1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/slab.h> 35 #include <linux/delay.h> 36 #include <linux/blkdev.h> 37 #include <linux/module.h> 38 #include <linux/seq_file.h> 39 #include <linux/ratelimit.h> 40 #include "md.h" 41 #include "raid1.h" 42 #include "bitmap.h" 43 44 /* 45 * Number of guaranteed r1bios in case of extreme VM load: 46 */ 47 #define NR_RAID1_BIOS 256 48 49 /* when we get a read error on a read-only array, we redirect to another 50 * device without failing the first device, or trying to over-write to 51 * correct the read error. To keep track of bad blocks on a per-bio 52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 53 */ 54 #define IO_BLOCKED ((struct bio *)1) 55 /* When we successfully write to a known bad-block, we need to remove the 56 * bad-block marking which must be done from process context. So we record 57 * the success by setting devs[n].bio to IO_MADE_GOOD 58 */ 59 #define IO_MADE_GOOD ((struct bio *)2) 60 61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 62 63 /* When there are this many requests queue to be written by 64 * the raid1 thread, we become 'congested' to provide back-pressure 65 * for writeback. 66 */ 67 static int max_queued_requests = 1024; 68 69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 70 sector_t bi_sector); 71 static void lower_barrier(struct r1conf *conf); 72 73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 74 { 75 struct pool_info *pi = data; 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]); 77 78 /* allocate a r1bio with room for raid_disks entries in the bios array */ 79 return kzalloc(size, gfp_flags); 80 } 81 82 static void r1bio_pool_free(void *r1_bio, void *data) 83 { 84 kfree(r1_bio); 85 } 86 87 #define RESYNC_BLOCK_SIZE (64*1024) 88 #define RESYNC_DEPTH 32 89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH) 92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9) 93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS) 94 95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 96 { 97 struct pool_info *pi = data; 98 struct r1bio *r1_bio; 99 struct bio *bio; 100 int need_pages; 101 int i, j; 102 103 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 104 if (!r1_bio) 105 return NULL; 106 107 /* 108 * Allocate bios : 1 for reading, n-1 for writing 109 */ 110 for (j = pi->raid_disks ; j-- ; ) { 111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); 112 if (!bio) 113 goto out_free_bio; 114 r1_bio->bios[j] = bio; 115 } 116 /* 117 * Allocate RESYNC_PAGES data pages and attach them to 118 * the first bio. 119 * If this is a user-requested check/repair, allocate 120 * RESYNC_PAGES for each bio. 121 */ 122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 123 need_pages = pi->raid_disks; 124 else 125 need_pages = 1; 126 for (j = 0; j < need_pages; j++) { 127 bio = r1_bio->bios[j]; 128 bio->bi_vcnt = RESYNC_PAGES; 129 130 if (bio_alloc_pages(bio, gfp_flags)) 131 goto out_free_pages; 132 } 133 /* If not user-requests, copy the page pointers to all bios */ 134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 135 for (i=0; i<RESYNC_PAGES ; i++) 136 for (j=1; j<pi->raid_disks; j++) 137 r1_bio->bios[j]->bi_io_vec[i].bv_page = 138 r1_bio->bios[0]->bi_io_vec[i].bv_page; 139 } 140 141 r1_bio->master_bio = NULL; 142 143 return r1_bio; 144 145 out_free_pages: 146 while (--j >= 0) { 147 struct bio_vec *bv; 148 149 bio_for_each_segment_all(bv, r1_bio->bios[j], i) 150 __free_page(bv->bv_page); 151 } 152 153 out_free_bio: 154 while (++j < pi->raid_disks) 155 bio_put(r1_bio->bios[j]); 156 r1bio_pool_free(r1_bio, data); 157 return NULL; 158 } 159 160 static void r1buf_pool_free(void *__r1_bio, void *data) 161 { 162 struct pool_info *pi = data; 163 int i,j; 164 struct r1bio *r1bio = __r1_bio; 165 166 for (i = 0; i < RESYNC_PAGES; i++) 167 for (j = pi->raid_disks; j-- ;) { 168 if (j == 0 || 169 r1bio->bios[j]->bi_io_vec[i].bv_page != 170 r1bio->bios[0]->bi_io_vec[i].bv_page) 171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 172 } 173 for (i=0 ; i < pi->raid_disks; i++) 174 bio_put(r1bio->bios[i]); 175 176 r1bio_pool_free(r1bio, data); 177 } 178 179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->raid_disks * 2; i++) { 184 struct bio **bio = r1_bio->bios + i; 185 if (!BIO_SPECIAL(*bio)) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r1bio(struct r1bio *r1_bio) 192 { 193 struct r1conf *conf = r1_bio->mddev->private; 194 195 put_all_bios(conf, r1_bio); 196 mempool_free(r1_bio, conf->r1bio_pool); 197 } 198 199 static void put_buf(struct r1bio *r1_bio) 200 { 201 struct r1conf *conf = r1_bio->mddev->private; 202 int i; 203 204 for (i = 0; i < conf->raid_disks * 2; i++) { 205 struct bio *bio = r1_bio->bios[i]; 206 if (bio->bi_end_io) 207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 208 } 209 210 mempool_free(r1_bio, conf->r1buf_pool); 211 212 lower_barrier(conf); 213 } 214 215 static void reschedule_retry(struct r1bio *r1_bio) 216 { 217 unsigned long flags; 218 struct mddev *mddev = r1_bio->mddev; 219 struct r1conf *conf = mddev->private; 220 221 spin_lock_irqsave(&conf->device_lock, flags); 222 list_add(&r1_bio->retry_list, &conf->retry_list); 223 conf->nr_queued ++; 224 spin_unlock_irqrestore(&conf->device_lock, flags); 225 226 wake_up(&conf->wait_barrier); 227 md_wakeup_thread(mddev->thread); 228 } 229 230 /* 231 * raid_end_bio_io() is called when we have finished servicing a mirrored 232 * operation and are ready to return a success/failure code to the buffer 233 * cache layer. 234 */ 235 static void call_bio_endio(struct r1bio *r1_bio) 236 { 237 struct bio *bio = r1_bio->master_bio; 238 int done; 239 struct r1conf *conf = r1_bio->mddev->private; 240 sector_t start_next_window = r1_bio->start_next_window; 241 sector_t bi_sector = bio->bi_iter.bi_sector; 242 243 if (bio->bi_phys_segments) { 244 unsigned long flags; 245 spin_lock_irqsave(&conf->device_lock, flags); 246 bio->bi_phys_segments--; 247 done = (bio->bi_phys_segments == 0); 248 spin_unlock_irqrestore(&conf->device_lock, flags); 249 /* 250 * make_request() might be waiting for 251 * bi_phys_segments to decrease 252 */ 253 wake_up(&conf->wait_barrier); 254 } else 255 done = 1; 256 257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 258 clear_bit(BIO_UPTODATE, &bio->bi_flags); 259 if (done) { 260 bio_endio(bio, 0); 261 /* 262 * Wake up any possible resync thread that waits for the device 263 * to go idle. 264 */ 265 allow_barrier(conf, start_next_window, bi_sector); 266 } 267 } 268 269 static void raid_end_bio_io(struct r1bio *r1_bio) 270 { 271 struct bio *bio = r1_bio->master_bio; 272 273 /* if nobody has done the final endio yet, do it now */ 274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n", 276 (bio_data_dir(bio) == WRITE) ? "write" : "read", 277 (unsigned long long) bio->bi_iter.bi_sector, 278 (unsigned long long) bio_end_sector(bio) - 1); 279 280 call_bio_endio(r1_bio); 281 } 282 free_r1bio(r1_bio); 283 } 284 285 /* 286 * Update disk head position estimator based on IRQ completion info. 287 */ 288 static inline void update_head_pos(int disk, struct r1bio *r1_bio) 289 { 290 struct r1conf *conf = r1_bio->mddev->private; 291 292 conf->mirrors[disk].head_position = 293 r1_bio->sector + (r1_bio->sectors); 294 } 295 296 /* 297 * Find the disk number which triggered given bio 298 */ 299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio) 300 { 301 int mirror; 302 struct r1conf *conf = r1_bio->mddev->private; 303 int raid_disks = conf->raid_disks; 304 305 for (mirror = 0; mirror < raid_disks * 2; mirror++) 306 if (r1_bio->bios[mirror] == bio) 307 break; 308 309 BUG_ON(mirror == raid_disks * 2); 310 update_head_pos(mirror, r1_bio); 311 312 return mirror; 313 } 314 315 static void raid1_end_read_request(struct bio *bio, int error) 316 { 317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 318 struct r1bio *r1_bio = bio->bi_private; 319 int mirror; 320 struct r1conf *conf = r1_bio->mddev->private; 321 322 mirror = r1_bio->read_disk; 323 /* 324 * this branch is our 'one mirror IO has finished' event handler: 325 */ 326 update_head_pos(mirror, r1_bio); 327 328 if (uptodate) 329 set_bit(R1BIO_Uptodate, &r1_bio->state); 330 else { 331 /* If all other devices have failed, we want to return 332 * the error upwards rather than fail the last device. 333 * Here we redefine "uptodate" to mean "Don't want to retry" 334 */ 335 unsigned long flags; 336 spin_lock_irqsave(&conf->device_lock, flags); 337 if (r1_bio->mddev->degraded == conf->raid_disks || 338 (r1_bio->mddev->degraded == conf->raid_disks-1 && 339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 340 uptodate = 1; 341 spin_unlock_irqrestore(&conf->device_lock, flags); 342 } 343 344 if (uptodate) { 345 raid_end_bio_io(r1_bio); 346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 347 } else { 348 /* 349 * oops, read error: 350 */ 351 char b[BDEVNAME_SIZE]; 352 printk_ratelimited( 353 KERN_ERR "md/raid1:%s: %s: " 354 "rescheduling sector %llu\n", 355 mdname(conf->mddev), 356 bdevname(conf->mirrors[mirror].rdev->bdev, 357 b), 358 (unsigned long long)r1_bio->sector); 359 set_bit(R1BIO_ReadError, &r1_bio->state); 360 reschedule_retry(r1_bio); 361 /* don't drop the reference on read_disk yet */ 362 } 363 } 364 365 static void close_write(struct r1bio *r1_bio) 366 { 367 /* it really is the end of this request */ 368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 369 /* free extra copy of the data pages */ 370 int i = r1_bio->behind_page_count; 371 while (i--) 372 safe_put_page(r1_bio->behind_bvecs[i].bv_page); 373 kfree(r1_bio->behind_bvecs); 374 r1_bio->behind_bvecs = NULL; 375 } 376 /* clear the bitmap if all writes complete successfully */ 377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 378 r1_bio->sectors, 379 !test_bit(R1BIO_Degraded, &r1_bio->state), 380 test_bit(R1BIO_BehindIO, &r1_bio->state)); 381 md_write_end(r1_bio->mddev); 382 } 383 384 static void r1_bio_write_done(struct r1bio *r1_bio) 385 { 386 if (!atomic_dec_and_test(&r1_bio->remaining)) 387 return; 388 389 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 390 reschedule_retry(r1_bio); 391 else { 392 close_write(r1_bio); 393 if (test_bit(R1BIO_MadeGood, &r1_bio->state)) 394 reschedule_retry(r1_bio); 395 else 396 raid_end_bio_io(r1_bio); 397 } 398 } 399 400 static void raid1_end_write_request(struct bio *bio, int error) 401 { 402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 403 struct r1bio *r1_bio = bio->bi_private; 404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 405 struct r1conf *conf = r1_bio->mddev->private; 406 struct bio *to_put = NULL; 407 408 mirror = find_bio_disk(r1_bio, bio); 409 410 /* 411 * 'one mirror IO has finished' event handler: 412 */ 413 if (!uptodate) { 414 set_bit(WriteErrorSeen, 415 &conf->mirrors[mirror].rdev->flags); 416 if (!test_and_set_bit(WantReplacement, 417 &conf->mirrors[mirror].rdev->flags)) 418 set_bit(MD_RECOVERY_NEEDED, & 419 conf->mddev->recovery); 420 421 set_bit(R1BIO_WriteError, &r1_bio->state); 422 } else { 423 /* 424 * Set R1BIO_Uptodate in our master bio, so that we 425 * will return a good error code for to the higher 426 * levels even if IO on some other mirrored buffer 427 * fails. 