xref: /linux/drivers/md/persistent-data/dm-btree-remove.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-btree.h"
8 #include "dm-btree-internal.h"
9 #include "dm-transaction-manager.h"
10 
11 #include <linux/export.h>
12 
13 /*
14  * Removing an entry from a btree
15  * ==============================
16  *
17  * A very important constraint for our btree is that no node, except the
18  * root, may have fewer than a certain number of entries.
19  * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
20  *
21  * Ensuring this is complicated by the way we want to only ever hold the
22  * locks on 2 nodes concurrently, and only change nodes in a top to bottom
23  * fashion.
24  *
25  * Each node may have a left or right sibling.  When decending the spine,
26  * if a node contains only MIN_ENTRIES then we try and increase this to at
27  * least MIN_ENTRIES + 1.  We do this in the following ways:
28  *
29  * [A] No siblings => this can only happen if the node is the root, in which
30  *     case we copy the childs contents over the root.
31  *
32  * [B] No left sibling
33  *     ==> rebalance(node, right sibling)
34  *
35  * [C] No right sibling
36  *     ==> rebalance(left sibling, node)
37  *
38  * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
39  *     ==> delete node adding it's contents to left and right
40  *
41  * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
42  *     ==> rebalance(left, node, right)
43  *
44  * After these operations it's possible that the our original node no
45  * longer contains the desired sub tree.  For this reason this rebalancing
46  * is performed on the children of the current node.  This also avoids
47  * having a special case for the root.
48  *
49  * Once this rebalancing has occurred we can then step into the child node
50  * for internal nodes.  Or delete the entry for leaf nodes.
51  */
52 
53 /*
54  * Some little utilities for moving node data around.
55  */
56 static void node_shift(struct node *n, int shift)
57 {
58 	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
59 	uint32_t value_size = le32_to_cpu(n->header.value_size);
60 
61 	if (shift < 0) {
62 		shift = -shift;
63 		BUG_ON(shift > nr_entries);
64 		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift, value_size));
65 		memmove(key_ptr(n, 0),
66 			key_ptr(n, shift),
67 			(nr_entries - shift) * sizeof(__le64));
68 		memmove(value_ptr(n, 0, value_size),
69 			value_ptr(n, shift, value_size),
70 			(nr_entries - shift) * value_size);
71 	} else {
72 		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
73 		memmove(key_ptr(n, shift),
74 			key_ptr(n, 0),
75 			nr_entries * sizeof(__le64));
76 		memmove(value_ptr(n, shift, value_size),
77 			value_ptr(n, 0, value_size),
78 			nr_entries * value_size);
79 	}
80 }
81 
82 static void node_copy(struct node *left, struct node *right, int shift)
83 {
84 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
85 	uint32_t value_size = le32_to_cpu(left->header.value_size);
86 	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
87 
88 	if (shift < 0) {
89 		shift = -shift;
90 		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
91 		memcpy(key_ptr(left, nr_left),
92 		       key_ptr(right, 0),
93 		       shift * sizeof(__le64));
94 		memcpy(value_ptr(left, nr_left, value_size),
95 		       value_ptr(right, 0, value_size),
96 		       shift * value_size);
97 	} else {
98 		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
99 		memcpy(key_ptr(right, 0),
100 		       key_ptr(left, nr_left - shift),
101 		       shift * sizeof(__le64));
102 		memcpy(value_ptr(right, 0, value_size),
103 		       value_ptr(left, nr_left - shift, value_size),
104 		       shift * value_size);
105 	}
106 }
107 
108 /*
109  * Delete a specific entry from a leaf node.
110  */
111 static void delete_at(struct node *n, unsigned index)
112 {
113 	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
114 	unsigned nr_to_copy = nr_entries - (index + 1);
115 	uint32_t value_size = le32_to_cpu(n->header.value_size);
116 	BUG_ON(index >= nr_entries);
117 
118 	if (nr_to_copy) {
119 		memmove(key_ptr(n, index),
120 			key_ptr(n, index + 1),
121 			nr_to_copy * sizeof(__le64));
122 
123 		memmove(value_ptr(n, index, value_size),
124 			value_ptr(n, index + 1, value_size),
125 			nr_to_copy * value_size);
126 	}
127 
128 	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
129 }
130 
131 static unsigned del_threshold(struct node *n)
132 {
133 	return le32_to_cpu(n->header.max_entries) / 3;
134 }
135 
136 static unsigned merge_threshold(struct node *n)
137 {
138 	/*
139 	 * The extra one is because we know we're potentially going to
140 	 * delete an entry.
