xref: /linux/drivers/md/raid1.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 #include "md-cluster.h"
40 
41 #define UNSUPPORTED_MDDEV_FLAGS		\
42 	((1L << MD_HAS_JOURNAL) |	\
43 	 (1L << MD_JOURNAL_CLEAN) |	\
44 	 (1L << MD_HAS_PPL) |		\
45 	 (1L << MD_HAS_MULTIPLE_PPLS))
46 
47 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
48 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 static void raid1_free(struct mddev *mddev, void *priv);
50 
51 #define RAID_1_10_NAME "raid1"
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void *r1bio_pool_alloc(gfp_t gfp_flags, struct r1conf *conf)
131 {
132 	int size = offsetof(struct r1bio, bios[conf->raid_disks * 2]);
133 
134 	/* allocate a r1bio with room for raid_disks entries in the bios array */
135 	return kzalloc(size, gfp_flags);
136 }
137 
138 #define RESYNC_DEPTH 32
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
141 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
142 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
143 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
144 
145 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
146 {
147 	struct r1conf *conf = data;
148 	struct r1bio *r1_bio;
149 	struct bio *bio;
150 	int need_pages;
151 	int j;
152 	struct resync_pages *rps;
153 
154 	r1_bio = r1bio_pool_alloc(gfp_flags, conf);
155 	if (!r1_bio)
156 		return NULL;
157 
158 	rps = kmalloc_array(conf->raid_disks * 2, sizeof(struct resync_pages),
159 			    gfp_flags);
160 	if (!rps)
161 		goto out_free_r1bio;
162 
163 	/*
164 	 * Allocate bios : 1 for reading, n-1 for writing
165 	 */
166 	for (j = conf->raid_disks * 2; j-- ; ) {
167 		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
168 		if (!bio)
169 			goto out_free_bio;
170 		bio_init_inline(bio, NULL, RESYNC_PAGES, 0);
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &conf->mddev->recovery))
180 		need_pages = conf->raid_disks * 2;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < conf->raid_disks * 2; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < conf->raid_disks * 2) {
210 		bio_uninit(r1_bio->bios[j]);
211 		kfree(r1_bio->bios[j]);
212 	}
213 	kfree(rps);
214 
215 out_free_r1bio:
216 	rbio_pool_free(r1_bio, data);
217 	return NULL;
218 }
219 
220 static void r1buf_pool_free(void *__r1_bio, void *data)
221 {
222 	struct r1conf *conf = data;
223 	int i;
224 	struct r1bio *r1bio = __r1_bio;
225 	struct resync_pages *rp = NULL;
226 
227 	for (i = conf->raid_disks * 2; i--; ) {
228 		rp = get_resync_pages(r1bio->bios[i]);
229 		resync_free_pages(rp);
230 		bio_uninit(r1bio->bios[i]);
231 		kfree(r1bio->bios[i]);
232 	}
233 
234 	/* resync pages array stored in the 1st bio's .bi_private */
235 	kfree(rp);
236 
237 	rbio_pool_free(r1bio, data);
238 }
239 
240 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
241 {
242 	int i;
243 
244 	for (i = 0; i < conf->raid_disks * 2; i++) {
245 		struct bio **bio = r1_bio->bios + i;
246 		if (!BIO_SPECIAL(*bio))
247 			bio_put(*bio);
248 		*bio = NULL;
249 	}
250 }
251 
252 static void free_r1bio(struct r1bio *r1_bio)
253 {
254 	struct r1conf *conf = r1_bio->mddev->private;
255 
256 	put_all_bios(conf, r1_bio);
257 	mempool_free(r1_bio, conf->r1bio_pool);
258 }
259 
260 static void put_buf(struct r1bio *r1_bio)
261 {
262 	struct r1conf *conf = r1_bio->mddev->private;
263 	sector_t sect = r1_bio->sector;
264 	int i;
265 
266 	for (i = 0; i < conf->raid_disks * 2; i++) {
267 		struct bio *bio = r1_bio->bios[i];
268 		if (bio->bi_end_io)
269 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
270 	}
271 
272 	mempool_free(r1_bio, &conf->r1buf_pool);
273 
274 	lower_barrier(conf, sect);
275 }
276 
277 static void reschedule_retry(struct r1bio *r1_bio)
278 {
279 	unsigned long flags;
280 	struct mddev *mddev = r1_bio->mddev;
281 	struct r1conf *conf = mddev->private;
282 	int idx;
283 
284 	idx = sector_to_idx(r1_bio->sector);
285 	spin_lock_irqsave(&conf->device_lock, flags);
286 	list_add(&r1_bio->retry_list, &conf->retry_list);
287 	atomic_inc(&conf->nr_queued[idx]);
288 	spin_unlock_irqrestore(&conf->device_lock, flags);
289 
290 	wake_up(&conf->wait_barrier);
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 /*
295  * raid_end_bio_io() is called when we have finished servicing a mirrored
296  * operation and are ready to return a success/failure code to the buffer
297  * cache layer.
298  */
299 static void call_bio_endio(struct r1bio *r1_bio)
300 {
301 	struct bio *bio = r1_bio->master_bio;
302 
303 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
304 		bio->bi_status = BLK_STS_IOERR;
305 
306 	bio_endio(bio);
307 }
308 
309 static void raid_end_bio_io(struct r1bio *r1_bio)
310 {
311 	struct bio *bio = r1_bio->master_bio;
312 	struct r1conf *conf = r1_bio->mddev->private;
313 	sector_t sector = r1_bio->sector;
314 
315 	/* if nobody has done the final endio yet, do it now */
316 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
317 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
318 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
319 			 (unsigned long long) bio->bi_iter.bi_sector,
320 			 (unsigned long long) bio_end_sector(bio) - 1);
321 
322 		call_bio_endio(r1_bio);
323 	}
324 
325 	free_r1bio(r1_bio);
326 	/*
327 	 * Wake up any possible resync thread that waits for the device
328 	 * to go idle.  All I/Os, even write-behind writes, are done.
329 	 */
330 	allow_barrier(conf, sector);
331 }
332 
333 /*
334  * Update disk head position estimator based on IRQ completion info.
335  */
336 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
337 {
338 	struct r1conf *conf = r1_bio->mddev->private;
339 
340 	conf->mirrors[disk].head_position =
341 		r1_bio->sector + (r1_bio->sectors);
342 }
343 
344 /*
345  * Find the disk number which triggered given bio
346  */
347 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 {
349 	int mirror;
350 	struct r1conf *conf = r1_bio->mddev->private;
351 	int raid_disks = conf->raid_disks;
352 
353 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
354 		if (r1_bio->bios[mirror] == bio)
355 			break;
356 
357 	BUG_ON(mirror == raid_disks * 2);
358 	update_head_pos(mirror, r1_bio);
359 
360 	return mirror;
361 }
362 
363 static void raid1_end_read_request(struct bio *bio)
364 {
365 	int uptodate = !bio->bi_status;
366 	struct r1bio *r1_bio = bio->bi_private;
367 	struct r1conf *conf = r1_bio->mddev->private;
368 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
369 
370 	/*
371 	 * this branch is our 'one mirror IO has finished' event handler:
372 	 */
373 	update_head_pos(r1_bio->read_disk, r1_bio);
374 
375 	if (uptodate) {
376 		set_bit(R1BIO_Uptodate, &r1_bio->state);
377 	} else if (test_bit(FailFast, &rdev->flags) &&
378 		 test_bit(R1BIO_FailFast, &r1_bio->state)) {
379 		/* This was a fail-fast read so we definitely
380 		 * want to retry */
381 		;
382 	} else if (!raid1_should_handle_error(bio)) {
383 		uptodate = 1;
384 	} else {
385 		/* If all other devices have failed, we want to return
386 		 * the error upwards rather than fail the last device.
387 		 * Here we redefine "uptodate" to mean "Don't want to retry"
388 		 */
389 		unsigned long flags;
390 		spin_lock_irqsave(&conf->device_lock, flags);
391 		if (r1_bio->mddev->degraded == conf->raid_disks ||
392 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
393 		     test_bit(In_sync, &rdev->flags)))
394 			uptodate = 1;
395 		spin_unlock_irqrestore(&conf->device_lock, flags);
396 	}
397 
398 	if (uptodate) {
399 		raid_end_bio_io(r1_bio);
400 		rdev_dec_pending(rdev, conf->mddev);
401 	} else {
402 		/*
403 		 * oops, read error:
404 		 */
405 		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
406 				   mdname(conf->mddev),
407 				   rdev->bdev,
408 				   (unsigned long long)r1_bio->sector);
409 		set_bit(R1BIO_ReadError, &r1_bio->state);
410 		reschedule_retry(r1_bio);
411 		/* don't drop the reference on read_disk yet */
412 	}
413 }
414 
415 static void close_write(struct r1bio *r1_bio)
416 {
417 	struct mddev *mddev = r1_bio->mddev;
418 
419 	/* it really is the end of this request */
420 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
421 		bio_free_pages(r1_bio->behind_master_bio);
422 		bio_put(r1_bio->behind_master_bio);
423 		r1_bio->behind_master_bio = NULL;
424 	}
425 
426 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
427 		mddev->bitmap_ops->end_behind_write(mddev);
428 	md_write_end(mddev);
429 }
430 
431 static void r1_bio_write_done(struct r1bio *r1_bio)
432 {
433 	if (!atomic_dec_and_test(&r1_bio->remaining))
434 		return;
435 
436 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
437 		reschedule_retry(r1_bio);
438 	else {
439 		close_write(r1_bio);
440 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
441 			reschedule_retry(r1_bio);
442 		else
443 			raid_end_bio_io(r1_bio);
444 	}
445 }
446 
447 static void raid1_end_write_request(struct bio *bio)
448 {
449 	struct r1bio *r1_bio = bio->bi_private;
450 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
451 	struct r1conf *conf = r1_bio->mddev->private;
452 	struct bio *to_put = NULL;
453 	int mirror = find_bio_disk(r1_bio, bio);
454 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
455 	sector_t lo = r1_bio->sector;
456 	sector_t hi = r1_bio->sector + r1_bio->sectors;
457 	bool ignore_error = !raid1_should_handle_error(bio) ||
458 		(bio->bi_status && bio_op(bio) == REQ_OP_DISCARD);
459 
460 	/*
461 	 * 'one mirror IO has finished' event handler:
462 	 */
463 	if (bio->bi_status && !ignore_error) {
464 		set_bit(WriteErrorSeen,	&rdev->flags);
465 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
466 			set_bit(MD_RECOVERY_NEEDED, &
467 				conf->mddev->recovery);
468 
469 		if (test_bit(FailFast, &rdev->flags) &&
470 		    (bio->bi_opf & MD_FAILFAST) &&
471 		    /* We never try FailFast to WriteMostly devices */
472 		    !test_bit(WriteMostly, &rdev->flags)) {
473 			md_error(r1_bio->mddev, rdev);
474 		}
475 
476 		/*
477 		 * When the device is faulty, it is not necessary to
478 		 * handle write error.
479 		 */
480 		if (!test_bit(Faulty, &rdev->flags))
481 			set_bit(R1BIO_WriteError, &r1_bio->state);
482 		else {
483 			/* Finished with this branch */
484 			r1_bio->bios[mirror] = NULL;
485 			to_put = bio;
486 		}
487 	} else {
488 		/*
489 		 * Set R1BIO_Uptodate in our master bio, so that we
490 		 * will return a good error code for to the higher
491 		 * levels even if IO on some other mirrored buffer
492 		 * fails.
493 		 *
494 		 * The 'master' represents the composite IO operation
495 		 * to user-side. So if something waits for IO, then it
496 		 * will wait for the 'master' bio.
497 		 */
498 		r1_bio->bios[mirror] = NULL;
499 		to_put = bio;
500 		/*
501 		 * Do not set R1BIO_Uptodate if the current device is
502 		 * rebuilding or Faulty. This is because we cannot use
503 		 * such device for properly reading the data back (we could
504 		 * potentially use it, if the current write would have felt
505 		 * before rdev->recovery_offset, but for simplicity we don't
506 		 * check this here.
507 		 */
508 		if (test_bit(In_sync, &rdev->flags) &&
509 		    !test_bit(Faulty, &rdev->flags))
510 			set_bit(R1BIO_Uptodate, &r1_bio->state);
511 
512 		/* Maybe we can clear some bad blocks. */
513 		if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
514 		    !ignore_error) {
515 			r1_bio->bios[mirror] = IO_MADE_GOOD;
516 			set_bit(R1BIO_MadeGood, &r1_bio->state);
517 		}
518 	}
519 
520 	if (behind) {
521 		if (test_bit(CollisionCheck, &rdev->flags))
522 			remove_serial(rdev, lo, hi);
523 		if (test_bit(WriteMostly, &rdev->flags))
524 			atomic_dec(&r1_bio->behind_remaining);
525 
526 		/*
527 		 * In behind mode, we ACK the master bio once the I/O
528 		 * has safely reached all non-writemostly
529 		 * disks. Setting the Returned bit ensures that this
530 		 * gets done only once -- we don't ever want to return
531 		 * -EIO here, instead we'll wait
532 		 */
533 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
534 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
535 			/* Maybe we can return now */
536 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
537 				struct bio *mbio = r1_bio->master_bio;
538 				pr_debug("raid1: behind end write sectors"
539 					 " %llu-%llu\n",
540 					 (unsigned long long) mbio->bi_iter.bi_sector,
541 					 (unsigned long long) bio_end_sector(mbio) - 1);
542 				call_bio_endio(r1_bio);
543 			}
544 		}
545 	} else if (rdev->mddev->serialize_policy)
546 		remove_serial(rdev, lo, hi);
547 	if (r1_bio->bios[mirror] == NULL)
548 		rdev_dec_pending(rdev, conf->mddev);
549 
550 	/*
551 	 * Let's see if all mirrored write operations have finished
552 	 * already.
553 	 */
554 	r1_bio_write_done(r1_bio);
555 
556 	if (to_put)
557 		bio_put(to_put);
558 }
559 
560 static sector_t align_to_barrier_unit_end(sector_t start_sector,
561 					  sector_t sectors)
562 {
563 	sector_t len;
564 
565 	WARN_ON(sectors == 0);
566 	/*
567 	 * len is the number of sectors from start_sector to end of the
568 	 * barrier unit which start_sector belongs to.
