1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 #include "md-cluster.h" 57 58 #ifndef MODULE 59 static void autostart_arrays(int part); 60 #endif 61 62 /* pers_list is a list of registered personalities protected 63 * by pers_lock. 64 * pers_lock does extra service to protect accesses to 65 * mddev->thread when the mutex cannot be held. 66 */ 67 static LIST_HEAD(pers_list); 68 static DEFINE_SPINLOCK(pers_lock); 69 70 struct md_cluster_operations *md_cluster_ops; 71 EXPORT_SYMBOL(md_cluster_ops); 72 struct module *md_cluster_mod; 73 EXPORT_SYMBOL(md_cluster_mod); 74 75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 76 static struct workqueue_struct *md_wq; 77 static struct workqueue_struct *md_misc_wq; 78 79 static int remove_and_add_spares(struct mddev *mddev, 80 struct md_rdev *this); 81 static void mddev_detach(struct mddev *mddev); 82 83 /* 84 * Default number of read corrections we'll attempt on an rdev 85 * before ejecting it from the array. We divide the read error 86 * count by 2 for every hour elapsed between read errors. 87 */ 88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 89 /* 90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 91 * is 1000 KB/sec, so the extra system load does not show up that much. 92 * Increase it if you want to have more _guaranteed_ speed. Note that 93 * the RAID driver will use the maximum available bandwidth if the IO 94 * subsystem is idle. There is also an 'absolute maximum' reconstruction 95 * speed limit - in case reconstruction slows down your system despite 96 * idle IO detection. 97 * 98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 99 * or /sys/block/mdX/md/sync_speed_{min,max} 100 */ 101 102 static int sysctl_speed_limit_min = 1000; 103 static int sysctl_speed_limit_max = 200000; 104 static inline int speed_min(struct mddev *mddev) 105 { 106 return mddev->sync_speed_min ? 107 mddev->sync_speed_min : sysctl_speed_limit_min; 108 } 109 110 static inline int speed_max(struct mddev *mddev) 111 { 112 return mddev->sync_speed_max ? 113 mddev->sync_speed_max : sysctl_speed_limit_max; 114 } 115 116 static struct ctl_table_header *raid_table_header; 117 118 static struct ctl_table raid_table[] = { 119 { 120 .procname = "speed_limit_min", 121 .data = &sysctl_speed_limit_min, 122 .maxlen = sizeof(int), 123 .mode = S_IRUGO|S_IWUSR, 124 .proc_handler = proc_dointvec, 125 }, 126 { 127 .procname = "speed_limit_max", 128 .data = &sysctl_speed_limit_max, 129 .maxlen = sizeof(int), 130 .mode = S_IRUGO|S_IWUSR, 131 .proc_handler = proc_dointvec, 132 }, 133 { } 134 }; 135 136 static struct ctl_table raid_dir_table[] = { 137 { 138 .procname = "raid", 139 .maxlen = 0, 140 .mode = S_IRUGO|S_IXUGO, 141 .child = raid_table, 142 }, 143 { } 144 }; 145 146 static struct ctl_table raid_root_table[] = { 147 { 148 .procname = "dev", 149 .maxlen = 0, 150 .mode = 0555, 151 .child = raid_dir_table, 152 }, 153 { } 154 }; 155 156 static const struct block_device_operations md_fops; 157 158 static int start_readonly; 159 160 /* bio_clone_mddev 161 * like bio_clone, but with a local bio set 162 */ 163 164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 165 struct mddev *mddev) 166 { 167 struct bio *b; 168 169 if (!mddev || !mddev->bio_set) 170 return bio_alloc(gfp_mask, nr_iovecs); 171 172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 173 if (!b) 174 return NULL; 175 return b; 176 } 177 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 178 179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 180 struct mddev *mddev) 181 { 182 if (!mddev || !mddev->bio_set) 183 return bio_clone(bio, gfp_mask); 184 185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 186 } 187 EXPORT_SYMBOL_GPL(bio_clone_mddev); 188 189 /* 190 * We have a system wide 'event count' that is incremented 191 * on any 'interesting' event, and readers of /proc/mdstat 192 * can use 'poll' or 'select' to find out when the event 193 * count increases. 194 * 195 * Events are: 196 * start array, stop array, error, add device, remove device, 197 * start build, activate spare 198 */ 199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 200 static atomic_t md_event_count; 201 void md_new_event(struct mddev *mddev) 202 { 203 atomic_inc(&md_event_count); 204 wake_up(&md_event_waiters); 205 } 206 EXPORT_SYMBOL_GPL(md_new_event); 207 208 /* Alternate version that can be called from interrupts 209 * when calling sysfs_notify isn't needed. 210 */ 211 static void md_new_event_inintr(struct mddev *mddev) 212 { 213 atomic_inc(&md_event_count); 214 wake_up(&md_event_waiters); 215 } 216 217 /* 218 * Enables to iterate over all existing md arrays 219 * all_mddevs_lock protects this list. 220 */ 221 static LIST_HEAD(all_mddevs); 222 static DEFINE_SPINLOCK(all_mddevs_lock); 223 224 /* 225 * iterates through all used mddevs in the system. 226 * We take care to grab the all_mddevs_lock whenever navigating 227 * the list, and to always hold a refcount when unlocked. 228 * Any code which breaks out of this loop while own 229 * a reference to the current mddev and must mddev_put it. 230 */ 231 #define for_each_mddev(_mddev,_tmp) \ 232 \ 233 for (({ spin_lock(&all_mddevs_lock); \ 234 _tmp = all_mddevs.next; \ 235 _mddev = NULL;}); \ 236 ({ if (_tmp != &all_mddevs) \ 237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 238 spin_unlock(&all_mddevs_lock); \ 239 if (_mddev) mddev_put(_mddev); \ 240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 241 _tmp != &all_mddevs;}); \ 242 ({ spin_lock(&all_mddevs_lock); \ 243 _tmp = _tmp->next;}) \ 244 ) 245 246 /* Rather than calling directly into the personality make_request function, 247 * IO requests come here first so that we can check if the device is 248 * being suspended pending a reconfiguration. 249 * We hold a refcount over the call to ->make_request. By the time that 250 * call has finished, the bio has been linked into some internal structure 251 * and so is visible to ->quiesce(), so we don't need the refcount any more. 252 */ 253 static void md_make_request(struct request_queue *q, struct bio *bio) 254 { 255 const int rw = bio_data_dir(bio); 256 struct mddev *mddev = q->queuedata; 257 unsigned int sectors; 258 int cpu; 259 260 blk_queue_split(q, &bio, q->bio_split); 261 262 if (mddev == NULL || mddev->pers == NULL 263 || !mddev->ready) { 264 bio_io_error(bio); 265 return; 266 } 267 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 268 if (bio_sectors(bio) != 0) 269 bio->bi_error = -EROFS; 270 bio_endio(bio); 271 return; 272 } 273 smp_rmb(); /* Ensure implications of 'active' are visible */ 274 rcu_read_lock(); 275 if (mddev->suspended) { 276 DEFINE_WAIT(__wait); 277 for (;;) { 278 prepare_to_wait(&mddev->sb_wait, &__wait, 279 TASK_UNINTERRUPTIBLE); 280 if (!mddev->suspended) 281 break; 282 rcu_read_unlock(); 283 schedule(); 284 rcu_read_lock(); 285 } 286 finish_wait(&mddev->sb_wait, &__wait); 287 } 288 atomic_inc(&mddev->active_io); 289 rcu_read_unlock(); 290 291 /* 292 * save the sectors now since our bio can 293 * go away inside make_request 294 */ 295 sectors = bio_sectors(bio); 296 mddev->pers->make_request(mddev, bio); 297 298 cpu = part_stat_lock(); 299 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 300 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 301 part_stat_unlock(); 302 303 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 304 wake_up(&mddev->sb_wait); 305 } 306 307 /* mddev_suspend makes sure no new requests are submitted 308 * to the device, and that any requests that have been submitted 309 * are completely handled. 310 * Once mddev_detach() is called and completes, the module will be 311 * completely unused. 312 */ 313 void mddev_suspend(struct mddev *mddev) 314 { 315 BUG_ON(mddev->suspended); 316 mddev->suspended = 1; 317 synchronize_rcu(); 318 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 319 mddev->pers->quiesce(mddev, 1); 320 321 del_timer_sync(&mddev->safemode_timer); 322 } 323 EXPORT_SYMBOL_GPL(mddev_suspend); 324 325 void mddev_resume(struct mddev *mddev) 326 { 327 mddev->suspended = 0; 328 wake_up(&mddev->sb_wait); 329 mddev->pers->quiesce(mddev, 0); 330 331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 332 md_wakeup_thread(mddev->thread); 333 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 334 } 335 EXPORT_SYMBOL_GPL(mddev_resume); 336 337 int mddev_congested(struct mddev *mddev, int bits) 338 { 339 struct md_personality *pers = mddev->pers; 340 int ret = 0; 341 342 rcu_read_lock(); 343 if (mddev->suspended) 344 ret = 1; 345 else if (pers && pers->congested) 346 ret = pers->congested(mddev, bits); 347 rcu_read_unlock(); 348 return ret; 349 } 350 EXPORT_SYMBOL_GPL(mddev_congested); 351 static int md_congested(void *data, int bits) 352 { 353 struct mddev *mddev = data; 354 return mddev_congested(mddev, bits); 355 } 356 357 /* 358 * Generic flush handling for md 359 */ 360 361 static void md_end_flush(struct bio *bio) 362 { 363 struct md_rdev *rdev = bio->bi_private; 364 struct mddev *mddev = rdev->mddev; 365 366 rdev_dec_pending(rdev, mddev); 367 368 if (atomic_dec_and_test(&mddev->flush_pending)) { 369 /* The pre-request flush has finished */ 370 queue_work(md_wq, &mddev->flush_work); 371 } 372 bio_put(bio); 373 } 374 375 static void md_submit_flush_data(struct work_struct *ws); 376 377 static void submit_flushes(struct work_struct *ws) 378 { 379 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 380 struct md_rdev *rdev; 381 382 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 383 atomic_set(&mddev->flush_pending, 1); 384 rcu_read_lock(); 385 rdev_for_each_rcu(rdev, mddev) 386 if (rdev->raid_disk >= 0 && 387 !test_bit(Faulty, &rdev->flags)) { 388 /* Take two references, one is dropped 389 * when request finishes, one after 390 * we reclaim rcu_read_lock 391 */ 392 struct bio *bi; 393 atomic_inc(&rdev->nr_pending); 394 atomic_inc(&rdev->nr_pending); 395 rcu_read_unlock(); 396 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 397 bi->bi_end_io = md_end_flush; 398 bi->bi_private = rdev; 399 bi->bi_bdev = rdev->bdev; 400 atomic_inc(&mddev->flush_pending); 401 submit_bio(WRITE_FLUSH, bi); 402 rcu_read_lock(); 403 rdev_dec_pending(rdev, mddev); 404 } 405 rcu_read_unlock(); 406 if (atomic_dec_and_test(&mddev->flush_pending)) 407 queue_work(md_wq, &mddev->flush_work); 408 } 409 410 static void md_submit_flush_data(struct work_struct *ws) 411 { 412 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 413 struct bio *bio = mddev->flush_bio; 414 415 if (bio->bi_iter.bi_size == 0) 416 /* an empty barrier - all done */ 417 bio_endio(bio); 418 else { 419 bio->bi_rw &= ~REQ_FLUSH; 420 mddev->pers->make_request(mddev, bio); 421 } 422 423 mddev->flush_bio = NULL; 424 wake_up(&mddev->sb_wait); 425 } 426 427 void md_flush_request(struct mddev *mddev, struct bio *bio) 428 { 429 spin_lock_irq(&mddev->lock); 430 wait_event_lock_irq(mddev->sb_wait, 431 !mddev->flush_bio, 432 mddev->lock); 433 mddev->flush_bio = bio; 434 spin_unlock_irq(&mddev->lock); 435 436 INIT_WORK(&mddev->flush_work, submit_flushes); 437 queue_work(md_wq, &mddev->flush_work); 438 } 439 EXPORT_SYMBOL(md_flush_request); 440 441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 442 { 443 struct mddev *mddev = cb->data; 444 md_wakeup_thread(mddev->thread); 445 kfree(cb); 446 } 447 EXPORT_SYMBOL(md_unplug); 448 449 static inline struct mddev *mddev_get(struct mddev *mddev) 450 { 451 atomic_inc(&mddev->active); 452 return mddev; 453 } 454 455 static void mddev_delayed_delete(struct work_struct *ws); 456 457 static void mddev_put(struct mddev *mddev) 458 { 459 struct bio_set *bs = NULL; 460 461 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 462 return; 463 if (!mddev->raid_disks && list_empty(&mddev->disks) && 464 mddev->ctime == 0 && !mddev->hold_active) { 465 /* Array is not configured at all, and not held active, 466 * so destroy it */ 467 list_del_init(&mddev->all_mddevs); 468 bs = mddev->bio_set; 469 mddev->bio_set = NULL; 470 if (mddev->gendisk) { 471 /* We did a probe so need to clean up. Call 472 * queue_work inside the spinlock so that 473 * flush_workqueue() after mddev_find will 474 * succeed in waiting for the work to be done. 475 */ 476 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 477 queue_work(md_misc_wq, &mddev->del_work); 478 } else 479 kfree(mddev); 480 } 481 spin_unlock(&all_mddevs_lock); 482 if (bs) 483 bioset_free(bs); 484 } 485 486 static void md_safemode_timeout(unsigned long data); 487 488 void mddev_init(struct mddev *mddev) 489 { 490 mutex_init(&mddev->open_mutex); 491 mutex_init(&mddev->reconfig_mutex); 492 mutex_init(&mddev->bitmap_info.mutex); 493 INIT_LIST_HEAD(&mddev->disks); 494 INIT_LIST_HEAD(&mddev->all_mddevs); 495 setup_timer(&mddev->safemode_timer, md_safemode_timeout, 496 (unsigned long) mddev); 497 atomic_set(&mddev->active, 1); 498 atomic_set(&mddev->openers, 0); 499 atomic_set(&mddev->active_io, 0); 500 spin_lock_init(&mddev->lock); 501 atomic_set(&mddev->flush_pending, 0); 502 init_waitqueue_head(&mddev->sb_wait); 503 init_waitqueue_head(&mddev->recovery_wait); 504 mddev->reshape_position = MaxSector; 505 mddev->reshape_backwards = 0; 506 mddev->last_sync_action = "none"; 507 mddev->resync_min = 0; 508 mddev->resync_max = MaxSector; 509 mddev->level = LEVEL_NONE; 510 } 511 EXPORT_SYMBOL_GPL(mddev_init); 512 513 static struct mddev *mddev_find(dev_t unit) 514 { 515 struct mddev *mddev, *new = NULL; 516 517 if (unit && MAJOR(unit) != MD_MAJOR) 518 unit &= ~((1<<MdpMinorShift)-1); 519 520 retry: 521 spin_lock(&all_mddevs_lock); 522 523 if (unit) { 524 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 525 if (mddev->unit == unit) { 526 mddev_get(mddev); 527 spin_unlock(&all_mddevs_lock); 528 kfree(new); 529 return mddev; 530 } 531 532 if (new) { 533 list_add(&new->all_mddevs, &all_mddevs); 534 spin_unlock(&all_mddevs_lock); 535 new->hold_active = UNTIL_IOCTL; 536 return new; 537 } 538 } else if (new) { 539 /* find an unused unit number */ 540 static int next_minor = 512; 541 int start = next_minor; 542 int is_free = 0; 543 int dev = 0; 544 while (!is_free) { 545 dev = MKDEV(MD_MAJOR, next_minor); 546 next_minor++; 547 if (next_minor > MINORMASK) 548 next_minor = 0; 549 if (next_minor == start) { 550 /* Oh dear, all in use. */ 551 spin_unlock(&all_mddevs_lock); 552 kfree(new); 553 return NULL; 554 } 555 556 is_free = 1; 557 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 558 if (mddev->unit == dev) { 559 is_free = 0; 560 break; 561 } 562 } 563 new->unit = dev; 564 new->md_minor = MINOR(dev); 565 new->hold_active = UNTIL_STOP; 566 list_add(&new->all_mddevs, &all_mddevs); 567 spin_unlock(&all_mddevs_lock); 568 return new; 569 } 570 spin_unlock(&all_mddevs_lock); 571 572 new = kzalloc(sizeof(*new), GFP_KERNEL); 573 if (!new) 574 return NULL; 575 576 new->unit = unit; 577 if (MAJOR(unit) == MD_MAJOR) 578 new->md_minor = MINOR(unit); 579 else 580 new->md_minor = MINOR(unit) >> MdpMinorShift; 581 582 mddev_init(new); 583 584 goto retry; 585 } 586 587 static struct attribute_group md_redundancy_group; 588 589 void mddev_unlock(struct mddev *mddev) 590 { 591 if (mddev->to_remove) { 592 /* These cannot be removed under reconfig_mutex as 593 * an access to the files will try to take reconfig_mutex 594 * while holding the file unremovable, which leads to 595 * a deadlock. 596 * So hold set sysfs_active while the remove in happeing, 597 * and anything else which might set ->to_remove or my 598 * otherwise change the sysfs namespace will fail with 599 * -EBUSY if sysfs_active is still set. 600 * We set sysfs_active under reconfig_mutex and elsewhere 601 * test it under the same mutex to ensure its correct value 602 * is seen. 603 */ 604 struct attribute_group *to_remove = mddev->to_remove; 605 mddev->to_remove = NULL; 606 mddev->sysfs_active = 1; 607 mutex_unlock(&mddev->reconfig_mutex); 608 609 if (mddev->kobj.sd) { 610 if (to_remove != &md_redundancy_group) 611 sysfs_remove_group(&mddev->kobj, to_remove); 612 if (mddev->pers == NULL || 613 mddev->pers->sync_request == NULL) { 614 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 615 if (mddev->sysfs_action) 616 sysfs_put(mddev->sysfs_action); 617 mddev->sysfs_action = NULL; 618 } 619 } 620 mddev->sysfs_active = 0; 621 } else 622 mutex_unlock(&mddev->reconfig_mutex); 623 624 /* As we've dropped the mutex we need a spinlock to 625 * make sure the thread doesn't disappear 626 */ 627 spin_lock(&pers_lock); 628 md_wakeup_thread(mddev->thread); 629 spin_unlock(&pers_lock); 630 } 631 EXPORT_SYMBOL_GPL(mddev_unlock); 632 633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 634 { 635 struct md_rdev *rdev; 636 637 rdev_for_each_rcu(rdev, mddev) 638 if (rdev->desc_nr == nr) 639 return rdev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 644 645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 646 { 647 struct md_rdev *rdev; 648 649 rdev_for_each(rdev, mddev) 650 if (rdev->bdev->bd_dev == dev) 651 return rdev; 652 653 return NULL; 654 } 655 656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 657 { 658 struct md_rdev *rdev; 659 660 rdev_for_each_rcu(rdev, mddev) 661 if (rdev->bdev->bd_dev == dev) 662 return rdev; 663 664 return NULL; 665 } 666 667 static struct md_personality *find_pers(int level, char *clevel) 668 { 669 struct md_personality *pers; 670 list_for_each_entry(pers, &pers_list, list) { 671 if (level != LEVEL_NONE && pers->level == level) 672 return pers; 673 if (strcmp(pers->name, clevel)==0) 674 return pers; 675 } 676 return NULL; 677 } 678 679 /* return the offset of the super block in 512byte sectors */ 680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 681 { 682 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 683 return MD_NEW_SIZE_SECTORS(num_sectors); 684 } 685 686 static int alloc_disk_sb(struct md_rdev *rdev) 687 { 688 rdev->sb_page = alloc_page(GFP_KERNEL); 689 if (!rdev->sb_page) { 690 printk(KERN_ALERT "md: out of memory.\n"); 691 return -ENOMEM; 692 } 693 694 return 0; 695 } 696 697 void md_rdev_clear(struct md_rdev *rdev) 698 { 699 if (rdev->sb_page) { 700 put_page(rdev->sb_page); 701 rdev->sb_loaded = 0; 702 rdev->sb_page = NULL; 703 rdev->sb_start = 0; 704 rdev->sectors = 0; 705 } 706 if (rdev->bb_page) { 707 put_page(rdev->bb_page); 708 rdev->bb_page = NULL; 709 } 710 kfree(rdev->badblocks.page); 711 rdev->badblocks.page = NULL; 712 } 713 EXPORT_SYMBOL_GPL(md_rdev_clear); 714 715 static void super_written(struct bio *bio) 716 { 717 struct md_rdev *rdev = bio->bi_private; 718 struct mddev *mddev = rdev->mddev; 719 720 if (bio->bi_error) { 721 printk("md: super_written gets error=%d\n", bio->bi_error); 722 md_error(mddev, rdev); 723 } 724 725 if (atomic_dec_and_test(&mddev->pending_writes)) 726 wake_up(&mddev->sb_wait); 727 bio_put(bio); 728 } 729 730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 731 sector_t sector, int size, struct page *page) 732 { 733 /* write first size bytes of page to sector of rdev 734 * Increment mddev->pending_writes before returning 735 * and decrement it on completion, waking up sb_wait 736 * if zero is reached. 737 * If an error occurred, call md_error 738 */ 739 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 740 741 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 742 bio->bi_iter.bi_sector = sector; 743 bio_add_page(bio, page, size, 0); 744 bio->bi_private = rdev; 745 bio->bi_end_io = super_written; 746 747 atomic_inc(&mddev->pending_writes); 748 submit_bio(WRITE_FLUSH_FUA, bio); 749 } 750 751 void md_super_wait(struct mddev *mddev) 752 { 753 /* wait for all superblock writes that were scheduled to complete */ 754 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 755 } 756 757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 758 struct page *page, int rw, bool metadata_op) 759 { 760 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 761 int ret; 762 763 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 764 rdev->meta_bdev : rdev->bdev; 765 if (metadata_op) 766 bio->bi_iter.bi_sector = sector + rdev->sb_start; 767 else if (rdev->mddev->reshape_position != MaxSector && 768 (rdev->mddev->reshape_backwards == 769 (sector >= rdev->mddev->reshape_position))) 770 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 771 else 772 bio->bi_iter.bi_sector = sector + rdev->data_offset; 773 bio_add_page(bio, page, size, 0); 774 submit_bio_wait(rw, bio); 775 776 ret = !bio->bi_error; 777 bio_put(bio); 778 return ret; 779 } 780 EXPORT_SYMBOL_GPL(sync_page_io); 781 782 static int read_disk_sb(struct md_rdev *rdev, int size) 783 { 784 char b[BDEVNAME_SIZE]; 785 786 if (rdev->sb_loaded) 787 return 0; 788 789 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 790 goto fail; 791 rdev->sb_loaded = 1; 792 return 0; 793 794 fail: 795 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 796 bdevname(rdev->bdev,b)); 797 return -EINVAL; 798 } 799 800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 801 { 802 return sb1->set_uuid0 == sb2->set_uuid0 && 803 sb1->set_uuid1 == sb2->set_uuid1 && 804 sb1->set_uuid2 == sb2->set_uuid2 && 805 sb1->set_uuid3 == sb2->set_uuid3; 806 } 807 808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 809 { 810 int ret; 811 mdp_super_t *tmp1, *tmp2; 812 813 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 814 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 815 816 if (!tmp1 || !tmp2) { 817 ret = 0; 818 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 819 goto abort; 820 } 821 822 *tmp1 = *sb1; 823 *tmp2 = *sb2; 824 825 /* 826 * nr_disks is not constant 827 */ 828 tmp1->nr_disks = 0; 829 tmp2->nr_disks = 0; 830 831 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 832 abort: 833 kfree(tmp1); 834 kfree(tmp2); 835 return ret; 836 } 837 838 static u32 md_csum_fold(u32 csum) 839 { 840 csum = (csum & 0xffff) + (csum >> 16); 841 return (csum & 0xffff) + (csum >> 16); 842 } 843 844 static unsigned int calc_sb_csum(mdp_super_t *sb) 845 { 846 u64 newcsum = 0; 847 u32 *sb32 = (u32*)sb; 848 int i; 849 unsigned int disk_csum, csum; 850 851 disk_csum = sb->sb_csum; 852 sb->sb_csum = 0; 853 854 for (i = 0; i < MD_SB_BYTES/4 ; i++) 855 newcsum += sb32[i]; 856 csum = (newcsum & 0xffffffff) + (newcsum>>32); 857 858 #ifdef CONFIG_ALPHA 859 /* This used to use csum_partial, which was wrong for several 860 * reasons including that different results are returned on 861 * different architectures. It isn't critical that we get exactly 862 * the same return value as before (we always csum_fold before 863 * testing, and that removes any differences). However as we 864 * know that csum_partial always returned a 16bit value on 865 * alphas, do a fold to maximise conformity to previous behaviour. 866 */ 867 sb->sb_csum = md_csum_fold(disk_csum); 868 #else 869 sb->sb_csum = disk_csum; 870 #endif 871 return csum; 872 } 873 874 /* 875 * Handle superblock details. 876 * We want to be able to handle multiple superblock formats 877 * so we have a common interface to them all, and an array of 878 * different handlers. 879 * We rely on user-space to write the initial superblock, and support 880 * reading and updating of superblocks. 881 * Interface methods are: 882 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 883 * loads and validates a superblock on dev. 884 * if refdev != NULL, compare superblocks on both devices 885 * Return: 886 * 0 - dev has a superblock that is compatible with refdev 887 * 1 - dev has a superblock that is compatible and newer than refdev 888 * so dev should be used as the refdev in future 889 * -EINVAL superblock incompatible or invalid 890 * -othererror e.g. -EIO 891 * 892 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 893 * Verify that dev is acceptable into mddev. 894 * The first time, mddev->raid_disks will be 0, and data from 895 * dev should be merged in. Subsequent calls check that dev 896 * is new enough. Return 0 or -EINVAL 897 * 898 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 899 * Update the superblock for rdev with data in mddev 900 * This does not write to disc. 901 * 902 */ 903 904 struct super_type { 905 char *name; 906 struct module *owner; 907 int (*load_super)(struct md_rdev *rdev, 908 struct md_rdev *refdev, 909 int minor_version); 910 int (*validate_super)(struct mddev *mddev, 911 struct md_rdev *rdev); 912 void (*sync_super)(struct mddev *mddev, 913 struct md_rdev *rdev); 914 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 915 sector_t num_sectors); 916 int (*allow_new_offset)(struct md_rdev *rdev, 917 unsigned long long new_offset); 918 }; 919 920 /* 921 * Check that the given mddev has no bitmap. 922 * 923 * This function is called from the run method of all personalities that do not 924 * support bitmaps. It prints an error message and returns non-zero if mddev 925 * has a bitmap. Otherwise, it returns 0. 926 * 927 */ 928 int md_check_no_bitmap(struct mddev *mddev) 929 { 930 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 931 return 0; 932 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 933 mdname(mddev), mddev->pers->name); 934 return 1; 935 } 936 EXPORT_SYMBOL(md_check_no_bitmap); 937 938 /* 939 * load_super for 0.90.0 940 */ 941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 942 { 943 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 944 mdp_super_t *sb; 945 int ret; 946 947 /* 948 * Calculate the position of the superblock (512byte sectors), 949 * it's at the end of the disk. 950 * 951 * It also happens to be a multiple of 4Kb. 952 */ 953 rdev->sb_start = calc_dev_sboffset(rdev); 954 955 ret = read_disk_sb(rdev, MD_SB_BYTES); 956 if (ret) return ret; 957 958 ret = -EINVAL; 959 960 bdevname(rdev->bdev, b); 961 sb = page_address(rdev->sb_page); 962 963 if (sb->md_magic != MD_SB_MAGIC) { 964 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 965 b); 966 goto abort; 967 } 968 969 if (sb->major_version != 0 || 970 sb->minor_version < 90 || 971 sb->minor_version > 91) { 972 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 973 sb->major_version, sb->minor_version, 974 b); 975 goto abort; 976 } 977 978 if (sb->raid_disks <= 0) 979 goto abort; 980 981 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 982 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 983 b); 984 goto abort; 985 } 986 987 rdev->preferred_minor = sb->md_minor; 988 rdev->data_offset = 0; 989 rdev->new_data_offset = 0; 990 rdev->sb_size = MD_SB_BYTES; 991 rdev->badblocks.shift = -1; 992 993 if (sb->level == LEVEL_MULTIPATH) 994 rdev->desc_nr = -1; 995 else 996 rdev->desc_nr = sb->this_disk.number; 997 998 if (!refdev) { 999 ret = 1; 1000 } else { 1001 __u64 ev1, ev2; 1002 mdp_super_t *refsb = page_address(refdev->sb_page); 1003 if (!uuid_equal(refsb, sb)) { 1004 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1005 b, bdevname(refdev->bdev,b2)); 1006 goto abort; 1007 } 1008 if (!sb_equal(refsb, sb)) { 1009 printk(KERN_WARNING "md: %s has same UUID" 1010 " but different superblock to %s\n", 1011 b, bdevname(refdev->bdev, b2)); 1012 goto abort; 1013 } 1014 ev1 = md_event(sb); 1015 ev2 = md_event(refsb); 1016 if (ev1 > ev2) 1017 ret = 1; 1018 else 1019 ret = 0; 1020 } 1021 rdev->sectors = rdev->sb_start; 1022 /* Limit to 4TB as metadata cannot record more than that. 1023 * (not needed for Linear and RAID0 as metadata doesn't 1024 * record this size) 1025 */ 1026 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1027 rdev->sectors = (2ULL << 32) - 2; 1028 1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1030 /* "this cannot possibly happen" ... */ 1031 ret = -EINVAL; 1032 1033 abort: 1034 return ret; 1035 } 1036 1037 /* 1038 * validate_super for 0.90.0 1039 */ 1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1041 { 1042 mdp_disk_t *desc; 1043 mdp_super_t *sb = page_address(rdev->sb_page); 1044 __u64 ev1 = md_event(sb); 1045 1046 rdev->raid_disk = -1; 1047 clear_bit(Faulty, &rdev->flags); 1048 clear_bit(In_sync, &rdev->flags); 1049 clear_bit(Bitmap_sync, &rdev->flags); 1050 clear_bit(WriteMostly, &rdev->flags); 1051 1052 if (mddev->raid_disks == 0) { 1053 mddev->major_version = 0; 1054 mddev->minor_version = sb->minor_version; 1055 mddev->patch_version = sb->patch_version; 1056 mddev->external = 0; 1057 mddev->chunk_sectors = sb->chunk_size >> 9; 1058 mddev->ctime = sb->ctime; 1059 mddev->utime = sb->utime; 1060 mddev->level = sb->level; 1061 mddev->clevel[0] = 0; 1062 mddev->layout = sb->layout; 1063 mddev->raid_disks = sb->raid_disks; 1064 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1065 mddev->events = ev1; 1066 mddev->bitmap_info.offset = 0; 1067 mddev->bitmap_info.space = 0; 1068 /* bitmap can use 60 K after the 4K superblocks */ 1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1071 mddev->reshape_backwards = 0; 1072 1073 if (mddev->minor_version >= 91) { 1074 mddev->reshape_position = sb->reshape_position; 1075 mddev->delta_disks = sb->delta_disks; 1076 mddev->new_level = sb->new_level; 1077 mddev->new_layout = sb->new_layout; 1078 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1079 if (mddev->delta_disks < 0) 1080 mddev->reshape_backwards = 1; 1081 } else { 1082 mddev->reshape_position = MaxSector; 1083 mddev->delta_disks = 0; 1084 mddev->new_level = mddev->level; 1085 mddev->new_layout = mddev->layout; 1086 mddev->new_chunk_sectors = mddev->chunk_sectors; 1087 } 1088 1089 if (sb->state & (1<<MD_SB_CLEAN)) 1090 mddev->recovery_cp = MaxSector; 1091 else { 1092 if (sb->events_hi == sb->cp_events_hi && 1093 sb->events_lo == sb->cp_events_lo) { 1094 mddev->recovery_cp = sb->recovery_cp; 1095 } else 1096 mddev->recovery_cp = 0; 1097 } 1098 1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1103 1104 mddev->max_disks = MD_SB_DISKS; 1105 1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1107 mddev->bitmap_info.file == NULL) { 1108 mddev->bitmap_info.offset = 1109 mddev->bitmap_info.default_offset; 1110 mddev->bitmap_info.space = 1111 mddev->bitmap_info.default_space; 1112 } 1113 1114 } else if (mddev->pers == NULL) { 1115 /* Insist on good event counter while assembling, except 1116 * for spares (which don't need an event count) */ 1117 ++ev1; 1118 if (sb->disks[rdev->desc_nr].state & ( 1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1120 if (ev1 < mddev->events) 1121 return -EINVAL; 1122 } else if (mddev->bitmap) { 1123 /* if adding to array with a bitmap, then we can accept an 1124 * older device ... but not too old. 1125 */ 1126 if (ev1 < mddev->bitmap->events_cleared) 1127 return 0; 1128 if (ev1 < mddev->events) 1129 set_bit(Bitmap_sync, &rdev->flags); 1130 } else { 1131 if (ev1 < mddev->events) 1132 /* just a hot-add of a new device, leave raid_disk at -1 */ 1133 return 0; 1134 } 1135 1136 if (mddev->level != LEVEL_MULTIPATH) { 1137 desc = sb->disks + rdev->desc_nr; 1138 1139 if (desc->state & (1<<MD_DISK_FAULTY)) 1140 set_bit(Faulty, &rdev->flags); 1141 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1142 desc->raid_disk < mddev->raid_disks */) { 1143 set_bit(In_sync, &rdev->flags); 1144 rdev->raid_disk = desc->raid_disk; 1145 rdev->saved_raid_disk = desc->raid_disk; 1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1147 /* active but not in sync implies recovery up to 1148 * reshape position. We don't know exactly where 1149 * that is, so set to zero for now */ 1150 if (mddev->minor_version >= 91) { 1151 rdev->recovery_offset = 0; 1152 rdev->raid_disk = desc->raid_disk; 1153 } 1154 } 1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1156 set_bit(WriteMostly, &rdev->flags); 1157 } else /* MULTIPATH are always insync */ 1158 set_bit(In_sync, &rdev->flags); 1159 return 0; 1160 } 1161 1162 /* 1163 * sync_super for 0.90.0 1164 */ 1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1166 { 1167 mdp_super_t *sb; 1168 struct md_rdev *rdev2; 1169 int next_spare = mddev->raid_disks; 1170 1171 /* make rdev->sb match mddev data.. 1172 * 1173 * 1/ zero out disks 1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1175 * 3/ any empty disks < next_spare become removed 1176 * 1177 * disks[0] gets initialised to REMOVED because 1178 * we cannot be sure from other fields if it has 1179 * been initialised or not. 1180 */ 1181 int i; 1182 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1183 1184 rdev->sb_size = MD_SB_BYTES; 1185 1186 sb = page_address(rdev->sb_page); 1187 1188 memset(sb, 0, sizeof(*sb)); 1189 1190 sb->md_magic = MD_SB_MAGIC; 1191 sb->major_version = mddev->major_version; 1192 sb->patch_version = mddev->patch_version; 1193 sb->gvalid_words = 0; /* ignored */ 1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1198 1199 sb->ctime = mddev->ctime; 1200 sb->level = mddev->level; 1201 sb->size = mddev->dev_sectors / 2; 1202 sb->raid_disks = mddev->raid_disks; 1203 sb->md_minor = mddev->md_minor; 1204 sb->not_persistent = 0; 1205 sb->utime = mddev->utime; 1206 sb->state = 0; 1207 sb->events_hi = (mddev->events>>32); 1208 sb->events_lo = (u32)mddev->events; 1209 1210 if (mddev->reshape_position == MaxSector) 1211 sb->minor_version = 90; 1212 else { 1213 sb->minor_version = 91; 1214 sb->reshape_position = mddev->reshape_position; 1215 sb->new_level = mddev->new_level; 1216 sb->delta_disks = mddev->delta_disks; 1217 sb->new_layout = mddev->new_layout; 1218 sb->new_chunk = mddev->new_chunk_sectors << 9; 1219 } 1220 mddev->minor_version = sb->minor_version; 1221 if (mddev->in_sync) 1222 { 1223 sb->recovery_cp = mddev->recovery_cp; 1224 sb->cp_events_hi = (mddev->events>>32); 1225 sb->cp_events_lo = (u32)mddev->events; 1226 if (mddev->recovery_cp == MaxSector) 1227 sb->state = (1<< MD_SB_CLEAN); 1228 } else 1229 sb->recovery_cp = 0; 1230 1231 sb->layout = mddev->layout; 1232 sb->chunk_size = mddev->chunk_sectors << 9; 1233 1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1236 1237 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1238 rdev_for_each(rdev2, mddev) { 1239 mdp_disk_t *d; 1240 int desc_nr; 1241 int is_active = test_bit(In_sync, &rdev2->flags); 1242 1243 if (rdev2->raid_disk >= 0 && 1244 sb->minor_version >= 91) 1245 /* we have nowhere to store the recovery_offset, 1246 * but if it is not below the reshape_position, 1247 * we can piggy-back on that. 1248 */ 1249 is_active = 1; 1250 if (rdev2->raid_disk < 0 || 1251 test_bit(Faulty, &rdev2->flags)) 1252 is_active = 0; 1253 if (is_active) 1254 desc_nr = rdev2->raid_disk; 1255 else 1256 desc_nr = next_spare++; 1257 rdev2->desc_nr = desc_nr; 1258 d = &sb->disks[rdev2->desc_nr]; 1259 nr_disks++; 1260 d->number = rdev2->desc_nr; 1261 d->major = MAJOR(rdev2->bdev->bd_dev); 1262 d->minor = MINOR(rdev2->bdev->bd_dev); 1263 if (is_active) 1264 d->raid_disk = rdev2->raid_disk; 1265 else 1266 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1267 if (test_bit(Faulty, &rdev2->flags)) 1268 d->state = (1<<MD_DISK_FAULTY); 1269 else if (is_active) { 1270 d->state = (1<<MD_DISK_ACTIVE); 1271 if (test_bit(In_sync, &rdev2->flags)) 1272 d->state |= (1<<MD_DISK_SYNC); 1273 active++; 1274 working++; 1275 } else { 1276 d->state = 0; 1277 spare++; 1278 working++; 1279 } 1280 if (test_bit(WriteMostly, &rdev2->flags)) 1281 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1282 } 1283 /* now set the "removed" and "faulty" bits on any missing devices */ 1284 for (i=0 ; i < mddev->raid_disks ; i++) { 1285 mdp_disk_t *d = &sb->disks[i]; 1286 if (d->state == 0 && d->number == 0) { 1287 d->number = i; 1288 d->raid_disk = i; 1289 d->state = (1<<MD_DISK_REMOVED); 1290 d->state |= (1<<MD_DISK_FAULTY); 1291 failed++; 1292 } 1293 } 1294 sb->nr_disks = nr_disks; 1295 sb->active_disks = active; 1296 sb->working_disks = working; 1297 sb->failed_disks = failed; 1298 sb->spare_disks = spare; 1299 1300 sb->this_disk = sb->disks[rdev->desc_nr]; 1301 sb->sb_csum = calc_sb_csum(sb); 1302 } 1303 1304 /* 1305 * rdev_size_change for 0.90.0 1306 */ 1307 static unsigned long long 1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1309 { 1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1311 return 0; /* component must fit device */ 1312 if (rdev->mddev->bitmap_info.offset) 1313 return 0; /* can't move bitmap */ 1314 rdev->sb_start = calc_dev_sboffset(rdev); 1315 if (!num_sectors || num_sectors > rdev->sb_start) 1316 num_sectors = rdev->sb_start; 1317 /* Limit to 4TB as metadata cannot record more than that. 1318 * 4TB == 2^32 KB, or 2*2^32 sectors. 