 bio_wouldblock_error(bio); 1356 return; 1357 } 1358 for (;;) { 1359 prepare_to_wait(&conf->wait_barrier, 1360 &w, TASK_IDLE); 1361 if (!md_cluster_ops->area_resyncing(mddev, WRITE, 1362 bio->bi_iter.bi_sector, 1363 bio_end_sector(bio))) 1364 break; 1365 schedule(); 1366 } 1367 finish_wait(&conf->wait_barrier, &w); 1368 } 1369 1370 /* 1371 * Register the new request and wait if the reconstruction 1372 * thread has put up a bar for new requests. 1373 * Continue immediately if no resync is active currently. 1374 */ 1375 if (!wait_barrier(conf, bio->bi_iter.bi_sector, 1376 bio->bi_opf & REQ_NOWAIT)) { 1377 bio_wouldblock_error(bio); 1378 return; 1379 } 1380 1381 r1_bio = alloc_r1bio(mddev, bio); 1382 r1_bio->sectors = max_write_sectors; 1383 1384 /* first select target devices under rcu_lock and 1385 * inc refcount on their rdev. Record them by setting 1386 * bios[x] to bio 1387 * If there are known/acknowledged bad blocks on any device on 1388 * which we have seen a write error, we want to avoid writing those 1389 * blocks. 1390 * This potentially requires several writes to write around 1391 * the bad blocks. Each set of writes gets it's own r1bio 1392 * with a set of bios attached. 1393 */ 1394 1395 disks = conf->raid_disks * 2; 1396 retry_write: 1397 blocked_rdev = NULL; 1398 rcu_read_lock(); 1399 max_sectors = r1_bio->sectors; 1400 for (i = 0; i < disks; i++) { 1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1402 1403 /* 1404 * The write-behind io is only attempted on drives marked as 1405 * write-mostly, which means we could allocate write behind 1406 * bio later. 1407 */ 1408 if (rdev && test_bit(WriteMostly, &rdev->flags)) 1409 write_behind = true; 1410 1411 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1412 atomic_inc(&rdev->nr_pending); 1413 blocked_rdev = rdev; 1414 break; 1415 } 1416 r1_bio->bios[i] = NULL; 1417 if (!rdev || test_bit(Faulty, &rdev->flags)) { 1418 if (i < conf->raid_disks) 1419 set_bit(R1BIO_Degraded, &r1_bio->state); 1420 continue; 1421 } 1422 1423 atomic_inc(&rdev->nr_pending); 1424 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1425 sector_t first_bad; 1426 int bad_sectors; 1427 int is_bad; 1428 1429 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors, 1430 &first_bad, &bad_sectors); 1431 if (is_bad < 0) { 1432 /* mustn't write here until the bad block is 1433 * acknowledged*/ 1434 set_bit(BlockedBadBlocks, &rdev->flags); 1435 blocked_rdev = rdev; 1436 break; 1437 } 1438 if (is_bad && first_bad <= r1_bio->sector) { 1439 /* Cannot write here at all */ 1440 bad_sectors -= (r1_bio->sector - first_bad); 1441 if (bad_sectors < max_sectors) 1442 /* mustn't write more than bad_sectors 1443 * to other devices yet 1444 */ 1445 max_sectors = bad_sectors; 1446 rdev_dec_pending(rdev, mddev); 1447 /* We don't set R1BIO_Degraded as that 1448 * only applies if the disk is 1449 * missing, so it might be re-added, 1450 * and we want to know to recover this 1451 * chunk. 1452 * In this case the device is here, 1453 * and the fact that this chunk is not 1454 * in-sync is recorded in the bad 1455 * block log 1456 */ 1457 continue; 1458 } 1459 if (is_bad) { 1460 int good_sectors = first_bad - r1_bio->sector; 1461 if (good_sectors < max_sectors) 1462 max_sectors = good_sectors; 1463 } 1464 } 1465 r1_bio->bios[i] = bio; 1466 } 1467 rcu_read_unlock(); 1468 1469 if (unlikely(blocked_rdev)) { 1470 /* Wait for this device to become unblocked */ 1471 int j; 1472 1473 for (j = 0; j < i; j++) 1474 if (r1_bio->bios[j]) 1475 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1476 r1_bio->state = 0; 1477 allow_barrier(conf, bio->bi_iter.bi_sector); 1478 1479 if (bio->bi_opf & REQ_NOWAIT) { 1480 bio_wouldblock_error(bio); 1481 return; 1482 } 1483 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk); 1484 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1485 wait_barrier(conf, bio->bi_iter.bi_sector, false); 1486 goto retry_write; 1487 } 1488 1489 /* 1490 * When using a bitmap, we may call alloc_behind_master_bio below. 1491 * alloc_behind_master_bio allocates a copy of the data payload a page 1492 * at a time and thus needs a new bio that can fit the whole payload 1493 * this bio in page sized chunks. 1494 */ 1495 if (write_behind && bitmap) 1496 max_sectors = min_t(int, max_sectors, 1497 BIO_MAX_VECS * (PAGE_SIZE >> 9)); 1498 if (max_sectors < bio_sectors(bio)) { 1499 struct bio *split = bio_split(bio, max_sectors, 1500 GFP_NOIO, &conf->bio_split); 1501 bio_chain(split, bio); 1502 submit_bio_noacct(bio); 1503 bio = split; 1504 r1_bio->master_bio = bio; 1505 r1_bio->sectors = max_sectors; 1506 } 1507 1508 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue)) 1509 r1_bio->start_time = bio_start_io_acct(bio); 1510 atomic_set(&r1_bio->remaining, 1); 1511 atomic_set(&r1_bio->behind_remaining, 0); 1512 1513 first_clone = 1; 1514 1515 for (i = 0; i < disks; i++) { 1516 struct bio *mbio = NULL; 1517 struct md_rdev *rdev = conf->mirrors[i].rdev; 1518 if (!r1_bio->bios[i]) 1519 continue; 1520 1521 if (first_clone) { 1522 /* do behind I/O ? 1523 * Not if there are too many, or cannot 1524 * allocate memory, or a reader on WriteMostly 1525 * is waiting for behind writes to flush */ 1526 if (bitmap && 1527 test_bit(WriteMostly, &rdev->flags) && 1528 (atomic_read(&bitmap->behind_writes) 1529 < mddev->bitmap_info.max_write_behind) && 1530 !waitqueue_active(&bitmap->behind_wait)) { 1531 alloc_behind_master_bio(r1_bio, bio); 1532 } 1533 1534 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors, 1535 test_bit(R1BIO_BehindIO, &r1_bio->state)); 1536 first_clone = 0; 1537 } 1538 1539 if (r1_bio->behind_master_bio) { 1540 mbio = bio_alloc_clone(rdev->bdev, 1541 r1_bio->behind_master_bio, 1542 GFP_NOIO, &mddev->bio_set); 1543 if (test_bit(CollisionCheck, &rdev->flags)) 1544 wait_for_serialization(rdev, r1_bio); 1545 if (test_bit(WriteMostly, &rdev->flags)) 1546 atomic_inc(&r1_bio->behind_remaining); 1547 } else { 1548 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, 1549 &mddev->bio_set); 1550 1551 if (mddev->serialize_policy) 1552 wait_for_serialization(rdev, r1_bio); 1553 } 1554 1555 r1_bio->bios[i] = mbio; 1556 1557 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset); 1558 mbio->bi_end_io = raid1_end_write_request; 1559 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA)); 1560 if (test_bit(FailFast, &rdev->flags) && 1561 !test_bit(WriteMostly, &rdev->flags) && 1562 conf->raid_disks - mddev->degraded > 1) 1563 mbio->bi_opf |= MD_FAILFAST; 1564 mbio->bi_private = r1_bio; 1565 1566 atomic_inc(&r1_bio->remaining); 1567 1568 if (mddev->gendisk) 1569 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk), 1570 r1_bio->sector); 1571 /* flush_pending_writes() needs access to the rdev so...*/ 1572 mbio->bi_bdev = (void *)rdev; 1573 1574 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1575 if (cb) 1576 plug = container_of(cb, struct raid1_plug_cb, cb); 1577 else 1578 plug = NULL; 1579 if (plug) { 1580 bio_list_add(&plug->pending, mbio); 1581 } else { 1582 spin_lock_irqsave(&conf->device_lock, flags); 1583 bio_list_add(&conf->pending_bio_list, mbio); 1584 spin_unlock_irqrestore(&conf->device_lock, flags); 1585 md_wakeup_thread(mddev->thread); 1586 } 1587 } 1588 1589 r1_bio_write_done(r1_bio); 1590 1591 /* In case raid1d snuck in to freeze_array */ 1592 wake_up(&conf->wait_barrier); 1593 } 1594 1595 static bool raid1_make_request(struct mddev *mddev, struct bio *bio) 1596 { 1597 sector_t sectors; 1598 1599 if (unlikely(bio->bi_opf & REQ_PREFLUSH) 1600 && md_flush_request(mddev, bio)) 1601 return true; 1602 1603 /* 1604 * There is a limit to the maximum size, but 1605 * the read/write handler might find a lower limit 1606 * due to bad blocks. To avoid multiple splits, 1607 * we pass the maximum number of sectors down 1608 * and let the lower level perform the split. 