569 	 */
570 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
571 	      start_sector;
572 
573 	if (len > sectors)
574 		len = sectors;
575 
576 	return len;
577 }
578 
579 static void update_read_sectors(struct r1conf *conf, int disk,
580 				sector_t this_sector, int len)
581 {
582 	struct raid1_info *info = &conf->mirrors[disk];
583 
584 	atomic_inc(&info->rdev->nr_pending);
585 	if (info->next_seq_sect != this_sector)
586 		info->seq_start = this_sector;
587 	info->next_seq_sect = this_sector + len;
588 }
589 
590 static int choose_first_rdev(struct r1conf *conf, struct r1bio *r1_bio,
591 			     int *max_sectors)
592 {
593 	sector_t this_sector = r1_bio->sector;
594 	int len = r1_bio->sectors;
595 	int disk;
596 
597 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
598 		struct md_rdev *rdev;
599 		int read_len;
600 
601 		if (r1_bio->bios[disk] == IO_BLOCKED)
602 			continue;
603 
604 		rdev = conf->mirrors[disk].rdev;
605 		if (!rdev || test_bit(Faulty, &rdev->flags))
606 			continue;
607 
608 		/* choose the first disk even if it has some bad blocks. */
609 		read_len = raid1_check_read_range(rdev, this_sector, &len);
610 		if (read_len > 0) {
611 			update_read_sectors(conf, disk, this_sector, read_len);
612 			*max_sectors = read_len;
613 			return disk;
614 		}
615 	}
616 
617 	return -1;
618 }
619 
620 static bool rdev_in_recovery(struct md_rdev *rdev, struct r1bio *r1_bio)
621 {
622 	return !test_bit(In_sync, &rdev->flags) &&
623 	       rdev->recovery_offset < r1_bio->sector + r1_bio->sectors;
624 }
625 
626 static int choose_bb_rdev(struct r1conf *conf, struct r1bio *r1_bio,
627 			  int *max_sectors)
628 {
629 	sector_t this_sector = r1_bio->sector;
630 	int best_disk = -1;
631 	int best_len = 0;
632 	int disk;
633 
634 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 		struct md_rdev *rdev;
636 		int len;
637 		int read_len;
638 
639 		if (r1_bio->bios[disk] == IO_BLOCKED)
640 			continue;
641 
642 		rdev = conf->mirrors[disk].rdev;
643 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
644 		    rdev_in_recovery(rdev, r1_bio) ||
645 		    test_bit(WriteMostly, &rdev->flags))
646 			continue;
647 
648 		/* keep track of the disk with the most readable sectors. */
649 		len = r1_bio->sectors;
650 		read_len = raid1_check_read_range(rdev, this_sector, &len);
651 		if (read_len > best_len) {
652 			best_disk = disk;
653 			best_len = read_len;
654 		}
655 	}
656 
657 	if (best_disk != -1) {
658 		*max_sectors = best_len;
659 		update_read_sectors(conf, best_disk, this_sector, best_len);
660 	}
661 
662 	return best_disk;
663 }
664 
665 static int choose_slow_rdev(struct r1conf *conf, struct r1bio *r1_bio,
666 			    int *max_sectors)
667 {
668 	sector_t this_sector = r1_bio->sector;
669 	int bb_disk = -1;
670 	int bb_read_len = 0;
671 	int disk;
672 
673 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
674 		struct md_rdev *rdev;
675 		int len;
676 		int read_len;
677 
678 		if (r1_bio->bios[disk] == IO_BLOCKED)
679 			continue;
680 
681 		rdev = conf->mirrors[disk].rdev;
682 		if (!rdev || test_bit(Faulty, &rdev->flags) ||
683 		    !test_bit(WriteMostly, &rdev->flags) ||
684 		    rdev_in_recovery(rdev, r1_bio))
685 			continue;
686 
687 		/* there are no bad blocks, we can use this disk */
688 		len = r1_bio->sectors;
689 		read_len = raid1_check_read_range(rdev, this_sector, &len);
690 		if (read_len == r1_bio->sectors) {
691 			*max_sectors = read_len;
692 			update_read_sectors(conf, disk, this_sector, read_len);
693 			return disk;
694 		}
695 
696 		/*
697 		 * there are partial bad blocks, choose the rdev with largest
698 		 * read length.
699 		 */
700 		if (read_len > bb_read_len) {
701 			bb_disk = disk;
702 			bb_read_len = read_len;
703 		}
704 	}
705 
706 	if (bb_disk != -1) {
707 		*max_sectors = bb_read_len;
708 		update_read_sectors(conf, bb_disk, this_sector, bb_read_len);
709 	}
710 
711 	return bb_disk;
712 }
713 
714 static bool is_sequential(struct r1conf *conf, int disk, struct r1bio *r1_bio)
715 {
716 	/* TODO: address issues with this check and concurrency. */
717 	return conf->mirrors[disk].next_seq_sect == r1_bio->sector ||
718 	       conf->mirrors[disk].head_position == r1_bio->sector;
719 }
720 
721 /*
722  * If buffered sequential IO size exceeds optimal iosize, check if there is idle
723  * disk. If yes, choose the idle disk.
724  */
725 static bool should_choose_next(struct r1conf *conf, int disk)
726 {
727 	struct raid1_info *mirror = &conf->mirrors[disk];
728 	int opt_iosize;
729 
730 	if (!test_bit(Nonrot, &mirror->rdev->flags))
731 		return false;
732 
733 	opt_iosize = bdev_io_opt(mirror->rdev->bdev) >> 9;
734 	return opt_iosize > 0 && mirror->seq_start != MaxSector &&
735 	       mirror->next_seq_sect > opt_iosize &&
736 	       mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
737 }
738 
739 static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
740 {
741 	if (!rdev || test_bit(Faulty, &rdev->flags))
742 		return false;
743 
744 	if (rdev_in_recovery(rdev, r1_bio))
745 		return false;
746 
747 	/* don't read from slow disk unless have to */
748 	if (test_bit(WriteMostly, &rdev->flags))
749 		return false;
750 
751 	/* don't split IO for bad blocks unless have to */
752 	if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
753 		return false;
754 
755 	return true;
756 }
757 
758 struct read_balance_ctl {
759 	sector_t closest_dist;
760 	int closest_dist_disk;
761 	int min_pending;
762 	int min_pending_disk;
763 	int sequential_disk;
764 	int readable_disks;
765 };
766 
767 static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
768 {
769 	int disk;
770 	struct read_balance_ctl ctl = {
771 		.closest_dist_disk      = -1,
772 		.closest_dist           = MaxSector,
773 		.min_pending_disk       = -1,
774 		.min_pending            = UINT_MAX,
775 		.sequential_disk	= -1,
776 	};
777 
778 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
779 		struct md_rdev *rdev;
780 		sector_t dist;
781 		unsigned int pending;
782 
783 		if (r1_bio->bios[disk] == IO_BLOCKED)
784 			continue;
785 
786 		rdev = conf->mirrors[disk].rdev;
787 		if (!rdev_readable(rdev, r1_bio))
788 			continue;
789 
790 		/* At least two disks to choose from so failfast is OK */
791 		if (ctl.readable_disks++ == 1)
792 			set_bit(R1BIO_FailFast, &r1_bio->state);
793 
794 		pending = atomic_read(&rdev->nr_pending);
795 		dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
796 
797 		/* Don't change to another disk for sequential reads */
798 		if (is_sequential(conf, disk, r1_bio)) {
799 			if (!should_choose_next(conf, disk))
800 				return disk;
801 
802 			/*
803 			 * Add 'pending' to avoid choosing this disk if
804 			 * there is other idle disk.
805 			 */
806 			pending++;
807 			/*
808 			 * If there is no other idle disk, this disk
809 			 * will be chosen.
810 			 */
811 			ctl.sequential_disk = disk;
812 		}
813 
814 		if (ctl.min_pending > pending) {
815 			ctl.min_pending = pending;
816 			ctl.min_pending_disk = disk;
817 		}
818 
819 		if (ctl.closest_dist > dist) {
820 			ctl.closest_dist = dist;
821 			ctl.closest_dist_disk = disk;
822 		}
823 	}
824 
825 	/*
826 	 * sequential IO size exceeds optimal iosize, however, there is no other
827 	 * idle disk, so choose the sequential disk.
828 	 */
829 	if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
830 		return ctl.sequential_disk;
831 
832 	/*
833 	 * If all disks are rotational, choose the closest disk. If any disk is
834 	 * non-rotational, choose the disk with less pending request even the
835 	 * disk is rotational, which might/might not be optimal for raids with
836 	 * mixed ratation/non-rotational disks depending on workload.
837 	 */
838 	if (ctl.min_pending_disk != -1 &&
839 	    (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
840 		return ctl.min_pending_disk;
841 	else
842 		return ctl.closest_dist_disk;
843 }
844 
845 /*
846  * This routine returns the disk from which the requested read should be done.
847  *
848  * 1) If resync is in progress, find the first usable disk and use it even if it
849  * has some bad blocks.
850  *
851  * 2) Now that there is no resync, loop through all disks and skipping slow
852  * disks and disks with bad blocks for now. Only pay attention to key disk
853  * choice.
854  *
855  * 3) If we've made it this far, now look for disks with bad blocks and choose
856  * the one with most number of sectors.
857  *
858  * 4) If we are all the way at the end, we have no choice but to use a disk even
859  * if it is write mostly.
860  *
861  * The rdev for the device selected will have nr_pending incremented.
862  */
863 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
864 			int *max_sectors)
865 {
866 	int disk;
867 
868 	clear_bit(R1BIO_FailFast, &r1_bio->state);
869 
870 	if (raid1_should_read_first(conf->mddev, r1_bio->sector,
871 				    r1_bio->sectors))
872 		return choose_first_rdev(conf, r1_bio, max_sectors);
873 
874 	disk = choose_best_rdev(conf, r1_bio);
875 	if (disk >= 0) {
876 		*max_sectors = r1_bio->sectors;
877 		update_read_sectors(conf, disk, r1_bio->sector,
878 				    r1_bio->sectors);
879 		return disk;
880 	}
881 
882 	/*
883 	 * If we are here it means we didn't find a perfectly good disk so
884 	 * now spend a bit more time trying to find one with the most good
885 	 * sectors.
886 	 */
887 	disk = choose_bb_rdev(conf, r1_bio, max_sectors);
888 	if (disk >= 0)
889 		return disk;
890 
891 	return choose_slow_rdev(conf, r1_bio, max_sectors);
892 }
893 
894 static void wake_up_barrier(struct r1conf *conf)
895 {
896 	if (wq_has_sleeper(&conf->wait_barrier))
897 		wake_up(&conf->wait_barrier);
898 }
899 
900 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
901 {
902 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
903 	raid1_prepare_flush_writes(conf->mddev);
904 	wake_up_barrier(conf);
905 
906 	while (bio) { /* submit pending writes */
907 		struct bio *next = bio->bi_next;
908 
909 		raid1_submit_write(bio);
910 		bio = next;
911 		cond_resched();
912 	}
913 }
914 
915 static void flush_pending_writes(struct r1conf *conf)
916 {
917 	/* Any writes that have been queued but are awaiting
918 	 * bitmap updates get flushed here.
919 	 */
920 	spin_lock_irq(&conf->device_lock);
921 
922 	if (conf->pending_bio_list.head) {
923 		struct blk_plug plug;
924 		struct bio *bio;
925 
926 		bio = bio_list_get(&conf->pending_bio_list);
927 		spin_unlock_irq(&conf->device_lock);
928 
929 		/*
930 		 * As this is called in a wait_event() loop (see freeze_array),
931 		 * current->state might be TASK_UNINTERRUPTIBLE which will
932 		 * cause a warning when we prepare to wait again.  As it is
933 		 * rare that this path is taken, it is perfectly safe to force
934 		 * us to go around the wait_event() loop again, so the warning
935 		 * is a false-positive.  Silence the warning by resetting
936 		 * thread state
937 		 */
938 		__set_current_state(TASK_RUNNING);
939 		blk_start_plug(&plug);
940 		flush_bio_list(conf, bio);
941 		blk_finish_plug(&plug);
942 	} else
943 		spin_unlock_irq(&conf->device_lock);
944 }
945 
946 /* Barriers....
947  * Sometimes we need to suspend IO while we do something else,
948  * either some resync/recovery, or reconfigure the array.
949  * To do this we raise a 'barrier'.
950  * The 'barrier' is a counter that can be raised multiple times
951  * to count how many activities are happening which preclude
952  * normal IO.
953  * We can only raise the barrier if there is no pending IO.
954  * i.e. if nr_pending == 0.
955  * We choose only to raise the barrier if no-one is waiting for the
956  * barrier to go down.  This means that as soon as an IO request
957  * is ready, no other operations which require a barrier will start
958  * until the IO request has had a chance.
959  *
960  * So: regular IO calls 'wait_barrier'.  When that returns there
961  *    is no backgroup IO happening,  It must arrange to call
962  *    allow_barrier when it has finished its IO.
963  * backgroup IO calls must call raise_barrier.  Once that returns
964  *    there is no normal IO happeing.  It must arrange to call
965  *    lower_barrier when the particular background IO completes.
966  *
967  * If resync/recovery is interrupted, returns -EINTR;
968  * Otherwise, returns 0.
969  */
970 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
971 {
972 	int idx = sector_to_idx(sector_nr);
973 
974 	spin_lock_irq(&conf->resync_lock);
975 
976 	/* Wait until no block IO is waiting */
977 	wait_event_lock_irq(conf->wait_barrier,
978 			    !atomic_read(&conf->nr_waiting[idx]),
979 			    conf->resync_lock);
980 
981 	/* block any new IO from starting */
982 	atomic_inc(&conf->barrier[idx]);
983 	/*
984 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
985 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
986 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
987 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
988 	 * be fetched before conf->barrier[idx] is increased. Otherwise
989 	 * there will be a race between raise_barrier() and _wait_barrier().
990 	 */
991 	smp_mb__after_atomic();
992 
993 	/* For these conditions we must wait:
994 	 * A: while the array is in frozen state
995 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
996 	 *    existing in corresponding I/O barrier bucket.
997 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
998 	 *    max resync count which allowed on current I/O barrier bucket.
999 	 */
1000 	wait_event_lock_irq(conf->wait_barrier,
1001 			    (!conf->array_frozen &&
1002 			     !atomic_read(&conf->nr_pending[idx]) &&
1003 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
1004 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
1005 			    conf->resync_lock);
1006 
1007 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
1008 		atomic_dec(&conf->barrier[idx]);
1009 		spin_unlock_irq(&conf->resync_lock);
1010 		wake_up(&conf->wait_barrier);
1011 		return -EINTR;
1012 	}
1013 
1014 	atomic_inc(&conf->nr_sync_pending);
1015 	spin_unlock_irq(&conf->resync_lock);
1016 
1017 	return 0;
1018 }
1019 
1020 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
1021 {
1022 	int idx = sector_to_idx(sector_nr);
1023 
1024 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
1025 
1026 	atomic_dec(&conf->barrier[idx]);
1027 	atomic_dec(&conf->nr_sync_pending);
1028 	wake_up(&conf->wait_barrier);
1029 }
1030 
1031 static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
1032 {
1033 	bool ret = true;
1034 
1035 	/*
1036 	 * We need to increase conf->nr_pending[idx] very early here,
1037 	 * then raise_barrier() can be blocked when it waits for
1038 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
1039 	 * conf->resync_lock when there is no barrier raised in same
1040 	 * barrier unit bucket. Also if the array is frozen, I/O
1041 	 * should be blocked until array is unfrozen.