428 * 429 * The 'master' represents the composite IO operation 430 * to user-side. So if something waits for IO, then it 431 * will wait for the 'master' bio. 432 */ 433 sector_t first_bad; 434 int bad_sectors; 435 436 r1_bio->bios[mirror] = NULL; 437 to_put = bio; 438 /* 439 * Do not set R1BIO_Uptodate if the current device is 440 * rebuilding or Faulty. This is because we cannot use 441 * such device for properly reading the data back (we could 442 * potentially use it, if the current write would have felt 443 * before rdev->recovery_offset, but for simplicity we don't 444 * check this here. 445 */ 446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) && 447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)) 448 set_bit(R1BIO_Uptodate, &r1_bio->state); 449 450 /* Maybe we can clear some bad blocks. */ 451 if (is_badblock(conf->mirrors[mirror].rdev, 452 r1_bio->sector, r1_bio->sectors, 453 &first_bad, &bad_sectors)) { 454 r1_bio->bios[mirror] = IO_MADE_GOOD; 455 set_bit(R1BIO_MadeGood, &r1_bio->state); 456 } 457 } 458 459 if (behind) { 460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 461 atomic_dec(&r1_bio->behind_remaining); 462 463 /* 464 * In behind mode, we ACK the master bio once the I/O 465 * has safely reached all non-writemostly 466 * disks. Setting the Returned bit ensures that this 467 * gets done only once -- we don't ever want to return 468 * -EIO here, instead we'll wait 469 */ 470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 471 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 472 /* Maybe we can return now */ 473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 474 struct bio *mbio = r1_bio->master_bio; 475 pr_debug("raid1: behind end write sectors" 476 " %llu-%llu\n", 477 (unsigned long long) mbio->bi_iter.bi_sector, 478 (unsigned long long) bio_end_sector(mbio) - 1); 479 call_bio_endio(r1_bio); 480 } 481 } 482 } 483 if (r1_bio->bios[mirror] == NULL) 484 rdev_dec_pending(conf->mirrors[mirror].rdev, 485 conf->mddev); 486 487 /* 488 * Let's see if all mirrored write operations have finished 489 * already. 490 */ 491 r1_bio_write_done(r1_bio); 492 493 if (to_put) 494 bio_put(to_put); 495 } 496 497 /* 498 * This routine returns the disk from which the requested read should 499 * be done. There is a per-array 'next expected sequential IO' sector 500 * number - if this matches on the next IO then we use the last disk. 501 * There is also a per-disk 'last know head position' sector that is 502 * maintained from IRQ contexts, both the normal and the resync IO 503 * completion handlers update this position correctly. If there is no 504 * perfect sequential match then we pick the disk whose head is closest. 505 * 506 * If there are 2 mirrors in the same 2 devices, performance degrades 507 * because position is mirror, not device based. 508 * 509 * The rdev for the device selected will have nr_pending incremented. 510 */ 511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors) 512 { 513 const sector_t this_sector = r1_bio->sector; 514 int sectors; 515 int best_good_sectors; 516 int best_disk, best_dist_disk, best_pending_disk; 517 int has_nonrot_disk; 518 int disk; 519 sector_t best_dist; 520 unsigned int min_pending; 521 struct md_rdev *rdev; 522 int choose_first; 523 int choose_next_idle; 524 525 rcu_read_lock(); 526 /* 527 * Check if we can balance. We can balance on the whole 528 * device if no resync is going on, or below the resync window. 529 * We take the first readable disk when above the resync window. 530 */ 531 retry: 532 sectors = r1_bio->sectors; 533 best_disk = -1; 534 best_dist_disk = -1; 535 best_dist = MaxSector; 536 best_pending_disk = -1; 537 min_pending = UINT_MAX; 538 best_good_sectors = 0; 539 has_nonrot_disk = 0; 540 choose_next_idle = 0; 541 542 if ((conf->mddev->recovery_cp < this_sector + sectors) || 543 (mddev_is_clustered(conf->mddev) && 544 md_cluster_ops->area_resyncing(conf->mddev, this_sector, 545 this_sector + sectors))) 546 choose_first = 1; 547 else 548 choose_first = 0; 549 550 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) { 551 sector_t dist; 552 sector_t first_bad; 553 int bad_sectors; 554 unsigned int pending; 555 bool nonrot; 556 557 rdev = rcu_dereference(conf->mirrors[disk].rdev); 558 if (r1_bio->bios[disk] == IO_BLOCKED 559 || rdev == NULL 560 || test_bit(Unmerged, &rdev->flags) 561 || test_bit(Faulty, &rdev->flags)) 562 continue; 563 if (!test_bit(In_sync, &rdev->flags) && 564 rdev->recovery_offset < this_sector + sectors) 565 continue; 566 if (test_bit(WriteMostly, &rdev->flags)) { 567 /* Don't balance among write-mostly, just 568 * use the first as a last resort */ 569 if (best_dist_disk < 0) { 570 if (is_badblock(rdev, this_sector, sectors, 571 &first_bad, &bad_sectors)) { 572 if (first_bad < this_sector) 573 /* Cannot use this */ 574 continue; 575 best_good_sectors = first_bad - this_sector; 576 } else 577 best_good_sectors = sectors; 578 best_dist_disk = disk; 579 best_pending_disk = disk; 580 } 581 continue; 582 } 583 /* This is a reasonable device to use. It might 584 * even be best. 585 */ 586 if (is_badblock(rdev, this_sector, sectors, 587 &first_bad, &bad_sectors)) { 588 if (best_dist < MaxSector) 589 /* already have a better device */ 590 continue; 591 if (first_bad <= this_sector) { 592 /* cannot read here. If this is the 'primary' 593 * device, then we must not read beyond 594 * bad_sectors from another device.. 595 */ 596 bad_sectors -= (this_sector - first_bad); 597 if (choose_first && sectors > bad_sectors) 598 sectors = bad_sectors; 599 if (best_good_sectors > sectors) 600 best_good_sectors = sectors; 601 602 } else { 603 sector_t good_sectors = first_bad - this_sector; 604 if (good_sectors > best_good_sectors) { 605 best_good_sectors = good_sectors; 606 best_disk = disk; 607 } 608 if (choose_first) 609 break; 610 } 611 continue; 612 } else 613 best_good_sectors = sectors; 614 615 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev)); 616 has_nonrot_disk |= nonrot; 617 pending = atomic_read(&rdev->nr_pending); 618 dist = abs(this_sector - conf->mirrors[disk].head_position); 619 if (choose_first) { 620 best_disk = disk; 621 break; 622 } 623 /* Don't change to another disk for sequential reads */ 624 if (conf->mirrors[disk].next_seq_sect == this_sector 625 || dist == 0) { 626 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9; 627 struct raid1_info *mirror = &conf->mirrors[disk]; 628 629 best_disk = disk; 630 /* 631 * If buffered sequential IO size exceeds optimal 632 * iosize, check if there is idle disk. If yes, choose 633 * the idle disk. read_balance could already choose an 634 * idle disk before noticing it's a sequential IO in 635 * this disk. This doesn't matter because this disk 636 * will idle, next time it will be utilized after the 637 * first disk has IO size exceeds optimal iosize. In 638 * this way, iosize of the first disk will be optimal 639 * iosize at least. iosize of the second disk might be 640 * small, but not a big deal since when the second disk 641 * starts IO, the first disk is likely still busy. 642 */ 643 if (nonrot && opt_iosize > 0 && 644 mirror->seq_start != MaxSector && 645 mirror->next_seq_sect > opt_iosize && 646 mirror->next_seq_sect - opt_iosize >= 647 mirror->seq_start) { 648 choose_next_idle = 1; 649 continue; 650 } 651 break; 652 } 653 /* If device is idle, use it */ 654 if (pending == 0) { 655 best_disk = disk; 656 break; 657 } 658 659 if (choose_next_idle) 660 continue; 661 662 if (min_pending > pending) { 663 min_pending = pending; 664 best_pending_disk = disk; 665 } 666 667 if (dist < best_dist) { 668 best_dist = dist; 669 best_dist_disk = disk; 670 } 671 } 672 673 /* 674 * If all disks are rotational, choose the closest disk. If any disk is 675 * non-rotational, choose the disk with less pending request even the 676 * disk is rotational, which might/might not be optimal for raids with 677 * mixed ratation/non-rotational disks depending on workload. 678 */ 679 if (best_disk == -1) { 680 if (has_nonrot_disk) 681 best_disk = best_pending_disk; 682 else 683 best_disk = best_dist_disk; 684 } 685 686 if (best_disk >= 0) { 687 rdev = rcu_dereference(conf->mirrors[best_disk].rdev); 688 if (!rdev) 689 goto retry; 690 atomic_inc(&rdev->nr_pending); 691 if (test_bit(Faulty, &rdev->flags)) { 692 /* cannot risk returning a device that failed 693 * before we inc'ed nr_pending 694 */ 695 rdev_dec_pending(rdev, conf->mddev); 696 goto retry; 697 } 698 sectors = best_good_sectors; 699 700 if (conf->mirrors[best_disk].next_seq_sect != this_sector) 701 conf->mirrors[best_disk].seq_start = this_sector; 702 703 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors; 704 } 705 rcu_read_unlock(); 706 *max_sectors = sectors; 707 708 return best_disk; 709 } 710 711 static int raid1_mergeable_bvec(struct mddev *mddev, 712 struct bvec_merge_data *bvm, 713 struct bio_vec *biovec) 714 { 715 struct r1conf *conf = mddev->private; 716 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 717 int max = biovec->bv_len; 718 719 if (mddev->merge_check_needed) { 720 int disk; 721 rcu_read_lock(); 722 for (disk = 0; disk < conf->raid_disks * 2; disk++) { 723 struct md_rdev *rdev = rcu_dereference( 724 conf->mirrors[disk].rdev); 725 if (rdev && !test_bit(Faulty, &rdev->flags)) { 726 struct request_queue *q = 727 bdev_get_queue(rdev->bdev); 728 if (q->merge_bvec_fn) { 729 bvm->bi_sector = sector + 730 rdev->data_offset; 731 bvm->bi_bdev = rdev->bdev; 732 max = min(max, q->merge_bvec_fn( 733 q, bvm, biovec)); 734 } 735 } 736 } 737 rcu_read_unlock(); 738 } 739 return max; 740 741 } 742 743 static int raid1_congested(struct mddev *mddev, int bits) 744 { 745 struct r1conf *conf = mddev->private; 746 int i, ret = 0; 747 748 if ((bits & (1 << WB_async_congested)) && 749 conf->pending_count >= max_queued_requests) 750 return 1; 751 752 rcu_read_lock(); 753 for (i = 0; i < conf->raid_disks * 2; i++) { 754 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 755 if (rdev && !test_bit(Faulty, &rdev->flags)) { 756 struct request_queue *q = bdev_get_queue(rdev->bdev); 757 758 BUG_ON(!q); 759 760 /* Note the '|| 1' - when read_balance prefers 761 * non-congested targets, it can be removed 762 */ 763 if ((bits & (1 << WB_async_congested)) || 1) 764 ret |= bdi_congested(&q->backing_dev_info, bits); 765 else 766 ret &= bdi_congested(&q->backing_dev_info, bits); 767 } 768 } 769 rcu_read_unlock(); 770 return ret; 771 } 772 773 static void flush_pending_writes(struct r1conf *conf) 774 { 775 /* Any writes that have been queued but are awaiting 776 * bitmap updates get flushed here. 777 */ 778 spin_lock_irq(&conf->device_lock); 779 780 if (conf->pending_bio_list.head) { 781 struct bio *bio; 782 bio = bio_list_get(&conf->pending_bio_list); 783 conf->pending_count = 0; 784 spin_unlock_irq(&conf->device_lock); 785 /* flush any pending bitmap writes to 786 * disk before proceeding w/ I/O */ 787 bitmap_unplug(conf->mddev->bitmap); 788 wake_up(&conf->wait_barrier); 789 790 while (bio) { /* submit pending writes */ 791 struct bio *next = bio->bi_next; 792 bio->bi_next = NULL; 793 if (unlikely((bio->bi_rw & REQ_DISCARD) && 794 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 795 /* Just ignore it */ 796 bio_endio(bio, 0); 797 else 798 generic_make_request(bio); 799 bio = next; 800 } 801 } else 802 spin_unlock_irq(&conf->device_lock); 803 } 804 805 /* Barriers.... 806 * Sometimes we need to suspend IO while we do something else, 807 * either some resync/recovery, or reconfigure the array. 808 * To do this we raise a 'barrier'. 809 * The 'barrier' is a counter that can be raised multiple times 810 * to count how many activities are happening which preclude 811 * normal IO. 812 * We can only raise the barrier if there is no pending IO. 813 * i.e. if nr_pending == 0. 814 * We choose only to raise the barrier if no-one is waiting for the 815 * barrier to go down. This means that as soon as an IO request 816 * is ready, no other operations which require a barrier will start 817 * until the IO request has had a chance. 818 * 819 * So: regular IO calls 'wait_barrier'. When that returns there 820 * is no backgroup IO happening, It must arrange to call 821 * allow_barrier when it has finished its IO. 822 * backgroup IO calls must call raise_barrier. Once that returns 823 * there is no normal IO happeing. It must arrange to call 824 * lower_barrier when the particular background IO completes. 