141 	 */
142 	return 2 * (le32_to_cpu(n->header.max_entries) / 3) + 1;
143 }
144 
145 struct child {
146 	unsigned index;
147 	struct dm_block *block;
148 	struct node *n;
149 };
150 
151 static struct dm_btree_value_type le64_type = {
152 	.context = NULL,
153 	.size = sizeof(__le64),
154 	.inc = NULL,
155 	.dec = NULL,
156 	.equal = NULL
157 };
158 
159 static int init_child(struct dm_btree_info *info, struct node *parent,
160 		      unsigned index, struct child *result)
161 {
162 	int r, inc;
163 	dm_block_t root;
164 
165 	result->index = index;
166 	root = value64(parent, index);
167 
168 	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
169 			       &result->block, &inc);
170 	if (r)
171 		return r;
172 
173 	result->n = dm_block_data(result->block);
174 
175 	if (inc)
176 		inc_children(info->tm, result->n, &le64_type);
177 
178 	*((__le64 *) value_ptr(parent, index, sizeof(__le64))) =
179 		cpu_to_le64(dm_block_location(result->block));
180 
181 	return 0;
182 }
183 
184 static int exit_child(struct dm_btree_info *info, struct child *c)
185 {
186 	return dm_tm_unlock(info->tm, c->block);
187 }
188 
189 static void shift(struct node *left, struct node *right, int count)
190 {
191 	if (!count)
192 		return;
193 
194 	if (count > 0) {
195 		node_shift(right, count);
196 		node_copy(left, right, count);
197 	} else {
198 		node_copy(left, right, count);
199 		node_shift(right, count);
200 	}
201 
202 	left->header.nr_entries =
203 		cpu_to_le32(le32_to_cpu(left->header.nr_entries) - count);
204 	BUG_ON(le32_to_cpu(left->header.nr_entries) > le32_to_cpu(left->header.max_entries));
205 
206 	right->header.nr_entries =
207 		cpu_to_le32(le32_to_cpu(right->header.nr_entries) + count);
208 	BUG_ON(le32_to_cpu(right->header.nr_entries) > le32_to_cpu(right->header.max_entries));
209 }
210 
211 static void __rebalance2(struct dm_btree_info *info, struct node *parent,
212 			 struct child *l, struct child *r)
213 {
214 	struct node *left = l->n;
215 	struct node *right = r->n;
216 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
217 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
218 
219 	if (nr_left + nr_right <= merge_threshold(left)) {
220 		/*
221 		 * Merge
222 		 */
223 		node_copy(left, right, -nr_right);
224 		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
225 		delete_at(parent, r->index);
226 
227 		/*
228 		 * We need to decrement the right block, but not it's
229 		 * children, since they're still referenced by left.
230 		 */
231 		dm_tm_dec(info->tm, dm_block_location(r->block));
232 	} else {
233 		/*
234 		 * Rebalance.
235 		 */
236 		unsigned target_left = (nr_left + nr_right) / 2;
237 		unsigned shift_ = nr_left - target_left;
238 		BUG_ON(le32_to_cpu(left->header.max_entries) <= nr_left - shift_);
239 		BUG_ON(le32_to_cpu(right->header.max_entries) <= nr_right + shift_);
240 		shift(left, right, nr_left - target_left);
241 		*key_ptr(parent, r->index) = right->keys[0];
242 	}
243 }
244 
245 static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
246 		      unsigned left_index)
247 {
248 	int r;
249 	struct node *parent;
250 	struct child left, right;
251 
252 	parent = dm_block_data(shadow_current(s));
253 
254 	r = init_child(info, parent, left_index, &left);
255 	if (r)
256 		return r;
257 
258 	r = init_child(info, parent, left_index + 1, &right);
259 	if (r) {
260 		exit_child(info, &left);
261 		return r;
262 	}
263 
264 	__rebalance2(info, parent, &left, &right);
265 
266 	r = exit_child(info, &left);
267 	if (r) {
268 		exit_child(info, &right);
269 		return r;
270 	}
271 
272 	return exit_child(info, &right);
273 }
274 
275 static void __rebalance3(struct dm_btree_info *info, struct node *parent,
276 			 struct child *l, struct child *c, struct child *r)
277 {
278 	struct node *left = l->n;
279 	struct node *center = c->n;
280 	struct node *right = r->n;
281 
282 	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
283 	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
284 	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
285 	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
286 
287 	unsigned target;
288 
289 	BUG_ON(left->header.max_entries != center->header.max_entries);
290 	BUG_ON(center->header.max_entries != right->header.max_entries);
291 
292 	if (((nr_left + nr_center + nr_right) / 2) < merge_threshold(center)) {
293 		/*
294 		 * Delete center node:
295 		 *
296 		 * We dump as many entries from center as possible into
297 		 * left, then the rest in right, then rebalance2.  This
298 		 * wastes some cpu, but I want something simple atm.
