xref: /linux/drivers/md/md.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	mddev->pers->make_request(mddev, bio);
297 
298 	cpu = part_stat_lock();
299 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 	part_stat_unlock();
302 
303 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 		wake_up(&mddev->sb_wait);
305 }
306 
307 /* mddev_suspend makes sure no new requests are submitted
308  * to the device, and that any requests that have been submitted
309  * are completely handled.
310  * Once mddev_detach() is called and completes, the module will be
311  * completely unused.
312  */
313 void mddev_suspend(struct mddev *mddev)
314 {
315 	BUG_ON(mddev->suspended);
316 	mddev->suspended = 1;
317 	synchronize_rcu();
318 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319 	mddev->pers->quiesce(mddev, 1);
320 
321 	del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324 
325 void mddev_resume(struct mddev *mddev)
326 {
327 	mddev->suspended = 0;
328 	wake_up(&mddev->sb_wait);
329 	mddev->pers->quiesce(mddev, 0);
330 
331 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332 	md_wakeup_thread(mddev->thread);
333 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336 
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339 	struct md_personality *pers = mddev->pers;
340 	int ret = 0;
341 
342 	rcu_read_lock();
343 	if (mddev->suspended)
344 		ret = 1;
345 	else if (pers && pers->congested)
346 		ret = pers->congested(mddev, bits);
347 	rcu_read_unlock();
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353 	struct mddev *mddev = data;
354 	return mddev_congested(mddev, bits);
355 }
356 
357 /*
358  * Generic flush handling for md
359  */
360 
361 static void md_end_flush(struct bio *bio)
362 {
363 	struct md_rdev *rdev = bio->bi_private;
364 	struct mddev *mddev = rdev->mddev;
365 
366 	rdev_dec_pending(rdev, mddev);
367 
368 	if (atomic_dec_and_test(&mddev->flush_pending)) {
369 		/* The pre-request flush has finished */
370 		queue_work(md_wq, &mddev->flush_work);
371 	}
372 	bio_put(bio);
373 }
374 
375 static void md_submit_flush_data(struct work_struct *ws);
376 
377 static void submit_flushes(struct work_struct *ws)
378 {
379 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380 	struct md_rdev *rdev;
381 
382 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383 	atomic_set(&mddev->flush_pending, 1);
384 	rcu_read_lock();
385 	rdev_for_each_rcu(rdev, mddev)
386 		if (rdev->raid_disk >= 0 &&
387 		    !test_bit(Faulty, &rdev->flags)) {
388 			/* Take two references, one is dropped
389 			 * when request finishes, one after
390 			 * we reclaim rcu_read_lock
391 			 */
392 			struct bio *bi;
393 			atomic_inc(&rdev->nr_pending);
394 			atomic_inc(&rdev->nr_pending);
395 			rcu_read_unlock();
396 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397 			bi->bi_end_io = md_end_flush;
398 			bi->bi_private = rdev;
399 			bi->bi_bdev = rdev->bdev;
400 			atomic_inc(&mddev->flush_pending);
401 			submit_bio(WRITE_FLUSH, bi);
402 			rcu_read_lock();
403 			rdev_dec_pending(rdev, mddev);
404 		}
405 	rcu_read_unlock();
406 	if (atomic_dec_and_test(&mddev->flush_pending))
407 		queue_work(md_wq, &mddev->flush_work);
408 }
409 
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413 	struct bio *bio = mddev->flush_bio;
414 
415 	if (bio->bi_iter.bi_size == 0)
416 		/* an empty barrier - all done */
417 		bio_endio(bio);
418 	else {
419 		bio->bi_rw &= ~REQ_FLUSH;
420 		mddev->pers->make_request(mddev, bio);
421 	}
422 
423 	mddev->flush_bio = NULL;
424 	wake_up(&mddev->sb_wait);
425 }
426 
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429 	spin_lock_irq(&mddev->lock);
430 	wait_event_lock_irq(mddev->sb_wait,
431 			    !mddev->flush_bio,
432 			    mddev->lock);
433 	mddev->flush_bio = bio;
434 	spin_unlock_irq(&mddev->lock);
435 
436 	INIT_WORK(&mddev->flush_work, submit_flushes);
437 	queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440 
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443 	struct mddev *mddev = cb->data;
444 	md_wakeup_thread(mddev->thread);
445 	kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448 
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451 	atomic_inc(&mddev->active);
452 	return mddev;
453 }
454 
455 static void mddev_delayed_delete(struct work_struct *ws);
456 
457 static void mddev_put(struct mddev *mddev)
458 {
459 	struct bio_set *bs = NULL;
460 
461 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462 		return;
463 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464 	    mddev->ctime == 0 && !mddev->hold_active) {
465 		/* Array is not configured at all, and not held active,
466 		 * so destroy it */
467 		list_del_init(&mddev->all_mddevs);
468 		bs = mddev->bio_set;
469 		mddev->bio_set = NULL;
470 		if (mddev->gendisk) {
471 			/* We did a probe so need to clean up.  Call
472 			 * queue_work inside the spinlock so that
473 			 * flush_workqueue() after mddev_find will
474 			 * succeed in waiting for the work to be done.
