1 /* 2 * Copyright (C) 2011 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-btree-internal.h" 8 #include "dm-space-map.h" 9 #include "dm-transaction-manager.h" 10 11 #include <linux/export.h> 12 #include <linux/device-mapper.h> 13 14 #define DM_MSG_PREFIX "btree" 15 16 /*---------------------------------------------------------------- 17 * Array manipulation 18 *--------------------------------------------------------------*/ 19 static void memcpy_disk(void *dest, const void *src, size_t len) 20 __dm_written_to_disk(src) 21 { 22 memcpy(dest, src, len); 23 __dm_unbless_for_disk(src); 24 } 25 26 static void array_insert(void *base, size_t elt_size, unsigned nr_elts, 27 unsigned index, void *elt) 28 __dm_written_to_disk(elt) 29 { 30 if (index < nr_elts) 31 memmove(base + (elt_size * (index + 1)), 32 base + (elt_size * index), 33 (nr_elts - index) * elt_size); 34 35 memcpy_disk(base + (elt_size * index), elt, elt_size); 36 } 37 38 /*----------------------------------------------------------------*/ 39 40 /* makes the assumption that no two keys are the same. */ 41 static int bsearch(struct btree_node *n, uint64_t key, int want_hi) 42 { 43 int lo = -1, hi = le32_to_cpu(n->header.nr_entries); 44 45 while (hi - lo > 1) { 46 int mid = lo + ((hi - lo) / 2); 47 uint64_t mid_key = le64_to_cpu(n->keys[mid]); 48 49 if (mid_key == key) 50 return mid; 51 52 if (mid_key < key) 53 lo = mid; 54 else 55 hi = mid; 56 } 57 58 return want_hi ? hi : lo; 59 } 60 61 int lower_bound(struct btree_node *n, uint64_t key) 62 { 63 return bsearch(n, key, 0); 64 } 65 66 static int upper_bound(struct btree_node *n, uint64_t key) 67 { 68 return bsearch(n, key, 1); 69 } 70 71 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, 72 struct dm_btree_value_type *vt) 73 { 74 unsigned i; 75 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); 76 77 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) 78 for (i = 0; i < nr_entries; i++) 79 dm_tm_inc(tm, value64(n, i)); 80 else if (vt->inc) 81 for (i = 0; i < nr_entries; i++) 82 vt->inc(vt->context, value_ptr(n, i)); 83 } 84 85 static int insert_at(size_t value_size, struct btree_node *node, unsigned index, 86 uint64_t key, void *value) 87 __dm_written_to_disk(value) 88 { 89 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries); 90 __le64 key_le = cpu_to_le64(key); 91 92 if (index > nr_entries || 93 index >= le32_to_cpu(node->header.max_entries)) { 94 DMERR("too many entries in btree node for insert"); 95 __dm_unbless_for_disk(value); 96 return -ENOMEM; 97 } 98 99 __dm_bless_for_disk(&key_le); 100 101 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le); 102 array_insert(value_base(node), value_size, nr_entries, index, value); 103 node->header.nr_entries = cpu_to_le32(nr_entries + 1); 104 105 return 0; 106 } 107 108 /*----------------------------------------------------------------*/ 109 110 /* 111 * We want 3n entries (for some n). This works more nicely for repeated 112 * insert remove loops than (2n + 1). 