1319 */ 1320 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1321 num_sectors = (2ULL << 32) - 2; 1322 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1323 rdev->sb_page); 1324 md_super_wait(rdev->mddev); 1325 return num_sectors; 1326 } 1327 1328 static int 1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1330 { 1331 /* non-zero offset changes not possible with v0.90 */ 1332 return new_offset == 0; 1333 } 1334 1335 /* 1336 * version 1 superblock 1337 */ 1338 1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1340 { 1341 __le32 disk_csum; 1342 u32 csum; 1343 unsigned long long newcsum; 1344 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1345 __le32 *isuper = (__le32*)sb; 1346 1347 disk_csum = sb->sb_csum; 1348 sb->sb_csum = 0; 1349 newcsum = 0; 1350 for (; size >= 4; size -= 4) 1351 newcsum += le32_to_cpu(*isuper++); 1352 1353 if (size == 2) 1354 newcsum += le16_to_cpu(*(__le16*) isuper); 1355 1356 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1357 sb->sb_csum = disk_csum; 1358 return cpu_to_le32(csum); 1359 } 1360 1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1362 int acknowledged); 1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1364 { 1365 struct mdp_superblock_1 *sb; 1366 int ret; 1367 sector_t sb_start; 1368 sector_t sectors; 1369 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1370 int bmask; 1371 1372 /* 1373 * Calculate the position of the superblock in 512byte sectors. 1374 * It is always aligned to a 4K boundary and 1375 * depeding on minor_version, it can be: 1376 * 0: At least 8K, but less than 12K, from end of device 1377 * 1: At start of device 1378 * 2: 4K from start of device. 1379 */ 1380 switch(minor_version) { 1381 case 0: 1382 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1383 sb_start -= 8*2; 1384 sb_start &= ~(sector_t)(4*2-1); 1385 break; 1386 case 1: 1387 sb_start = 0; 1388 break; 1389 case 2: 1390 sb_start = 8; 1391 break; 1392 default: 1393 return -EINVAL; 1394 } 1395 rdev->sb_start = sb_start; 1396 1397 /* superblock is rarely larger than 1K, but it can be larger, 1398 * and it is safe to read 4k, so we do that 1399 */ 1400 ret = read_disk_sb(rdev, 4096); 1401 if (ret) return ret; 1402 1403 sb = page_address(rdev->sb_page); 1404 1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1406 sb->major_version != cpu_to_le32(1) || 1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1408 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1410 return -EINVAL; 1411 1412 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1413 printk("md: invalid superblock checksum on %s\n", 1414 bdevname(rdev->bdev,b)); 1415 return -EINVAL; 1416 } 1417 if (le64_to_cpu(sb->data_size) < 10) { 1418 printk("md: data_size too small on %s\n", 1419 bdevname(rdev->bdev,b)); 1420 return -EINVAL; 1421 } 1422 if (sb->pad0 || 1423 sb->pad3[0] || 1424 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1425 /* Some padding is non-zero, might be a new feature */ 1426 return -EINVAL; 1427 1428 rdev->preferred_minor = 0xffff; 1429 rdev->data_offset = le64_to_cpu(sb->data_offset); 1430 rdev->new_data_offset = rdev->data_offset; 1431 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1432 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1433 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1434 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1435 1436 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1437 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1438 if (rdev->sb_size & bmask) 1439 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1440 1441 if (minor_version 1442 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1443 return -EINVAL; 1444 if (minor_version 1445 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1446 return -EINVAL; 1447 1448 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1449 rdev->desc_nr = -1; 1450 else 1451 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1452 1453 if (!rdev->bb_page) { 1454 rdev->bb_page = alloc_page(GFP_KERNEL); 1455 if (!rdev->bb_page) 1456 return -ENOMEM; 1457 } 1458 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1459 rdev->badblocks.count == 0) { 1460 /* need to load the bad block list. 1461 * Currently we limit it to one page. 1462 */ 1463 s32 offset; 1464 sector_t bb_sector; 1465 u64 *bbp; 1466 int i; 1467 int sectors = le16_to_cpu(sb->bblog_size); 1468 if (sectors > (PAGE_SIZE / 512)) 1469 return -EINVAL; 1470 offset = le32_to_cpu(sb->bblog_offset); 1471 if (offset == 0) 1472 return -EINVAL; 1473 bb_sector = (long long)offset; 1474 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1475 rdev->bb_page, READ, true)) 1476 return -EIO; 1477 bbp = (u64 *)page_address(rdev->bb_page); 1478 rdev->badblocks.shift = sb->bblog_shift; 1479 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1480 u64 bb = le64_to_cpu(*bbp); 1481 int count = bb & (0x3ff); 1482 u64 sector = bb >> 10; 1483 sector <<= sb->bblog_shift; 1484 count <<= sb->bblog_shift; 1485 if (bb + 1 == 0) 1486 break; 1487 if (md_set_badblocks(&rdev->badblocks, 1488 sector, count, 1) == 0) 1489 return -EINVAL; 1490 } 1491 } else if (sb->bblog_offset != 0) 1492 rdev->badblocks.shift = 0; 1493 1494 if (!refdev) { 1495 ret = 1; 1496 } else { 1497 __u64 ev1, ev2; 1498 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1499 1500 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1501 sb->level != refsb->level || 1502 sb->layout != refsb->layout || 1503 sb->chunksize != refsb->chunksize) { 1504 printk(KERN_WARNING "md: %s has strangely different" 1505 " superblock to %s\n", 1506 bdevname(rdev->bdev,b), 1507 bdevname(refdev->bdev,b2)); 1508 return -EINVAL; 1509 } 1510 ev1 = le64_to_cpu(sb->events); 1511 ev2 = le64_to_cpu(refsb->events); 1512 1513 if (ev1 > ev2) 1514 ret = 1; 1515 else 1516 ret = 0; 1517 } 1518 if (minor_version) { 1519 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1520 sectors -= rdev->data_offset; 1521 } else 1522 sectors = rdev->sb_start; 1523 if (sectors < le64_to_cpu(sb->data_size)) 1524 return -EINVAL; 1525 rdev->sectors = le64_to_cpu(sb->data_size); 1526 return ret; 1527 } 1528 1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1530 { 1531 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1532 __u64 ev1 = le64_to_cpu(sb->events); 1533 1534 rdev->raid_disk = -1; 1535 clear_bit(Faulty, &rdev->flags); 1536 clear_bit(In_sync, &rdev->flags); 1537 clear_bit(Bitmap_sync, &rdev->flags); 1538 clear_bit(WriteMostly, &rdev->flags); 1539 1540 if (mddev->raid_disks == 0) { 1541 mddev->major_version = 1; 1542 mddev->patch_version = 0; 1543 mddev->external = 0; 1544 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1545 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1546 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1547 mddev->level = le32_to_cpu(sb->level); 1548 mddev->clevel[0] = 0; 1549 mddev->layout = le32_to_cpu(sb->layout); 1550 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1551 mddev->dev_sectors = le64_to_cpu(sb->size); 1552 mddev->events = ev1; 1553 mddev->bitmap_info.offset = 0; 1554 mddev->bitmap_info.space = 0; 1555 /* Default location for bitmap is 1K after superblock 1556 * using 3K - total of 4K 1557 */ 1558 mddev->bitmap_info.default_offset = 1024 >> 9; 1559 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1560 mddev->reshape_backwards = 0; 1561 1562 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1563 memcpy(mddev->uuid, sb->set_uuid, 16); 1564 1565 mddev->max_disks = (4096-256)/2; 1566 1567 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1568 mddev->bitmap_info.file == NULL) { 1569 mddev->bitmap_info.offset = 1570 (__s32)le32_to_cpu(sb->bitmap_offset); 1571 /* Metadata doesn't record how much space is available. 1572 * For 1.0, we assume we can use up to the superblock 1573 * if before, else to 4K beyond superblock. 1574 * For others, assume no change is possible. 1575 */ 1576 if (mddev->minor_version > 0) 1577 mddev->bitmap_info.space = 0; 1578 else if (mddev->bitmap_info.offset > 0) 1579 mddev->bitmap_info.space = 1580 8 - mddev->bitmap_info.offset; 1581 else 1582 mddev->bitmap_info.space = 1583 -mddev->bitmap_info.offset; 1584 } 1585 1586 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1587 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1588 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1589 mddev->new_level = le32_to_cpu(sb->new_level); 1590 mddev->new_layout = le32_to_cpu(sb->new_layout); 1591 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1592 if (mddev->delta_disks < 0 || 1593 (mddev->delta_disks == 0 && 1594 (le32_to_cpu(sb->feature_map) 1595 & MD_FEATURE_RESHAPE_BACKWARDS))) 1596 mddev->reshape_backwards = 1; 1597 } else { 1598 mddev->reshape_position = MaxSector; 1599 mddev->delta_disks = 0; 1600 mddev->new_level = mddev->level; 1601 mddev->new_layout = mddev->layout; 1602 mddev->new_chunk_sectors = mddev->chunk_sectors; 1603 } 1604 1605 } else if (mddev->pers == NULL) { 1606 /* Insist of good event counter while assembling, except for 1607 * spares (which don't need an event count) */ 1608 ++ev1; 1609 if (rdev->desc_nr >= 0 && 1610 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1611 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1612 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1613 if (ev1 < mddev->events) 1614 return -EINVAL; 1615 } else if (mddev->bitmap) { 1616 /* If adding to array with a bitmap, then we can accept an 1617 * older device, but not too old. 1618 */ 1619 if (ev1 < mddev->bitmap->events_cleared) 1620 return 0; 1621 if (ev1 < mddev->events) 1622 set_bit(Bitmap_sync, &rdev->flags); 1623 } else { 1624 if (ev1 < mddev->events) 1625 /* just a hot-add of a new device, leave raid_disk at -1 */ 1626 return 0; 1627 } 1628 if (mddev->level != LEVEL_MULTIPATH) { 1629 int role; 1630 if (rdev->desc_nr < 0 || 1631 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1632 role = MD_DISK_ROLE_SPARE; 1633 rdev->desc_nr = -1; 1634 } else 1635 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1636 switch(role) { 1637 case MD_DISK_ROLE_SPARE: /* spare */ 1638 break; 1639 case MD_DISK_ROLE_FAULTY: /* faulty */ 1640 set_bit(Faulty, &rdev->flags); 1641 break; 1642 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1643 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1644 /* journal device without journal feature */ 1645 printk(KERN_WARNING 1646 "md: journal device provided without journal feature, ignoring the device\n"); 1647 return -EINVAL; 1648 } 1649 set_bit(Journal, &rdev->flags); 1650 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1651 if (mddev->recovery_cp == MaxSector) 1652 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 1653 rdev->raid_disk = mddev->raid_disks; 1654 break; 1655 default: 1656 rdev->saved_raid_disk = role; 1657 if ((le32_to_cpu(sb->feature_map) & 1658 MD_FEATURE_RECOVERY_OFFSET)) { 1659 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1660 if (!(le32_to_cpu(sb->feature_map) & 1661 MD_FEATURE_RECOVERY_BITMAP)) 1662 rdev->saved_raid_disk = -1; 1663 } else 1664 set_bit(In_sync, &rdev->flags); 1665 rdev->raid_disk = role; 1666 break; 1667 } 1668 if (sb->devflags & WriteMostly1) 1669 set_bit(WriteMostly, &rdev->flags); 1670 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1671 set_bit(Replacement, &rdev->flags); 1672 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1673 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1674 } else /* MULTIPATH are always insync */ 1675 set_bit(In_sync, &rdev->flags); 1676 1677 return 0; 1678 } 1679 1680 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1681 { 1682 struct mdp_superblock_1 *sb; 1683 struct md_rdev *rdev2; 1684 int max_dev, i; 1685 /* make rdev->sb match mddev and rdev data. */ 1686 1687 sb = page_address(rdev->sb_page); 1688 1689 sb->feature_map = 0; 1690 sb->pad0 = 0; 1691 sb->recovery_offset = cpu_to_le64(0); 1692 memset(sb->pad3, 0, sizeof(sb->pad3)); 1693 1694 sb->utime = cpu_to_le64((__u64)mddev->utime); 1695 sb->events = cpu_to_le64(mddev->events); 1696 if (mddev->in_sync) 1697 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1698 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1699 sb->resync_offset = cpu_to_le64(MaxSector); 1700 else 1701 sb->resync_offset = cpu_to_le64(0); 1702 1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1704 1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1706 sb->size = cpu_to_le64(mddev->dev_sectors); 1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1708 sb->level = cpu_to_le32(mddev->level); 1709 sb->layout = cpu_to_le32(mddev->layout); 1710 1711 if (test_bit(WriteMostly, &rdev->flags)) 1712 sb->devflags |= WriteMostly1; 1713 else 1714 sb->devflags &= ~WriteMostly1; 1715 sb->data_offset = cpu_to_le64(rdev->data_offset); 1716 sb->data_size = cpu_to_le64(rdev->sectors); 1717 1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1721 } 1722 1723 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1724 !test_bit(In_sync, &rdev->flags)) { 1725 sb->feature_map |= 1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1727 sb->recovery_offset = 1728 cpu_to_le64(rdev->recovery_offset); 1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1730 sb->feature_map |= 1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1732 } 1733 /* Note: recovery_offset and journal_tail share space */ 1734 if (test_bit(Journal, &rdev->flags)) 1735 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1736 if (test_bit(Replacement, &rdev->flags)) 1737 sb->feature_map |= 1738 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1739 1740 if (mddev->reshape_position != MaxSector) { 1741 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1742 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1743 sb->new_layout = cpu_to_le32(mddev->new_layout); 1744 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1745 sb->new_level = cpu_to_le32(mddev->new_level); 1746 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1747 if (mddev->delta_disks == 0 && 1748 mddev->reshape_backwards) 1749 sb->feature_map 1750 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1751 if (rdev->new_data_offset != rdev->data_offset) { 1752 sb->feature_map 1753 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1754 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1755 - rdev->data_offset)); 1756 } 1757 } 1758 1759 if (mddev_is_clustered(mddev)) 1760 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1761 1762 if (rdev->badblocks.count == 0) 1763 /* Nothing to do for bad blocks*/ ; 1764 else if (sb->bblog_offset == 0) 1765 /* Cannot record bad blocks on this device */ 1766 md_error(mddev, rdev); 1767 else { 1768 struct badblocks *bb = &rdev->badblocks; 1769 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1770 u64 *p = bb->page; 1771 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1772 if (bb->changed) { 1773 unsigned seq; 1774 1775 retry: 1776 seq = read_seqbegin(&bb->lock); 1777 1778 memset(bbp, 0xff, PAGE_SIZE); 1779 1780 for (i = 0 ; i < bb->count ; i++) { 1781 u64 internal_bb = p[i]; 1782 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1783 | BB_LEN(internal_bb)); 1784 bbp[i] = cpu_to_le64(store_bb); 1785 } 1786 bb->changed = 0; 1787 if (read_seqretry(&bb->lock, seq)) 1788 goto retry; 1789 1790 bb->sector = (rdev->sb_start + 1791 (int)le32_to_cpu(sb->bblog_offset)); 1792 bb->size = le16_to_cpu(sb->bblog_size); 1793 } 1794 } 1795 1796 max_dev = 0; 1797 rdev_for_each(rdev2, mddev) 1798 if (rdev2->desc_nr+1 > max_dev) 1799 max_dev = rdev2->desc_nr+1; 1800 1801 if (max_dev > le32_to_cpu(sb->max_dev)) { 1802 int bmask; 1803 sb->max_dev = cpu_to_le32(max_dev); 1804 rdev->sb_size = max_dev * 2 + 256; 1805 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1806 if (rdev->sb_size & bmask) 1807 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1808 } else 1809 max_dev = le32_to_cpu(sb->max_dev); 1810 1811 for (i=0; i<max_dev;i++) 1812 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1813 1814 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1815 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1816 1817 rdev_for_each(rdev2, mddev) { 1818 i = rdev2->desc_nr; 1819 if (test_bit(Faulty, &rdev2->flags)) 1820 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1821 else if (test_bit(In_sync, &rdev2->flags)) 1822 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1823 else if (test_bit(Journal, &rdev2->flags)) 1824 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1825 else if (rdev2->raid_disk >= 0) 1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1827 else 1828 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1829 } 1830 1831 sb->sb_csum = calc_sb_1_csum(sb); 1832 } 1833 1834 static unsigned long long 1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1836 { 1837 struct mdp_superblock_1 *sb; 1838 sector_t max_sectors; 1839 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1840 return 0; /* component must fit device */ 1841 if (rdev->data_offset != rdev->new_data_offset) 1842 return 0; /* too confusing */ 1843 if (rdev->sb_start < rdev->data_offset) { 1844 /* minor versions 1 and 2; superblock before data */ 1845 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1846 max_sectors -= rdev->data_offset; 1847 if (!num_sectors || num_sectors > max_sectors) 1848 num_sectors = max_sectors; 1849 } else if (rdev->mddev->bitmap_info.offset) { 1850 /* minor version 0 with bitmap we can't move */ 1851 return 0; 1852 } else { 1853 /* minor version 0; superblock after data */ 1854 sector_t sb_start; 1855 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1856 sb_start &= ~(sector_t)(4*2 - 1); 1857 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1858 if (!num_sectors || num_sectors > max_sectors) 1859 num_sectors = max_sectors; 1860 rdev->sb_start = sb_start; 1861 } 1862 sb = page_address(rdev->sb_page); 1863 sb->data_size = cpu_to_le64(num_sectors); 1864 sb->super_offset = rdev->sb_start; 1865 sb->sb_csum = calc_sb_1_csum(sb); 1866 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1867 rdev->sb_page); 1868 md_super_wait(rdev->mddev); 1869 return num_sectors; 1870 1871 } 1872 1873 static int 1874 super_1_allow_new_offset(struct md_rdev *rdev, 1875 unsigned long long new_offset) 1876 { 1877 /* All necessary checks on new >= old have been done */ 1878 struct bitmap *bitmap; 1879 if (new_offset >= rdev->data_offset) 1880 return 1; 1881 1882 /* with 1.0 metadata, there is no metadata to tread on 1883 * so we can always move back */ 1884 if (rdev->mddev->minor_version == 0) 1885 return 1; 1886 1887 /* otherwise we must be sure not to step on 1888 * any metadata, so stay: 1889 * 36K beyond start of superblock 1890 * beyond end of badblocks 1891 * beyond write-intent bitmap 1892 */ 1893 if (rdev->sb_start + (32+4)*2 > new_offset) 1894 return 0; 1895 bitmap = rdev->mddev->bitmap; 1896 if (bitmap && !rdev->mddev->bitmap_info.file && 1897 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1898 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1899 return 0; 1900 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1901 return 0; 1902 1903 return 1; 1904 } 1905 1906 static struct super_type super_types[] = { 1907 [0] = { 1908 .name = "0.90.0", 1909 .owner = THIS_MODULE, 1910 .load_super = super_90_load, 1911 .validate_super = super_90_validate, 1912 .sync_super = super_90_sync, 1913 .rdev_size_change = super_90_rdev_size_change, 1914 .allow_new_offset = super_90_allow_new_offset, 1915 }, 1916 [1] = { 1917 .name = "md-1", 1918 .owner = THIS_MODULE, 1919 .load_super = super_1_load, 1920 .validate_super = super_1_validate, 1921 .sync_super = super_1_sync, 1922 .rdev_size_change = super_1_rdev_size_change, 1923 .allow_new_offset = super_1_allow_new_offset, 1924 }, 1925 }; 1926 1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1928 { 1929 if (mddev->sync_super) { 1930 mddev->sync_super(mddev, rdev); 1931 return; 1932 } 1933 1934 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1935 1936 super_types[mddev->major_version].sync_super(mddev, rdev); 1937 } 1938 1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1940 { 1941 struct md_rdev *rdev, *rdev2; 1942 1943 rcu_read_lock(); 1944 rdev_for_each_rcu(rdev, mddev1) { 1945 if (test_bit(Faulty, &rdev->flags) || 1946 test_bit(Journal, &rdev->flags) || 1947 rdev->raid_disk == -1) 1948 continue; 1949 rdev_for_each_rcu(rdev2, mddev2) { 1950 if (test_bit(Faulty, &rdev2->flags) || 1951 test_bit(Journal, &rdev2->flags) || 1952 rdev2->raid_disk == -1) 1953 continue; 1954 if (rdev->bdev->bd_contains == 1955 rdev2->bdev->bd_contains) { 1956 rcu_read_unlock(); 1957 return 1; 1958 } 1959 } 1960 } 1961 rcu_read_unlock(); 1962 return 0; 1963 } 1964 1965 static LIST_HEAD(pending_raid_disks); 1966 1967 /* 1968 * Try to register data integrity profile for an mddev 1969 * 1970 * This is called when an array is started and after a disk has been kicked 1971 * from the array. It only succeeds if all working and active component devices 1972 * are integrity capable with matching profiles. 1973 */ 1974 int md_integrity_register(struct mddev *mddev) 1975 { 1976 struct md_rdev *rdev, *reference = NULL; 1977 1978 if (list_empty(&mddev->disks)) 1979 return 0; /* nothing to do */ 1980 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1981 return 0; /* shouldn't register, or already is */ 1982 rdev_for_each(rdev, mddev) { 1983 /* skip spares and non-functional disks */ 1984 if (test_bit(Faulty, &rdev->flags)) 1985 continue; 1986 if (rdev->raid_disk < 0) 1987 continue; 1988 if (!reference) { 1989 /* Use the first rdev as the reference */ 1990 reference = rdev; 1991 continue; 1992 } 1993 /* does this rdev's profile match the reference profile? */ 1994 if (blk_integrity_compare(reference->bdev->bd_disk, 1995 rdev->bdev->bd_disk) < 0) 1996 return -EINVAL; 1997 } 1998 if (!reference || !bdev_get_integrity(reference->bdev)) 1999 return 0; 2000 /* 2001 * All component devices are integrity capable and have matching 2002 * profiles, register the common profile for the md device. 2003 */ 2004 blk_integrity_register(mddev->gendisk, 2005 bdev_get_integrity(reference->bdev)); 2006 2007 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2008 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2009 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2010 mdname(mddev)); 2011 return -EINVAL; 2012 } 2013 return 0; 2014 } 2015 EXPORT_SYMBOL(md_integrity_register); 2016 2017 /* Disable data integrity if non-capable/non-matching disk is being added */ 2018 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2019 { 2020 struct blk_integrity *bi_rdev; 2021 struct blk_integrity *bi_mddev; 2022 2023 if (!mddev->gendisk) 2024 return; 2025 2026 bi_rdev = bdev_get_integrity(rdev->bdev); 2027 bi_mddev = blk_get_integrity(mddev->gendisk); 2028 2029 if (!bi_mddev) /* nothing to do */ 2030 return; 2031 if (rdev->raid_disk < 0) /* skip spares */ 2032 return; 2033 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2034 rdev->bdev->bd_disk) >= 0) 2035 return; 2036 WARN_ON_ONCE(!mddev->suspended); 2037 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2038 blk_integrity_unregister(mddev->gendisk); 2039 } 2040 EXPORT_SYMBOL(md_integrity_add_rdev); 2041 2042 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2043 { 2044 char b[BDEVNAME_SIZE]; 2045 struct kobject *ko; 2046 int err; 2047 2048 /* prevent duplicates */ 2049 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2050 return -EEXIST; 2051 2052 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2053 if (rdev->sectors && (mddev->dev_sectors == 0 || 2054 rdev->sectors < mddev->dev_sectors)) { 2055 if (mddev->pers) { 2056 /* Cannot change size, so fail 2057 * If mddev->level <= 0, then we don't care 2058 * about aligning sizes (e.g. linear) 2059 */ 2060 if (mddev->level > 0) 2061 return -ENOSPC; 2062 } else 2063 mddev->dev_sectors = rdev->sectors; 2064 } 2065 2066 /* Verify rdev->desc_nr is unique. 2067 * If it is -1, assign a free number, else 2068 * check number is not in use 2069 */ 2070 rcu_read_lock(); 2071 if (rdev->desc_nr < 0) { 2072 int choice = 0; 2073 if (mddev->pers) 2074 choice = mddev->raid_disks; 2075 while (md_find_rdev_nr_rcu(mddev, choice)) 2076 choice++; 2077 rdev->desc_nr = choice; 2078 } else { 2079 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2080 rcu_read_unlock(); 2081 return -EBUSY; 2082 } 2083 } 2084 rcu_read_unlock(); 2085 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2086 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2087 mdname(mddev), mddev->max_disks); 2088 return -EBUSY; 2089 } 2090 bdevname(rdev->bdev,b); 2091 strreplace(b, '/', '!'); 2092 2093 rdev->mddev = mddev; 2094 printk(KERN_INFO "md: bind<%s>\n", b); 2095 2096 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2097 goto fail; 2098 2099 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2100 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2101 /* failure here is OK */; 2102 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2103 2104 list_add_rcu(&rdev->same_set, &mddev->disks); 2105 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2106 2107 /* May as well allow recovery to be retried once */ 2108 mddev->recovery_disabled++; 2109 2110 return 0; 2111 2112 fail: 2113 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2114 b, mdname(mddev)); 2115 return err; 2116 } 2117 2118 static void md_delayed_delete(struct work_struct *ws) 2119 { 2120 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2121 kobject_del(&rdev->kobj); 2122 kobject_put(&rdev->kobj); 2123 } 2124 2125 static void unbind_rdev_from_array(struct md_rdev *rdev) 2126 { 2127 char b[BDEVNAME_SIZE]; 2128 2129 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2130 list_del_rcu(&rdev->same_set); 2131 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2132 rdev->mddev = NULL; 2133 sysfs_remove_link(&rdev->kobj, "block"); 2134 sysfs_put(rdev->sysfs_state); 2135 rdev->sysfs_state = NULL; 2136 rdev->badblocks.count = 0; 2137 /* We need to delay this, otherwise we can deadlock when 2138 * writing to 'remove' to "dev/state". We also need 2139 * to delay it due to rcu usage. 2140 */ 2141 synchronize_rcu(); 2142 INIT_WORK(&rdev->del_work, md_delayed_delete); 2143 kobject_get(&rdev->kobj); 2144 queue_work(md_misc_wq, &rdev->del_work); 2145 } 2146 2147 /* 2148 * prevent the device from being mounted, repartitioned or 2149 * otherwise reused by a RAID array (or any other kernel 2150 * subsystem), by bd_claiming the device. 2151 */ 2152 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2153 { 2154 int err = 0; 2155 struct block_device *bdev; 2156 char b[BDEVNAME_SIZE]; 2157 2158 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2159 shared ? (struct md_rdev *)lock_rdev : rdev); 2160 if (IS_ERR(bdev)) { 2161 printk(KERN_ERR "md: could not open %s.\n", 2162 __bdevname(dev, b)); 2163 return PTR_ERR(bdev); 2164 } 2165 rdev->bdev = bdev; 2166 return err; 2167 } 2168 2169 static void unlock_rdev(struct md_rdev *rdev) 2170 { 2171 struct block_device *bdev = rdev->bdev; 2172 rdev->bdev = NULL; 2173 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2174 } 2175 2176 void md_autodetect_dev(dev_t dev); 2177 2178 static void export_rdev(struct md_rdev *rdev) 2179 { 2180 char b[BDEVNAME_SIZE]; 2181 2182 printk(KERN_INFO "md: export_rdev(%s)\n", 2183 bdevname(rdev->bdev,b)); 2184 md_rdev_clear(rdev); 2185 #ifndef MODULE 2186 if (test_bit(AutoDetected, &rdev->flags)) 2187 md_autodetect_dev(rdev->bdev->bd_dev); 2188 #endif 2189 unlock_rdev(rdev); 2190 kobject_put(&rdev->kobj); 2191 } 2192 2193 void md_kick_rdev_from_array(struct md_rdev *rdev) 2194 { 2195 unbind_rdev_from_array(rdev); 2196 export_rdev(rdev); 2197 } 2198 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2199 2200 static void export_array(struct mddev *mddev) 2201 { 2202 struct md_rdev *rdev; 2203 2204 while (!list_empty(&mddev->disks)) { 2205 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2206 same_set); 2207 md_kick_rdev_from_array(rdev); 2208 } 2209 mddev->raid_disks = 0; 2210 mddev->major_version = 0; 2211 } 2212 2213 static void sync_sbs(struct mddev *mddev, int nospares) 2214 { 2215 /* Update each superblock (in-memory image), but 2216 * if we are allowed to, skip spares which already 2217 * have the right event counter, or have one earlier 2218 * (which would mean they aren't being marked as dirty 2219 * with the rest of the array) 2220 */ 2221 struct md_rdev *rdev; 2222 rdev_for_each(rdev, mddev) { 2223 if (rdev->sb_events == mddev->events || 2224 (nospares && 2225 rdev->raid_disk < 0 && 2226 rdev->sb_events+1 == mddev->events)) { 2227 /* Don't update this superblock */ 2228 rdev->sb_loaded = 2; 2229 } else { 2230 sync_super(mddev, rdev); 2231 rdev->sb_loaded = 1; 2232 } 2233 } 2234 } 2235 2236 static bool does_sb_need_changing(struct mddev *mddev) 2237 { 2238 struct md_rdev *rdev; 2239 struct mdp_superblock_1 *sb; 2240 int role; 2241 2242 /* Find a good rdev */ 2243 rdev_for_each(rdev, mddev) 2244 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2245 break; 2246 2247 /* No good device found. */ 2248 if (!rdev) 2249 return false; 2250 2251 sb = page_address(rdev->sb_page); 2252 /* Check if a device has become faulty or a spare become active */ 2253 rdev_for_each(rdev, mddev) { 2254 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2255 /* Device activated? */ 2256 if (role == 0xffff && rdev->raid_disk >=0 && 2257 !test_bit(Faulty, &rdev->flags)) 2258 return true; 2259 /* Device turned faulty? */ 2260 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2261 return true; 2262 } 2263 2264 /* Check if any mddev parameters have changed */ 2265 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2266 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2267 (mddev->layout != le64_to_cpu(sb->layout)) || 2268 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2269 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2270 return true; 2271 2272 return false; 2273 } 2274 2275 void md_update_sb(struct mddev *mddev, int force_change) 2276 { 2277 struct md_rdev *rdev; 2278 int sync_req; 2279 int nospares = 0; 2280 int any_badblocks_changed = 0; 2281 int ret = -1; 2282 2283 if (mddev->ro) { 2284 if (force_change) 2285 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2286 return; 2287 } 2288 2289 if (mddev_is_clustered(mddev)) { 2290 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2291 force_change = 1; 2292 ret = md_cluster_ops->metadata_update_start(mddev); 2293 /* Has someone else has updated the sb */ 2294 if (!does_sb_need_changing(mddev)) { 2295 if (ret == 0) 2296 md_cluster_ops->metadata_update_cancel(mddev); 2297 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2298 return; 2299 } 2300 } 2301 repeat: 2302 /* First make sure individual recovery_offsets are correct */ 2303 rdev_for_each(rdev, mddev) { 2304 if (rdev->raid_disk >= 0 && 2305 mddev->delta_disks >= 0 && 2306 !test_bit(Journal, &rdev->flags) && 2307 !test_bit(In_sync, &rdev->flags) && 2308 mddev->curr_resync_completed > rdev->recovery_offset) 2309 rdev->recovery_offset = mddev->curr_resync_completed; 2310 2311 } 2312 if (!mddev->persistent) { 2313 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2314 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2315 if (!mddev->external) { 2316 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2317 rdev_for_each(rdev, mddev) { 2318 if (rdev->badblocks.changed) { 2319 rdev->badblocks.changed = 0; 2320 md_ack_all_badblocks(&rdev->badblocks); 2321 md_error(mddev, rdev); 2322 } 2323 clear_bit(Blocked, &rdev->flags); 2324 clear_bit(BlockedBadBlocks, &rdev->flags); 2325 wake_up(&rdev->blocked_wait); 2326 } 2327 } 2328 wake_up(&mddev->sb_wait); 2329 return; 2330 } 2331 2332 spin_lock(&mddev->lock); 2333 2334 mddev->utime = get_seconds(); 2335 2336 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2337 force_change = 1; 2338 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2339 /* just a clean<-> dirty transition, possibly leave spares alone, 2340 * though if events isn't the right even/odd, we will have to do 2341 * spares after all 2342 */ 2343 nospares = 1; 2344 if (force_change) 2345 nospares = 0; 2346 if (mddev->degraded) 2347 /* If the array is degraded, then skipping spares is both 2348 * dangerous and fairly pointless. 