475 			 */
476 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477 			queue_work(md_misc_wq, &mddev->del_work);
478 		} else
479 			kfree(mddev);
480 	}
481 	spin_unlock(&all_mddevs_lock);
482 	if (bs)
483 		bioset_free(bs);
484 }
485 
486 static void md_safemode_timeout(unsigned long data);
487 
488 void mddev_init(struct mddev *mddev)
489 {
490 	mutex_init(&mddev->open_mutex);
491 	mutex_init(&mddev->reconfig_mutex);
492 	mutex_init(&mddev->bitmap_info.mutex);
493 	INIT_LIST_HEAD(&mddev->disks);
494 	INIT_LIST_HEAD(&mddev->all_mddevs);
495 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
496 		    (unsigned long) mddev);
497 	atomic_set(&mddev->active, 1);
498 	atomic_set(&mddev->openers, 0);
499 	atomic_set(&mddev->active_io, 0);
500 	spin_lock_init(&mddev->lock);
501 	atomic_set(&mddev->flush_pending, 0);
502 	init_waitqueue_head(&mddev->sb_wait);
503 	init_waitqueue_head(&mddev->recovery_wait);
504 	mddev->reshape_position = MaxSector;
505 	mddev->reshape_backwards = 0;
506 	mddev->last_sync_action = "none";
507 	mddev->resync_min = 0;
508 	mddev->resync_max = MaxSector;
509 	mddev->level = LEVEL_NONE;
510 }
511 EXPORT_SYMBOL_GPL(mddev_init);
512 
513 static struct mddev *mddev_find(dev_t unit)
514 {
515 	struct mddev *mddev, *new = NULL;
516 
517 	if (unit && MAJOR(unit) != MD_MAJOR)
518 		unit &= ~((1<<MdpMinorShift)-1);
519 
520  retry:
521 	spin_lock(&all_mddevs_lock);
522 
523 	if (unit) {
524 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
525 			if (mddev->unit == unit) {
526 				mddev_get(mddev);
527 				spin_unlock(&all_mddevs_lock);
528 				kfree(new);
529 				return mddev;
530 			}
531 
532 		if (new) {
533 			list_add(&new->all_mddevs, &all_mddevs);
534 			spin_unlock(&all_mddevs_lock);
535 			new->hold_active = UNTIL_IOCTL;
536 			return new;
537 		}
538 	} else if (new) {
539 		/* find an unused unit number */
540 		static int next_minor = 512;
541 		int start = next_minor;
542 		int is_free = 0;
543 		int dev = 0;
544 		while (!is_free) {
545 			dev = MKDEV(MD_MAJOR, next_minor);
546 			next_minor++;
547 			if (next_minor > MINORMASK)
548 				next_minor = 0;
549 			if (next_minor == start) {
550 				/* Oh dear, all in use. */
551 				spin_unlock(&all_mddevs_lock);
552 				kfree(new);
553 				return NULL;
554 			}
555 
556 			is_free = 1;
557 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
558 				if (mddev->unit == dev) {
559 					is_free = 0;
560 					break;
561 				}
562 		}
563 		new->unit = dev;
564 		new->md_minor = MINOR(dev);
565 		new->hold_active = UNTIL_STOP;
566 		list_add(&new->all_mddevs, &all_mddevs);
567 		spin_unlock(&all_mddevs_lock);
568 		return new;
569 	}
570 	spin_unlock(&all_mddevs_lock);
571 
572 	new = kzalloc(sizeof(*new), GFP_KERNEL);
573 	if (!new)
574 		return NULL;
575 
576 	new->unit = unit;
577 	if (MAJOR(unit) == MD_MAJOR)
578 		new->md_minor = MINOR(unit);
579 	else
580 		new->md_minor = MINOR(unit) >> MdpMinorShift;
581 
582 	mddev_init(new);
583 
584 	goto retry;
585 }
586 
587 static struct attribute_group md_redundancy_group;
588 
589 void mddev_unlock(struct mddev *mddev)
590 {
591 	if (mddev->to_remove) {
592 		/* These cannot be removed under reconfig_mutex as
593 		 * an access to the files will try to take reconfig_mutex
594 		 * while holding the file unremovable, which leads to
595 		 * a deadlock.
596 		 * So hold set sysfs_active while the remove in happeing,
597 		 * and anything else which might set ->to_remove or my
598 		 * otherwise change the sysfs namespace will fail with
599 		 * -EBUSY if sysfs_active is still set.
600 		 * We set sysfs_active under reconfig_mutex and elsewhere
601 		 * test it under the same mutex to ensure its correct value
602 		 * is seen.