1042 	 */
1043 	atomic_inc(&conf->nr_pending[idx]);
1044 	/*
1045 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
1046 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
1047 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
1048 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
1049 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
1050 	 * will be a race between _wait_barrier() and raise_barrier().
1051 	 */
1052 	smp_mb__after_atomic();
1053 
1054 	/*
1055 	 * Don't worry about checking two atomic_t variables at same time
1056 	 * here. If during we check conf->barrier[idx], the array is
1057 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
1058 	 * 0, it is safe to return and make the I/O continue. Because the
1059 	 * array is frozen, all I/O returned here will eventually complete
1060 	 * or be queued, no race will happen. See code comment in
1061 	 * frozen_array().
1062 	 */
1063 	if (!READ_ONCE(conf->array_frozen) &&
1064 	    !atomic_read(&conf->barrier[idx]))
1065 		return ret;
1066 
1067 	/*
1068 	 * After holding conf->resync_lock, conf->nr_pending[idx]
1069 	 * should be decreased before waiting for barrier to drop.
1070 	 * Otherwise, we may encounter a race condition because
1071 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
1072 	 * to be 0 at same time.
1073 	 */
1074 	spin_lock_irq(&conf->resync_lock);
1075 	atomic_inc(&conf->nr_waiting[idx]);
1076 	atomic_dec(&conf->nr_pending[idx]);
1077 	/*
1078 	 * In case freeze_array() is waiting for
1079 	 * get_unqueued_pending() == extra
1080 	 */
1081 	wake_up_barrier(conf);
1082 	/* Wait for the barrier in same barrier unit bucket to drop. */
1083 
1084 	/* Return false when nowait flag is set */
1085 	if (nowait) {
1086 		ret = false;
1087 	} else {
1088 		wait_event_lock_irq(conf->wait_barrier,
1089 				!conf->array_frozen &&
1090 				!atomic_read(&conf->barrier[idx]),
1091 				conf->resync_lock);
1092 		atomic_inc(&conf->nr_pending[idx]);
1093 	}
1094 
1095 	atomic_dec(&conf->nr_waiting[idx]);
1096 	spin_unlock_irq(&conf->resync_lock);
1097 	return ret;
1098 }
1099 
1100 static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1101 {
1102 	int idx = sector_to_idx(sector_nr);
1103 	bool ret = true;
1104 
1105 	/*
1106 	 * Very similar to _wait_barrier(). The difference is, for read
1107 	 * I/O we don't need wait for sync I/O, but if the whole array
1108 	 * is frozen, the read I/O still has to wait until the array is
1109 	 * unfrozen. Since there is no ordering requirement with
1110 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1111 	 */
1112 	atomic_inc(&conf->nr_pending[idx]);
1113 
1114 	if (!READ_ONCE(conf->array_frozen))
1115 		return ret;
1116 
1117 	spin_lock_irq(&conf->resync_lock);
1118 	atomic_inc(&conf->nr_waiting[idx]);
1119 	atomic_dec(&conf->nr_pending[idx]);
1120 	/*
1121 	 * In case freeze_array() is waiting for
1122 	 * get_unqueued_pending() == extra
1123 	 */
1124 	wake_up_barrier(conf);
1125 	/* Wait for array to be unfrozen */
1126 
1127 	/* Return false when nowait flag is set */
1128 	if (nowait) {
1129 		/* Return false when nowait flag is set */
1130 		ret = false;
1131 	} else {
1132 		wait_event_lock_irq(conf->wait_barrier,
1133 				!conf->array_frozen,
1134 				conf->resync_lock);
1135 		atomic_inc(&conf->nr_pending[idx]);
1136 	}
1137 
1138 	atomic_dec(&conf->nr_waiting[idx]);
1139 	spin_unlock_irq(&conf->resync_lock);
1140 	return ret;
1141 }
1142 
1143 static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1144 {
1145 	int idx = sector_to_idx(sector_nr);
1146 
1147 	return _wait_barrier(conf, idx, nowait);
1148 }
1149 
1150 static void _allow_barrier(struct r1conf *conf, int idx)
1151 {
1152 	atomic_dec(&conf->nr_pending[idx]);
1153 	wake_up_barrier(conf);
1154 }
1155 
1156 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1157 {
1158 	int idx = sector_to_idx(sector_nr);
1159 
1160 	_allow_barrier(conf, idx);
1161 }
1162 
1163 /* conf->resync_lock should be held */
1164 static int get_unqueued_pending(struct r1conf *conf)
1165 {
1166 	int idx, ret;
1167 
1168 	ret = atomic_read(&conf->nr_sync_pending);
1169 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1170 		ret += atomic_read(&conf->nr_pending[idx]) -
1171 			atomic_read(&conf->nr_queued[idx]);
1172 
1173 	return ret;
1174 }
1175 
1176 static void freeze_array(struct r1conf *conf, int extra)
1177 {
1178 	/* Stop sync I/O and normal I/O and wait for everything to
1179 	 * go quiet.
1180 	 * This is called in two situations:
1181 	 * 1) management command handlers (reshape, remove disk, quiesce).
1182 	 * 2) one normal I/O request failed.
1183 
1184 	 * After array_frozen is set to 1, new sync IO will be blocked at
1185 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1186 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1187 	 * queued. When everything goes quite, there are only queued I/Os left.
1188 
1189 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1190 	 * barrier bucket index which this I/O request hits. When all sync and
1191 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1192 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1193 	 * in handle_read_error(), we may call freeze_array() before trying to
1194 	 * fix the read error. In this case, the error read I/O is not queued,
1195 	 * so get_unqueued_pending() == 1.
1196 	 *
1197 	 * Therefore before this function returns, we need to wait until
1198 	 * get_unqueued_pendings(conf) gets equal to extra. For
1199 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1200 	 */
1201 	spin_lock_irq(&conf->resync_lock);
1202 	conf->array_frozen = 1;
1203 	mddev_add_trace_msg(conf->mddev, "raid1 wait freeze");
1204 	wait_event_lock_irq_cmd(
1205 		conf->wait_barrier,
1206 		get_unqueued_pending(conf) == extra,
1207 		conf->resync_lock,
1208 		flush_pending_writes(conf));
1209 	spin_unlock_irq(&conf->resync_lock);
1210 }
1211 static void unfreeze_array(struct r1conf *conf)
1212 {
1213 	/* reverse the effect of the freeze */
1214 	spin_lock_irq(&conf->resync_lock);
1215 	conf->array_frozen = 0;
1216 	spin_unlock_irq(&conf->resync_lock);
1217 	wake_up(&conf->wait_barrier);
1218 }
1219 
1220 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1221 					   struct bio *bio)
1222 {
1223 	int size = bio->bi_iter.bi_size;
1224 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1225 	int i = 0;
1226 	struct bio *behind_bio = NULL;
1227 
1228 	behind_bio = bio_alloc_bioset(NULL, vcnt, bio->bi_opf, GFP_NOIO,
1229 				      &r1_bio->mddev->bio_set);
1230 
1231 	/* discard op, we don't support writezero/writesame yet */
1232 	if (!bio_has_data(bio)) {
1233 		behind_bio->bi_iter.bi_size = size;
1234 		goto skip_copy;
1235 	}
1236 
1237 	while (i < vcnt && size) {
1238 		struct page *page;
1239 		int len = min_t(int, PAGE_SIZE, size);
1240 
1241 		page = alloc_page(GFP_NOIO);
1242 		if (unlikely(!page))
1243 			goto free_pages;
1244 
1245 		if (!bio_add_page(behind_bio, page, len, 0)) {
1246 			put_page(page);
1247 			goto free_pages;
1248 		}
1249 
1250 		size -= len;
1251 		i++;
1252 	}
1253 
1254 	bio_copy_data(behind_bio, bio);
1255 skip_copy:
1256 	r1_bio->behind_master_bio = behind_bio;
1257 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1258 
1259 	return;
1260 
1261 free_pages:
1262 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1263 		 bio->bi_iter.bi_size);
1264 	bio_free_pages(behind_bio);
1265 	bio_put(behind_bio);
1266 }
1267 
1268 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1269 {
1270 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1271 						  cb);
1272 	struct mddev *mddev = plug->cb.data;
1273 	struct r1conf *conf = mddev->private;
1274 	struct bio *bio;
1275 
1276 	if (from_schedule) {
1277 		spin_lock_irq(&conf->device_lock);
1278 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1279 		spin_unlock_irq(&conf->device_lock);
1280 		wake_up_barrier(conf);
1281 		md_wakeup_thread(mddev->thread);
1282 		kfree(plug);
1283 		return;
1284 	}
1285 
1286 	/* we aren't scheduling, so we can do the write-out directly. */
1287 	bio = bio_list_get(&plug->pending);
1288 	flush_bio_list(conf, bio);
1289 	kfree(plug);
1290 }
1291 
1292 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1293 {
1294 	r1_bio->master_bio = bio;
1295 	r1_bio->sectors = bio_sectors(bio);
1296 	r1_bio->state = 0;
1297 	r1_bio->mddev = mddev;
1298 	r1_bio->sector = bio->bi_iter.bi_sector;
1299 }
1300 
1301 static inline struct r1bio *
1302 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1303 {
1304 	struct r1conf *conf = mddev->private;
1305 	struct r1bio *r1_bio;
1306 
1307 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1308 	memset(r1_bio, 0, offsetof(struct r1bio, bios[conf->raid_disks * 2]));
1309 	init_r1bio(r1_bio, mddev, bio);
1310 	return r1_bio;
1311 }
1312 
1313 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1314 			       int max_read_sectors, struct r1bio *r1_bio)
1315 {
1316 	struct r1conf *conf = mddev->private;
1317 	struct raid1_info *mirror;
1318 	struct bio *read_bio;
1319 	int max_sectors;
1320 	int rdisk;
1321 	bool r1bio_existed = !!r1_bio;
1322 
1323 	/*
1324 	 * If r1_bio is set, we are blocking the raid1d thread
1325 	 * so there is a tiny risk of deadlock.  So ask for
1326 	 * emergency memory if needed.
1327 	 */
1328 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1329 
1330 	/*
1331 	 * Still need barrier for READ in case that whole
1332 	 * array is frozen.
1333 	 */
1334 	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
1335 				bio->bi_opf & REQ_NOWAIT)) {
1336 		bio_wouldblock_error(bio);
1337 		return;
1338 	}
1339 
1340 	if (!r1_bio)
1341 		r1_bio = alloc_r1bio(mddev, bio);
1342 	else
1343 		init_r1bio(r1_bio, mddev, bio);
1344 	r1_bio->sectors = max_read_sectors;
1345 
1346 	/*
1347 	 * make_request() can abort the operation when read-ahead is being
1348 	 * used and no empty request is available.
1349 	 */
1350 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1351 	if (rdisk < 0) {
1352 		/* couldn't find anywhere to read from */
1353 		if (r1bio_existed)
1354 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
1355 					    mdname(mddev),
1356 					    conf->mirrors[r1_bio->read_disk].rdev->bdev,
1357 					    r1_bio->sector);
1358 		raid_end_bio_io(r1_bio);
1359 		return;
1360 	}
1361 	mirror = conf->mirrors + rdisk;
1362 
1363 	if (r1bio_existed)
1364 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1365 				    mdname(mddev),
1366 				    (unsigned long long)r1_bio->sector,
1367 				    mirror->rdev->bdev);
1368 
1369 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1370 	    md_bitmap_enabled(mddev, false)) {
1371 		/*
1372 		 * Reading from a write-mostly device must take care not to
1373 		 * over-take any writes that are 'behind'
1374 		 */
1375 		mddev_add_trace_msg(mddev, "raid1 wait behind writes");
1376 		mddev->bitmap_ops->wait_behind_writes(mddev);
1377 	}
1378 
1379 	if (max_sectors < bio_sectors(bio)) {
1380 		bio = bio_submit_split_bioset(bio, max_sectors,
1381 					      &conf->bio_split);
1382 		if (!bio) {
1383 			set_bit(R1BIO_Returned, &r1_bio->state);
1384 			goto err_handle;
1385 		}
1386 
1387 		r1_bio->master_bio = bio;
1388 		r1_bio->sectors = max_sectors;
1389 	}
1390 
1391 	r1_bio->read_disk = rdisk;
1392 	if (!r1bio_existed) {
1393 		md_account_bio(mddev, &bio);
1394 		r1_bio->master_bio = bio;
1395 	}
1396 	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
1397 				   &mddev->bio_set);
1398 	read_bio->bi_opf &= ~REQ_NOWAIT;
1399 	r1_bio->bios[rdisk] = read_bio;
1400 
1401 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1402 		mirror->rdev->data_offset;
1403 	read_bio->bi_end_io = raid1_end_read_request;
1404 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1405 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1406 	        read_bio->bi_opf |= MD_FAILFAST;
1407 	read_bio->bi_private = r1_bio;
1408 	mddev_trace_remap(mddev, read_bio, r1_bio->sector);
1409 	submit_bio_noacct(read_bio);
1410 	return;
1411 
1412 err_handle:
1413 	atomic_dec(&mirror->rdev->nr_pending);
1414 	raid_end_bio_io(r1_bio);
1415 }
1416 
1417 static bool wait_blocked_rdev(struct mddev *mddev, struct bio *bio)
1418 {
1419 	struct r1conf *conf = mddev->private;
1420 	int disks = conf->raid_disks * 2;
1421 	int i;
1422 
1423 retry:
1424 	for (i = 0; i < disks; i++) {
1425 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1426 
1427 		if (!rdev)
1428 			continue;
1429 
1430 		/* don't write here until the bad block is acknowledged */
1431 		if (test_bit(WriteErrorSeen, &rdev->flags) &&
1432 		    rdev_has_badblock(rdev, bio->bi_iter.bi_sector,
1433 				      bio_sectors(bio)) < 0)
1434 			set_bit(BlockedBadBlocks, &rdev->flags);
1435 
1436 		if (rdev_blocked(rdev)) {
1437 			if (bio->bi_opf & REQ_NOWAIT)
1438 				return false;
1439 
1440 			mddev_add_trace_msg(rdev->mddev, "raid1 wait rdev %d blocked",
1441 					    rdev->raid_disk);
1442 			atomic_inc(&rdev->nr_pending);
1443 			md_wait_for_blocked_rdev(rdev, rdev->mddev);
1444 			goto retry;
1445 		}
1446 	}
1447 
1448 	return true;
1449 }
1450 
1451 static void raid1_start_write_behind(struct mddev *mddev, struct r1bio *r1_bio,
1452 				     struct bio *bio)
1453 {
1454 	unsigned long max_write_behind = mddev->bitmap_info.max_write_behind;
1455 	struct md_bitmap_stats stats;
1456 	int err;
1457 
1458 	/* behind write rely on bitmap, see bitmap_operations */
1459 	if (!md_bitmap_enabled(mddev, false))
1460 		return;
1461 
1462 	err = mddev->bitmap_ops->get_stats(mddev->bitmap, &stats);
1463 	if (err)
1464 		return;
1465 
1466 	/* Don't do behind IO if reader is waiting, or there are too many. */
1467 	if (!stats.behind_wait && stats.behind_writes < max_write_behind)
1468 		alloc_behind_master_bio(r1_bio, bio);
1469 
1470 	if (test_bit(R1BIO_BehindIO, &r1_bio->state))
1471 		mddev->bitmap_ops->start_behind_write(mddev);
1472 
1473 }
1474 
1475 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1476 				int max_write_sectors)
1477 {
1478 	struct r1conf *conf = mddev->private;
1479 	struct r1bio *r1_bio;
1480 	int i, disks, k;
1481 	unsigned long flags;
1482 	int first_clone;
1483 	int max_sectors;
1484 	bool write_behind = false;
1485 	bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1486 
1487 	if (mddev_is_clustered(mddev) &&
1488 	    mddev->cluster_ops->area_resyncing(mddev, WRITE,
1489 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1490 
1491 		DEFINE_WAIT(w);
1492 		if (bio->bi_opf & REQ_NOWAIT) {
1493 			bio_wouldblock_error(bio);
1494 			return;
1495 		}
1496 		for (;;) {
1497 			prepare_to_wait(&conf->wait_barrier,
1498 					&w, TASK_IDLE);
1499 			if (!mddev->cluster_ops->area_resyncing(mddev, WRITE,
1500 							bio->bi_iter.bi_sector,
1501 							bio_end_sector(bio)))
1502 				break;
1503 			schedule();
1504 		}
1505 		finish_wait(&conf->wait_barrier, &w);
1506 	}
1507 
1508 	/*
1509 	 * Register the new request and wait if the reconstruction
1510 	 * thread has put up a bar for new requests.
