xref: /linux/drivers/md/raid0.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2    raid0.c : Multiple Devices driver for Linux
3              Copyright (C) 1994-96 Marc ZYNGIER
4 	     <zyngier@ufr-info-p7.ibp.fr> or
5 	     <maz@gloups.fdn.fr>
6              Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
7 
8 
9    RAID-0 management functions.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 2, or (at your option)
14    any later version.
15 
16    You should have received a copy of the GNU General Public License
17    (for example /usr/src/linux/COPYING); if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 
21 #include <linux/raid/raid0.h>
22 
23 static void raid0_unplug(struct request_queue *q)
24 {
25 	mddev_t *mddev = q->queuedata;
26 	raid0_conf_t *conf = mddev_to_conf(mddev);
27 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
28 	int i;
29 
30 	for (i=0; i<mddev->raid_disks; i++) {
31 		struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
32 
33 		blk_unplug(r_queue);
34 	}
35 }
36 
37 static int raid0_congested(void *data, int bits)
38 {
39 	mddev_t *mddev = data;
40 	raid0_conf_t *conf = mddev_to_conf(mddev);
41 	mdk_rdev_t **devlist = conf->strip_zone[0].dev;
42 	int i, ret = 0;
43 
44 	for (i = 0; i < mddev->raid_disks && !ret ; i++) {
45 		struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
46 
47 		ret |= bdi_congested(&q->backing_dev_info, bits);
48 	}
49 	return ret;
50 }
51 
52 
53 static int create_strip_zones (mddev_t *mddev)
54 {
55 	int i, c, j;
56 	sector_t current_offset, curr_zone_offset;
57 	sector_t min_spacing;
58 	raid0_conf_t *conf = mddev_to_conf(mddev);
59 	mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
60 	struct list_head *tmp1, *tmp2;
61 	struct strip_zone *zone;
62 	int cnt;
63 	char b[BDEVNAME_SIZE];
64 
65 	/*
66 	 * The number of 'same size groups'
67 	 */
68 	conf->nr_strip_zones = 0;
69 
70 	rdev_for_each(rdev1, tmp1, mddev) {
71 		printk("raid0: looking at %s\n",
72 			bdevname(rdev1->bdev,b));
73 		c = 0;
74 		rdev_for_each(rdev2, tmp2, mddev) {
75 			printk("raid0:   comparing %s(%llu)",
76 			       bdevname(rdev1->bdev,b),
77 			       (unsigned long long)rdev1->size);
78 			printk(" with %s(%llu)\n",
79 			       bdevname(rdev2->bdev,b),
80 			       (unsigned long long)rdev2->size);
81 			if (rdev2 == rdev1) {
82 				printk("raid0:   END\n");
83 				break;
84 			}
85 			if (rdev2->size == rdev1->size)
86 			{
87 				/*
88 				 * Not unique, don't count it as a new
89 				 * group
90 				 */
91 				printk("raid0:   EQUAL\n");
92 				c = 1;
93 				break;
94 			}
95 			printk("raid0:   NOT EQUAL\n");
96 		}
97 		if (!c) {
98 			printk("raid0:   ==> UNIQUE\n");
99 			conf->nr_strip_zones++;
100 			printk("raid0: %d zones\n", conf->nr_strip_zones);
101 		}
102 	}
103 	printk("raid0: FINAL %d zones\n", conf->nr_strip_zones);
104 
105 	conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
106 				conf->nr_strip_zones, GFP_KERNEL);
107 	if (!conf->strip_zone)
108 		return 1;
109 	conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
110 				conf->nr_strip_zones*mddev->raid_disks,
111 				GFP_KERNEL);
112 	if (!conf->devlist)
113 		return 1;
114 
115 	/* The first zone must contain all devices, so here we check that
116 	 * there is a proper alignment of slots to devices and find them all
117 	 */
118 	zone = &conf->strip_zone[0];
119 	cnt = 0;
120 	smallest = NULL;
121 	zone->dev = conf->devlist;
122 	rdev_for_each(rdev1, tmp1, mddev) {
123 		int j = rdev1->raid_disk;
124 
125 		if (j < 0 || j >= mddev->raid_disks) {
126 			printk("raid0: bad disk number %d - aborting!\n", j);
127 			goto abort;
128 		}
129 		if (zone->dev[j]) {
130 			printk("raid0: multiple devices for %d - aborting!\n",
131 				j);
132 			goto abort;
133 		}
134 		zone->dev[j] = rdev1;
135 
136 		blk_queue_stack_limits(mddev->queue,
137 				       rdev1->bdev->bd_disk->queue);
138 		/* as we don't honour merge_bvec_fn, we must never risk
139 		 * violating it, so limit ->max_sector to one PAGE, as
140 		 * a one page request is never in violation.