603 		 */
604 		struct attribute_group *to_remove = mddev->to_remove;
605 		mddev->to_remove = NULL;
606 		mddev->sysfs_active = 1;
607 		mutex_unlock(&mddev->reconfig_mutex);
608 
609 		if (mddev->kobj.sd) {
610 			if (to_remove != &md_redundancy_group)
611 				sysfs_remove_group(&mddev->kobj, to_remove);
612 			if (mddev->pers == NULL ||
613 			    mddev->pers->sync_request == NULL) {
614 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
615 				if (mddev->sysfs_action)
616 					sysfs_put(mddev->sysfs_action);
617 				mddev->sysfs_action = NULL;
618 			}
619 		}
620 		mddev->sysfs_active = 0;
621 	} else
622 		mutex_unlock(&mddev->reconfig_mutex);
623 
624 	/* As we've dropped the mutex we need a spinlock to
625 	 * make sure the thread doesn't disappear
626 	 */
627 	spin_lock(&pers_lock);
628 	md_wakeup_thread(mddev->thread);
629 	spin_unlock(&pers_lock);
630 }
631 EXPORT_SYMBOL_GPL(mddev_unlock);
632 
633 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635 	struct md_rdev *rdev;
636 
637 	rdev_for_each_rcu(rdev, mddev)
638 		if (rdev->desc_nr == nr)
639 			return rdev;
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
644 
645 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
646 {
647 	struct md_rdev *rdev;
648 
649 	rdev_for_each(rdev, mddev)
650 		if (rdev->bdev->bd_dev == dev)
651 			return rdev;
652 
653 	return NULL;
654 }
655 
656 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
657 {
658 	struct md_rdev *rdev;
659 
660 	rdev_for_each_rcu(rdev, mddev)
661 		if (rdev->bdev->bd_dev == dev)
662 			return rdev;
663 
664 	return NULL;
665 }
666 
667 static struct md_personality *find_pers(int level, char *clevel)
668 {
669 	struct md_personality *pers;
670 	list_for_each_entry(pers, &pers_list, list) {
671 		if (level != LEVEL_NONE && pers->level == level)
672 			return pers;
673 		if (strcmp(pers->name, clevel)==0)
674 			return pers;
675 	}
676 	return NULL;
677 }
678 
679 /* return the offset of the super block in 512byte sectors */
680 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
681 {
682 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
683 	return MD_NEW_SIZE_SECTORS(num_sectors);
684 }
685 
686 static int alloc_disk_sb(struct md_rdev *rdev)
687 {
688 	rdev->sb_page = alloc_page(GFP_KERNEL);
689 	if (!rdev->sb_page) {
690 		printk(KERN_ALERT "md: out of memory.\n");
691 		return -ENOMEM;
692 	}
693 
694 	return 0;
695 }
696 
697 void md_rdev_clear(struct md_rdev *rdev)
698 {
699 	if (rdev->sb_page) {
700 		put_page(rdev->sb_page);
701 		rdev->sb_loaded = 0;
702 		rdev->sb_page = NULL;
703 		rdev->sb_start = 0;
704 		rdev->sectors = 0;
705 	}
706 	if (rdev->bb_page) {
707 		put_page(rdev->bb_page);
708 		rdev->bb_page = NULL;
709 	}
710 	kfree(rdev->badblocks.page);
711 	rdev->badblocks.page = NULL;
712 }
713 EXPORT_SYMBOL_GPL(md_rdev_clear);
714 
715 static void super_written(struct bio *bio)
716 {
717 	struct md_rdev *rdev = bio->bi_private;
718 	struct mddev *mddev = rdev->mddev;
719 
720 	if (bio->bi_error) {
721 		printk("md: super_written gets error=%d\n", bio->bi_error);
722 		md_error(mddev, rdev);
723 	}
724 
725 	if (atomic_dec_and_test(&mddev->pending_writes))
726 		wake_up(&mddev->sb_wait);
727 	bio_put(bio);
728 }
729 
730 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
731 		   sector_t sector, int size, struct page *page)
732 {
733 	/* write first size bytes of page to sector of rdev
734 	 * Increment mddev->pending_writes before returning
735 	 * and decrement it on completion, waking up sb_wait
736 	 * if zero is reached.