2349 * Dangerous because a device that was removed from the array 2350 * might have a event_count that still looks up-to-date, 2351 * so it can be re-added without a resync. 2352 * Pointless because if there are any spares to skip, 2353 * then a recovery will happen and soon that array won't 2354 * be degraded any more and the spare can go back to sleep then. 2355 */ 2356 nospares = 0; 2357 2358 sync_req = mddev->in_sync; 2359 2360 /* If this is just a dirty<->clean transition, and the array is clean 2361 * and 'events' is odd, we can roll back to the previous clean state */ 2362 if (nospares 2363 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2364 && mddev->can_decrease_events 2365 && mddev->events != 1) { 2366 mddev->events--; 2367 mddev->can_decrease_events = 0; 2368 } else { 2369 /* otherwise we have to go forward and ... */ 2370 mddev->events ++; 2371 mddev->can_decrease_events = nospares; 2372 } 2373 2374 /* 2375 * This 64-bit counter should never wrap. 2376 * Either we are in around ~1 trillion A.C., assuming 2377 * 1 reboot per second, or we have a bug... 2378 */ 2379 WARN_ON(mddev->events == 0); 2380 2381 rdev_for_each(rdev, mddev) { 2382 if (rdev->badblocks.changed) 2383 any_badblocks_changed++; 2384 if (test_bit(Faulty, &rdev->flags)) 2385 set_bit(FaultRecorded, &rdev->flags); 2386 } 2387 2388 sync_sbs(mddev, nospares); 2389 spin_unlock(&mddev->lock); 2390 2391 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2392 mdname(mddev), mddev->in_sync); 2393 2394 bitmap_update_sb(mddev->bitmap); 2395 rdev_for_each(rdev, mddev) { 2396 char b[BDEVNAME_SIZE]; 2397 2398 if (rdev->sb_loaded != 1) 2399 continue; /* no noise on spare devices */ 2400 2401 if (!test_bit(Faulty, &rdev->flags)) { 2402 md_super_write(mddev,rdev, 2403 rdev->sb_start, rdev->sb_size, 2404 rdev->sb_page); 2405 pr_debug("md: (write) %s's sb offset: %llu\n", 2406 bdevname(rdev->bdev, b), 2407 (unsigned long long)rdev->sb_start); 2408 rdev->sb_events = mddev->events; 2409 if (rdev->badblocks.size) { 2410 md_super_write(mddev, rdev, 2411 rdev->badblocks.sector, 2412 rdev->badblocks.size << 9, 2413 rdev->bb_page); 2414 rdev->badblocks.size = 0; 2415 } 2416 2417 } else 2418 pr_debug("md: %s (skipping faulty)\n", 2419 bdevname(rdev->bdev, b)); 2420 2421 if (mddev->level == LEVEL_MULTIPATH) 2422 /* only need to write one superblock... */ 2423 break; 2424 } 2425 md_super_wait(mddev); 2426 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2427 2428 spin_lock(&mddev->lock); 2429 if (mddev->in_sync != sync_req || 2430 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2431 /* have to write it out again */ 2432 spin_unlock(&mddev->lock); 2433 goto repeat; 2434 } 2435 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2436 spin_unlock(&mddev->lock); 2437 wake_up(&mddev->sb_wait); 2438 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2439 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2440 2441 rdev_for_each(rdev, mddev) { 2442 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2443 clear_bit(Blocked, &rdev->flags); 2444 2445 if (any_badblocks_changed) 2446 md_ack_all_badblocks(&rdev->badblocks); 2447 clear_bit(BlockedBadBlocks, &rdev->flags); 2448 wake_up(&rdev->blocked_wait); 2449 } 2450 2451 if (mddev_is_clustered(mddev) && ret == 0) 2452 md_cluster_ops->metadata_update_finish(mddev); 2453 } 2454 EXPORT_SYMBOL(md_update_sb); 2455 2456 static int add_bound_rdev(struct md_rdev *rdev) 2457 { 2458 struct mddev *mddev = rdev->mddev; 2459 int err = 0; 2460 2461 if (!mddev->pers->hot_remove_disk) { 2462 /* If there is hot_add_disk but no hot_remove_disk 2463 * then added disks for geometry changes, 2464 * and should be added immediately. 2465 */ 2466 super_types[mddev->major_version]. 2467 validate_super(mddev, rdev); 2468 err = mddev->pers->hot_add_disk(mddev, rdev); 2469 if (err) { 2470 unbind_rdev_from_array(rdev); 2471 export_rdev(rdev); 2472 return err; 2473 } 2474 } 2475 sysfs_notify_dirent_safe(rdev->sysfs_state); 2476 2477 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2478 if (mddev->degraded) 2479 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2480 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2481 md_new_event(mddev); 2482 md_wakeup_thread(mddev->thread); 2483 return 0; 2484 } 2485 2486 /* words written to sysfs files may, or may not, be \n terminated. 2487 * We want to accept with case. For this we use cmd_match. 2488 */ 2489 static int cmd_match(const char *cmd, const char *str) 2490 { 2491 /* See if cmd, written into a sysfs file, matches 2492 * str. They must either be the same, or cmd can 2493 * have a trailing newline 2494 */ 2495 while (*cmd && *str && *cmd == *str) { 2496 cmd++; 2497 str++; 2498 } 2499 if (*cmd == '\n') 2500 cmd++; 2501 if (*str || *cmd) 2502 return 0; 2503 return 1; 2504 } 2505 2506 struct rdev_sysfs_entry { 2507 struct attribute attr; 2508 ssize_t (*show)(struct md_rdev *, char *); 2509 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2510 }; 2511 2512 static ssize_t 2513 state_show(struct md_rdev *rdev, char *page) 2514 { 2515 char *sep = ""; 2516 size_t len = 0; 2517 unsigned long flags = ACCESS_ONCE(rdev->flags); 2518 2519 if (test_bit(Faulty, &flags) || 2520 rdev->badblocks.unacked_exist) { 2521 len+= sprintf(page+len, "%sfaulty",sep); 2522 sep = ","; 2523 } 2524 if (test_bit(In_sync, &flags)) { 2525 len += sprintf(page+len, "%sin_sync",sep); 2526 sep = ","; 2527 } 2528 if (test_bit(Journal, &flags)) { 2529 len += sprintf(page+len, "%sjournal",sep); 2530 sep = ","; 2531 } 2532 if (test_bit(WriteMostly, &flags)) { 2533 len += sprintf(page+len, "%swrite_mostly",sep); 2534 sep = ","; 2535 } 2536 if (test_bit(Blocked, &flags) || 2537 (rdev->badblocks.unacked_exist 2538 && !test_bit(Faulty, &flags))) { 2539 len += sprintf(page+len, "%sblocked", sep); 2540 sep = ","; 2541 } 2542 if (!test_bit(Faulty, &flags) && 2543 !test_bit(Journal, &flags) && 2544 !test_bit(In_sync, &flags)) { 2545 len += sprintf(page+len, "%sspare", sep); 2546 sep = ","; 2547 } 2548 if (test_bit(WriteErrorSeen, &flags)) { 2549 len += sprintf(page+len, "%swrite_error", sep); 2550 sep = ","; 2551 } 2552 if (test_bit(WantReplacement, &flags)) { 2553 len += sprintf(page+len, "%swant_replacement", sep); 2554 sep = ","; 2555 } 2556 if (test_bit(Replacement, &flags)) { 2557 len += sprintf(page+len, "%sreplacement", sep); 2558 sep = ","; 2559 } 2560 2561 return len+sprintf(page+len, "\n"); 2562 } 2563 2564 static ssize_t 2565 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2566 { 2567 /* can write 2568 * faulty - simulates an error 2569 * remove - disconnects the device 2570 * writemostly - sets write_mostly 2571 * -writemostly - clears write_mostly 2572 * blocked - sets the Blocked flags 2573 * -blocked - clears the Blocked and possibly simulates an error 2574 * insync - sets Insync providing device isn't active 2575 * -insync - clear Insync for a device with a slot assigned, 2576 * so that it gets rebuilt based on bitmap 2577 * write_error - sets WriteErrorSeen 2578 * -write_error - clears WriteErrorSeen 2579 */ 2580 int err = -EINVAL; 2581 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2582 md_error(rdev->mddev, rdev); 2583 if (test_bit(Faulty, &rdev->flags)) 2584 err = 0; 2585 else 2586 err = -EBUSY; 2587 } else if (cmd_match(buf, "remove")) { 2588 if (rdev->raid_disk >= 0) 2589 err = -EBUSY; 2590 else { 2591 struct mddev *mddev = rdev->mddev; 2592 err = 0; 2593 if (mddev_is_clustered(mddev)) 2594 err = md_cluster_ops->remove_disk(mddev, rdev); 2595 2596 if (err == 0) { 2597 md_kick_rdev_from_array(rdev); 2598 if (mddev->pers) 2599 md_update_sb(mddev, 1); 2600 md_new_event(mddev); 2601 } 2602 } 2603 } else if (cmd_match(buf, "writemostly")) { 2604 set_bit(WriteMostly, &rdev->flags); 2605 err = 0; 2606 } else if (cmd_match(buf, "-writemostly")) { 2607 clear_bit(WriteMostly, &rdev->flags); 2608 err = 0; 2609 } else if (cmd_match(buf, "blocked")) { 2610 set_bit(Blocked, &rdev->flags); 2611 err = 0; 2612 } else if (cmd_match(buf, "-blocked")) { 2613 if (!test_bit(Faulty, &rdev->flags) && 2614 rdev->badblocks.unacked_exist) { 2615 /* metadata handler doesn't understand badblocks, 2616 * so we need to fail the device 2617 */ 2618 md_error(rdev->mddev, rdev); 2619 } 2620 clear_bit(Blocked, &rdev->flags); 2621 clear_bit(BlockedBadBlocks, &rdev->flags); 2622 wake_up(&rdev->blocked_wait); 2623 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2624 md_wakeup_thread(rdev->mddev->thread); 2625 2626 err = 0; 2627 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2628 set_bit(In_sync, &rdev->flags); 2629 err = 0; 2630 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2631 !test_bit(Journal, &rdev->flags)) { 2632 if (rdev->mddev->pers == NULL) { 2633 clear_bit(In_sync, &rdev->flags); 2634 rdev->saved_raid_disk = rdev->raid_disk; 2635 rdev->raid_disk = -1; 2636 err = 0; 2637 } 2638 } else if (cmd_match(buf, "write_error")) { 2639 set_bit(WriteErrorSeen, &rdev->flags); 2640 err = 0; 2641 } else if (cmd_match(buf, "-write_error")) { 2642 clear_bit(WriteErrorSeen, &rdev->flags); 2643 err = 0; 2644 } else if (cmd_match(buf, "want_replacement")) { 2645 /* Any non-spare device that is not a replacement can 2646 * become want_replacement at any time, but we then need to 2647 * check if recovery is needed. 2648 */ 2649 if (rdev->raid_disk >= 0 && 2650 !test_bit(Journal, &rdev->flags) && 2651 !test_bit(Replacement, &rdev->flags)) 2652 set_bit(WantReplacement, &rdev->flags); 2653 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2654 md_wakeup_thread(rdev->mddev->thread); 2655 err = 0; 2656 } else if (cmd_match(buf, "-want_replacement")) { 2657 /* Clearing 'want_replacement' is always allowed. 2658 * Once replacements starts it is too late though. 2659 */ 2660 err = 0; 2661 clear_bit(WantReplacement, &rdev->flags); 2662 } else if (cmd_match(buf, "replacement")) { 2663 /* Can only set a device as a replacement when array has not 2664 * yet been started. Once running, replacement is automatic 2665 * from spares, or by assigning 'slot'. 2666 */ 2667 if (rdev->mddev->pers) 2668 err = -EBUSY; 2669 else { 2670 set_bit(Replacement, &rdev->flags); 2671 err = 0; 2672 } 2673 } else if (cmd_match(buf, "-replacement")) { 2674 /* Similarly, can only clear Replacement before start */ 2675 if (rdev->mddev->pers) 2676 err = -EBUSY; 2677 else { 2678 clear_bit(Replacement, &rdev->flags); 2679 err = 0; 2680 } 2681 } else if (cmd_match(buf, "re-add")) { 2682 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2683 /* clear_bit is performed _after_ all the devices 2684 * have their local Faulty bit cleared. If any writes 2685 * happen in the meantime in the local node, they 2686 * will land in the local bitmap, which will be synced 2687 * by this node eventually 2688 */ 2689 if (!mddev_is_clustered(rdev->mddev) || 2690 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2691 clear_bit(Faulty, &rdev->flags); 2692 err = add_bound_rdev(rdev); 2693 } 2694 } else 2695 err = -EBUSY; 2696 } 2697 if (!err) 2698 sysfs_notify_dirent_safe(rdev->sysfs_state); 2699 return err ? err : len; 2700 } 2701 static struct rdev_sysfs_entry rdev_state = 2702 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2703 2704 static ssize_t 2705 errors_show(struct md_rdev *rdev, char *page) 2706 { 2707 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2708 } 2709 2710 static ssize_t 2711 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2712 { 2713 unsigned int n; 2714 int rv; 2715 2716 rv = kstrtouint(buf, 10, &n); 2717 if (rv < 0) 2718 return rv; 2719 atomic_set(&rdev->corrected_errors, n); 2720 return len; 2721 } 2722 static struct rdev_sysfs_entry rdev_errors = 2723 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2724 2725 static ssize_t 2726 slot_show(struct md_rdev *rdev, char *page) 2727 { 2728 if (test_bit(Journal, &rdev->flags)) 2729 return sprintf(page, "journal\n"); 2730 else if (rdev->raid_disk < 0) 2731 return sprintf(page, "none\n"); 2732 else 2733 return sprintf(page, "%d\n", rdev->raid_disk); 2734 } 2735 2736 static ssize_t 2737 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2738 { 2739 int slot; 2740 int err; 2741 2742 if (test_bit(Journal, &rdev->flags)) 2743 return -EBUSY; 2744 if (strncmp(buf, "none", 4)==0) 2745 slot = -1; 2746 else { 2747 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2748 if (err < 0) 2749 return err; 2750 } 2751 if (rdev->mddev->pers && slot == -1) { 2752 /* Setting 'slot' on an active array requires also 2753 * updating the 'rd%d' link, and communicating 2754 * with the personality with ->hot_*_disk. 2755 * For now we only support removing 2756 * failed/spare devices. This normally happens automatically, 2757 * but not when the metadata is externally managed. 2758 */ 2759 if (rdev->raid_disk == -1) 2760 return -EEXIST; 2761 /* personality does all needed checks */ 2762 if (rdev->mddev->pers->hot_remove_disk == NULL) 2763 return -EINVAL; 2764 clear_bit(Blocked, &rdev->flags); 2765 remove_and_add_spares(rdev->mddev, rdev); 2766 if (rdev->raid_disk >= 0) 2767 return -EBUSY; 2768 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2769 md_wakeup_thread(rdev->mddev->thread); 2770 } else if (rdev->mddev->pers) { 2771 /* Activating a spare .. or possibly reactivating 2772 * if we ever get bitmaps working here. 2773 */ 2774 2775 if (rdev->raid_disk != -1) 2776 return -EBUSY; 2777 2778 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2779 return -EBUSY; 2780 2781 if (rdev->mddev->pers->hot_add_disk == NULL) 2782 return -EINVAL; 2783 2784 if (slot >= rdev->mddev->raid_disks && 2785 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2786 return -ENOSPC; 2787 2788 rdev->raid_disk = slot; 2789 if (test_bit(In_sync, &rdev->flags)) 2790 rdev->saved_raid_disk = slot; 2791 else 2792 rdev->saved_raid_disk = -1; 2793 clear_bit(In_sync, &rdev->flags); 2794 clear_bit(Bitmap_sync, &rdev->flags); 2795 remove_and_add_spares(rdev->mddev, rdev); 2796 if (rdev->raid_disk == -1) 2797 return -EBUSY; 2798 /* don't wakeup anyone, leave that to userspace. */ 2799 } else { 2800 if (slot >= rdev->mddev->raid_disks && 2801 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2802 return -ENOSPC; 2803 rdev->raid_disk = slot; 2804 /* assume it is working */ 2805 clear_bit(Faulty, &rdev->flags); 2806 clear_bit(WriteMostly, &rdev->flags); 2807 set_bit(In_sync, &rdev->flags); 2808 sysfs_notify_dirent_safe(rdev->sysfs_state); 2809 } 2810 return len; 2811 } 2812 2813 static struct rdev_sysfs_entry rdev_slot = 2814 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2815 2816 static ssize_t 2817 offset_show(struct md_rdev *rdev, char *page) 2818 { 2819 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2820 } 2821 2822 static ssize_t 2823 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2824 { 2825 unsigned long long offset; 2826 if (kstrtoull(buf, 10, &offset) < 0) 2827 return -EINVAL; 2828 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2829 return -EBUSY; 2830 if (rdev->sectors && rdev->mddev->external) 2831 /* Must set offset before size, so overlap checks 2832 * can be sane */ 2833 return -EBUSY; 2834 rdev->data_offset = offset; 2835 rdev->new_data_offset = offset; 2836 return len; 2837 } 2838 2839 static struct rdev_sysfs_entry rdev_offset = 2840 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2841 2842 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2843 { 2844 return sprintf(page, "%llu\n", 2845 (unsigned long long)rdev->new_data_offset); 2846 } 2847 2848 static ssize_t new_offset_store(struct md_rdev *rdev, 2849 const char *buf, size_t len) 2850 { 2851 unsigned long long new_offset; 2852 struct mddev *mddev = rdev->mddev; 2853 2854 if (kstrtoull(buf, 10, &new_offset) < 0) 2855 return -EINVAL; 2856 2857 if (mddev->sync_thread || 2858 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2859 return -EBUSY; 2860 if (new_offset == rdev->data_offset) 2861 /* reset is always permitted */ 2862 ; 2863 else if (new_offset > rdev->data_offset) { 2864 /* must not push array size beyond rdev_sectors */ 2865 if (new_offset - rdev->data_offset 2866 + mddev->dev_sectors > rdev->sectors) 2867 return -E2BIG; 2868 } 2869 /* Metadata worries about other space details. */ 2870 2871 /* decreasing the offset is inconsistent with a backwards 2872 * reshape. 2873 */ 2874 if (new_offset < rdev->data_offset && 2875 mddev->reshape_backwards) 2876 return -EINVAL; 2877 /* Increasing offset is inconsistent with forwards 2878 * reshape. reshape_direction should be set to 2879 * 'backwards' first. 2880 */ 2881 if (new_offset > rdev->data_offset && 2882 !mddev->reshape_backwards) 2883 return -EINVAL; 2884 2885 if (mddev->pers && mddev->persistent && 2886 !super_types[mddev->major_version] 2887 .allow_new_offset(rdev, new_offset)) 2888 return -E2BIG; 2889 rdev->new_data_offset = new_offset; 2890 if (new_offset > rdev->data_offset) 2891 mddev->reshape_backwards = 1; 2892 else if (new_offset < rdev->data_offset) 2893 mddev->reshape_backwards = 0; 2894 2895 return len; 2896 } 2897 static struct rdev_sysfs_entry rdev_new_offset = 2898 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2899 2900 static ssize_t 2901 rdev_size_show(struct md_rdev *rdev, char *page) 2902 { 2903 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2904 } 2905 2906 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2907 { 2908 /* check if two start/length pairs overlap */ 2909 if (s1+l1 <= s2) 2910 return 0; 2911 if (s2+l2 <= s1) 2912 return 0; 2913 return 1; 2914 } 2915 2916 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2917 { 2918 unsigned long long blocks; 2919 sector_t new; 2920 2921 if (kstrtoull(buf, 10, &blocks) < 0) 2922 return -EINVAL; 2923 2924 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2925 return -EINVAL; /* sector conversion overflow */ 2926 2927 new = blocks * 2; 2928 if (new != blocks * 2) 2929 return -EINVAL; /* unsigned long long to sector_t overflow */ 2930 2931 *sectors = new; 2932 return 0; 2933 } 2934 2935 static ssize_t 2936 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2937 { 2938 struct mddev *my_mddev = rdev->mddev; 2939 sector_t oldsectors = rdev->sectors; 2940 sector_t sectors; 2941 2942 if (test_bit(Journal, &rdev->flags)) 2943 return -EBUSY; 2944 if (strict_blocks_to_sectors(buf, §ors) < 0) 2945 return -EINVAL; 2946 if (rdev->data_offset != rdev->new_data_offset) 2947 return -EINVAL; /* too confusing */ 2948 if (my_mddev->pers && rdev->raid_disk >= 0) { 2949 if (my_mddev->persistent) { 2950 sectors = super_types[my_mddev->major_version]. 2951 rdev_size_change(rdev, sectors); 2952 if (!sectors) 2953 return -EBUSY; 2954 } else if (!sectors) 2955 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2956 rdev->data_offset; 2957 if (!my_mddev->pers->resize) 2958 /* Cannot change size for RAID0 or Linear etc */ 2959 return -EINVAL; 2960 } 2961 if (sectors < my_mddev->dev_sectors) 2962 return -EINVAL; /* component must fit device */ 2963 2964 rdev->sectors = sectors; 2965 if (sectors > oldsectors && my_mddev->external) { 2966 /* Need to check that all other rdevs with the same 2967 * ->bdev do not overlap. 'rcu' is sufficient to walk 2968 * the rdev lists safely. 2969 * This check does not provide a hard guarantee, it 2970 * just helps avoid dangerous mistakes. 2971 */ 2972 struct mddev *mddev; 2973 int overlap = 0; 2974 struct list_head *tmp; 2975 2976 rcu_read_lock(); 2977 for_each_mddev(mddev, tmp) { 2978 struct md_rdev *rdev2; 2979 2980 rdev_for_each(rdev2, mddev) 2981 if (rdev->bdev == rdev2->bdev && 2982 rdev != rdev2 && 2983 overlaps(rdev->data_offset, rdev->sectors, 2984 rdev2->data_offset, 2985 rdev2->sectors)) { 2986 overlap = 1; 2987 break; 2988 } 2989 if (overlap) { 2990 mddev_put(mddev); 2991 break; 2992 } 2993 } 2994 rcu_read_unlock(); 2995 if (overlap) { 2996 /* Someone else could have slipped in a size 2997 * change here, but doing so is just silly. 2998 * We put oldsectors back because we *know* it is 2999 * safe, and trust userspace not to race with 3000 * itself 3001 */ 3002 rdev->sectors = oldsectors; 3003 return -EBUSY; 3004 } 3005 } 3006 return len; 3007 } 3008 3009 static struct rdev_sysfs_entry rdev_size = 3010 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3011 3012 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3013 { 3014 unsigned long long recovery_start = rdev->recovery_offset; 3015 3016 if (test_bit(In_sync, &rdev->flags) || 3017 recovery_start == MaxSector) 3018 return sprintf(page, "none\n"); 3019 3020 return sprintf(page, "%llu\n", recovery_start); 3021 } 3022 3023 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3024 { 3025 unsigned long long recovery_start; 3026 3027 if (cmd_match(buf, "none")) 3028 recovery_start = MaxSector; 3029 else if (kstrtoull(buf, 10, &recovery_start)) 3030 return -EINVAL; 3031 3032 if (rdev->mddev->pers && 3033 rdev->raid_disk >= 0) 3034 return -EBUSY; 3035 3036 rdev->recovery_offset = recovery_start; 3037 if (recovery_start == MaxSector) 3038 set_bit(In_sync, &rdev->flags); 3039 else 3040 clear_bit(In_sync, &rdev->flags); 3041 return len; 3042 } 3043 3044 static struct rdev_sysfs_entry rdev_recovery_start = 3045 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3046 3047 static ssize_t 3048 badblocks_show(struct badblocks *bb, char *page, int unack); 3049 static ssize_t 3050 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3051 3052 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3053 { 3054 return badblocks_show(&rdev->badblocks, page, 0); 3055 } 3056 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3057 { 3058 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3059 /* Maybe that ack was all we needed */ 3060 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3061 wake_up(&rdev->blocked_wait); 3062 return rv; 3063 } 3064 static struct rdev_sysfs_entry rdev_bad_blocks = 3065 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3066 3067 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3068 { 3069 return badblocks_show(&rdev->badblocks, page, 1); 3070 } 3071 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3072 { 3073 return badblocks_store(&rdev->badblocks, page, len, 1); 3074 } 3075 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3076 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3077 3078 static struct attribute *rdev_default_attrs[] = { 3079 &rdev_state.attr, 3080 &rdev_errors.attr, 3081 &rdev_slot.attr, 3082 &rdev_offset.attr, 3083 &rdev_new_offset.attr, 3084 &rdev_size.attr, 3085 &rdev_recovery_start.attr, 3086 &rdev_bad_blocks.attr, 3087 &rdev_unack_bad_blocks.attr, 3088 NULL, 3089 }; 3090 static ssize_t 3091 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3092 { 3093 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3094 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3095 3096 if (!entry->show) 3097 return -EIO; 3098 if (!rdev->mddev) 3099 return -EBUSY; 3100 return entry->show(rdev, page); 3101 } 3102 3103 static ssize_t 3104 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3105 const char *page, size_t length) 3106 { 3107 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3108 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3109 ssize_t rv; 3110 struct mddev *mddev = rdev->mddev; 3111 3112 if (!entry->store) 3113 return -EIO; 3114 if (!capable(CAP_SYS_ADMIN)) 3115 return -EACCES; 3116 rv = mddev ? mddev_lock(mddev): -EBUSY; 3117 if (!rv) { 3118 if (rdev->mddev == NULL) 3119 rv = -EBUSY; 3120 else 3121 rv = entry->store(rdev, page, length); 3122 mddev_unlock(mddev); 3123 } 3124 return rv; 3125 } 3126 3127 static void rdev_free(struct kobject *ko) 3128 { 3129 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3130 kfree(rdev); 3131 } 3132 static const struct sysfs_ops rdev_sysfs_ops = { 3133 .show = rdev_attr_show, 3134 .store = rdev_attr_store, 3135 }; 3136 static struct kobj_type rdev_ktype = { 3137 .release = rdev_free, 3138 .sysfs_ops = &rdev_sysfs_ops, 3139 .default_attrs = rdev_default_attrs, 3140 }; 3141 3142 int md_rdev_init(struct md_rdev *rdev) 3143 { 3144 rdev->desc_nr = -1; 3145 rdev->saved_raid_disk = -1; 3146 rdev->raid_disk = -1; 3147 rdev->flags = 0; 3148 rdev->data_offset = 0; 3149 rdev->new_data_offset = 0; 3150 rdev->sb_events = 0; 3151 rdev->last_read_error.tv_sec = 0; 3152 rdev->last_read_error.tv_nsec = 0; 3153 rdev->sb_loaded = 0; 3154 rdev->bb_page = NULL; 3155 atomic_set(&rdev->nr_pending, 0); 3156 atomic_set(&rdev->read_errors, 0); 3157 atomic_set(&rdev->corrected_errors, 0); 3158 3159 INIT_LIST_HEAD(&rdev->same_set); 3160 init_waitqueue_head(&rdev->blocked_wait); 3161 3162 /* Add space to store bad block list. 3163 * This reserves the space even on arrays where it cannot 3164 * be used - I wonder if that matters 3165 */ 3166 rdev->badblocks.count = 0; 3167 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3168 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3169 seqlock_init(&rdev->badblocks.lock); 3170 if (rdev->badblocks.page == NULL) 3171 return -ENOMEM; 3172 3173 return 0; 3174 } 3175 EXPORT_SYMBOL_GPL(md_rdev_init); 3176 /* 3177 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3178 * 3179 * mark the device faulty if: 3180 * 3181 * - the device is nonexistent (zero size) 3182 * - the device has no valid superblock 3183 * 3184 * a faulty rdev _never_ has rdev->sb set. 3185 */ 3186 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3187 { 3188 char b[BDEVNAME_SIZE]; 3189 int err; 3190 struct md_rdev *rdev; 3191 sector_t size; 3192 3193 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3194 if (!rdev) { 3195 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3196 return ERR_PTR(-ENOMEM); 3197 } 3198 3199 err = md_rdev_init(rdev); 3200 if (err) 3201 goto abort_free; 3202 err = alloc_disk_sb(rdev); 3203 if (err) 3204 goto abort_free; 3205 3206 err = lock_rdev(rdev, newdev, super_format == -2); 3207 if (err) 3208 goto abort_free; 3209 3210 kobject_init(&rdev->kobj, &rdev_ktype); 3211 3212 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3213 if (!size) { 3214 printk(KERN_WARNING 3215 "md: %s has zero or unknown size, marking faulty!\n", 3216 bdevname(rdev->bdev,b)); 3217 err = -EINVAL; 3218 goto abort_free; 3219 } 3220 3221 if (super_format >= 0) { 3222 err = super_types[super_format]. 3223 load_super(rdev, NULL, super_minor); 3224 if (err == -EINVAL) { 3225 printk(KERN_WARNING 3226 "md: %s does not have a valid v%d.%d " 3227 "superblock, not importing!\n", 3228 bdevname(rdev->bdev,b), 3229 super_format, super_minor); 3230 goto abort_free; 3231 } 3232 if (err < 0) { 3233 printk(KERN_WARNING 3234 "md: could not read %s's sb, not importing!\n", 3235 bdevname(rdev->bdev,b)); 3236 goto abort_free; 3237 } 3238 } 3239 3240 return rdev; 3241 3242 abort_free: 3243 if (rdev->bdev) 3244 unlock_rdev(rdev); 3245 md_rdev_clear(rdev); 3246 kfree(rdev); 3247 return ERR_PTR(err); 3248 } 3249 3250 /* 3251 * Check a full RAID array for plausibility 3252 */ 3253 3254 static void analyze_sbs(struct mddev *mddev) 3255 { 3256 int i; 3257 struct md_rdev *rdev, *freshest, *tmp; 3258 char b[BDEVNAME_SIZE]; 3259 3260 freshest = NULL; 3261 rdev_for_each_safe(rdev, tmp, mddev) 3262 switch (super_types[mddev->major_version]. 3263 load_super(rdev, freshest, mddev->minor_version)) { 3264 case 1: 3265 freshest = rdev; 3266 break; 3267 case 0: 3268 break; 3269 default: 3270 printk( KERN_ERR \ 3271 "md: fatal superblock inconsistency in %s" 3272 " -- removing from array\n", 3273 bdevname(rdev->bdev,b)); 3274 md_kick_rdev_from_array(rdev); 3275 } 3276 3277 super_types[mddev->major_version]. 3278 validate_super(mddev, freshest); 3279 3280 i = 0; 3281 rdev_for_each_safe(rdev, tmp, mddev) { 3282 if (mddev->max_disks && 3283 (rdev->desc_nr >= mddev->max_disks || 3284 i > mddev->max_disks)) { 3285 printk(KERN_WARNING 3286 "md: %s: %s: only %d devices permitted\n", 3287 mdname(mddev), bdevname(rdev->bdev, b), 3288 mddev->max_disks); 3289 md_kick_rdev_from_array(rdev); 3290 continue; 3291 } 3292 if (rdev != freshest) { 3293 if (super_types[mddev->major_version]. 3294 validate_super(mddev, rdev)) { 3295 printk(KERN_WARNING "md: kicking non-fresh %s" 3296 " from array!\n", 3297 bdevname(rdev->bdev,b)); 3298 md_kick_rdev_from_array(rdev); 3299 continue; 3300 } 3301 } 3302 if (mddev->level == LEVEL_MULTIPATH) { 3303 rdev->desc_nr = i++; 3304 rdev->raid_disk = rdev->desc_nr; 3305 set_bit(In_sync, &rdev->flags); 3306 } else if (rdev->raid_disk >= 3307 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3308 !test_bit(Journal, &rdev->flags)) { 3309 rdev->raid_disk = -1; 3310 clear_bit(In_sync, &rdev->flags); 3311 } 3312 } 3313 } 3314 3315 /* Read a fixed-point number. 3316 * Numbers in sysfs attributes should be in "standard" units where 3317 * possible, so time should be in seconds. 3318 * However we internally use a a much smaller unit such as 3319 * milliseconds or jiffies. 3320 * This function takes a decimal number with a possible fractional 3321 * component, and produces an integer which is the result of 3322 * multiplying that number by 10^'scale'. 3323 * all without any floating-point arithmetic. 3324 */ 3325 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3326 { 3327 unsigned long result = 0; 3328 long decimals = -1; 3329 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3330 if (*cp == '.') 3331 decimals = 0; 3332 else if (decimals < scale) { 3333 unsigned int value; 3334 value = *cp - '0'; 3335 result = result * 10 + value; 3336 if (decimals >= 0) 3337 decimals++; 3338 } 3339 cp++; 3340 } 3341 if (*cp == '\n') 3342 cp++; 3343 if (*cp) 3344 return -EINVAL; 3345 if (decimals < 0) 3346 decimals = 0; 3347 while (decimals < scale) { 3348 result *= 10; 3349 decimals ++; 3350 } 3351 *res = result; 3352 return 0; 3353 } 3354 3355 static ssize_t 3356 safe_delay_show(struct mddev *mddev, char *page) 3357 { 3358 int msec = (mddev->safemode_delay*1000)/HZ; 3359 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3360 } 3361 static ssize_t 3362 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3363 { 3364 unsigned long msec; 3365 3366 if (mddev_is_clustered(mddev)) { 3367 pr_info("md: Safemode is disabled for clustered mode\n"); 3368 return -EINVAL; 3369 } 3370 3371 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3372 return -EINVAL; 3373 if (msec == 0) 3374 mddev->safemode_delay = 0; 3375 else { 3376 unsigned long old_delay = mddev->safemode_delay; 3377 unsigned long new_delay = (msec*HZ)/1000; 3378 3379 if (new_delay == 0) 3380 new_delay = 1; 3381 mddev->safemode_delay = new_delay; 3382 if (new_delay < old_delay || old_delay == 0) 3383 mod_timer(&mddev->safemode_timer, jiffies+1); 3384 } 3385 return len; 3386 } 3387 static struct md_sysfs_entry md_safe_delay = 3388 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3389 3390 static ssize_t 3391 level_show(struct mddev *mddev, char *page) 3392 { 3393 struct md_personality *p; 3394 int ret; 3395 spin_lock(&mddev->lock); 3396 p = mddev->pers; 3397 if (p) 3398 ret = sprintf(page, "%s\n", p->name); 3399 else if (mddev->clevel[0]) 3400 ret = sprintf(page, "%s\n", mddev->clevel); 3401 else if (mddev->level != LEVEL_NONE) 3402 ret = sprintf(page, "%d\n", mddev->level); 3403 else 3404 ret = 0; 3405 spin_unlock(&mddev->lock); 3406 return ret; 3407 } 3408 3409 static ssize_t 3410 level_store(struct mddev *mddev, const char *buf, size_t len) 3411 { 3412 char clevel[16]; 3413 ssize_t rv; 3414 size_t slen = len; 3415 struct md_personality *pers, *oldpers; 3416 long level; 3417 void *priv, *oldpriv; 3418 struct md_rdev *rdev; 3419 3420 if (slen == 0 || slen >= sizeof(clevel)) 3421 return -EINVAL; 3422 3423 rv = mddev_lock(mddev); 3424 if (rv) 3425 return rv; 3426 3427 if (mddev->pers == NULL) { 3428 strncpy(mddev->clevel, buf, slen); 3429 if (mddev->clevel[slen-1] == '\n') 3430 slen--; 3431 mddev->clevel[slen] = 0; 3432 mddev->level = LEVEL_NONE; 3433 rv = len; 3434 goto out_unlock; 3435 } 3436 rv = -EROFS; 3437 if (mddev->ro) 3438 goto out_unlock; 3439 3440 /* request to change the personality. Need to ensure: 3441 * - array is not engaged in resync/recovery/reshape 3442 * - old personality can be suspended 3443 * - new personality will access other array. 