141 		 */
142 
143 		if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
144 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
145 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
146 
147 		if (!smallest || (rdev1->size <smallest->size))
148 			smallest = rdev1;
149 		cnt++;
150 	}
151 	if (cnt != mddev->raid_disks) {
152 		printk("raid0: too few disks (%d of %d) - aborting!\n",
153 			cnt, mddev->raid_disks);
154 		goto abort;
155 	}
156 	zone->nb_dev = cnt;
157 	zone->size = smallest->size * cnt;
158 	zone->zone_offset = 0;
159 
160 	current_offset = smallest->size;
161 	curr_zone_offset = zone->size;
162 
163 	/* now do the other zones */
164 	for (i = 1; i < conf->nr_strip_zones; i++)
165 	{
166 		zone = conf->strip_zone + i;
167 		zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
168 
169 		printk("raid0: zone %d\n", i);
170 		zone->dev_offset = current_offset;
171 		smallest = NULL;
172 		c = 0;
173 
174 		for (j=0; j<cnt; j++) {
175 			char b[BDEVNAME_SIZE];
176 			rdev = conf->strip_zone[0].dev[j];
177 			printk("raid0: checking %s ...", bdevname(rdev->bdev,b));
178 			if (rdev->size > current_offset)
179 			{
180 				printk(" contained as device %d\n", c);
181 				zone->dev[c] = rdev;
182 				c++;
183 				if (!smallest || (rdev->size <smallest->size)) {
184 					smallest = rdev;
185 					printk("  (%llu) is smallest!.\n",
186 						(unsigned long long)rdev->size);
187 				}
188 			} else
189 				printk(" nope.\n");
190 		}
191 
192 		zone->nb_dev = c;
193 		zone->size = (smallest->size - current_offset) * c;
194 		printk("raid0: zone->nb_dev: %d, size: %llu\n",
195 			zone->nb_dev, (unsigned long long)zone->size);
196 
197 		zone->zone_offset = curr_zone_offset;
198 		curr_zone_offset += zone->size;
199 
200 		current_offset = smallest->size;
201 		printk("raid0: current zone offset: %llu\n",
202 			(unsigned long long)current_offset);
203 	}
204 
205 	/* Now find appropriate hash spacing.
206 	 * We want a number which causes most hash entries to cover
207 	 * at most two strips, but the hash table must be at most
208 	 * 1 PAGE.  We choose the smallest strip, or contiguous collection
209 	 * of strips, that has big enough size.  We never consider the last
210 	 * strip though as it's size has no bearing on the efficacy of the hash
211 	 * table.
212 	 */
213 	conf->hash_spacing = curr_zone_offset;
214 	min_spacing = curr_zone_offset;
215 	sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
216 	for (i=0; i < conf->nr_strip_zones-1; i++) {
217 		sector_t sz = 0;
218 		for (j=i; j<conf->nr_strip_zones-1 &&
219 			     sz < min_spacing ; j++)
220 			sz += conf->strip_zone[j].size;
221 		if (sz >= min_spacing && sz < conf->hash_spacing)
222 			conf->hash_spacing = sz;
223 	}
224 
225 	mddev->queue->unplug_fn = raid0_unplug;
226 
227 	mddev->queue->backing_dev_info.congested_fn = raid0_congested;
228 	mddev->queue->backing_dev_info.congested_data = mddev;
229 
230 	printk("raid0: done.\n");
231 	return 0;
232  abort:
233 	return 1;
234 }
235 
236 /**
237  *	raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
238  *	@q: request queue
239  *	@bvm: properties of new bio
240  *	@biovec: the request that could be merged to it.