825 */ 826 static void raise_barrier(struct r1conf *conf, sector_t sector_nr) 827 { 828 spin_lock_irq(&conf->resync_lock); 829 830 /* Wait until no block IO is waiting */ 831 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 832 conf->resync_lock); 833 834 /* block any new IO from starting */ 835 conf->barrier++; 836 conf->next_resync = sector_nr; 837 838 /* For these conditions we must wait: 839 * A: while the array is in frozen state 840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach 841 * the max count which allowed. 842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning 843 * next resync will reach to the window which normal bios are 844 * handling. 845 * D: while there are any active requests in the current window. 846 */ 847 wait_event_lock_irq(conf->wait_barrier, 848 !conf->array_frozen && 849 conf->barrier < RESYNC_DEPTH && 850 conf->current_window_requests == 0 && 851 (conf->start_next_window >= 852 conf->next_resync + RESYNC_SECTORS), 853 conf->resync_lock); 854 855 conf->nr_pending++; 856 spin_unlock_irq(&conf->resync_lock); 857 } 858 859 static void lower_barrier(struct r1conf *conf) 860 { 861 unsigned long flags; 862 BUG_ON(conf->barrier <= 0); 863 spin_lock_irqsave(&conf->resync_lock, flags); 864 conf->barrier--; 865 conf->nr_pending--; 866 spin_unlock_irqrestore(&conf->resync_lock, flags); 867 wake_up(&conf->wait_barrier); 868 } 869 870 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio) 871 { 872 bool wait = false; 873 874 if (conf->array_frozen || !bio) 875 wait = true; 876 else if (conf->barrier && bio_data_dir(bio) == WRITE) { 877 if ((conf->mddev->curr_resync_completed 878 >= bio_end_sector(bio)) || 879 (conf->next_resync + NEXT_NORMALIO_DISTANCE 880 <= bio->bi_iter.bi_sector)) 881 wait = false; 882 else 883 wait = true; 884 } 885 886 return wait; 887 } 888 889 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio) 890 { 891 sector_t sector = 0; 892 893 spin_lock_irq(&conf->resync_lock); 894 if (need_to_wait_for_sync(conf, bio)) { 895 conf->nr_waiting++; 896 /* Wait for the barrier to drop. 897 * However if there are already pending 898 * requests (preventing the barrier from 899 * rising completely), and the 900 * per-process bio queue isn't empty, 901 * then don't wait, as we need to empty 902 * that queue to allow conf->start_next_window 903 * to increase. 904 */ 905 wait_event_lock_irq(conf->wait_barrier, 906 !conf->array_frozen && 907 (!conf->barrier || 908 ((conf->start_next_window < 909 conf->next_resync + RESYNC_SECTORS) && 910 current->bio_list && 911 !bio_list_empty(current->bio_list))), 912 conf->resync_lock); 913 conf->nr_waiting--; 914 } 915 916 if (bio && bio_data_dir(bio) == WRITE) { 917 if (bio->bi_iter.bi_sector >= 918 conf->mddev->curr_resync_completed) { 919 if (conf->start_next_window == MaxSector) 920 conf->start_next_window = 921 conf->next_resync + 922 NEXT_NORMALIO_DISTANCE; 923 924 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE) 925 <= bio->bi_iter.bi_sector) 926 conf->next_window_requests++; 927 else 928 conf->current_window_requests++; 929 sector = conf->start_next_window; 930 } 931 } 932 933 conf->nr_pending++; 934 spin_unlock_irq(&conf->resync_lock); 935 return sector; 936 } 937 938 static void allow_barrier(struct r1conf *conf, sector_t start_next_window, 939 sector_t bi_sector) 940 { 941 unsigned long flags; 942 943 spin_lock_irqsave(&conf->resync_lock, flags); 944 conf->nr_pending--; 945 if (start_next_window) { 946 if (start_next_window == conf->start_next_window) { 947 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE 948 <= bi_sector) 949 conf->next_window_requests--; 950 else 951 conf->current_window_requests--; 952 } else 953 conf->current_window_requests--; 954 955 if (!conf->current_window_requests) { 956 if (conf->next_window_requests) { 957 conf->current_window_requests = 958 conf->next_window_requests; 959 conf->next_window_requests = 0; 960 conf->start_next_window += 961 NEXT_NORMALIO_DISTANCE; 962 } else 963 conf->start_next_window = MaxSector; 964 } 965 } 966 spin_unlock_irqrestore(&conf->resync_lock, flags); 967 wake_up(&conf->wait_barrier); 968 } 969 970 static void freeze_array(struct r1conf *conf, int extra) 971 { 972 /* stop syncio and normal IO and wait for everything to 973 * go quite. 974 * We wait until nr_pending match nr_queued+extra 975 * This is called in the context of one normal IO request 976 * that has failed. Thus any sync request that might be pending 977 * will be blocked by nr_pending, and we need to wait for 978 * pending IO requests to complete or be queued for re-try. 979 * Thus the number queued (nr_queued) plus this request (extra) 980 * must match the number of pending IOs (nr_pending) before 981 * we continue. 982 */ 983 spin_lock_irq(&conf->resync_lock); 984 conf->array_frozen = 1; 985 wait_event_lock_irq_cmd(conf->wait_barrier, 986 conf->nr_pending == conf->nr_queued+extra, 987 conf->resync_lock, 988 flush_pending_writes(conf)); 989 spin_unlock_irq(&conf->resync_lock); 990 } 991 static void unfreeze_array(struct r1conf *conf) 992 { 993 /* reverse the effect of the freeze */ 994 spin_lock_irq(&conf->resync_lock); 995 conf->array_frozen = 0; 996 wake_up(&conf->wait_barrier); 997 spin_unlock_irq(&conf->resync_lock); 998 } 999 1000 /* duplicate the data pages for behind I/O 1001 */ 1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio) 1003 { 1004 int i; 1005 struct bio_vec *bvec; 1006 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec), 1007 GFP_NOIO); 1008 if (unlikely(!bvecs)) 1009 return; 1010 1011 bio_for_each_segment_all(bvec, bio, i) { 1012 bvecs[i] = *bvec; 1013 bvecs[i].bv_page = alloc_page(GFP_NOIO); 1014 if (unlikely(!bvecs[i].bv_page)) 1015 goto do_sync_io; 1016 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset, 1017 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 1018 kunmap(bvecs[i].bv_page); 1019 kunmap(bvec->bv_page); 1020 } 1021 r1_bio->behind_bvecs = bvecs; 1022 r1_bio->behind_page_count = bio->bi_vcnt; 1023 set_bit(R1BIO_BehindIO, &r1_bio->state); 1024 return; 1025 1026 do_sync_io: 1027 for (i = 0; i < bio->bi_vcnt; i++) 1028 if (bvecs[i].bv_page) 1029 put_page(bvecs[i].bv_page); 1030 kfree(bvecs); 1031 pr_debug("%dB behind alloc failed, doing sync I/O\n", 1032 bio->bi_iter.bi_size); 1033 } 1034 1035 struct raid1_plug_cb { 1036 struct blk_plug_cb cb; 1037 struct bio_list pending; 1038 int pending_cnt; 1039 }; 1040 1041 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule) 1042 { 1043 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, 1044 cb); 1045 struct mddev *mddev = plug->cb.data; 1046 struct r1conf *conf = mddev->private; 1047 struct bio *bio; 1048 1049 if (from_schedule || current->bio_list) { 1050 spin_lock_irq(&conf->device_lock); 1051 bio_list_merge(&conf->pending_bio_list, &plug->pending); 1052 conf->pending_count += plug->pending_cnt; 1053 spin_unlock_irq(&conf->device_lock); 1054 wake_up(&conf->wait_barrier); 1055 md_wakeup_thread(mddev->thread); 1056 kfree(plug); 1057 return; 1058 } 1059 1060 /* we aren't scheduling, so we can do the write-out directly. */ 1061 bio = bio_list_get(&plug->pending); 1062 bitmap_unplug(mddev->bitmap); 1063 wake_up(&conf->wait_barrier); 1064 1065 while (bio) { /* submit pending writes */ 1066 struct bio *next = bio->bi_next; 1067 bio->bi_next = NULL; 1068 if (unlikely((bio->bi_rw & REQ_DISCARD) && 1069 !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) 1070 /* Just ignore it */ 1071 bio_endio(bio, 0); 1072 else 1073 generic_make_request(bio); 1074 bio = next; 1075 } 1076 kfree(plug); 1077 } 1078 1079 static void make_request(struct mddev *mddev, struct bio * bio) 1080 { 1081 struct r1conf *conf = mddev->private; 1082 struct raid1_info *mirror; 1083 struct r1bio *r1_bio; 1084 struct bio *read_bio; 1085 int i, disks; 1086 struct bitmap *bitmap; 1087 unsigned long flags; 1088 const int rw = bio_data_dir(bio); 1089 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); 1090 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA)); 1091 const unsigned long do_discard = (bio->bi_rw 1092 & (REQ_DISCARD | REQ_SECURE)); 1093 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); 1094 struct md_rdev *blocked_rdev; 1095 struct blk_plug_cb *cb; 1096 struct raid1_plug_cb *plug = NULL; 1097 int first_clone; 1098 int sectors_handled; 1099 int max_sectors; 1100 sector_t start_next_window; 1101 1102 /* 1103 * Register the new request and wait if the reconstruction 1104 * thread has put up a bar for new requests. 1105 * Continue immediately if no resync is active currently. 1106 */ 1107 1108 md_write_start(mddev, bio); /* wait on superblock update early */ 1109 1110 if (bio_data_dir(bio) == WRITE && 1111 ((bio_end_sector(bio) > mddev->suspend_lo && 1112 bio->bi_iter.bi_sector < mddev->suspend_hi) || 1113 (mddev_is_clustered(mddev) && 1114 md_cluster_ops->area_resyncing(mddev, bio->bi_iter.bi_sector, bio_end_sector(bio))))) { 1115 /* As the suspend_* range is controlled by 1116 * userspace, we want an interruptible 1117 * wait. 1118 */ 1119 DEFINE_WAIT(w); 1120 for (;;) { 1121 flush_signals(current); 1122 prepare_to_wait(&conf->wait_barrier, 1123 &w, TASK_INTERRUPTIBLE); 1124 if (bio_end_sector(bio) <= mddev->suspend_lo || 1125 bio->bi_iter.bi_sector >= mddev->suspend_hi || 1126 (mddev_is_clustered(mddev) && 1127 !md_cluster_ops->area_resyncing(mddev, 1128 bio->bi_iter.bi_sector, bio_end_sector(bio)))) 1129 break; 1130 schedule(); 1131 } 1132 finish_wait(&conf->wait_barrier, &w); 1133 } 1134 1135 start_next_window = wait_barrier(conf, bio); 1136 1137 bitmap = mddev->bitmap; 1138 1139 /* 1140 * make_request() can abort the operation when READA is being 1141 * used and no empty request is available. 1142 * 1143 */ 1144 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1145 1146 r1_bio->master_bio = bio; 1147 r1_bio->sectors = bio_sectors(bio); 1148 r1_bio->state = 0; 1149 r1_bio->mddev = mddev; 1150 r1_bio->sector = bio->bi_iter.bi_sector; 1151 1152 /* We might need to issue multiple reads to different 1153 * devices if there are bad blocks around, so we keep 1154 * track of the number of reads in bio->bi_phys_segments. 1155 * If this is 0, there is only one r1_bio and no locking 1156 * will be needed when requests complete. If it is 1157 * non-zero, then it is the number of not-completed requests. 1158 */ 1159 bio->bi_phys_segments = 0; 1160 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 1161 1162 if (rw == READ) { 1163 /* 1164 * read balancing logic: 1165 */ 1166 int rdisk; 1167 1168 read_again: 1169 rdisk = read_balance(conf, r1_bio, &max_sectors); 1170 1171 if (rdisk < 0) { 1172 /* couldn't find anywhere to read from */ 1173 raid_end_bio_io(r1_bio); 1174 return; 1175 } 1176 mirror = conf->mirrors + rdisk; 1177 1178 if (test_bit(WriteMostly, &mirror->rdev->flags) && 1179 bitmap) { 1180 /* Reading from a write-mostly device must 1181 * take care not to over-take any writes 1182 * that are 'behind' 1183 */ 1184 wait_event(bitmap->behind_wait, 1185 atomic_read(&bitmap->behind_writes) == 0); 1186 } 1187 r1_bio->read_disk = rdisk; 1188 r1_bio->start_next_window = 0; 1189 1190 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1191 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector, 1192 max_sectors); 1193 1194 r1_bio->bios[rdisk] = read_bio; 1195 1196 read_bio->bi_iter.bi_sector = r1_bio->sector + 1197 mirror->rdev->data_offset; 1198 read_bio->bi_bdev = mirror->rdev->bdev; 1199 read_bio->bi_end_io = raid1_end_read_request; 1200 read_bio->bi_rw = READ | do_sync; 1201 read_bio->bi_private = r1_bio; 1202 1203 if (max_sectors < r1_bio->sectors) { 1204 /* could not read all from this device, so we will 1205 * need another r1_bio. 1206 */ 1207 1208 sectors_handled = (r1_bio->sector + max_sectors 1209 - bio->bi_iter.bi_sector); 1210 r1_bio->sectors = max_sectors; 1211 spin_lock_irq(&conf->device_lock); 1212 if (bio->bi_phys_segments == 0) 1213 bio->bi_phys_segments = 2; 1214 else 1215 bio->bi_phys_segments++; 1216 spin_unlock_irq(&conf->device_lock); 1217 /* Cannot call generic_make_request directly 1218 * as that will be queued in __make_request 1219 * and subsequent mempool_alloc might block waiting 1220 * for it. So hand bio over to raid1d. 1221 */ 1222 reschedule_retry(r1_bio); 1223 1224 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1225 1226 r1_bio->master_bio = bio; 1227 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1228 r1_bio->state = 0; 1229 r1_bio->mddev = mddev; 1230 r1_bio->sector = bio->bi_iter.bi_sector + 1231 sectors_handled; 1232 goto read_again; 1233 } else 1234 generic_make_request(read_bio); 1235 return; 1236 } 1237 1238 /* 1239 * WRITE: 1240 */ 1241 if (conf->pending_count >= max_queued_requests) { 1242 md_wakeup_thread(mddev->thread); 1243 wait_event(conf->wait_barrier, 1244 conf->pending_count < max_queued_requests); 1245 } 1246 /* first select target devices under rcu_lock and 1247 * inc refcount on their rdev. Record them by setting 1248 * bios[x] to bio 1249 * If there are known/acknowledged bad blocks on any device on 1250 * which we have seen a write error, we want to avoid writing those 1251 * blocks. 