3444 */ 3445 3446 rv = -EBUSY; 3447 if (mddev->sync_thread || 3448 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3449 mddev->reshape_position != MaxSector || 3450 mddev->sysfs_active) 3451 goto out_unlock; 3452 3453 rv = -EINVAL; 3454 if (!mddev->pers->quiesce) { 3455 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3456 mdname(mddev), mddev->pers->name); 3457 goto out_unlock; 3458 } 3459 3460 /* Now find the new personality */ 3461 strncpy(clevel, buf, slen); 3462 if (clevel[slen-1] == '\n') 3463 slen--; 3464 clevel[slen] = 0; 3465 if (kstrtol(clevel, 10, &level)) 3466 level = LEVEL_NONE; 3467 3468 if (request_module("md-%s", clevel) != 0) 3469 request_module("md-level-%s", clevel); 3470 spin_lock(&pers_lock); 3471 pers = find_pers(level, clevel); 3472 if (!pers || !try_module_get(pers->owner)) { 3473 spin_unlock(&pers_lock); 3474 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3475 rv = -EINVAL; 3476 goto out_unlock; 3477 } 3478 spin_unlock(&pers_lock); 3479 3480 if (pers == mddev->pers) { 3481 /* Nothing to do! */ 3482 module_put(pers->owner); 3483 rv = len; 3484 goto out_unlock; 3485 } 3486 if (!pers->takeover) { 3487 module_put(pers->owner); 3488 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3489 mdname(mddev), clevel); 3490 rv = -EINVAL; 3491 goto out_unlock; 3492 } 3493 3494 rdev_for_each(rdev, mddev) 3495 rdev->new_raid_disk = rdev->raid_disk; 3496 3497 /* ->takeover must set new_* and/or delta_disks 3498 * if it succeeds, and may set them when it fails. 3499 */ 3500 priv = pers->takeover(mddev); 3501 if (IS_ERR(priv)) { 3502 mddev->new_level = mddev->level; 3503 mddev->new_layout = mddev->layout; 3504 mddev->new_chunk_sectors = mddev->chunk_sectors; 3505 mddev->raid_disks -= mddev->delta_disks; 3506 mddev->delta_disks = 0; 3507 mddev->reshape_backwards = 0; 3508 module_put(pers->owner); 3509 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3510 mdname(mddev), clevel); 3511 rv = PTR_ERR(priv); 3512 goto out_unlock; 3513 } 3514 3515 /* Looks like we have a winner */ 3516 mddev_suspend(mddev); 3517 mddev_detach(mddev); 3518 3519 spin_lock(&mddev->lock); 3520 oldpers = mddev->pers; 3521 oldpriv = mddev->private; 3522 mddev->pers = pers; 3523 mddev->private = priv; 3524 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3525 mddev->level = mddev->new_level; 3526 mddev->layout = mddev->new_layout; 3527 mddev->chunk_sectors = mddev->new_chunk_sectors; 3528 mddev->delta_disks = 0; 3529 mddev->reshape_backwards = 0; 3530 mddev->degraded = 0; 3531 spin_unlock(&mddev->lock); 3532 3533 if (oldpers->sync_request == NULL && 3534 mddev->external) { 3535 /* We are converting from a no-redundancy array 3536 * to a redundancy array and metadata is managed 3537 * externally so we need to be sure that writes 3538 * won't block due to a need to transition 3539 * clean->dirty 3540 * until external management is started. 3541 */ 3542 mddev->in_sync = 0; 3543 mddev->safemode_delay = 0; 3544 mddev->safemode = 0; 3545 } 3546 3547 oldpers->free(mddev, oldpriv); 3548 3549 if (oldpers->sync_request == NULL && 3550 pers->sync_request != NULL) { 3551 /* need to add the md_redundancy_group */ 3552 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3553 printk(KERN_WARNING 3554 "md: cannot register extra attributes for %s\n", 3555 mdname(mddev)); 3556 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3557 } 3558 if (oldpers->sync_request != NULL && 3559 pers->sync_request == NULL) { 3560 /* need to remove the md_redundancy_group */ 3561 if (mddev->to_remove == NULL) 3562 mddev->to_remove = &md_redundancy_group; 3563 } 3564 3565 rdev_for_each(rdev, mddev) { 3566 if (rdev->raid_disk < 0) 3567 continue; 3568 if (rdev->new_raid_disk >= mddev->raid_disks) 3569 rdev->new_raid_disk = -1; 3570 if (rdev->new_raid_disk == rdev->raid_disk) 3571 continue; 3572 sysfs_unlink_rdev(mddev, rdev); 3573 } 3574 rdev_for_each(rdev, mddev) { 3575 if (rdev->raid_disk < 0) 3576 continue; 3577 if (rdev->new_raid_disk == rdev->raid_disk) 3578 continue; 3579 rdev->raid_disk = rdev->new_raid_disk; 3580 if (rdev->raid_disk < 0) 3581 clear_bit(In_sync, &rdev->flags); 3582 else { 3583 if (sysfs_link_rdev(mddev, rdev)) 3584 printk(KERN_WARNING "md: cannot register rd%d" 3585 " for %s after level change\n", 3586 rdev->raid_disk, mdname(mddev)); 3587 } 3588 } 3589 3590 if (pers->sync_request == NULL) { 3591 /* this is now an array without redundancy, so 3592 * it must always be in_sync 3593 */ 3594 mddev->in_sync = 1; 3595 del_timer_sync(&mddev->safemode_timer); 3596 } 3597 blk_set_stacking_limits(&mddev->queue->limits); 3598 pers->run(mddev); 3599 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3600 mddev_resume(mddev); 3601 if (!mddev->thread) 3602 md_update_sb(mddev, 1); 3603 sysfs_notify(&mddev->kobj, NULL, "level"); 3604 md_new_event(mddev); 3605 rv = len; 3606 out_unlock: 3607 mddev_unlock(mddev); 3608 return rv; 3609 } 3610 3611 static struct md_sysfs_entry md_level = 3612 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3613 3614 static ssize_t 3615 layout_show(struct mddev *mddev, char *page) 3616 { 3617 /* just a number, not meaningful for all levels */ 3618 if (mddev->reshape_position != MaxSector && 3619 mddev->layout != mddev->new_layout) 3620 return sprintf(page, "%d (%d)\n", 3621 mddev->new_layout, mddev->layout); 3622 return sprintf(page, "%d\n", mddev->layout); 3623 } 3624 3625 static ssize_t 3626 layout_store(struct mddev *mddev, const char *buf, size_t len) 3627 { 3628 unsigned int n; 3629 int err; 3630 3631 err = kstrtouint(buf, 10, &n); 3632 if (err < 0) 3633 return err; 3634 err = mddev_lock(mddev); 3635 if (err) 3636 return err; 3637 3638 if (mddev->pers) { 3639 if (mddev->pers->check_reshape == NULL) 3640 err = -EBUSY; 3641 else if (mddev->ro) 3642 err = -EROFS; 3643 else { 3644 mddev->new_layout = n; 3645 err = mddev->pers->check_reshape(mddev); 3646 if (err) 3647 mddev->new_layout = mddev->layout; 3648 } 3649 } else { 3650 mddev->new_layout = n; 3651 if (mddev->reshape_position == MaxSector) 3652 mddev->layout = n; 3653 } 3654 mddev_unlock(mddev); 3655 return err ?: len; 3656 } 3657 static struct md_sysfs_entry md_layout = 3658 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3659 3660 static ssize_t 3661 raid_disks_show(struct mddev *mddev, char *page) 3662 { 3663 if (mddev->raid_disks == 0) 3664 return 0; 3665 if (mddev->reshape_position != MaxSector && 3666 mddev->delta_disks != 0) 3667 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3668 mddev->raid_disks - mddev->delta_disks); 3669 return sprintf(page, "%d\n", mddev->raid_disks); 3670 } 3671 3672 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3673 3674 static ssize_t 3675 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3676 { 3677 unsigned int n; 3678 int err; 3679 3680 err = kstrtouint(buf, 10, &n); 3681 if (err < 0) 3682 return err; 3683 3684 err = mddev_lock(mddev); 3685 if (err) 3686 return err; 3687 if (mddev->pers) 3688 err = update_raid_disks(mddev, n); 3689 else if (mddev->reshape_position != MaxSector) { 3690 struct md_rdev *rdev; 3691 int olddisks = mddev->raid_disks - mddev->delta_disks; 3692 3693 err = -EINVAL; 3694 rdev_for_each(rdev, mddev) { 3695 if (olddisks < n && 3696 rdev->data_offset < rdev->new_data_offset) 3697 goto out_unlock; 3698 if (olddisks > n && 3699 rdev->data_offset > rdev->new_data_offset) 3700 goto out_unlock; 3701 } 3702 err = 0; 3703 mddev->delta_disks = n - olddisks; 3704 mddev->raid_disks = n; 3705 mddev->reshape_backwards = (mddev->delta_disks < 0); 3706 } else 3707 mddev->raid_disks = n; 3708 out_unlock: 3709 mddev_unlock(mddev); 3710 return err ? err : len; 3711 } 3712 static struct md_sysfs_entry md_raid_disks = 3713 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3714 3715 static ssize_t 3716 chunk_size_show(struct mddev *mddev, char *page) 3717 { 3718 if (mddev->reshape_position != MaxSector && 3719 mddev->chunk_sectors != mddev->new_chunk_sectors) 3720 return sprintf(page, "%d (%d)\n", 3721 mddev->new_chunk_sectors << 9, 3722 mddev->chunk_sectors << 9); 3723 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3724 } 3725 3726 static ssize_t 3727 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3728 { 3729 unsigned long n; 3730 int err; 3731 3732 err = kstrtoul(buf, 10, &n); 3733 if (err < 0) 3734 return err; 3735 3736 err = mddev_lock(mddev); 3737 if (err) 3738 return err; 3739 if (mddev->pers) { 3740 if (mddev->pers->check_reshape == NULL) 3741 err = -EBUSY; 3742 else if (mddev->ro) 3743 err = -EROFS; 3744 else { 3745 mddev->new_chunk_sectors = n >> 9; 3746 err = mddev->pers->check_reshape(mddev); 3747 if (err) 3748 mddev->new_chunk_sectors = mddev->chunk_sectors; 3749 } 3750 } else { 3751 mddev->new_chunk_sectors = n >> 9; 3752 if (mddev->reshape_position == MaxSector) 3753 mddev->chunk_sectors = n >> 9; 3754 } 3755 mddev_unlock(mddev); 3756 return err ?: len; 3757 } 3758 static struct md_sysfs_entry md_chunk_size = 3759 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3760 3761 static ssize_t 3762 resync_start_show(struct mddev *mddev, char *page) 3763 { 3764 if (mddev->recovery_cp == MaxSector) 3765 return sprintf(page, "none\n"); 3766 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3767 } 3768 3769 static ssize_t 3770 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3771 { 3772 unsigned long long n; 3773 int err; 3774 3775 if (cmd_match(buf, "none")) 3776 n = MaxSector; 3777 else { 3778 err = kstrtoull(buf, 10, &n); 3779 if (err < 0) 3780 return err; 3781 if (n != (sector_t)n) 3782 return -EINVAL; 3783 } 3784 3785 err = mddev_lock(mddev); 3786 if (err) 3787 return err; 3788 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3789 err = -EBUSY; 3790 3791 if (!err) { 3792 mddev->recovery_cp = n; 3793 if (mddev->pers) 3794 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3795 } 3796 mddev_unlock(mddev); 3797 return err ?: len; 3798 } 3799 static struct md_sysfs_entry md_resync_start = 3800 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 3801 resync_start_show, resync_start_store); 3802 3803 /* 3804 * The array state can be: 3805 * 3806 * clear 3807 * No devices, no size, no level 3808 * Equivalent to STOP_ARRAY ioctl 3809 * inactive 3810 * May have some settings, but array is not active 3811 * all IO results in error 3812 * When written, doesn't tear down array, but just stops it 3813 * suspended (not supported yet) 3814 * All IO requests will block. The array can be reconfigured. 3815 * Writing this, if accepted, will block until array is quiescent 3816 * readonly 3817 * no resync can happen. no superblocks get written. 3818 * write requests fail 3819 * read-auto 3820 * like readonly, but behaves like 'clean' on a write request. 3821 * 3822 * clean - no pending writes, but otherwise active. 3823 * When written to inactive array, starts without resync 3824 * If a write request arrives then 3825 * if metadata is known, mark 'dirty' and switch to 'active'. 3826 * if not known, block and switch to write-pending 3827 * If written to an active array that has pending writes, then fails. 3828 * active 3829 * fully active: IO and resync can be happening. 3830 * When written to inactive array, starts with resync 3831 * 3832 * write-pending 3833 * clean, but writes are blocked waiting for 'active' to be written. 3834 * 3835 * active-idle 3836 * like active, but no writes have been seen for a while (100msec). 3837 * 3838 */ 3839 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3840 write_pending, active_idle, bad_word}; 3841 static char *array_states[] = { 3842 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3843 "write-pending", "active-idle", NULL }; 3844 3845 static int match_word(const char *word, char **list) 3846 { 3847 int n; 3848 for (n=0; list[n]; n++) 3849 if (cmd_match(word, list[n])) 3850 break; 3851 return n; 3852 } 3853 3854 static ssize_t 3855 array_state_show(struct mddev *mddev, char *page) 3856 { 3857 enum array_state st = inactive; 3858 3859 if (mddev->pers) 3860 switch(mddev->ro) { 3861 case 1: 3862 st = readonly; 3863 break; 3864 case 2: 3865 st = read_auto; 3866 break; 3867 case 0: 3868 if (mddev->in_sync) 3869 st = clean; 3870 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3871 st = write_pending; 3872 else if (mddev->safemode) 3873 st = active_idle; 3874 else 3875 st = active; 3876 } 3877 else { 3878 if (list_empty(&mddev->disks) && 3879 mddev->raid_disks == 0 && 3880 mddev->dev_sectors == 0) 3881 st = clear; 3882 else 3883 st = inactive; 3884 } 3885 return sprintf(page, "%s\n", array_states[st]); 3886 } 3887 3888 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3889 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3890 static int do_md_run(struct mddev *mddev); 3891 static int restart_array(struct mddev *mddev); 3892 3893 static ssize_t 3894 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3895 { 3896 int err; 3897 enum array_state st = match_word(buf, array_states); 3898 3899 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3900 /* don't take reconfig_mutex when toggling between 3901 * clean and active 3902 */ 3903 spin_lock(&mddev->lock); 3904 if (st == active) { 3905 restart_array(mddev); 3906 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3907 wake_up(&mddev->sb_wait); 3908 err = 0; 3909 } else /* st == clean */ { 3910 restart_array(mddev); 3911 if (atomic_read(&mddev->writes_pending) == 0) { 3912 if (mddev->in_sync == 0) { 3913 mddev->in_sync = 1; 3914 if (mddev->safemode == 1) 3915 mddev->safemode = 0; 3916 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3917 } 3918 err = 0; 3919 } else 3920 err = -EBUSY; 3921 } 3922 spin_unlock(&mddev->lock); 3923 return err ?: len; 3924 } 3925 err = mddev_lock(mddev); 3926 if (err) 3927 return err; 3928 err = -EINVAL; 3929 switch(st) { 3930 case bad_word: 3931 break; 3932 case clear: 3933 /* stopping an active array */ 3934 err = do_md_stop(mddev, 0, NULL); 3935 break; 3936 case inactive: 3937 /* stopping an active array */ 3938 if (mddev->pers) 3939 err = do_md_stop(mddev, 2, NULL); 3940 else 3941 err = 0; /* already inactive */ 3942 break; 3943 case suspended: 3944 break; /* not supported yet */ 3945 case readonly: 3946 if (mddev->pers) 3947 err = md_set_readonly(mddev, NULL); 3948 else { 3949 mddev->ro = 1; 3950 set_disk_ro(mddev->gendisk, 1); 3951 err = do_md_run(mddev); 3952 } 3953 break; 3954 case read_auto: 3955 if (mddev->pers) { 3956 if (mddev->ro == 0) 3957 err = md_set_readonly(mddev, NULL); 3958 else if (mddev->ro == 1) 3959 err = restart_array(mddev); 3960 if (err == 0) { 3961 mddev->ro = 2; 3962 set_disk_ro(mddev->gendisk, 0); 3963 } 3964 } else { 3965 mddev->ro = 2; 3966 err = do_md_run(mddev); 3967 } 3968 break; 3969 case clean: 3970 if (mddev->pers) { 3971 err = restart_array(mddev); 3972 if (err) 3973 break; 3974 spin_lock(&mddev->lock); 3975 if (atomic_read(&mddev->writes_pending) == 0) { 3976 if (mddev->in_sync == 0) { 3977 mddev->in_sync = 1; 3978 if (mddev->safemode == 1) 3979 mddev->safemode = 0; 3980 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3981 } 3982 err = 0; 3983 } else 3984 err = -EBUSY; 3985 spin_unlock(&mddev->lock); 3986 } else 3987 err = -EINVAL; 3988 break; 3989 case active: 3990 if (mddev->pers) { 3991 err = restart_array(mddev); 3992 if (err) 3993 break; 3994 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3995 wake_up(&mddev->sb_wait); 3996 err = 0; 3997 } else { 3998 mddev->ro = 0; 3999 set_disk_ro(mddev->gendisk, 0); 4000 err = do_md_run(mddev); 4001 } 4002 break; 4003 case write_pending: 4004 case active_idle: 4005 /* these cannot be set */ 4006 break; 4007 } 4008 4009 if (!err) { 4010 if (mddev->hold_active == UNTIL_IOCTL) 4011 mddev->hold_active = 0; 4012 sysfs_notify_dirent_safe(mddev->sysfs_state); 4013 } 4014 mddev_unlock(mddev); 4015 return err ?: len; 4016 } 4017 static struct md_sysfs_entry md_array_state = 4018 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4019 4020 static ssize_t 4021 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4022 return sprintf(page, "%d\n", 4023 atomic_read(&mddev->max_corr_read_errors)); 4024 } 4025 4026 static ssize_t 4027 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4028 { 4029 unsigned int n; 4030 int rv; 4031 4032 rv = kstrtouint(buf, 10, &n); 4033 if (rv < 0) 4034 return rv; 4035 atomic_set(&mddev->max_corr_read_errors, n); 4036 return len; 4037 } 4038 4039 static struct md_sysfs_entry max_corr_read_errors = 4040 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4041 max_corrected_read_errors_store); 4042 4043 static ssize_t 4044 null_show(struct mddev *mddev, char *page) 4045 { 4046 return -EINVAL; 4047 } 4048 4049 static ssize_t 4050 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4051 { 4052 /* buf must be %d:%d\n? giving major and minor numbers */ 4053 /* The new device is added to the array. 4054 * If the array has a persistent superblock, we read the 4055 * superblock to initialise info and check validity. 4056 * Otherwise, only checking done is that in bind_rdev_to_array, 4057 * which mainly checks size. 4058 */ 4059 char *e; 4060 int major = simple_strtoul(buf, &e, 10); 4061 int minor; 4062 dev_t dev; 4063 struct md_rdev *rdev; 4064 int err; 4065 4066 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4067 return -EINVAL; 4068 minor = simple_strtoul(e+1, &e, 10); 4069 if (*e && *e != '\n') 4070 return -EINVAL; 4071 dev = MKDEV(major, minor); 4072 if (major != MAJOR(dev) || 4073 minor != MINOR(dev)) 4074 return -EOVERFLOW; 4075 4076 flush_workqueue(md_misc_wq); 4077 4078 err = mddev_lock(mddev); 4079 if (err) 4080 return err; 4081 if (mddev->persistent) { 4082 rdev = md_import_device(dev, mddev->major_version, 4083 mddev->minor_version); 4084 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4085 struct md_rdev *rdev0 4086 = list_entry(mddev->disks.next, 4087 struct md_rdev, same_set); 4088 err = super_types[mddev->major_version] 4089 .load_super(rdev, rdev0, mddev->minor_version); 4090 if (err < 0) 4091 goto out; 4092 } 4093 } else if (mddev->external) 4094 rdev = md_import_device(dev, -2, -1); 4095 else 4096 rdev = md_import_device(dev, -1, -1); 4097 4098 if (IS_ERR(rdev)) { 4099 mddev_unlock(mddev); 4100 return PTR_ERR(rdev); 4101 } 4102 err = bind_rdev_to_array(rdev, mddev); 4103 out: 4104 if (err) 4105 export_rdev(rdev); 4106 mddev_unlock(mddev); 4107 return err ? err : len; 4108 } 4109 4110 static struct md_sysfs_entry md_new_device = 4111 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4112 4113 static ssize_t 4114 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4115 { 4116 char *end; 4117 unsigned long chunk, end_chunk; 4118 int err; 4119 4120 err = mddev_lock(mddev); 4121 if (err) 4122 return err; 4123 if (!mddev->bitmap) 4124 goto out; 4125 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4126 while (*buf) { 4127 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4128 if (buf == end) break; 4129 if (*end == '-') { /* range */ 4130 buf = end + 1; 4131 end_chunk = simple_strtoul(buf, &end, 0); 4132 if (buf == end) break; 4133 } 4134 if (*end && !isspace(*end)) break; 4135 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4136 buf = skip_spaces(end); 4137 } 4138 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4139 out: 4140 mddev_unlock(mddev); 4141 return len; 4142 } 4143 4144 static struct md_sysfs_entry md_bitmap = 4145 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4146 4147 static ssize_t 4148 size_show(struct mddev *mddev, char *page) 4149 { 4150 return sprintf(page, "%llu\n", 4151 (unsigned long long)mddev->dev_sectors / 2); 4152 } 4153 4154 static int update_size(struct mddev *mddev, sector_t num_sectors); 4155 4156 static ssize_t 4157 size_store(struct mddev *mddev, const char *buf, size_t len) 4158 { 4159 /* If array is inactive, we can reduce the component size, but 4160 * not increase it (except from 0). 4161 * If array is active, we can try an on-line resize 4162 */ 4163 sector_t sectors; 4164 int err = strict_blocks_to_sectors(buf, §ors); 4165 4166 if (err < 0) 4167 return err; 4168 err = mddev_lock(mddev); 4169 if (err) 4170 return err; 4171 if (mddev->pers) { 4172 err = update_size(mddev, sectors); 4173 md_update_sb(mddev, 1); 4174 } else { 4175 if (mddev->dev_sectors == 0 || 4176 mddev->dev_sectors > sectors) 4177 mddev->dev_sectors = sectors; 4178 else 4179 err = -ENOSPC; 4180 } 4181 mddev_unlock(mddev); 4182 return err ? err : len; 4183 } 4184 4185 static struct md_sysfs_entry md_size = 4186 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4187 4188 /* Metadata version. 4189 * This is one of 4190 * 'none' for arrays with no metadata (good luck...) 4191 * 'external' for arrays with externally managed metadata, 4192 * or N.M for internally known formats 4193 */ 4194 static ssize_t 4195 metadata_show(struct mddev *mddev, char *page) 4196 { 4197 if (mddev->persistent) 4198 return sprintf(page, "%d.%d\n", 4199 mddev->major_version, mddev->minor_version); 4200 else if (mddev->external) 4201 return sprintf(page, "external:%s\n", mddev->metadata_type); 4202 else 4203 return sprintf(page, "none\n"); 4204 } 4205 4206 static ssize_t 4207 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4208 { 4209 int major, minor; 4210 char *e; 4211 int err; 4212 /* Changing the details of 'external' metadata is 4213 * always permitted. Otherwise there must be 4214 * no devices attached to the array. 4215 */ 4216 4217 err = mddev_lock(mddev); 4218 if (err) 4219 return err; 4220 err = -EBUSY; 4221 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4222 ; 4223 else if (!list_empty(&mddev->disks)) 4224 goto out_unlock; 4225 4226 err = 0; 4227 if (cmd_match(buf, "none")) { 4228 mddev->persistent = 0; 4229 mddev->external = 0; 4230 mddev->major_version = 0; 4231 mddev->minor_version = 90; 4232 goto out_unlock; 4233 } 4234 if (strncmp(buf, "external:", 9) == 0) { 4235 size_t namelen = len-9; 4236 if (namelen >= sizeof(mddev->metadata_type)) 4237 namelen = sizeof(mddev->metadata_type)-1; 4238 strncpy(mddev->metadata_type, buf+9, namelen); 4239 mddev->metadata_type[namelen] = 0; 4240 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4241 mddev->metadata_type[--namelen] = 0; 4242 mddev->persistent = 0; 4243 mddev->external = 1; 4244 mddev->major_version = 0; 4245 mddev->minor_version = 90; 4246 goto out_unlock; 4247 } 4248 major = simple_strtoul(buf, &e, 10); 4249 err = -EINVAL; 4250 if (e==buf || *e != '.') 4251 goto out_unlock; 4252 buf = e+1; 4253 minor = simple_strtoul(buf, &e, 10); 4254 if (e==buf || (*e && *e != '\n') ) 4255 goto out_unlock; 4256 err = -ENOENT; 4257 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4258 goto out_unlock; 4259 mddev->major_version = major; 4260 mddev->minor_version = minor; 4261 mddev->persistent = 1; 4262 mddev->external = 0; 4263 err = 0; 4264 out_unlock: 4265 mddev_unlock(mddev); 4266 return err ?: len; 4267 } 4268 4269 static struct md_sysfs_entry md_metadata = 4270 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4271 4272 static ssize_t 4273 action_show(struct mddev *mddev, char *page) 4274 { 4275 char *type = "idle"; 4276 unsigned long recovery = mddev->recovery; 4277 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4278 type = "frozen"; 4279 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4280 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4281 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4282 type = "reshape"; 4283 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4284 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4285 type = "resync"; 4286 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4287 type = "check"; 4288 else 4289 type = "repair"; 4290 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4291 type = "recover"; 4292 else if (mddev->reshape_position != MaxSector) 4293 type = "reshape"; 4294 } 4295 return sprintf(page, "%s\n", type); 4296 } 4297 4298 static ssize_t 4299 action_store(struct mddev *mddev, const char *page, size_t len) 4300 { 4301 if (!mddev->pers || !mddev->pers->sync_request) 4302 return -EINVAL; 4303 4304 4305 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4306 if (cmd_match(page, "frozen")) 4307 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4308 else 4309 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4310 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4311 mddev_lock(mddev) == 0) { 4312 flush_workqueue(md_misc_wq); 4313 if (mddev->sync_thread) { 4314 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4315 md_reap_sync_thread(mddev); 4316 } 4317 mddev_unlock(mddev); 4318 } 4319 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4320 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4321 return -EBUSY; 4322 else if (cmd_match(page, "resync")) 4323 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4324 else if (cmd_match(page, "recover")) { 4325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4326 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4327 } else if (cmd_match(page, "reshape")) { 4328 int err; 4329 if (mddev->pers->start_reshape == NULL) 4330 return -EINVAL; 4331 err = mddev_lock(mddev); 4332 if (!err) { 4333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4334 err = mddev->pers->start_reshape(mddev); 4335 mddev_unlock(mddev); 4336 } 4337 if (err) 4338 return err; 4339 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4340 } else { 4341 if (cmd_match(page, "check")) 4342 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4343 else if (!cmd_match(page, "repair")) 4344 return -EINVAL; 4345 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4346 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4347 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4348 } 4349 if (mddev->ro == 2) { 4350 /* A write to sync_action is enough to justify 4351 * canceling read-auto mode 4352 */ 4353 mddev->ro = 0; 4354 md_wakeup_thread(mddev->sync_thread); 4355 } 4356 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4357 md_wakeup_thread(mddev->thread); 4358 sysfs_notify_dirent_safe(mddev->sysfs_action); 4359 return len; 4360 } 4361 4362 static struct md_sysfs_entry md_scan_mode = 4363 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4364 4365 static ssize_t 4366 last_sync_action_show(struct mddev *mddev, char *page) 4367 { 4368 return sprintf(page, "%s\n", mddev->last_sync_action); 4369 } 4370 4371 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4372 4373 static ssize_t 4374 mismatch_cnt_show(struct mddev *mddev, char *page) 4375 { 4376 return sprintf(page, "%llu\n", 4377 (unsigned long long) 4378 atomic64_read(&mddev->resync_mismatches)); 4379 } 4380 4381 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4382 4383 static ssize_t 4384 sync_min_show(struct mddev *mddev, char *page) 4385 { 4386 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4387 mddev->sync_speed_min ? "local": "system"); 4388 } 4389 4390 static ssize_t 4391 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4392 { 4393 unsigned int min; 4394 int rv; 4395 4396 if (strncmp(buf, "system", 6)==0) { 4397 min = 0; 4398 } else { 4399 rv = kstrtouint(buf, 10, &min); 4400 if (rv < 0) 4401 return rv; 4402 if (min == 0) 4403 return -EINVAL; 4404 } 4405 mddev->sync_speed_min = min; 4406 return len; 4407 } 4408 4409 static struct md_sysfs_entry md_sync_min = 4410 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4411 4412 static ssize_t 4413 sync_max_show(struct mddev *mddev, char *page) 4414 { 4415 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4416 mddev->sync_speed_max ? "local": "system"); 4417 } 4418 4419 static ssize_t 4420 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4421 { 4422 unsigned int max; 4423 int rv; 4424 4425 if (strncmp(buf, "system", 6)==0) { 4426 max = 0; 4427 } else { 4428 rv = kstrtouint(buf, 10, &max); 4429 if (rv < 0) 4430 return rv; 4431 if (max == 0) 4432 return -EINVAL; 4433 } 4434 mddev->sync_speed_max = max; 4435 return len; 4436 } 4437 4438 static struct md_sysfs_entry md_sync_max = 4439 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4440 4441 static ssize_t 4442 degraded_show(struct mddev *mddev, char *page) 4443 { 4444 return sprintf(page, "%d\n", mddev->degraded); 4445 } 4446 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4447 4448 static ssize_t 4449 sync_force_parallel_show(struct mddev *mddev, char *page) 4450 { 4451 return sprintf(page, "%d\n", mddev->parallel_resync); 4452 } 4453 4454 static ssize_t 4455 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4456 { 4457 long n; 4458 4459 if (kstrtol(buf, 10, &n)) 4460 return -EINVAL; 4461 4462 if (n != 0 && n != 1) 4463 return -EINVAL; 4464 4465 mddev->parallel_resync = n; 4466 4467 if (mddev->sync_thread) 4468 wake_up(&resync_wait); 4469 4470 return len; 4471 } 4472 4473 /* force parallel resync, even with shared block devices */ 4474 static struct md_sysfs_entry md_sync_force_parallel = 4475 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4476 sync_force_parallel_show, sync_force_parallel_store); 4477 4478 static ssize_t 4479 sync_speed_show(struct mddev *mddev, char *page) 4480 { 4481 unsigned long resync, dt, db; 4482 if (mddev->curr_resync == 0) 4483 return sprintf(page, "none\n"); 4484 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4485 dt = (jiffies - mddev->resync_mark) / HZ; 4486 if (!dt) dt++; 4487 db = resync - mddev->resync_mark_cnt; 4488 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4489 } 4490 4491 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4492 4493 static ssize_t 4494 sync_completed_show(struct mddev *mddev, char *page) 4495 { 4496 unsigned long long max_sectors, resync; 4497 4498 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4499 return sprintf(page, "none\n"); 4500 4501 if (mddev->curr_resync == 1 || 4502 mddev->curr_resync == 2) 4503 return sprintf(page, "delayed\n"); 4504 4505 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4506 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4507 max_sectors = mddev->resync_max_sectors; 4508 else 4509 max_sectors = mddev->dev_sectors; 4510 4511 resync = mddev->curr_resync_completed; 4512 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4513 } 4514 4515 static struct md_sysfs_entry md_sync_completed = 4516 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4517 4518 static ssize_t 4519 min_sync_show(struct mddev *mddev, char *page) 4520 { 4521 return sprintf(page, "%llu\n", 4522 (unsigned long long)mddev->resync_min); 4523 } 4524 static ssize_t 4525 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4526 { 4527 unsigned long long min; 4528 int err; 4529 4530 if (kstrtoull(buf, 10, &min)) 4531 return -EINVAL; 4532 4533 spin_lock(&mddev->lock); 4534 err = -EINVAL; 4535 if (min > mddev->resync_max) 4536 goto out_unlock; 4537 4538 err = -EBUSY; 4539 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4540 goto out_unlock; 4541 4542 /* Round down to multiple of 4K for safety */ 4543 mddev->resync_min = round_down(min, 8); 4544 err = 0; 4545 4546 out_unlock: 4547 spin_unlock(&mddev->lock); 4548 return err ?: len; 4549 } 4550 4551 static struct md_sysfs_entry md_min_sync = 4552 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4553 4554 static ssize_t 4555 max_sync_show(struct mddev *mddev, char *page) 4556 { 4557 if (mddev->resync_max == MaxSector) 4558 return sprintf(page, "max\n"); 4559 else 4560 return sprintf(page, "%llu\n", 4561 (unsigned long long)mddev->resync_max); 4562 } 4563 static ssize_t 4564 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4565 { 4566 int err; 4567 spin_lock(&mddev->lock); 4568 if (strncmp(buf, "max", 3) == 0) 4569 mddev->resync_max = MaxSector; 4570 else { 4571 unsigned long long max; 4572 int chunk; 4573 4574 err = -EINVAL; 4575 if (kstrtoull(buf, 10, &max)) 4576 goto out_unlock; 4577 if (max < mddev->resync_min) 4578 goto out_unlock; 4579 4580 err = -EBUSY; 4581 if (max < mddev->resync_max && 4582 mddev->ro == 0 && 4583 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4584 goto out_unlock; 4585 4586 /* Must be a multiple of chunk_size */ 4587 chunk = mddev->chunk_sectors; 4588 if (chunk) { 4589 sector_t temp = max; 4590 4591 err = -EINVAL; 4592 if (sector_div(temp, chunk)) 4593 goto out_unlock; 4594 } 4595 mddev->resync_max = max; 4596 } 4597 wake_up(&mddev->recovery_wait); 4598 err = 0; 4599 out_unlock: 4600 spin_unlock(&mddev->lock); 4601 return err ?: len; 4602 } 4603 4604 static struct md_sysfs_entry md_max_sync = 4605 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4606 4607 static ssize_t 4608 suspend_lo_show(struct mddev *mddev, char *page) 4609 { 4610 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4611 } 4612 4613 static ssize_t 4614 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4615 { 4616 unsigned long long old, new; 4617 int err; 4618 4619 err = kstrtoull(buf, 10, &new); 4620 if (err < 0) 4621 return err; 4622 if (new != (sector_t)new) 4623 return -EINVAL; 4624 4625 err = mddev_lock(mddev); 4626 if (err) 4627 return err; 4628 err = -EINVAL; 4629 if (mddev->pers == NULL || 4630 mddev->pers->quiesce == NULL) 4631 goto unlock; 4632 old = mddev->suspend_lo; 4633 mddev->suspend_lo = new; 4634 if (new >= old) 4635 /* Shrinking suspended region */ 4636 mddev->pers->quiesce(mddev, 2); 4637 else { 4638 /* Expanding suspended region - need to wait */ 4639 mddev->pers->quiesce(mddev, 1); 4640 mddev->pers->quiesce(mddev, 0); 4641 } 4642 err = 0; 4643 unlock: 4644 mddev_unlock(mddev); 4645 return err ?: len; 4646 } 4647 static struct md_sysfs_entry md_suspend_lo = 4648 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4649 4650 static ssize_t 4651 suspend_hi_show(struct mddev *mddev, char *page) 4652 { 4653 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4654 } 4655 4656 static ssize_t 4657 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4658 { 4659 unsigned long long old, new; 4660 int err; 4661 4662 err = kstrtoull(buf, 10, &new); 4663 if (err < 0) 4664 return err; 4665 if (new != (sector_t)new) 4666 return -EINVAL; 4667 4668 err = mddev_lock(mddev); 4669 if (err) 4670 return err; 4671 err = -EINVAL; 4672 if (mddev->pers == NULL || 4673 mddev->pers->quiesce == NULL) 4674 goto unlock; 4675 old = mddev->suspend_hi; 4676 mddev->suspend_hi = new; 4677 if (new <= old) 4678 /* Shrinking suspended region */ 4679 mddev->pers->quiesce(mddev, 2); 4680 else { 4681 /* Expanding suspended region - need to wait */ 4682 mddev->pers->quiesce(mddev, 1); 4683 mddev->pers->quiesce(mddev, 0); 4684 } 4685 err = 0; 4686 unlock: 4687 mddev_unlock(mddev); 4688 return err ?: len; 4689 } 4690 static struct md_sysfs_entry md_suspend_hi = 4691 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4692 4693 static ssize_t 4694 reshape_position_show(struct mddev *mddev, char *page) 4695 { 4696 if (mddev->reshape_position != MaxSector) 4697 return sprintf(page, "%llu\n", 4698 (unsigned long long)mddev->reshape_position); 4699 strcpy(page, "none\n"); 4700 return 5; 4701 } 4702 4703 static ssize_t 4704 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4705 { 4706 struct md_rdev *rdev; 4707 unsigned long long new; 4708 int err; 4709 4710 err = kstrtoull(buf, 10, &new); 4711 if (err < 0) 4712 return err; 4713 if (new != (sector_t)new) 4714 return -EINVAL; 4715 err = mddev_lock(mddev); 4716 if (err) 4717 return err; 4718 err = -EBUSY; 4719 if (mddev->pers) 4720 goto unlock; 4721 mddev->reshape_position = new; 4722 mddev->delta_disks = 0; 4723 mddev->reshape_backwards = 0; 4724 mddev->new_level = mddev->level; 4725 mddev->new_layout = mddev->layout; 4726 mddev->new_chunk_sectors = mddev->chunk_sectors; 4727 rdev_for_each(rdev, mddev) 4728 rdev->new_data_offset = rdev->data_offset; 4729 err = 0; 4730 unlock: 4731 mddev_unlock(mddev); 4732 return err ?: len; 4733 } 4734 4735 static struct md_sysfs_entry md_reshape_position = 4736 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4737 reshape_position_store); 4738 4739 static ssize_t 4740 reshape_direction_show(struct mddev *mddev, char *page) 4741 { 4742 return sprintf(page, "%s\n", 4743 mddev->reshape_backwards ? "backwards" : "forwards"); 4744 } 4745 4746 static ssize_t 4747 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4748 { 4749 int backwards = 0; 4750 int err; 4751 4752 if (cmd_match(buf, "forwards")) 4753 backwards = 0; 4754 else if (cmd_match(buf, "backwards")) 4755 backwards = 1; 4756 else 4757 return -EINVAL; 4758 if (mddev->reshape_backwards == backwards) 4759 return len; 4760 4761 err = mddev_lock(mddev); 4762 if (err) 4763 return err; 4764 /* check if we are allowed to change */ 4765 if (mddev->delta_disks) 4766 err = -EBUSY; 4767 else if (mddev->persistent && 4768 mddev->major_version == 0) 4769 err = -EINVAL; 4770 else 4771 mddev->reshape_backwards = backwards; 4772 mddev_unlock(mddev); 4773 return err ?: len; 4774 } 4775 4776 static struct md_sysfs_entry md_reshape_direction = 4777 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4778 reshape_direction_store); 4779 4780 static ssize_t 4781 array_size_show(struct mddev *mddev, char *page) 4782 { 4783 if (mddev->external_size) 4784 return sprintf(page, "%llu\n", 4785 (unsigned long long)mddev->array_sectors/2); 4786 else 4787 return sprintf(page, "default\n"); 4788 } 4789 4790 static ssize_t 4791 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4792 { 4793 sector_t sectors; 4794 int err; 4795 4796 err = mddev_lock(mddev); 4797 if (err) 4798 return err; 4799 4800 if (strncmp(buf, "default", 7) == 0) { 4801 if (mddev->pers) 4802 sectors = mddev->pers->size(mddev, 0, 0); 4803 else 4804 sectors = mddev->array_sectors; 4805 4806 mddev->external_size = 0; 4807 } else { 4808 if (strict_blocks_to_sectors(buf, §ors) < 0) 4809 err = -EINVAL; 4810 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4811 err = -E2BIG; 4812 else 4813 mddev->external_size = 1; 4814 } 4815 4816 if (!err) { 4817 mddev->array_sectors = sectors; 4818 if (mddev->pers) { 4819 set_capacity(mddev->gendisk, mddev->array_sectors); 4820 revalidate_disk(mddev->gendisk); 4821 } 4822 } 4823 mddev_unlock(mddev); 4824 return err ?: len; 4825 } 4826 4827 static struct md_sysfs_entry md_array_size = 4828 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4829 array_size_store); 4830 4831 static struct attribute *md_default_attrs[] = { 4832 &md_level.attr, 4833 &md_layout.attr, 4834 &md_raid_disks.attr, 4835 &md_chunk_size.attr, 4836 &md_size.attr, 4837 &md_resync_start.attr, 4838 &md_metadata.attr, 4839 &md_new_device.attr, 4840 &md_safe_delay.attr, 4841 &md_array_state.attr, 4842 &md_reshape_position.attr, 4843 &md_reshape_direction.attr, 4844 &md_array_size.attr, 4845 &max_corr_read_errors.attr, 4846 NULL, 4847 }; 4848 4849 static struct attribute *md_redundancy_attrs[] = { 4850 &md_scan_mode.attr, 4851 &md_last_scan_mode.attr, 4852 &md_mismatches.attr, 4853 &md_sync_min.attr, 4854 &md_sync_max.attr, 4855 &md_sync_speed.attr, 4856 &md_sync_force_parallel.attr, 4857 &md_sync_completed.attr, 4858 &md_min_sync.attr, 4859 &md_max_sync.attr, 4860 &md_suspend_lo.attr, 4861 &md_suspend_hi.attr, 4862 &md_bitmap.attr, 4863 &md_degraded.attr, 4864 NULL, 4865 }; 4866 static struct attribute_group md_redundancy_group = { 4867 .name = NULL, 4868 .attrs = md_redundancy_attrs, 4869 }; 4870 4871 static ssize_t 4872 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4873 { 4874 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4875 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4876 ssize_t rv; 4877 4878 if (!entry->show) 4879 return -EIO; 4880 spin_lock(&all_mddevs_lock); 4881 if (list_empty(&mddev->all_mddevs)) { 4882 spin_unlock(&all_mddevs_lock); 4883 return -EBUSY; 4884 } 4885 mddev_get(mddev); 4886 spin_unlock(&all_mddevs_lock); 4887 4888 rv = entry->show(mddev, page); 4889 mddev_put(mddev); 4890 return rv; 4891 } 4892 4893 static ssize_t 4894 md_attr_store(struct kobject *kobj, struct attribute *attr, 4895 const char *page, size_t length) 4896 { 4897 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4898 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4899 ssize_t rv; 4900 4901 if (!entry->store) 4902 return -EIO; 4903 if (!capable(CAP_SYS_ADMIN)) 4904 return -EACCES; 4905 spin_lock(&all_mddevs_lock); 4906 if (list_empty(&mddev->all_mddevs)) { 4907 spin_unlock(&all_mddevs_lock); 4908 return -EBUSY; 4909 } 4910 mddev_get(mddev); 4911 spin_unlock(&all_mddevs_lock); 4912 rv = entry->store(mddev, page, length); 4913 mddev_put(mddev); 4914 return rv; 4915 } 4916 4917 static void md_free(struct kobject *ko) 4918 { 4919 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4920 4921 if (mddev->sysfs_state) 4922 sysfs_put(mddev->sysfs_state); 4923 4924 if (mddev->queue) 4925 blk_cleanup_queue(mddev->queue); 4926 if (mddev->gendisk) { 4927 del_gendisk(mddev->gendisk); 4928 put_disk(mddev->gendisk); 4929 } 4930 4931 kfree(mddev); 4932 } 4933 4934 static const struct sysfs_ops md_sysfs_ops = { 4935 .show = md_attr_show, 4936 .store = md_attr_store, 4937 }; 4938 static struct kobj_type md_ktype = { 4939 .release = md_free, 4940 .sysfs_ops = &md_sysfs_ops, 4941 .default_attrs = md_default_attrs, 4942 }; 4943 4944 int mdp_major = 0; 4945 4946 static void mddev_delayed_delete(struct work_struct *ws) 4947 { 4948 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4949 4950 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4951 kobject_del(&mddev->kobj); 4952 kobject_put(&mddev->kobj); 4953 } 4954 4955 static int md_alloc(dev_t dev, char *name) 4956 { 4957 static DEFINE_MUTEX(disks_mutex); 4958 struct mddev *mddev = mddev_find(dev); 4959 struct gendisk *disk; 4960 int partitioned; 4961 int shift; 4962 int unit; 4963 int error; 4964 4965 if (!mddev) 4966 return -ENODEV; 4967 4968 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4969 shift = partitioned ? MdpMinorShift : 0; 4970 unit = MINOR(mddev->unit) >> shift; 4971 4972 /* wait for any previous instance of this device to be 4973 * completely removed (mddev_delayed_delete). 4974 */ 4975 flush_workqueue(md_misc_wq); 4976 4977 mutex_lock(&disks_mutex); 4978 error = -EEXIST; 4979 if (mddev->gendisk) 4980 goto abort; 4981 4982 if (name) { 4983 /* Need to ensure that 'name' is not a duplicate. 4984 */ 4985 struct mddev *mddev2; 4986 spin_lock(&all_mddevs_lock); 4987 4988 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4989 if (mddev2->gendisk && 4990 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4991 spin_unlock(&all_mddevs_lock); 4992 goto abort; 4993 } 4994 spin_unlock(&all_mddevs_lock); 4995 } 4996 4997 error = -ENOMEM; 4998 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4999 if (!mddev->queue) 5000 goto abort; 5001 mddev->queue->queuedata = mddev; 5002 5003 blk_queue_make_request(mddev->queue, md_make_request); 5004 blk_set_stacking_limits(&mddev->queue->limits); 5005 5006 disk = alloc_disk(1 << shift); 5007 if (!disk) { 5008 blk_cleanup_queue(mddev->queue); 5009 mddev->queue = NULL; 5010 goto abort; 5011 } 5012 disk->major = MAJOR(mddev->unit); 5013 disk->first_minor = unit << shift; 5014 if (name) 5015 strcpy(disk->disk_name, name); 5016 else if (partitioned) 5017 sprintf(disk->disk_name, "md_d%d", unit); 5018 else 5019 sprintf(disk->disk_name, "md%d", unit); 5020 disk->fops = &md_fops; 5021 disk->private_data = mddev; 5022 disk->queue = mddev->queue; 5023 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 5024 /* Allow extended partitions. This makes the 5025 * 'mdp' device redundant, but we can't really 5026 * remove it now. 5027 */ 5028 disk->flags |= GENHD_FL_EXT_DEVT; 5029 mddev->gendisk = disk; 5030 /* As soon as we call add_disk(), another thread could get 5031 * through to md_open, so make sure it doesn't get too far 5032 */ 5033 mutex_lock(&mddev->open_mutex); 5034 add_disk(disk); 5035 5036 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5037 &disk_to_dev(disk)->kobj, "%s", "md"); 5038 if (error) { 5039 /* This isn't possible, but as kobject_init_and_add is marked 5040 * __must_check, we must do something with the result 5041 */ 5042 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 5043 disk->disk_name); 5044 error = 0; 5045 } 5046 if (mddev->kobj.sd && 5047 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5048 printk(KERN_DEBUG "pointless warning\n"); 5049 mutex_unlock(&mddev->open_mutex); 5050 abort: 5051 mutex_unlock(&disks_mutex); 5052 if (!error && mddev->kobj.sd) { 5053 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5054 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5055 } 5056 mddev_put(mddev); 5057 return error; 5058 } 5059 5060 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5061 { 5062 md_alloc(dev, NULL); 5063 return NULL; 5064 } 5065 5066 static int add_named_array(const char *val, struct kernel_param *kp) 5067 { 5068 /* val must be "md_*" where * is not all digits. 5069 * We allocate an array with a large free minor number, and 5070 * set the name to val. val must not already be an active name. 5071 */ 5072 int len = strlen(val); 5073 char buf[DISK_NAME_LEN]; 5074 5075 while (len && val[len-1] == '\n') 5076 len--; 5077 if (len >= DISK_NAME_LEN) 5078 return -E2BIG; 5079 strlcpy(buf, val, len+1); 5080 if (strncmp(buf, "md_", 3) != 0) 5081 return -EINVAL; 5082 return md_alloc(0, buf); 5083 } 5084 5085 static void md_safemode_timeout(unsigned long data) 5086 { 5087 struct mddev *mddev = (struct mddev *) data; 5088 5089 if (!atomic_read(&mddev->writes_pending)) { 5090 mddev->safemode = 1; 5091 if (mddev->external) 5092 sysfs_notify_dirent_safe(mddev->sysfs_state); 5093 } 5094 md_wakeup_thread(mddev->thread); 5095 } 5096 5097 static int start_dirty_degraded; 5098 5099 int md_run(struct mddev *mddev) 5100 { 5101 int err; 5102 struct md_rdev *rdev; 5103 struct md_personality *pers; 5104 5105 if (list_empty(&mddev->disks)) 5106 /* cannot run an array with no devices.. */ 5107 return -EINVAL; 5108 5109 if (mddev->pers) 5110 return -EBUSY; 5111 /* Cannot run until previous stop completes properly */ 5112 if (mddev->sysfs_active) 5113 return -EBUSY; 5114 5115 /* 5116 * Analyze all RAID superblock(s) 5117 */ 5118 if (!mddev->raid_disks) { 5119 if (!mddev->persistent) 5120 return -EINVAL; 5121 analyze_sbs(mddev); 5122 } 5123 5124 if (mddev->level != LEVEL_NONE) 5125 request_module("md-level-%d", mddev->level); 5126 else if (mddev->clevel[0]) 5127 request_module("md-%s", mddev->clevel); 5128 5129 /* 5130 * Drop all container device buffers, from now on 5131 * the only valid external interface is through the md 5132 * device. 5133 */ 5134 rdev_for_each(rdev, mddev) { 5135 if (test_bit(Faulty, &rdev->flags)) 5136 continue; 5137 sync_blockdev(rdev->bdev); 5138 invalidate_bdev(rdev->bdev); 5139 5140 /* perform some consistency tests on the device. 5141 * We don't want the data to overlap the metadata, 5142 * Internal Bitmap issues have been handled elsewhere. 5143 */ 5144 if (rdev->meta_bdev) { 5145 /* Nothing to check */; 5146 } else if (rdev->data_offset < rdev->sb_start) { 5147 if (mddev->dev_sectors && 5148 rdev->data_offset + mddev->dev_sectors 5149 > rdev->sb_start) { 5150 printk("md: %s: data overlaps metadata\n", 5151 mdname(mddev)); 5152 return -EINVAL; 5153 } 5154 } else { 5155 if (rdev->sb_start + rdev->sb_size/512 5156 > rdev->data_offset) { 5157 printk("md: %s: metadata overlaps data\n", 5158 mdname(mddev)); 5159 return -EINVAL; 5160 } 5161 } 5162 sysfs_notify_dirent_safe(rdev->sysfs_state); 5163 } 5164 5165 if (mddev->bio_set == NULL) 5166 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5167 5168 spin_lock(&pers_lock); 5169 pers = find_pers(mddev->level, mddev->clevel); 5170 if (!pers || !try_module_get(pers->owner)) { 5171 spin_unlock(&pers_lock); 5172 if (mddev->level != LEVEL_NONE) 5173 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5174 mddev->level); 5175 else 5176 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5177 mddev->clevel); 5178 return -EINVAL; 5179 } 5180 spin_unlock(&pers_lock); 5181 if (mddev->level != pers->level) { 5182 mddev->level = pers->level; 5183 mddev->new_level = pers->level; 5184 } 5185 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5186 5187 if (mddev->reshape_position != MaxSector && 5188 pers->start_reshape == NULL) { 5189 /* This personality cannot handle reshaping... */ 5190 module_put(pers->owner); 5191 return -EINVAL; 5192 } 5193 5194 if (pers->sync_request) { 5195 /* Warn if this is a potentially silly 5196 * configuration. 5197 */ 5198 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5199 struct md_rdev *rdev2; 5200 int warned = 0; 5201 5202 rdev_for_each(rdev, mddev) 5203 rdev_for_each(rdev2, mddev) { 5204 if (rdev < rdev2 && 5205 rdev->bdev->bd_contains == 5206 rdev2->bdev->bd_contains) { 5207 printk(KERN_WARNING 5208 "%s: WARNING: %s appears to be" 5209 " on the same physical disk as" 5210 " %s.\n", 5211 mdname(mddev), 5212 bdevname(rdev->bdev,b), 5213 bdevname(rdev2->bdev,b2)); 5214 warned = 1; 5215 } 5216 } 5217 5218 if (warned) 5219 printk(KERN_WARNING 5220 "True protection against single-disk" 5221 " failure might be compromised.\n"); 5222 } 5223 5224 mddev->recovery = 0; 5225 /* may be over-ridden by personality */ 5226 mddev->resync_max_sectors = mddev->dev_sectors; 5227 5228 mddev->ok_start_degraded = start_dirty_degraded; 5229 5230 if (start_readonly && mddev->ro == 0) 5231 mddev->ro = 2; /* read-only, but switch on first write */ 5232 5233 err = pers->run(mddev); 5234 if (err) 5235 printk(KERN_ERR "md: pers->run() failed ...\n"); 5236 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5237 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5238 " but 'external_size' not in effect?\n", __func__); 5239 printk(KERN_ERR 5240 "md: invalid array_size %llu > default size %llu\n", 5241 (unsigned long long)mddev->array_sectors / 2, 5242 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5243 err = -EINVAL; 5244 } 5245 if (err == 0 && pers->sync_request && 5246 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5247 struct bitmap *bitmap; 5248 5249 bitmap = bitmap_create(mddev, -1); 5250 if (IS_ERR(bitmap)) { 5251 err = PTR_ERR(bitmap); 5252 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5253 mdname(mddev), err); 5254 } else 5255 mddev->bitmap = bitmap; 5256 5257 } 5258 if (err) { 5259 mddev_detach(mddev); 5260 if (mddev->private) 5261 pers->free(mddev, mddev->private); 5262 mddev->private = NULL; 5263 module_put(pers->owner); 5264 bitmap_destroy(mddev); 5265 return err; 5266 } 5267 if (mddev->queue) { 5268 mddev->queue->backing_dev_info.congested_data = mddev; 5269 mddev->queue->backing_dev_info.congested_fn = md_congested; 5270 } 5271 if (pers->sync_request) { 5272 if (mddev->kobj.sd && 5273 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5274 printk(KERN_WARNING 5275 "md: cannot register extra attributes for %s\n", 5276 mdname(mddev)); 5277 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5278 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5279 mddev->ro = 0; 5280 5281 atomic_set(&mddev->writes_pending,0); 5282 atomic_set(&mddev->max_corr_read_errors, 5283 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5284 mddev->safemode = 0; 5285 if (mddev_is_clustered(mddev)) 5286 mddev->safemode_delay = 0; 5287 else 5288 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5289 mddev->in_sync = 1; 5290 smp_wmb(); 5291 spin_lock(&mddev->lock); 5292 mddev->pers = pers; 5293 mddev->ready = 1; 5294 spin_unlock(&mddev->lock); 5295 rdev_for_each(rdev, mddev) 5296 if (rdev->raid_disk >= 0) 5297 if (sysfs_link_rdev(mddev, rdev)) 5298 /* failure here is OK */; 5299 5300 if (mddev->degraded && !mddev->ro) 5301 /* This ensures that recovering status is reported immediately 5302 * via sysfs - until a lack of spares is confirmed. 5303 */ 5304 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5306 5307 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5308 md_update_sb(mddev, 0); 5309 5310 md_new_event(mddev); 5311 sysfs_notify_dirent_safe(mddev->sysfs_state); 5312 sysfs_notify_dirent_safe(mddev->sysfs_action); 5313 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5314 return 0; 5315 } 5316 EXPORT_SYMBOL_GPL(md_run); 5317 5318 static int do_md_run(struct mddev *mddev) 5319 { 5320 int err; 5321 5322 err = md_run(mddev); 5323 if (err) 5324 goto out; 5325 err = bitmap_load(mddev); 5326 if (err) { 5327 bitmap_destroy(mddev); 5328 goto out; 5329 } 5330 5331 if (mddev_is_clustered(mddev)) 5332 md_allow_write(mddev); 5333 5334 md_wakeup_thread(mddev->thread); 5335 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5336 5337 set_capacity(mddev->gendisk, mddev->array_sectors); 5338 revalidate_disk(mddev->gendisk); 5339 mddev->changed = 1; 5340 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5341 out: 5342 return err; 5343 } 5344 5345 static int restart_array(struct mddev *mddev) 5346 { 5347 struct gendisk *disk = mddev->gendisk; 5348 5349 /* Complain if it has no devices */ 5350 if (list_empty(&mddev->disks)) 5351 return -ENXIO; 5352 if (!mddev->pers) 5353 return -EINVAL; 5354 if (!mddev->ro) 5355 return -EBUSY; 5356 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5357 struct md_rdev *rdev; 5358 bool has_journal = false; 5359 5360 rcu_read_lock(); 5361 rdev_for_each_rcu(rdev, mddev) { 5362 if (test_bit(Journal, &rdev->flags) && 5363 !test_bit(Faulty, &rdev->flags)) { 5364 has_journal = true; 5365 break; 5366 } 5367 } 5368 rcu_read_unlock(); 5369 5370 /* Don't restart rw with journal missing/faulty */ 5371 if (!has_journal) 5372 return -EINVAL; 5373 } 5374 5375 mddev->safemode = 0; 5376 mddev->ro = 0; 5377 set_disk_ro(disk, 0); 5378 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5379 mdname(mddev)); 5380 /* Kick recovery or resync if necessary */ 5381 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5382 md_wakeup_thread(mddev->thread); 5383 md_wakeup_thread(mddev->sync_thread); 5384 sysfs_notify_dirent_safe(mddev->sysfs_state); 5385 return 0; 5386 } 5387 5388 static void md_clean(struct mddev *mddev) 5389 { 5390 mddev->array_sectors = 0; 5391 mddev->external_size = 0; 5392 mddev->dev_sectors = 0; 5393 mddev->raid_disks = 0; 5394 mddev->recovery_cp = 0; 5395 mddev->resync_min = 0; 5396 mddev->resync_max = MaxSector; 5397 mddev->reshape_position = MaxSector; 5398 mddev->external = 0; 5399 mddev->persistent = 0; 5400 mddev->level = LEVEL_NONE; 5401 mddev->clevel[0] = 0; 5402 mddev->flags = 0; 5403 mddev->ro = 0; 5404 mddev->metadata_type[0] = 0; 5405 mddev->chunk_sectors = 0; 5406 mddev->ctime = mddev->utime = 0; 5407 mddev->layout = 0; 5408 mddev->max_disks = 0; 5409 mddev->events = 0; 5410 mddev->can_decrease_events = 0; 5411 mddev->delta_disks = 0; 5412 mddev->reshape_backwards = 0; 5413 mddev->new_level = LEVEL_NONE; 5414 mddev->new_layout = 0; 5415 mddev->new_chunk_sectors = 0; 5416 mddev->curr_resync = 0; 5417 atomic64_set(&mddev->resync_mismatches, 0); 5418 mddev->suspend_lo = mddev->suspend_hi = 0; 5419 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5420 mddev->recovery = 0; 5421 mddev->in_sync = 0; 5422 mddev->changed = 0; 5423 mddev->degraded = 0; 5424 mddev->safemode = 0; 5425 mddev->private = NULL; 5426 mddev->bitmap_info.offset = 0; 5427 mddev->bitmap_info.default_offset = 0; 5428 mddev->bitmap_info.default_space = 0; 5429 mddev->bitmap_info.chunksize = 0; 5430 mddev->bitmap_info.daemon_sleep = 0; 5431 mddev->bitmap_info.max_write_behind = 0; 5432 } 5433 5434 static void __md_stop_writes(struct mddev *mddev) 5435 { 5436 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5437 flush_workqueue(md_misc_wq); 5438 if (mddev->sync_thread) { 5439 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5440 md_reap_sync_thread(mddev); 5441 } 5442 5443 del_timer_sync(&mddev->safemode_timer); 5444 5445 bitmap_flush(mddev); 5446 md_super_wait(mddev); 5447 5448 if (mddev->ro == 0 && 5449 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5450 (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5451 /* mark array as shutdown cleanly */ 5452 if (!mddev_is_clustered(mddev)) 5453 mddev->in_sync = 1; 5454 md_update_sb(mddev, 1); 5455 } 5456 } 5457 5458 void md_stop_writes(struct mddev *mddev) 5459 { 5460 mddev_lock_nointr(mddev); 5461 __md_stop_writes(mddev); 5462 mddev_unlock(mddev); 5463 } 5464 EXPORT_SYMBOL_GPL(md_stop_writes); 5465 5466 static void mddev_detach(struct mddev *mddev) 5467 { 5468 struct bitmap *bitmap = mddev->bitmap; 5469 /* wait for behind writes to complete */ 5470 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5471 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5472 mdname(mddev)); 5473 /* need to kick something here to make sure I/O goes? */ 5474 wait_event(bitmap->behind_wait, 5475 atomic_read(&bitmap->behind_writes) == 0); 5476 } 5477 if (mddev->pers && mddev->pers->quiesce) { 5478 mddev->pers->quiesce(mddev, 1); 5479 mddev->pers->quiesce(mddev, 0); 5480 } 5481 md_unregister_thread(&mddev->thread); 5482 if (mddev->queue) 5483 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5484 } 5485 5486 static void __md_stop(struct mddev *mddev) 5487 { 5488 struct md_personality *pers = mddev->pers; 5489 mddev_detach(mddev); 5490 /* Ensure ->event_work is done */ 5491 flush_workqueue(md_misc_wq); 5492 spin_lock(&mddev->lock); 5493 mddev->ready = 0; 5494 mddev->pers = NULL; 5495 spin_unlock(&mddev->lock); 5496 pers->free(mddev, mddev->private); 5497 mddev->private = NULL; 5498 if (pers->sync_request && mddev->to_remove == NULL) 5499 mddev->to_remove = &md_redundancy_group; 5500 module_put(pers->owner); 5501 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5502 } 5503 5504 void md_stop(struct mddev *mddev) 5505 { 5506 /* stop the array and free an attached data structures. 5507 * This is called from dm-raid 5508 */ 5509 __md_stop(mddev); 5510 bitmap_destroy(mddev); 5511 if (mddev->bio_set) 5512 bioset_free(mddev->bio_set); 5513 } 5514 5515 EXPORT_SYMBOL_GPL(md_stop); 5516 5517 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5518 { 5519 int err = 0; 5520 int did_freeze = 0; 5521 5522 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5523 did_freeze = 1; 5524 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5525 md_wakeup_thread(mddev->thread); 5526 } 5527 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5528 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5529 if (mddev->sync_thread) 5530 /* Thread might be blocked waiting for metadata update 5531 * which will now never happen */ 5532 wake_up_process(mddev->sync_thread->tsk); 5533 5534 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags)) 5535 return -EBUSY; 5536 mddev_unlock(mddev); 5537 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5538 &mddev->recovery)); 5539 wait_event(mddev->sb_wait, 5540 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5541 mddev_lock_nointr(mddev); 5542 5543 mutex_lock(&mddev->open_mutex); 5544 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5545 mddev->sync_thread || 5546 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5547 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5548 printk("md: %s still in use.\n",mdname(mddev)); 5549 if (did_freeze) { 5550 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5551 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5552 md_wakeup_thread(mddev->thread); 5553 } 5554 err = -EBUSY; 5555 goto out; 5556 } 5557 if (mddev->pers) { 5558 __md_stop_writes(mddev); 5559 5560 err = -ENXIO; 5561 if (mddev->ro==1) 5562 goto out; 5563 mddev->ro = 1; 5564 set_disk_ro(mddev->gendisk, 1); 5565 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5566 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5567 md_wakeup_thread(mddev->thread); 5568 sysfs_notify_dirent_safe(mddev->sysfs_state); 5569 err = 0; 5570 } 5571 out: 5572 mutex_unlock(&mddev->open_mutex); 5573 return err; 5574 } 5575 5576 /* mode: 5577 * 0 - completely stop and dis-assemble array 5578 * 2 - stop but do not disassemble array 5579 */ 5580 static int do_md_stop(struct mddev *mddev, int mode, 5581 struct block_device *bdev) 5582 { 5583 struct gendisk *disk = mddev->gendisk; 5584 struct md_rdev *rdev; 5585 int did_freeze = 0; 5586 5587 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5588 did_freeze = 1; 5589 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5590 md_wakeup_thread(mddev->thread); 5591 } 5592 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5593 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5594 if (mddev->sync_thread) 5595 /* Thread might be blocked waiting for metadata update 5596 * which will now never happen */ 5597 wake_up_process(mddev->sync_thread->tsk); 5598 5599 mddev_unlock(mddev); 5600 wait_event(resync_wait, (mddev->sync_thread == NULL && 5601 !test_bit(MD_RECOVERY_RUNNING, 5602 &mddev->recovery))); 5603 mddev_lock_nointr(mddev); 5604 5605 mutex_lock(&mddev->open_mutex); 5606 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5607 mddev->sysfs_active || 5608 mddev->sync_thread || 5609 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5610 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5611 printk("md: %s still in use.\n",mdname(mddev)); 5612 mutex_unlock(&mddev->open_mutex); 5613 if (did_freeze) { 5614 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5615 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5616 md_wakeup_thread(mddev->thread); 5617 } 5618 return -EBUSY; 5619 } 5620 if (mddev->pers) { 5621 if (mddev->ro) 5622 set_disk_ro(disk, 0); 5623 5624 __md_stop_writes(mddev); 5625 __md_stop(mddev); 5626 mddev->queue->backing_dev_info.congested_fn = NULL; 5627 5628 /* tell userspace to handle 'inactive' */ 5629 sysfs_notify_dirent_safe(mddev->sysfs_state); 5630 5631 rdev_for_each(rdev, mddev) 5632 if (rdev->raid_disk >= 0) 5633 sysfs_unlink_rdev(mddev, rdev); 5634 5635 set_capacity(disk, 0); 5636 mutex_unlock(&mddev->open_mutex); 5637 mddev->changed = 1; 5638 revalidate_disk(disk); 5639 5640 if (mddev->ro) 5641 mddev->ro = 0; 5642 } else 5643 mutex_unlock(&mddev->open_mutex); 5644 /* 5645 * Free resources if final stop 5646 */ 5647 if (mode == 0) { 5648 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5649 5650 bitmap_destroy(mddev); 5651 if (mddev->bitmap_info.file) { 5652 struct file *f = mddev->bitmap_info.file; 5653 spin_lock(&mddev->lock); 5654 mddev->bitmap_info.file = NULL; 5655 spin_unlock(&mddev->lock); 5656 fput(f); 5657 } 5658 mddev->bitmap_info.offset = 0; 5659 5660 export_array(mddev); 5661 5662 md_clean(mddev); 5663 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5664 if (mddev->hold_active == UNTIL_STOP) 5665 mddev->hold_active = 0; 5666 } 5667 md_new_event(mddev); 5668 sysfs_notify_dirent_safe(mddev->sysfs_state); 5669 return 0; 5670 } 5671 5672 #ifndef MODULE 5673 static void autorun_array(struct mddev *mddev) 5674 { 5675 struct md_rdev *rdev; 5676 int err; 5677 5678 if (list_empty(&mddev->disks)) 5679 return; 5680 5681 printk(KERN_INFO "md: running: "); 5682 5683 rdev_for_each(rdev, mddev) { 5684 char b[BDEVNAME_SIZE]; 5685 printk("<%s>", bdevname(rdev->bdev,b)); 5686 } 5687 printk("\n"); 5688 5689 err = do_md_run(mddev); 5690 if (err) { 5691 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5692 do_md_stop(mddev, 0, NULL); 5693 } 5694 } 5695 5696 /* 5697 * lets try to run arrays based on all disks that have arrived 5698 * until now. (those are in pending_raid_disks) 5699 * 5700 * the method: pick the first pending disk, collect all disks with 5701 * the same UUID, remove all from the pending list and put them into 5702 * the 'same_array' list. Then order this list based on superblock 5703 * update time (freshest comes first), kick out 'old' disks and 5704 * compare superblocks. If everything's fine then run it. 5705 * 5706 * If "unit" is allocated, then bump its reference count 5707 */ 5708 static void autorun_devices(int part) 5709 { 5710 struct md_rdev *rdev0, *rdev, *tmp; 5711 struct mddev *mddev; 5712 char b[BDEVNAME_SIZE]; 5713 5714 printk(KERN_INFO "md: autorun ...\n"); 5715 while (!list_empty(&pending_raid_disks)) { 5716 int unit; 5717 dev_t dev; 5718 LIST_HEAD(candidates); 5719 rdev0 = list_entry(pending_raid_disks.next, 5720 struct md_rdev, same_set); 5721 5722 printk(KERN_INFO "md: considering %s ...\n", 5723 bdevname(rdev0->bdev,b)); 5724 INIT_LIST_HEAD(&candidates); 5725 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5726 if (super_90_load(rdev, rdev0, 0) >= 0) { 5727 printk(KERN_INFO "md: adding %s ...\n", 5728 bdevname(rdev->bdev,b)); 5729 list_move(&rdev->same_set, &candidates); 5730 } 5731 /* 5732 * now we have a set of devices, with all of them having 5733 * mostly sane superblocks. It's time to allocate the 5734 * mddev. 5735 */ 5736 if (part) { 5737 dev = MKDEV(mdp_major, 5738 rdev0->preferred_minor << MdpMinorShift); 5739 unit = MINOR(dev) >> MdpMinorShift; 5740 } else { 5741 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5742 unit = MINOR(dev); 5743 } 5744 if (rdev0->preferred_minor != unit) { 5745 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5746 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5747 break; 5748 } 5749 5750 md_probe(dev, NULL, NULL); 5751 mddev = mddev_find(dev); 5752 if (!mddev || !mddev->gendisk) { 5753 if (mddev) 5754 mddev_put(mddev); 5755 printk(KERN_ERR 5756 "md: cannot allocate memory for md drive.\n"); 5757 break; 5758 } 5759 if (mddev_lock(mddev)) 5760 printk(KERN_WARNING "md: %s locked, cannot run\n", 5761 mdname(mddev)); 5762 else if (mddev->raid_disks || mddev->major_version 5763 || !list_empty(&mddev->disks)) { 5764 printk(KERN_WARNING 5765 "md: %s already running, cannot run %s\n", 5766 mdname(mddev), bdevname(rdev0->bdev,b)); 5767 mddev_unlock(mddev); 5768 } else { 5769 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5770 mddev->persistent = 1; 5771 rdev_for_each_list(rdev, tmp, &candidates) { 5772 list_del_init(&rdev->same_set); 5773 if (bind_rdev_to_array(rdev, mddev)) 5774 export_rdev(rdev); 5775 } 5776 autorun_array(mddev); 5777 mddev_unlock(mddev); 5778 } 5779 /* on success, candidates will be empty, on error 5780 * it won't... 5781 */ 5782 rdev_for_each_list(rdev, tmp, &candidates) { 5783 list_del_init(&rdev->same_set); 5784 export_rdev(rdev); 5785 } 5786 mddev_put(mddev); 5787 } 5788 printk(KERN_INFO "md: ... autorun DONE.