113 */ 114 static uint32_t calc_max_entries(size_t value_size, size_t block_size) 115 { 116 uint32_t total, n; 117 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */ 118 119 block_size -= sizeof(struct node_header); 120 total = block_size / elt_size; 121 n = total / 3; /* rounds down */ 122 123 return 3 * n; 124 } 125 126 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root) 127 { 128 int r; 129 struct dm_block *b; 130 struct btree_node *n; 131 size_t block_size; 132 uint32_t max_entries; 133 134 r = new_block(info, &b); 135 if (r < 0) 136 return r; 137 138 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm)); 139 max_entries = calc_max_entries(info->value_type.size, block_size); 140 141 n = dm_block_data(b); 142 memset(n, 0, block_size); 143 n->header.flags = cpu_to_le32(LEAF_NODE); 144 n->header.nr_entries = cpu_to_le32(0); 145 n->header.max_entries = cpu_to_le32(max_entries); 146 n->header.value_size = cpu_to_le32(info->value_type.size); 147 148 *root = dm_block_location(b); 149 unlock_block(info, b); 150 151 return 0; 152 } 153 EXPORT_SYMBOL_GPL(dm_btree_empty); 154 155 /*----------------------------------------------------------------*/ 156 157 /* 158 * Deletion uses a recursive algorithm, since we have limited stack space 159 * we explicitly manage our own stack on the heap. 160 */ 161 #define MAX_SPINE_DEPTH 64 162 struct frame { 163 struct dm_block *b; 164 struct btree_node *n; 165 unsigned level; 166 unsigned nr_children; 167 unsigned current_child; 168 }; 169 170 struct del_stack { 171 struct dm_btree_info *info; 172 struct dm_transaction_manager *tm; 173 int top; 174 struct frame spine[MAX_SPINE_DEPTH]; 175 }; 176 177 static int top_frame(struct del_stack *s, struct frame **f) 178 { 179 if (s->top < 0) { 180 DMERR("btree deletion stack empty"); 181 return -EINVAL; 182 } 183 184 *f = s->spine + s->top; 185 186 return 0; 187 } 188 189 static int unprocessed_frames(struct del_stack *s) 190 { 191 return s->top >= 0; 192 } 193 194 static void prefetch_children(struct del_stack *s, struct frame *f) 195 { 196 unsigned i; 197 struct dm_block_manager *bm = dm_tm_get_bm(s->tm); 198 199 for (i = 0; i < f->nr_children; i++) 200 dm_bm_prefetch(bm, value64(f->n, i)); 201 } 202 203 static bool is_internal_level(struct dm_btree_info *info, struct frame *f) 204 { 205 return f->level < (info->levels - 1); 206 } 207 208 static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) 209 { 210 int r; 211 uint32_t ref_count; 212 213 if (s->top >= MAX_SPINE_DEPTH - 1) { 214 DMERR("btree deletion stack out of memory"); 215 return -ENOMEM; 216 } 217 218 r = dm_tm_ref(s->tm, b, &ref_count); 219 if (r) 220 return r; 221 222 if (ref_count > 1) 223 /* 224 * This is a shared node, so we can just decrement it's 225 * reference counter and leave the children. 226 */ 227 dm_tm_dec(s->tm, b); 228 229 else { 230 uint32_t flags; 231 struct frame *f = s->spine + ++s->top; 232 233 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b); 234 if (r) { 235 s->top--; 236 return r; 237 } 238 239 f->n = dm_block_data(f->b); 240 f->level = level; 241 f->nr_children = le32_to_cpu(f->n->header.nr_entries); 242 f->current_child = 0; 243 244 flags = le32_to_cpu(f->n->header.flags); 245 if (flags & INTERNAL_NODE || is_internal_level(s->info, f)) 246 prefetch_children(s, f); 247 } 248 249 return 0; 250 } 251 252 static void pop_frame(struct del_stack *s) 253 { 254 struct frame *f = s->spine + s->top--; 255 256 dm_tm_dec(s->tm, dm_block_location(f->b)); 257 dm_tm_unlock(s->tm, f->b); 258 } 259 260 static void unlock_all_frames(struct del_stack *s) 261 { 262 struct frame *f; 263 264 while (unprocessed_frames(s)) { 265 f = s->spine + s->top--; 266 dm_tm_unlock(s->tm, f->b); 267 } 268 } 269 270 int dm_btree_del(struct dm_btree_info *info, dm_block_t root) 271 { 272 int r; 273 struct del_stack *s; 274 275 s = kmalloc(sizeof(*s), GFP_NOIO); 276 if (!s) 277 return -ENOMEM; 278 s->info = info; 279 s->tm = info->tm; 280 s->top = -1; 