1252 * This potentially requires several writes to write around 1253 * the bad blocks. Each set of writes gets it's own r1bio 1254 * with a set of bios attached. 1255 */ 1256 1257 disks = conf->raid_disks * 2; 1258 retry_write: 1259 r1_bio->start_next_window = start_next_window; 1260 blocked_rdev = NULL; 1261 rcu_read_lock(); 1262 max_sectors = r1_bio->sectors; 1263 for (i = 0; i < disks; i++) { 1264 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1265 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 1266 atomic_inc(&rdev->nr_pending); 1267 blocked_rdev = rdev; 1268 break; 1269 } 1270 r1_bio->bios[i] = NULL; 1271 if (!rdev || test_bit(Faulty, &rdev->flags) 1272 || test_bit(Unmerged, &rdev->flags)) { 1273 if (i < conf->raid_disks) 1274 set_bit(R1BIO_Degraded, &r1_bio->state); 1275 continue; 1276 } 1277 1278 atomic_inc(&rdev->nr_pending); 1279 if (test_bit(WriteErrorSeen, &rdev->flags)) { 1280 sector_t first_bad; 1281 int bad_sectors; 1282 int is_bad; 1283 1284 is_bad = is_badblock(rdev, r1_bio->sector, 1285 max_sectors, 1286 &first_bad, &bad_sectors); 1287 if (is_bad < 0) { 1288 /* mustn't write here until the bad block is 1289 * acknowledged*/ 1290 set_bit(BlockedBadBlocks, &rdev->flags); 1291 blocked_rdev = rdev; 1292 break; 1293 } 1294 if (is_bad && first_bad <= r1_bio->sector) { 1295 /* Cannot write here at all */ 1296 bad_sectors -= (r1_bio->sector - first_bad); 1297 if (bad_sectors < max_sectors) 1298 /* mustn't write more than bad_sectors 1299 * to other devices yet 1300 */ 1301 max_sectors = bad_sectors; 1302 rdev_dec_pending(rdev, mddev); 1303 /* We don't set R1BIO_Degraded as that 1304 * only applies if the disk is 1305 * missing, so it might be re-added, 1306 * and we want to know to recover this 1307 * chunk. 1308 * In this case the device is here, 1309 * and the fact that this chunk is not 1310 * in-sync is recorded in the bad 1311 * block log 1312 */ 1313 continue; 1314 } 1315 if (is_bad) { 1316 int good_sectors = first_bad - r1_bio->sector; 1317 if (good_sectors < max_sectors) 1318 max_sectors = good_sectors; 1319 } 1320 } 1321 r1_bio->bios[i] = bio; 1322 } 1323 rcu_read_unlock(); 1324 1325 if (unlikely(blocked_rdev)) { 1326 /* Wait for this device to become unblocked */ 1327 int j; 1328 sector_t old = start_next_window; 1329 1330 for (j = 0; j < i; j++) 1331 if (r1_bio->bios[j]) 1332 rdev_dec_pending(conf->mirrors[j].rdev, mddev); 1333 r1_bio->state = 0; 1334 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector); 1335 md_wait_for_blocked_rdev(blocked_rdev, mddev); 1336 start_next_window = wait_barrier(conf, bio); 1337 /* 1338 * We must make sure the multi r1bios of bio have 1339 * the same value of bi_phys_segments 1340 */ 1341 if (bio->bi_phys_segments && old && 1342 old != start_next_window) 1343 /* Wait for the former r1bio(s) to complete */ 1344 wait_event(conf->wait_barrier, 1345 bio->bi_phys_segments == 1); 1346 goto retry_write; 1347 } 1348 1349 if (max_sectors < r1_bio->sectors) { 1350 /* We are splitting this write into multiple parts, so 1351 * we need to prepare for allocating another r1_bio. 1352 */ 1353 r1_bio->sectors = max_sectors; 1354 spin_lock_irq(&conf->device_lock); 1355 if (bio->bi_phys_segments == 0) 1356 bio->bi_phys_segments = 2; 1357 else 1358 bio->bi_phys_segments++; 1359 spin_unlock_irq(&conf->device_lock); 1360 } 1361 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector; 1362 1363 atomic_set(&r1_bio->remaining, 1); 1364 atomic_set(&r1_bio->behind_remaining, 0); 1365 1366 first_clone = 1; 1367 for (i = 0; i < disks; i++) { 1368 struct bio *mbio; 1369 if (!r1_bio->bios[i]) 1370 continue; 1371 1372 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); 1373 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors); 1374 1375 if (first_clone) { 1376 /* do behind I/O ? 1377 * Not if there are too many, or cannot 1378 * allocate memory, or a reader on WriteMostly 1379 * is waiting for behind writes to flush */ 1380 if (bitmap && 1381 (atomic_read(&bitmap->behind_writes) 1382 < mddev->bitmap_info.max_write_behind) && 1383 !waitqueue_active(&bitmap->behind_wait)) 1384 alloc_behind_pages(mbio, r1_bio); 1385 1386 bitmap_startwrite(bitmap, r1_bio->sector, 1387 r1_bio->sectors, 1388 test_bit(R1BIO_BehindIO, 1389 &r1_bio->state)); 1390 first_clone = 0; 1391 } 1392 if (r1_bio->behind_bvecs) { 1393 struct bio_vec *bvec; 1394 int j; 1395 1396 /* 1397 * We trimmed the bio, so _all is legit 1398 */ 1399 bio_for_each_segment_all(bvec, mbio, j) 1400 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page; 1401 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 1402 atomic_inc(&r1_bio->behind_remaining); 1403 } 1404 1405 r1_bio->bios[i] = mbio; 1406 1407 mbio->bi_iter.bi_sector = (r1_bio->sector + 1408 conf->mirrors[i].rdev->data_offset); 1409 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1410 mbio->bi_end_io = raid1_end_write_request; 1411 mbio->bi_rw = 1412 WRITE | do_flush_fua | do_sync | do_discard | do_same; 1413 mbio->bi_private = r1_bio; 1414 1415 atomic_inc(&r1_bio->remaining); 1416 1417 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug)); 1418 if (cb) 1419 plug = container_of(cb, struct raid1_plug_cb, cb); 1420 else 1421 plug = NULL; 1422 spin_lock_irqsave(&conf->device_lock, flags); 1423 if (plug) { 1424 bio_list_add(&plug->pending, mbio); 1425 plug->pending_cnt++; 1426 } else { 1427 bio_list_add(&conf->pending_bio_list, mbio); 1428 conf->pending_count++; 1429 } 1430 spin_unlock_irqrestore(&conf->device_lock, flags); 1431 if (!plug) 1432 md_wakeup_thread(mddev->thread); 1433 } 1434 /* Mustn't call r1_bio_write_done before this next test, 1435 * as it could result in the bio being freed. 1436 */ 1437 if (sectors_handled < bio_sectors(bio)) { 1438 r1_bio_write_done(r1_bio); 1439 /* We need another r1_bio. It has already been counted 1440 * in bio->bi_phys_segments 1441 */ 1442 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 1443 r1_bio->master_bio = bio; 1444 r1_bio->sectors = bio_sectors(bio) - sectors_handled; 1445 r1_bio->state = 0; 1446 r1_bio->mddev = mddev; 1447 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled; 1448 goto retry_write; 1449 } 1450 1451 r1_bio_write_done(r1_bio); 1452 1453 /* In case raid1d snuck in to freeze_array */ 1454 wake_up(&conf->wait_barrier); 1455 } 1456 1457 static void status(struct seq_file *seq, struct mddev *mddev) 1458 { 1459 struct r1conf *conf = mddev->private; 1460 int i; 1461 1462 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1463 conf->raid_disks - mddev->degraded); 1464 rcu_read_lock(); 1465 for (i = 0; i < conf->raid_disks; i++) { 1466 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1467 seq_printf(seq, "%s", 1468 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 1469 } 1470 rcu_read_unlock(); 1471 seq_printf(seq, "]"); 1472 } 1473 1474 static void error(struct mddev *mddev, struct md_rdev *rdev) 1475 { 1476 char b[BDEVNAME_SIZE]; 1477 struct r1conf *conf = mddev->private; 1478 1479 /* 1480 * If it is not operational, then we have already marked it as dead 1481 * else if it is the last working disks, ignore the error, let the 1482 * next level up know. 1483 * else mark the drive as failed 1484 */ 1485 if (test_bit(In_sync, &rdev->flags) 1486 && (conf->raid_disks - mddev->degraded) == 1) { 1487 /* 1488 * Don't fail the drive, act as though we were just a 1489 * normal single drive. 1490 * However don't try a recovery from this drive as 1491 * it is very likely to fail. 1492 */ 1493 conf->recovery_disabled = mddev->recovery_disabled; 1494 return; 1495 } 1496 set_bit(Blocked, &rdev->flags); 1497 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1498 unsigned long flags; 1499 spin_lock_irqsave(&conf->device_lock, flags); 1500 mddev->degraded++; 1501 set_bit(Faulty, &rdev->flags); 1502 spin_unlock_irqrestore(&conf->device_lock, flags); 1503 } else 1504 set_bit(Faulty, &rdev->flags); 1505 /* 1506 * if recovery is running, make sure it aborts. 1507 */ 1508 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1509 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1510 printk(KERN_ALERT 1511 "md/raid1:%s: Disk failure on %s, disabling device.\n" 1512 "md/raid1:%s: Operation continuing on %d devices.\n", 1513 mdname(mddev), bdevname(rdev->bdev, b), 1514 mdname(mddev), conf->raid_disks - mddev->degraded); 1515 } 1516 1517 static void print_conf(struct r1conf *conf) 1518 { 1519 int i; 1520 1521 printk(KERN_DEBUG "RAID1 conf printout:\n"); 1522 if (!conf) { 1523 printk(KERN_DEBUG "(!conf)\n"); 1524 return; 1525 } 1526 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1527 conf->raid_disks); 1528 1529 rcu_read_lock(); 1530 for (i = 0; i < conf->raid_disks; i++) { 1531 char b[BDEVNAME_SIZE]; 1532 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); 1533 if (rdev) 1534 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1535 i, !test_bit(In_sync, &rdev->flags), 1536 !test_bit(Faulty, &rdev->flags), 1537 bdevname(rdev->bdev,b)); 1538 } 1539 rcu_read_unlock(); 1540 } 1541 1542 static void close_sync(struct r1conf *conf) 1543 { 1544 wait_barrier(conf, NULL); 1545 allow_barrier(conf, 0, 0); 1546 1547 mempool_destroy(conf->r1buf_pool); 1548 conf->r1buf_pool = NULL; 1549 1550 spin_lock_irq(&conf->resync_lock); 1551 conf->next_resync = 0; 1552 conf->start_next_window = MaxSector; 1553 conf->current_window_requests += 1554 conf->next_window_requests; 1555 conf->next_window_requests = 0; 1556 spin_unlock_irq(&conf->resync_lock); 1557 } 1558 1559 static int raid1_spare_active(struct mddev *mddev) 1560 { 1561 int i; 1562 struct r1conf *conf = mddev->private; 1563 int count = 0; 1564 unsigned long flags; 1565 1566 /* 1567 * Find all failed disks within the RAID1 configuration 1568 * and mark them readable. 1569 * Called under mddev lock, so rcu protection not needed. 