1609 */ 1610 sectors = align_to_barrier_unit_end( 1611 bio->bi_iter.bi_sector, bio_sectors(bio)); 1612 1613 if (bio_data_dir(bio) == READ) 1614 raid1_read_request(mddev, bio, sectors, NULL); 1615 else { 1616 if (!md_write_start(mddev,bio)) 1617 return false; 1618 raid1_write_request(mddev, bio, sectors); 1619 } 1620 return true; 1621 } 1622 1623 static void raid1_status(struct seq_file *seq, struct mddev *mddev) 1624 { 1625 struct r1conf *conf = mddev->private; 1626 int i; 1627 1628 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1629 conf->raid_disks - mddev->degraded); 1630 rcu_read_lock(); 1631 for (i = 0; i < conf->raid_disks; i++) { 1632 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1633 seq_printf(seq, "%s", 1634 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1635 } 1636 rcu_read_unlock(); 1637 seq_printf(seq, "]"); 1638 } 1639 1640 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev) 1641 { 1642 char b[BDEVNAME_SIZE]; 1643 struct r1conf *conf = mddev->private; 1644 unsigned long flags; 1645 1646 /* 1647 * If it is not operational, then we have already marked it as dead 1648 * else if it is the last working disks with "fail_last_dev == false", 1649 * ignore the error, let the next level up know. 1650 * else mark the drive as failed 1651 */ 1652 spin_lock_irqsave(&conf->device_lock, flags); 1653 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev 1654 && (conf->raid_disks - mddev->degraded) == 1) { 1655 /* 1656 * Don't fail the drive, act as though we were just a 1657 * normal single drive. 1658 * However don't try a recovery from this drive as 1659 * it is very likely to fail. 1660 */ 1661 conf->recovery_disabled = mddev->recovery_disabled; 1662 spin_unlock_irqrestore(&conf->device_lock, flags); 1663 return; 1664 } 1665 set_bit(Blocked, &rdev->flags); 1666 if (test_and_clear_bit(In_sync, &rdev->flags)) 1667 mddev->degraded++; 1668 set_bit(Faulty, &rdev->flags); 1669 spin_unlock_irqrestore(&conf->device_lock, flags); 1670 /* 1671 * if recovery is running, make sure it aborts. 1672 */ 1673 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1674 set_mask_bits(&mddev->sb_flags, 0, 1675 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); 1676 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n" 1677 "md/raid1:%s: Operation continuing on %d devices.\n", 1678 mdname(mddev), bdevname(rdev->bdev, b), 1679 mdname(mddev), conf->raid_disks - mddev->degraded); 1680 } 1681 1682 static void print_conf(struct r1conf *conf) 1683 { 1684 int i; 1685 1686 pr_debug("RAID1 conf printout:\n"); 1687 if (!conf) { 1688 pr_debug("(!conf)\n"); 1689 return; 1690 } 1691 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1692 conf->raid_disks); 1693 1694 rcu_read_lock(); 1695 for (i = 0; i < conf->raid_disks; i++) { 1696 char b[BDEVNAME_SIZE]; 1697 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1698 if (rdev) 1699 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n", 1700 i, !test_bit(In_sync, &rdev->flags), 1701 !test_bit(Faulty, &rdev->flags), 1702 bdevname(rdev->bdev,b)); 1703 } 1704 rcu_read_unlock(); 1705 } 1706 1707 static void close_sync(struct r1conf *conf) 1708 { 1709 int idx; 1710 1711 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) { 1712 _wait_barrier(conf, idx, false); 1713 _allow_barrier(conf, idx); 1714 } 1715 1716 mempool_exit(&conf->r1buf_pool); 1717 } 1718 1719 static int raid1_spare_active(struct mddev *mddev) 1720 { 1721 int i; 1722 struct r1conf *conf = mddev->private; 1723 int count = 0; 1724 unsigned long flags; 1725 1726 /* 1727 * Find all failed disks within the RAID1 configuration 1728 * and mark them readable. 1729 * Called under mddev lock, so rcu protection not needed. 1730 * device_lock used to avoid races with raid1_end_read_request 1731 * which expects 'In_sync' flags and ->degraded to be consistent. 1732 */ 1733 spin_lock_irqsave(&conf->device_lock, flags); 1734 for (i = 0; i < conf->raid_disks; i++) { 1735 struct md_rdev *rdev = conf->mirrors[i].rdev; 1736 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1737 if (repl 1738 && !test_bit(Candidate, &repl->flags) 1739 && repl->recovery_offset == MaxSector 1740 && !test_bit(Faulty, &repl->flags) 1741 && !test_and_set_bit(In_sync, &repl->flags)) { 1742 /* replacement has just become active */ 1743 if (!rdev || 1744 !test_and_clear_bit(In_sync, &rdev->flags)) 1745 count++; 1746 if (rdev) { 1747 /* Replaced device not technically 1748 * faulty, but we need to be sure 1749 * it gets removed and never re-added 1750 */ 1751 set_bit(Faulty, &rdev->flags); 1752 sysfs_notify_dirent_safe( 1753 rdev->sysfs_state); 1754 } 1755 } 1756 if (rdev 1757 && rdev->recovery_offset == MaxSector 1758 && !test_bit(Faulty, &rdev->flags) 1759 && !test_and_set_bit(In_sync, &rdev->flags)) { 1760 count++; 1761 sysfs_notify_dirent_safe(rdev->sysfs_state); 1762 } 1763 } 1764 mddev->degraded -= count; 1765 spin_unlock_irqrestore(&conf->device_lock, flags); 1766 1767 print_conf(conf); 1768 return count; 1769 } 1770 1771 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1772 { 1773 struct r1conf *conf = mddev->private; 1774 int err = -EEXIST; 1775 int mirror = 0; 1776 struct raid1_info *p; 1777 int first = 0; 1778 int last = conf->raid_disks - 1; 1779 1780 if (mddev->recovery_disabled == conf->recovery_disabled) 1781 return -EBUSY; 1782 1783 if (md_integrity_add_rdev(rdev, mddev)) 1784 return -ENXIO; 1785 1786 if (rdev->raid_disk >= 0) 1787 first = last = rdev->raid_disk; 1788 1789 /* 1790 * find the disk ... but prefer rdev->saved_raid_disk 1791 * if possible. 1792 */ 1793 if (rdev->saved_raid_disk >= 0 && 1794 rdev->saved_raid_disk >= first && 1795 rdev->saved_raid_disk < conf->raid_disks && 1796 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1797 first = last = rdev->saved_raid_disk; 1798 1799 for (mirror = first; mirror <= last; mirror++) { 1800 p = conf->mirrors + mirror; 1801 if (!p->rdev) { 1802 if (mddev->gendisk) 1803 disk_stack_limits(mddev->gendisk, rdev->bdev, 1804 rdev->data_offset << 9); 1805 1806 p->head_position = 0; 1807 rdev->raid_disk = mirror; 1808 err = 0; 1809 /* As all devices are equivalent, we don't need a full recovery 1810 * if this was recently any drive of the array 1811 */ 1812 if (rdev->saved_raid_disk < 0) 1813 conf->fullsync = 1; 1814 rcu_assign_pointer(p->rdev, rdev); 1815 break; 1816 } 1817 if (test_bit(WantReplacement, &p->rdev->flags) && 1818 p[conf->raid_disks].rdev == NULL) { 1819 /* Add this device as a replacement */ 1820 clear_bit(In_sync, &rdev->flags); 1821 set_bit(Replacement, &rdev->flags); 1822 rdev->raid_disk = mirror; 1823 err = 0; 1824 conf->fullsync = 1; 1825 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1826 break; 1827 } 1828 } 1829 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1830 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue); 1831 print_conf(conf); 1832 return err; 1833 } 1834 1835 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1836 { 1837 struct r1conf *conf = mddev->private; 1838 int err = 0; 1839 int number = rdev->raid_disk; 1840 struct raid1_info *p = conf->mirrors + number; 1841 1842 if (rdev != p->rdev) 1843 p = conf->mirrors + conf->raid_disks + number; 1844 1845 print_conf(conf); 1846 if (rdev == p->rdev) { 1847 if (test_bit(In_sync, &rdev->flags) || 1848 atomic_read(&rdev->nr_pending)) { 1849 err = -EBUSY; 1850 goto abort; 1851 } 1852 /* Only remove non-faulty devices if recovery 1853 * is not possible. 