281 282 r = push_frame(s, root, 0); 283 if (r) 284 goto out; 285 286 while (unprocessed_frames(s)) { 287 uint32_t flags; 288 struct frame *f; 289 dm_block_t b; 290 291 r = top_frame(s, &f); 292 if (r) 293 goto out; 294 295 if (f->current_child >= f->nr_children) { 296 pop_frame(s); 297 continue; 298 } 299 300 flags = le32_to_cpu(f->n->header.flags); 301 if (flags & INTERNAL_NODE) { 302 b = value64(f->n, f->current_child); 303 f->current_child++; 304 r = push_frame(s, b, f->level); 305 if (r) 306 goto out; 307 308 } else if (is_internal_level(info, f)) { 309 b = value64(f->n, f->current_child); 310 f->current_child++; 311 r = push_frame(s, b, f->level + 1); 312 if (r) 313 goto out; 314 315 } else { 316 if (info->value_type.dec) { 317 unsigned i; 318 319 for (i = 0; i < f->nr_children; i++) 320 info->value_type.dec(info->value_type.context, 321 value_ptr(f->n, i)); 322 } 323 pop_frame(s); 324 } 325 } 326 out: 327 if (r) { 328 /* cleanup all frames of del_stack */ 329 unlock_all_frames(s); 330 } 331 kfree(s); 332 333 return r; 334 } 335 EXPORT_SYMBOL_GPL(dm_btree_del); 336 337 /*----------------------------------------------------------------*/ 338 339 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, 340 int (*search_fn)(struct btree_node *, uint64_t), 341 uint64_t *result_key, void *v, size_t value_size) 342 { 343 int i, r; 344 uint32_t flags, nr_entries; 345 346 do { 347 r = ro_step(s, block); 348 if (r < 0) 349 return r; 350 351 i = search_fn(ro_node(s), key); 352 353 flags = le32_to_cpu(ro_node(s)->header.flags); 354 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries); 355 if (i < 0 || i >= nr_entries) 356 return -ENODATA; 357 358 if (flags & INTERNAL_NODE) 359 block = value64(ro_node(s), i); 360 361 } while (!(flags & LEAF_NODE)); 362 363 *result_key = le64_to_cpu(ro_node(s)->keys[i]); 364 memcpy(v, value_ptr(ro_node(s), i), value_size); 365 366 return 0; 367 } 368 369 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root, 370 uint64_t *keys, void *value_le) 371 { 372 unsigned level, last_level = info->levels - 1; 373 int r = -ENODATA; 374 uint64_t rkey; 375 __le64 internal_value_le; 376 struct ro_spine spine; 377 378 init_ro_spine(&spine, info); 379 for (level = 0; level < info->levels; level++) { 380 size_t size; 381 void *value_p; 382 383 if (level == last_level) { 384 value_p = value_le; 385 size = info->value_type.size; 386 387 } else { 388 value_p = &internal_value_le; 389 size = sizeof(uint64_t); 390 } 391 392 r = btree_lookup_raw(&spine, root, keys[level], 393 lower_bound, &rkey, 394 value_p, size); 395 396 if (!r) { 397 if (rkey != keys[level]) { 398 exit_ro_spine(&spine); 399 return -ENODATA; 400 } 401 } else { 402 exit_ro_spine(&spine); 403 return r; 404 } 405 406 root = le64_to_cpu(internal_value_le); 407 } 408 exit_ro_spine(&spine); 409 410 return r; 411 } 412 EXPORT_SYMBOL_GPL(dm_btree_lookup); 413 414 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root, 415 uint64_t key, uint64_t *rkey, void *value_le) 416 { 417 int r, i; 418 uint32_t flags, nr_entries; 419 struct dm_block *node; 420 struct btree_node *n; 421 422 r = bn_read_lock(info, root, &node); 423 if (r) 424 return r; 425 426 n = dm_block_data(node); 427 flags = le32_to_cpu(n->header.flags); 428 nr_entries = le32_to_cpu(n->header.nr_entries); 429 430 if (flags & INTERNAL_NODE) { 431 i = lower_bound(n, key); 432 if (i < 0 || i >= nr_entries) { 433 r = -ENODATA; 434 goto out; 435 } 436 437 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); 