737 	 * If an error occurred, call md_error
738 	 */
739 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
740 
741 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742 	bio->bi_iter.bi_sector = sector;
743 	bio_add_page(bio, page, size, 0);
744 	bio->bi_private = rdev;
745 	bio->bi_end_io = super_written;
746 
747 	atomic_inc(&mddev->pending_writes);
748 	submit_bio(WRITE_FLUSH_FUA, bio);
749 }
750 
751 void md_super_wait(struct mddev *mddev)
752 {
753 	/* wait for all superblock writes that were scheduled to complete */
754 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
755 }
756 
757 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
758 		 struct page *page, int rw, bool metadata_op)
759 {
760 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
761 	int ret;
762 
763 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
764 		rdev->meta_bdev : rdev->bdev;
765 	if (metadata_op)
766 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
767 	else if (rdev->mddev->reshape_position != MaxSector &&
768 		 (rdev->mddev->reshape_backwards ==
769 		  (sector >= rdev->mddev->reshape_position)))
770 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
771 	else
772 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
773 	bio_add_page(bio, page, size, 0);
774 	submit_bio_wait(rw, bio);
775 
776 	ret = !bio->bi_error;
777 	bio_put(bio);
778 	return ret;
779 }
780 EXPORT_SYMBOL_GPL(sync_page_io);
781 
782 static int read_disk_sb(struct md_rdev *rdev, int size)
783 {
784 	char b[BDEVNAME_SIZE];
785 
786 	if (rdev->sb_loaded)
787 		return 0;
788 
789 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
790 		goto fail;
791 	rdev->sb_loaded = 1;
792 	return 0;
793 
794 fail:
795 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
796 		bdevname(rdev->bdev,b));
797 	return -EINVAL;
798 }
799 
800 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
801 {
802 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
803 		sb1->set_uuid1 == sb2->set_uuid1 &&
804 		sb1->set_uuid2 == sb2->set_uuid2 &&
805 		sb1->set_uuid3 == sb2->set_uuid3;
806 }
807 
808 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810 	int ret;
811 	mdp_super_t *tmp1, *tmp2;
812 
813 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
814 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
815 
816 	if (!tmp1 || !tmp2) {
817 		ret = 0;
818 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
819 		goto abort;
820 	}
821 
822 	*tmp1 = *sb1;
823 	*tmp2 = *sb2;
824 
825 	/*
826 	 * nr_disks is not constant
827 	 */
828 	tmp1->nr_disks = 0;
829 	tmp2->nr_disks = 0;
830 
831 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
832 abort:
833 	kfree(tmp1);
834 	kfree(tmp2);
835 	return ret;
836 }
837 
838 static u32 md_csum_fold(u32 csum)
839 {
840 	csum = (csum & 0xffff) + (csum >> 16);
841 	return (csum & 0xffff) + (csum >> 16);
842 }
843 
844 static unsigned int calc_sb_csum(mdp_super_t *sb)
845 {
846 	u64 newcsum = 0;
847 	u32 *sb32 = (u32*)sb;
848 	int i;
849 	unsigned int disk_csum, csum;
850 
851 	disk_csum = sb->sb_csum;
852 	sb->sb_csum = 0;
853 
854 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
855 		newcsum += sb32[i];
856 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
857 
858 #ifdef CONFIG_ALPHA
859 	/* This used to use csum_partial, which was wrong for several
860 	 * reasons including that different results are returned on
861 	 * different architectures.  It isn't critical that we get exactly
862 	 * the same return value as before (we always csum_fold before
863 	 * testing, and that removes any differences).  However as we
864 	 * know that csum_partial always returned a 16bit value on
865 	 * alphas, do a fold to maximise conformity to previous behaviour.
866 	 */
867 	sb->sb_csum = md_csum_fold(disk_csum);
868 #else
869 	sb->sb_csum = disk_csum;
870 #endif
871 	return csum;
872 }
873 
874 /*
875  * Handle superblock details.
876  * We want to be able to handle multiple superblock formats
877  * so we have a common interface to them all, and an array of
878  * different handlers.
879  * We rely on user-space to write the initial superblock, and support
880  * reading and updating of superblocks.
881  * Interface methods are:
882  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
883  *      loads and validates a superblock on dev.
884  *      if refdev != NULL, compare superblocks on both devices
885  *    Return:
886  *      0 - dev has a superblock that is compatible with refdev
887  *      1 - dev has a superblock that is compatible and newer than refdev
888  *          so dev should be used as the refdev in future
889  *     -EINVAL superblock incompatible or invalid
890  *     -othererror e.g. -EIO
891  *
892  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
893  *      Verify that dev is acceptable into mddev.
894  *       The first time, mddev->raid_disks will be 0, and data from
895  *       dev should be merged in.  Subsequent calls check that dev
896  *       is new enough.  Return 0 or -EINVAL
897  *
898  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
899  *     Update the superblock for rdev with data in mddev
900  *     This does not write to disc.
901  *
902  */
903 
904 struct super_type  {
905 	char		    *name;
906 	struct module	    *owner;
907 	int		    (*load_super)(struct md_rdev *rdev,
908 					  struct md_rdev *refdev,
909 					  int minor_version);
910 	int		    (*validate_super)(struct mddev *mddev,
911 					      struct md_rdev *rdev);
912 	void		    (*sync_super)(struct mddev *mddev,
913 					  struct md_rdev *rdev);
914 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
915 						sector_t num_sectors);
916 	int		    (*allow_new_offset)(struct md_rdev *rdev,
917 						unsigned long long new_offset);
918 };
919 
920 /*
921  * Check that the given mddev has no bitmap.
922  *
923  * This function is called from the run method of all personalities that do not
924  * support bitmaps. It prints an error message and returns non-zero if mddev
925  * has a bitmap. Otherwise, it returns 0.