1854 */ 1855 if (!test_bit(Faulty, &rdev->flags) && 1856 mddev->recovery_disabled != conf->recovery_disabled && 1857 mddev->degraded < conf->raid_disks) { 1858 err = -EBUSY; 1859 goto abort; 1860 } 1861 p->rdev = NULL; 1862 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 1863 synchronize_rcu(); 1864 if (atomic_read(&rdev->nr_pending)) { 1865 /* lost the race, try later */ 1866 err = -EBUSY; 1867 p->rdev = rdev; 1868 goto abort; 1869 } 1870 } 1871 if (conf->mirrors[conf->raid_disks + number].rdev) { 1872 /* We just removed a device that is being replaced. 1873 * Move down the replacement. We drain all IO before 1874 * doing this to avoid confusion. 1875 */ 1876 struct md_rdev *repl = 1877 conf->mirrors[conf->raid_disks + number].rdev; 1878 freeze_array(conf, 0); 1879 if (atomic_read(&repl->nr_pending)) { 1880 /* It means that some queued IO of retry_list 1881 * hold repl. Thus, we cannot set replacement 1882 * as NULL, avoiding rdev NULL pointer 1883 * dereference in sync_request_write and 1884 * handle_write_finished. 1885 */ 1886 err = -EBUSY; 1887 unfreeze_array(conf); 1888 goto abort; 1889 } 1890 clear_bit(Replacement, &repl->flags); 1891 p->rdev = repl; 1892 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1893 unfreeze_array(conf); 1894 } 1895 1896 clear_bit(WantReplacement, &rdev->flags); 1897 err = md_integrity_register(mddev); 1898 } 1899 abort: 1900 1901 print_conf(conf); 1902 return err; 1903 } 1904 1905 static void end_sync_read(struct bio *bio) 1906 { 1907 struct r1bio *r1_bio = get_resync_r1bio(bio); 1908 1909 update_head_pos(r1_bio->read_disk, r1_bio); 1910 1911 /* 1912 * we have read a block, now it needs to be re-written, 1913 * or re-read if the read failed. 1914 * We don't do much here, just schedule handling by raid1d 1915 */ 1916 if (!bio->bi_status) 1917 set_bit(R1BIO_Uptodate, &r1_bio->state); 1918 1919 if (atomic_dec_and_test(&r1_bio->remaining)) 1920 reschedule_retry(r1_bio); 1921 } 1922 1923 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio) 1924 { 1925 sector_t sync_blocks = 0; 1926 sector_t s = r1_bio->sector; 1927 long sectors_to_go = r1_bio->sectors; 1928 1929 /* make sure these bits don't get cleared. */ 1930 do { 1931 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1); 1932 s += sync_blocks; 1933 sectors_to_go -= sync_blocks; 1934 } while (sectors_to_go > 0); 1935 } 1936 1937 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate) 1938 { 1939 if (atomic_dec_and_test(&r1_bio->remaining)) { 1940 struct mddev *mddev = r1_bio->mddev; 1941 int s = r1_bio->sectors; 1942 1943 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1944 test_bit(R1BIO_WriteError, &r1_bio->state)) 1945 reschedule_retry(r1_bio); 1946 else { 1947 put_buf(r1_bio); 1948 md_done_sync(mddev, s, uptodate); 1949 } 1950 } 1951 } 1952 1953 static void end_sync_write(struct bio *bio) 1954 { 1955 int uptodate = !bio->bi_status; 1956 struct r1bio *r1_bio = get_resync_r1bio(bio); 1957 struct mddev *mddev = r1_bio->mddev; 1958 struct r1conf *conf = mddev->private; 1959 sector_t first_bad; 1960 int bad_sectors; 1961 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev; 1962 1963 if (!uptodate) { 1964 abort_sync_write(mddev, r1_bio); 1965 set_bit(WriteErrorSeen, &rdev->flags); 1966 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 1967 set_bit(MD_RECOVERY_NEEDED, & 1968 mddev->recovery); 1969 set_bit(R1BIO_WriteError, &r1_bio->state); 1970 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors, 1971 &first_bad, &bad_sectors) && 1972 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1973 r1_bio->sector, 1974 r1_bio->sectors, 1975 &first_bad, &bad_sectors) 1976 ) 1977 set_bit(R1BIO_MadeGood, &r1_bio->state); 1978 1979 put_sync_write_buf(r1_bio, uptodate); 1980 } 1981 1982 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1983 int sectors, struct page *page, int rw) 1984 { 1985 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false)) 1986 /* success */ 1987 return 1; 1988 if (rw == WRITE) { 1989 set_bit(WriteErrorSeen, &rdev->flags); 1990 if (!test_and_set_bit(WantReplacement, 1991 &rdev->flags)) 1992 set_bit(MD_RECOVERY_NEEDED, & 1993 rdev->mddev->recovery); 1994 } 1995 /* need to record an error - either for the block or the device */ 1996 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1997 md_error(rdev->mddev, rdev); 1998 return 0; 1999 } 2000 2001 static int fix_sync_read_error(struct r1bio *r1_bio) 2002 { 2003 /* Try some synchronous reads of other devices to get 2004 * good data, much like with normal read errors. Only 2005 * read into the pages we already have so we don't 2006 * need to re-issue the read request. 2007 * We don't need to freeze the array, because being in an 2008 * active sync request, there is no normal IO, and 2009 * no overlapping syncs. 2010 * We don't need to check is_badblock() again as we 2011 * made sure that anything with a bad block in range 2012 * will have bi_end_io clear. 2013 */ 2014 struct mddev *mddev = r1_bio->mddev; 2015 struct r1conf *conf = mddev->private; 2016 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 2017 struct page **pages = get_resync_pages(bio)->pages; 2018 sector_t sect = r1_bio->sector; 2019 int sectors = r1_bio->sectors; 2020 int idx = 0; 2021 struct md_rdev *rdev; 2022 2023 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2024 if (test_bit(FailFast, &rdev->flags)) { 2025 /* Don't try recovering from here - just fail it 2026 * ... unless it is the last working device of course */ 2027 md_error(mddev, rdev); 2028 if (test_bit(Faulty, &rdev->flags)) 2029 /* Don't try to read from here, but make sure 2030 * put_buf does it's thing 2031 */ 2032 bio->bi_end_io = end_sync_write; 2033 } 2034 2035 while(sectors) { 2036 int s = sectors; 2037 int d = r1_bio->read_disk; 2038 int success = 0; 2039 int start; 2040 2041 if (s > (PAGE_SIZE>>9)) 2042 s = PAGE_SIZE >> 9; 2043 do { 2044 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 2045 /* No rcu protection needed here devices 2046 * can only be removed when no resync is 2047 * active, and resync is currently active 2048 */ 2049 rdev = conf->mirrors[d].rdev; 2050 if (sync_page_io(rdev, sect, s<<9, 2051 pages[idx], 2052 REQ_OP_READ, 0, false)) { 2053 success = 1; 2054 break; 2055 } 2056 } 2057 d++; 2058 if (d == conf->raid_disks * 2) 2059 d = 0; 2060 } while (!success && d != r1_bio->read_disk); 2061 2062 if (!success) { 2063 int abort = 0; 2064 /* Cannot read from anywhere, this block is lost. 2065 * Record a bad block on each device. If that doesn't 2066 * work just disable and interrupt the recovery. 2067 * Don't fail devices as that won't really help. 2068 */ 2069 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n", 2070 mdname(mddev), bio->bi_bdev, 2071 (unsigned long long)r1_bio->sector); 2072 for (d = 0; d < conf->raid_disks * 2; d++) { 2073 rdev = conf->mirrors[d].rdev; 2074 if (!rdev || test_bit(Faulty, &rdev->flags)) 2075 continue; 2076 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2077 abort = 1; 2078 } 2079 if (abort) { 2080 conf->recovery_disabled = 2081 mddev->recovery_disabled; 2082 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2083 md_done_sync(mddev, r1_bio->sectors, 0); 2084 put_buf(r1_bio); 2085 return 0; 2086 } 2087 /* Try next page */ 2088 sectors -= s; 2089 sect += s; 2090 idx++; 2091 continue; 2092 } 2093 2094 start = d; 2095 /* write it back and re-read */ 2096 while (d != r1_bio->read_disk) { 2097 if (d == 0) 2098 d = conf->raid_disks * 2; 2099 d--; 2100 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2101 continue; 2102 rdev = conf->mirrors[d].rdev; 2103 if (r1_sync_page_io(rdev, sect, s, 2104 pages[idx], 2105 WRITE) == 0) { 2106 r1_bio->bios[d]->bi_end_io = NULL; 2107 rdev_dec_pending(rdev, mddev); 2108 } 2109 } 2110 d = start; 2111 while (d != r1_bio->read_disk) { 2112 if (d == 0) 2113 d = conf->raid_disks * 2; 2114 d--; 2115 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 