1570 */ 1571 for (i = 0; i < conf->raid_disks; i++) { 1572 struct md_rdev *rdev = conf->mirrors[i].rdev; 1573 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev; 1574 if (repl 1575 && !test_bit(Candidate, &repl->flags) 1576 && repl->recovery_offset == MaxSector 1577 && !test_bit(Faulty, &repl->flags) 1578 && !test_and_set_bit(In_sync, &repl->flags)) { 1579 /* replacement has just become active */ 1580 if (!rdev || 1581 !test_and_clear_bit(In_sync, &rdev->flags)) 1582 count++; 1583 if (rdev) { 1584 /* Replaced device not technically 1585 * faulty, but we need to be sure 1586 * it gets removed and never re-added 1587 */ 1588 set_bit(Faulty, &rdev->flags); 1589 sysfs_notify_dirent_safe( 1590 rdev->sysfs_state); 1591 } 1592 } 1593 if (rdev 1594 && rdev->recovery_offset == MaxSector 1595 && !test_bit(Faulty, &rdev->flags) 1596 && !test_and_set_bit(In_sync, &rdev->flags)) { 1597 count++; 1598 sysfs_notify_dirent_safe(rdev->sysfs_state); 1599 } 1600 } 1601 spin_lock_irqsave(&conf->device_lock, flags); 1602 mddev->degraded -= count; 1603 spin_unlock_irqrestore(&conf->device_lock, flags); 1604 1605 print_conf(conf); 1606 return count; 1607 } 1608 1609 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev) 1610 { 1611 struct r1conf *conf = mddev->private; 1612 int err = -EEXIST; 1613 int mirror = 0; 1614 struct raid1_info *p; 1615 int first = 0; 1616 int last = conf->raid_disks - 1; 1617 struct request_queue *q = bdev_get_queue(rdev->bdev); 1618 1619 if (mddev->recovery_disabled == conf->recovery_disabled) 1620 return -EBUSY; 1621 1622 if (rdev->raid_disk >= 0) 1623 first = last = rdev->raid_disk; 1624 1625 if (q->merge_bvec_fn) { 1626 set_bit(Unmerged, &rdev->flags); 1627 mddev->merge_check_needed = 1; 1628 } 1629 1630 for (mirror = first; mirror <= last; mirror++) { 1631 p = conf->mirrors+mirror; 1632 if (!p->rdev) { 1633 1634 if (mddev->gendisk) 1635 disk_stack_limits(mddev->gendisk, rdev->bdev, 1636 rdev->data_offset << 9); 1637 1638 p->head_position = 0; 1639 rdev->raid_disk = mirror; 1640 err = 0; 1641 /* As all devices are equivalent, we don't need a full recovery 1642 * if this was recently any drive of the array 1643 */ 1644 if (rdev->saved_raid_disk < 0) 1645 conf->fullsync = 1; 1646 rcu_assign_pointer(p->rdev, rdev); 1647 break; 1648 } 1649 if (test_bit(WantReplacement, &p->rdev->flags) && 1650 p[conf->raid_disks].rdev == NULL) { 1651 /* Add this device as a replacement */ 1652 clear_bit(In_sync, &rdev->flags); 1653 set_bit(Replacement, &rdev->flags); 1654 rdev->raid_disk = mirror; 1655 err = 0; 1656 conf->fullsync = 1; 1657 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev); 1658 break; 1659 } 1660 } 1661 if (err == 0 && test_bit(Unmerged, &rdev->flags)) { 1662 /* Some requests might not have seen this new 1663 * merge_bvec_fn. We must wait for them to complete 1664 * before merging the device fully. 1665 * First we make sure any code which has tested 1666 * our function has submitted the request, then 1667 * we wait for all outstanding requests to complete. 1668 */ 1669 synchronize_sched(); 1670 freeze_array(conf, 0); 1671 unfreeze_array(conf); 1672 clear_bit(Unmerged, &rdev->flags); 1673 } 1674 md_integrity_add_rdev(rdev, mddev); 1675 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) 1676 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); 1677 print_conf(conf); 1678 return err; 1679 } 1680 1681 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 1682 { 1683 struct r1conf *conf = mddev->private; 1684 int err = 0; 1685 int number = rdev->raid_disk; 1686 struct raid1_info *p = conf->mirrors + number; 1687 1688 if (rdev != p->rdev) 1689 p = conf->mirrors + conf->raid_disks + number; 1690 1691 print_conf(conf); 1692 if (rdev == p->rdev) { 1693 if (test_bit(In_sync, &rdev->flags) || 1694 atomic_read(&rdev->nr_pending)) { 1695 err = -EBUSY; 1696 goto abort; 1697 } 1698 /* Only remove non-faulty devices if recovery 1699 * is not possible. 1700 */ 1701 if (!test_bit(Faulty, &rdev->flags) && 1702 mddev->recovery_disabled != conf->recovery_disabled && 1703 mddev->degraded < conf->raid_disks) { 1704 err = -EBUSY; 1705 goto abort; 1706 } 1707 p->rdev = NULL; 1708 synchronize_rcu(); 1709 if (atomic_read(&rdev->nr_pending)) { 1710 /* lost the race, try later */ 1711 err = -EBUSY; 1712 p->rdev = rdev; 1713 goto abort; 1714 } else if (conf->mirrors[conf->raid_disks + number].rdev) { 1715 /* We just removed a device that is being replaced. 1716 * Move down the replacement. We drain all IO before 1717 * doing this to avoid confusion. 1718 */ 1719 struct md_rdev *repl = 1720 conf->mirrors[conf->raid_disks + number].rdev; 1721 freeze_array(conf, 0); 1722 clear_bit(Replacement, &repl->flags); 1723 p->rdev = repl; 1724 conf->mirrors[conf->raid_disks + number].rdev = NULL; 1725 unfreeze_array(conf); 1726 clear_bit(WantReplacement, &rdev->flags); 1727 } else 1728 clear_bit(WantReplacement, &rdev->flags); 1729 err = md_integrity_register(mddev); 1730 } 1731 abort: 1732 1733 print_conf(conf); 1734 return err; 1735 } 1736 1737 static void end_sync_read(struct bio *bio, int error) 1738 { 1739 struct r1bio *r1_bio = bio->bi_private; 1740 1741 update_head_pos(r1_bio->read_disk, r1_bio); 1742 1743 /* 1744 * we have read a block, now it needs to be re-written, 1745 * or re-read if the read failed. 1746 * We don't do much here, just schedule handling by raid1d 1747 */ 1748 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1749 set_bit(R1BIO_Uptodate, &r1_bio->state); 1750 1751 if (atomic_dec_and_test(&r1_bio->remaining)) 1752 reschedule_retry(r1_bio); 1753 } 1754 1755 static void end_sync_write(struct bio *bio, int error) 1756 { 1757 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1758 struct r1bio *r1_bio = bio->bi_private; 1759 struct mddev *mddev = r1_bio->mddev; 1760 struct r1conf *conf = mddev->private; 1761 int mirror=0; 1762 sector_t first_bad; 1763 int bad_sectors; 1764 1765 mirror = find_bio_disk(r1_bio, bio); 1766 1767 if (!uptodate) { 1768 sector_t sync_blocks = 0; 1769 sector_t s = r1_bio->sector; 1770 long sectors_to_go = r1_bio->sectors; 1771 /* make sure these bits doesn't get cleared. */ 1772 do { 1773 bitmap_end_sync(mddev->bitmap, s, 1774 &sync_blocks, 1); 1775 s += sync_blocks; 1776 sectors_to_go -= sync_blocks; 1777 } while (sectors_to_go > 0); 1778 set_bit(WriteErrorSeen, 1779 &conf->mirrors[mirror].rdev->flags); 1780 if (!test_and_set_bit(WantReplacement, 1781 &conf->mirrors[mirror].rdev->flags)) 1782 set_bit(MD_RECOVERY_NEEDED, & 1783 mddev->recovery); 1784 set_bit(R1BIO_WriteError, &r1_bio->state); 1785 } else if (is_badblock(conf->mirrors[mirror].rdev, 1786 r1_bio->sector, 1787 r1_bio->sectors, 1788 &first_bad, &bad_sectors) && 1789 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev, 1790 r1_bio->sector, 1791 r1_bio->sectors, 1792 &first_bad, &bad_sectors) 1793 ) 1794 set_bit(R1BIO_MadeGood, &r1_bio->state); 1795 1796 if (atomic_dec_and_test(&r1_bio->remaining)) { 1797 int s = r1_bio->sectors; 1798 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 1799 test_bit(R1BIO_WriteError, &r1_bio->state)) 1800 reschedule_retry(r1_bio); 1801 else { 1802 put_buf(r1_bio); 1803 md_done_sync(mddev, s, uptodate); 1804 } 1805 } 1806 } 1807 1808 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector, 1809 int sectors, struct page *page, int rw) 1810 { 1811 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) 1812 /* success */ 1813 return 1; 1814 if (rw == WRITE) { 1815 set_bit(WriteErrorSeen, &rdev->flags); 1816 if (!test_and_set_bit(WantReplacement, 1817 &rdev->flags)) 1818 set_bit(MD_RECOVERY_NEEDED, & 1819 rdev->mddev->recovery); 1820 } 1821 /* need to record an error - either for the block or the device */ 1822 if (!rdev_set_badblocks(rdev, sector, sectors, 0)) 1823 md_error(rdev->mddev, rdev); 1824 return 0; 1825 } 1826 1827 static int fix_sync_read_error(struct r1bio *r1_bio) 1828 { 1829 /* Try some synchronous reads of other devices to get 1830 * good data, much like with normal read errors. Only 1831 * read into the pages we already have so we don't 1832 * need to re-issue the read request. 1833 * We don't need to freeze the array, because being in an 1834 * active sync request, there is no normal IO, and 1835 * no overlapping syncs. 1836 * We don't need to check is_badblock() again as we 1837 * made sure that anything with a bad block in range 1838 * will have bi_end_io clear. 1839 */ 1840 struct mddev *mddev = r1_bio->mddev; 1841 struct r1conf *conf = mddev->private; 1842 struct bio *bio = r1_bio->bios[r1_bio->read_disk]; 1843 sector_t sect = r1_bio->sector; 1844 int sectors = r1_bio->sectors; 1845 int idx = 0; 1846 1847 while(sectors) { 1848 int s = sectors; 1849 int d = r1_bio->read_disk; 1850 int success = 0; 1851 struct md_rdev *rdev; 1852 int start; 1853 1854 if (s > (PAGE_SIZE>>9)) 1855 s = PAGE_SIZE >> 9; 1856 do { 1857 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1858 /* No rcu protection needed here devices 1859 * can only be removed when no resync is 1860 * active, and resync is currently active 1861 */ 1862 rdev = conf->mirrors[d].rdev; 1863 if (sync_page_io(rdev, sect, s<<9, 1864 bio->bi_io_vec[idx].bv_page, 1865 READ, false)) { 1866 success = 1; 1867 break; 1868 } 1869 } 1870 d++; 1871 if (d == conf->raid_disks * 2) 1872 d = 0; 1873 } while (!success && d != r1_bio->read_disk); 1874 1875 if (!success) { 1876 char b[BDEVNAME_SIZE]; 1877 int abort = 0; 1878 /* Cannot read from anywhere, this block is lost. 1879 * Record a bad block on each device. If that doesn't 1880 * work just disable and interrupt the recovery. 1881 * Don't fail devices as that won't really help. 1882 */ 1883 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error" 1884 " for block %llu\n", 1885 mdname(mddev), 1886 bdevname(bio->bi_bdev, b), 1887 (unsigned long long)r1_bio->sector); 1888 for (d = 0; d < conf->raid_disks * 2; d++) { 1889 rdev = conf->mirrors[d].rdev; 1890 if (!rdev || test_bit(Faulty, &rdev->flags)) 1891 continue; 1892 if (!rdev_set_badblocks(rdev, sect, s, 0)) 1893 abort = 1; 1894 } 1895 if (abort) { 1896 conf->recovery_disabled = 1897 mddev->recovery_disabled; 1898 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1899 md_done_sync(mddev, r1_bio->sectors, 0); 1900 put_buf(r1_bio); 1901 return 0; 1902 } 1903 /* Try next page */ 1904 sectors -= s; 1905 sect += s; 1906 idx++; 1907 continue; 1908 } 1909 1910 start = d; 1911 /* write it back and re-read */ 1912 while (d != r1_bio->read_disk) { 1913 if (d == 0) 1914 d = conf->raid_disks * 2; 1915 d--; 1916 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1917 continue; 1918 rdev = conf->mirrors[d].rdev; 1919 if (r1_sync_page_io(rdev, sect, s, 1920 bio->bi_io_vec[idx].bv_page, 1921 WRITE) == 0) { 1922 r1_bio->bios[d]->bi_end_io = NULL; 1923 rdev_dec_pending(rdev, mddev); 1924 } 1925 } 1926 d = start; 1927 while (d != r1_bio->read_disk) { 1928 if (d == 0) 1929 d = conf->raid_disks * 2; 1930 d--; 1931 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1932 continue; 1933 rdev = conf->mirrors[d].rdev; 1934 if (r1_sync_page_io(rdev, sect, s, 1935 bio->bi_io_vec[idx].bv_page, 1936 READ) != 0) 1937 atomic_add(s, &rdev->corrected_errors); 1938 } 1939 sectors -= s; 1940 sect += s; 1941 idx ++; 1942 } 1943 set_bit(R1BIO_Uptodate, &r1_bio->state); 1944 set_bit(BIO_UPTODATE, &bio->bi_flags); 1945 return 1; 1946 } 1947 1948 static void process_checks(struct r1bio *r1_bio) 1949 { 1950 /* We have read all readable devices. If we haven't 1951 * got the block, then there is no hope left. 1952 * If we have, then we want to do a comparison 1953 * and skip the write if everything is the same. 1954 * If any blocks failed to read, then we need to 1955 * attempt an over-write 1956 */ 1957 struct mddev *mddev = r1_bio->mddev; 1958 struct r1conf *conf = mddev->private; 1959 int primary; 1960 int i; 1961 int vcnt; 1962 1963 /* Fix variable parts of all bios */ 1964 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9); 1965 for (i = 0; i < conf->raid_disks * 2; i++) { 1966 int j; 1967 int size; 1968 int uptodate; 1969 struct bio *b = r1_bio->bios[i]; 1970 if (b->bi_end_io != end_sync_read) 1971 continue; 1972 /* fixup the bio for reuse, but preserve BIO_UPTODATE */ 1973 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags); 1974 bio_reset(b); 1975 if (!uptodate) 1976 clear_bit(BIO_UPTODATE, &b->bi_flags); 1977 b->bi_vcnt = vcnt; 1978 b->bi_iter.bi_size = r1_bio->sectors << 9; 1979 b->bi_iter.bi_sector = r1_bio->sector + 1980 conf->mirrors[i].rdev->data_offset; 1981 b->bi_bdev = conf->mirrors[i].rdev->bdev; 1982 b->bi_end_io = end_sync_read; 1983 b->bi_private = r1_bio; 1984 1985 size = b->bi_iter.bi_size; 1986 for (j = 0; j < vcnt ; j++) { 1987 struct bio_vec *bi; 1988 bi = &b->bi_io_vec[j]; 1989 bi->bv_offset = 0; 1990 if (size > PAGE_SIZE) 1991 bi->bv_len = PAGE_SIZE; 1992 else 1993 bi->bv_len = size; 1994 size -= PAGE_SIZE; 1995 } 1996 } 1997 for (primary = 0; primary < conf->raid_disks * 2; primary++) 1998 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1999 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 2000 r1_bio->bios[primary]->bi_end_io = NULL; 2001 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 2002 break; 2003 } 2004 r1_bio->read_disk = primary; 2005 for (i = 0; i < conf->raid_disks * 2; i++) { 2006 int j; 2007 struct bio *pbio = r1_bio->bios[primary]; 2008 struct bio *sbio = r1_bio->bios[i]; 2009 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags); 2010 2011 if (sbio->bi_end_io != end_sync_read) 2012 continue; 2013 /* Now we can 'fixup' the BIO_UPTODATE flag */ 2014 set_bit(BIO_UPTODATE, &sbio->bi_flags); 2015 2016 if (uptodate) { 2017 for (j = vcnt; j-- ; ) { 2018 struct page *p, *s; 2019 p = pbio->bi_io_vec[j].bv_page; 2020 s = sbio->bi_io_vec[j].bv_page; 2021 if (memcmp(page_address(p), 2022 page_address(s), 2023 sbio->bi_io_vec[j].bv_len)) 2024 break; 2025 } 2026 } else 2027 j = 0; 2028 if (j >= 0) 2029 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches); 2030 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 2031 && uptodate)) { 2032 /* No need to write to this device. */ 2033 sbio->bi_end_io = NULL; 2034 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 2035 continue; 2036 } 2037 2038 bio_copy_data(sbio, pbio); 2039 } 2040 } 2041 2042 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio) 2043 { 2044 struct r1conf *conf = mddev->private; 2045 int i; 2046 int disks = conf->raid_disks * 2; 2047 struct bio *bio, *wbio; 2048 2049 bio = r1_bio->bios[r1_bio->read_disk]; 2050 2051 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) 2052 /* ouch - failed to read all of that. */ 2053 if (!fix_sync_read_error(r1_bio)) 2054 return; 2055 2056 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2057 process_checks(r1_bio); 2058 2059 /* 2060 * schedule writes 2061 */ 2062 atomic_set(&r1_bio->remaining, 1); 2063 for (i = 0; i < disks ; i++) { 2064 wbio = r1_bio->bios[i]; 2065 if (wbio->bi_end_io == NULL || 2066 (wbio->bi_end_io == end_sync_read && 2067 (i == r1_bio->read_disk || 2068 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 2069 continue; 2070 2071 wbio->bi_rw = WRITE; 2072 wbio->bi_end_io = end_sync_write; 2073 atomic_inc(&r1_bio->remaining); 2074 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio)); 2075 2076 generic_make_request(wbio); 2077 } 2078 2079 if (atomic_dec_and_test(&r1_bio->remaining)) { 2080 /* if we're here, all write(s) have completed, so clean up */ 2081 int s = r1_bio->sectors; 2082 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2083 test_bit(R1BIO_WriteError, &r1_bio->state)) 2084 reschedule_retry(r1_bio); 2085 else { 2086 put_buf(r1_bio); 2087 md_done_sync(mddev, s, 1); 2088 } 2089 } 2090 } 2091 2092 /* 2093 * This is a kernel thread which: 2094 * 2095 * 1. Retries failed read operations on working mirrors. 2096 * 2. Updates the raid superblock when problems encounter. 2097 * 3. Performs writes following reads for array synchronising. 2098 */ 2099 2100 static void fix_read_error(struct r1conf *conf, int read_disk, 2101 sector_t sect, int sectors) 2102 { 2103 struct mddev *mddev = conf->mddev; 2104 while(sectors) { 2105 int s = sectors; 2106 int d = read_disk; 2107 int success = 0; 2108 int start; 2109 struct md_rdev *rdev; 2110 2111 if (s > (PAGE_SIZE>>9)) 2112 s = PAGE_SIZE >> 9; 2113 2114 do { 2115 /* Note: no rcu protection needed here 2116 * as this is synchronous in the raid1d thread 2117 * which is the thread that might remove 2118 * a device. If raid1d ever becomes multi-threaded.... 2119 */ 2120 sector_t first_bad; 2121 int bad_sectors; 2122 2123 rdev = conf->mirrors[d].rdev; 2124 if (rdev && 2125 (test_bit(In_sync, &rdev->flags) || 2126 (!test_bit(Faulty, &rdev->flags) && 2127 rdev->recovery_offset >= sect + s)) && 2128 is_badblock(rdev, sect, s, 2129 &first_bad, &bad_sectors) == 0 && 2130 sync_page_io(rdev, sect, s<<9, 2131 conf->tmppage, READ, false)) 2132 success = 1; 2133 else { 2134 d++; 2135 if (d == conf->raid_disks * 2) 2136 d = 0; 2137 } 2138 } while (!success && d != read_disk); 2139 2140 if (!success) { 2141 /* Cannot read from anywhere - mark it bad */ 2142 struct md_rdev *rdev = conf->mirrors[read_disk].rdev; 2143 if (!rdev_set_badblocks(rdev, sect, s, 0)) 2144 md_error(mddev, rdev); 2145 break; 2146 } 2147 /* write it back and re-read */ 2148 start = d; 2149 while (d != read_disk) { 2150 if (d==0) 2151 d = conf->raid_disks * 2; 2152 d--; 2153 rdev = conf->mirrors[d].rdev; 2154 if (rdev && 2155 !test_bit(Faulty, &rdev->flags)) 2156 r1_sync_page_io(rdev, sect, s, 2157 conf->tmppage, WRITE); 2158 } 2159 d = start; 2160 while (d != read_disk) { 2161 char b[BDEVNAME_SIZE]; 2162 if (d==0) 2163 d = conf->raid_disks * 2; 2164 d--; 2165 rdev = conf->mirrors[d].rdev; 2166 if (rdev && 2167 !test_bit(Faulty, &rdev->flags)) { 2168 if (r1_sync_page_io(rdev, sect, s, 2169 conf->tmppage, READ)) { 2170 atomic_add(s, &rdev->corrected_errors); 2171 printk(KERN_INFO 2172 "md/raid1:%s: read error corrected " 2173 "(%d sectors at %llu on %s)\n", 2174 mdname(mddev), s, 2175 (unsigned long long)(sect + 2176 rdev->data_offset), 2177 bdevname(rdev->bdev, b)); 2178 } 2179 } 2180 } 2181 sectors -= s; 2182 sect += s; 2183 } 2184 } 2185 2186 static int narrow_write_error(struct r1bio *r1_bio, int i) 2187 { 2188 struct mddev *mddev = r1_bio->mddev; 2189 struct r1conf *conf = mddev->private; 2190 struct md_rdev *rdev = conf->mirrors[i].rdev; 2191 2192 /* bio has the data to be written to device 'i' where 2193 * we just recently had a write error. 2194 * We repeatedly clone the bio and trim down to one block, 2195 * then try the write. Where the write fails we record 2196 * a bad block. 2197 * It is conceivable that the bio doesn't exactly align with 2198 * blocks. We must handle this somehow. 2199 * 2200 * We currently own a reference on the rdev. 2201 */ 2202 2203 int block_sectors; 2204 sector_t sector; 2205 int sectors; 2206 int sect_to_write = r1_bio->sectors; 2207 int ok = 1; 2208 2209 if (rdev->badblocks.shift < 0) 2210 return 0; 2211 2212 block_sectors = roundup(1 << rdev->badblocks.shift, 2213 bdev_logical_block_size(rdev->bdev) >> 9); 2214 sector = r1_bio->sector; 2215 sectors = ((sector + block_sectors) 2216 & ~(sector_t)(block_sectors - 1)) 2217 - sector; 2218 2219 while (sect_to_write) { 2220 struct bio *wbio; 2221 if (sectors > sect_to_write) 2222 sectors = sect_to_write; 2223 /* Write at 'sector' for 'sectors'*/ 2224 2225 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 2226 unsigned vcnt = r1_bio->behind_page_count; 2227 struct bio_vec *vec = r1_bio->behind_bvecs; 2228 2229 while (!vec->bv_page) { 2230 vec++; 2231 vcnt--; 2232 } 2233 2234 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev); 2235 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec)); 2236 2237 wbio->bi_vcnt = vcnt; 2238 } else { 2239 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2240 } 2241 2242 wbio->bi_rw = WRITE; 2243 wbio->bi_iter.bi_sector = r1_bio->sector; 2244 wbio->bi_iter.bi_size = r1_bio->sectors << 9; 2245 2246 bio_trim(wbio, sector - r1_bio->sector, sectors); 2247 wbio->bi_iter.bi_sector += rdev->data_offset; 2248 wbio->bi_bdev = rdev->bdev; 2249 if (submit_bio_wait(WRITE, wbio) == 0) 2250 /* failure! */ 2251 ok = rdev_set_badblocks(rdev, sector, 2252 sectors, 0) 2253 && ok; 2254 2255 bio_put(wbio); 2256 sect_to_write -= sectors; 2257 sector += sectors; 2258 sectors = block_sectors; 2259 } 2260 return ok; 2261 } 2262 2263 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2264 { 2265 int m; 2266 int s = r1_bio->sectors; 2267 for (m = 0; m < conf->raid_disks * 2 ; m++) { 2268 struct md_rdev *rdev = conf->mirrors[m].rdev; 2269 struct bio *bio = r1_bio->bios[m]; 2270 if (bio->bi_end_io == NULL) 2271 continue; 2272 if (test_bit(BIO_UPTODATE, &bio->bi_flags) && 2273 test_bit(R1BIO_MadeGood, &r1_bio->state)) { 2274 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0); 2275 } 2276 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 2277 test_bit(R1BIO_WriteError, &r1_bio->state)) { 2278 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0)) 2279 md_error(conf->mddev, rdev); 2280 } 2281 } 2282 put_buf(r1_bio); 2283 md_done_sync(conf->mddev, s, 1); 2284 } 2285 2286 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio) 2287 { 2288 int m; 2289 for (m = 0; m < conf->raid_disks * 2 ; m++) 2290 if (r1_bio->bios[m] == IO_MADE_GOOD) { 2291 struct md_rdev *rdev = conf->mirrors[m].rdev; 2292 rdev_clear_badblocks(rdev, 2293 r1_bio->sector, 2294 r1_bio->sectors, 0); 2295 rdev_dec_pending(rdev, conf->mddev); 2296 } else if (r1_bio->bios[m] != NULL) { 2297 /* This drive got a write error. We need to 2298 * narrow down and record precise write 2299 * errors. 2300 */ 2301 if (!narrow_write_error(r1_bio, m)) { 2302 md_error(conf->mddev, 2303 conf->mirrors[m].rdev); 2304 /* an I/O failed, we can't clear the bitmap */ 2305 set_bit(R1BIO_Degraded, &r1_bio->state); 2306 } 2307 rdev_dec_pending(conf->mirrors[m].rdev, 2308 conf->mddev); 2309 } 2310 if (test_bit(R1BIO_WriteError, &r1_bio->state)) 2311 close_write(r1_bio); 2312 raid_end_bio_io(r1_bio); 2313 } 2314 2315 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio) 2316 { 2317 int disk; 2318 int max_sectors; 2319 struct mddev *mddev = conf->mddev; 2320 struct bio *bio; 2321 char b[BDEVNAME_SIZE]; 2322 struct md_rdev *rdev; 2323 2324 clear_bit(R1BIO_ReadError, &r1_bio->state); 2325 /* we got a read error. Maybe the drive is bad. Maybe just 2326 * the block and we can fix it. 2327 * We freeze all other IO, and try reading the block from 2328 * other devices. When we find one, we re-write 2329 * and check it that fixes the read error. 2330 * This is all done synchronously while the array is 2331 * frozen 2332 */ 2333 if (mddev->ro == 0) { 2334 freeze_array(conf, 1); 2335 fix_read_error(conf, r1_bio->read_disk, 2336 r1_bio->sector, r1_bio->sectors); 2337 unfreeze_array(conf); 2338 } else 2339 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 2340 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); 2341 2342 bio = r1_bio->bios[r1_bio->read_disk]; 2343 bdevname(bio->bi_bdev, b); 2344 read_more: 2345 disk = read_balance(conf, r1_bio, &max_sectors); 2346 if (disk == -1) { 2347 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O" 2348 " read error for block %llu\n", 2349 mdname(mddev), b, (unsigned long long)r1_bio->sector); 2350 raid_end_bio_io(r1_bio); 2351 } else { 2352 const unsigned long do_sync 2353 = r1_bio->master_bio->bi_rw & REQ_SYNC; 2354 if (bio) { 2355 r1_bio->bios[r1_bio->read_disk] = 2356 mddev->ro ? IO_BLOCKED : NULL; 2357 bio_put(bio); 2358 } 2359 r1_bio->read_disk = disk; 2360 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev); 2361 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector, 2362 max_sectors); 2363 r1_bio->bios[r1_bio->read_disk] = bio; 2364 rdev = conf->mirrors[disk].rdev; 2365 printk_ratelimited(KERN_ERR 2366 "md/raid1:%s: redirecting sector %llu" 2367 " to other mirror: %s\n", 2368 mdname(mddev), 2369 (unsigned long long)r1_bio->sector, 2370 bdevname(rdev->bdev, b)); 2371 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset; 2372 bio->bi_bdev = rdev->bdev; 2373 bio->bi_end_io = raid1_end_read_request; 2374 bio->bi_rw = READ | do_sync; 2375 bio->bi_private = r1_bio; 2376 if (max_sectors < r1_bio->sectors) { 2377 /* Drat - have to split this up more */ 2378 struct bio *mbio = r1_bio->master_bio; 2379 int sectors_handled = (r1_bio->sector + max_sectors 2380 - mbio->bi_iter.bi_sector); 2381 r1_bio->sectors = max_sectors; 2382 spin_lock_irq(&conf->device_lock); 2383 if (mbio->bi_phys_segments == 0) 2384 mbio->bi_phys_segments = 2; 2385 else 2386 mbio->bi_phys_segments++; 2387 spin_unlock_irq(&conf->device_lock); 2388 generic_make_request(bio); 2389 bio = NULL; 2390 2391 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 2392 2393 r1_bio->master_bio = mbio; 2394 r1_bio->sectors = bio_sectors(mbio) - sectors_handled; 2395 r1_bio->state = 0; 2396 set_bit(R1BIO_ReadError, &r1_bio->state); 2397 r1_bio->mddev = mddev; 2398 r1_bio->sector = mbio->bi_iter.bi_sector + 2399 sectors_handled; 2400 2401 goto read_more; 2402 } else 2403 generic_make_request(bio); 2404 } 2405 } 2406 2407 static void raid1d(struct md_thread *thread) 2408 { 2409 struct mddev *mddev = thread->mddev; 2410 struct r1bio *r1_bio; 2411 unsigned long flags; 2412 struct r1conf *conf = mddev->private; 2413 struct list_head *head = &conf->retry_list; 2414 struct blk_plug plug; 2415 2416 md_check_recovery(mddev); 2417 2418 blk_start_plug(&plug); 2419 for (;;) { 2420 2421 flush_pending_writes(conf); 2422 2423 spin_lock_irqsave(&conf->device_lock, flags); 2424 if (list_empty(head)) { 2425 spin_unlock_irqrestore(&conf->device_lock, flags); 2426 break; 2427 } 2428 r1_bio = list_entry(head->prev, struct r1bio, retry_list); 2429 list_del(head->prev); 2430 conf->nr_queued--; 2431 spin_unlock_irqrestore(&conf->device_lock, flags); 2432 2433 mddev = r1_bio->mddev; 2434 conf = mddev->private; 2435 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 2436 if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2437 test_bit(R1BIO_WriteError, &r1_bio->state)) 2438 handle_sync_write_finished(conf, r1_bio); 2439 else 2440 sync_request_write(mddev, r1_bio); 2441 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) || 2442 test_bit(R1BIO_WriteError, &r1_bio->state)) 2443 handle_write_finished(conf, r1_bio); 2444 else if (test_bit(R1BIO_ReadError, &r1_bio->state)) 2445 handle_read_error(conf, r1_bio); 2446 else 2447 /* just a partial read to be scheduled from separate 2448 * context 2449 */ 2450 generic_make_request(r1_bio->bios[r1_bio->read_disk]); 2451 2452 cond_resched(); 2453 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) 2454 md_check_recovery(mddev); 2455 } 2456 blk_finish_plug(&plug); 2457 } 2458 2459 static int init_resync(struct r1conf *conf) 2460 { 2461 int buffs; 2462 2463 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 2464 BUG_ON(conf->r1buf_pool); 2465 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 2466 conf->poolinfo); 2467 if (!conf->r1buf_pool) 2468 return -ENOMEM; 2469 conf->next_resync = 0; 2470 return 0; 2471 } 2472 2473 /* 2474 * perform a "sync" on one "block" 2475 * 2476 * We need to make sure that no normal I/O request - particularly write 2477 * requests - conflict with active sync requests. 2478 * 2479 * This is achieved by tracking pending requests and a 'barrier' concept 2480 * that can be installed to exclude normal IO requests. 2481 */ 2482 2483 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 2484 { 2485 struct r1conf *conf = mddev->private; 2486 struct r1bio *r1_bio; 2487 struct bio *bio; 2488 sector_t max_sector, nr_sectors; 2489 int disk = -1; 2490 int i; 2491 int wonly = -1; 2492 int write_targets = 0, read_targets = 0; 2493 sector_t sync_blocks; 2494 int still_degraded = 0; 2495 int good_sectors = RESYNC_SECTORS; 2496 int min_bad = 0; /* number of sectors that are bad in all devices */ 2497 2498 if (!conf->r1buf_pool) 2499 if (init_resync(conf)) 2500 return 0; 2501 2502 max_sector = mddev->dev_sectors; 2503 if (sector_nr >= max_sector) { 2504 /* If we aborted, we need to abort the 2505 * sync on the 'current' bitmap chunk (there will 2506 * only be one in raid1 resync. 2507 * We can find the current addess in mddev->curr_resync 2508 */ 2509 if (mddev->curr_resync < max_sector) /* aborted */ 2510 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 2511 &sync_blocks, 1); 2512 else /* completed sync */ 2513 conf->fullsync = 0; 2514 2515 bitmap_close_sync(mddev->bitmap); 2516 close_sync(conf); 2517 return 0; 2518 } 2519 2520 if (mddev->bitmap == NULL && 2521 mddev->recovery_cp == MaxSector && 2522 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 2523 conf->fullsync == 0) { 2524 *skipped = 1; 2525 return max_sector - sector_nr; 2526 } 2527 /* before building a request, check if we can skip these blocks.. 2528 * This call the bitmap_start_sync doesn't actually record anything 2529 */ 2530 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 2531 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2532 /* We can skip this block, and probably several more */ 2533 *skipped = 1; 2534 return sync_blocks; 2535 } 2536 2537 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2538 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 2539 2540 raise_barrier(conf, sector_nr); 2541 2542 rcu_read_lock(); 2543 /* 2544 * If we get a correctably read error during resync or recovery, 2545 * we might want to read from a different device. So we 2546 * flag all drives that could conceivably be read from for READ, 2547 * and any others (which will be non-In_sync devices) for WRITE. 2548 * If a read fails, we try reading from something else for which READ 2549 * is OK. 2550 */ 2551 2552 r1_bio->mddev = mddev; 2553 r1_bio->sector = sector_nr; 2554 r1_bio->state = 0; 2555 set_bit(R1BIO_IsSync, &r1_bio->state); 2556 2557 for (i = 0; i < conf->raid_disks * 2; i++) { 2558 struct md_rdev *rdev; 2559 bio = r1_bio->bios[i]; 2560 bio_reset(bio); 2561 2562 rdev = rcu_dereference(conf->mirrors[i].rdev); 2563 if (rdev == NULL || 2564 test_bit(Faulty, &rdev->flags)) { 2565 if (i < conf->raid_disks) 2566 still_degraded = 1; 2567 } else if (!test_bit(In_sync, &rdev->flags)) { 2568 bio->bi_rw = WRITE; 2569 bio->bi_end_io = end_sync_write; 2570 write_targets ++; 2571 } else { 2572 /* may need to read from here */ 2573 sector_t first_bad = MaxSector; 2574 int bad_sectors; 2575 2576 if (is_badblock(rdev, sector_nr, good_sectors, 2577 &first_bad, &bad_sectors)) { 2578 if (first_bad > sector_nr) 2579 good_sectors = first_bad - sector_nr; 2580 else { 2581 bad_sectors -= (sector_nr - first_bad); 2582 if (min_bad == 0 || 2583 min_bad > bad_sectors) 2584 min_bad = bad_sectors; 2585 } 2586 } 2587 if (sector_nr < first_bad) { 2588 if (test_bit(WriteMostly, &rdev->flags)) { 2589 if (wonly < 0) 2590 wonly = i; 2591 } else { 2592 if (disk < 0) 2593 disk = i; 2594 } 2595 bio->bi_rw = READ; 2596 bio->bi_end_io = end_sync_read; 2597 read_targets++; 2598 } else if (!test_bit(WriteErrorSeen, &rdev->flags) && 2599 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 2600 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 2601 /* 2602 * The device is suitable for reading (InSync), 2603 * but has bad block(s) here. Let's try to correct them, 2604 * if we are doing resync or repair. Otherwise, leave 2605 * this device alone for this sync request. 2606 */ 2607 bio->bi_rw = WRITE; 2608 bio->bi_end_io = end_sync_write; 2609 write_targets++; 2610 } 2611 } 2612 if (bio->bi_end_io) { 2613 atomic_inc(&rdev->nr_pending); 2614 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset; 2615 bio->bi_bdev = rdev->bdev; 2616 bio->bi_private = r1_bio; 2617 } 2618 } 2619 rcu_read_unlock(); 2620 if (disk < 0) 2621 disk = wonly; 2622 r1_bio->read_disk = disk; 2623 2624 if (read_targets == 0 && min_bad > 0) { 2625 /* These sectors are bad on all InSync devices, so we 2626 * need to mark them bad on all write targets 2627 */ 2628 int ok = 1; 2629 for (i = 0 ; i < conf->raid_disks * 2 ; i++) 2630 if (r1_bio->bios[i]->bi_end_io == end_sync_write) { 2631 struct md_rdev *rdev = conf->mirrors[i].rdev; 2632 ok = rdev_set_badblocks(rdev, sector_nr, 2633 min_bad, 0 2634 ) && ok; 2635 } 2636 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2637 *skipped = 1; 2638 put_buf(r1_bio); 2639 2640 if (!ok) { 2641 /* Cannot record the badblocks, so need to 2642 * abort the resync. 2643 * If there are multiple read targets, could just 2644 * fail the really bad ones ??? 2645 */ 2646 conf->recovery_disabled = mddev->recovery_disabled; 2647 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2648 return 0; 2649 } else 2650 return min_bad; 2651 2652 } 2653 if (min_bad > 0 && min_bad < good_sectors) { 2654 /* only resync enough to reach the next bad->good 2655 * transition */ 2656 good_sectors = min_bad; 2657 } 2658 2659 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 2660 /* extra read targets are also write targets */ 2661 write_targets += read_targets-1; 2662 2663 if (write_targets == 0 || read_targets == 0) { 2664 /* There is nowhere to write, so all non-sync 2665 * drives must be failed - so we are finished 2666 */ 2667 sector_t rv; 2668 if (min_bad > 0) 2669 max_sector = sector_nr + min_bad; 2670 rv = max_sector - sector_nr; 2671 *skipped = 1; 2672 put_buf(r1_bio); 2673 return rv; 2674 } 2675 2676 if (max_sector > mddev->resync_max) 2677 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 2678 if (max_sector > sector_nr + good_sectors) 2679 max_sector = sector_nr + good_sectors; 2680 nr_sectors = 0; 2681 sync_blocks = 0; 2682 do { 2683 struct page *page; 2684 int len = PAGE_SIZE; 2685 if (sector_nr + (len>>9) > max_sector) 2686 len = (max_sector - sector_nr) << 9; 2687 if (len == 0) 2688 break; 2689 if (sync_blocks == 0) { 2690 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2691 &sync_blocks, still_degraded) && 2692 !conf->fullsync && 2693 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2694 break; 2695 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 2696 if ((len >> 9) > sync_blocks) 2697 len = sync_blocks<<9; 2698 } 2699 2700 for (i = 0 ; i < conf->raid_disks * 2; i++) { 2701 bio = r1_bio->bios[i]; 2702 if (bio->bi_end_io) { 2703 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2704 if (bio_add_page(bio, page, len, 0) == 0) { 2705 /* stop here */ 2706 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2707 while (i > 0) { 2708 i--; 2709 bio = r1_bio->bios[i]; 2710 if (bio->bi_end_io==NULL) 2711 continue; 2712 /* remove last page from this bio */ 2713 bio->bi_vcnt--; 2714 bio->bi_iter.bi_size -= len; 2715 __clear_bit(BIO_SEG_VALID, &bio->bi_flags); 2716 } 2717 goto bio_full; 2718 } 2719 } 2720 } 2721 nr_sectors += len>>9; 2722 sector_nr += len>>9; 2723 sync_blocks -= (len>>9); 2724 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 2725 bio_full: 2726 r1_bio->sectors = nr_sectors; 2727 2728 /* For a user-requested sync, we read all readable devices and do a 2729 * compare 2730 */ 2731 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2732 atomic_set(&r1_bio->remaining, read_targets); 2733 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) { 2734 bio = r1_bio->bios[i]; 2735 if (bio->bi_end_io == end_sync_read) { 2736 read_targets--; 2737 md_sync_acct(bio->bi_bdev, nr_sectors); 2738 generic_make_request(bio); 2739 } 2740 } 2741 } else { 2742 atomic_set(&r1_bio->remaining, 1); 2743 bio = r1_bio->bios[r1_bio->read_disk]; 2744 md_sync_acct(bio->bi_bdev, nr_sectors); 2745 generic_make_request(bio); 2746 2747 } 2748 return nr_sectors; 2749 } 2750 2751 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks) 2752 { 2753 if (sectors) 2754 return sectors; 2755 2756 return mddev->dev_sectors; 2757 } 2758 2759 static struct r1conf *setup_conf(struct mddev *mddev) 2760 { 2761 struct r1conf *conf; 2762 int i; 2763 struct raid1_info *disk; 2764 struct md_rdev *rdev; 2765 int err = -ENOMEM; 2766 2767 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL); 2768 if (!conf) 2769 goto abort; 2770 2771 conf->mirrors = kzalloc(sizeof(struct raid1_info) 2772 * mddev->raid_disks * 2, 2773 GFP_KERNEL); 2774 if (!conf->mirrors) 2775 goto abort; 2776 2777 conf->tmppage = alloc_page(GFP_KERNEL); 2778 if (!conf->tmppage) 