926  *
927  */
928 int md_check_no_bitmap(struct mddev *mddev)
929 {
930 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
931 		return 0;
932 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
933 		mdname(mddev), mddev->pers->name);
934 	return 1;
935 }
936 EXPORT_SYMBOL(md_check_no_bitmap);
937 
938 /*
939  * load_super for 0.90.0
940  */
941 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
942 {
943 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
944 	mdp_super_t *sb;
945 	int ret;
946 
947 	/*
948 	 * Calculate the position of the superblock (512byte sectors),
949 	 * it's at the end of the disk.
950 	 *
951 	 * It also happens to be a multiple of 4Kb.
952 	 */
953 	rdev->sb_start = calc_dev_sboffset(rdev);
954 
955 	ret = read_disk_sb(rdev, MD_SB_BYTES);
956 	if (ret) return ret;
957 
958 	ret = -EINVAL;
959 
960 	bdevname(rdev->bdev, b);
961 	sb = page_address(rdev->sb_page);
962 
963 	if (sb->md_magic != MD_SB_MAGIC) {
964 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
965 		       b);
966 		goto abort;
967 	}
968 
969 	if (sb->major_version != 0 ||
970 	    sb->minor_version < 90 ||
971 	    sb->minor_version > 91) {
972 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
973 			sb->major_version, sb->minor_version,
974 			b);
975 		goto abort;
976 	}
977 
978 	if (sb->raid_disks <= 0)
979 		goto abort;
980 
981 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
982 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
983 			b);
984 		goto abort;
985 	}
986 
987 	rdev->preferred_minor = sb->md_minor;
988 	rdev->data_offset = 0;
989 	rdev->new_data_offset = 0;
990 	rdev->sb_size = MD_SB_BYTES;
991 	rdev->badblocks.shift = -1;
992 
993 	if (sb->level == LEVEL_MULTIPATH)
994 		rdev->desc_nr = -1;
995 	else
996 		rdev->desc_nr = sb->this_disk.number;
997 
998 	if (!refdev) {
999 		ret = 1;
1000 	} else {
1001 		__u64 ev1, ev2;
1002 		mdp_super_t *refsb = page_address(refdev->sb_page);
1003 		if (!uuid_equal(refsb, sb)) {
1004 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1005 				b, bdevname(refdev->bdev,b2));
1006 			goto abort;
1007 		}
1008 		if (!sb_equal(refsb, sb)) {
1009 			printk(KERN_WARNING "md: %s has same UUID"
1010 			       " but different superblock to %s\n",
1011 			       b, bdevname(refdev->bdev, b2));
1012 			goto abort;
1013 		}
1014 		ev1 = md_event(sb);
1015 		ev2 = md_event(refsb);
1016 		if (ev1 > ev2)
1017 			ret = 1;
1018 		else
1019 			ret = 0;
1020 	}
1021 	rdev->sectors = rdev->sb_start;
1022 	/* Limit to 4TB as metadata cannot record more than that.
1023 	 * (not needed for Linear and RAID0 as metadata doesn't
1024 	 * record this size)
1025 	 */
1026 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1027 		rdev->sectors = (2ULL << 32) - 2;
1028 
1029 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 		/* "this cannot possibly happen" ... */
1031 		ret = -EINVAL;
1032 
1033  abort:
1034 	return ret;
1035 }
1036 
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 	mdp_disk_t *desc;
1043 	mdp_super_t *sb = page_address(rdev->sb_page);
1044 	__u64 ev1 = md_event(sb);
1045 
1046 	rdev->raid_disk = -1;
1047 	clear_bit(Faulty, &rdev->flags);
1048 	clear_bit(In_sync, &rdev->flags);
1049 	clear_bit(Bitmap_sync, &rdev->flags);
1050 	clear_bit(WriteMostly, &rdev->flags);
1051 
1052 	if (mddev->raid_disks == 0) {
1053 		mddev->major_version = 0;
1054 		mddev->minor_version = sb->minor_version;
1055 		mddev->patch_version = sb->patch_version;
1056 		mddev->external = 0;
1057 		mddev->chunk_sectors = sb->chunk_size >> 9;
1058 		mddev->ctime = sb->ctime;
1059 		mddev->utime = sb->utime;
1060 		mddev->level = sb->level;
1061 		mddev->clevel[0] = 0;
1062 		mddev->layout = sb->layout;
1063 		mddev->raid_disks = sb->raid_disks;
1064 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 		mddev->events = ev1;
1066 		mddev->bitmap_info.offset = 0;
1067 		mddev->bitmap_info.space = 0;
1068 		/* bitmap can use 60 K after the 4K superblocks */
1069 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 		mddev->reshape_backwards = 0;
1072 
1073 		if (mddev->minor_version >= 91) {
1074 			mddev->reshape_position = sb->reshape_position;
1075 			mddev->delta_disks = sb->delta_disks;
1076 			mddev->new_level = sb->new_level;
1077 			mddev->new_layout = sb->new_layout;
1078 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 			if (mddev->delta_disks < 0)
1080 				mddev->reshape_backwards = 1;
1081 		} else {
1082 			mddev->reshape_position = MaxSector;
1083 			mddev->delta_disks = 0;
1084 			mddev->new_level = mddev->level;
1085 			mddev->new_layout = mddev->layout;
1086 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 		}
1088 
1089 		if (sb->state & (1<<MD_SB_CLEAN))
1090 			mddev->recovery_cp = MaxSector;
1091 		else {
1092 			if (sb->events_hi == sb->cp_events_hi &&
1093 				sb->events_lo == sb->cp_events_lo) {