2116 continue; 2117 rdev = conf->mirrors[d].rdev; 2118 if (r1_sync_page_io(rdev, sect, s, 2119 pages[idx], 2120 READ) != 0) 2121 atomic_add(s, &rdev->corrected_errors); 2122 } 2123 sectors -= s; 2124 sect += s; 2125 idx ++; 2126 } 2127 set_bit(R1BIO_Uptodate, &r1_bio->state); 2128 bio->bi_status = 0; 2129 return 1; 2130 } 2131 2132 static void process_checks(struct r1bio *r1_bio) 2133 { 2134 /* We have read all readable devices. If we haven't 2135 * got the block, then there is no hope left. 2136 * If we have, then we want to do a comparison 2137 * and skip the write if everything is the same. 2138 * If any blocks failed to read, then we need to 2139 * attempt an over-write 2140 */ 2141 struct mddev *mddev = r1_bio->mddev; 2142 struct r1conf *conf = mddev->private; 2143 int primary; 2144 int i; 2145 int vcnt; 2146 2147 /* Fix variable parts of all bios */ 2148 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 2149 for (i = 0; i < conf->raid_disks * 2; i++) { 2150 blk_status_t status; 2151 struct bio *b = r1_bio->bios[i]; 2152 struct resync_pages *rp = get_resync_pages(b); 2153 if (b->bi_end_io != end_sync_read) 2154 continue; 2155 /* fixup the bio for reuse, but preserve errno */ 2156 status = b->bi_status; 2157 bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ); 2158 b->bi_status = status; 2159 b->bi_iter.bi_sector = r1_bio->sector + 2160 conf->mirrors[i].rdev->data_offset; 2161 b->bi_end_io = end_sync_read; 2162 rp->raid_bio = r1_bio; 2163 b->bi_private = rp; 2164 2165 /* initialize bvec table again */ 2166 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9); 2167 } 2168 for (primary = 0; primary < conf->raid_disks * 2; primary++) 2169 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 2170 !r1_bio->bios[primary]->bi_status) { 2171 r1_bio->bios[primary]->bi_end_io = NULL; 2172 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2173 break; 2174 } 2175 r1_bio->read_disk = primary; 2176 for (i = 0; i < conf->raid_disks * 2; i++) { 2177 int j = 0; 2178 struct bio *pbio = r1_bio->bios[primary]; 2179 struct bio *sbio = r1_bio->bios[i]; 2180 blk_status_t status = sbio->bi_status; 2181 struct page **ppages = get_resync_pages(pbio)->pages; 2182 struct page **spages = get_resync_pages(sbio)->pages; 2183 struct bio_vec *bi; 2184 int page_len[RESYNC_PAGES] = { 0 }; 2185 struct bvec_iter_all iter_all; 2186 2187 if (sbio->bi_end_io != end_sync_read) 2188 continue; 2189 /* Now we can 'fixup' the error value */ 2190 sbio->bi_status = 0; 2191 2192 bio_for_each_segment_all(bi, sbio, iter_all) 2193 page_len[j++] = bi->bv_len; 2194 2195 if (!status) { 2196 for (j = vcnt; j-- ; ) { 2197 if (memcmp(page_address(ppages[j]), 2198 page_address(spages[j]), 2199 page_len[j])) 2200 break; 2201 } 2202 } else 2203 j = 0; 2204 if (j >= 0) 2205 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2206 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2207 && !status)) { 2208 /* No need to write to this device. */ 2209 sbio->bi_end_io = NULL; 2210 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2211 continue; 2212 } 2213 2214 bio_copy_data(sbio, pbio); 2215 } 2216 } 2217 2218 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2219 { 2220 struct r1conf *conf = mddev->private; 2221 int i; 2222 int disks = conf->raid_disks * 2; 2223 struct bio *wbio; 2224 2225 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2226 /* ouch - failed to read all of that. */ 2227 if (!fix_sync_read_error(r1_bio)) 2228 return; 2229 2230 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2231 process_checks(r1_bio); 2232 2233 /* 2234 * schedule writes 2235 */ 2236 atomic_set(&r1_bio->remaining, 1); 2237 for (i = 0; i < disks ; i++) { 2238 wbio = r1_bio->bios[i]; 2239 if (wbio->bi_end_io == NULL || 2240 (wbio->bi_end_io == end_sync_read && 2241 (i == r1_bio->read_disk || 2242 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2243 continue; 2244 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) { 2245 abort_sync_write(mddev, r1_bio); 2246 continue; 2247 } 2248 2249 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2250 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags)) 2251 wbio->bi_opf |= MD_FAILFAST; 2252 2253 wbio->bi_end_io = end_sync_write; 2254 atomic_inc(&r1_bio->remaining); 2255 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2256 2257 submit_bio_noacct(wbio); 2258 } 2259 2260 put_sync_write_buf(r1_bio, 1); 2261 } 2262 2263 /* 2264 * This is a kernel thread which: 2265 * 2266 * 1. Retries failed read operations on working mirrors. 2267 * 2. Updates the raid superblock when problems encounter. 2268 * 3. Performs writes following reads for array synchronising. 2269 */ 2270 2271 static void fix_read_error(struct r1conf *conf, int read_disk, 2272 sector_t sect, int sectors) 2273 { 2274 struct mddev *mddev = conf->mddev; 2275 while(sectors) { 2276 int s = sectors; 2277 int d = read_disk; 2278 int success = 0; 2279 int start; 2280 struct md_rdev *rdev; 2281 2282 if (s > (PAGE_SIZE>>9)) 2283 s = PAGE_SIZE >> 9; 2284 2285 do { 2286 sector_t first_bad; 2287 int bad_sectors; 2288 2289 rcu_read_lock(); 2290 rdev = rcu_dereference(conf->mirrors[d].rdev); 2291 if (rdev && 2292 (test_bit(In_sync, &rdev->flags) || 2293 (!test_bit(Faulty, &rdev->flags) && 2294 rdev->recovery_offset >= sect + s)) && 2295 is_badblock(rdev, sect, s, 2296 &first_bad, &bad_sectors) == 0) { 2297 atomic_inc(&rdev->nr_pending); 2298 rcu_read_unlock(); 2299 if (sync_page_io(rdev, sect, s<<9, 2300 conf->tmppage, REQ_OP_READ, 0, false)) 2301 success = 1; 2302 rdev_dec_pending(rdev, mddev); 2303 if (success) 2304 break; 2305 } else 2306 rcu_read_unlock(); 2307 d++; 2308 if (d == conf->raid_disks * 2) 2309 d = 0; 2310 } while (!success && d != read_disk); 2311 2312 if (!success) { 2313 /* Cannot read from anywhere - mark it bad */ 2314 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2315 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2316 md_error(mddev, rdev); 2317 break; 2318 } 2319 /* write it back and re-read */ 2320 start = d; 2321 while (d != read_disk) { 2322 if (d==0) 2323 d = conf->raid_disks * 2; 2324 d--; 2325 rcu_read_lock(); 2326 rdev = rcu_dereference(conf->mirrors[d].rdev); 2327 if (rdev && 2328 !test_bit(Faulty, &rdev->flags)) { 2329 atomic_inc(&rdev->nr_pending); 2330 rcu_read_unlock(); 2331 r1_sync_page_io(rdev, sect, s, 2332 conf->tmppage, WRITE); 2333 rdev_dec_pending(rdev, mddev); 2334 } else 2335 rcu_read_unlock(); 2336 } 2337 d = start; 2338 while (d != read_disk) { 2339 char b[BDEVNAME_SIZE]; 2340 if (d==0) 2341 d = conf->raid_disks * 2; 2342 d--; 2343 rcu_read_lock(); 2344 rdev = rcu_dereference(conf->mirrors[d].rdev); 2345 if (rdev && 2346 !test_bit(Faulty, &rdev->flags)) { 2347 atomic_inc(&rdev->nr_pending); 2348 rcu_read_unlock(); 2349 if (r1_sync_page_io(rdev, sect, s, 2350 conf->tmppage, READ)) { 2351 atomic_add(s, &rdev->corrected_errors); 2352 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n", 2353 mdname(mddev), s, 2354 (unsigned long long)(sect + 2355 rdev->data_offset), 2356 bdevname(rdev->bdev, b)); 2357 } 2358 rdev_dec_pending(rdev, mddev); 2359 } else 2360 rcu_read_unlock(); 2361 } 2362 sectors -= s; 2363 sect += s; 2364 } 2365 } 2366 2367 static int narrow_write_error(struct r1bio *r1_bio, int i) 2368 { 2369 struct mddev *mddev = r1_bio->mddev; 2370 struct r1conf *conf = mddev->private; 2371 struct md_rdev *rdev = conf->mirrors[i].rdev; 2372 2373 /* bio has the data to be written to device 'i' where 2374 * we just recently had a write error. 2375 * We repeatedly clone the bio and trim down to one block, 2376 * then try the write. Where the write fails we record 2377 * a bad block. 2378 * It is conceivable that the bio doesn't exactly align with 2379 * blocks. We must handle this somehow. 