438 if (r == -ENODATA && i < (nr_entries - 1)) { 439 i++; 440 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); 441 } 442 443 } else { 444 i = upper_bound(n, key); 445 if (i < 0 || i >= nr_entries) { 446 r = -ENODATA; 447 goto out; 448 } 449 450 *rkey = le64_to_cpu(n->keys[i]); 451 memcpy(value_le, value_ptr(n, i), info->value_type.size); 452 } 453 out: 454 dm_tm_unlock(info->tm, node); 455 return r; 456 } 457 458 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root, 459 uint64_t *keys, uint64_t *rkey, void *value_le) 460 { 461 unsigned level; 462 int r = -ENODATA; 463 __le64 internal_value_le; 464 struct ro_spine spine; 465 466 init_ro_spine(&spine, info); 467 for (level = 0; level < info->levels - 1u; level++) { 468 r = btree_lookup_raw(&spine, root, keys[level], 469 lower_bound, rkey, 470 &internal_value_le, sizeof(uint64_t)); 471 if (r) 472 goto out; 473 474 if (*rkey != keys[level]) { 475 r = -ENODATA; 476 goto out; 477 } 478 479 root = le64_to_cpu(internal_value_le); 480 } 481 482 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le); 483 out: 484 exit_ro_spine(&spine); 485 return r; 486 } 487 488 EXPORT_SYMBOL_GPL(dm_btree_lookup_next); 489 490 /* 491 * Splits a node by creating a sibling node and shifting half the nodes 492 * contents across. Assumes there is a parent node, and it has room for 493 * another child. 494 * 495 * Before: 496 * +--------+ 497 * | Parent | 498 * +--------+ 499 * | 500 * v 501 * +----------+ 502 * | A ++++++ | 503 * +----------+ 504 * 505 * 506 * After: 507 * +--------+ 508 * | Parent | 509 * +--------+ 510 * | | 511 * v +------+ 512 * +---------+ | 513 * | A* +++ | v 514 * +---------+ +-------+ 515 * | B +++ | 516 * +-------+ 517 * 518 * Where A* is a shadow of A. 519 */ 520 static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, 521 uint64_t key) 522 { 523 int r; 524 size_t size; 525 unsigned nr_left, nr_right; 526 struct dm_block *left, *right, *parent; 527 struct btree_node *ln, *rn, *pn; 528 __le64 location; 529 530 left = shadow_current(s); 531 532 r = new_block(s->info, &right); 533 if (r < 0) 534 return r; 535 536 ln = dm_block_data(left); 537 rn = dm_block_data(right); 538 539 nr_left = le32_to_cpu(ln->header.nr_entries) / 2; 540 nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left; 541 542 ln->header.nr_entries = cpu_to_le32(nr_left); 543 544 rn->header.flags = ln->header.flags; 545 rn->header.nr_entries = cpu_to_le32(nr_right); 546 rn->header.max_entries = ln->header.max_entries; 547 rn->header.value_size = ln->header.value_size; 548 memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0])); 549 550 size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ? 551 sizeof(uint64_t) : s->info->value_type.size; 552 memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left), 553 size * nr_right); 554 555 /* 556 * Patch up the parent 557 */ 558 parent = shadow_parent(s); 559 560 pn = dm_block_data(parent); 561 location = cpu_to_le64(dm_block_location(left)); 562 __dm_bless_for_disk(&location); 563 memcpy_disk(value_ptr(pn, parent_index), 564 &location, sizeof(__le64)); 565 566 location = cpu_to_le64(dm_block_location(right)); 567 __dm_bless_for_disk(&location); 568 569 r = insert_at(sizeof(__le64), pn, parent_index + 1, 570 le64_to_cpu(rn->keys[0]), &location); 571 if (r) { 572 unlock_block(s->info, right); 573 return r; 574 } 575 576 if (key < le64_to_cpu(rn->keys[0])) { 577 unlock_block(s->info, right); 578 s->nodes[1] = left; 