299 		 */
300 		unsigned shift = min(max_entries - nr_left, nr_center);
301 
302 		BUG_ON(nr_left + shift > max_entries);
303 		node_copy(left, center, -shift);
304 		left->header.nr_entries = cpu_to_le32(nr_left + shift);
305 
306 		if (shift != nr_center) {
307 			shift = nr_center - shift;
308 			BUG_ON((nr_right + shift) >= max_entries);
309 			node_shift(right, shift);
310 			node_copy(center, right, shift);
311 			right->header.nr_entries = cpu_to_le32(nr_right + shift);
312 		}
313 		*key_ptr(parent, r->index) = right->keys[0];
314 
315 		delete_at(parent, c->index);
316 		r->index--;
317 
318 		dm_tm_dec(info->tm, dm_block_location(c->block));
319 		__rebalance2(info, parent, l, r);
320 
321 		return;
322 	}
323 
324 	/*
325 	 * Rebalance
326 	 */
327 	target = (nr_left + nr_center + nr_right) / 3;
328 	BUG_ON(target > max_entries);
329 
330 	/*
331 	 * Adjust the left node
332 	 */
333 	shift(left, center, nr_left - target);
334 
335 	/*
336 	 * Adjust the right node
337 	 */
338 	shift(center, right, target - nr_right);
339 	*key_ptr(parent, c->index) = center->keys[0];
340 	*key_ptr(parent, r->index) = right->keys[0];
341 }
342 
343 static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
344 		      unsigned left_index)
345 {
346 	int r;
347 	struct node *parent = dm_block_data(shadow_current(s));
348 	struct child left, center, right;
349 
350 	/*
351 	 * FIXME: fill out an array?
352 	 */
353 	r = init_child(info, parent, left_index, &left);
354 	if (r)
355 		return r;
356 
357 	r = init_child(info, parent, left_index + 1, &center);
358 	if (r) {
359 		exit_child(info, &left);
360 		return r;
361 	}
362 
363 	r = init_child(info, parent, left_index + 2, &right);
364 	if (r) {
365 		exit_child(info, &left);
366 		exit_child(info, &center);
367 		return r;
368 	}
369 
370 	__rebalance3(info, parent, &left, &center, &right);
371 
372 	r = exit_child(info, &left);
373 	if (r) {
374 		exit_child(info, &center);
375 		exit_child(info, &right);
376 		return r;
377 	}
378 
379 	r = exit_child(info, &center);
380 	if (r) {
381 		exit_child(info, &right);
382 		return r;
383 	}
384 
385 	r = exit_child(info, &right);
386 	if (r)
387 		return r;
388 
389 	return 0;
390 }
391 
392 static int get_nr_entries(struct dm_transaction_manager *tm,
393 			  dm_block_t b, uint32_t *result)
394 {
395 	int r;
396 	struct dm_block *block;
397 	struct node *n;
398 
399 	r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
400 	if (r)
401 		return r;
402 
403 	n = dm_block_data(block);
404 	*result = le32_to_cpu(n->header.nr_entries);
405 
406 	return dm_tm_unlock(tm, block);
407 }
408 
409 static int rebalance_children(struct shadow_spine *s,
410 			      struct dm_btree_info *info, uint64_t key)
411 {
412 	int i, r, has_left_sibling, has_right_sibling;
413 	uint32_t child_entries;
414 	struct node *n;
415 
416 	n = dm_block_data(shadow_current(s));
417 
418 	if (le32_to_cpu(n->header.nr_entries) == 1) {
419 		struct dm_block *child;
420 		dm_block_t b = value64(n, 0);
421 
422 		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
423 		if (r)
424 			return r;
425 
426 		memcpy(n, dm_block_data(child),
427 		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
428 		r = dm_tm_unlock(info->tm, child);
429 		if (r)
430 			return r;
431 
432 		dm_tm_dec(info->tm, dm_block_location(child));
433 		return 0;
434 	}
435 