2380 * 2381 * We currently own a reference on the rdev. 2382 */ 2383 2384 int block_sectors; 2385 sector_t sector; 2386 int sectors; 2387 int sect_to_write = r1_bio->sectors; 2388 int ok = 1; 2389 2390 if (rdev->badblocks.shift < 0) 2391 return 0; 2392 2393 block_sectors = roundup(1 << rdev->badblocks.shift, 2394 bdev_logical_block_size(rdev->bdev) >> 9); 2395 sector = r1_bio->sector; 2396 sectors = ((sector + block_sectors) 2397 & ~(sector_t)(block_sectors - 1)) 2398 - sector; 2399 2400 while (sect_to_write) { 2401 struct bio *wbio; 2402 if (sectors > sect_to_write) 2403 sectors = sect_to_write; 2404 /* Write at 'sector' for 'sectors'*/ 2405 2406 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2407 wbio = bio_alloc_clone(rdev->bdev, 2408 r1_bio->behind_master_bio, 2409 GFP_NOIO, &mddev->bio_set); 2410 } else { 2411 wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio, 2412 GFP_NOIO, &mddev->bio_set); 2413 } 2414 2415 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0); 2416 wbio->bi_iter.bi_sector = r1_bio->sector; 2417 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2418 2419 bio_trim(wbio, sector - r1_bio->sector, sectors); 2420 wbio->bi_iter.bi_sector += rdev->data_offset; 2421 2422 if (submit_bio_wait(wbio) < 0) 2423 /* failure! */ 2424 ok = rdev_set_badblocks(rdev, sector, 2425 sectors, 0) 2426 && ok; 2427 2428 bio_put(wbio); 2429 sect_to_write -= sectors; 2430 sector += sectors; 2431 sectors = block_sectors; 2432 } 2433 return ok; 2434 } 2435 2436 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2437 { 2438 int m; 2439 int s = r1_bio->sectors; 2440 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2441 struct md_rdev *rdev = conf->mirrors[m].rdev; 2442 struct bio *bio = r1_bio->bios[m]; 2443 if (bio->bi_end_io == NULL) 2444 continue; 2445 if (!bio->bi_status && 2446 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2447 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2448 } 2449 if (bio->bi_status && 2450 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2451 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2452 md_error(conf->mddev, rdev); 2453 } 2454 } 2455 put_buf(r1_bio); 2456 md_done_sync(conf->mddev, s, 1); 2457 } 2458 2459 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2460 { 2461 int m, idx; 2462 bool fail = false; 2463 2464 for (m = 0; m < conf->raid_disks * 2 ; m++) 2465 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2466 struct md_rdev *rdev = conf->mirrors[m].rdev; 2467 rdev_clear_badblocks(rdev, 2468 r1_bio->sector, 2469 r1_bio->sectors, 0); 2470 rdev_dec_pending(rdev, conf->mddev); 2471 } else if (r1_bio->bios[m] != NULL) { 2472 /* This drive got a write error. We need to 2473 * narrow down and record precise write 2474 * errors. 2475 */ 2476 fail = true; 2477 if (!narrow_write_error(r1_bio, m)) { 2478 md_error(conf->mddev, 2479 conf->mirrors[m].rdev); 2480 /* an I/O failed, we can't clear the bitmap */ 2481 set_bit(R1BIO_Degraded, &r1_bio->state); 2482 } 2483 rdev_dec_pending(conf->mirrors[m].rdev, 2484 conf->mddev); 2485 } 2486 if (fail) { 2487 spin_lock_irq(&conf->device_lock); 2488 list_add(&r1_bio->retry_list, &conf->bio_end_io_list); 2489 idx = sector_to_idx(r1_bio->sector); 2490 atomic_inc(&conf->nr_queued[idx]); 2491 spin_unlock_irq(&conf->device_lock); 2492 /* 2493 * In case freeze_array() is waiting for condition 2494 * get_unqueued_pending() == extra to be true. 2495 */ 2496 wake_up(&conf->wait_barrier); 2497 md_wakeup_thread(conf->mddev->thread); 2498 } else { 2499 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2500 close_write(r1_bio); 2501 raid_end_bio_io(r1_bio); 2502 } 2503 } 2504 2505 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2506 { 2507 struct mddev *mddev = conf->mddev; 2508 struct bio *bio; 2509 struct md_rdev *rdev; 2510 2511 clear_bit(R1BIO_ReadError, &r1_bio->state); 2512 /* we got a read error. Maybe the drive is bad. Maybe just 2513 * the block and we can fix it. 2514 * We freeze all other IO, and try reading the block from 2515 * other devices. When we find one, we re-write 2516 * and check it that fixes the read error. 2517 * This is all done synchronously while the array is 2518 * frozen 2519 */ 2520 2521 bio = r1_bio->bios[r1_bio->read_disk]; 2522 bio_put(bio); 2523 r1_bio->bios[r1_bio->read_disk] = NULL; 2524 2525 rdev = conf->mirrors[r1_bio->read_disk].rdev; 2526 if (mddev->ro == 0 2527 && !test_bit(FailFast, &rdev->flags)) { 2528 freeze_array(conf, 1); 2529 fix_read_error(conf, r1_bio->read_disk, 2530 r1_bio->sector, r1_bio->sectors); 2531 unfreeze_array(conf); 2532 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) { 2533 md_error(mddev, rdev); 2534 } else { 2535 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED; 2536 } 2537 2538 rdev_dec_pending(rdev, conf->mddev); 2539 allow_barrier(conf, r1_bio->sector); 2540 bio = r1_bio->master_bio; 2541 2542 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */ 2543 r1_bio->state = 0; 2544 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio); 2545 } 2546 2547 static void raid1d(struct md_thread *thread) 2548 { 2549 struct mddev *mddev = thread->mddev; 2550 struct r1bio *r1_bio; 2551 unsigned long flags; 2552 struct r1conf *conf = mddev->private; 2553 struct list_head *head = &conf->retry_list; 2554 struct blk_plug plug; 2555 int idx; 2556 2557 md_check_recovery(mddev); 2558 2559 if (!list_empty_careful(&conf->bio_end_io_list) && 2560 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 2561 LIST_HEAD(tmp); 2562 spin_lock_irqsave(&conf->device_lock, flags); 2563 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 2564 list_splice_init(&conf->bio_end_io_list, &tmp); 2565 spin_unlock_irqrestore(&conf->device_lock, flags); 2566 while (!list_empty(&tmp)) { 2567 r1_bio = list_first_entry(&tmp, struct r1bio, 2568 retry_list); 2569 list_del(&r1_bio->retry_list); 2570 idx = sector_to_idx(r1_bio->sector); 2571 atomic_dec(&conf->nr_queued[idx]); 2572 if (mddev->degraded) 2573 set_bit(R1BIO_Degraded, &r1_bio->state); 2574 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2575 close_write(r1_bio); 2576 raid_end_bio_io(r1_bio); 2577 } 2578 } 2579 2580 blk_start_plug(&plug); 2581 for (;;) { 2582 2583 flush_pending_writes(conf); 2584 2585 spin_lock_irqsave(&conf->device_lock, flags); 2586 if (list_empty(head)) { 2587 spin_unlock_irqrestore(&conf->device_lock, flags); 2588 break; 2589 } 2590 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2591 list_del(head->prev); 2592 idx = sector_to_idx(r1_bio->sector); 2593 atomic_dec(&conf->nr_queued[idx]); 2594 spin_unlock_irqrestore(&conf->device_lock, flags); 2595 2596 mddev = r1_bio->mddev; 2597 conf = mddev->private; 2598 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2599 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2600 test_bit(R1BIO_WriteError, &r1_bio->state)) 2601 handle_sync_write_finished(conf, r1_bio); 2602 else 2603 sync_request_write(mddev, r1_bio); 2604 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2605 test_bit(R1BIO_WriteError, &r1_bio->state)) 2606 handle_write_finished(conf, r1_bio); 2607 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2608 handle_read_error(conf, r1_bio); 2609 else 2610 WARN_ON_ONCE(1); 2611 2612 cond_resched(); 2613 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING)) 2614 md_check_recovery(mddev); 2615 } 2616 blk_finish_plug(&plug); 2617 } 2618 2619 static int init_resync(struct r1conf *conf) 2620 { 2621 int buffs; 2622 2623 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2624 BUG_ON(mempool_initialized(&conf->r1buf_pool)); 2625 2626 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc, 2627 r1buf_pool_free, conf->poolinfo); 2628 } 2629 2630 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf) 2631 { 2632 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO); 2633 struct resync_pages *rps; 2634 struct bio *bio; 2635 int i; 2636 2637 for (i = conf->poolinfo->raid_disks; i--; ) { 2638 bio = r1bio->bios[i]; 2639 rps = bio->bi_private; 2640 bio_reset(bio, NULL, 0); 2641 bio->bi_private = rps; 2642 } 2643 r1bio->master_bio = NULL; 2644 return r1bio; 2645 } 2646 2647 /* 2648 * perform a "sync" on one "block" 2649 * 2650 * We need to make sure that no normal I/O request - particularly write 2651 * requests - conflict with active sync requests. 