241  *
242  *	Return amount of bytes we can accept at this offset
243  */
244 static int raid0_mergeable_bvec(struct request_queue *q,
245 				struct bvec_merge_data *bvm,
246 				struct bio_vec *biovec)
247 {
248 	mddev_t *mddev = q->queuedata;
249 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
250 	int max;
251 	unsigned int chunk_sectors = mddev->chunk_size >> 9;
252 	unsigned int bio_sectors = bvm->bi_size >> 9;
253 
254 	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
255 	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
256 	if (max <= biovec->bv_len && bio_sectors == 0)
257 		return biovec->bv_len;
258 	else
259 		return max;
260 }
261 
262 static int raid0_run (mddev_t *mddev)
263 {
264 	unsigned  cur=0, i=0, nb_zone;
265 	s64 size;
266 	raid0_conf_t *conf;
267 	mdk_rdev_t *rdev;
268 	struct list_head *tmp;
269 
270 	if (mddev->chunk_size == 0) {
271 		printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
272 		return -EINVAL;
273 	}
274 	printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
275 	       mdname(mddev),
276 	       mddev->chunk_size >> 9,
277 	       (mddev->chunk_size>>1)-1);
278 	blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
279 	blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
280 	mddev->queue->queue_lock = &mddev->queue->__queue_lock;
281 
282 	conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
283 	if (!conf)
284 		goto out;
285 	mddev->private = (void *)conf;
286 
287 	conf->strip_zone = NULL;
288 	conf->devlist = NULL;
289 	if (create_strip_zones (mddev))
290 		goto out_free_conf;
291 
292 	/* calculate array device size */
293 	mddev->array_sectors = 0;
294 	rdev_for_each(rdev, tmp, mddev)
295 		mddev->array_sectors += rdev->size * 2;
296 
297 	printk("raid0 : md_size is %llu blocks.\n",
298 		(unsigned long long)mddev->array_sectors / 2);
299 	printk("raid0 : conf->hash_spacing is %llu blocks.\n",
300 		(unsigned long long)conf->hash_spacing);
301 	{
302 		sector_t s = mddev->array_sectors / 2;
303 		sector_t space = conf->hash_spacing;
304 		int round;
305 		conf->preshift = 0;
306 		if (sizeof(sector_t) > sizeof(u32)) {
307 			/*shift down space and s so that sector_div will work */
308 			while (space > (sector_t) (~(u32)0)) {
309 				s >>= 1;
310 				space >>= 1;
311 				s += 1; /* force round-up */
312 				conf->preshift++;
313 			}
314 		}
315 		round = sector_div(s, (u32)space) ? 1 : 0;
316 		nb_zone = s + round;
317 	}
318 	printk("raid0 : nb_zone is %d.\n", nb_zone);
319 
320 	printk("raid0 : Allocating %Zd bytes for hash.\n",
321 				nb_zone*sizeof(struct strip_zone*));
322 	conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
323 	if (!conf->hash_table)
324 		goto out_free_conf;
325 	size = conf->strip_zone[cur].size;
326 
327 	conf->hash_table[0] = conf->strip_zone + cur;
328 	for (i=1; i< nb_zone; i++) {
329 		while (size <= conf->hash_spacing) {
330 			cur++;
331 			size += conf->strip_zone[cur].size;
332 		}
333 		size -= conf->hash_spacing;
334 		conf->hash_table[i] = conf->strip_zone + cur;
335 	}
336 	if (conf->preshift) {
337 		conf->hash_spacing >>= conf->preshift;
338 		/* round hash_spacing up so when we divide by it, we
339 		 * err on the side of too-low, which is safest
340 		 */
341 		conf->hash_spacing++;
342 	}
343 
344 	/* calculate the max read-ahead size.
345 	 * For read-ahead of large files to be effective, we need to
346 	 * readahead at least twice a whole stripe. i.e. number of devices
347 	 * multiplied by chunk size times 2.
348 	 * If an individual device has an ra_pages greater than the
349 	 * chunk size, then we will not drive that device as hard as it
350 	 * wants.  We consider this a configuration error: a larger
351 	 * chunksize should be used in that case.
352 	 */
353 	{
354 		int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
355 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
356 			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
357 	}
358 
359 
360 	blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
361 	return 0;
362 
363 out_free_conf:
364 	kfree(conf->strip_zone);
365 	kfree(conf->devlist);
366 	kfree(conf);
367 	mddev->private = NULL;
368 out:
369 	return -ENOMEM;
370 }
371 
372 static int raid0_stop (mddev_t *mddev)
373 {
374 	raid0_conf_t *conf = mddev_to_conf(mddev);
375 
376 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
377 	kfree(conf->hash_table);
378 	conf->hash_table = NULL;
379 	kfree(conf->strip_zone);
380 	conf->strip_zone = NULL;
381 	kfree(conf);
382 	mddev->private = NULL;
383 
384 	return 0;
385 }
386 
387 static int raid0_make_request (struct request_queue *q, struct bio *bio)
388 {
389 	mddev_t *mddev = q->queuedata;
390 	unsigned int sect_in_chunk, chunksize_bits,  chunk_size, chunk_sects;
391 	raid0_conf_t *conf = mddev_to_conf(mddev);
392 	struct strip_zone *zone;
393 	mdk_rdev_t *tmp_dev;
394 	sector_t chunk;
395 	sector_t block, rsect;
396 	const int rw = bio_data_dir(bio);
397 	int cpu;
398 
399 	if (unlikely(bio_barrier(bio))) {
400 		bio_endio(bio, -EOPNOTSUPP);
401 		return 0;
402 	}
403 
404 	cpu = part_stat_lock();
405 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
406 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
407 		      bio_sectors(bio));
408 	part_stat_unlock();
409 
410 	chunk_size = mddev->chunk_size >> 10;
411 	chunk_sects = mddev->chunk_size >> 9;
412 	chunksize_bits = ffz(~chunk_size);
413 	block = bio->bi_sector >> 1;
414 
415 
416 	if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
417 		struct bio_pair *bp;
418 		/* Sanity check -- queue functions should prevent this happening */
419 		if (bio->bi_vcnt != 1 ||
420 		    bio->bi_idx != 0)
421 			goto bad_map;
422 		/* This is a one page bio that upper layers
423 		 * refuse to split for us, so we need to split it.