\n"); 5789 } 5790 #endif /* !MODULE */ 5791 5792 static int get_version(void __user *arg) 5793 { 5794 mdu_version_t ver; 5795 5796 ver.major = MD_MAJOR_VERSION; 5797 ver.minor = MD_MINOR_VERSION; 5798 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5799 5800 if (copy_to_user(arg, &ver, sizeof(ver))) 5801 return -EFAULT; 5802 5803 return 0; 5804 } 5805 5806 static int get_array_info(struct mddev *mddev, void __user *arg) 5807 { 5808 mdu_array_info_t info; 5809 int nr,working,insync,failed,spare; 5810 struct md_rdev *rdev; 5811 5812 nr = working = insync = failed = spare = 0; 5813 rcu_read_lock(); 5814 rdev_for_each_rcu(rdev, mddev) { 5815 nr++; 5816 if (test_bit(Faulty, &rdev->flags)) 5817 failed++; 5818 else { 5819 working++; 5820 if (test_bit(In_sync, &rdev->flags)) 5821 insync++; 5822 else 5823 spare++; 5824 } 5825 } 5826 rcu_read_unlock(); 5827 5828 info.major_version = mddev->major_version; 5829 info.minor_version = mddev->minor_version; 5830 info.patch_version = MD_PATCHLEVEL_VERSION; 5831 info.ctime = mddev->ctime; 5832 info.level = mddev->level; 5833 info.size = mddev->dev_sectors / 2; 5834 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5835 info.size = -1; 5836 info.nr_disks = nr; 5837 info.raid_disks = mddev->raid_disks; 5838 info.md_minor = mddev->md_minor; 5839 info.not_persistent= !mddev->persistent; 5840 5841 info.utime = mddev->utime; 5842 info.state = 0; 5843 if (mddev->in_sync) 5844 info.state = (1<<MD_SB_CLEAN); 5845 if (mddev->bitmap && mddev->bitmap_info.offset) 5846 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5847 if (mddev_is_clustered(mddev)) 5848 info.state |= (1<<MD_SB_CLUSTERED); 5849 info.active_disks = insync; 5850 info.working_disks = working; 5851 info.failed_disks = failed; 5852 info.spare_disks = spare; 5853 5854 info.layout = mddev->layout; 5855 info.chunk_size = mddev->chunk_sectors << 9; 5856 5857 if (copy_to_user(arg, &info, sizeof(info))) 5858 return -EFAULT; 5859 5860 return 0; 5861 } 5862 5863 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5864 { 5865 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5866 char *ptr; 5867 int err; 5868 5869 file = kzalloc(sizeof(*file), GFP_NOIO); 5870 if (!file) 5871 return -ENOMEM; 5872 5873 err = 0; 5874 spin_lock(&mddev->lock); 5875 /* bitmap enabled */ 5876 if (mddev->bitmap_info.file) { 5877 ptr = file_path(mddev->bitmap_info.file, file->pathname, 5878 sizeof(file->pathname)); 5879 if (IS_ERR(ptr)) 5880 err = PTR_ERR(ptr); 5881 else 5882 memmove(file->pathname, ptr, 5883 sizeof(file->pathname)-(ptr-file->pathname)); 5884 } 5885 spin_unlock(&mddev->lock); 5886 5887 if (err == 0 && 5888 copy_to_user(arg, file, sizeof(*file))) 5889 err = -EFAULT; 5890 5891 kfree(file); 5892 return err; 5893 } 5894 5895 static int get_disk_info(struct mddev *mddev, void __user * arg) 5896 { 5897 mdu_disk_info_t info; 5898 struct md_rdev *rdev; 5899 5900 if (copy_from_user(&info, arg, sizeof(info))) 5901 return -EFAULT; 5902 5903 rcu_read_lock(); 5904 rdev = md_find_rdev_nr_rcu(mddev, info.number); 5905 if (rdev) { 5906 info.major = MAJOR(rdev->bdev->bd_dev); 5907 info.minor = MINOR(rdev->bdev->bd_dev); 5908 info.raid_disk = rdev->raid_disk; 5909 info.state = 0; 5910 if (test_bit(Faulty, &rdev->flags)) 5911 info.state |= (1<<MD_DISK_FAULTY); 5912 else if (test_bit(In_sync, &rdev->flags)) { 5913 info.state |= (1<<MD_DISK_ACTIVE); 5914 info.state |= (1<<MD_DISK_SYNC); 5915 } 5916 if (test_bit(Journal, &rdev->flags)) 5917 info.state |= (1<<MD_DISK_JOURNAL); 5918 if (test_bit(WriteMostly, &rdev->flags)) 5919 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5920 } else { 5921 info.major = info.minor = 0; 5922 info.raid_disk = -1; 5923 info.state = (1<<MD_DISK_REMOVED); 5924 } 5925 rcu_read_unlock(); 5926 5927 if (copy_to_user(arg, &info, sizeof(info))) 5928 return -EFAULT; 5929 5930 return 0; 5931 } 5932 5933 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5934 { 5935 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5936 struct md_rdev *rdev; 5937 dev_t dev = MKDEV(info->major,info->minor); 5938 5939 if (mddev_is_clustered(mddev) && 5940 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 5941 pr_err("%s: Cannot add to clustered mddev.\n", 5942 mdname(mddev)); 5943 return -EINVAL; 5944 } 5945 5946 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5947 return -EOVERFLOW; 5948 5949 if (!mddev->raid_disks) { 5950 int err; 5951 /* expecting a device which has a superblock */ 5952 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5953 if (IS_ERR(rdev)) { 5954 printk(KERN_WARNING 5955 "md: md_import_device returned %ld\n", 5956 PTR_ERR(rdev)); 5957 return PTR_ERR(rdev); 5958 } 5959 if (!list_empty(&mddev->disks)) { 5960 struct md_rdev *rdev0 5961 = list_entry(mddev->disks.next, 5962 struct md_rdev, same_set); 5963 err = super_types[mddev->major_version] 5964 .load_super(rdev, rdev0, mddev->minor_version); 5965 if (err < 0) { 5966 printk(KERN_WARNING 5967 "md: %s has different UUID to %s\n", 5968 bdevname(rdev->bdev,b), 5969 bdevname(rdev0->bdev,b2)); 5970 export_rdev(rdev); 5971 return -EINVAL; 5972 } 5973 } 5974 err = bind_rdev_to_array(rdev, mddev); 5975 if (err) 5976 export_rdev(rdev); 5977 return err; 5978 } 5979 5980 /* 5981 * add_new_disk can be used once the array is assembled 5982 * to add "hot spares". They must already have a superblock 5983 * written 5984 */ 5985 if (mddev->pers) { 5986 int err; 5987 if (!mddev->pers->hot_add_disk) { 5988 printk(KERN_WARNING 5989 "%s: personality does not support diskops!\n", 5990 mdname(mddev)); 5991 return -EINVAL; 5992 } 5993 if (mddev->persistent) 5994 rdev = md_import_device(dev, mddev->major_version, 5995 mddev->minor_version); 5996 else 5997 rdev = md_import_device(dev, -1, -1); 5998 if (IS_ERR(rdev)) { 5999 printk(KERN_WARNING 6000 "md: md_import_device returned %ld\n", 6001 PTR_ERR(rdev)); 6002 return PTR_ERR(rdev); 6003 } 6004 /* set saved_raid_disk if appropriate */ 6005 if (!mddev->persistent) { 6006 if (info->state & (1<<MD_DISK_SYNC) && 6007 info->raid_disk < mddev->raid_disks) { 6008 rdev->raid_disk = info->raid_disk; 6009 set_bit(In_sync, &rdev->flags); 6010 clear_bit(Bitmap_sync, &rdev->flags); 6011 } else 6012 rdev->raid_disk = -1; 6013 rdev->saved_raid_disk = rdev->raid_disk; 6014 } else 6015 super_types[mddev->major_version]. 6016 validate_super(mddev, rdev); 6017 if ((info->state & (1<<MD_DISK_SYNC)) && 6018 rdev->raid_disk != info->raid_disk) { 6019 /* This was a hot-add request, but events doesn't 6020 * match, so reject it. 6021 */ 6022 export_rdev(rdev); 6023 return -EINVAL; 6024 } 6025 6026 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6027 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6028 set_bit(WriteMostly, &rdev->flags); 6029 else 6030 clear_bit(WriteMostly, &rdev->flags); 6031 6032 if (info->state & (1<<MD_DISK_JOURNAL)) 6033 set_bit(Journal, &rdev->flags); 6034 /* 6035 * check whether the device shows up in other nodes 6036 */ 6037 if (mddev_is_clustered(mddev)) { 6038 if (info->state & (1 << MD_DISK_CANDIDATE)) 6039 set_bit(Candidate, &rdev->flags); 6040 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6041 /* --add initiated by this node */ 6042 err = md_cluster_ops->add_new_disk(mddev, rdev); 6043 if (err) { 6044 export_rdev(rdev); 6045 return err; 6046 } 6047 } 6048 } 6049 6050 rdev->raid_disk = -1; 6051 err = bind_rdev_to_array(rdev, mddev); 6052 6053 if (err) 6054 export_rdev(rdev); 6055 6056 if (mddev_is_clustered(mddev)) { 6057 if (info->state & (1 << MD_DISK_CANDIDATE)) 6058 md_cluster_ops->new_disk_ack(mddev, (err == 0)); 6059 else { 6060 if (err) 6061 md_cluster_ops->add_new_disk_cancel(mddev); 6062 else 6063 err = add_bound_rdev(rdev); 6064 } 6065 6066 } else if (!err) 6067 err = add_bound_rdev(rdev); 6068 6069 return err; 6070 } 6071 6072 /* otherwise, add_new_disk is only allowed 6073 * for major_version==0 superblocks 6074 */ 6075 if (mddev->major_version != 0) { 6076 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 6077 mdname(mddev)); 6078 return -EINVAL; 6079 } 6080 6081 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6082 int err; 6083 rdev = md_import_device(dev, -1, 0); 6084 if (IS_ERR(rdev)) { 6085 printk(KERN_WARNING 6086 "md: error, md_import_device() returned %ld\n", 6087 PTR_ERR(rdev)); 6088 return PTR_ERR(rdev); 6089 } 6090 rdev->desc_nr = info->number; 6091 if (info->raid_disk < mddev->raid_disks) 6092 rdev->raid_disk = info->raid_disk; 6093 else 6094 rdev->raid_disk = -1; 6095 6096 if (rdev->raid_disk < mddev->raid_disks) 6097 if (info->state & (1<<MD_DISK_SYNC)) 6098 set_bit(In_sync, &rdev->flags); 6099 6100 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6101 set_bit(WriteMostly, &rdev->flags); 6102 6103 if (!mddev->persistent) { 6104 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 6105 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6106 } else 6107 rdev->sb_start = calc_dev_sboffset(rdev); 6108 rdev->sectors = rdev->sb_start; 6109 6110 err = bind_rdev_to_array(rdev, mddev); 6111 if (err) { 6112 export_rdev(rdev); 6113 return err; 6114 } 6115 } 6116 6117 return 0; 6118 } 6119 6120 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6121 { 6122 char b[BDEVNAME_SIZE]; 6123 struct md_rdev *rdev; 6124 int ret = -1; 6125 6126 rdev = find_rdev(mddev, dev); 6127 if (!rdev) 6128 return -ENXIO; 6129 6130 if (mddev_is_clustered(mddev)) 6131 ret = md_cluster_ops->metadata_update_start(mddev); 6132 6133 if (rdev->raid_disk < 0) 6134 goto kick_rdev; 6135 6136 clear_bit(Blocked, &rdev->flags); 6137 remove_and_add_spares(mddev, rdev); 6138 6139 if (rdev->raid_disk >= 0) 6140 goto busy; 6141 6142 kick_rdev: 6143 if (mddev_is_clustered(mddev) && ret == 0) 6144 md_cluster_ops->remove_disk(mddev, rdev); 6145 6146 md_kick_rdev_from_array(rdev); 6147 md_update_sb(mddev, 1); 6148 md_new_event(mddev); 6149 6150 return 0; 6151 busy: 6152 if (mddev_is_clustered(mddev) && ret == 0) 6153 md_cluster_ops->metadata_update_cancel(mddev); 6154 6155 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 6156 bdevname(rdev->bdev,b), mdname(mddev)); 6157 return -EBUSY; 6158 } 6159 6160 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6161 { 6162 char b[BDEVNAME_SIZE]; 6163 int err; 6164 struct md_rdev *rdev; 6165 6166 if (!mddev->pers) 6167 return -ENODEV; 6168 6169 if (mddev->major_version != 0) { 6170 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 6171 " version-0 superblocks.\n", 6172 mdname(mddev)); 6173 return -EINVAL; 6174 } 6175 if (!mddev->pers->hot_add_disk) { 6176 printk(KERN_WARNING 6177 "%s: personality does not support diskops!\n", 6178 mdname(mddev)); 6179 return -EINVAL; 6180 } 6181 6182 rdev = md_import_device(dev, -1, 0); 6183 if (IS_ERR(rdev)) { 6184 printk(KERN_WARNING 6185 "md: error, md_import_device() returned %ld\n", 6186 PTR_ERR(rdev)); 6187 return -EINVAL; 6188 } 6189 6190 if (mddev->persistent) 6191 rdev->sb_start = calc_dev_sboffset(rdev); 6192 else 6193 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6194 6195 rdev->sectors = rdev->sb_start; 6196 6197 if (test_bit(Faulty, &rdev->flags)) { 6198 printk(KERN_WARNING 6199 "md: can not hot-add faulty %s disk to %s!\n", 6200 bdevname(rdev->bdev,b), mdname(mddev)); 6201 err = -EINVAL; 6202 goto abort_export; 6203 } 6204 6205 clear_bit(In_sync, &rdev->flags); 6206 rdev->desc_nr = -1; 6207 rdev->saved_raid_disk = -1; 6208 err = bind_rdev_to_array(rdev, mddev); 6209 if (err) 6210 goto abort_export; 6211 6212 /* 6213 * The rest should better be atomic, we can have disk failures 6214 * noticed in interrupt contexts ... 6215 */ 6216 6217 rdev->raid_disk = -1; 6218 6219 md_update_sb(mddev, 1); 6220 /* 6221 * Kick recovery, maybe this spare has to be added to the 6222 * array immediately. 6223 */ 6224 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6225 md_wakeup_thread(mddev->thread); 6226 md_new_event(mddev); 6227 return 0; 6228 6229 abort_export: 6230 export_rdev(rdev); 6231 return err; 6232 } 6233 6234 static int set_bitmap_file(struct mddev *mddev, int fd) 6235 { 6236 int err = 0; 6237 6238 if (mddev->pers) { 6239 if (!mddev->pers->quiesce || !mddev->thread) 6240 return -EBUSY; 6241 if (mddev->recovery || mddev->sync_thread) 6242 return -EBUSY; 6243 /* we should be able to change the bitmap.. */ 6244 } 6245 6246 if (fd >= 0) { 6247 struct inode *inode; 6248 struct file *f; 6249 6250 if (mddev->bitmap || mddev->bitmap_info.file) 6251 return -EEXIST; /* cannot add when bitmap is present */ 6252 f = fget(fd); 6253 6254 if (f == NULL) { 6255 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6256 mdname(mddev)); 6257 return -EBADF; 6258 } 6259 6260 inode = f->f_mapping->host; 6261 if (!S_ISREG(inode->i_mode)) { 6262 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6263 mdname(mddev)); 6264 err = -EBADF; 6265 } else if (!(f->f_mode & FMODE_WRITE)) { 6266 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6267 mdname(mddev)); 6268 err = -EBADF; 6269 } else if (atomic_read(&inode->i_writecount) != 1) { 6270 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6271 mdname(mddev)); 6272 err = -EBUSY; 6273 } 6274 if (err) { 6275 fput(f); 6276 return err; 6277 } 6278 mddev->bitmap_info.file = f; 6279 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6280 } else if (mddev->bitmap == NULL) 6281 return -ENOENT; /* cannot remove what isn't there */ 6282 err = 0; 6283 if (mddev->pers) { 6284 mddev->pers->quiesce(mddev, 1); 6285 if (fd >= 0) { 6286 struct bitmap *bitmap; 6287 6288 bitmap = bitmap_create(mddev, -1); 6289 if (!IS_ERR(bitmap)) { 6290 mddev->bitmap = bitmap; 6291 err = bitmap_load(mddev); 6292 } else 6293 err = PTR_ERR(bitmap); 6294 } 6295 if (fd < 0 || err) { 6296 bitmap_destroy(mddev); 6297 fd = -1; /* make sure to put the file */ 6298 } 6299 mddev->pers->quiesce(mddev, 0); 6300 } 6301 if (fd < 0) { 6302 struct file *f = mddev->bitmap_info.file; 6303 if (f) { 6304 spin_lock(&mddev->lock); 6305 mddev->bitmap_info.file = NULL; 6306 spin_unlock(&mddev->lock); 6307 fput(f); 6308 } 6309 } 6310 6311 return err; 6312 } 6313 6314 /* 6315 * set_array_info is used two different ways 6316 * The original usage is when creating a new array. 6317 * In this usage, raid_disks is > 0 and it together with 6318 * level, size, not_persistent,layout,chunksize determine the 6319 * shape of the array. 6320 * This will always create an array with a type-0.90.0 superblock. 6321 * The newer usage is when assembling an array. 6322 * In this case raid_disks will be 0, and the major_version field is 6323 * use to determine which style super-blocks are to be found on the devices. 6324 * The minor and patch _version numbers are also kept incase the 6325 * super_block handler wishes to interpret them. 6326 */ 6327 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6328 { 6329 6330 if (info->raid_disks == 0) { 6331 /* just setting version number for superblock loading */ 6332 if (info->major_version < 0 || 6333 info->major_version >= ARRAY_SIZE(super_types) || 6334 super_types[info->major_version].name == NULL) { 6335 /* maybe try to auto-load a module? */ 6336 printk(KERN_INFO 6337 "md: superblock version %d not known\n", 6338 info->major_version); 6339 return -EINVAL; 6340 } 6341 mddev->major_version = info->major_version; 6342 mddev->minor_version = info->minor_version; 6343 mddev->patch_version = info->patch_version; 6344 mddev->persistent = !info->not_persistent; 6345 /* ensure mddev_put doesn't delete this now that there 6346 * is some minimal configuration. 6347 */ 6348 mddev->ctime = get_seconds(); 6349 return 0; 6350 } 6351 mddev->major_version = MD_MAJOR_VERSION; 6352 mddev->minor_version = MD_MINOR_VERSION; 6353 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6354 mddev->ctime = get_seconds(); 6355 6356 mddev->level = info->level; 6357 mddev->clevel[0] = 0; 6358 mddev->dev_sectors = 2 * (sector_t)info->size; 6359 mddev->raid_disks = info->raid_disks; 6360 /* don't set md_minor, it is determined by which /dev/md* was 6361 * openned 6362 */ 6363 if (info->state & (1<<MD_SB_CLEAN)) 6364 mddev->recovery_cp = MaxSector; 6365 else 6366 mddev->recovery_cp = 0; 6367 mddev->persistent = ! info->not_persistent; 6368 mddev->external = 0; 6369 6370 mddev->layout = info->layout; 6371 mddev->chunk_sectors = info->chunk_size >> 9; 6372 6373 mddev->max_disks = MD_SB_DISKS; 6374 6375 if (mddev->persistent) 6376 mddev->flags = 0; 6377 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6378 6379 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6380 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6381 mddev->bitmap_info.offset = 0; 6382 6383 mddev->reshape_position = MaxSector; 6384 6385 /* 6386 * Generate a 128 bit UUID 6387 */ 6388 get_random_bytes(mddev->uuid, 16); 6389 6390 mddev->new_level = mddev->level; 6391 mddev->new_chunk_sectors = mddev->chunk_sectors; 6392 mddev->new_layout = mddev->layout; 6393 mddev->delta_disks = 0; 6394 mddev->reshape_backwards = 0; 6395 6396 return 0; 6397 } 6398 6399 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6400 { 6401 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6402 6403 if (mddev->external_size) 6404 return; 6405 6406 mddev->array_sectors = array_sectors; 6407 } 6408 EXPORT_SYMBOL(md_set_array_sectors); 6409 6410 static int update_size(struct mddev *mddev, sector_t num_sectors) 6411 { 6412 struct md_rdev *rdev; 6413 int rv; 6414 int fit = (num_sectors == 0); 6415 6416 if (mddev->pers->resize == NULL) 6417 return -EINVAL; 6418 /* The "num_sectors" is the number of sectors of each device that 6419 * is used. This can only make sense for arrays with redundancy. 6420 * linear and raid0 always use whatever space is available. We can only 6421 * consider changing this number if no resync or reconstruction is 6422 * happening, and if the new size is acceptable. It must fit before the 6423 * sb_start or, if that is <data_offset, it must fit before the size 6424 * of each device. If num_sectors is zero, we find the largest size 6425 * that fits. 6426 */ 6427 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6428 mddev->sync_thread) 6429 return -EBUSY; 6430 if (mddev->ro) 6431 return -EROFS; 6432 6433 rdev_for_each(rdev, mddev) { 6434 sector_t avail = rdev->sectors; 6435 6436 if (fit && (num_sectors == 0 || num_sectors > avail)) 6437 num_sectors = avail; 6438 if (avail < num_sectors) 6439 return -ENOSPC; 6440 } 6441 rv = mddev->pers->resize(mddev, num_sectors); 6442 if (!rv) 6443 revalidate_disk(mddev->gendisk); 6444 return rv; 6445 } 6446 6447 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6448 { 6449 int rv; 6450 struct md_rdev *rdev; 6451 /* change the number of raid disks */ 6452 if (mddev->pers->check_reshape == NULL) 6453 return -EINVAL; 6454 if (mddev->ro) 6455 return -EROFS; 6456 if (raid_disks <= 0 || 6457 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6458 return -EINVAL; 6459 if (mddev->sync_thread || 6460 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6461 mddev->reshape_position != MaxSector) 6462 return -EBUSY; 6463 6464 rdev_for_each(rdev, mddev) { 6465 if (mddev->raid_disks < raid_disks && 6466 rdev->data_offset < rdev->new_data_offset) 6467 return -EINVAL; 6468 if (mddev->raid_disks > raid_disks && 6469 rdev->data_offset > rdev->new_data_offset) 6470 return -EINVAL; 6471 } 6472 6473 mddev->delta_disks = raid_disks - mddev->raid_disks; 6474 if (mddev->delta_disks < 0) 6475 mddev->reshape_backwards = 1; 6476 else if (mddev->delta_disks > 0) 6477 mddev->reshape_backwards = 0; 6478 6479 rv = mddev->pers->check_reshape(mddev); 6480 if (rv < 0) { 6481 mddev->delta_disks = 0; 6482 mddev->reshape_backwards = 0; 6483 } 6484 return rv; 6485 } 6486 6487 /* 6488 * update_array_info is used to change the configuration of an 6489 * on-line array. 6490 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6491 * fields in the info are checked against the array. 6492 * Any differences that cannot be handled will cause an error. 6493 * Normally, only one change can be managed at a time. 6494 */ 6495 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6496 { 6497 int rv = 0; 6498 int cnt = 0; 6499 int state = 0; 6500 6501 /* calculate expected state,ignoring low bits */ 6502 if (mddev->bitmap && mddev->bitmap_info.offset) 6503 state |= (1 << MD_SB_BITMAP_PRESENT); 6504 6505 if (mddev->major_version != info->major_version || 6506 mddev->minor_version != info->minor_version || 6507 /* mddev->patch_version != info->patch_version || */ 6508 mddev->ctime != info->ctime || 6509 mddev->level != info->level || 6510 /* mddev->layout != info->layout || */ 6511 mddev->persistent != !info->not_persistent || 6512 mddev->chunk_sectors != info->chunk_size >> 9 || 6513 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6514 ((state^info->state) & 0xfffffe00) 6515 ) 6516 return -EINVAL; 6517 /* Check there is only one change */ 6518 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6519 cnt++; 6520 if (mddev->raid_disks != info->raid_disks) 6521 cnt++; 6522 if (mddev->layout != info->layout) 6523 cnt++; 6524 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6525 cnt++; 6526 if (cnt == 0) 6527 return 0; 6528 if (cnt > 1) 6529 return -EINVAL; 6530 6531 if (mddev->layout != info->layout) { 6532 /* Change layout 6533 * we don't need to do anything at the md level, the 6534 * personality will take care of it all. 6535 */ 6536 if (mddev->pers->check_reshape == NULL) 6537 return -EINVAL; 6538 else { 6539 mddev->new_layout = info->layout; 6540 rv = mddev->pers->check_reshape(mddev); 6541 if (rv) 6542 mddev->new_layout = mddev->layout; 6543 return rv; 6544 } 6545 } 6546 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6547 rv = update_size(mddev, (sector_t)info->size * 2); 6548 6549 if (mddev->raid_disks != info->raid_disks) 6550 rv = update_raid_disks(mddev, info->raid_disks); 6551 6552 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6553 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6554 rv = -EINVAL; 6555 goto err; 6556 } 6557 if (mddev->recovery || mddev->sync_thread) { 6558 rv = -EBUSY; 6559 goto err; 6560 } 6561 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6562 struct bitmap *bitmap; 6563 /* add the bitmap */ 6564 if (mddev->bitmap) { 6565 rv = -EEXIST; 6566 goto err; 6567 } 6568 if (mddev->bitmap_info.default_offset == 0) { 6569 rv = -EINVAL; 6570 goto err; 6571 } 6572 mddev->bitmap_info.offset = 6573 mddev->bitmap_info.default_offset; 6574 mddev->bitmap_info.space = 6575 mddev->bitmap_info.default_space; 6576 mddev->pers->quiesce(mddev, 1); 6577 bitmap = bitmap_create(mddev, -1); 6578 if (!IS_ERR(bitmap)) { 6579 mddev->bitmap = bitmap; 6580 rv = bitmap_load(mddev); 6581 } else 6582 rv = PTR_ERR(bitmap); 6583 if (rv) 6584 bitmap_destroy(mddev); 6585 mddev->pers->quiesce(mddev, 0); 6586 } else { 6587 /* remove the bitmap */ 6588 if (!mddev->bitmap) { 6589 rv = -ENOENT; 6590 goto err; 6591 } 6592 if (mddev->bitmap->storage.file) { 6593 rv = -EINVAL; 6594 goto err; 6595 } 6596 mddev->pers->quiesce(mddev, 1); 6597 bitmap_destroy(mddev); 6598 mddev->pers->quiesce(mddev, 0); 6599 mddev->bitmap_info.offset = 0; 6600 } 6601 } 6602 md_update_sb(mddev, 1); 6603 return rv; 6604 err: 6605 return rv; 6606 } 6607 6608 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6609 { 6610 struct md_rdev *rdev; 6611 int err = 0; 6612 6613 if (mddev->pers == NULL) 6614 return -ENODEV; 6615 6616 rcu_read_lock(); 6617 rdev = find_rdev_rcu(mddev, dev); 6618 if (!rdev) 6619 err = -ENODEV; 6620 else { 6621 md_error(mddev, rdev); 6622 if (!test_bit(Faulty, &rdev->flags)) 6623 err = -EBUSY; 6624 } 6625 rcu_read_unlock(); 6626 return err; 6627 } 6628 6629 /* 6630 * We have a problem here : there is no easy way to give a CHS 6631 * virtual geometry. We currently pretend that we have a 2 heads 6632 * 4 sectors (with a BIG number of cylinders...). This drives 6633 * dosfs just mad... ;-) 6634 */ 6635 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6636 { 6637 struct mddev *mddev = bdev->bd_disk->private_data; 6638 6639 geo->heads = 2; 6640 geo->sectors = 4; 6641 geo->cylinders = mddev->array_sectors / 8; 6642 return 0; 6643 } 6644 6645 static inline bool md_ioctl_valid(unsigned int cmd) 6646 { 6647 switch (cmd) { 6648 case ADD_NEW_DISK: 6649 case BLKROSET: 6650 case GET_ARRAY_INFO: 6651 case GET_BITMAP_FILE: 6652 case GET_DISK_INFO: 6653 case HOT_ADD_DISK: 6654 case HOT_REMOVE_DISK: 6655 case RAID_AUTORUN: 6656 case RAID_VERSION: 6657 case RESTART_ARRAY_RW: 6658 case RUN_ARRAY: 6659 case SET_ARRAY_INFO: 6660 case SET_BITMAP_FILE: 6661 case SET_DISK_FAULTY: 6662 case STOP_ARRAY: 6663 case STOP_ARRAY_RO: 6664 case CLUSTERED_DISK_NACK: 6665 return true; 6666 default: 6667 return false; 6668 } 6669 } 6670 6671 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6672 unsigned int cmd, unsigned long arg) 6673 { 6674 int err = 0; 6675 void __user *argp = (void __user *)arg; 6676 struct mddev *mddev = NULL; 6677 int ro; 6678 6679 if (!md_ioctl_valid(cmd)) 6680 return -ENOTTY; 6681 6682 switch (cmd) { 6683 case RAID_VERSION: 6684 case GET_ARRAY_INFO: 6685 case GET_DISK_INFO: 6686 break; 6687 default: 6688 if (!capable(CAP_SYS_ADMIN)) 6689 return -EACCES; 6690 } 6691 6692 /* 6693 * Commands dealing with the RAID driver but not any 6694 * particular array: 6695 */ 6696 switch (cmd) { 6697 case RAID_VERSION: 6698 err = get_version(argp); 6699 goto out; 6700 6701 #ifndef MODULE 6702 case RAID_AUTORUN: 6703 err = 0; 6704 autostart_arrays(arg); 6705 goto out; 6706 #endif 6707 default:; 6708 } 6709 6710 /* 6711 * Commands creating/starting a new array: 6712 */ 6713 6714 mddev = bdev->bd_disk->private_data; 6715 6716 if (!mddev) { 6717 BUG(); 6718 goto out; 6719 } 6720 6721 /* Some actions do not requires the mutex */ 6722 switch (cmd) { 6723 case GET_ARRAY_INFO: 6724 if (!mddev->raid_disks && !mddev->external) 6725 err = -ENODEV; 6726 else 6727 err = get_array_info(mddev, argp); 6728 goto out; 6729 6730 case GET_DISK_INFO: 6731 if (!mddev->raid_disks && !mddev->external) 6732 err = -ENODEV; 6733 else 6734 err = get_disk_info(mddev, argp); 6735 goto out; 6736 6737 case SET_DISK_FAULTY: 6738 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6739 goto out; 6740 6741 case GET_BITMAP_FILE: 6742 err = get_bitmap_file(mddev, argp); 6743 goto out; 6744 6745 } 6746 6747 if (cmd == ADD_NEW_DISK) 6748 /* need to ensure md_delayed_delete() has completed */ 6749 flush_workqueue(md_misc_wq); 6750 6751 if (cmd == HOT_REMOVE_DISK) 6752 /* need to ensure recovery thread has run */ 6753 wait_event_interruptible_timeout(mddev->sb_wait, 6754 !test_bit(MD_RECOVERY_NEEDED, 6755 &mddev->flags), 6756 msecs_to_jiffies(5000)); 6757 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6758 /* Need to flush page cache, and ensure no-one else opens 6759 * and writes 6760 */ 6761 mutex_lock(&mddev->open_mutex); 6762 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6763 mutex_unlock(&mddev->open_mutex); 6764 err = -EBUSY; 6765 goto out; 6766 } 6767 set_bit(MD_STILL_CLOSED, &mddev->flags); 6768 mutex_unlock(&mddev->open_mutex); 6769 sync_blockdev(bdev); 6770 } 6771 err = mddev_lock(mddev); 6772 if (err) { 6773 printk(KERN_INFO 6774 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6775 err, cmd); 6776 goto out; 6777 } 6778 6779 if (cmd == SET_ARRAY_INFO) { 6780 mdu_array_info_t info; 6781 if (!arg) 6782 memset(&info, 0, sizeof(info)); 6783 else if (copy_from_user(&info, argp, sizeof(info))) { 6784 err = -EFAULT; 6785 goto unlock; 6786 } 6787 if (mddev->pers) { 6788 err = update_array_info(mddev, &info); 6789 if (err) { 6790 printk(KERN_WARNING "md: couldn't update" 6791 " array info. %d\n", err); 6792 goto unlock; 6793 } 6794 goto unlock; 6795 } 6796 if (!list_empty(&mddev->disks)) { 6797 printk(KERN_WARNING 6798 "md: array %s already has disks!\n", 6799 mdname(mddev)); 6800 err = -EBUSY; 6801 goto unlock; 6802 } 6803 if (mddev->raid_disks) { 6804 printk(KERN_WARNING 6805 "md: array %s already initialised!\n", 6806 mdname(mddev)); 6807 err = -EBUSY; 6808 goto unlock; 6809 } 6810 err = set_array_info(mddev, &info); 6811 if (err) { 6812 printk(KERN_WARNING "md: couldn't set" 6813 " array info. %d\n", err); 6814 goto unlock; 6815 } 6816 goto unlock; 6817 } 6818 6819 /* 6820 * Commands querying/configuring an existing array: 6821 */ 6822 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6823 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6824 if ((!mddev->raid_disks && !mddev->external) 6825 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6826 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6827 && cmd != GET_BITMAP_FILE) { 6828 err = -ENODEV; 6829 goto unlock; 6830 } 6831 6832 /* 6833 * Commands even a read-only array can execute: 6834 */ 6835 switch (cmd) { 6836 case RESTART_ARRAY_RW: 6837 err = restart_array(mddev); 6838 goto unlock; 6839 6840 case STOP_ARRAY: 6841 err = do_md_stop(mddev, 0, bdev); 6842 goto unlock; 6843 6844 case STOP_ARRAY_RO: 6845 err = md_set_readonly(mddev, bdev); 6846 goto unlock; 6847 6848 case HOT_REMOVE_DISK: 6849 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6850 goto unlock; 6851 6852 case ADD_NEW_DISK: 6853 /* We can support ADD_NEW_DISK on read-only arrays 6854 * on if we are re-adding a preexisting device. 6855 * So require mddev->pers and MD_DISK_SYNC. 6856 */ 6857 if (mddev->pers) { 6858 mdu_disk_info_t info; 6859 if (copy_from_user(&info, argp, sizeof(info))) 6860 err = -EFAULT; 6861 else if (!(info.state & (1<<MD_DISK_SYNC))) 6862 /* Need to clear read-only for this */ 6863 break; 6864 else 6865 err = add_new_disk(mddev, &info); 6866 goto unlock; 6867 } 6868 break; 6869 6870 case BLKROSET: 6871 if (get_user(ro, (int __user *)(arg))) { 6872 err = -EFAULT; 6873 goto unlock; 6874 } 6875 err = -EINVAL; 6876 6877 /* if the bdev is going readonly the value of mddev->ro 6878 * does not matter, no writes are coming 6879 */ 6880 if (ro) 6881 goto unlock; 6882 6883 /* are we are already prepared for writes? */ 6884 if (mddev->ro != 1) 6885 goto unlock; 6886 6887 /* transitioning to readauto need only happen for 6888 * arrays that call md_write_start 6889 */ 6890 if (mddev->pers) { 6891 err = restart_array(mddev); 6892 if (err == 0) { 6893 mddev->ro = 2; 6894 set_disk_ro(mddev->gendisk, 0); 6895 } 6896 } 6897 goto unlock; 6898 } 6899 6900 /* 6901 * The remaining ioctls are changing the state of the 6902 * superblock, so we do not allow them on read-only arrays. 6903 */ 6904 if (mddev->ro && mddev->pers) { 6905 if (mddev->ro == 2) { 6906 mddev->ro = 0; 6907 sysfs_notify_dirent_safe(mddev->sysfs_state); 6908 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6909 /* mddev_unlock will wake thread */ 6910 /* If a device failed while we were read-only, we 6911 * need to make sure the metadata is updated now. 6912 */ 6913 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6914 mddev_unlock(mddev); 6915 wait_event(mddev->sb_wait, 6916 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6917 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6918 mddev_lock_nointr(mddev); 6919 } 6920 } else { 6921 err = -EROFS; 6922 goto unlock; 6923 } 6924 } 6925 6926 switch (cmd) { 6927 case ADD_NEW_DISK: 6928 { 6929 mdu_disk_info_t info; 6930 if (copy_from_user(&info, argp, sizeof(info))) 6931 err = -EFAULT; 6932 else 6933 err = add_new_disk(mddev, &info); 6934 goto unlock; 6935 } 6936 6937 case CLUSTERED_DISK_NACK: 6938 if (mddev_is_clustered(mddev)) 6939 md_cluster_ops->new_disk_ack(mddev, false); 6940 else 6941 err = -EINVAL; 6942 goto unlock; 6943 6944 case HOT_ADD_DISK: 6945 err = hot_add_disk(mddev, new_decode_dev(arg)); 6946 goto unlock; 6947 6948 case RUN_ARRAY: 6949 err = do_md_run(mddev); 6950 goto unlock; 6951 6952 case SET_BITMAP_FILE: 6953 err = set_bitmap_file(mddev, (int)arg); 6954 goto unlock; 6955 6956 default: 6957 err = -EINVAL; 6958 goto unlock; 6959 } 6960 6961 unlock: 6962 if (mddev->hold_active == UNTIL_IOCTL && 6963 err != -EINVAL) 6964 mddev->hold_active = 0; 6965 mddev_unlock(mddev); 6966 out: 6967 return err; 6968 } 6969 #ifdef CONFIG_COMPAT 6970 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6971 unsigned int cmd, unsigned long arg) 6972 { 6973 switch (cmd) { 6974 case HOT_REMOVE_DISK: 6975 case HOT_ADD_DISK: 6976 case SET_DISK_FAULTY: 6977 case SET_BITMAP_FILE: 6978 /* These take in integer arg, do not convert */ 6979 break; 6980 default: 6981 arg = (unsigned long)compat_ptr(arg); 6982 break; 6983 } 6984 6985 return md_ioctl(bdev, mode, cmd, arg); 6986 } 6987 #endif /* CONFIG_COMPAT */ 6988 6989 static int md_open(struct block_device *bdev, fmode_t mode) 6990 { 6991 /* 6992 * Succeed if we can lock the mddev, which confirms that 6993 * it isn't being stopped right now. 6994 */ 6995 struct mddev *mddev = mddev_find(bdev->bd_dev); 6996 int err; 6997 6998 if (!mddev) 6999 return -ENODEV; 7000 7001 if (mddev->gendisk != bdev->bd_disk) { 7002 /* we are racing with mddev_put which is discarding this 7003 * bd_disk. 7004 */ 7005 mddev_put(mddev); 7006 /* Wait until bdev->bd_disk is definitely gone */ 7007 flush_workqueue(md_misc_wq); 7008 /* Then retry the open from the top */ 7009 return -ERESTARTSYS; 7010 } 7011 BUG_ON(mddev != bdev->bd_disk->private_data); 7012 7013 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7014 goto out; 7015 7016 err = 0; 7017 atomic_inc(&mddev->openers); 7018 clear_bit(MD_STILL_CLOSED, &mddev->flags); 7019 mutex_unlock(&mddev->open_mutex); 7020 7021 check_disk_change(bdev); 7022 out: 7023 return err; 7024 } 7025 7026 static void md_release(struct gendisk *disk, fmode_t mode) 7027 { 7028 struct mddev *mddev = disk->private_data; 7029 7030 BUG_ON(!mddev); 7031 atomic_dec(&mddev->openers); 7032 mddev_put(mddev); 7033 } 7034 7035 static int md_media_changed(struct gendisk *disk) 7036 { 7037 struct mddev *mddev = disk->private_data; 7038 7039 return mddev->changed; 7040 } 7041 7042 static int md_revalidate(struct gendisk *disk) 7043 { 7044 struct mddev *mddev = disk->private_data; 7045 7046 mddev->changed = 0; 7047 return 0; 7048 } 7049 static const struct block_device_operations md_fops = 7050 { 7051 .owner = THIS_MODULE, 7052 .open = md_open, 7053 .release = md_release, 7054 .ioctl = md_ioctl, 7055 #ifdef CONFIG_COMPAT 7056 .compat_ioctl = md_compat_ioctl, 7057 #endif 7058 .getgeo = md_getgeo, 7059 .media_changed = md_media_changed, 7060 .revalidate_disk= md_revalidate, 7061 }; 7062 7063 static int md_thread(void *arg) 7064 { 7065 struct md_thread *thread = arg; 7066 7067 /* 7068 * md_thread is a 'system-thread', it's priority should be very 7069 * high. We avoid resource deadlocks individually in each 7070 * raid personality. (RAID5 does preallocation) We also use RR and 7071 * the very same RT priority as kswapd, thus we will never get 7072 * into a priority inversion deadlock. 