xref: /linux/drivers/md/persistent-data/dm-btree.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2011 Red Hat, Inc.
4  *
5  * This file is released under the GPL.
6  */
7 #ifndef _LINUX_DM_BTREE_H
8 #define _LINUX_DM_BTREE_H
9 
10 #include "dm-block-manager.h"
11 
12 struct dm_transaction_manager;
13 
14 /*----------------------------------------------------------------*/
15 
16 /*
17  * Annotations used to check on-disk metadata is handled as little-endian.
18  */
19 #ifdef __CHECKER__
20 #  define __dm_written_to_disk(x) __releases(x)
21 #  define __dm_reads_from_disk(x) __acquires(x)
22 #  define __dm_bless_for_disk(x) __acquire(x)
23 #  define __dm_unbless_for_disk(x) __release(x)
24 #else
25 #  define __dm_written_to_disk(x)
26 #  define __dm_reads_from_disk(x)
27 #  define __dm_bless_for_disk(x)
28 #  define __dm_unbless_for_disk(x)
29 #endif
30 
31 /*----------------------------------------------------------------*/
32 
33 /*
34  * Manipulates hierarchical B+ trees with 64-bit keys and arbitrary-sized
35  * values.
36  */
37 
38 /*
39  * Information about the values stored within the btree.
40  */
41 struct dm_btree_value_type {
42 	void *context;
43 
44 	/*
45 	 * The size in bytes of each value.
46 	 */
47 	uint32_t size;
48 
49 	/*
50 	 * Any of these methods can be safely set to NULL if you do not
51 	 * need the corresponding feature.
52 	 */
53 
54 	/*
55 	 * The btree is making a duplicate of a run of values, for instance
56 	 * because previously-shared btree nodes have now diverged.
57 	 * @value argument is the new copy that the copy function may modify.
58 	 * (Probably it just wants to increment a reference count
59 	 * somewhere.) This method is _not_ called for insertion of a new
60 	 * value: It is assumed the ref count is already 1.
61 	 */
62 	void (*inc)(void *context, const void *value, unsigned int count);
63 
64 	/*
65 	 * These values are being deleted.  The btree takes care of freeing
66 	 * the memory pointed to by @value.  Often the del function just
67 	 * needs to decrement a reference counts somewhere.
68 	 */
69 	void (*dec)(void *context, const void *value, unsigned int count);
70 
71 	/*
72 	 * A test for equality between two values.  When a value is
73 	 * overwritten with a new one, the old one has the dec method
74 	 * called _unless_ the new and old value are deemed equal.
75 	 */
76 	int (*equal)(void *context, const void *value1, const void *value2);
77 };
78 
79 /*
80  * The shape and contents of a btree.
81  */
82 struct dm_btree_info {
83 	struct dm_transaction_manager *tm;
84 
85 	/*
86 	 * Number of nested btrees. (Not the depth of a single tree.)
87 	 */
88 	unsigned int levels;
89 	struct dm_btree_value_type value_type;
90 };
91 
92 /*
93  * Set up an empty tree.  O(1).
94  */
95 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root);
96 
97 /*
98  * Delete a tree.  O(n) - this is the slow one!  It can also block, so
99  * please don't call it on an IO path.
100  */
101 int dm_btree_del(struct dm_btree_info *info, dm_block_t root);
102 
103 /*
104  * All the lookup functions return -ENODATA if the key cannot be found.
105  */
106 
107 /*
108  * Tries to find a key that matches exactly.  O(ln(n))
109  */
110 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
111 		    uint64_t *keys, void *value_le);
112 
113 /*
114  * Tries to find the first key where the bottom level key is >= to that
115  * given.  Useful for skipping empty sections of the btree.
116  */
117 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
118 			 uint64_t *keys, uint64_t *rkey, void *value_le);
119 
120 /*
121  * Insertion (or overwrite an existing value).  O(ln(n))
122  */
123 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
124 		    uint64_t *keys, void *value, dm_block_t *new_root)
125 	__dm_written_to_disk(value);
126 
127 /*
128  * A variant of insert that indicates whether it actually inserted or just
129  * overwrote.  Useful if you're keeping track of the number of entries in a
130  * tree.
131  */
132 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
133 			   uint64_t *keys, void *value, dm_block_t *new_root,
134 			   int *inserted)
135 			   __dm_written_to_disk(value);
136 
137 /*
138  * Remove a key if present.  This doesn't remove empty sub trees.  Normally
139  * subtrees represent a separate entity, like a snapshot map, so this is
140  * correct behaviour.  O(ln(n)).
141  */
142 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
143 		    uint64_t *keys, dm_block_t *new_root);
144 
145 /*
146  * Removes a _contiguous_ run of values starting from 'keys' and not
147  * reaching keys2 (where keys2 is keys with the final key replaced with
148  * 'end_key').  'end_key' is the one-past-the-end value.  'keys' may be
149  * altered.
150  */
151 int dm_btree_remove_leaves(struct dm_btree_info *info, dm_block_t root,
152 			   uint64_t *keys, uint64_t end_key,
153 			   dm_block_t *new_root, unsigned int *nr_removed);
154 
155 /*
156  * Returns < 0 on failure.  Otherwise the number of key entries that have
157  * been filled out.  Remember trees can have zero entries, and as such have
158  * no lowest key.
159  */
160 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
161 			     uint64_t *result_keys);
162 
163 /*
164  * Returns < 0 on failure.  Otherwise the number of key entries that have
165  * been filled out.  Remember trees can have zero entries, and as such have
166  * no highest key.
167  */
168 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
169 			      uint64_t *result_keys);
170 
171 /*
172  * Iterate through the a btree, calling fn() on each entry.
173  * It only works for single level trees and is internally recursive, so
174  * monitor stack usage carefully.
175  */
176 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
177 		  int (*fn)(void *context, uint64_t *keys, void *leaf),
178 		  void *context);
179 
180 
181 /*----------------------------------------------------------------*/
182 
183 /*
184  * Cursor API.  This does not follow the rolling lock convention.  Since we
185  * know the order that values are required we can issue prefetches to speed
186  * up iteration.  Use on a single level btree only.
187  */
188 #define DM_BTREE_CURSOR_MAX_DEPTH 16
189 
190 struct cursor_node {
191 	struct dm_block *b;
192 	unsigned int index;
193 };
194 
195 struct dm_btree_cursor {
196 	struct dm_btree_info *info;
197 	dm_block_t root;
198 
199 	bool prefetch_leaves;
200 	unsigned int depth;
201 	struct cursor_node nodes[DM_BTREE_CURSOR_MAX_DEPTH];
202 };
203 
204 /*
205  * Creates a fresh cursor.  If prefetch_leaves is set then it is assumed
206  * the btree contains block indexes that will be prefetched.  The cursor is
207  * quite large, so you probably don't want to put it on the stack.
208  */
209 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
210 			  bool prefetch_leaves, struct dm_btree_cursor *c);
211 void dm_btree_cursor_end(struct dm_btree_cursor *c);
212 int dm_btree_cursor_next(struct dm_btree_cursor *c);
213 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count);
214 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le);
215 
216 #endif	/* _LINUX_DM_BTREE_H */
217