2652 * 2653 * This is achieved by tracking pending requests and a 'barrier' concept 2654 * that can be installed to exclude normal IO requests. 2655 */ 2656 2657 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr, 2658 int *skipped) 2659 { 2660 struct r1conf *conf = mddev->private; 2661 struct r1bio *r1_bio; 2662 struct bio *bio; 2663 sector_t max_sector, nr_sectors; 2664 int disk = -1; 2665 int i; 2666 int wonly = -1; 2667 int write_targets = 0, read_targets = 0; 2668 sector_t sync_blocks; 2669 int still_degraded = 0; 2670 int good_sectors = RESYNC_SECTORS; 2671 int min_bad = 0; /* number of sectors that are bad in all devices */ 2672 int idx = sector_to_idx(sector_nr); 2673 int page_idx = 0; 2674 2675 if (!mempool_initialized(&conf->r1buf_pool)) 2676 if (init_resync(conf)) 2677 return 0; 2678 2679 max_sector = mddev->dev_sectors; 2680 if (sector_nr >= max_sector) { 2681 /* If we aborted, we need to abort the 2682 * sync on the 'current' bitmap chunk (there will 2683 * only be one in raid1 resync. 2684 * We can find the current addess in mddev->curr_resync 2685 */ 2686 if (mddev->curr_resync < max_sector) /* aborted */ 2687 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2688 &sync_blocks, 1); 2689 else /* completed sync */ 2690 conf->fullsync = 0; 2691 2692 md_bitmap_close_sync(mddev->bitmap); 2693 close_sync(conf); 2694 2695 if (mddev_is_clustered(mddev)) { 2696 conf->cluster_sync_low = 0; 2697 conf->cluster_sync_high = 0; 2698 } 2699 return 0; 2700 } 2701 2702 if (mddev->bitmap == NULL && 2703 mddev->recovery_cp == MaxSector && 2704 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2705 conf->fullsync == 0) { 2706 *skipped = 1; 2707 return max_sector - sector_nr; 2708 } 2709 /* before building a request, check if we can skip these blocks.. 2710 * This call the bitmap_start_sync doesn't actually record anything 2711 */ 2712 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2713 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2714 /* We can skip this block, and probably several more */ 2715 *skipped = 1; 2716 return sync_blocks; 2717 } 2718 2719 /* 2720 * If there is non-resync activity waiting for a turn, then let it 2721 * though before starting on this new sync request. 2722 */ 2723 if (atomic_read(&conf->nr_waiting[idx])) 2724 schedule_timeout_uninterruptible(1); 2725 2726 /* we are incrementing sector_nr below. To be safe, we check against 2727 * sector_nr + two times RESYNC_SECTORS 2728 */ 2729 2730 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, 2731 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high)); 2732 2733 2734 if (raise_barrier(conf, sector_nr)) 2735 return 0; 2736 2737 r1_bio = raid1_alloc_init_r1buf(conf); 2738 2739 rcu_read_lock(); 2740 /* 2741 * If we get a correctably read error during resync or recovery, 2742 * we might want to read from a different device. So we 2743 * flag all drives that could conceivably be read from for READ, 2744 * and any others (which will be non-In_sync devices) for WRITE. 2745 * If a read fails, we try reading from something else for which READ 2746 * is OK. 2747 */ 2748 2749 r1_bio->mddev = mddev; 2750 r1_bio->sector = sector_nr; 2751 r1_bio->state = 0; 2752 set_bit(R1BIO_IsSync, &r1_bio->state); 2753 /* make sure good_sectors won't go across barrier unit boundary */ 2754 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors); 2755 2756 for (i = 0; i < conf->raid_disks * 2; i++) { 2757 struct md_rdev *rdev; 2758 bio = r1_bio->bios[i]; 2759 2760 rdev = rcu_dereference(conf->mirrors[i].rdev); 2761 if (rdev == NULL || 2762 test_bit(Faulty, &rdev->flags)) { 2763 if (i < conf->raid_disks) 2764 still_degraded = 1; 2765 } else if (!test_bit(In_sync, &rdev->flags)) { 2766 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2767 bio->bi_end_io = end_sync_write; 2768 write_targets ++; 2769 } else { 2770 /* may need to read from here */ 2771 sector_t first_bad = MaxSector; 2772 int bad_sectors; 2773 2774 if (is_badblock(rdev, sector_nr, good_sectors, 2775 &first_bad, &bad_sectors)) { 2776 if (first_bad > sector_nr) 2777 good_sectors = first_bad - sector_nr; 2778 else { 2779 bad_sectors -= (sector_nr - first_bad); 2780 if (min_bad == 0 || 2781 min_bad > bad_sectors) 2782 min_bad = bad_sectors; 2783 } 2784 } 2785 if (sector_nr < first_bad) { 2786 if (test_bit(WriteMostly, &rdev->flags)) { 2787 if (wonly < 0) 2788 wonly = i; 2789 } else { 2790 if (disk < 0) 2791 disk = i; 2792 } 2793 bio_set_op_attrs(bio, REQ_OP_READ, 0); 2794 bio->bi_end_io = end_sync_read; 2795 read_targets++; 2796 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2797 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2798 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2799 /* 2800 * The device is suitable for reading (InSync), 2801 * but has bad block(s) here. Let's try to correct them, 2802 * if we are doing resync or repair. Otherwise, leave 2803 * this device alone for this sync request. 2804 */ 2805 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 2806 bio->bi_end_io = end_sync_write; 2807 write_targets++; 2808 } 2809 } 2810 if (rdev && bio->bi_end_io) { 2811 atomic_inc(&rdev->nr_pending); 2812 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2813 bio_set_dev(bio, rdev->bdev); 2814 if (test_bit(FailFast, &rdev->flags)) 2815 bio->bi_opf |= MD_FAILFAST; 2816 } 2817 } 2818 rcu_read_unlock(); 2819 if (disk < 0) 2820 disk = wonly; 2821 r1_bio->read_disk = disk; 2822 2823 if (read_targets == 0 && min_bad > 0) { 2824 /* These sectors are bad on all InSync devices, so we 2825 * need to mark them bad on all write targets 2826 */ 2827 int ok = 1; 2828 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2829 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2830 struct md_rdev *rdev = conf->mirrors[i].rdev; 2831 ok = rdev_set_badblocks(rdev, sector_nr, 2832 min_bad, 0 2833 ) && ok; 2834 } 2835 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2836 *skipped = 1; 2837 put_buf(r1_bio); 2838 2839 if (!ok) { 2840 /* Cannot record the badblocks, so need to 2841 * abort the resync. 2842 * If there are multiple read targets, could just 2843 * fail the really bad ones ??? 