7073 * 7074 * we definitely have to have equal or higher priority than 7075 * bdflush, otherwise bdflush will deadlock if there are too 7076 * many dirty RAID5 blocks. 7077 */ 7078 7079 allow_signal(SIGKILL); 7080 while (!kthread_should_stop()) { 7081 7082 /* We need to wait INTERRUPTIBLE so that 7083 * we don't add to the load-average. 7084 * That means we need to be sure no signals are 7085 * pending 7086 */ 7087 if (signal_pending(current)) 7088 flush_signals(current); 7089 7090 wait_event_interruptible_timeout 7091 (thread->wqueue, 7092 test_bit(THREAD_WAKEUP, &thread->flags) 7093 || kthread_should_stop(), 7094 thread->timeout); 7095 7096 clear_bit(THREAD_WAKEUP, &thread->flags); 7097 if (!kthread_should_stop()) 7098 thread->run(thread); 7099 } 7100 7101 return 0; 7102 } 7103 7104 void md_wakeup_thread(struct md_thread *thread) 7105 { 7106 if (thread) { 7107 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7108 set_bit(THREAD_WAKEUP, &thread->flags); 7109 wake_up(&thread->wqueue); 7110 } 7111 } 7112 EXPORT_SYMBOL(md_wakeup_thread); 7113 7114 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7115 struct mddev *mddev, const char *name) 7116 { 7117 struct md_thread *thread; 7118 7119 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7120 if (!thread) 7121 return NULL; 7122 7123 init_waitqueue_head(&thread->wqueue); 7124 7125 thread->run = run; 7126 thread->mddev = mddev; 7127 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7128 thread->tsk = kthread_run(md_thread, thread, 7129 "%s_%s", 7130 mdname(thread->mddev), 7131 name); 7132 if (IS_ERR(thread->tsk)) { 7133 kfree(thread); 7134 return NULL; 7135 } 7136 return thread; 7137 } 7138 EXPORT_SYMBOL(md_register_thread); 7139 7140 void md_unregister_thread(struct md_thread **threadp) 7141 { 7142 struct md_thread *thread = *threadp; 7143 if (!thread) 7144 return; 7145 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7146 /* Locking ensures that mddev_unlock does not wake_up a 7147 * non-existent thread 7148 */ 7149 spin_lock(&pers_lock); 7150 *threadp = NULL; 7151 spin_unlock(&pers_lock); 7152 7153 kthread_stop(thread->tsk); 7154 kfree(thread); 7155 } 7156 EXPORT_SYMBOL(md_unregister_thread); 7157 7158 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7159 { 7160 if (!rdev || test_bit(Faulty, &rdev->flags)) 7161 return; 7162 7163 if (!mddev->pers || !mddev->pers->error_handler) 7164 return; 7165 mddev->pers->error_handler(mddev,rdev); 7166 if (mddev->degraded) 7167 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7168 sysfs_notify_dirent_safe(rdev->sysfs_state); 7169 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7170 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7171 md_wakeup_thread(mddev->thread); 7172 if (mddev->event_work.func) 7173 queue_work(md_misc_wq, &mddev->event_work); 7174 md_new_event_inintr(mddev); 7175 } 7176 EXPORT_SYMBOL(md_error); 7177 7178 /* seq_file implementation /proc/mdstat */ 7179 7180 static void status_unused(struct seq_file *seq) 7181 { 7182 int i = 0; 7183 struct md_rdev *rdev; 7184 7185 seq_printf(seq, "unused devices: "); 7186 7187 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7188 char b[BDEVNAME_SIZE]; 7189 i++; 7190 seq_printf(seq, "%s ", 7191 bdevname(rdev->bdev,b)); 7192 } 7193 if (!i) 7194 seq_printf(seq, "<none>"); 7195 7196 seq_printf(seq, "\n"); 7197 } 7198 7199 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7200 { 7201 sector_t max_sectors, resync, res; 7202 unsigned long dt, db; 7203 sector_t rt; 7204 int scale; 7205 unsigned int per_milli; 7206 7207 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7208 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7209 max_sectors = mddev->resync_max_sectors; 7210 else 7211 max_sectors = mddev->dev_sectors; 7212 7213 resync = mddev->curr_resync; 7214 if (resync <= 3) { 7215 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7216 /* Still cleaning up */ 7217 resync = max_sectors; 7218 } else 7219 resync -= atomic_read(&mddev->recovery_active); 7220 7221 if (resync == 0) { 7222 if (mddev->recovery_cp < MaxSector) { 7223 seq_printf(seq, "\tresync=PENDING"); 7224 return 1; 7225 } 7226 return 0; 7227 } 7228 if (resync < 3) { 7229 seq_printf(seq, "\tresync=DELAYED"); 7230 return 1; 7231 } 7232 7233 WARN_ON(max_sectors == 0); 7234 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7235 * in a sector_t, and (max_sectors>>scale) will fit in a 7236 * u32, as those are the requirements for sector_div. 7237 * Thus 'scale' must be at least 10 7238 */ 7239 scale = 10; 7240 if (sizeof(sector_t) > sizeof(unsigned long)) { 7241 while ( max_sectors/2 > (1ULL<<(scale+32))) 7242 scale++; 7243 } 7244 res = (resync>>scale)*1000; 7245 sector_div(res, (u32)((max_sectors>>scale)+1)); 7246 7247 per_milli = res; 7248 { 7249 int i, x = per_milli/50, y = 20-x; 7250 seq_printf(seq, "["); 7251 for (i = 0; i < x; i++) 7252 seq_printf(seq, "="); 7253 seq_printf(seq, ">"); 7254 for (i = 0; i < y; i++) 7255 seq_printf(seq, "."); 7256 seq_printf(seq, "] "); 7257 } 7258 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7259 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7260 "reshape" : 7261 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7262 "check" : 7263 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7264 "resync" : "recovery"))), 7265 per_milli/10, per_milli % 10, 7266 (unsigned long long) resync/2, 7267 (unsigned long long) max_sectors/2); 7268 7269 /* 7270 * dt: time from mark until now 7271 * db: blocks written from mark until now 7272 * rt: remaining time 7273 * 7274 * rt is a sector_t, so could be 32bit or 64bit. 7275 * So we divide before multiply in case it is 32bit and close 7276 * to the limit. 7277 * We scale the divisor (db) by 32 to avoid losing precision 7278 * near the end of resync when the number of remaining sectors 7279 * is close to 'db'. 7280 * We then divide rt by 32 after multiplying by db to compensate. 7281 * The '+1' avoids division by zero if db is very small. 7282 */ 7283 dt = ((jiffies - mddev->resync_mark) / HZ); 7284 if (!dt) dt++; 7285 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7286 - mddev->resync_mark_cnt; 7287 7288 rt = max_sectors - resync; /* number of remaining sectors */ 7289 sector_div(rt, db/32+1); 7290 rt *= dt; 7291 rt >>= 5; 7292 7293 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7294 ((unsigned long)rt % 60)/6); 7295 7296 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7297 return 1; 7298 } 7299 7300 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7301 { 7302 struct list_head *tmp; 7303 loff_t l = *pos; 7304 struct mddev *mddev; 7305 7306 if (l >= 0x10000) 7307 return NULL; 7308 if (!l--) 7309 /* header */ 7310 return (void*)1; 7311 7312 spin_lock(&all_mddevs_lock); 7313 list_for_each(tmp,&all_mddevs) 7314 if (!l--) { 7315 mddev = list_entry(tmp, struct mddev, all_mddevs); 7316 mddev_get(mddev); 7317 spin_unlock(&all_mddevs_lock); 7318 return mddev; 7319 } 7320 spin_unlock(&all_mddevs_lock); 7321 if (!l--) 7322 return (void*)2;/* tail */ 7323 return NULL; 7324 } 7325 7326 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7327 { 7328 struct list_head *tmp; 7329 struct mddev *next_mddev, *mddev = v; 7330 7331 ++*pos; 7332 if (v == (void*)2) 7333 return NULL; 7334 7335 spin_lock(&all_mddevs_lock); 7336 if (v == (void*)1) 7337 tmp = all_mddevs.next; 7338 else 7339 tmp = mddev->all_mddevs.next; 7340 if (tmp != &all_mddevs) 7341 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7342 else { 7343 next_mddev = (void*)2; 7344 *pos = 0x10000; 7345 } 7346 spin_unlock(&all_mddevs_lock); 7347 7348 if (v != (void*)1) 7349 mddev_put(mddev); 7350 return next_mddev; 7351 7352 } 7353 7354 static void md_seq_stop(struct seq_file *seq, void *v) 7355 { 7356 struct mddev *mddev = v; 7357 7358 if (mddev && v != (void*)1 && v != (void*)2) 7359 mddev_put(mddev); 7360 } 7361 7362 static int md_seq_show(struct seq_file *seq, void *v) 7363 { 7364 struct mddev *mddev = v; 7365 sector_t sectors; 7366 struct md_rdev *rdev; 7367 7368 if (v == (void*)1) { 7369 struct md_personality *pers; 7370 seq_printf(seq, "Personalities : "); 7371 spin_lock(&pers_lock); 7372 list_for_each_entry(pers, &pers_list, list) 7373 seq_printf(seq, "[%s] ", pers->name); 7374 7375 spin_unlock(&pers_lock); 7376 seq_printf(seq, "\n"); 7377 seq->poll_event = atomic_read(&md_event_count); 7378 return 0; 7379 } 7380 if (v == (void*)2) { 7381 status_unused(seq); 7382 return 0; 7383 } 7384 7385 spin_lock(&mddev->lock); 7386 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7387 seq_printf(seq, "%s : %sactive", mdname(mddev), 7388 mddev->pers ? "" : "in"); 7389 if (mddev->pers) { 7390 if (mddev->ro==1) 7391 seq_printf(seq, " (read-only)"); 7392 if (mddev->ro==2) 7393 seq_printf(seq, " (auto-read-only)"); 7394 seq_printf(seq, " %s", mddev->pers->name); 7395 } 7396 7397 sectors = 0; 7398 rcu_read_lock(); 7399 rdev_for_each_rcu(rdev, mddev) { 7400 char b[BDEVNAME_SIZE]; 7401 seq_printf(seq, " %s[%d]", 7402 bdevname(rdev->bdev,b), rdev->desc_nr); 7403 if (test_bit(WriteMostly, &rdev->flags)) 7404 seq_printf(seq, "(W)"); 7405 if (test_bit(Journal, &rdev->flags)) 7406 seq_printf(seq, "(J)"); 7407 if (test_bit(Faulty, &rdev->flags)) { 7408 seq_printf(seq, "(F)"); 7409 continue; 7410 } 7411 if (rdev->raid_disk < 0) 7412 seq_printf(seq, "(S)"); /* spare */ 7413 if (test_bit(Replacement, &rdev->flags)) 7414 seq_printf(seq, "(R)"); 7415 sectors += rdev->sectors; 7416 } 7417 rcu_read_unlock(); 7418 7419 if (!list_empty(&mddev->disks)) { 7420 if (mddev->pers) 7421 seq_printf(seq, "\n %llu blocks", 7422 (unsigned long long) 7423 mddev->array_sectors / 2); 7424 else 7425 seq_printf(seq, "\n %llu blocks", 7426 (unsigned long long)sectors / 2); 7427 } 7428 if (mddev->persistent) { 7429 if (mddev->major_version != 0 || 7430 mddev->minor_version != 90) { 7431 seq_printf(seq," super %d.%d", 7432 mddev->major_version, 7433 mddev->minor_version); 7434 } 7435 } else if (mddev->external) 7436 seq_printf(seq, " super external:%s", 7437 mddev->metadata_type); 7438 else 7439 seq_printf(seq, " super non-persistent"); 7440 7441 if (mddev->pers) { 7442 mddev->pers->status(seq, mddev); 7443 seq_printf(seq, "\n "); 7444 if (mddev->pers->sync_request) { 7445 if (status_resync(seq, mddev)) 7446 seq_printf(seq, "\n "); 7447 } 7448 } else 7449 seq_printf(seq, "\n "); 7450 7451 bitmap_status(seq, mddev->bitmap); 7452 7453 seq_printf(seq, "\n"); 7454 } 7455 spin_unlock(&mddev->lock); 7456 7457 return 0; 7458 } 7459 7460 static const struct seq_operations md_seq_ops = { 7461 .start = md_seq_start, 7462 .next = md_seq_next, 7463 .stop = md_seq_stop, 7464 .show = md_seq_show, 7465 }; 7466 7467 static int md_seq_open(struct inode *inode, struct file *file) 7468 { 7469 struct seq_file *seq; 7470 int error; 7471 7472 error = seq_open(file, &md_seq_ops); 7473 if (error) 7474 return error; 7475 7476 seq = file->private_data; 7477 seq->poll_event = atomic_read(&md_event_count); 7478 return error; 7479 } 7480 7481 static int md_unloading; 7482 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7483 { 7484 struct seq_file *seq = filp->private_data; 7485 int mask; 7486 7487 if (md_unloading) 7488 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7489 poll_wait(filp, &md_event_waiters, wait); 7490 7491 /* always allow read */ 7492 mask = POLLIN | POLLRDNORM; 7493 7494 if (seq->poll_event != atomic_read(&md_event_count)) 7495 mask |= POLLERR | POLLPRI; 7496 return mask; 7497 } 7498 7499 static const struct file_operations md_seq_fops = { 7500 .owner = THIS_MODULE, 7501 .open = md_seq_open, 7502 .read = seq_read, 7503 .llseek = seq_lseek, 7504 .release = seq_release_private, 7505 .poll = mdstat_poll, 7506 }; 7507 7508 int register_md_personality(struct md_personality *p) 7509 { 7510 printk(KERN_INFO "md: %s personality registered for level %d\n", 7511 p->name, p->level); 7512 spin_lock(&pers_lock); 7513 list_add_tail(&p->list, &pers_list); 7514 spin_unlock(&pers_lock); 7515 return 0; 7516 } 7517 EXPORT_SYMBOL(register_md_personality); 7518 7519 int unregister_md_personality(struct md_personality *p) 7520 { 7521 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7522 spin_lock(&pers_lock); 7523 list_del_init(&p->list); 7524 spin_unlock(&pers_lock); 7525 return 0; 7526 } 7527 EXPORT_SYMBOL(unregister_md_personality); 7528 7529 int register_md_cluster_operations(struct md_cluster_operations *ops, 7530 struct module *module) 7531 { 7532 int ret = 0; 7533 spin_lock(&pers_lock); 7534 if (md_cluster_ops != NULL) 7535 ret = -EALREADY; 7536 else { 7537 md_cluster_ops = ops; 7538 md_cluster_mod = module; 7539 } 7540 spin_unlock(&pers_lock); 7541 return ret; 7542 } 7543 EXPORT_SYMBOL(register_md_cluster_operations); 7544 7545 int unregister_md_cluster_operations(void) 7546 { 7547 spin_lock(&pers_lock); 7548 md_cluster_ops = NULL; 7549 spin_unlock(&pers_lock); 7550 return 0; 7551 } 7552 EXPORT_SYMBOL(unregister_md_cluster_operations); 7553 7554 int md_setup_cluster(struct mddev *mddev, int nodes) 7555 { 7556 int err; 7557 7558 err = request_module("md-cluster"); 7559 if (err) { 7560 pr_err("md-cluster module not found.\n"); 7561 return -ENOENT; 7562 } 7563 7564 spin_lock(&pers_lock); 7565 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7566 spin_unlock(&pers_lock); 7567 return -ENOENT; 7568 } 7569 spin_unlock(&pers_lock); 7570 7571 return md_cluster_ops->join(mddev, nodes); 7572 } 7573 7574 void md_cluster_stop(struct mddev *mddev) 7575 { 7576 if (!md_cluster_ops) 7577 return; 7578 md_cluster_ops->leave(mddev); 7579 module_put(md_cluster_mod); 7580 } 7581 7582 static int is_mddev_idle(struct mddev *mddev, int init) 7583 { 7584 struct md_rdev *rdev; 7585 int idle; 7586 int curr_events; 7587 7588 idle = 1; 7589 rcu_read_lock(); 7590 rdev_for_each_rcu(rdev, mddev) { 7591 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7592 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7593 (int)part_stat_read(&disk->part0, sectors[1]) - 7594 atomic_read(&disk->sync_io); 7595 /* sync IO will cause sync_io to increase before the disk_stats 7596 * as sync_io is counted when a request starts, and 7597 * disk_stats is counted when it completes. 7598 * So resync activity will cause curr_events to be smaller than 7599 * when there was no such activity. 7600 * non-sync IO will cause disk_stat to increase without 7601 * increasing sync_io so curr_events will (eventually) 7602 * be larger than it was before. Once it becomes 7603 * substantially larger, the test below will cause 7604 * the array to appear non-idle, and resync will slow 7605 * down. 7606 * If there is a lot of outstanding resync activity when 7607 * we set last_event to curr_events, then all that activity 7608 * completing might cause the array to appear non-idle 7609 * and resync will be slowed down even though there might 7610 * not have been non-resync activity. This will only 7611 * happen once though. 'last_events' will soon reflect 7612 * the state where there is little or no outstanding 7613 * resync requests, and further resync activity will 7614 * always make curr_events less than last_events. 7615 * 7616 */ 7617 if (init || curr_events - rdev->last_events > 64) { 7618 rdev->last_events = curr_events; 7619 idle = 0; 7620 } 7621 } 7622 rcu_read_unlock(); 7623 return idle; 7624 } 7625 7626 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7627 { 7628 /* another "blocks" (512byte) blocks have been synced */ 7629 atomic_sub(blocks, &mddev->recovery_active); 7630 wake_up(&mddev->recovery_wait); 7631 if (!ok) { 7632 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7633 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7634 md_wakeup_thread(mddev->thread); 7635 // stop recovery, signal do_sync .... 7636 } 7637 } 7638 EXPORT_SYMBOL(md_done_sync); 7639 7640 /* md_write_start(mddev, bi) 7641 * If we need to update some array metadata (e.g. 'active' flag 7642 * in superblock) before writing, schedule a superblock update 7643 * and wait for it to complete. 7644 */ 7645 void md_write_start(struct mddev *mddev, struct bio *bi) 7646 { 7647 int did_change = 0; 7648 if (bio_data_dir(bi) != WRITE) 7649 return; 7650 7651 BUG_ON(mddev->ro == 1); 7652 if (mddev->ro == 2) { 7653 /* need to switch to read/write */ 7654 mddev->ro = 0; 7655 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7656 md_wakeup_thread(mddev->thread); 7657 md_wakeup_thread(mddev->sync_thread); 7658 did_change = 1; 7659 } 7660 atomic_inc(&mddev->writes_pending); 7661 if (mddev->safemode == 1) 7662 mddev->safemode = 0; 7663 if (mddev->in_sync) { 7664 spin_lock(&mddev->lock); 7665 if (mddev->in_sync) { 7666 mddev->in_sync = 0; 7667 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7668 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7669 md_wakeup_thread(mddev->thread); 7670 did_change = 1; 7671 } 7672 spin_unlock(&mddev->lock); 7673 } 7674 if (did_change) 7675 sysfs_notify_dirent_safe(mddev->sysfs_state); 7676 wait_event(mddev->sb_wait, 7677 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7678 } 7679 EXPORT_SYMBOL(md_write_start); 7680 7681 void md_write_end(struct mddev *mddev) 7682 { 7683 if (atomic_dec_and_test(&mddev->writes_pending)) { 7684 if (mddev->safemode == 2) 7685 md_wakeup_thread(mddev->thread); 7686 else if (mddev->safemode_delay) 7687 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7688 } 7689 } 7690 EXPORT_SYMBOL(md_write_end); 7691 7692 /* md_allow_write(mddev) 7693 * Calling this ensures that the array is marked 'active' so that writes 7694 * may proceed without blocking. It is important to call this before 7695 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7696 * Must be called with mddev_lock held. 7697 * 7698 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7699 * is dropped, so return -EAGAIN after notifying userspace. 7700 */ 7701 int md_allow_write(struct mddev *mddev) 7702 { 7703 if (!mddev->pers) 7704 return 0; 7705 if (mddev->ro) 7706 return 0; 7707 if (!mddev->pers->sync_request) 7708 return 0; 7709 7710 spin_lock(&mddev->lock); 7711 if (mddev->in_sync) { 7712 mddev->in_sync = 0; 7713 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7714 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7715 if (mddev->safemode_delay && 7716 mddev->safemode == 0) 7717 mddev->safemode = 1; 7718 spin_unlock(&mddev->lock); 7719 md_update_sb(mddev, 0); 7720 sysfs_notify_dirent_safe(mddev->sysfs_state); 7721 } else 7722 spin_unlock(&mddev->lock); 7723 7724 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7725 return -EAGAIN; 7726 else 7727 return 0; 7728 } 7729 EXPORT_SYMBOL_GPL(md_allow_write); 7730 7731 #define SYNC_MARKS 10 7732 #define SYNC_MARK_STEP (3*HZ) 7733 #define UPDATE_FREQUENCY (5*60*HZ) 7734 void md_do_sync(struct md_thread *thread) 7735 { 7736 struct mddev *mddev = thread->mddev; 7737 struct mddev *mddev2; 7738 unsigned int currspeed = 0, 7739 window; 7740 sector_t max_sectors,j, io_sectors, recovery_done; 7741 unsigned long mark[SYNC_MARKS]; 7742 unsigned long update_time; 7743 sector_t mark_cnt[SYNC_MARKS]; 7744 int last_mark,m; 7745 struct list_head *tmp; 7746 sector_t last_check; 7747 int skipped = 0; 7748 struct md_rdev *rdev; 7749 char *desc, *action = NULL; 7750 struct blk_plug plug; 7751 bool cluster_resync_finished = false; 7752 7753 /* just incase thread restarts... */ 7754 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7755 return; 7756 if (mddev->ro) {/* never try to sync a read-only array */ 7757 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7758 return; 7759 } 7760 7761 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7762 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7763 desc = "data-check"; 7764 action = "check"; 7765 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7766 desc = "requested-resync"; 7767 action = "repair"; 7768 } else 7769 desc = "resync"; 7770 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7771 desc = "reshape"; 7772 else 7773 desc = "recovery"; 7774 7775 mddev->last_sync_action = action ?: desc; 7776 7777 /* we overload curr_resync somewhat here. 7778 * 0 == not engaged in resync at all 7779 * 2 == checking that there is no conflict with another sync 7780 * 1 == like 2, but have yielded to allow conflicting resync to 7781 * commense 7782 * other == active in resync - this many blocks 7783 * 7784 * Before starting a resync we must have set curr_resync to 7785 * 2, and then checked that every "conflicting" array has curr_resync 7786 * less than ours. When we find one that is the same or higher 7787 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7788 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7789 * This will mean we have to start checking from the beginning again. 7790 * 7791 */ 7792 7793 do { 7794 mddev->curr_resync = 2; 7795 7796 try_again: 7797 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7798 goto skip; 7799 for_each_mddev(mddev2, tmp) { 7800 if (mddev2 == mddev) 7801 continue; 7802 if (!mddev->parallel_resync 7803 && mddev2->curr_resync 7804 && match_mddev_units(mddev, mddev2)) { 7805 DEFINE_WAIT(wq); 7806 if (mddev < mddev2 && mddev->curr_resync == 2) { 7807 /* arbitrarily yield */ 7808 mddev->curr_resync = 1; 7809 wake_up(&resync_wait); 7810 } 7811 if (mddev > mddev2 && mddev->curr_resync == 1) 7812 /* no need to wait here, we can wait the next 7813 * time 'round when curr_resync == 2 7814 */ 7815 continue; 7816 /* We need to wait 'interruptible' so as not to 7817 * contribute to the load average, and not to 7818 * be caught by 'softlockup' 7819 */ 7820 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7821 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7822 mddev2->curr_resync >= mddev->curr_resync) { 7823 printk(KERN_INFO "md: delaying %s of %s" 7824 " until %s has finished (they" 7825 " share one or more physical units)\n", 7826 desc, mdname(mddev), mdname(mddev2)); 7827 mddev_put(mddev2); 7828 if (signal_pending(current)) 7829 flush_signals(current); 7830 schedule(); 7831 finish_wait(&resync_wait, &wq); 7832 goto try_again; 7833 } 7834 finish_wait(&resync_wait, &wq); 7835 } 7836 } 7837 } while (mddev->curr_resync < 2); 7838 7839 j = 0; 7840 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7841 /* resync follows the size requested by the personality, 7842 * which defaults to physical size, but can be virtual size 7843 */ 7844 max_sectors = mddev->resync_max_sectors; 7845 atomic64_set(&mddev->resync_mismatches, 0); 7846 /* we don't use the checkpoint if there's a bitmap */ 7847 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7848 j = mddev->resync_min; 7849 else if (!mddev->bitmap) 7850 j = mddev->recovery_cp; 7851 7852 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7853 max_sectors = mddev->resync_max_sectors; 7854 else { 7855 /* recovery follows the physical size of devices */ 7856 max_sectors = mddev->dev_sectors; 7857 j = MaxSector; 7858 rcu_read_lock(); 7859 rdev_for_each_rcu(rdev, mddev) 7860 if (rdev->raid_disk >= 0 && 7861 !test_bit(Journal, &rdev->flags) && 7862 !test_bit(Faulty, &rdev->flags) && 7863 !test_bit(In_sync, &rdev->flags) && 7864 rdev->recovery_offset < j) 7865 j = rdev->recovery_offset; 7866 rcu_read_unlock(); 7867 7868 /* If there is a bitmap, we need to make sure all 7869 * writes that started before we added a spare 7870 * complete before we start doing a recovery. 7871 * Otherwise the write might complete and (via 7872 * bitmap_endwrite) set a bit in the bitmap after the 7873 * recovery has checked that bit and skipped that 7874 * region. 7875 */ 7876 if (mddev->bitmap) { 7877 mddev->pers->quiesce(mddev, 1); 7878 mddev->pers->quiesce(mddev, 0); 7879 } 7880 } 7881 7882 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7883 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7884 " %d KB/sec/disk.\n", speed_min(mddev)); 7885 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7886 "(but not more than %d KB/sec) for %s.\n", 7887 speed_max(mddev), desc); 7888 7889 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7890 7891 io_sectors = 0; 7892 for (m = 0; m < SYNC_MARKS; m++) { 7893 mark[m] = jiffies; 7894 mark_cnt[m] = io_sectors; 7895 } 7896 last_mark = 0; 7897 mddev->resync_mark = mark[last_mark]; 7898 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7899 7900 /* 7901 * Tune reconstruction: 7902 */ 7903 window = 32*(PAGE_SIZE/512); 7904 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7905 window/2, (unsigned long long)max_sectors/2); 7906 7907 atomic_set(&mddev->recovery_active, 0); 7908 last_check = 0; 7909 7910 if (j>2) { 7911 printk(KERN_INFO 7912 "md: resuming %s of %s from checkpoint.\n", 7913 desc, mdname(mddev)); 7914 mddev->curr_resync = j; 7915 } else 7916 mddev->curr_resync = 3; /* no longer delayed */ 7917 mddev->curr_resync_completed = j; 7918 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7919 md_new_event(mddev); 7920 update_time = jiffies; 7921 7922 blk_start_plug(&plug); 7923 while (j < max_sectors) { 7924 sector_t sectors; 7925 7926 skipped = 0; 7927 7928 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7929 ((mddev->curr_resync > mddev->curr_resync_completed && 7930 (mddev->curr_resync - mddev->curr_resync_completed) 7931 > (max_sectors >> 4)) || 7932 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7933 (j - mddev->curr_resync_completed)*2 7934 >= mddev->resync_max - mddev->curr_resync_completed || 7935 mddev->curr_resync_completed > mddev->resync_max 7936 )) { 7937 /* time to update curr_resync_completed */ 7938 wait_event(mddev->recovery_wait, 7939 atomic_read(&mddev->recovery_active) == 0); 7940 mddev->curr_resync_completed = j; 7941 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7942 j > mddev->recovery_cp) 7943 mddev->recovery_cp = j; 7944 update_time = jiffies; 7945 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7946 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7947 } 7948 7949 while (j >= mddev->resync_max && 7950 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7951 /* As this condition is controlled by user-space, 7952 * we can block indefinitely, so use '_interruptible' 7953 * to avoid triggering warnings. 7954 */ 7955 flush_signals(current); /* just in case */ 7956 wait_event_interruptible(mddev->recovery_wait, 7957 mddev->resync_max > j 7958 || test_bit(MD_RECOVERY_INTR, 7959 &mddev->recovery)); 7960 } 7961 7962 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7963 break; 7964 7965 sectors = mddev->pers->sync_request(mddev, j, &skipped); 7966 if (sectors == 0) { 7967 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7968 break; 7969 } 7970 7971 if (!skipped) { /* actual IO requested */ 7972 io_sectors += sectors; 7973 atomic_add(sectors, &mddev->recovery_active); 7974 } 7975 7976 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7977 break; 7978 7979 j += sectors; 7980 if (j > max_sectors) 7981 /* when skipping, extra large numbers can be returned. */ 7982 j = max_sectors; 7983 if (j > 2) 7984 mddev->curr_resync = j; 7985 mddev->curr_mark_cnt = io_sectors; 7986 if (last_check == 0) 7987 /* this is the earliest that rebuild will be 7988 * visible in /proc/mdstat 7989 */ 7990 md_new_event(mddev); 7991 7992 if (last_check + window > io_sectors || j == max_sectors) 7993 continue; 7994 7995 last_check = io_sectors; 7996 repeat: 7997 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7998 /* step marks */ 7999 int next = (last_mark+1) % SYNC_MARKS; 8000 8001 mddev->resync_mark = mark[next]; 8002 mddev->resync_mark_cnt = mark_cnt[next]; 8003 mark[next] = jiffies; 8004 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8005 last_mark = next; 8006 } 8007 8008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8009 break; 8010 8011 /* 8012 * this loop exits only if either when we are slower than 8013 * the 'hard' speed limit, or the system was IO-idle for 8014 * a jiffy. 8015 * the system might be non-idle CPU-wise, but we only care 8016 * about not overloading the IO subsystem. (things like an 8017 * e2fsck being done on the RAID array should execute fast) 8018 */ 8019 cond_resched(); 8020 8021 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8022 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8023 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8024 8025 if (currspeed > speed_min(mddev)) { 8026 if (currspeed > speed_max(mddev)) { 8027 msleep(500); 8028 goto repeat; 8029 } 8030 if (!is_mddev_idle(mddev, 0)) { 8031 /* 8032 * Give other IO more of a chance. 8033 * The faster the devices, the less we wait. 8034 */ 8035 wait_event(mddev->recovery_wait, 8036 !atomic_read(&mddev->recovery_active)); 8037 } 8038 } 8039 } 8040 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 8041 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8042 ? "interrupted" : "done"); 8043 /* 8044 * this also signals 'finished resyncing' to md_stop 8045 */ 8046 blk_finish_plug(&plug); 8047 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8048 8049 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8050 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8051 mddev->curr_resync > 2) { 8052 mddev->curr_resync_completed = mddev->curr_resync; 8053 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8054 } 8055 /* tell personality and other nodes that we are finished */ 8056 if (mddev_is_clustered(mddev)) { 8057 md_cluster_ops->resync_finish(mddev); 8058 cluster_resync_finished = true; 8059 } 8060 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8061 8062 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8063 mddev->curr_resync > 2) { 8064 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8065 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8066 if (mddev->curr_resync >= mddev->recovery_cp) { 8067 printk(KERN_INFO 8068 "md: checkpointing %s of %s.\n", 8069 desc, mdname(mddev)); 8070 if (test_bit(MD_RECOVERY_ERROR, 8071 &mddev->recovery)) 8072 mddev->recovery_cp = 8073 mddev->curr_resync_completed; 8074 else 8075 mddev->recovery_cp = 8076 mddev->curr_resync; 8077 } 8078 } else 8079 mddev->recovery_cp = MaxSector; 8080 } else { 8081 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8082 mddev->curr_resync = MaxSector; 8083 rcu_read_lock(); 8084 rdev_for_each_rcu(rdev, mddev) 8085 if (rdev->raid_disk >= 0 && 8086 mddev->delta_disks >= 0 && 8087 !test_bit(Journal, &rdev->flags) && 8088 !test_bit(Faulty, &rdev->flags) && 8089 !test_bit(In_sync, &rdev->flags) && 8090 rdev->recovery_offset < mddev->curr_resync) 8091 rdev->recovery_offset = mddev->curr_resync; 8092 rcu_read_unlock(); 8093 } 8094 } 8095 skip: 8096 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8097 8098 if (mddev_is_clustered(mddev) && 8099 test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8100 !cluster_resync_finished) 8101 md_cluster_ops->resync_finish(mddev); 8102 8103 spin_lock(&mddev->lock); 8104 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8105 /* We completed so min/max setting can be forgotten if used. */ 8106 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8107 mddev->resync_min = 0; 8108 mddev->resync_max = MaxSector; 8109 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8110 mddev->resync_min = mddev->curr_resync_completed; 8111 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8112 mddev->curr_resync = 0; 8113 spin_unlock(&mddev->lock); 8114 8115 wake_up(&resync_wait); 8116 md_wakeup_thread(mddev->thread); 8117 return; 8118 } 8119 EXPORT_SYMBOL_GPL(md_do_sync); 8120 8121 static int remove_and_add_spares(struct mddev *mddev, 8122 struct md_rdev *this) 8123 { 8124 struct md_rdev *rdev; 8125 int spares = 0; 8126 int removed = 0; 8127 8128 rdev_for_each(rdev, mddev) 8129 if ((this == NULL || rdev == this) && 8130 rdev->raid_disk >= 0 && 8131 !test_bit(Blocked, &rdev->flags) && 8132 (test_bit(Faulty, &rdev->flags) || 8133 (!test_bit(In_sync, &rdev->flags) && 8134 !test_bit(Journal, &rdev->flags))) && 8135 atomic_read(&rdev->nr_pending)==0) { 8136 if (mddev->pers->hot_remove_disk( 8137 mddev, rdev) == 0) { 8138 sysfs_unlink_rdev(mddev, rdev); 8139 rdev->raid_disk = -1; 8140 removed++; 8141 } 8142 } 8143 if (removed && mddev->kobj.sd) 8144 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8145 8146 if (this && removed) 8147 goto no_add; 8148 8149 rdev_for_each(rdev, mddev) { 8150 if (this && this != rdev) 8151 continue; 8152 if (test_bit(Candidate, &rdev->flags)) 8153 continue; 8154 if (rdev->raid_disk >= 0 && 8155 !test_bit(In_sync, &rdev->flags) && 8156 !test_bit(Journal, &rdev->flags) && 8157 !test_bit(Faulty, &rdev->flags)) 8158 spares++; 8159 if (rdev->raid_disk >= 0) 8160 continue; 8161 if (test_bit(Faulty, &rdev->flags)) 8162 continue; 8163 if (test_bit(Journal, &rdev->flags)) 8164 continue; 8165 if (mddev->ro && 8166 ! (rdev->saved_raid_disk >= 0 && 8167 !test_bit(Bitmap_sync, &rdev->flags))) 8168 continue; 8169 8170 rdev->recovery_offset = 0; 8171 if (mddev->pers-> 8172 hot_add_disk(mddev, rdev) == 0) { 8173 if (sysfs_link_rdev(mddev, rdev)) 8174 /* failure here is OK */; 8175 spares++; 8176 md_new_event(mddev); 8177 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8178 } 8179 } 8180 no_add: 8181 if (removed) 8182 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8183 return spares; 8184 } 8185 8186 static void md_start_sync(struct work_struct *ws) 8187 { 8188 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8189 int ret = 0; 8190 8191 if (mddev_is_clustered(mddev)) { 8192 ret = md_cluster_ops->resync_start(mddev); 8193 if (ret) { 8194 mddev->sync_thread = NULL; 8195 goto out; 8196 } 8197 } 8198 8199 mddev->sync_thread = md_register_thread(md_do_sync, 8200 mddev, 8201 "resync"); 8202 out: 8203 if (!mddev->sync_thread) { 8204 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN)) 8205 printk(KERN_ERR "%s: could not start resync" 8206 " thread...