1511 	 * Continue immediately if no resync is active currently.
1512 	 */
1513 	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
1514 				bio->bi_opf & REQ_NOWAIT)) {
1515 		bio_wouldblock_error(bio);
1516 		return;
1517 	}
1518 
1519 	if (!wait_blocked_rdev(mddev, bio)) {
1520 		bio_wouldblock_error(bio);
1521 		return;
1522 	}
1523 
1524 	r1_bio = alloc_r1bio(mddev, bio);
1525 	r1_bio->sectors = max_write_sectors;
1526 
1527 	/* first select target devices under rcu_lock and
1528 	 * inc refcount on their rdev.  Record them by setting
1529 	 * bios[x] to bio
1530 	 * If there are known/acknowledged bad blocks on any device on
1531 	 * which we have seen a write error, we want to avoid writing those
1532 	 * blocks.
1533 	 * This potentially requires several writes to write around
1534 	 * the bad blocks.  Each set of writes gets it's own r1bio
1535 	 * with a set of bios attached.
1536 	 */
1537 
1538 	disks = conf->raid_disks * 2;
1539 	max_sectors = r1_bio->sectors;
1540 	for (i = 0;  i < disks; i++) {
1541 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1542 
1543 		/*
1544 		 * The write-behind io is only attempted on drives marked as
1545 		 * write-mostly, which means we could allocate write behind
1546 		 * bio later.
1547 		 */
1548 		if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1549 			write_behind = true;
1550 
1551 		r1_bio->bios[i] = NULL;
1552 		if (!rdev || test_bit(Faulty, &rdev->flags))
1553 			continue;
1554 
1555 		atomic_inc(&rdev->nr_pending);
1556 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1557 			sector_t first_bad;
1558 			sector_t bad_sectors;
1559 			int is_bad;
1560 
1561 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1562 					     &first_bad, &bad_sectors);
1563 			if (is_bad && first_bad <= r1_bio->sector) {
1564 				/* Cannot write here at all */
1565 				bad_sectors -= (r1_bio->sector - first_bad);
1566 				if (bad_sectors < max_sectors)
1567 					/* mustn't write more than bad_sectors
1568 					 * to other devices yet
1569 					 */
1570 					max_sectors = bad_sectors;
1571 				rdev_dec_pending(rdev, mddev);
1572 				continue;
1573 			}
1574 			if (is_bad) {
1575 				int good_sectors;
1576 
1577 				/*
1578 				 * We cannot atomically write this, so just
1579 				 * error in that case. It could be possible to
1580 				 * atomically write other mirrors, but the
1581 				 * complexity of supporting that is not worth
1582 				 * the benefit.
1583 				 */
1584 				if (bio->bi_opf & REQ_ATOMIC)
1585 					goto err_handle;
1586 
1587 				good_sectors = first_bad - r1_bio->sector;
1588 				if (good_sectors < max_sectors)
1589 					max_sectors = good_sectors;
1590 			}
1591 		}
1592 		r1_bio->bios[i] = bio;
1593 	}
1594 
1595 	/*
1596 	 * When using a bitmap, we may call alloc_behind_master_bio below.
1597 	 * alloc_behind_master_bio allocates a copy of the data payload a page
1598 	 * at a time and thus needs a new bio that can fit the whole payload
1599 	 * this bio in page sized chunks.
1600 	 */
1601 	if (write_behind && mddev->bitmap)
1602 		max_sectors = min_t(int, max_sectors,
1603 				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
1604 	if (max_sectors < bio_sectors(bio)) {
1605 		bio = bio_submit_split_bioset(bio, max_sectors,
1606 					      &conf->bio_split);
1607 		if (!bio) {
1608 			set_bit(R1BIO_Returned, &r1_bio->state);
1609 			goto err_handle;
1610 		}
1611 
1612 		r1_bio->master_bio = bio;
1613 		r1_bio->sectors = max_sectors;
1614 	}
1615 
1616 	md_account_bio(mddev, &bio);
1617 	r1_bio->master_bio = bio;
1618 	atomic_set(&r1_bio->remaining, 1);
1619 	atomic_set(&r1_bio->behind_remaining, 0);
1620 
1621 	first_clone = 1;
1622 
1623 	for (i = 0; i < disks; i++) {
1624 		struct bio *mbio = NULL;
1625 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1626 		if (!r1_bio->bios[i])
1627 			continue;
1628 
1629 		if (first_clone) {
1630 			if (write_behind)
1631 				raid1_start_write_behind(mddev, r1_bio, bio);
1632 			first_clone = 0;
1633 		}
1634 
1635 		if (r1_bio->behind_master_bio) {
1636 			mbio = bio_alloc_clone(rdev->bdev,
1637 					       r1_bio->behind_master_bio,
1638 					       GFP_NOIO, &mddev->bio_set);
1639 			if (test_bit(CollisionCheck, &rdev->flags))
1640 				wait_for_serialization(rdev, r1_bio);
1641 			if (test_bit(WriteMostly, &rdev->flags))
1642 				atomic_inc(&r1_bio->behind_remaining);
1643 		} else {
1644 			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
1645 					       &mddev->bio_set);
1646 
1647 			if (mddev->serialize_policy)
1648 				wait_for_serialization(rdev, r1_bio);
1649 		}
1650 
1651 		mbio->bi_opf &= ~REQ_NOWAIT;
1652 		r1_bio->bios[i] = mbio;
1653 
1654 		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
1655 		mbio->bi_end_io	= raid1_end_write_request;
1656 		if (test_bit(FailFast, &rdev->flags) &&
1657 		    !test_bit(WriteMostly, &rdev->flags) &&
1658 		    conf->raid_disks - mddev->degraded > 1)
1659 			mbio->bi_opf |= MD_FAILFAST;
1660 		mbio->bi_private = r1_bio;
1661 
1662 		atomic_inc(&r1_bio->remaining);
1663 		mddev_trace_remap(mddev, mbio, r1_bio->sector);
1664 		/* flush_pending_writes() needs access to the rdev so...*/
1665 		mbio->bi_bdev = (void *)rdev;
1666 		if (!raid1_add_bio_to_plug(mddev, mbio, raid1_unplug, disks)) {
1667 			spin_lock_irqsave(&conf->device_lock, flags);
1668 			bio_list_add(&conf->pending_bio_list, mbio);
1669 			spin_unlock_irqrestore(&conf->device_lock, flags);
1670 			md_wakeup_thread(mddev->thread);
1671 		}
1672 	}
1673 
1674 	r1_bio_write_done(r1_bio);
1675 
1676 	/* In case raid1d snuck in to freeze_array */
1677 	wake_up_barrier(conf);
1678 	return;
1679 err_handle:
1680 	for (k = 0; k < i; k++) {
1681 		if (r1_bio->bios[k]) {
1682 			rdev_dec_pending(conf->mirrors[k].rdev, mddev);
1683 			r1_bio->bios[k] = NULL;
1684 		}
1685 	}
1686 
1687 	raid_end_bio_io(r1_bio);
1688 }
1689 
1690 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1691 {
1692 	sector_t sectors;
1693 
1694 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1695 	    && md_flush_request(mddev, bio))
1696 		return true;
1697 
1698 	/*
1699 	 * There is a limit to the maximum size, but
1700 	 * the read/write handler might find a lower limit
1701 	 * due to bad blocks.  To avoid multiple splits,
1702 	 * we pass the maximum number of sectors down
1703 	 * and let the lower level perform the split.
1704 	 */
1705 	sectors = align_to_barrier_unit_end(
1706 		bio->bi_iter.bi_sector, bio_sectors(bio));
1707 
1708 	if (bio_data_dir(bio) == READ)
1709 		raid1_read_request(mddev, bio, sectors, NULL);
1710 	else {
1711 		md_write_start(mddev,bio);
1712 		raid1_write_request(mddev, bio, sectors);
1713 	}
1714 	return true;
1715 }
1716 
1717 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1718 {
1719 	struct r1conf *conf = mddev->private;
1720 	int i;
1721 
1722 	lockdep_assert_held(&mddev->lock);
1723 
1724 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1725 		   conf->raid_disks - mddev->degraded);
1726 	for (i = 0; i < conf->raid_disks; i++) {
1727 		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1728 
1729 		seq_printf(seq, "%s",
1730 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1731 	}
1732 	seq_printf(seq, "]");
1733 }
1734 
1735 /**
1736  * raid1_error() - RAID1 error handler.
1737  * @mddev: affected md device.
1738  * @rdev: member device to fail.
1739  *
1740  * The routine acknowledges &rdev failure and determines new @mddev state.
1741  * If it failed, then:
1742  *	- &MD_BROKEN flag is set in &mddev->flags.
1743  *	- recovery is disabled.
1744  * Otherwise, it must be degraded:
1745  *	- recovery is interrupted.
1746  *	- &mddev->degraded is bumped.
1747  *
1748  * @rdev is marked as &Faulty excluding case when array is failed and
1749  * &mddev->fail_last_dev is off.
1750  */
1751 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1752 {
1753 	struct r1conf *conf = mddev->private;
1754 	unsigned long flags;
1755 
1756 	spin_lock_irqsave(&conf->device_lock, flags);
1757 
1758 	if (test_bit(In_sync, &rdev->flags) &&
1759 	    (conf->raid_disks - mddev->degraded) == 1) {
1760 		set_bit(MD_BROKEN, &mddev->flags);
1761 
1762 		if (!mddev->fail_last_dev) {
1763 			conf->recovery_disabled = mddev->recovery_disabled;
1764 			spin_unlock_irqrestore(&conf->device_lock, flags);
1765 			return;
1766 		}
1767 	}
1768 	set_bit(Blocked, &rdev->flags);
1769 	if (test_and_clear_bit(In_sync, &rdev->flags))
1770 		mddev->degraded++;
1771 	set_bit(Faulty, &rdev->flags);
1772 	spin_unlock_irqrestore(&conf->device_lock, flags);
1773 	/*
1774 	 * if recovery is running, make sure it aborts.
1775 	 */
1776 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1777 	set_mask_bits(&mddev->sb_flags, 0,
1778 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1779 	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1780 		"md/raid1:%s: Operation continuing on %d devices.\n",
1781 		mdname(mddev), rdev->bdev,
1782 		mdname(mddev), conf->raid_disks - mddev->degraded);
1783 }
1784 
1785 static void print_conf(struct r1conf *conf)
1786 {
1787 	int i;
1788 
1789 	pr_debug("RAID1 conf printout:\n");
1790 	if (!conf) {
1791 		pr_debug("(!conf)\n");
1792 		return;
1793 	}
1794 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1795 		 conf->raid_disks);
1796 
1797 	lockdep_assert_held(&conf->mddev->reconfig_mutex);
1798 	for (i = 0; i < conf->raid_disks; i++) {
1799 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1800 		if (rdev)
1801 			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1802 				 i, !test_bit(In_sync, &rdev->flags),
1803 				 !test_bit(Faulty, &rdev->flags),
1804 				 rdev->bdev);
1805 	}
1806 }
1807 
1808 static void close_sync(struct r1conf *conf)
1809 {
1810 	int idx;
1811 
1812 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1813 		_wait_barrier(conf, idx, false);
1814 		_allow_barrier(conf, idx);
1815 	}
1816 
1817 	mempool_exit(&conf->r1buf_pool);
1818 }
1819 
1820 static int raid1_spare_active(struct mddev *mddev)
1821 {
1822 	int i;
1823 	struct r1conf *conf = mddev->private;
1824 	int count = 0;
1825 	unsigned long flags;
1826 
1827 	/*
1828 	 * Find all failed disks within the RAID1 configuration
1829 	 * and mark them readable.
1830 	 * Called under mddev lock, so rcu protection not needed.
