1 // SPDX-License-Identifier: GPL-2.0 2 /* Maximum size of each resync request */ 3 #define RESYNC_BLOCK_SIZE (64*1024) 4 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 5 6 /* when we get a read error on a read-only array, we redirect to another 7 * device without failing the first device, or trying to over-write to 8 * correct the read error. To keep track of bad blocks on a per-bio 9 * level, we store IO_BLOCKED in the appropriate 'bios' pointer 10 */ 11 #define IO_BLOCKED ((struct bio *)1) 12 /* When we successfully write to a known bad-block, we need to remove the 13 * bad-block marking which must be done from process context. So we record 14 * the success by setting devs[n].bio to IO_MADE_GOOD 15 */ 16 #define IO_MADE_GOOD ((struct bio *)2) 17 18 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) 19 #define MAX_PLUG_BIO 32 20 21 /* for managing resync I/O pages */ 22 struct resync_pages { 23 void *raid_bio; 24 struct page *pages[RESYNC_PAGES]; 25 }; 26 27 struct raid1_plug_cb { 28 struct blk_plug_cb cb; 29 struct bio_list pending; 30 unsigned int count; 31 }; 32 33 static void rbio_pool_free(void *rbio, void *data) 34 { 35 kfree(rbio); 36 } 37 38 static inline int resync_alloc_pages(struct resync_pages *rp, 39 gfp_t gfp_flags) 40 { 41 int i; 42 43 for (i = 0; i < RESYNC_PAGES; i++) { 44 rp->pages[i] = alloc_page(gfp_flags); 45 if (!rp->pages[i]) 46 goto out_free; 47 } 48 49 return 0; 50 51 out_free: 52 while (--i >= 0) 53 put_page(rp->pages[i]); 54 return -ENOMEM; 55 } 56 57 static inline void resync_free_pages(struct resync_pages *rp) 58 { 59 int i; 60 61 for (i = 0; i < RESYNC_PAGES; i++) 62 put_page(rp->pages[i]); 63 } 64 65 static inline void resync_get_all_pages(struct resync_pages *rp) 66 { 67 int i; 68 69 for (i = 0; i < RESYNC_PAGES; i++) 70 get_page(rp->pages[i]); 71 } 72 73 static inline struct page *resync_fetch_page(struct resync_pages *rp, 74 unsigned idx) 75 { 76 if (WARN_ON_ONCE(idx >= RESYNC_PAGES)) 77 return NULL; 78 return rp->pages[idx]; 79 } 80 81 /* 82 * 'strct resync_pages' stores actual pages used for doing the resync 83 * IO, and it is per-bio, so make .bi_private points to it. 84 */ 85 static inline struct resync_pages *get_resync_pages(struct bio *bio) 86 { 87 return bio->bi_private; 88 } 89 90 /* generally called after bio_reset() for reseting bvec */ 91 static void md_bio_reset_resync_pages(struct bio *bio, struct resync_pages *rp, 92 int size) 93 { 94 int idx = 0; 95 96 /* initialize bvec table again */ 97 do { 98 struct page *page = resync_fetch_page(rp, idx); 99 int len = min_t(int, size, PAGE_SIZE); 100 101 if (WARN_ON(!bio_add_page(bio, page, len, 0))) { 102 bio->bi_status = BLK_STS_RESOURCE; 103 bio_endio(bio); 104 return; 105 } 106 107 size -= len; 108 } while (idx++ < RESYNC_PAGES && size > 0); 109 } 110 111 112 static inline void raid1_submit_write(struct bio *bio) 113 { 114 struct md_rdev *rdev = (void *)bio->bi_bdev; 115 116 bio->bi_next = NULL; 117 bio_set_dev(bio, rdev->bdev); 118 if (test_bit(Faulty, &rdev->flags)) 119 bio_io_error(bio); 120 else if (unlikely(bio_op(bio) == REQ_OP_DISCARD && 121 !bdev_max_discard_sectors(bio->bi_bdev))) 122 /* Just ignore it */ 123 bio_endio(bio); 124 else 125 submit_bio_noacct(bio); 126 } 127 128 static inline bool raid1_add_bio_to_plug(struct mddev *mddev, struct bio *bio, 129 blk_plug_cb_fn unplug, int copies) 130 { 131 struct raid1_plug_cb *plug = NULL; 132 struct blk_plug_cb *cb; 133 134 /* 135 * If bitmap is not enabled, it's safe to submit the io directly, and 136 * this can get optimal performance. 137 */ 138 if (!md_bitmap_enabled(mddev, true)) { 139 raid1_submit_write(bio); 140 return true; 141 } 142 143 cb = blk_check_plugged(unplug, mddev, sizeof(*plug)); 144 if (!cb) 145 return false; 146 147 plug = container_of(cb, struct raid1_plug_cb, cb); 148 bio_list_add(&plug->pending, bio); 149 if (++plug->count / MAX_PLUG_BIO >= copies) { 150 list_del(&cb->list); 151 cb->callback(cb, false); 152 } 153 154 155 return true; 156 } 157 158 /* 159 * current->bio_list will be set under submit_bio() context, in this case bitmap 160 * io will be added to the list and wait for current io submission to finish, 161 * while current io submission must wait for bitmap io to be done. In order to 162 * avoid such deadlock, submit bitmap io asynchronously. 