1094 				mddev->recovery_cp = sb->recovery_cp;
1095 			} else
1096 				mddev->recovery_cp = 0;
1097 		}
1098 
1099 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103 
1104 		mddev->max_disks = MD_SB_DISKS;
1105 
1106 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 		    mddev->bitmap_info.file == NULL) {
1108 			mddev->bitmap_info.offset =
1109 				mddev->bitmap_info.default_offset;
1110 			mddev->bitmap_info.space =
1111 				mddev->bitmap_info.default_space;
1112 		}
1113 
1114 	} else if (mddev->pers == NULL) {
1115 		/* Insist on good event counter while assembling, except
1116 		 * for spares (which don't need an event count) */
1117 		++ev1;
1118 		if (sb->disks[rdev->desc_nr].state & (
1119 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 			if (ev1 < mddev->events)
1121 				return -EINVAL;
1122 	} else if (mddev->bitmap) {
1123 		/* if adding to array with a bitmap, then we can accept an
1124 		 * older device ... but not too old.
1125 		 */
1126 		if (ev1 < mddev->bitmap->events_cleared)
1127 			return 0;
1128 		if (ev1 < mddev->events)
1129 			set_bit(Bitmap_sync, &rdev->flags);
1130 	} else {
1131 		if (ev1 < mddev->events)
1132 			/* just a hot-add of a new device, leave raid_disk at -1 */
1133 			return 0;
1134 	}
1135 
1136 	if (mddev->level != LEVEL_MULTIPATH) {
1137 		desc = sb->disks + rdev->desc_nr;
1138 
1139 		if (desc->state & (1<<MD_DISK_FAULTY))
1140 			set_bit(Faulty, &rdev->flags);
1141 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 			    desc->raid_disk < mddev->raid_disks */) {
1143 			set_bit(In_sync, &rdev->flags);
1144 			rdev->raid_disk = desc->raid_disk;
1145 			rdev->saved_raid_disk = desc->raid_disk;
1146 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 			/* active but not in sync implies recovery up to
1148 			 * reshape position.  We don't know exactly where
1149 			 * that is, so set to zero for now */
1150 			if (mddev->minor_version >= 91) {
1151 				rdev->recovery_offset = 0;
1152 				rdev->raid_disk = desc->raid_disk;
1153 			}
1154 		}
1155 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 			set_bit(WriteMostly, &rdev->flags);
1157 	} else /* MULTIPATH are always insync */
1158 		set_bit(In_sync, &rdev->flags);
1159 	return 0;
1160 }
1161 
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 	mdp_super_t *sb;
1168 	struct md_rdev *rdev2;
1169 	int next_spare = mddev->raid_disks;
1170 
1171 	/* make rdev->sb match mddev data..
1172 	 *
1173 	 * 1/ zero out disks
1174 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 	 * 3/ any empty disks < next_spare become removed
1176 	 *
1177 	 * disks[0] gets initialised to REMOVED because
1178 	 * we cannot be sure from other fields if it has
1179 	 * been initialised or not.
1180 	 */
1181 	int i;
1182 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183 
1184 	rdev->sb_size = MD_SB_BYTES;
1185 
1186 	sb = page_address(rdev->sb_page);
1187 
1188 	memset(sb, 0, sizeof(*sb));
1189 
1190 	sb->md_magic = MD_SB_MAGIC;
1191 	sb->major_version = mddev->major_version;
1192 	sb->patch_version = mddev->patch_version;
1193 	sb->gvalid_words  = 0; /* ignored */
1194 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198 
1199 	sb->ctime = mddev->ctime;
1200 	sb->level = mddev->level;
1201 	sb->size = mddev->dev_sectors / 2;
1202 	sb->raid_disks = mddev->raid_disks;
1203 	sb->md_minor = mddev->md_minor;
1204 	sb->not_persistent = 0;
1205 	sb->utime = mddev->utime;
1206 	sb->state = 0;
1207 	sb->events_hi = (mddev->events>>32);
1208 	sb->events_lo = (u32)mddev->events;
1209 
1210 	if (mddev->reshape_position == MaxSector)
1211 		sb->minor_version = 90;
1212 	else {
1213 		sb->minor_version = 91;
1214 		sb->reshape_position = mddev->reshape_position;
1215 		sb->new_level = mddev->new_level;
1216 		sb->delta_disks = mddev->delta_disks;
1217 		sb->new_layout = mddev->new_layout;
1218 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 	}
1220 	mddev->minor_version = sb->minor_version;
1221 	if (mddev->in_sync)
1222 	{
1223 		sb->recovery_cp = mddev->recovery_cp;
1224 		sb->cp_events_hi = (mddev->events>>32);
1225 		sb->cp_events_lo = (u32)mddev->events;
1226 		if (mddev->recovery_cp == MaxSector)
1227 			sb->state = (1<< MD_SB_CLEAN);
1228 	} else
1229 		sb->recovery_cp = 0;
1230 
1231 	sb->layout = mddev->layout;
1232 	sb->chunk_size = mddev->chunk_sectors << 9;
1233 
1234 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236 
1237 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 	rdev_for_each(rdev2, mddev) {
1239 		mdp_disk_t *d;
1240 		int desc_nr;
1241 		int is_active = test_bit(In_sync, &rdev2->flags);
1242 
1243 		if (rdev2->raid_disk >= 0 &&
1244 		    sb->minor_version >= 91)
1245 			/* we have nowhere to store the recovery_offset,
1246 			 * but if it is not below the reshape_position,
1247 			 * we can piggy-back on that.