1831 	 * device_lock used to avoid races with raid1_end_read_request
1832 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1833 	 */
1834 	spin_lock_irqsave(&conf->device_lock, flags);
1835 	for (i = 0; i < conf->raid_disks; i++) {
1836 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1837 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1838 		if (repl
1839 		    && !test_bit(Candidate, &repl->flags)
1840 		    && repl->recovery_offset == MaxSector
1841 		    && !test_bit(Faulty, &repl->flags)
1842 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1843 			/* replacement has just become active */
1844 			if (!rdev ||
1845 			    !test_and_clear_bit(In_sync, &rdev->flags))
1846 				count++;
1847 			if (rdev) {
1848 				/* Replaced device not technically
1849 				 * faulty, but we need to be sure
1850 				 * it gets removed and never re-added
1851 				 */
1852 				set_bit(Faulty, &rdev->flags);
1853 				sysfs_notify_dirent_safe(
1854 					rdev->sysfs_state);
1855 			}
1856 		}
1857 		if (rdev
1858 		    && rdev->recovery_offset == MaxSector
1859 		    && !test_bit(Faulty, &rdev->flags)
1860 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1861 			count++;
1862 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1863 		}
1864 	}
1865 	mddev->degraded -= count;
1866 	spin_unlock_irqrestore(&conf->device_lock, flags);
1867 
1868 	print_conf(conf);
1869 	return count;
1870 }
1871 
1872 static bool raid1_add_conf(struct r1conf *conf, struct md_rdev *rdev, int disk,
1873 			   bool replacement)
1874 {
1875 	struct raid1_info *info = conf->mirrors + disk;
1876 
1877 	if (replacement)
1878 		info += conf->raid_disks;
1879 
1880 	if (info->rdev)
1881 		return false;
1882 
1883 	if (bdev_nonrot(rdev->bdev)) {
1884 		set_bit(Nonrot, &rdev->flags);
1885 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks + 1);
1886 	}
1887 
1888 	rdev->raid_disk = disk;
1889 	info->head_position = 0;
1890 	info->seq_start = MaxSector;
1891 	WRITE_ONCE(info->rdev, rdev);
1892 
1893 	return true;
1894 }
1895 
1896 static bool raid1_remove_conf(struct r1conf *conf, int disk)
1897 {
1898 	struct raid1_info *info = conf->mirrors + disk;
1899 	struct md_rdev *rdev = info->rdev;
1900 
1901 	if (!rdev || test_bit(In_sync, &rdev->flags) ||
1902 	    atomic_read(&rdev->nr_pending))
1903 		return false;
1904 
1905 	/* Only remove non-faulty devices if recovery is not possible. */
1906 	if (!test_bit(Faulty, &rdev->flags) &&
1907 	    rdev->mddev->recovery_disabled != conf->recovery_disabled &&
1908 	    rdev->mddev->degraded < conf->raid_disks)
1909 		return false;
1910 
1911 	if (test_and_clear_bit(Nonrot, &rdev->flags))
1912 		WRITE_ONCE(conf->nonrot_disks, conf->nonrot_disks - 1);
1913 
1914 	WRITE_ONCE(info->rdev, NULL);
1915 	return true;
1916 }
1917 
1918 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1919 {
1920 	struct r1conf *conf = mddev->private;
1921 	int err = -EEXIST;
1922 	int mirror = 0, repl_slot = -1;
1923 	struct raid1_info *p;
1924 	int first = 0;
1925 	int last = conf->raid_disks - 1;
1926 
1927 	if (mddev->recovery_disabled == conf->recovery_disabled)
1928 		return -EBUSY;
1929 
1930 	if (rdev->raid_disk >= 0)
1931 		first = last = rdev->raid_disk;
1932 
1933 	/*
1934 	 * find the disk ... but prefer rdev->saved_raid_disk
1935 	 * if possible.
1936 	 */
1937 	if (rdev->saved_raid_disk >= 0 &&
1938 	    rdev->saved_raid_disk >= first &&
1939 	    rdev->saved_raid_disk < conf->raid_disks &&
1940 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1941 		first = last = rdev->saved_raid_disk;
1942 
1943 	for (mirror = first; mirror <= last; mirror++) {
1944 		p = conf->mirrors + mirror;
1945 		if (!p->rdev) {
1946 			err = mddev_stack_new_rdev(mddev, rdev);
1947 			if (err)
1948 				return err;
1949 
1950 			raid1_add_conf(conf, rdev, mirror, false);
1951 			/* As all devices are equivalent, we don't need a full recovery
1952 			 * if this was recently any drive of the array
1953 			 */
1954 			if (rdev->saved_raid_disk < 0)
1955 				conf->fullsync = 1;
1956 			break;
1957 		}
1958 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1959 		    p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1960 			repl_slot = mirror;
1961 	}
1962 
1963 	if (err && repl_slot >= 0) {
1964 		/* Add this device as a replacement */
1965 		clear_bit(In_sync, &rdev->flags);
1966 		set_bit(Replacement, &rdev->flags);
1967 		raid1_add_conf(conf, rdev, repl_slot, true);
1968 		err = 0;
1969 		conf->fullsync = 1;
1970 	}
1971 
1972 	print_conf(conf);
1973 	return err;
1974 }
1975 
1976 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1977 {
1978 	struct r1conf *conf = mddev->private;
1979 	int err = 0;
1980 	int number = rdev->raid_disk;
1981 	struct raid1_info *p = conf->mirrors + number;
1982 
1983 	if (unlikely(number >= conf->raid_disks))
1984 		goto abort;
1985 
1986 	if (rdev != p->rdev) {
1987 		number += conf->raid_disks;
1988 		p = conf->mirrors + number;
1989 	}
1990 
1991 	print_conf(conf);
1992 	if (rdev == p->rdev) {
1993 		if (!raid1_remove_conf(conf, number)) {
1994 			err = -EBUSY;
1995 			goto abort;
1996 		}
1997 
1998 		if (number < conf->raid_disks &&
1999 		    conf->mirrors[conf->raid_disks + number].rdev) {
2000 			/* We just removed a device that is being replaced.
2001 			 * Move down the replacement.  We drain all IO before
2002 			 * doing this to avoid confusion.
2003 			 */
2004 			struct md_rdev *repl =
2005 				conf->mirrors[conf->raid_disks + number].rdev;
2006 			freeze_array(conf, 0);
2007 			if (atomic_read(&repl->nr_pending)) {
2008 				/* It means that some queued IO of retry_list
2009 				 * hold repl. Thus, we cannot set replacement
2010 				 * as NULL, avoiding rdev NULL pointer
2011 				 * dereference in sync_request_write and
2012 				 * handle_write_finished.
2013 				 */
2014 				err = -EBUSY;
2015 				unfreeze_array(conf);
2016 				goto abort;
2017 			}
2018 			clear_bit(Replacement, &repl->flags);
2019 			WRITE_ONCE(p->rdev, repl);
2020 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
2021 			unfreeze_array(conf);
2022 		}
2023 
2024 		clear_bit(WantReplacement, &rdev->flags);
2025 		err = md_integrity_register(mddev);
2026 	}
2027 abort:
2028 
2029 	print_conf(conf);
2030 	return err;
2031 }
2032 
2033 static void end_sync_read(struct bio *bio)
2034 {
2035 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2036 
2037 	update_head_pos(r1_bio->read_disk, r1_bio);
2038 
2039 	/*
2040 	 * we have read a block, now it needs to be re-written,
2041 	 * or re-read if the read failed.
2042 	 * We don't do much here, just schedule handling by raid1d
2043 	 */
2044 	if (!bio->bi_status)
2045 		set_bit(R1BIO_Uptodate, &r1_bio->state);
2046 
2047 	if (atomic_dec_and_test(&r1_bio->remaining))
2048 		reschedule_retry(r1_bio);
2049 }
2050 
2051 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
2052 {
2053 	sector_t sync_blocks = 0;
2054 	sector_t s = r1_bio->sector;
2055 	long sectors_to_go = r1_bio->sectors;
2056 
2057 	/* make sure these bits don't get cleared. */
2058 	do {
2059 		md_bitmap_end_sync(mddev, s, &sync_blocks);
2060 		s += sync_blocks;
2061 		sectors_to_go -= sync_blocks;
2062 	} while (sectors_to_go > 0);
2063 }
2064 
2065 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
2066 {
2067 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2068 		struct mddev *mddev = r1_bio->mddev;
2069 		int s = r1_bio->sectors;
2070 
2071 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2073 			reschedule_retry(r1_bio);
2074 		else {
2075 			put_buf(r1_bio);
2076 			md_done_sync(mddev, s, uptodate);
2077 		}
2078 	}
2079 }
2080 
2081 static void end_sync_write(struct bio *bio)
2082 {
2083 	int uptodate = !bio->bi_status;
2084 	struct r1bio *r1_bio = get_resync_r1bio(bio);
2085 	struct mddev *mddev = r1_bio->mddev;
2086 	struct r1conf *conf = mddev->private;
2087 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
2088 
2089 	if (!uptodate) {
2090 		abort_sync_write(mddev, r1_bio);
2091 		set_bit(WriteErrorSeen, &rdev->flags);
2092 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2093 			set_bit(MD_RECOVERY_NEEDED, &
2094 				mddev->recovery);
2095 		set_bit(R1BIO_WriteError, &r1_bio->state);
2096 	} else if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors) &&
2097 		   !rdev_has_badblock(conf->mirrors[r1_bio->read_disk].rdev,
2098 				      r1_bio->sector, r1_bio->sectors)) {
2099 		set_bit(R1BIO_MadeGood, &r1_bio->state);
2100 	}
2101 
2102 	put_sync_write_buf(r1_bio, uptodate);
2103 }
2104 
2105 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
2106 			   int sectors, struct page *page, blk_opf_t rw)
2107 {
2108 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2109 		/* success */
2110 		return 1;
2111 	if (rw == REQ_OP_WRITE) {
2112 		set_bit(WriteErrorSeen, &rdev->flags);
2113 		if (!test_and_set_bit(WantReplacement,
2114 				      &rdev->flags))
2115 			set_bit(MD_RECOVERY_NEEDED, &
2116 				rdev->mddev->recovery);
2117 	}
2118 	/* need to record an error - either for the block or the device */
2119 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2120 		md_error(rdev->mddev, rdev);
2121 	return 0;
2122 }
2123 
2124 static int fix_sync_read_error(struct r1bio *r1_bio)
2125 {
2126 	/* Try some synchronous reads of other devices to get
2127 	 * good data, much like with normal read errors.  Only
2128 	 * read into the pages we already have so we don't
2129 	 * need to re-issue the read request.
2130 	 * We don't need to freeze the array, because being in an
2131 	 * active sync request, there is no normal IO, and
2132 	 * no overlapping syncs.
2133 	 * We don't need to check is_badblock() again as we
2134 	 * made sure that anything with a bad block in range
2135 	 * will have bi_end_io clear.
2136 	 */
2137 	struct mddev *mddev = r1_bio->mddev;
2138 	struct r1conf *conf = mddev->private;
2139 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2140 	struct page **pages = get_resync_pages(bio)->pages;
2141 	sector_t sect = r1_bio->sector;
2142 	int sectors = r1_bio->sectors;
2143 	int idx = 0;
2144 	struct md_rdev *rdev;
2145 
2146 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2147 	if (test_bit(FailFast, &rdev->flags)) {
2148 		/* Don't try recovering from here - just fail it
2149 		 * ... unless it is the last working device of course */
2150 		md_error(mddev, rdev);
2151 		if (test_bit(Faulty, &rdev->flags))
2152 			/* Don't try to read from here, but make sure
2153 			 * put_buf does it's thing
2154 			 */
2155 			bio->bi_end_io = end_sync_write;
2156 	}
2157 
2158 	while(sectors) {
2159 		int s = sectors;
2160 		int d = r1_bio->read_disk;
2161 		int success = 0;
2162 		int start;
2163 
2164 		if (s > (PAGE_SIZE>>9))
2165 			s = PAGE_SIZE >> 9;
2166 		do {
2167 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2168 				/* No rcu protection needed here devices
2169 				 * can only be removed when no resync is
2170 				 * active, and resync is currently active
2171 				 */
2172 				rdev = conf->mirrors[d].rdev;
2173 				if (sync_page_io(rdev, sect, s<<9,
2174 						 pages[idx],
2175 						 REQ_OP_READ, false)) {
2176 					success = 1;
2177 					break;
2178 				}
2179 			}
2180 			d++;
2181 			if (d == conf->raid_disks * 2)
2182 				d = 0;
2183 		} while (!success && d != r1_bio->read_disk);
2184 
2185 		if (!success) {
2186 			int abort = 0;
2187 			/* Cannot read from anywhere, this block is lost.
2188 			 * Record a bad block on each device.  If that doesn't
2189 			 * work just disable and interrupt the recovery.
2190 			 * Don't fail devices as that won't really help.
2191 			 */
2192 			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2193 					    mdname(mddev), bio->bi_bdev,
2194 					    (unsigned long long)r1_bio->sector);
2195 			for (d = 0; d < conf->raid_disks * 2; d++) {
2196 				rdev = conf->mirrors[d].rdev;
2197 				if (!rdev || test_bit(Faulty, &rdev->flags))
2198 					continue;
2199 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2200 					abort = 1;
2201 			}
2202 			if (abort)
2203 				return 0;
2204 
2205 			/* Try next page */
2206 			sectors -= s;
2207 			sect += s;
2208 			idx++;
2209 			continue;
2210 		}
2211 
2212 		start = d;
2213 		/* write it back and re-read */
2214 		while (d != r1_bio->read_disk) {
2215 			if (d == 0)
2216 				d = conf->raid_disks * 2;
2217 			d--;
2218 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2219 				continue;
2220 			rdev = conf->mirrors[d].rdev;
2221 			if (r1_sync_page_io(rdev, sect, s,
2222 					    pages[idx],
2223 					    REQ_OP_WRITE) == 0) {
2224 				r1_bio->bios[d]->bi_end_io = NULL;
2225 				rdev_dec_pending(rdev, mddev);
2226 			}
2227 		}
2228 		d = start;
2229 		while (d != r1_bio->read_disk) {
2230 			if (d == 0)
2231 				d = conf->raid_disks * 2;
2232 			d--;
2233 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2234 				continue;
2235 			rdev = conf->mirrors[d].rdev;
2236 			if (r1_sync_page_io(rdev, sect, s,
2237 					    pages[idx],
2238 					    REQ_OP_READ) != 0)
2239 				atomic_add(s, &rdev->corrected_errors);
2240 		}
2241 		sectors -= s;
2242 		sect += s;
2243 		idx ++;
2244 	}
2245 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2246 	bio->bi_status = 0;
2247 	return 1;
2248 }
2249 
2250 static void process_checks(struct r1bio *r1_bio)
2251 {
2252 	/* We have read all readable devices.  If we haven't
2253 	 * got the block, then there is no hope left.