424 		 */
425 		bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
426 		if (raid0_make_request(q, &bp->bio1))
427 			generic_make_request(&bp->bio1);
428 		if (raid0_make_request(q, &bp->bio2))
429 			generic_make_request(&bp->bio2);
430 
431 		bio_pair_release(bp);
432 		return 0;
433 	}
434 
435 
436 	{
437 		sector_t x = block >> conf->preshift;
438 		sector_div(x, (u32)conf->hash_spacing);
439 		zone = conf->hash_table[x];
440 	}
441 
442 	while (block >= (zone->zone_offset + zone->size))
443 		zone++;
444 
445 	sect_in_chunk = bio->bi_sector & ((chunk_size<<1) -1);
446 
447 
448 	{
449 		sector_t x =  (block - zone->zone_offset) >> chunksize_bits;
450 
451 		sector_div(x, zone->nb_dev);
452 		chunk = x;
453 
454 		x = block >> chunksize_bits;
455 		tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
456 	}
457 	rsect = (((chunk << chunksize_bits) + zone->dev_offset)<<1)
458 		+ sect_in_chunk;
459 
460 	bio->bi_bdev = tmp_dev->bdev;
461 	bio->bi_sector = rsect + tmp_dev->data_offset;
462 
463 	/*
464 	 * Let the main block layer submit the IO and resolve recursion:
465 	 */
466 	return 1;
467 
468 bad_map:
469 	printk("raid0_make_request bug: can't convert block across chunks"
470 		" or bigger than %dk %llu %d\n", chunk_size,
471 		(unsigned long long)bio->bi_sector, bio->bi_size >> 10);
472 
473 	bio_io_error(bio);
474 	return 0;
475 }
476 
477 static void raid0_status (struct seq_file *seq, mddev_t *mddev)
478 {
479 #undef MD_DEBUG
480 #ifdef MD_DEBUG
481 	int j, k, h;
482 	char b[BDEVNAME_SIZE];
483 	raid0_conf_t *conf = mddev_to_conf(mddev);
484 
485 	h = 0;
486 	for (j = 0; j < conf->nr_strip_zones; j++) {
487 		seq_printf(seq, "      z%d", j);
488 		if (conf->hash_table[h] == conf->strip_zone+j)
489 			seq_printf(seq, "(h%d)", h++);
490 		seq_printf(seq, "=[");
491 		for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
492 			seq_printf(seq, "%s/", bdevname(
493 				conf->strip_zone[j].dev[k]->bdev,b));
494 
495 		seq_printf(seq, "] zo=%d do=%d s=%d\n",
496 				conf->strip_zone[j].zone_offset,
497 				conf->strip_zone[j].dev_offset,
498 				conf->strip_zone[j].size);
499 	}
500 #endif
501 	seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
502 	return;
503 }
504 
505 static struct mdk_personality raid0_personality=
506 {
507 	.name		= "raid0",
508 	.level		= 0,
509 	.owner		= THIS_MODULE,
510 	.make_request	= raid0_make_request,
511 	.run		= raid0_run,
512 	.stop		= raid0_stop,
513 	.status		= raid0_status,
514 };
515 
516 static int __init raid0_init (void)
517 {
518 	return register_md_personality (&raid0_personality);
519 }
520 
521 static void raid0_exit (void)
522 {
523 	unregister_md_personality (&raid0_personality);
524 }
525 
526 module_init(raid0_init);
527 module_exit(raid0_exit);
528 MODULE_LICENSE("GPL");
529 MODULE_ALIAS("md-personality-2"); /* RAID0 */
530 MODULE_ALIAS("md-raid0");
531 MODULE_ALIAS("md-level-0");
532