579 } else { 580 unlock_block(s->info, left); 581 s->nodes[1] = right; 582 } 583 584 return 0; 585 } 586 587 /* 588 * Splits a node by creating two new children beneath the given node. 589 * 590 * Before: 591 * +----------+ 592 * | A ++++++ | 593 * +----------+ 594 * 595 * 596 * After: 597 * +------------+ 598 * | A (shadow) | 599 * +------------+ 600 * | | 601 * +------+ +----+ 602 * | | 603 * v v 604 * +-------+ +-------+ 605 * | B +++ | | C +++ | 606 * +-------+ +-------+ 607 */ 608 static int btree_split_beneath(struct shadow_spine *s, uint64_t key) 609 { 610 int r; 611 size_t size; 612 unsigned nr_left, nr_right; 613 struct dm_block *left, *right, *new_parent; 614 struct btree_node *pn, *ln, *rn; 615 __le64 val; 616 617 new_parent = shadow_current(s); 618 619 r = new_block(s->info, &left); 620 if (r < 0) 621 return r; 622 623 r = new_block(s->info, &right); 624 if (r < 0) { 625 unlock_block(s->info, left); 626 return r; 627 } 628 629 pn = dm_block_data(new_parent); 630 ln = dm_block_data(left); 631 rn = dm_block_data(right); 632 633 nr_left = le32_to_cpu(pn->header.nr_entries) / 2; 634 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left; 635 636 ln->header.flags = pn->header.flags; 637 ln->header.nr_entries = cpu_to_le32(nr_left); 638 ln->header.max_entries = pn->header.max_entries; 639 ln->header.value_size = pn->header.value_size; 640 641 rn->header.flags = pn->header.flags; 642 rn->header.nr_entries = cpu_to_le32(nr_right); 643 rn->header.max_entries = pn->header.max_entries; 644 rn->header.value_size = pn->header.value_size; 645 646 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); 647 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0])); 648 649 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? 650 sizeof(__le64) : s->info->value_type.size; 651 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); 652 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left), 653 nr_right * size); 654 655 /* new_parent should just point to l and r now */ 656 pn->header.flags = cpu_to_le32(INTERNAL_NODE); 657 pn->header.nr_entries = cpu_to_le32(2); 658 pn->header.max_entries = cpu_to_le32( 659 calc_max_entries(sizeof(__le64), 660 dm_bm_block_size( 661 dm_tm_get_bm(s->info->tm)))); 662 pn->header.value_size = cpu_to_le32(sizeof(__le64)); 663 664 val = cpu_to_le64(dm_block_location(left)); 665 __dm_bless_for_disk(&val); 666 pn->keys[0] = ln->keys[0]; 667 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64)); 668 669 val = cpu_to_le64(dm_block_location(right)); 670 __dm_bless_for_disk(&val); 671 pn->keys[1] = rn->keys[0]; 672 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64)); 673 674 /* 675 * rejig the spine. This is ugly, since it knows too 676 * much about the spine 677 */ 678 if (s->nodes[0] != new_parent) { 679 unlock_block(s->info, s->nodes[0]); 680 s->nodes[0] = new_parent; 681 } 682 if (key < le64_to_cpu(rn->keys[0])) { 683 unlock_block(s->info, right); 684 s->nodes[1] = left; 685 } else { 686 unlock_block(s->info, left); 687 s->nodes[1] = right; 688 } 689 s->count = 2; 690 691 return 0; 692 } 693 694 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, 695 struct dm_btree_value_type *vt, 696 uint64_t key, unsigned *index) 697 { 698 int r, i = *index, top = 1; 699 struct btree_node *node; 700 701 for (;;) { 702 r = shadow_step(s, root, vt); 703 if (r < 0) 704 return r; 705 706 node = dm_block_data(shadow_current(s)); 707 708 /* 709 * We have to patch up the parent node, ugly, but