\n", 8207 mdname(mddev)); 8208 /* leave the spares where they are, it shouldn't hurt */ 8209 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8210 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8211 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8212 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8213 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8214 wake_up(&resync_wait); 8215 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8216 &mddev->recovery)) 8217 if (mddev->sysfs_action) 8218 sysfs_notify_dirent_safe(mddev->sysfs_action); 8219 } else 8220 md_wakeup_thread(mddev->sync_thread); 8221 sysfs_notify_dirent_safe(mddev->sysfs_action); 8222 md_new_event(mddev); 8223 } 8224 8225 /* 8226 * This routine is regularly called by all per-raid-array threads to 8227 * deal with generic issues like resync and super-block update. 8228 * Raid personalities that don't have a thread (linear/raid0) do not 8229 * need this as they never do any recovery or update the superblock. 8230 * 8231 * It does not do any resync itself, but rather "forks" off other threads 8232 * to do that as needed. 8233 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8234 * "->recovery" and create a thread at ->sync_thread. 8235 * When the thread finishes it sets MD_RECOVERY_DONE 8236 * and wakeups up this thread which will reap the thread and finish up. 8237 * This thread also removes any faulty devices (with nr_pending == 0). 8238 * 8239 * The overall approach is: 8240 * 1/ if the superblock needs updating, update it. 8241 * 2/ If a recovery thread is running, don't do anything else. 8242 * 3/ If recovery has finished, clean up, possibly marking spares active. 8243 * 4/ If there are any faulty devices, remove them. 8244 * 5/ If array is degraded, try to add spares devices 8245 * 6/ If array has spares or is not in-sync, start a resync thread. 8246 */ 8247 void md_check_recovery(struct mddev *mddev) 8248 { 8249 if (mddev->suspended) 8250 return; 8251 8252 if (mddev->bitmap) 8253 bitmap_daemon_work(mddev); 8254 8255 if (signal_pending(current)) { 8256 if (mddev->pers->sync_request && !mddev->external) { 8257 printk(KERN_INFO "md: %s in immediate safe mode\n", 8258 mdname(mddev)); 8259 mddev->safemode = 2; 8260 } 8261 flush_signals(current); 8262 } 8263 8264 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8265 return; 8266 if ( ! ( 8267 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 8268 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8269 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8270 (mddev->external == 0 && mddev->safemode == 1) || 8271 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 8272 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8273 )) 8274 return; 8275 8276 if (mddev_trylock(mddev)) { 8277 int spares = 0; 8278 8279 if (mddev->ro) { 8280 struct md_rdev *rdev; 8281 if (!mddev->external && mddev->in_sync) 8282 /* 'Blocked' flag not needed as failed devices 8283 * will be recorded if array switched to read/write. 8284 * Leaving it set will prevent the device 8285 * from being removed. 8286 */ 8287 rdev_for_each(rdev, mddev) 8288 clear_bit(Blocked, &rdev->flags); 8289 /* On a read-only array we can: 8290 * - remove failed devices 8291 * - add already-in_sync devices if the array itself 8292 * is in-sync. 8293 * As we only add devices that are already in-sync, 8294 * we can activate the spares immediately. 8295 */ 8296 remove_and_add_spares(mddev, NULL); 8297 /* There is no thread, but we need to call 8298 * ->spare_active and clear saved_raid_disk 8299 */ 8300 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8301 md_reap_sync_thread(mddev); 8302 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8303 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8304 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 8305 goto unlock; 8306 } 8307 8308 if (!mddev->external) { 8309 int did_change = 0; 8310 spin_lock(&mddev->lock); 8311 if (mddev->safemode && 8312 !atomic_read(&mddev->writes_pending) && 8313 !mddev->in_sync && 8314 mddev->recovery_cp == MaxSector) { 8315 mddev->in_sync = 1; 8316 did_change = 1; 8317 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8318 } 8319 if (mddev->safemode == 1) 8320 mddev->safemode = 0; 8321 spin_unlock(&mddev->lock); 8322 if (did_change) 8323 sysfs_notify_dirent_safe(mddev->sysfs_state); 8324 } 8325 8326 if (mddev->flags & MD_UPDATE_SB_FLAGS) 8327 md_update_sb(mddev, 0); 8328 8329 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8330 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8331 /* resync/recovery still happening */ 8332 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8333 goto unlock; 8334 } 8335 if (mddev->sync_thread) { 8336 md_reap_sync_thread(mddev); 8337 goto unlock; 8338 } 8339 /* Set RUNNING before clearing NEEDED to avoid 8340 * any transients in the value of "sync_action". 8341 */ 8342 mddev->curr_resync_completed = 0; 8343 spin_lock(&mddev->lock); 8344 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8345 spin_unlock(&mddev->lock); 8346 /* Clear some bits that don't mean anything, but 8347 * might be left set 8348 */ 8349 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8350 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8351 8352 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8353 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8354 goto not_running; 8355 /* no recovery is running. 8356 * remove any failed drives, then 8357 * add spares if possible. 8358 * Spares are also removed and re-added, to allow 8359 * the personality to fail the re-add. 8360 */ 8361 8362 if (mddev->reshape_position != MaxSector) { 8363 if (mddev->pers->check_reshape == NULL || 8364 mddev->pers->check_reshape(mddev) != 0) 8365 /* Cannot proceed */ 8366 goto not_running; 8367 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8368 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8369 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8370 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8371 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8372 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8373 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8374 } else if (mddev->recovery_cp < MaxSector) { 8375 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8376 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8377 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8378 /* nothing to be done ... */ 8379 goto not_running; 8380 8381 if (mddev->pers->sync_request) { 8382 if (spares) { 8383 /* We are adding a device or devices to an array 8384 * which has the bitmap stored on all devices. 8385 * So make sure all bitmap pages get written 8386 */ 8387 bitmap_write_all(mddev->bitmap); 8388 } 8389 INIT_WORK(&mddev->del_work, md_start_sync); 8390 queue_work(md_misc_wq, &mddev->del_work); 8391 goto unlock; 8392 } 8393 not_running: 8394 if (!mddev->sync_thread) { 8395 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8396 wake_up(&resync_wait); 8397 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8398 &mddev->recovery)) 8399 if (mddev->sysfs_action) 8400 sysfs_notify_dirent_safe(mddev->sysfs_action); 8401 } 8402 unlock: 8403 wake_up(&mddev->sb_wait); 8404 mddev_unlock(mddev); 8405 } 8406 } 8407 EXPORT_SYMBOL(md_check_recovery); 8408 8409 void md_reap_sync_thread(struct mddev *mddev) 8410 { 8411 struct md_rdev *rdev; 8412 8413 /* resync has finished, collect result */ 8414 md_unregister_thread(&mddev->sync_thread); 8415 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8416 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8417 /* success...*/ 8418 /* activate any spares */ 8419 if (mddev->pers->spare_active(mddev)) { 8420 sysfs_notify(&mddev->kobj, NULL, 8421 "degraded"); 8422 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8423 } 8424 } 8425 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8426 mddev->pers->finish_reshape) 8427 mddev->pers->finish_reshape(mddev); 8428 8429 /* If array is no-longer degraded, then any saved_raid_disk 8430 * information must be scrapped. 8431 */ 8432 if (!mddev->degraded) 8433 rdev_for_each(rdev, mddev) 8434 rdev->saved_raid_disk = -1; 8435 8436 md_update_sb(mddev, 1); 8437 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8438 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8439 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8440 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8441 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8442 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8443 wake_up(&resync_wait); 8444 /* flag recovery needed just to double check */ 8445 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8446 sysfs_notify_dirent_safe(mddev->sysfs_action); 8447 md_new_event(mddev); 8448 if (mddev->event_work.func) 8449 queue_work(md_misc_wq, &mddev->event_work); 8450 } 8451 EXPORT_SYMBOL(md_reap_sync_thread); 8452 8453 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8454 { 8455 sysfs_notify_dirent_safe(rdev->sysfs_state); 8456 wait_event_timeout(rdev->blocked_wait, 8457 !test_bit(Blocked, &rdev->flags) && 8458 !test_bit(BlockedBadBlocks, &rdev->flags), 8459 msecs_to_jiffies(5000)); 8460 rdev_dec_pending(rdev, mddev); 8461 } 8462 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8463 8464 void md_finish_reshape(struct mddev *mddev) 8465 { 8466 /* called be personality module when reshape completes. */ 8467 struct md_rdev *rdev; 8468 8469 rdev_for_each(rdev, mddev) { 8470 if (rdev->data_offset > rdev->new_data_offset) 8471 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8472 else 8473 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8474 rdev->data_offset = rdev->new_data_offset; 8475 } 8476 } 8477 EXPORT_SYMBOL(md_finish_reshape); 8478 8479 /* Bad block management. 8480 * We can record which blocks on each device are 'bad' and so just 8481 * fail those blocks, or that stripe, rather than the whole device. 8482 * Entries in the bad-block table are 64bits wide. This comprises: 8483 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8484 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8485 * A 'shift' can be set so that larger blocks are tracked and 8486 * consequently larger devices can be covered. 8487 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8488 * 8489 * Locking of the bad-block table uses a seqlock so md_is_badblock 8490 * might need to retry if it is very unlucky. 8491 * We will sometimes want to check for bad blocks in a bi_end_io function, 8492 * so we use the write_seqlock_irq variant. 8493 * 8494 * When looking for a bad block we specify a range and want to 8495 * know if any block in the range is bad. So we binary-search 8496 * to the last range that starts at-or-before the given endpoint, 8497 * (or "before the sector after the target range") 8498 * then see if it ends after the given start. 8499 * We return 8500 * 0 if there are no known bad blocks in the range 8501 * 1 if there are known bad block which are all acknowledged 8502 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8503 * plus the start/length of the first bad section we overlap. 8504 */ 8505 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8506 sector_t *first_bad, int *bad_sectors) 8507 { 8508 int hi; 8509 int lo; 8510 u64 *p = bb->page; 8511 int rv; 8512 sector_t target = s + sectors; 8513 unsigned seq; 8514 8515 if (bb->shift > 0) { 8516 /* round the start down, and the end up */ 8517 s >>= bb->shift; 8518 target += (1<<bb->shift) - 1; 8519 target >>= bb->shift; 8520 sectors = target - s; 8521 } 8522 /* 'target' is now the first block after the bad range */ 8523 8524 retry: 8525 seq = read_seqbegin(&bb->lock); 8526 lo = 0; 8527 rv = 0; 8528 hi = bb->count; 8529 8530 /* Binary search between lo and hi for 'target' 8531 * i.e. for the last range that starts before 'target' 8532 */ 8533 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8534 * are known not to be the last range before target. 8535 * VARIANT: hi-lo is the number of possible 8536 * ranges, and decreases until it reaches 1 8537 */ 8538 while (hi - lo > 1) { 8539 int mid = (lo + hi) / 2; 8540 sector_t a = BB_OFFSET(p[mid]); 8541 if (a < target) 8542 /* This could still be the one, earlier ranges 8543 * could not. */ 8544 lo = mid; 8545 else 8546 /* This and later ranges are definitely out. */ 8547 hi = mid; 8548 } 8549 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8550 if (hi > lo) { 8551 /* need to check all range that end after 's' to see if 8552 * any are unacknowledged. 8553 */ 8554 while (lo >= 0 && 8555 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8556 if (BB_OFFSET(p[lo]) < target) { 8557 /* starts before the end, and finishes after 8558 * the start, so they must overlap 8559 */ 8560 if (rv != -1 && BB_ACK(p[lo])) 8561 rv = 1; 8562 else 8563 rv = -1; 8564 *first_bad = BB_OFFSET(p[lo]); 8565 *bad_sectors = BB_LEN(p[lo]); 8566 } 8567 lo--; 8568 } 8569 } 8570 8571 if (read_seqretry(&bb->lock, seq)) 8572 goto retry; 8573 8574 return rv; 8575 } 8576 EXPORT_SYMBOL_GPL(md_is_badblock); 8577 8578 /* 8579 * Add a range of bad blocks to the table. 8580 * This might extend the table, or might contract it 8581 * if two adjacent ranges can be merged. 8582 * We binary-search to find the 'insertion' point, then 8583 * decide how best to handle it. 8584 */ 8585 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8586 int acknowledged) 8587 { 8588 u64 *p; 8589 int lo, hi; 8590 int rv = 1; 8591 unsigned long flags; 8592 8593 if (bb->shift < 0) 8594 /* badblocks are disabled */ 8595 return 0; 8596 8597 if (bb->shift) { 8598 /* round the start down, and the end up */ 8599 sector_t next = s + sectors; 8600 s >>= bb->shift; 8601 next += (1<<bb->shift) - 1; 8602 next >>= bb->shift; 8603 sectors = next - s; 8604 } 8605 8606 write_seqlock_irqsave(&bb->lock, flags); 8607 8608 p = bb->page; 8609 lo = 0; 8610 hi = bb->count; 8611 /* Find the last range that starts at-or-before 's' */ 8612 while (hi - lo > 1) { 8613 int mid = (lo + hi) / 2; 8614 sector_t a = BB_OFFSET(p[mid]); 8615 if (a <= s) 8616 lo = mid; 8617 else 8618 hi = mid; 8619 } 8620 if (hi > lo && BB_OFFSET(p[lo]) > s) 8621 hi = lo; 8622 8623 if (hi > lo) { 8624 /* we found a range that might merge with the start 8625 * of our new range 8626 */ 8627 sector_t a = BB_OFFSET(p[lo]); 8628 sector_t e = a + BB_LEN(p[lo]); 8629 int ack = BB_ACK(p[lo]); 8630 if (e >= s) { 8631 /* Yes, we can merge with a previous range */ 8632 if (s == a && s + sectors >= e) 8633 /* new range covers old */ 8634 ack = acknowledged; 8635 else 8636 ack = ack && acknowledged; 8637 8638 if (e < s + sectors) 8639 e = s + sectors; 8640 if (e - a <= BB_MAX_LEN) { 8641 p[lo] = BB_MAKE(a, e-a, ack); 8642 s = e; 8643 } else { 8644 /* does not all fit in one range, 8645 * make p[lo] maximal 8646 */ 8647 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8648 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8649 s = a + BB_MAX_LEN; 8650 } 8651 sectors = e - s; 8652 } 8653 } 8654 if (sectors && hi < bb->count) { 8655 /* 'hi' points to the first range that starts after 's'. 8656 * Maybe we can merge with the start of that range */ 8657 sector_t a = BB_OFFSET(p[hi]); 8658 sector_t e = a + BB_LEN(p[hi]); 8659 int ack = BB_ACK(p[hi]); 8660 if (a <= s + sectors) { 8661 /* merging is possible */ 8662 if (e <= s + sectors) { 8663 /* full overlap */ 8664 e = s + sectors; 8665 ack = acknowledged; 8666 } else 8667 ack = ack && acknowledged; 8668 8669 a = s; 8670 if (e - a <= BB_MAX_LEN) { 8671 p[hi] = BB_MAKE(a, e-a, ack); 8672 s = e; 8673 } else { 8674 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8675 s = a + BB_MAX_LEN; 8676 } 8677 sectors = e - s; 8678 lo = hi; 8679 hi++; 8680 } 8681 } 8682 if (sectors == 0 && hi < bb->count) { 8683 /* we might be able to combine lo and hi */ 8684 /* Note: 's' is at the end of 'lo' */ 8685 sector_t a = BB_OFFSET(p[hi]); 8686 int lolen = BB_LEN(p[lo]); 8687 int hilen = BB_LEN(p[hi]); 8688 int newlen = lolen + hilen - (s - a); 8689 if (s >= a && newlen < BB_MAX_LEN) { 8690 /* yes, we can combine them */ 8691 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8692 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8693 memmove(p + hi, p + hi + 1, 8694 (bb->count - hi - 1) * 8); 8695 bb->count--; 8696 } 8697 } 8698 while (sectors) { 8699 /* didn't merge (it all). 8700 * Need to add a range just before 'hi' */ 8701 if (bb->count >= MD_MAX_BADBLOCKS) { 8702 /* No room for more */ 8703 rv = 0; 8704 break; 8705 } else { 8706 int this_sectors = sectors; 8707 memmove(p + hi + 1, p + hi, 8708 (bb->count - hi) * 8); 8709 bb->count++; 8710 8711 if (this_sectors > BB_MAX_LEN) 8712 this_sectors = BB_MAX_LEN; 8713 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8714 sectors -= this_sectors; 8715 s += this_sectors; 8716 } 8717 } 8718 8719 bb->changed = 1; 8720 if (!acknowledged) 8721 bb->unacked_exist = 1; 8722 write_sequnlock_irqrestore(&bb->lock, flags); 8723 8724 return rv; 8725 } 8726 8727 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8728 int is_new) 8729 { 8730 int rv; 8731 if (is_new) 8732 s += rdev->new_data_offset; 8733 else 8734 s += rdev->data_offset; 8735 rv = md_set_badblocks(&rdev->badblocks, 8736 s, sectors, 0); 8737 if (rv) { 8738 /* Make sure they get written out promptly */ 8739 sysfs_notify_dirent_safe(rdev->sysfs_state); 8740 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8741 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags); 8742 md_wakeup_thread(rdev->mddev->thread); 8743 } 8744 return rv; 8745 } 8746 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8747 8748 /* 8749 * Remove a range of bad blocks from the table. 8750 * This may involve extending the table if we spilt a region, 8751 * but it must not fail. So if the table becomes full, we just 8752 * drop the remove request. 8753 */ 8754 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8755 { 8756 u64 *p; 8757 int lo, hi; 8758 sector_t target = s + sectors; 8759 int rv = 0; 8760 8761 if (bb->shift > 0) { 8762 /* When clearing we round the start up and the end down. 8763 * This should not matter as the shift should align with 8764 * the block size and no rounding should ever be needed. 8765 * However it is better the think a block is bad when it 8766 * isn't than to think a block is not bad when it is. 8767 */ 8768 s += (1<<bb->shift) - 1; 8769 s >>= bb->shift; 8770 target >>= bb->shift; 8771 sectors = target - s; 8772 } 8773 8774 write_seqlock_irq(&bb->lock); 8775 8776 p = bb->page; 8777 lo = 0; 8778 hi = bb->count; 8779 /* Find the last range that starts before 'target' */ 8780 while (hi - lo > 1) { 8781 int mid = (lo + hi) / 2; 8782 sector_t a = BB_OFFSET(p[mid]); 8783 if (a < target) 8784 lo = mid; 8785 else 8786 hi = mid; 8787 } 8788 if (hi > lo) { 8789 /* p[lo] is the last range that could overlap the 8790 * current range. Earlier ranges could also overlap, 8791 * but only this one can overlap the end of the range. 8792 */ 8793 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8794 /* Partial overlap, leave the tail of this range */ 8795 int ack = BB_ACK(p[lo]); 8796 sector_t a = BB_OFFSET(p[lo]); 8797 sector_t end = a + BB_LEN(p[lo]); 8798 8799 if (a < s) { 8800 /* we need to split this range */ 8801 if (bb->count >= MD_MAX_BADBLOCKS) { 8802 rv = -ENOSPC; 8803 goto out; 8804 } 8805 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8806 bb->count++; 8807 p[lo] = BB_MAKE(a, s-a, ack); 8808 lo++; 8809 } 8810 p[lo] = BB_MAKE(target, end - target, ack); 8811 /* there is no longer an overlap */ 8812 hi = lo; 8813 lo--; 8814 } 8815 while (lo >= 0 && 8816 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8817 /* This range does overlap */ 8818 if (BB_OFFSET(p[lo]) < s) { 8819 /* Keep the early parts of this range. */ 8820 int ack = BB_ACK(p[lo]); 8821 sector_t start = BB_OFFSET(p[lo]); 8822 p[lo] = BB_MAKE(start, s - start, ack); 8823 /* now low doesn't overlap, so.. */ 8824 break; 8825 } 8826 lo--; 8827 } 8828 /* 'lo' is strictly before, 'hi' is strictly after, 8829 * anything between needs to be discarded 8830 */ 8831 if (hi - lo > 1) { 8832 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8833 bb->count -= (hi - lo - 1); 8834 } 8835 } 8836 8837 bb->changed = 1; 8838 out: 8839 write_sequnlock_irq(&bb->lock); 8840 return rv; 8841 } 8842 8843 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8844 int is_new) 8845 { 8846 if (is_new) 8847 s += rdev->new_data_offset; 8848 else 8849 s += rdev->data_offset; 8850 return md_clear_badblocks(&rdev->badblocks, 8851 s, sectors); 8852 } 8853 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8854 8855 /* 8856 * Acknowledge all bad blocks in a list. 8857 * This only succeeds if ->changed is clear. It is used by 8858 * in-kernel metadata updates 8859 */ 8860 void md_ack_all_badblocks(struct badblocks *bb) 8861 { 8862 if (bb->page == NULL || bb->changed) 8863 /* no point even trying */ 8864 return; 8865 write_seqlock_irq(&bb->lock); 8866 8867 if (bb->changed == 0 && bb->unacked_exist) { 8868 u64 *p = bb->page; 8869 int i; 8870 for (i = 0; i < bb->count ; i++) { 8871 if (!BB_ACK(p[i])) { 8872 sector_t start = BB_OFFSET(p[i]); 8873 int len = BB_LEN(p[i]); 8874 p[i] = BB_MAKE(start, len, 1); 8875 } 8876 } 8877 bb->unacked_exist = 0; 8878 } 8879 write_sequnlock_irq(&bb->lock); 8880 } 8881 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8882 8883 /* sysfs access to bad-blocks list. 8884 * We present two files. 8885 * 'bad-blocks' lists sector numbers and lengths of ranges that 8886 * are recorded as bad. The list is truncated to fit within 8887 * the one-page limit of sysfs. 8888 * Writing "sector length" to this file adds an acknowledged 8889 * bad block list. 8890 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8891 * been acknowledged. Writing to this file adds bad blocks 8892 * without acknowledging them. This is largely for testing. 8893 */ 8894 8895 static ssize_t 8896 badblocks_show(struct badblocks *bb, char *page, int unack) 8897 { 8898 size_t len; 8899 int i; 8900 u64 *p = bb->page; 8901 unsigned seq; 8902 8903 if (bb->shift < 0) 8904 return 0; 8905 8906 retry: 8907 seq = read_seqbegin(&bb->lock); 8908 8909 len = 0; 8910 i = 0; 8911 8912 while (len < PAGE_SIZE && i < bb->count) { 8913 sector_t s = BB_OFFSET(p[i]); 8914 unsigned int length = BB_LEN(p[i]); 8915 int ack = BB_ACK(p[i]); 8916 i++; 8917 8918 if (unack && ack) 8919 continue; 8920 8921 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8922 (unsigned long long)s << bb->shift, 8923 length << bb->shift); 8924 } 8925 if (unack && len == 0) 8926 bb->unacked_exist = 0; 8927 8928 if (read_seqretry(&bb->lock, seq)) 8929 goto retry; 8930 8931 return len; 8932 } 8933 8934 #define DO_DEBUG 1 8935 8936 static ssize_t 8937 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8938 { 8939 unsigned long long sector; 8940 int length; 8941 char newline; 8942 #ifdef DO_DEBUG 8943 /* Allow clearing via sysfs *only* for testing/debugging. 8944 * Normally only a successful write may clear a badblock 8945 */ 8946 int clear = 0; 8947 if (page[0] == '-') { 8948 clear = 1; 8949 page++; 8950 } 8951 #endif /* DO_DEBUG */ 8952 8953 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8954 case 3: 8955 if (newline != '\n') 8956 return -EINVAL; 8957 case 2: 8958 if (length <= 0) 8959 return -EINVAL; 8960 break; 8961 default: 8962 return -EINVAL; 8963 } 8964 8965 #ifdef DO_DEBUG 8966 if (clear) { 8967 md_clear_badblocks(bb, sector, length); 8968 return len; 8969 } 8970 #endif /* DO_DEBUG */ 8971 if (md_set_badblocks(bb, sector, length, !unack)) 8972 return len; 8973 else 8974 return -ENOSPC; 8975 } 8976 8977 static int md_notify_reboot(struct notifier_block *this, 8978 unsigned long code, void *x) 8979 { 8980 struct list_head *tmp; 8981 struct mddev *mddev; 8982 int need_delay = 0; 8983 8984 for_each_mddev(mddev, tmp) { 8985 if (mddev_trylock(mddev)) { 8986 if (mddev->pers) 8987 __md_stop_writes(mddev); 8988 if (mddev->persistent) 8989 mddev->safemode = 2; 8990 mddev_unlock(mddev); 8991 } 8992 need_delay = 1; 8993 } 8994 /* 8995 * certain more exotic SCSI devices are known to be 8996 * volatile wrt too early system reboots. While the 8997 * right place to handle this issue is the given 8998 * driver, we do want to have a safe RAID driver ... 8999 */ 9000 if (need_delay) 9001 mdelay(1000*1); 9002 9003 return NOTIFY_DONE; 9004 } 9005 9006 static struct notifier_block md_notifier = { 9007 .notifier_call = md_notify_reboot, 9008 .next = NULL, 9009 .priority = INT_MAX, /* before any real devices */ 9010 }; 9011 9012 static void md_geninit(void) 9013 { 9014 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9015 9016 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9017 } 9018 9019 static int __init md_init(void) 9020 { 9021 int ret = -ENOMEM; 9022 9023 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9024 if (!md_wq) 9025 goto err_wq; 9026 9027 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9028 if (!md_misc_wq) 9029 goto err_misc_wq; 9030 9031 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9032 goto err_md; 9033 9034 if ((ret = register_blkdev(0, "mdp")) < 0) 9035 goto err_mdp; 9036 mdp_major = ret; 9037 9038 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9039 md_probe, NULL, NULL); 9040 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9041 md_probe, NULL, NULL); 9042 9043 register_reboot_notifier(&md_notifier); 9044 raid_table_header = register_sysctl_table(raid_root_table); 9045 9046 md_geninit(); 9047 return 0; 9048 9049 err_mdp: 9050 unregister_blkdev(MD_MAJOR, "md"); 9051 err_md: 9052 destroy_workqueue(md_misc_wq); 9053 err_misc_wq: 9054 destroy_workqueue(md_wq); 9055 err_wq: 9056 return ret; 9057 } 9058 9059 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9060 { 9061 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9062 struct md_rdev *rdev2; 9063 int role, ret; 9064 char b[BDEVNAME_SIZE]; 9065 9066 /* Check for change of roles in the active devices */ 9067 rdev_for_each(rdev2, mddev) { 9068 if (test_bit(Faulty, &rdev2->flags)) 9069 continue; 9070 9071 /* Check if the roles changed */ 9072 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9073 9074 if (test_bit(Candidate, &rdev2->flags)) { 9075 if (role == 0xfffe) { 9076 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9077 md_kick_rdev_from_array(rdev2); 9078 continue; 9079 } 9080 else 9081 clear_bit(Candidate, &rdev2->flags); 9082 } 9083 9084 if (role != rdev2->raid_disk) { 9085 /* got activated */ 9086 if (rdev2->raid_disk == -1 && role != 0xffff) { 9087 rdev2->saved_raid_disk = role; 9088 ret = remove_and_add_spares(mddev, rdev2); 9089 pr_info("Activated spare: %s\n", 9090 bdevname(rdev2->bdev,b)); 9091 continue; 9092 } 9093 /* device faulty 9094 * We just want to do the minimum to mark the disk 9095 * as faulty. The recovery is performed by the 9096 * one who initiated the error. 9097 */ 9098 if ((role == 0xfffe) || (role == 0xfffd)) { 9099 md_error(mddev, rdev2); 9100 clear_bit(Blocked, &rdev2->flags); 9101 } 9102 } 9103 } 9104 9105 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9106 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9107 9108 /* Finally set the event to be up to date */ 9109 mddev->events = le64_to_cpu(sb->events); 9110 } 9111 9112 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9113 { 9114 int err; 9115 struct page *swapout = rdev->sb_page; 9116 struct mdp_superblock_1 *sb; 9117 9118 /* Store the sb page of the rdev in the swapout temporary 9119 * variable in case we err in the future 9120 */ 9121 rdev->sb_page = NULL; 9122 alloc_disk_sb(rdev); 9123 ClearPageUptodate(rdev->sb_page); 9124 rdev->sb_loaded = 0; 9125 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version); 9126 9127 if (err < 0) { 9128 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9129 __func__, __LINE__, rdev->desc_nr, err); 9130 put_page(rdev->sb_page); 9131 rdev->sb_page = swapout; 9132 rdev->sb_loaded = 1; 9133 return err; 9134 } 9135 9136 sb = page_address(rdev->sb_page); 9137 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9138 * is not set 9139 */ 9140 9141 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9142 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9143 9144 /* The other node finished recovery, call spare_active to set 9145 * device In_sync and mddev->degraded 9146 */ 9147 if (rdev->recovery_offset == MaxSector && 9148 !test_bit(In_sync, &rdev->flags) && 9149 mddev->pers->spare_active(mddev)) 9150 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9151 9152 put_page(swapout); 9153 return 0; 9154 } 9155 9156 void md_reload_sb(struct mddev *mddev, int nr) 9157 { 9158 struct md_rdev *rdev; 9159 int err; 9160 9161 /* Find the rdev */ 9162 rdev_for_each_rcu(rdev, mddev) { 9163 if (rdev->desc_nr == nr) 9164 break; 9165 } 9166 9167 if (!rdev || rdev->desc_nr != nr) { 9168 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9169 return; 9170 } 9171 9172 err = read_rdev(mddev, rdev); 9173 if (err < 0) 9174 return; 9175 9176 check_sb_changes(mddev, rdev); 9177 9178 /* Read all rdev's to update recovery_offset */ 9179 rdev_for_each_rcu(rdev, mddev) 9180 read_rdev(mddev, rdev); 9181 } 9182 EXPORT_SYMBOL(md_reload_sb); 9183 9184 #ifndef MODULE 9185 9186 /* 9187 * Searches all registered partitions for autorun RAID arrays 9188 * at boot time. 9189 */ 9190 9191 static LIST_HEAD(all_detected_devices); 9192 struct detected_devices_node { 9193 struct list_head list; 9194 dev_t dev; 9195 }; 9196 9197 void md_autodetect_dev(dev_t dev) 9198 { 9199 struct detected_devices_node *node_detected_dev; 9200 9201 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9202 if (node_detected_dev) { 9203 node_detected_dev->dev = dev; 9204 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9205 } else { 9206 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 9207 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 9208 } 9209 } 9210 9211 static void autostart_arrays(int part) 9212 { 9213 struct md_rdev *rdev; 9214 struct detected_devices_node *node_detected_dev; 9215 dev_t dev; 9216 int i_scanned, i_passed; 9217 9218 i_scanned = 0; 9219 i_passed = 0; 9220 9221 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 9222 9223 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9224 i_scanned++; 9225 node_detected_dev = list_entry(all_detected_devices.next, 9226 struct detected_devices_node, list); 9227 list_del(&node_detected_dev->list); 9228 dev = node_detected_dev->dev; 9229 kfree(node_detected_dev); 9230 rdev = md_import_device(dev,0, 90); 9231 if (IS_ERR(rdev)) 9232 continue; 9233 9234 if (test_bit(Faulty, &rdev->flags)) 9235 continue; 9236 9237 set_bit(AutoDetected, &rdev->flags); 9238 list_add(&rdev->same_set, &pending_raid_disks); 9239 i_passed++; 9240 } 9241 9242 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 9243 i_scanned, i_passed); 9244 9245 autorun_devices(part); 9246 } 9247 9248 #endif /* !MODULE */ 9249 9250 static __exit void md_exit(void) 9251 { 9252 struct mddev *mddev; 9253 struct list_head *tmp; 9254 int delay = 1; 9255 9256 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9257 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9258 9259 unregister_blkdev(MD_MAJOR,"md"); 9260 unregister_blkdev(mdp_major, "mdp"); 9261 unregister_reboot_notifier(&md_notifier); 9262 unregister_sysctl_table(raid_table_header); 9263 9264 /* We cannot unload the modules while some process is 9265 * waiting for us in select() or poll() - wake them up 9266 */ 9267 md_unloading = 1; 9268 while (waitqueue_active(&md_event_waiters)) { 9269 /* not safe to leave yet */ 9270 wake_up(&md_event_waiters); 9271 msleep(delay); 9272 delay += delay; 9273 } 9274 remove_proc_entry("mdstat", NULL); 9275 9276 for_each_mddev(mddev, tmp) { 9277 export_array(mddev); 9278 mddev->hold_active = 0; 9279 } 9280 destroy_workqueue(md_misc_wq); 9281 destroy_workqueue(md_wq); 9282 } 9283 9284 subsys_initcall(md_init); 9285 module_exit(md_exit) 9286 9287 static int get_ro(char *buffer, struct kernel_param *kp) 9288 { 9289 return sprintf(buffer, "%d", start_readonly); 9290 } 9291 static int set_ro(const char *val, struct kernel_param *kp) 9292 { 9293 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9294 } 9295 9296 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9297 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9298 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9299 9300 MODULE_LICENSE("GPL"); 9301 MODULE_DESCRIPTION("MD RAID framework"); 9302 MODULE_ALIAS("md"); 9303 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9304