436 	i = lower_bound(n, key);
437 	if (i < 0)
438 		return -ENODATA;
439 
440 	r = get_nr_entries(info->tm, value64(n, i), &child_entries);
441 	if (r)
442 		return r;
443 
444 	if (child_entries > del_threshold(n))
445 		return 0;
446 
447 	has_left_sibling = i > 0;
448 	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
449 
450 	if (!has_left_sibling)
451 		r = rebalance2(s, info, i);
452 
453 	else if (!has_right_sibling)
454 		r = rebalance2(s, info, i - 1);
455 
456 	else
457 		r = rebalance3(s, info, i - 1);
458 
459 	return r;
460 }
461 
462 static int do_leaf(struct node *n, uint64_t key, unsigned *index)
463 {
464 	int i = lower_bound(n, key);
465 
466 	if ((i < 0) ||
467 	    (i >= le32_to_cpu(n->header.nr_entries)) ||
468 	    (le64_to_cpu(n->keys[i]) != key))
469 		return -ENODATA;
470 
471 	*index = i;
472 
473 	return 0;
474 }
475 
476 /*
477  * Prepares for removal from one level of the hierarchy.  The caller must
478  * call delete_at() to remove the entry at index.
479  */
480 static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
481 		      struct dm_btree_value_type *vt, dm_block_t root,
482 		      uint64_t key, unsigned *index)
483 {
484 	int i = *index, r;
485 	struct node *n;
486 
487 	for (;;) {
488 		r = shadow_step(s, root, vt);
489 		if (r < 0)
490 			break;
491 
492 		/*
493 		 * We have to patch up the parent node, ugly, but I don't
494 		 * see a way to do this automatically as part of the spine
495 		 * op.
496 		 */
497 		if (shadow_has_parent(s)) {
498 			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
499 			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(__le64)),
500 			       &location, sizeof(__le64));
501 		}
502 
503 		n = dm_block_data(shadow_current(s));
504 
505 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
506 			return do_leaf(n, key, index);
507 
508 		r = rebalance_children(s, info, key);
509 		if (r)
510 			break;
511 
512 		n = dm_block_data(shadow_current(s));
513 		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
514 			return do_leaf(n, key, index);
515 
516 		i = lower_bound(n, key);
517 
518 		/*
519 		 * We know the key is present, or else
520 		 * rebalance_children would have returned
521 		 * -ENODATA
522 		 */
523 		root = value64(n, i);
524 	}
525 
526 	return r;
527 }
528 
529 int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
530 		    uint64_t *keys, dm_block_t *new_root)
531 {
532 	unsigned level, last_level = info->levels - 1;
533 	int index = 0, r = 0;
534 	struct shadow_spine spine;
535 	struct node *n;
536 
537 	init_shadow_spine(&spine, info);
538 	for (level = 0; level < info->levels; level++) {
539 		r = remove_raw(&spine, info,
540 			       (level == last_level ?
541 				&info->value_type : &le64_type),
542 			       root, keys[level], (unsigned *)&index);
543 		if (r < 0)
544 			break;
545 
546 		n = dm_block_data(shadow_current(&spine));
547 		if (level != last_level) {
548 			root = value64(n, index);
549 			continue;
550 		}
551 
552 		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
553 
554 		if (info->value_type.dec)
555 			info->value_type.dec(info->value_type.context,
556 					     value_ptr(n, index, info->value_type.size));
557 
558 		delete_at(n, index);
559 	}
560 
561 	*new_root = shadow_root(&spine);
562 	exit_shadow_spine(&spine);
563 
564 	return r;
565 }
566 EXPORT_SYMBOL_GPL(dm_btree_remove);
567