163 */ 164 static inline void raid1_prepare_flush_writes(struct mddev *mddev) 165 { 166 mddev->bitmap_ops->unplug(mddev, current->bio_list == NULL); 167 } 168 169 /* 170 * Used by fix_read_error() to decay the per rdev read_errors. 171 * We halve the read error count for every hour that has elapsed 172 * since the last recorded read error. 173 */ 174 static inline void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) 175 { 176 long cur_time_mon; 177 unsigned long hours_since_last; 178 unsigned int read_errors = atomic_read(&rdev->read_errors); 179 180 cur_time_mon = ktime_get_seconds(); 181 182 if (rdev->last_read_error == 0) { 183 /* first time we've seen a read error */ 184 rdev->last_read_error = cur_time_mon; 185 return; 186 } 187 188 hours_since_last = (long)(cur_time_mon - 189 rdev->last_read_error) / 3600; 190 191 rdev->last_read_error = cur_time_mon; 192 193 /* 194 * if hours_since_last is > the number of bits in read_errors 195 * just set read errors to 0. We do this to avoid 196 * overflowing the shift of read_errors by hours_since_last. 197 */ 198 if (hours_since_last >= 8 * sizeof(read_errors)) 199 atomic_set(&rdev->read_errors, 0); 200 else 201 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 202 } 203 204 static inline bool exceed_read_errors(struct mddev *mddev, struct md_rdev *rdev) 205 { 206 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 207 int read_errors; 208 209 check_decay_read_errors(mddev, rdev); 210 read_errors = atomic_inc_return(&rdev->read_errors); 211 if (read_errors > max_read_errors) { 212 pr_notice("md/"RAID_1_10_NAME":%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n", 213 mdname(mddev), rdev->bdev, read_errors, max_read_errors); 214 pr_notice("md/"RAID_1_10_NAME":%s: %pg: Failing raid device\n", 215 mdname(mddev), rdev->bdev); 216 md_error(mddev, rdev); 217 return true; 218 } 219 220 return false; 221 } 222 223 /** 224 * raid1_check_read_range() - check a given read range for bad blocks, 225 * available read length is returned; 226 * @rdev: the rdev to read; 227 * @this_sector: read position; 228 * @len: read length; 229 * 230 * helper function for read_balance() 231 * 232 * 1) If there are no bad blocks in the range, @len is returned; 233 * 2) If the range are all bad blocks, 0 is returned; 234 * 3) If there are partial bad blocks: 235 * - If the bad block range starts after @this_sector, the length of first 236 * good region is returned; 237 * - If the bad block range starts before @this_sector, 0 is returned and 238 * the @len is updated to the offset into the region before we get to the 239 * good blocks; 240 */ 241 static inline int raid1_check_read_range(struct md_rdev *rdev, 242 sector_t this_sector, int *len) 243 { 244 sector_t first_bad; 245 sector_t bad_sectors; 246 247 /* no bad block overlap */ 248 if (!is_badblock(rdev, this_sector, *len, &first_bad, &bad_sectors)) 249 return *len; 250 251 /* 252 * bad block range starts offset into our range so we can return the 253 * number of sectors before the bad blocks start. 254 */ 255 if (first_bad > this_sector) 256 return first_bad - this_sector; 257 258 /* read range is fully consumed by bad blocks. */ 259 if (this_sector + *len <= first_bad + bad_sectors) 260 return 0; 261 262 /* 263 * final case, bad block range starts before or at the start of our 264 * range but does not cover our entire range so we still return 0 but 265 * update the length with the number of sectors before we get to the 266 * good ones. 267 */ 268 *len = first_bad + bad_sectors - this_sector; 269 return 0; 270 } 271 272 /* 273 * Check if read should choose the first rdev. 274 * 275 * Balance on the whole device if no resync is going on (recovery is ok) or 276 * below the resync window. Otherwise, take the first readable disk. 277 */ 278 static inline bool raid1_should_read_first(struct mddev *mddev, 279 sector_t this_sector, int len) 280 { 281 if ((mddev->resync_offset < this_sector + len)) 282 return true; 283 284 if (mddev_is_clustered(mddev) && 285 mddev->cluster_ops->area_resyncing(mddev, READ, this_sector, 286 this_sector + len)) 287 return true; 288 289 return false; 290 } 291 292 /* 293 * bio with REQ_RAHEAD or REQ_NOWAIT can fail at anytime, before such IO is 294 * submitted to the underlying disks, hence don't record badblocks or retry 295 * in this case. 296 */ 297 static inline bool raid1_should_handle_error(struct bio *bio) 298 { 299 return !(bio->bi_opf & (REQ_RAHEAD | REQ_NOWAIT)); 300 } 301