1248 			 */
1249 			is_active = 1;
1250 		if (rdev2->raid_disk < 0 ||
1251 		    test_bit(Faulty, &rdev2->flags))
1252 			is_active = 0;
1253 		if (is_active)
1254 			desc_nr = rdev2->raid_disk;
1255 		else
1256 			desc_nr = next_spare++;
1257 		rdev2->desc_nr = desc_nr;
1258 		d = &sb->disks[rdev2->desc_nr];
1259 		nr_disks++;
1260 		d->number = rdev2->desc_nr;
1261 		d->major = MAJOR(rdev2->bdev->bd_dev);
1262 		d->minor = MINOR(rdev2->bdev->bd_dev);
1263 		if (is_active)
1264 			d->raid_disk = rdev2->raid_disk;
1265 		else
1266 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 		if (test_bit(Faulty, &rdev2->flags))
1268 			d->state = (1<<MD_DISK_FAULTY);
1269 		else if (is_active) {
1270 			d->state = (1<<MD_DISK_ACTIVE);
1271 			if (test_bit(In_sync, &rdev2->flags))
1272 				d->state |= (1<<MD_DISK_SYNC);
1273 			active++;
1274 			working++;
1275 		} else {
1276 			d->state = 0;
1277 			spare++;
1278 			working++;
1279 		}
1280 		if (test_bit(WriteMostly, &rdev2->flags))
1281 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 	}
1283 	/* now set the "removed" and "faulty" bits on any missing devices */
1284 	for (i=0 ; i < mddev->raid_disks ; i++) {
1285 		mdp_disk_t *d = &sb->disks[i];
1286 		if (d->state == 0 && d->number == 0) {
1287 			d->number = i;
1288 			d->raid_disk = i;
1289 			d->state = (1<<MD_DISK_REMOVED);
1290 			d->state |= (1<<MD_DISK_FAULTY);
1291 			failed++;
1292 		}
1293 	}
1294 	sb->nr_disks = nr_disks;
1295 	sb->active_disks = active;
1296 	sb->working_disks = working;
1297 	sb->failed_disks = failed;
1298 	sb->spare_disks = spare;
1299 
1300 	sb->this_disk = sb->disks[rdev->desc_nr];
1301 	sb->sb_csum = calc_sb_csum(sb);
1302 }
1303 
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 		return 0; /* component must fit device */
1312 	if (rdev->mddev->bitmap_info.offset)
1313 		return 0; /* can't move bitmap */
1314 	rdev->sb_start = calc_dev_sboffset(rdev);
1315 	if (!num_sectors || num_sectors > rdev->sb_start)
1316 		num_sectors = rdev->sb_start;
1317 	/* Limit to 4TB as metadata cannot record more than that.
1318 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 	 */
1320 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1321 		num_sectors = (2ULL << 32) - 2;
1322 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1323 		       rdev->sb_page);
1324 	md_super_wait(rdev->mddev);
1325 	return num_sectors;
1326 }
1327 
1328 static int
1329 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1330 {
1331 	/* non-zero offset changes not possible with v0.90 */
1332 	return new_offset == 0;
1333 }
1334 
1335 /*
1336  * version 1 superblock
1337  */
1338 
1339 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1340 {
1341 	__le32 disk_csum;
1342 	u32 csum;
1343 	unsigned long long newcsum;
1344 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1345 	__le32 *isuper = (__le32*)sb;
1346 
1347 	disk_csum = sb->sb_csum;
1348 	sb->sb_csum = 0;
1349 	newcsum = 0;
1350 	for (; size >= 4; size -= 4)
1351 		newcsum += le32_to_cpu(*isuper++);
1352 
1353 	if (size == 2)
1354 		newcsum += le16_to_cpu(*(__le16*) isuper);
1355 
1356 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1357 	sb->sb_csum = disk_csum;
1358 	return cpu_to_le32(csum);
1359 }
1360 
1361 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1362 			    int acknowledged);
1363 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1364 {
1365 	struct mdp_superblock_1 *sb;
1366 	int ret;
1367 	sector_t sb_start;
1368 	sector_t sectors;
1369 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370 	int bmask;
1371 
1372 	/*
1373 	 * Calculate the position of the superblock in 512byte sectors.