2254 	 * If we have, then we want to do a comparison
2255 	 * and skip the write if everything is the same.
2256 	 * If any blocks failed to read, then we need to
2257 	 * attempt an over-write
2258 	 */
2259 	struct mddev *mddev = r1_bio->mddev;
2260 	struct r1conf *conf = mddev->private;
2261 	int primary;
2262 	int i;
2263 	int vcnt;
2264 
2265 	/* Fix variable parts of all bios */
2266 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2267 	for (i = 0; i < conf->raid_disks * 2; i++) {
2268 		blk_status_t status;
2269 		struct bio *b = r1_bio->bios[i];
2270 		struct resync_pages *rp = get_resync_pages(b);
2271 		if (b->bi_end_io != end_sync_read)
2272 			continue;
2273 		/* fixup the bio for reuse, but preserve errno */
2274 		status = b->bi_status;
2275 		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
2276 		b->bi_status = status;
2277 		b->bi_iter.bi_sector = r1_bio->sector +
2278 			conf->mirrors[i].rdev->data_offset;
2279 		b->bi_end_io = end_sync_read;
2280 		rp->raid_bio = r1_bio;
2281 		b->bi_private = rp;
2282 
2283 		/* initialize bvec table again */
2284 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2285 	}
2286 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2287 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2288 		    !r1_bio->bios[primary]->bi_status) {
2289 			r1_bio->bios[primary]->bi_end_io = NULL;
2290 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2291 			break;
2292 		}
2293 	r1_bio->read_disk = primary;
2294 	for (i = 0; i < conf->raid_disks * 2; i++) {
2295 		int j = 0;
2296 		struct bio *pbio = r1_bio->bios[primary];
2297 		struct bio *sbio = r1_bio->bios[i];
2298 		blk_status_t status = sbio->bi_status;
2299 		struct page **ppages = get_resync_pages(pbio)->pages;
2300 		struct page **spages = get_resync_pages(sbio)->pages;
2301 		struct bio_vec *bi;
2302 		int page_len[RESYNC_PAGES] = { 0 };
2303 		struct bvec_iter_all iter_all;
2304 
2305 		if (sbio->bi_end_io != end_sync_read)
2306 			continue;
2307 		/* Now we can 'fixup' the error value */
2308 		sbio->bi_status = 0;
2309 
2310 		bio_for_each_segment_all(bi, sbio, iter_all)
2311 			page_len[j++] = bi->bv_len;
2312 
2313 		if (!status) {
2314 			for (j = vcnt; j-- ; ) {
2315 				if (memcmp(page_address(ppages[j]),
2316 					   page_address(spages[j]),
2317 					   page_len[j]))
2318 					break;
2319 			}
2320 		} else
2321 			j = 0;
2322 		if (j >= 0)
2323 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2324 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2325 			      && !status)) {
2326 			/* No need to write to this device. */
2327 			sbio->bi_end_io = NULL;
2328 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2329 			continue;
2330 		}
2331 
2332 		bio_copy_data(sbio, pbio);
2333 	}
2334 }
2335 
2336 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2337 {
2338 	struct r1conf *conf = mddev->private;
2339 	int i;
2340 	int disks = conf->raid_disks * 2;
2341 	struct bio *wbio;
2342 
2343 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
2344 		/*
2345 		 * ouch - failed to read all of that.
2346 		 * No need to fix read error for check/repair
2347 		 * because all member disks are read.
2348 		 */
2349 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) ||
2350 		    !fix_sync_read_error(r1_bio)) {
2351 			conf->recovery_disabled = mddev->recovery_disabled;
2352 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2353 			md_done_sync(mddev, r1_bio->sectors, 0);
2354 			put_buf(r1_bio);
2355 			return;
2356 		}
2357 	}
2358 
2359 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2360 		process_checks(r1_bio);
2361 
2362 	/*
2363 	 * schedule writes
2364 	 */
2365 	atomic_set(&r1_bio->remaining, 1);
2366 	for (i = 0; i < disks ; i++) {
2367 		wbio = r1_bio->bios[i];
2368 		if (wbio->bi_end_io == NULL ||
2369 		    (wbio->bi_end_io == end_sync_read &&
2370 		     (i == r1_bio->read_disk ||
2371 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2372 			continue;
2373 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2374 			abort_sync_write(mddev, r1_bio);
2375 			continue;
2376 		}
2377 
2378 		wbio->bi_opf = REQ_OP_WRITE;
2379 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2380 			wbio->bi_opf |= MD_FAILFAST;
2381 
2382 		wbio->bi_end_io = end_sync_write;
2383 		atomic_inc(&r1_bio->remaining);
2384 
2385 		submit_bio_noacct(wbio);
2386 	}
2387 
2388 	put_sync_write_buf(r1_bio, 1);
2389 }
2390 
2391 /*
2392  * This is a kernel thread which:
2393  *
2394  *	1.	Retries failed read operations on working mirrors.
2395  *	2.	Updates the raid superblock when problems encounter.
2396  *	3.	Performs writes following reads for array synchronising.
2397  */
2398 
2399 static void fix_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2400 {
2401 	sector_t sect = r1_bio->sector;
2402 	int sectors = r1_bio->sectors;
2403 	int read_disk = r1_bio->read_disk;
2404 	struct mddev *mddev = conf->mddev;
2405 	struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2406 
2407 	if (exceed_read_errors(mddev, rdev)) {
2408 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2409 		return;
2410 	}
2411 
2412 	while(sectors) {
2413 		int s = sectors;
2414 		int d = read_disk;
2415 		int success = 0;
2416 		int start;
2417 
2418 		if (s > (PAGE_SIZE>>9))
2419 			s = PAGE_SIZE >> 9;
2420 
2421 		do {
2422 			rdev = conf->mirrors[d].rdev;
2423 			if (rdev &&
2424 			    (test_bit(In_sync, &rdev->flags) ||
2425 			     (!test_bit(Faulty, &rdev->flags) &&
2426 			      rdev->recovery_offset >= sect + s)) &&
2427 			    rdev_has_badblock(rdev, sect, s) == 0) {
2428 				atomic_inc(&rdev->nr_pending);
2429 				if (sync_page_io(rdev, sect, s<<9,
2430 					 conf->tmppage, REQ_OP_READ, false))
2431 					success = 1;
2432 				rdev_dec_pending(rdev, mddev);
2433 				if (success)
2434 					break;
2435 			}
2436 
2437 			d++;
2438 			if (d == conf->raid_disks * 2)
2439 				d = 0;
2440 		} while (d != read_disk);
2441 
2442 		if (!success) {
2443 			/* Cannot read from anywhere - mark it bad */
2444 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2445 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2446 				md_error(mddev, rdev);
2447 			break;
2448 		}
2449 		/* write it back and re-read */
2450 		start = d;
2451 		while (d != read_disk) {
2452 			if (d==0)
2453 				d = conf->raid_disks * 2;
2454 			d--;
2455 			rdev = conf->mirrors[d].rdev;
2456 			if (rdev &&
2457 			    !test_bit(Faulty, &rdev->flags)) {
2458 				atomic_inc(&rdev->nr_pending);
2459 				r1_sync_page_io(rdev, sect, s,
2460 						conf->tmppage, REQ_OP_WRITE);
2461 				rdev_dec_pending(rdev, mddev);
2462 			}
2463 		}
2464 		d = start;
2465 		while (d != read_disk) {
2466 			if (d==0)
2467 				d = conf->raid_disks * 2;
2468 			d--;
2469 			rdev = conf->mirrors[d].rdev;
2470 			if (rdev &&
2471 			    !test_bit(Faulty, &rdev->flags)) {
2472 				atomic_inc(&rdev->nr_pending);
2473 				if (r1_sync_page_io(rdev, sect, s,
2474 						conf->tmppage, REQ_OP_READ)) {
2475 					atomic_add(s, &rdev->corrected_errors);
2476 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2477 						mdname(mddev), s,
2478 						(unsigned long long)(sect +
2479 								     rdev->data_offset),
2480 						rdev->bdev);
2481 				}
2482 				rdev_dec_pending(rdev, mddev);
2483 			}
2484 		}
2485 		sectors -= s;
2486 		sect += s;
2487 	}
2488 }
2489 
2490 static bool narrow_write_error(struct r1bio *r1_bio, int i)
2491 {
2492 	struct mddev *mddev = r1_bio->mddev;
2493 	struct r1conf *conf = mddev->private;
2494 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2495 
2496 	/* bio has the data to be written to device 'i' where
2497 	 * we just recently had a write error.
2498 	 * We repeatedly clone the bio and trim down to one block,
2499 	 * then try the write.  Where the write fails we record
2500 	 * a bad block.
2501 	 * It is conceivable that the bio doesn't exactly align with
2502 	 * blocks.  We must handle this somehow.
2503 	 *
2504 	 * We currently own a reference on the rdev.
2505 	 */
2506 
2507 	int block_sectors;
2508 	sector_t sector;
2509 	int sectors;
2510 	int sect_to_write = r1_bio->sectors;
2511 	bool ok = true;
2512 
2513 	if (rdev->badblocks.shift < 0)
2514 		return false;
2515 
2516 	block_sectors = roundup(1 << rdev->badblocks.shift,
2517 				bdev_logical_block_size(rdev->bdev) >> 9);
2518 	sector = r1_bio->sector;
2519 	sectors = ((sector + block_sectors)
2520 		   & ~(sector_t)(block_sectors - 1))
2521 		- sector;
2522 
2523 	while (sect_to_write) {
2524 		struct bio *wbio;
2525 		if (sectors > sect_to_write)
2526 			sectors = sect_to_write;
2527 		/* Write at 'sector' for 'sectors'*/
2528 
2529 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2530 			wbio = bio_alloc_clone(rdev->bdev,
2531 					       r1_bio->behind_master_bio,
2532 					       GFP_NOIO, &mddev->bio_set);
2533 		} else {
2534 			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
2535 					       GFP_NOIO, &mddev->bio_set);
2536 		}
2537 
2538 		wbio->bi_opf = REQ_OP_WRITE;
2539 		wbio->bi_iter.bi_sector = r1_bio->sector;
2540 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2541 
2542 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2543 		wbio->bi_iter.bi_sector += rdev->data_offset;
2544 
2545 		if (submit_bio_wait(wbio) < 0)
2546 			/* failure! */
2547 			ok = rdev_set_badblocks(rdev, sector,
2548 						sectors, 0)
2549 				&& ok;
2550 
2551 		bio_put(wbio);
2552 		sect_to_write -= sectors;
2553 		sector += sectors;
2554 		sectors = block_sectors;
2555 	}
2556 	return ok;
2557 }
2558 
2559 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2560 {
2561 	int m;
2562 	int s = r1_bio->sectors;
2563 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2564 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2565 		struct bio *bio = r1_bio->bios[m];
2566 		if (bio->bi_end_io == NULL)
2567 			continue;
2568 		if (!bio->bi_status &&
2569 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2570 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2571 		}
2572 		if (bio->bi_status &&
2573 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2574 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2575 				md_error(conf->mddev, rdev);
2576 		}
2577 	}
2578 	put_buf(r1_bio);
2579 	md_done_sync(conf->mddev, s, 1);
2580 }
2581 
2582 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2583 {
2584 	int m, idx;
2585 	bool fail = false;
2586 
2587 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2588 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2589 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2590 			rdev_clear_badblocks(rdev,
2591 					     r1_bio->sector,
2592 					     r1_bio->sectors, 0);
2593 			rdev_dec_pending(rdev, conf->mddev);
2594 		} else if (r1_bio->bios[m] != NULL) {
2595 			/* This drive got a write error.  We need to
2596 			 * narrow down and record precise write
2597 			 * errors.
2598 			 */
2599 			fail = true;
2600 			if (!narrow_write_error(r1_bio, m))
2601 				md_error(conf->mddev,
2602 					 conf->mirrors[m].rdev);
2603 				/* an I/O failed, we can't clear the bitmap */
2604 			rdev_dec_pending(conf->mirrors[m].rdev,
2605 					 conf->mddev);
2606 		}
2607 	if (fail) {
2608 		spin_lock_irq(&conf->device_lock);
2609 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2610 		idx = sector_to_idx(r1_bio->sector);
2611 		atomic_inc(&conf->nr_queued[idx]);
2612 		spin_unlock_irq(&conf->device_lock);
2613 		/*
2614 		 * In case freeze_array() is waiting for condition
2615 		 * get_unqueued_pending() == extra to be true.
2616 		 */
2617 		wake_up(&conf->wait_barrier);
2618 		md_wakeup_thread(conf->mddev->thread);
2619 	} else {
2620 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2621 			close_write(r1_bio);
2622 		raid_end_bio_io(r1_bio);
2623 	}
2624 }
2625 
2626 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2627 {
2628 	struct mddev *mddev = conf->mddev;
2629 	struct bio *bio;
2630 	struct md_rdev *rdev;
2631 	sector_t sector;
2632 
2633 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2634 	/* we got a read error. Maybe the drive is bad.  Maybe just
2635 	 * the block and we can fix it.
2636 	 * We freeze all other IO, and try reading the block from
2637 	 * other devices.  When we find one, we re-write
2638 	 * and check it that fixes the read error.