2779 goto abort; 2780 2781 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 2782 if (!conf->poolinfo) 2783 goto abort; 2784 conf->poolinfo->raid_disks = mddev->raid_disks * 2; 2785 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2786 r1bio_pool_free, 2787 conf->poolinfo); 2788 if (!conf->r1bio_pool) 2789 goto abort; 2790 2791 conf->poolinfo->mddev = mddev; 2792 2793 err = -EINVAL; 2794 spin_lock_init(&conf->device_lock); 2795 rdev_for_each(rdev, mddev) { 2796 struct request_queue *q; 2797 int disk_idx = rdev->raid_disk; 2798 if (disk_idx >= mddev->raid_disks 2799 || disk_idx < 0) 2800 continue; 2801 if (test_bit(Replacement, &rdev->flags)) 2802 disk = conf->mirrors + mddev->raid_disks + disk_idx; 2803 else 2804 disk = conf->mirrors + disk_idx; 2805 2806 if (disk->rdev) 2807 goto abort; 2808 disk->rdev = rdev; 2809 q = bdev_get_queue(rdev->bdev); 2810 if (q->merge_bvec_fn) 2811 mddev->merge_check_needed = 1; 2812 2813 disk->head_position = 0; 2814 disk->seq_start = MaxSector; 2815 } 2816 conf->raid_disks = mddev->raid_disks; 2817 conf->mddev = mddev; 2818 INIT_LIST_HEAD(&conf->retry_list); 2819 2820 spin_lock_init(&conf->resync_lock); 2821 init_waitqueue_head(&conf->wait_barrier); 2822 2823 bio_list_init(&conf->pending_bio_list); 2824 conf->pending_count = 0; 2825 conf->recovery_disabled = mddev->recovery_disabled - 1; 2826 2827 conf->start_next_window = MaxSector; 2828 conf->current_window_requests = conf->next_window_requests = 0; 2829 2830 err = -EIO; 2831 for (i = 0; i < conf->raid_disks * 2; i++) { 2832 2833 disk = conf->mirrors + i; 2834 2835 if (i < conf->raid_disks && 2836 disk[conf->raid_disks].rdev) { 2837 /* This slot has a replacement. */ 2838 if (!disk->rdev) { 2839 /* No original, just make the replacement 2840 * a recovering spare 2841 */ 2842 disk->rdev = 2843 disk[conf->raid_disks].rdev; 2844 disk[conf->raid_disks].rdev = NULL; 2845 } else if (!test_bit(In_sync, &disk->rdev->flags)) 2846 /* Original is not in_sync - bad */ 2847 goto abort; 2848 } 2849 2850 if (!disk->rdev || 2851 !test_bit(In_sync, &disk->rdev->flags)) { 2852 disk->head_position = 0; 2853 if (disk->rdev && 2854 (disk->rdev->saved_raid_disk < 0)) 2855 conf->fullsync = 1; 2856 } 2857 } 2858 2859 err = -ENOMEM; 2860 conf->thread = md_register_thread(raid1d, mddev, "raid1"); 2861 if (!conf->thread) { 2862 printk(KERN_ERR 2863 "md/raid1:%s: couldn't allocate thread\n", 2864 mdname(mddev)); 2865 goto abort; 2866 } 2867 2868 return conf; 2869 2870 abort: 2871 if (conf) { 2872 if (conf->r1bio_pool) 2873 mempool_destroy(conf->r1bio_pool); 2874 kfree(conf->mirrors); 2875 safe_put_page(conf->tmppage); 2876 kfree(conf->poolinfo); 2877 kfree(conf); 2878 } 2879 return ERR_PTR(err); 2880 } 2881 2882 static void raid1_free(struct mddev *mddev, void *priv); 2883 static int run(struct mddev *mddev) 2884 { 2885 struct r1conf *conf; 2886 int i; 2887 struct md_rdev *rdev; 2888 int ret; 2889 bool discard_supported = false; 2890 2891 if (mddev->level != 1) { 2892 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n", 2893 mdname(mddev), mddev->level); 2894 return -EIO; 2895 } 2896 if (mddev->reshape_position != MaxSector) { 2897 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n", 2898 mdname(mddev)); 2899 return -EIO; 2900 } 2901 /* 2902 * copy the already verified devices into our private RAID1 2903 * bookkeeping area. [whatever we allocate in run(), 2904 * should be freed in raid1_free()] 2905 */ 2906 if (mddev->private == NULL) 2907 conf = setup_conf(mddev); 2908 else 2909 conf = mddev->private; 2910 2911 if (IS_ERR(conf)) 2912 return PTR_ERR(conf); 2913 2914 if (mddev->queue) 2915 blk_queue_max_write_same_sectors(mddev->queue, 0); 2916 2917 rdev_for_each(rdev, mddev) { 2918 if (!mddev->gendisk) 2919 continue; 2920 disk_stack_limits(mddev->gendisk, rdev->bdev, 2921 rdev->data_offset << 9); 2922 if (blk_queue_discard(bdev_get_queue(rdev->bdev))) 2923 discard_supported = true; 2924 } 2925 2926 mddev->degraded = 0; 2927 for (i=0; i < conf->raid_disks; i++) 2928 if (conf->mirrors[i].rdev == NULL || 2929 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) || 2930 test_bit(Faulty, &conf->mirrors[i].rdev->flags)) 2931 mddev->degraded++; 2932 2933 if (conf->raid_disks - mddev->degraded == 1) 2934 mddev->recovery_cp = MaxSector; 2935 2936 if (mddev->recovery_cp != MaxSector) 2937 printk(KERN_NOTICE "md/raid1:%s: not clean" 2938 " -- starting background reconstruction\n", 2939 mdname(mddev)); 2940 printk(KERN_INFO 2941 "md/raid1:%s: active with %d out of %d mirrors\n", 2942 mdname(mddev), mddev->raid_disks - mddev->degraded, 2943 mddev->raid_disks); 2944 2945 /* 2946 * Ok, everything is just fine now 2947 */ 2948 mddev->thread = conf->thread; 2949 conf->thread = NULL; 2950 mddev->private = conf; 2951 2952 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0)); 2953 2954 if (mddev->queue) { 2955 if (discard_supported) 2956 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 2957 mddev->queue); 2958 else 2959 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 2960 mddev->queue); 2961 } 2962 2963 ret = md_integrity_register(mddev); 2964 if (ret) { 2965 md_unregister_thread(&mddev->thread); 2966 raid1_free(mddev, conf); 2967 } 2968 return ret; 2969 } 2970 2971 static void raid1_free(struct mddev *mddev, void *priv) 2972 { 2973 struct r1conf *conf = priv; 2974 2975 if (conf->r1bio_pool) 2976 mempool_destroy(conf->r1bio_pool); 2977 kfree(conf->mirrors); 2978 safe_put_page(conf->tmppage); 2979 kfree(conf->poolinfo); 2980 kfree(conf); 2981 } 2982 2983 static int raid1_resize(struct mddev *mddev, sector_t sectors) 2984 { 2985 /* no resync is happening, and there is enough space 2986 * on all devices, so we can resize. 2987 * We need to make sure resync covers any new space. 2988 * If the array is shrinking we should possibly wait until 2989 * any io in the removed space completes, but it hardly seems 2990 * worth it. 2991 */ 2992 sector_t newsize = raid1_size(mddev, sectors, 0); 2993 if (mddev->external_size && 2994 mddev->array_sectors > newsize) 2995 return -EINVAL; 2996 if (mddev->bitmap) { 2997 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0); 2998 if (ret) 2999 return ret; 3000 } 3001 md_set_array_sectors(mddev, newsize); 3002 set_capacity(mddev->gendisk, mddev->array_sectors); 3003 revalidate_disk(mddev->gendisk); 3004 if (sectors > mddev->dev_sectors && 3005 mddev->recovery_cp > mddev->dev_sectors) { 3006 mddev->recovery_cp = mddev->dev_sectors; 3007 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3008 } 3009 mddev->dev_sectors = sectors; 3010 mddev->resync_max_sectors = sectors; 3011 return 0; 3012 } 3013 3014 static int raid1_reshape(struct mddev *mddev) 3015 { 3016 /* We need to: 3017 * 1/ resize the r1bio_pool 3018 * 2/ resize conf->mirrors 3019 * 3020 * We allocate a new r1bio_pool if we can. 3021 * Then raise a device barrier and wait until all IO stops. 3022 * Then resize conf->mirrors and swap in the new r1bio pool. 3023 * 3024 * At the same time, we "pack" the devices so that all the missing 3025 * devices have the higher raid_disk numbers. 3026 */ 3027 mempool_t *newpool, *oldpool; 3028 struct pool_info *newpoolinfo; 3029 struct raid1_info *newmirrors; 3030 struct r1conf *conf = mddev->private; 3031 int cnt, raid_disks; 3032 unsigned long flags; 3033 int d, d2, err; 3034 3035 /* Cannot change chunk_size, layout, or level */ 3036 if (mddev->chunk_sectors != mddev->new_chunk_sectors || 3037 mddev->layout != mddev->new_layout || 3038 mddev->level != mddev->new_level) { 3039 mddev->new_chunk_sectors = mddev->chunk_sectors; 3040 mddev->new_layout = mddev->layout; 3041 mddev->new_level = mddev->level; 3042 return -EINVAL; 3043 } 3044 3045 err = md_allow_write(mddev); 3046 if (err) 3047 return err; 3048 3049 raid_disks = mddev->raid_disks + mddev->delta_disks; 3050 3051 if (raid_disks < conf->raid_disks) { 3052 cnt=0; 3053 for (d= 0; d < conf->raid_disks; d++) 3054 if (conf->mirrors[d].rdev) 3055 cnt++; 3056 if (cnt > raid_disks) 3057 return -EBUSY; 3058 } 3059 3060 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 3061 if (!newpoolinfo) 3062 return -ENOMEM; 3063 newpoolinfo->mddev = mddev; 3064 newpoolinfo->raid_disks = raid_disks * 2; 3065 3066 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 3067 r1bio_pool_free, newpoolinfo); 3068 if (!newpool) { 3069 kfree(newpoolinfo); 3070 return -ENOMEM; 3071 } 3072 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2, 3073 GFP_KERNEL); 3074 if (!newmirrors) { 3075 kfree(newpoolinfo); 3076 mempool_destroy(newpool); 3077 return -ENOMEM; 3078 } 3079 3080 freeze_array(conf, 0); 3081 3082 /* ok, everything is stopped */ 3083 oldpool = conf->r1bio_pool; 3084 conf->r1bio_pool = newpool; 3085 3086 for (d = d2 = 0; d < conf->raid_disks; d++) { 3087 struct md_rdev *rdev = conf->mirrors[d].rdev; 3088 if (rdev && rdev->raid_disk != d2) { 3089 sysfs_unlink_rdev(mddev, rdev); 3090 rdev->raid_disk = d2; 3091 sysfs_unlink_rdev(mddev, rdev); 3092 if (sysfs_link_rdev(mddev, rdev)) 3093 printk(KERN_WARNING 3094 "md/raid1:%s: cannot register rd%d\n", 3095 mdname(mddev), rdev->raid_disk); 3096 } 3097 if (rdev) 3098 newmirrors[d2++].rdev = rdev; 3099 } 3100 kfree(conf->mirrors); 3101 conf->mirrors = newmirrors; 3102 kfree(conf->poolinfo); 3103 conf->poolinfo = newpoolinfo; 3104 3105 spin_lock_irqsave(&conf->device_lock, flags); 3106 mddev->degraded += (raid_disks - conf->raid_disks); 3107 spin_unlock_irqrestore(&conf->device_lock, flags); 3108 conf->raid_disks = mddev->raid_disks = raid_disks; 3109 mddev->delta_disks = 0; 3110 3111 unfreeze_array(conf); 3112 3113 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3114 md_wakeup_thread(mddev->thread); 3115 3116 mempool_destroy(oldpool); 3117 return 0; 3118 } 3119 3120 static void raid1_quiesce(struct mddev *mddev, int state) 3121 { 3122 struct r1conf *conf = mddev->private; 3123 3124 switch(state) { 3125 case 2: /* wake for suspend */ 3126 wake_up(&conf->wait_barrier); 3127 break; 3128 case 1: 3129 freeze_array(conf, 0); 3130 break; 3131 case 0: 3132 unfreeze_array(conf); 3133 break; 3134 } 3135 } 3136 3137 static void *raid1_takeover(struct mddev *mddev) 3138 { 3139 /* raid1 can take over: 3140 * raid5 with 2 devices, any layout or chunk size 3141 */ 3142 if (mddev->level == 5 && mddev->raid_disks == 2) { 3143 struct r1conf *conf; 3144 mddev->new_level = 1; 3145 mddev->new_layout = 0; 3146 mddev->new_chunk_sectors = 0; 3147 conf = setup_conf(mddev); 3148 if (!IS_ERR(conf)) 3149 /* Array must appear to be quiesced */ 3150 conf->array_frozen = 1; 3151 return conf; 3152 } 3153 return ERR_PTR(-EINVAL); 3154 } 3155 3156 static struct md_personality raid1_personality = 3157 { 3158 .name = "raid1", 3159 .level = 1, 3160 .owner = THIS_MODULE, 3161 .make_request = make_request, 3162 .run = run, 3163 .free = raid1_free, 3164 .status = status, 3165 .error_handler = error, 3166 .hot_add_disk = raid1_add_disk, 3167 .hot_remove_disk= raid1_remove_disk, 3168 .spare_active = raid1_spare_active, 3169 .sync_request = sync_request, 3170 .resize = raid1_resize, 3171 .size = raid1_size, 3172 .check_reshape = raid1_reshape, 3173 .quiesce = raid1_quiesce, 3174 .takeover = raid1_takeover, 3175 .congested = raid1_congested, 3176 .mergeable_bvec = raid1_mergeable_bvec, 3177 }; 3178 3179 static int __init raid_init(void) 3180 { 3181 return register_md_personality(&raid1_personality); 3182 } 3183 3184 static void raid_exit(void) 3185 { 3186 unregister_md_personality(&raid1_personality); 3187 } 3188 3189 module_init(raid_init); 3190 module_exit(raid_exit); 3191 MODULE_LICENSE("GPL"); 3192 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD"); 3193 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 3194 MODULE_ALIAS("md-raid1"); 3195 MODULE_ALIAS("md-level-1"); 3196 3197 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); 3198