2844 */ 2845 conf->recovery_disabled = mddev->recovery_disabled; 2846 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2847 return 0; 2848 } else 2849 return min_bad; 2850 2851 } 2852 if (min_bad > 0 && min_bad < good_sectors) { 2853 /* only resync enough to reach the next bad->good 2854 * transition */ 2855 good_sectors = min_bad; 2856 } 2857 2858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2859 /* extra read targets are also write targets */ 2860 write_targets += read_targets-1; 2861 2862 if (write_targets == 0 || read_targets == 0) { 2863 /* There is nowhere to write, so all non-sync 2864 * drives must be failed - so we are finished 2865 */ 2866 sector_t rv; 2867 if (min_bad > 0) 2868 max_sector = sector_nr + min_bad; 2869 rv = max_sector - sector_nr; 2870 *skipped = 1; 2871 put_buf(r1_bio); 2872 return rv; 2873 } 2874 2875 if (max_sector > mddev->resync_max) 2876 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2877 if (max_sector > sector_nr + good_sectors) 2878 max_sector = sector_nr + good_sectors; 2879 nr_sectors = 0; 2880 sync_blocks = 0; 2881 do { 2882 struct page *page; 2883 int len = PAGE_SIZE; 2884 if (sector_nr + (len>>9) > max_sector) 2885 len = (max_sector - sector_nr) << 9; 2886 if (len == 0) 2887 break; 2888 if (sync_blocks == 0) { 2889 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, 2890 &sync_blocks, still_degraded) && 2891 !conf->fullsync && 2892 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2893 break; 2894 if ((len >> 9) > sync_blocks) 2895 len = sync_blocks<<9; 2896 } 2897 2898 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2899 struct resync_pages *rp; 2900 2901 bio = r1_bio->bios[i]; 2902 rp = get_resync_pages(bio); 2903 if (bio->bi_end_io) { 2904 page = resync_fetch_page(rp, page_idx); 2905 2906 /* 2907 * won't fail because the vec table is big 2908 * enough to hold all these pages 2909 */ 2910 bio_add_page(bio, page, len, 0); 2911 } 2912 } 2913 nr_sectors += len>>9; 2914 sector_nr += len>>9; 2915 sync_blocks -= (len>>9); 2916 } while (++page_idx < RESYNC_PAGES); 2917 2918 r1_bio->sectors = nr_sectors; 2919 2920 if (mddev_is_clustered(mddev) && 2921 conf->cluster_sync_high < sector_nr + nr_sectors) { 2922 conf->cluster_sync_low = mddev->curr_resync_completed; 2923 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS; 2924 /* Send resync message */ 2925 md_cluster_ops->resync_info_update(mddev, 2926 conf->cluster_sync_low, 2927 conf->cluster_sync_high); 2928 } 2929 2930 /* For a user-requested sync, we read all readable devices and do a 2931 * compare 2932 */ 2933 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2934 atomic_set(&r1_bio->remaining, read_targets); 2935 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2936 bio = r1_bio->bios[i]; 2937 if (bio->bi_end_io == end_sync_read) { 2938 read_targets--; 2939 md_sync_acct_bio(bio, nr_sectors); 2940 if (read_targets == 1) 2941 bio->bi_opf &= ~MD_FAILFAST; 2942 submit_bio_noacct(bio); 2943 } 2944 } 2945 } else { 2946 atomic_set(&r1_bio->remaining, 1); 2947 bio = r1_bio->bios[r1_bio->read_disk]; 2948 md_sync_acct_bio(bio, nr_sectors); 2949 if (read_targets == 1) 2950 bio->bi_opf &= ~MD_FAILFAST; 2951 submit_bio_noacct(bio); 2952 } 2953 return nr_sectors; 2954 } 2955 2956 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2957 { 2958 if (sectors) 2959 return sectors; 2960 2961 return mddev->dev_sectors; 2962 } 2963 2964 static struct r1conf *setup_conf(struct mddev *mddev) 2965 { 2966 struct r1conf *conf; 2967 int i; 2968 struct raid1_info *disk; 2969 struct md_rdev *rdev; 2970 int err = -ENOMEM; 2971 2972 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2973 if (!conf) 2974 goto abort; 2975 2976 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR, 2977 sizeof(atomic_t), GFP_KERNEL); 2978 if (!conf->nr_pending) 2979 goto abort; 2980 2981 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR, 2982 sizeof(atomic_t), GFP_KERNEL); 2983 if (!conf->nr_waiting) 2984 goto abort; 2985 2986 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR, 2987 sizeof(atomic_t), GFP_KERNEL); 2988 if (!conf->nr_queued) 2989 goto abort; 2990 2991 conf->barrier = kcalloc(BARRIER_BUCKETS_NR, 2992 sizeof(atomic_t), GFP_KERNEL); 2993 if (!conf->barrier) 2994 goto abort; 2995 2996 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info), 2997 mddev->raid_disks, 2), 2998 GFP_KERNEL); 2999 if (!conf->mirrors) 3000 goto abort; 3001 3002 conf->tmppage = alloc_page(GFP_KERNEL); 3003 if (!conf->tmppage) 3004 goto abort; 3005 3006 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 3007 if (!conf->poolinfo) 3008 goto abort; 3009 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 3010 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc, 3011 rbio_pool_free, conf->poolinfo); 3012 if (err) 3013 goto abort; 3014 3015 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); 3016 if (err) 3017 goto abort; 3018 3019 conf->poolinfo->mddev = mddev; 3020 3021 err = -EINVAL; 3022 spin_lock_init(&conf->device_lock); 3023 rdev_for_each(rdev, mddev) { 3024 int disk_idx = rdev->raid_disk; 3025 if (disk_idx >= mddev->raid_disks 3026 || disk_idx < 0) 3027 continue; 3028 if (test_bit(Replacement, &rdev->flags)) 3029 disk = conf->mirrors + mddev->raid_disks + disk_idx; 3030 else 3031 disk = conf->mirrors + disk_idx; 3032 3033 if (disk->rdev) 3034 goto abort; 3035 disk->rdev = rdev; 3036 disk->head_position = 0; 3037 disk->seq_start = MaxSector; 3038 } 3039 conf->raid_disks = mddev->raid_disks; 3040 conf->mddev = mddev; 3041 INIT_LIST_HEAD(&conf->retry_list); 3042 INIT_LIST_HEAD(&conf->bio_end_io_list); 3043 3044 spin_lock_init(&conf->resync_lock); 3045 init_waitqueue_head(&conf->wait_barrier); 3046 3047 bio_list_init(&conf->pending_bio_list); 3048 conf->recovery_disabled = mddev->recovery_disabled - 1; 3049 3050 err = -EIO; 3051 for (i = 0; i < conf->raid_disks * 2; i++) { 3052 3053 disk = conf->mirrors + i; 3054 3055 if (i < conf->raid_disks && 3056 disk[conf->raid_disks].rdev) { 3057 /* This slot has a replacement. */ 3058 if (!disk->rdev) { 3059 /* No original, just make the replacement 3060 * a recovering spare 3061 */ 3062 disk->rdev = 3063 disk[conf->raid_disks].rdev; 3064 disk[conf->raid_disks].rdev = NULL; 3065 } else if (!test_bit(In_sync, &disk->rdev->flags)) 3066 /* Original is not in_sync - bad */ 3067 goto abort; 3068 } 3069 3070 if (!disk->rdev || 3071 !test_bit(In_sync, &disk->rdev->flags)) { 3072 disk->head_position = 0; 3073 if (disk->rdev && 3074 (disk->rdev->saved_raid_disk < 0)) 3075 conf->fullsync = 1; 3076 } 3077 } 3078 3079 err = -ENOMEM; 3080 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 3081 if (!conf->thread) 3082 goto abort; 3083 3084 return conf; 3085 3086 abort: 3087 if (conf) { 3088 mempool_exit(&conf->r1bio_pool); 3089 kfree(conf->mirrors); 3090 safe_put_page(conf->tmppage); 3091 kfree(conf->poolinfo); 3092 kfree(conf->nr_pending); 3093 kfree(conf->nr_waiting); 3094 kfree(conf->nr_queued); 3095 kfree(conf->barrier); 3096 bioset_exit(&conf->bio_split); 3097 kfree(conf); 3098 } 3099 return ERR_PTR(err); 3100 } 3101 3102 static void raid1_free(struct mddev *mddev, void *priv); 3103 static int raid1_run(struct mddev *mddev) 3104 { 3105 struct r1conf *conf; 3106 int i; 3107 struct md_rdev *rdev; 3108 int ret; 3109 bool discard_supported = false; 3110 3111 if (mddev->level != 1) { 3112 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n", 3113 mdname(mddev), mddev->level); 3114 return -EIO; 3115 } 3116 if (mddev->reshape_position != MaxSector) { 3117 pr_warn("md/raid1:%s: reshape_position set but not supported\n", 3118 mdname(mddev)); 3119 return -EIO; 3120 } 3121 if (mddev_init_writes_pending(mddev) < 0) 3122 return -ENOMEM; 3123 /* 3124 * copy the already verified devices into our private RAID1 3125 * bookkeeping area. [whatever we allocate in run(), 3126 * should be freed in raid1_free()] 3127 */ 3128 if (mddev->private == NULL) 3129 conf = setup_conf(mddev); 3130 else 3131 conf = mddev->private; 3132 3133 if (IS_ERR(conf)) 3134 return PTR_ERR(conf); 3135 3136 if (mddev->queue) 3137 blk_queue_max_write_zeroes_sectors(mddev->queue, 0); 3138 3139 rdev_for_each(rdev, mddev) { 3140 if (!mddev->gendisk) 3141 continue; 3142 disk_stack_limits(mddev->gendisk, rdev->bdev, 3143 rdev->data_offset << 9); 3144 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 3145 discard_supported = true; 3146 } 3147 3148 mddev->degraded = 0; 3149 for (i = 0; i < conf->raid_disks; i++) 3150 if (conf->mirrors[i].rdev == NULL || 3151 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 3152 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 3153 mddev->degraded++; 3154 /* 3155 * RAID1 needs at least one disk in active 3156 */ 3157 if (conf->raid_disks - mddev->degraded < 1) { 3158 ret = -EINVAL; 3159 goto abort; 3160 } 3161 3162 if (conf->raid_disks - mddev->degraded == 1) 3163 mddev->recovery_cp = MaxSector; 3164 3165 if (mddev->recovery_cp != MaxSector) 3166 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n", 3167 mdname(mddev)); 3168 pr_info("md/raid1:%s: active with %d out of %d mirrors\n", 3169 mdname(mddev), mddev->raid_disks - mddev->degraded, 3170 mddev->raid_disks); 3171 3172 /* 3173 * Ok, everything is just fine now 3174 */ 3175 mddev->thread = conf->thread; 3176 conf->thread = NULL; 3177 mddev->private = conf; 3178 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags); 3179 3180 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 3181 3182 if (mddev->queue) { 3183 if (discard_supported) 3184 blk_queue_flag_set(QUEUE_FLAG_DISCARD, 3185 mddev->queue); 3186 else 3187 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, 3188 mddev->queue); 3189 } 3190 3191 ret = md_integrity_register(mddev); 3192 if (ret) { 3193 md_unregister_thread(&mddev->thread); 3194 goto abort; 3195 } 3196 return 0; 3197 3198 abort: 3199 raid1_free(mddev, conf); 3200 return ret; 3201 } 3202 3203 static void raid1_free(struct mddev *mddev, void *priv) 3204 { 3205 struct r1conf *conf = priv; 3206 3207 mempool_exit(&conf->r1bio_pool); 3208 kfree(conf->mirrors); 3209 safe_put_page(conf->tmppage); 3210 kfree(conf->poolinfo); 3211 kfree(conf->nr_pending); 3212 kfree(conf->nr_waiting); 3213 kfree(conf->nr_queued); 3214 kfree(conf->barrier); 3215 bioset_exit(&conf->bio_split); 3216 kfree(conf); 3217 } 3218 3219 static int raid1_resize(struct mddev *mddev, sector_t sectors) 3220 { 3221 /* no resync is happening, and there is enough space 3222 * on all devices, so we can resize. 3223 * We need to make sure resync covers any new space. 3224 * If the array is shrinking we should possibly wait until 3225 * any io in the removed space completes, but it hardly seems 3226 * worth it. 3227 */ 3228 sector_t newsize = raid1_size(mddev, sectors, 0); 3229 if (mddev->external_size && 3230 mddev->array_sectors > newsize) 3231 return -EINVAL; 3232 if (mddev->bitmap) { 3233 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0); 3234 if (ret) 3235 return ret; 3236 } 3237 md_set_array_sectors(mddev, newsize); 3238 if (sectors > mddev->dev_sectors && 3239 mddev->recovery_cp > mddev->dev_sectors) { 3240 mddev->recovery_cp = mddev->dev_sectors; 3241 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3242 } 3243 mddev->dev_sectors = sectors; 3244 mddev->resync_max_sectors = sectors; 3245 return 0; 3246 } 3247 3248 static int raid1_reshape(struct mddev *mddev) 3249 { 3250 /* We need to: 3251 * 1/ resize the r1bio_pool 3252 * 2/ resize conf->mirrors 3253 * 3254 * We allocate a new r1bio_pool if we can. 3255 * Then raise a device barrier and wait until all IO stops. 3256 * Then resize conf->mirrors and swap in the new r1bio pool. 3257 * 3258 * At the same time, we "pack" the devices so that all the missing 3259 * devices have the higher raid_disk numbers. 3260 */ 3261 mempool_t newpool, oldpool; 3262 struct pool_info *newpoolinfo; 3263 struct raid1_info *newmirrors; 3264 struct r1conf *conf = mddev->private; 3265 int cnt, raid_disks; 3266 unsigned long flags; 3267 int d, d2; 3268 int ret; 3269 3270 memset(&newpool, 0, sizeof(newpool)); 3271 memset(&oldpool, 0, sizeof(oldpool)); 3272 3273 /* Cannot change chunk_size, layout, or level */ 3274 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3275 mddev->layout != mddev->new_layout || 3276 mddev->level != mddev->new_level) { 3277 mddev->new_chunk_sectors = mddev->chunk_sectors; 3278 mddev->new_layout = mddev->layout; 3279 mddev->new_level = mddev->level; 3280 return -EINVAL; 3281 } 3282 3283 if (!mddev_is_clustered(mddev)) 3284 md_allow_write(mddev); 3285 3286 raid_disks = mddev->raid_disks + mddev->delta_disks; 3287 3288 if (raid_disks < conf->raid_disks) { 3289 cnt=0; 3290 for (d= 0; d < conf->raid_disks; d++) 3291 if (conf->mirrors[d].rdev) 3292 cnt++; 3293 if (cnt > raid_disks) 3294 return -EBUSY; 3295 } 3296 3297 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3298 if (!newpoolinfo) 3299 return -ENOMEM; 3300 newpoolinfo->mddev = mddev; 3301 newpoolinfo->raid_disks = raid_disks * 2; 3302 3303 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc, 3304 rbio_pool_free, newpoolinfo); 3305 if (ret) { 3306 kfree(newpoolinfo); 3307 return ret; 3308 } 3309 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info), 3310 raid_disks, 2), 3311 GFP_KERNEL); 3312 if (!newmirrors) { 3313 kfree(newpoolinfo); 3314 mempool_exit(&newpool); 3315 return -ENOMEM; 3316 } 3317 3318 freeze_array(conf, 0); 3319 3320 /* ok, everything is stopped */ 3321 oldpool = conf->r1bio_pool; 3322 conf->r1bio_pool = newpool; 3323 3324 for (d = d2 = 0; d < conf->raid_disks; d++) { 3325 struct md_rdev *rdev = conf->mirrors[d].rdev; 3326 if (rdev && rdev->raid_disk != d2) { 3327 sysfs_unlink_rdev(mddev, rdev); 3328 rdev->raid_disk = d2; 3329 sysfs_unlink_rdev(mddev, rdev); 3330 if (sysfs_link_rdev(mddev, rdev)) 3331 pr_warn("md/raid1:%s: cannot register rd%d\n", 3332 mdname(mddev), rdev->raid_disk); 3333 } 3334 if (rdev) 3335 newmirrors[d2++].rdev = rdev; 3336 } 3337 kfree(conf->mirrors); 3338 conf->mirrors = newmirrors; 3339 kfree(conf->poolinfo); 3340 conf->poolinfo = newpoolinfo; 3341 3342 spin_lock_irqsave(&conf->device_lock, flags); 3343 mddev->degraded += (raid_disks - conf->raid_disks); 3344 spin_unlock_irqrestore(&conf->device_lock, flags); 3345 conf->raid_disks = mddev->raid_disks = raid_disks; 3346 mddev->delta_disks = 0; 3347 3348 unfreeze_array(conf); 3349 3350 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3351 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3352 md_wakeup_thread(mddev->thread); 3353 3354 mempool_exit(&oldpool); 3355 return 0; 3356 } 3357 3358 static void raid1_quiesce(struct mddev *mddev, int quiesce) 3359 { 3360 struct r1conf *conf = mddev->private; 3361 3362 if (quiesce) 3363 freeze_array(conf, 0); 3364 else 3365 unfreeze_array(conf); 3366 } 3367 3368 static void *raid1_takeover(struct mddev *mddev) 3369 { 3370 /* raid1 can take over: 3371 * raid5 with 2 devices, any layout or chunk size 3372 */ 3373 if (mddev->level == 5 && mddev->raid_disks == 2) { 3374 struct r1conf *conf; 3375 mddev->new_level = 1; 3376 mddev->new_layout = 0; 3377 mddev->new_chunk_sectors = 0; 3378 conf = setup_conf(mddev); 3379 if (!IS_ERR(conf)) { 3380 /* Array must appear to be quiesced */ 3381 conf->array_frozen = 1; 3382 mddev_clear_unsupported_flags(mddev, 3383 UNSUPPORTED_MDDEV_FLAGS); 3384 } 3385 return conf; 3386 } 3387 return ERR_PTR(-EINVAL); 3388 } 3389 3390 static struct md_personality raid1_personality = 3391 { 3392 .name = "raid1", 3393 .level = 1, 3394 .owner = THIS_MODULE, 3395 .make_request = raid1_make_request, 3396 .run = raid1_run, 3397 .free = raid1_free, 3398 .status = raid1_status, 3399 .error_handler = raid1_error, 3400 .hot_add_disk = raid1_add_disk, 3401 .hot_remove_disk= raid1_remove_disk, 3402 .spare_active = raid1_spare_active, 3403 .sync_request = raid1_sync_request, 3404 .resize = raid1_resize, 3405 .size = raid1_size, 3406 .check_reshape = raid1_reshape, 3407 .quiesce = raid1_quiesce, 3408 .takeover = raid1_takeover, 3409 }; 3410 3411 static int __init raid_init(void) 3412 { 3413 return register_md_personality(&raid1_personality); 3414 } 3415 3416 static void raid_exit(void) 3417 { 3418 unregister_md_personality(&raid1_personality); 3419 } 3420 3421 module_init(raid_init); 3422 module_exit(raid_exit); 3423 MODULE_LICENSE("GPL"); 3424 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3425 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3426 MODULE_ALIAS("md-raid1"); 3427 MODULE_ALIAS("md-level-1"); 3428