2639 	 * This is all done synchronously while the array is
2640 	 * frozen
2641 	 */
2642 
2643 	bio = r1_bio->bios[r1_bio->read_disk];
2644 	bio_put(bio);
2645 	r1_bio->bios[r1_bio->read_disk] = NULL;
2646 
2647 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2648 	if (mddev->ro == 0
2649 	    && !test_bit(FailFast, &rdev->flags)) {
2650 		freeze_array(conf, 1);
2651 		fix_read_error(conf, r1_bio);
2652 		unfreeze_array(conf);
2653 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2654 		md_error(mddev, rdev);
2655 	} else {
2656 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2657 	}
2658 
2659 	rdev_dec_pending(rdev, conf->mddev);
2660 	sector = r1_bio->sector;
2661 	bio = r1_bio->master_bio;
2662 
2663 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2664 	r1_bio->state = 0;
2665 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2666 	allow_barrier(conf, sector);
2667 }
2668 
2669 static void raid1d(struct md_thread *thread)
2670 {
2671 	struct mddev *mddev = thread->mddev;
2672 	struct r1bio *r1_bio;
2673 	unsigned long flags;
2674 	struct r1conf *conf = mddev->private;
2675 	struct list_head *head = &conf->retry_list;
2676 	struct blk_plug plug;
2677 	int idx;
2678 
2679 	md_check_recovery(mddev);
2680 
2681 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2682 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2683 		LIST_HEAD(tmp);
2684 		spin_lock_irqsave(&conf->device_lock, flags);
2685 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2686 			list_splice_init(&conf->bio_end_io_list, &tmp);
2687 		spin_unlock_irqrestore(&conf->device_lock, flags);
2688 		while (!list_empty(&tmp)) {
2689 			r1_bio = list_first_entry(&tmp, struct r1bio,
2690 						  retry_list);
2691 			list_del(&r1_bio->retry_list);
2692 			idx = sector_to_idx(r1_bio->sector);
2693 			atomic_dec(&conf->nr_queued[idx]);
2694 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2695 				close_write(r1_bio);
2696 			raid_end_bio_io(r1_bio);
2697 		}
2698 	}
2699 
2700 	blk_start_plug(&plug);
2701 	for (;;) {
2702 
2703 		flush_pending_writes(conf);
2704 
2705 		spin_lock_irqsave(&conf->device_lock, flags);
2706 		if (list_empty(head)) {
2707 			spin_unlock_irqrestore(&conf->device_lock, flags);
2708 			break;
2709 		}
2710 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2711 		list_del(head->prev);
2712 		idx = sector_to_idx(r1_bio->sector);
2713 		atomic_dec(&conf->nr_queued[idx]);
2714 		spin_unlock_irqrestore(&conf->device_lock, flags);
2715 
2716 		mddev = r1_bio->mddev;
2717 		conf = mddev->private;
2718 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2719 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2720 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2721 				handle_sync_write_finished(conf, r1_bio);
2722 			else
2723 				sync_request_write(mddev, r1_bio);
2724 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2725 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2726 			handle_write_finished(conf, r1_bio);
2727 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2728 			handle_read_error(conf, r1_bio);
2729 		else
2730 			WARN_ON_ONCE(1);
2731 
2732 		cond_resched();
2733 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2734 			md_check_recovery(mddev);
2735 	}
2736 	blk_finish_plug(&plug);
2737 }
2738 
2739 static int init_resync(struct r1conf *conf)
2740 {
2741 	int buffs;
2742 
2743 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2744 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2745 
2746 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2747 			    r1buf_pool_free, conf);
2748 }
2749 
2750 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2751 {
2752 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2753 	struct resync_pages *rps;
2754 	struct bio *bio;
2755 	int i;
2756 
2757 	for (i = conf->raid_disks * 2; i--; ) {
2758 		bio = r1bio->bios[i];
2759 		rps = bio->bi_private;
2760 		bio_reset(bio, NULL, 0);
2761 		bio->bi_private = rps;
2762 	}
2763 	r1bio->master_bio = NULL;
2764 	return r1bio;
2765 }
2766 
2767 /*
2768  * perform a "sync" on one "block"
2769  *
2770  * We need to make sure that no normal I/O request - particularly write
2771  * requests - conflict with active sync requests.
2772  *
2773  * This is achieved by tracking pending requests and a 'barrier' concept
2774  * that can be installed to exclude normal IO requests.
2775  */
2776 
2777 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2778 				   sector_t max_sector, int *skipped)
2779 {
2780 	struct r1conf *conf = mddev->private;
2781 	struct r1bio *r1_bio;
2782 	struct bio *bio;
2783 	sector_t nr_sectors;
2784 	int disk = -1;
2785 	int i;
2786 	int wonly = -1;
2787 	int write_targets = 0, read_targets = 0;
2788 	sector_t sync_blocks;
2789 	bool still_degraded = false;
2790 	int good_sectors = RESYNC_SECTORS;
2791 	int min_bad = 0; /* number of sectors that are bad in all devices */
2792 	int idx = sector_to_idx(sector_nr);
2793 	int page_idx = 0;
2794 
2795 	if (!mempool_initialized(&conf->r1buf_pool))
2796 		if (init_resync(conf))
2797 			return 0;
2798 
2799 	if (sector_nr >= max_sector) {
2800 		/* If we aborted, we need to abort the
2801 		 * sync on the 'current' bitmap chunk (there will
2802 		 * only be one in raid1 resync.
2803 		 * We can find the current addess in mddev->curr_resync
2804 		 */
2805 		if (mddev->curr_resync < max_sector) /* aborted */
2806 			md_bitmap_end_sync(mddev, mddev->curr_resync,
2807 					   &sync_blocks);
2808 		else /* completed sync */
2809 			conf->fullsync = 0;
2810 
2811 		if (md_bitmap_enabled(mddev, false))
2812 			mddev->bitmap_ops->close_sync(mddev);
2813 		close_sync(conf);
2814 
2815 		if (mddev_is_clustered(mddev)) {
2816 			conf->cluster_sync_low = 0;
2817 			conf->cluster_sync_high = 0;
2818 		}
2819 		return 0;
2820 	}
2821 
2822 	if (mddev->bitmap == NULL &&
2823 	    mddev->resync_offset == MaxSector &&
2824 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2825 	    conf->fullsync == 0) {
2826 		*skipped = 1;
2827 		return max_sector - sector_nr;
2828 	}
2829 	/* before building a request, check if we can skip these blocks..
2830 	 * This call the bitmap_start_sync doesn't actually record anything
2831 	 */
2832 	if (!md_bitmap_start_sync(mddev, sector_nr, &sync_blocks, true) &&
2833 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2834 		/* We can skip this block, and probably several more */
2835 		*skipped = 1;
2836 		return sync_blocks;
2837 	}
2838 
2839 	/*
2840 	 * If there is non-resync activity waiting for a turn, then let it
2841 	 * though before starting on this new sync request.
2842 	 */
2843 	if (atomic_read(&conf->nr_waiting[idx]))
2844 		schedule_timeout_uninterruptible(1);
2845 
2846 	/* we are incrementing sector_nr below. To be safe, we check against
2847 	 * sector_nr + two times RESYNC_SECTORS
2848 	 */
2849 	if (md_bitmap_enabled(mddev, false))
2850 		mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
2851 			mddev_is_clustered(mddev) &&
2852 			(sector_nr + 2 * RESYNC_SECTORS >
2853 			 conf->cluster_sync_high));
2854 
2855 	if (raise_barrier(conf, sector_nr))
2856 		return 0;
2857 
2858 	r1_bio = raid1_alloc_init_r1buf(conf);
2859 
2860 	/*
2861 	 * If we get a correctably read error during resync or recovery,
2862 	 * we might want to read from a different device.  So we
2863 	 * flag all drives that could conceivably be read from for READ,
2864 	 * and any others (which will be non-In_sync devices) for WRITE.
2865 	 * If a read fails, we try reading from something else for which READ
2866 	 * is OK.
2867 	 */
2868 
2869 	r1_bio->mddev = mddev;
2870 	r1_bio->sector = sector_nr;
2871 	r1_bio->state = 0;
2872 	set_bit(R1BIO_IsSync, &r1_bio->state);
2873 	/* make sure good_sectors won't go across barrier unit boundary */
2874 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2875 
2876 	for (i = 0; i < conf->raid_disks * 2; i++) {
2877 		struct md_rdev *rdev;
2878 		bio = r1_bio->bios[i];
2879 
2880 		rdev = conf->mirrors[i].rdev;
2881 		if (rdev == NULL ||
2882 		    test_bit(Faulty, &rdev->flags)) {
2883 			if (i < conf->raid_disks)
2884 				still_degraded = true;
2885 		} else if (!test_bit(In_sync, &rdev->flags)) {
2886 			bio->bi_opf = REQ_OP_WRITE;
2887 			bio->bi_end_io = end_sync_write;
2888 			write_targets ++;
2889 		} else {
2890 			/* may need to read from here */
2891 			sector_t first_bad = MaxSector;
2892 			sector_t bad_sectors;
2893 
2894 			if (is_badblock(rdev, sector_nr, good_sectors,
2895 					&first_bad, &bad_sectors)) {
2896 				if (first_bad > sector_nr)
2897 					good_sectors = first_bad - sector_nr;
2898 				else {
2899 					bad_sectors -= (sector_nr - first_bad);
2900 					if (min_bad == 0 ||
2901 					    min_bad > bad_sectors)
2902 						min_bad = bad_sectors;
2903 				}
2904 			}
2905 			if (sector_nr < first_bad) {
2906 				if (test_bit(WriteMostly, &rdev->flags)) {
2907 					if (wonly < 0)
2908 						wonly = i;
2909 				} else {
2910 					if (disk < 0)
2911 						disk = i;
2912 				}
2913 				bio->bi_opf = REQ_OP_READ;
2914 				bio->bi_end_io = end_sync_read;
2915 				read_targets++;
2916 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2917 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2918 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2919 				/*
2920 				 * The device is suitable for reading (InSync),
2921 				 * but has bad block(s) here. Let's try to correct them,
2922 				 * if we are doing resync or repair. Otherwise, leave
2923 				 * this device alone for this sync request.
2924 				 */
2925 				bio->bi_opf = REQ_OP_WRITE;
2926 				bio->bi_end_io = end_sync_write;
2927 				write_targets++;
2928 			}
2929 		}
2930 		if (rdev && bio->bi_end_io) {
2931 			atomic_inc(&rdev->nr_pending);
2932 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2933 			bio_set_dev(bio, rdev->bdev);
2934 			if (test_bit(FailFast, &rdev->flags))
2935 				bio->bi_opf |= MD_FAILFAST;
2936 		}
2937 	}
2938 	if (disk < 0)
2939 		disk = wonly;
2940 	r1_bio->read_disk = disk;
2941 
2942 	if (read_targets == 0 && min_bad > 0) {
2943 		/* These sectors are bad on all InSync devices, so we
2944 		 * need to mark them bad on all write targets
2945 		 */
2946 		int ok = 1;
2947 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2948 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2949 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2950 				ok = rdev_set_badblocks(rdev, sector_nr,
2951 							min_bad, 0
2952 					) && ok;
2953 			}
2954 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2955 		*skipped = 1;
2956 		put_buf(r1_bio);
2957 
2958 		if (!ok) {
2959 			/* Cannot record the badblocks, so need to
2960 			 * abort the resync.
2961 			 * If there are multiple read targets, could just
2962 			 * fail the really bad ones ???
2963 			 */
2964 			conf->recovery_disabled = mddev->recovery_disabled;
2965 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2966 			return 0;
2967 		} else
2968 			return min_bad;
2969 
2970 	}
2971 	if (min_bad > 0 && min_bad < good_sectors) {
2972 		/* only resync enough to reach the next bad->good
2973 		 * transition */
2974 		good_sectors = min_bad;
2975 	}
2976 
2977 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2978 		/* extra read targets are also write targets */
2979 		write_targets += read_targets-1;
2980 
2981 	if (write_targets == 0 || read_targets == 0) {
2982 		/* There is nowhere to write, so all non-sync
2983 		 * drives must be failed - so we are finished
2984 		 */
2985 		sector_t rv;
2986 		if (min_bad > 0)
2987 			max_sector = sector_nr + min_bad;
2988 		rv = max_sector - sector_nr;
2989 		*skipped = 1;
2990 		put_buf(r1_bio);
2991 		return rv;
2992 	}
2993 
2994 	if (max_sector > mddev->resync_max)
2995 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2996 	if (max_sector > sector_nr + good_sectors)
2997 		max_sector = sector_nr + good_sectors;
2998 	nr_sectors = 0;
2999 	sync_blocks = 0;
3000 	do {
3001 		struct page *page;
3002 		int len = PAGE_SIZE;
3003 		if (sector_nr + (len>>9) > max_sector)
3004 			len = (max_sector - sector_nr) << 9;
3005 		if (len == 0)
3006 			break;
3007 		if (sync_blocks == 0) {
3008 			if (!md_bitmap_start_sync(mddev, sector_nr,
3009 						  &sync_blocks, still_degraded) &&
3010 			    !conf->fullsync &&
3011 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3012 				break;
3013 			if ((len >> 9) > sync_blocks)
3014 				len = sync_blocks<<9;
3015 		}
3016 
3017 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
3018 			struct resync_pages *rp;
3019 
3020 			bio = r1_bio->bios[i];
3021 			rp = get_resync_pages(bio);
3022 			if (bio->bi_end_io) {
3023 				page = resync_fetch_page(rp, page_idx);
3024 
3025 				/*
3026 				 * won't fail because the vec table is big
3027 				 * enough to hold all these pages
3028 				 */
3029 				__bio_add_page(bio, page, len, 0);
3030 			}
3031 		}
3032 		nr_sectors += len>>9;
3033 		sector_nr += len>>9;
3034 		sync_blocks -= (len>>9);
3035 	} while (++page_idx < RESYNC_PAGES);
3036 
3037 	r1_bio->sectors = nr_sectors;
3038 
3039 	if (mddev_is_clustered(mddev) &&
3040 			conf->cluster_sync_high < sector_nr + nr_sectors) {
3041 		conf->cluster_sync_low = mddev->curr_resync_completed;
3042 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
3043 		/* Send resync message */
3044 		mddev->cluster_ops->resync_info_update(mddev,
3045 						       conf->cluster_sync_low,
3046 						       conf->cluster_sync_high);
3047 	}
3048 
3049 	/* For a user-requested sync, we read all readable devices and do a
3050 	 * compare
3051 	 */
3052 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
3053 		atomic_set(&r1_bio->remaining, read_targets);