I don't 710 * see a way to do this automatically as part of the spine 711 * op. 712 */ 713 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */ 714 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); 715 716 __dm_bless_for_disk(&location); 717 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), 718 &location, sizeof(__le64)); 719 } 720 721 node = dm_block_data(shadow_current(s)); 722 723 if (node->header.nr_entries == node->header.max_entries) { 724 if (top) 725 r = btree_split_beneath(s, key); 726 else 727 r = btree_split_sibling(s, i, key); 728 729 if (r < 0) 730 return r; 731 } 732 733 node = dm_block_data(shadow_current(s)); 734 735 i = lower_bound(node, key); 736 737 if (le32_to_cpu(node->header.flags) & LEAF_NODE) 738 break; 739 740 if (i < 0) { 741 /* change the bounds on the lowest key */ 742 node->keys[0] = cpu_to_le64(key); 743 i = 0; 744 } 745 746 root = value64(node, i); 747 top = 0; 748 } 749 750 if (i < 0 || le64_to_cpu(node->keys[i]) != key) 751 i++; 752 753 *index = i; 754 return 0; 755 } 756 757 static bool need_insert(struct btree_node *node, uint64_t *keys, 758 unsigned level, unsigned index) 759 { 760 return ((index >= le32_to_cpu(node->header.nr_entries)) || 761 (le64_to_cpu(node->keys[index]) != keys[level])); 762 } 763 764 static int insert(struct dm_btree_info *info, dm_block_t root, 765 uint64_t *keys, void *value, dm_block_t *new_root, 766 int *inserted) 767 __dm_written_to_disk(value) 768 { 769 int r; 770 unsigned level, index = -1, last_level = info->levels - 1; 771 dm_block_t block = root; 772 struct shadow_spine spine; 773 struct btree_node *n; 774 struct dm_btree_value_type le64_type; 775 776 init_le64_type(info->tm, &le64_type); 777 init_shadow_spine(&spine, info); 778 779 for (level = 0; level < (info->levels - 1); level++) { 780 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index); 781 if (r < 0) 782 goto bad; 783 784 n = dm_block_data(shadow_current(&spine)); 785 786 if (need_insert(n, keys, level, index)) { 787 dm_block_t new_tree; 788 __le64 new_le; 789 790 r = dm_btree_empty(info, &new_tree); 791 if (r < 0) 792 goto bad; 793 794 new_le = cpu_to_le64(new_tree); 795 __dm_bless_for_disk(&new_le); 796 797 r = insert_at(sizeof(uint64_t), n, index, 798 keys[level], &new_le); 799 if (r) 800 goto bad; 801 } 802 803 if (level < last_level) 804 block = value64(n, index); 805 } 806 807 r = btree_insert_raw(&spine, block, &info->value_type, 808 keys[level], &index); 809 if (r < 0) 810 goto bad; 811 812 n = dm_block_data(shadow_current(&spine)); 813 814 if (need_insert(n, keys, level, index)) { 815 if (inserted) 816 *inserted = 1; 817 818 r = insert_at(info->value_type.size, n, index, 819 keys[level], value); 820 if (r) 821 goto bad_unblessed; 822 } else { 823 if (inserted) 824 *inserted = 0; 825 826 if (info->value_type.dec && 827 (!info->value_type.equal || 828 !info->value_type.equal( 829 info->value_type.context, 830 value_ptr(n, index), 831 value))) { 832 info->value_type.dec(info->value_type.context, 833 value_ptr(n, index)); 834 } 835 memcpy_disk(value_ptr(n, index), 836 value, info->value_type.size); 837 } 838 839 *new_root = shadow_root(&spine); 840 exit_shadow_spine(&spine); 841 842 return 0; 843 844 bad: 845 __dm_unbless_for_disk(value); 846 bad_unblessed: 847 exit_shadow_spine(&spine); 848 return r; 849 } 850 851 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root, 852 uint64_t *keys, void *value, dm_block_t *new_root) 853 __dm_written_to_disk(value) 854 { 855 return insert(info, root, keys, value, new_root, NULL); 856 } 857 EXPORT_SYMBOL_GPL(dm_btree_insert); 858 859 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root, 860 uint64_t *keys, void *value, dm_block_t *new_root, 861 int *inserted) 862 __dm_written_to_disk(value) 863 { 864 return insert(info, root, keys, value, new_root, inserted); 865 } 866 EXPORT_SYMBOL_GPL(dm_btree_insert_notify); 867 868 /*----------------------------------------------------------------*/ 869 870 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, 871 uint64_t *result_key, dm_block_t *next_block) 872 { 873 int i, r; 874 uint32_t flags; 875 876 do { 877 r = ro_step(s, block); 878 if (r < 0) 879 return r; 880 881 flags = le32_to_cpu(ro_node(s)->header.flags); 882 i = le32_to_cpu(ro_node(s)->header.nr_entries); 883 if (!i) 884 return -ENODATA; 885 else 886 i--; 887 888 if (find_highest) 889 *result_key = le64_to_cpu(ro_node(s)->keys[i]); 890 else 891 *result_key = le64_to_cpu(ro_node(s)->keys[0]); 892 893 if (next_block || flags & INTERNAL_NODE) 894 block = value64(ro_node(s), i); 895 896 } while (flags & INTERNAL_NODE); 897 898 if (next_block) 899 *next_block = block; 900 return 0; 901 } 902 903 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root, 904 bool find_highest, uint64_t *result_keys) 905 { 906 int r = 0, count = 0, level; 907 struct ro_spine spine; 908 909 init_ro_spine(&spine, info); 910 for (level = 0; level < info->levels; level++) { 911 r = find_key(&spine, root, find_highest, result_keys + level, 912 level == info->levels - 1 ? NULL : &root); 913 if (r == -ENODATA) { 914 r = 0; 915 break; 916 917 } else if (r) 918 break; 919 920 count++; 921 } 922 exit_ro_spine(&spine); 923 924 return r ? r : count; 925 } 926 927 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, 928 uint64_t *result_keys) 929 { 930 return dm_btree_find_key(info, root, true, result_keys); 931 } 932 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key); 933 934 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, 935 uint64_t *result_keys) 936 { 937 return dm_btree_find_key(info, root, false, result_keys); 938 } 939 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key); 940 941 /*----------------------------------------------------------------*/ 942 943 /* 944 * FIXME: We shouldn't use a recursive algorithm when we have limited stack 945 * space. Also this only works for single level trees. 946 */ 947 static int walk_node(struct dm_btree_info *info, dm_block_t block, 948 int (*fn)(void *context, uint64_t *keys, void *leaf), 949 void *context) 950 { 951 int r; 952 unsigned i, nr; 953 struct dm_block *node; 954 struct btree_node *n; 955 uint64_t keys; 956 957 r = bn_read_lock(info, block, &node); 958 if (r) 959 return r; 960 961 n = dm_block_data(node); 962 963 nr = le32_to_cpu(n->header.nr_entries); 964 for (i = 0; i < nr; i++) { 965 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) { 966 r = walk_node(info, value64(n, i), fn, context); 967 if (r) 968 goto out; 969 } else { 970 keys = le64_to_cpu(*key_ptr(n, i)); 971 r = fn(context, &keys, value_ptr(n, i)); 972 if (r) 973 goto out; 974 } 975 } 976 977 out: 978 dm_tm_unlock(info->tm, node); 979 return r; 980 } 981 982 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, 983 int (*fn)(void *context, uint64_t *keys, void *leaf), 984 void *context) 985 { 986 BUG_ON(info->levels > 1); 987 return walk_node(info, root, fn, context); 988 } 989 EXPORT_SYMBOL_GPL(dm_btree_walk); 990