3054 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
3055 			bio = r1_bio->bios[i];
3056 			if (bio->bi_end_io == end_sync_read) {
3057 				read_targets--;
3058 				if (read_targets == 1)
3059 					bio->bi_opf &= ~MD_FAILFAST;
3060 				submit_bio_noacct(bio);
3061 			}
3062 		}
3063 	} else {
3064 		atomic_set(&r1_bio->remaining, 1);
3065 		bio = r1_bio->bios[r1_bio->read_disk];
3066 		if (read_targets == 1)
3067 			bio->bi_opf &= ~MD_FAILFAST;
3068 		submit_bio_noacct(bio);
3069 	}
3070 	return nr_sectors;
3071 }
3072 
3073 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3074 {
3075 	if (sectors)
3076 		return sectors;
3077 
3078 	return mddev->dev_sectors;
3079 }
3080 
3081 static struct r1conf *setup_conf(struct mddev *mddev)
3082 {
3083 	struct r1conf *conf;
3084 	int i;
3085 	struct raid1_info *disk;
3086 	struct md_rdev *rdev;
3087 	size_t r1bio_size;
3088 	int err = -ENOMEM;
3089 
3090 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
3091 	if (!conf)
3092 		goto abort;
3093 
3094 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
3095 				   sizeof(atomic_t), GFP_KERNEL);
3096 	if (!conf->nr_pending)
3097 		goto abort;
3098 
3099 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
3100 				   sizeof(atomic_t), GFP_KERNEL);
3101 	if (!conf->nr_waiting)
3102 		goto abort;
3103 
3104 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
3105 				  sizeof(atomic_t), GFP_KERNEL);
3106 	if (!conf->nr_queued)
3107 		goto abort;
3108 
3109 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
3110 				sizeof(atomic_t), GFP_KERNEL);
3111 	if (!conf->barrier)
3112 		goto abort;
3113 
3114 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3115 					    mddev->raid_disks, 2),
3116 				GFP_KERNEL);
3117 	if (!conf->mirrors)
3118 		goto abort;
3119 
3120 	conf->tmppage = alloc_page(GFP_KERNEL);
3121 	if (!conf->tmppage)
3122 		goto abort;
3123 
3124 	r1bio_size = offsetof(struct r1bio, bios[mddev->raid_disks * 2]);
3125 	conf->r1bio_pool = mempool_create_kmalloc_pool(NR_RAID_BIOS, r1bio_size);
3126 	if (!conf->r1bio_pool)
3127 		goto abort;
3128 
3129 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3130 	if (err)
3131 		goto abort;
3132 
3133 	err = -EINVAL;
3134 	spin_lock_init(&conf->device_lock);
3135 	conf->raid_disks = mddev->raid_disks;
3136 	rdev_for_each(rdev, mddev) {
3137 		int disk_idx = rdev->raid_disk;
3138 
3139 		if (disk_idx >= conf->raid_disks || disk_idx < 0)
3140 			continue;
3141 
3142 		if (!raid1_add_conf(conf, rdev, disk_idx,
3143 				    test_bit(Replacement, &rdev->flags)))
3144 			goto abort;
3145 	}
3146 	conf->mddev = mddev;
3147 	INIT_LIST_HEAD(&conf->retry_list);
3148 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3149 
3150 	spin_lock_init(&conf->resync_lock);
3151 	init_waitqueue_head(&conf->wait_barrier);
3152 
3153 	bio_list_init(&conf->pending_bio_list);
3154 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3155 
3156 	err = -EIO;
3157 	for (i = 0; i < conf->raid_disks * 2; i++) {
3158 
3159 		disk = conf->mirrors + i;
3160 
3161 		if (i < conf->raid_disks &&
3162 		    disk[conf->raid_disks].rdev) {
3163 			/* This slot has a replacement. */
3164 			if (!disk->rdev) {
3165 				/* No original, just make the replacement
3166 				 * a recovering spare
3167 				 */
3168 				disk->rdev =
3169 					disk[conf->raid_disks].rdev;
3170 				disk[conf->raid_disks].rdev = NULL;
3171 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3172 				/* Original is not in_sync - bad */
3173 				goto abort;
3174 		}
3175 
3176 		if (!disk->rdev ||
3177 		    !test_bit(In_sync, &disk->rdev->flags)) {
3178 			disk->head_position = 0;
3179 			if (disk->rdev &&
3180 			    (disk->rdev->saved_raid_disk < 0))
3181 				conf->fullsync = 1;
3182 		}
3183 	}
3184 
3185 	err = -ENOMEM;
3186 	rcu_assign_pointer(conf->thread,
3187 			   md_register_thread(raid1d, mddev, "raid1"));
3188 	if (!conf->thread)
3189 		goto abort;
3190 
3191 	return conf;
3192 
3193  abort:
3194 	if (conf) {
3195 		mempool_destroy(conf->r1bio_pool);
3196 		kfree(conf->mirrors);
3197 		safe_put_page(conf->tmppage);
3198 		kfree(conf->nr_pending);
3199 		kfree(conf->nr_waiting);
3200 		kfree(conf->nr_queued);
3201 		kfree(conf->barrier);
3202 		bioset_exit(&conf->bio_split);
3203 		kfree(conf);
3204 	}
3205 	return ERR_PTR(err);
3206 }
3207 
3208 static int raid1_set_limits(struct mddev *mddev)
3209 {
3210 	struct queue_limits lim;
3211 	int err;
3212 
3213 	md_init_stacking_limits(&lim);
3214 	lim.max_write_zeroes_sectors = 0;
3215 	lim.max_hw_wzeroes_unmap_sectors = 0;
3216 	lim.features |= BLK_FEAT_ATOMIC_WRITES;
3217 	err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
3218 	if (err)
3219 		return err;
3220 	return queue_limits_set(mddev->gendisk->queue, &lim);
3221 }
3222 
3223 static int raid1_run(struct mddev *mddev)
3224 {
3225 	struct r1conf *conf;
3226 	int i;
3227 	int ret;
3228 
3229 	if (mddev->level != 1) {
3230 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3231 			mdname(mddev), mddev->level);
3232 		return -EIO;
3233 	}
3234 	if (mddev->reshape_position != MaxSector) {
3235 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3236 			mdname(mddev));
3237 		return -EIO;
3238 	}
3239 
3240 	/*
3241 	 * copy the already verified devices into our private RAID1
3242 	 * bookkeeping area. [whatever we allocate in run(),
3243 	 * should be freed in raid1_free()]
3244 	 */
3245 	if (mddev->private == NULL)
3246 		conf = setup_conf(mddev);
3247 	else
3248 		conf = mddev->private;
3249 
3250 	if (IS_ERR(conf))
3251 		return PTR_ERR(conf);
3252 
3253 	if (!mddev_is_dm(mddev)) {
3254 		ret = raid1_set_limits(mddev);
3255 		if (ret) {
3256 			if (!mddev->private)
3257 				raid1_free(mddev, conf);
3258 			return ret;
3259 		}
3260 	}
3261 
3262 	mddev->degraded = 0;
3263 	for (i = 0; i < conf->raid_disks; i++)
3264 		if (conf->mirrors[i].rdev == NULL ||
3265 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3266 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3267 			mddev->degraded++;
3268 	/*
3269 	 * RAID1 needs at least one disk in active
3270 	 */
3271 	if (conf->raid_disks - mddev->degraded < 1) {
3272 		md_unregister_thread(mddev, &conf->thread);
3273 		if (!mddev->private)
3274 			raid1_free(mddev, conf);
3275 		return -EINVAL;
3276 	}
3277 
3278 	if (conf->raid_disks - mddev->degraded == 1)
3279 		mddev->resync_offset = MaxSector;
3280 
3281 	if (mddev->resync_offset != MaxSector)
3282 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3283 			mdname(mddev));
3284 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3285 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3286 		mddev->raid_disks);
3287 
3288 	/*
3289 	 * Ok, everything is just fine now
3290 	 */
3291 	rcu_assign_pointer(mddev->thread, conf->thread);
3292 	rcu_assign_pointer(conf->thread, NULL);
3293 	mddev->private = conf;
3294 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3295 
3296 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3297 
3298 	ret = md_integrity_register(mddev);
3299 	if (ret)
3300 		md_unregister_thread(mddev, &mddev->thread);
3301 	return ret;
3302 }
3303 
3304 static void raid1_free(struct mddev *mddev, void *priv)
3305 {
3306 	struct r1conf *conf = priv;
3307 
3308 	mempool_destroy(conf->r1bio_pool);
3309 	kfree(conf->mirrors);
3310 	safe_put_page(conf->tmppage);
3311 	kfree(conf->nr_pending);
3312 	kfree(conf->nr_waiting);
3313 	kfree(conf->nr_queued);
3314 	kfree(conf->barrier);
3315 	bioset_exit(&conf->bio_split);
3316 	kfree(conf);
3317 }
3318 
3319 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3320 {
3321 	/* no resync is happening, and there is enough space
3322 	 * on all devices, so we can resize.
3323 	 * We need to make sure resync covers any new space.
3324 	 * If the array is shrinking we should possibly wait until
3325 	 * any io in the removed space completes, but it hardly seems
3326 	 * worth it.
3327 	 */
3328 	sector_t newsize = raid1_size(mddev, sectors, 0);
3329 
3330 	if (mddev->external_size &&
3331 	    mddev->array_sectors > newsize)
3332 		return -EINVAL;
3333 
3334 	if (md_bitmap_enabled(mddev, false)) {
3335 		int ret = mddev->bitmap_ops->resize(mddev, newsize, 0);
3336 
3337 		if (ret)
3338 			return ret;
3339 	}
3340 
3341 	md_set_array_sectors(mddev, newsize);
3342 	if (sectors > mddev->dev_sectors &&
3343 	    mddev->resync_offset > mddev->dev_sectors) {
3344 		mddev->resync_offset = mddev->dev_sectors;
3345 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3346 	}
3347 	mddev->dev_sectors = sectors;
3348 	mddev->resync_max_sectors = sectors;
3349 	return 0;
3350 }
3351 
3352 static int raid1_reshape(struct mddev *mddev)
3353 {
3354 	/* We need to:
3355 	 * 1/ resize the r1bio_pool
3356 	 * 2/ resize conf->mirrors
3357 	 *
3358 	 * We allocate a new r1bio_pool if we can.
3359 	 * Then raise a device barrier and wait until all IO stops.
3360 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3361 	 *
3362 	 * At the same time, we "pack" the devices so that all the missing
3363 	 * devices have the higher raid_disk numbers.
3364 	 */
3365 	mempool_t *newpool, *oldpool;
3366 	size_t new_r1bio_size;
3367 	struct raid1_info *newmirrors;
3368 	struct r1conf *conf = mddev->private;
3369 	int cnt, raid_disks;
3370 	unsigned long flags;
3371 	int d, d2;
3372 
3373 	/* Cannot change chunk_size, layout, or level */
3374 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3375 	    mddev->layout != mddev->new_layout ||
3376 	    mddev->level != mddev->new_level) {
3377 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3378 		mddev->new_layout = mddev->layout;
3379 		mddev->new_level = mddev->level;
3380 		return -EINVAL;
3381 	}
3382 
3383 	if (!mddev_is_clustered(mddev))
3384 		md_allow_write(mddev);
3385 
3386 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3387 
3388 	if (raid_disks < conf->raid_disks) {
3389 		cnt=0;
3390 		for (d= 0; d < conf->raid_disks; d++)
3391 			if (conf->mirrors[d].rdev)
3392 				cnt++;
3393 		if (cnt > raid_disks)
3394 			return -EBUSY;
3395 	}
3396 
3397 	new_r1bio_size = offsetof(struct r1bio, bios[raid_disks * 2]);
3398 	newpool = mempool_create_kmalloc_pool(NR_RAID_BIOS, new_r1bio_size);
3399 	if (!newpool) {
3400 		return -ENOMEM;
3401 	}
3402 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3403 					 raid_disks, 2),
3404 			     GFP_KERNEL);
3405 	if (!newmirrors) {
3406 		mempool_destroy(newpool);
3407 		return -ENOMEM;
3408 	}
3409 
3410 	freeze_array(conf, 0);
3411 
3412 	/* ok, everything is stopped */
3413 	oldpool = conf->r1bio_pool;
3414 	conf->r1bio_pool = newpool;
3415 
3416 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3417 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3418 		if (rdev && rdev->raid_disk != d2) {
3419 			sysfs_unlink_rdev(mddev, rdev);
3420 			rdev->raid_disk = d2;
3421 			sysfs_unlink_rdev(mddev, rdev);
3422 			if (sysfs_link_rdev(mddev, rdev))
3423 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3424 					mdname(mddev), rdev->raid_disk);
3425 		}
3426 		if (rdev)
3427 			newmirrors[d2++].rdev = rdev;
3428 	}
3429 	kfree(conf->mirrors);
3430 	conf->mirrors = newmirrors;
3431 
3432 	spin_lock_irqsave(&conf->device_lock, flags);
3433 	mddev->degraded += (raid_disks - conf->raid_disks);
3434 	spin_unlock_irqrestore(&conf->device_lock, flags);
3435 	conf->raid_disks = mddev->raid_disks = raid_disks;
3436 	mddev->delta_disks = 0;
3437 
3438 	unfreeze_array(conf);
3439 
3440 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3441 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3442 	md_wakeup_thread(mddev->thread);
3443 
3444 	mempool_destroy(oldpool);
3445 	return 0;
3446 }
3447 
3448 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3449 {
3450 	struct r1conf *conf = mddev->private;
3451 
3452 	if (quiesce)
3453 		freeze_array(conf, 0);
3454 	else
3455 		unfreeze_array(conf);
3456 }
3457 
3458 static void *raid1_takeover(struct mddev *mddev)
3459 {
3460 	/* raid1 can take over:
3461 	 *  raid5 with 2 devices, any layout or chunk size
3462 	 */
3463 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3464 		struct r1conf *conf;
3465 		mddev->new_level = 1;
3466 		mddev->new_layout = 0;
3467 		mddev->new_chunk_sectors = 0;
3468 		conf = setup_conf(mddev);
3469 		if (!IS_ERR(conf)) {
3470 			/* Array must appear to be quiesced */
3471 			conf->array_frozen = 1;
3472 			mddev_clear_unsupported_flags(mddev,
3473 				UNSUPPORTED_MDDEV_FLAGS);
3474 		}
3475 		return conf;
3476 	}
3477 	return ERR_PTR(-EINVAL);
3478 }
3479 
3480 static struct md_personality raid1_personality =
3481 {
3482 	.head = {
3483 		.type	= MD_PERSONALITY,
3484 		.id	= ID_RAID1,
3485 		.name	= "raid1",
3486 		.owner	= THIS_MODULE,
3487 	},
3488 
3489 	.make_request	= raid1_make_request,
3490 	.run		= raid1_run,
3491 	.free		= raid1_free,
3492 	.status		= raid1_status,
3493 	.error_handler	= raid1_error,
3494 	.hot_add_disk	= raid1_add_disk,
3495 	.hot_remove_disk= raid1_remove_disk,
3496 	.spare_active	= raid1_spare_active,
3497 	.sync_request	= raid1_sync_request,
3498 	.resize		= raid1_resize,
3499 	.size		= raid1_size,
3500 	.check_reshape	= raid1_reshape,
3501 	.quiesce	= raid1_quiesce,
3502 	.takeover	= raid1_takeover,
3503 };
3504 
3505 static int __init raid1_init(void)
3506 {
3507 	return register_md_submodule(&raid1_personality.head);
3508 }
3509 
3510 static void __exit raid1_exit(void)
3511 {
3512 	unregister_md_submodule(&raid1_personality.head);
3513 }
3514 
3515 module_init(raid1_init);
3516 module_exit(raid1_exit);
3517 MODULE_LICENSE("GPL");
3518 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3519 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3520 MODULE_ALIAS("md-raid1");
3521 MODULE_ALIAS("md-level-1");
3522