1374 	 * It is always aligned to a 4K boundary and
1375 	 * depeding on minor_version, it can be:
1376 	 * 0: At least 8K, but less than 12K, from end of device
1377 	 * 1: At start of device
1378 	 * 2: 4K from start of device.
1379 	 */
1380 	switch(minor_version) {
1381 	case 0:
1382 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1383 		sb_start -= 8*2;
1384 		sb_start &= ~(sector_t)(4*2-1);
1385 		break;
1386 	case 1:
1387 		sb_start = 0;
1388 		break;
1389 	case 2:
1390 		sb_start = 8;
1391 		break;
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 	rdev->sb_start = sb_start;
1396 
1397 	/* superblock is rarely larger than 1K, but it can be larger,
1398 	 * and it is safe to read 4k, so we do that
1399 	 */
1400 	ret = read_disk_sb(rdev, 4096);
1401 	if (ret) return ret;
1402 
1403 	sb = page_address(rdev->sb_page);
1404 
1405 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 	    sb->major_version != cpu_to_le32(1) ||
1407 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 		return -EINVAL;
1411 
1412 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 		printk("md: invalid superblock checksum on %s\n",
1414 			bdevname(rdev->bdev,b));
1415 		return -EINVAL;
1416 	}
1417 	if (le64_to_cpu(sb->data_size) < 10) {
1418 		printk("md: data_size too small on %s\n",
1419 		       bdevname(rdev->bdev,b));
1420 		return -EINVAL;
1421 	}
1422 	if (sb->pad0 ||
1423 	    sb->pad3[0] ||
1424 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1425 		/* Some padding is non-zero, might be a new feature */
1426 		return -EINVAL;
1427 
1428 	rdev->preferred_minor = 0xffff;
1429 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1430 	rdev->new_data_offset = rdev->data_offset;
1431 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1432 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1433 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1434 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1435 
1436 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1437 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1438 	if (rdev->sb_size & bmask)
1439 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1440 
1441 	if (minor_version
1442 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1443 		return -EINVAL;
1444 	if (minor_version
1445 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1446 		return -EINVAL;
1447 
1448 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1449 		rdev->desc_nr = -1;
1450 	else
1451 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1452 
1453 	if (!rdev->bb_page) {
1454 		rdev->bb_page = alloc_page(GFP_KERNEL);
1455 		if (!rdev->bb_page)
1456 			return -ENOMEM;
1457 	}
1458 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1459 	    rdev->badblocks.count == 0) {
1460 		/* need to load the bad block list.
1461 		 * Currently we limit it to one page.
1462 		 */
1463 		s32 offset;
1464 		sector_t bb_sector;
1465 		u64 *bbp;
1466 		int i;
1467 		int sectors = le16_to_cpu(sb->bblog_size);
1468 		if (sectors > (PAGE_SIZE / 512))
1469 			return -EINVAL;
1470 		offset = le32_to_cpu(sb->bblog_offset);
1471 		if (offset == 0)
1472 			return -EINVAL;
1473 		bb_sector = (long long)offset;
1474 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1475 				  rdev->bb_page, READ, true))
1476 			return -EIO;
1477 		bbp = (u64 *)page_address(rdev->bb_page);
1478 		rdev->badblocks.shift = sb->bblog_shift;
1479 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1480 			u64 bb = le64_to_cpu(*bbp);
1481 			int count = bb & (0x3ff);
1482 			u64 sector = bb >> 10;
1483 			sector <<= sb->bblog_shift;
1484 			count <<= sb->bblog_shift;
1485 			if (bb + 1 == 0)
1486 				break;
1487 			if (md_set_badblocks(&rdev->badblocks,
1488 					     sector, count, 1) == 0)
1489 				return -EINVAL;
1490 		}
1491 	} else if (sb->bblog_offset != 0)
1492 		rdev->badblocks.shift = 0;
1493 
1494 	if (!refdev) {
1495 		ret = 1;
1496 	} else {
1497 		__u64 ev1, ev2;
1498 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1499 
1500 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1501 		    sb->level != refsb->level ||
1502 		    sb->layout != refsb->layout ||
1503 		    sb->chunksize != refsb->chunksize) {
1504 			printk(KERN_WARNING "md: %s has strangely different"
1505 				" superblock to %s\n",
1506 				bdevname(rdev->bdev,b),
1507 				bdevname(refdev->bdev,b2));
1508 			return -EINVAL;
1509 		}
1510 		ev1 = le64_to_cpu(sb->events);
1511 		ev2 = le64_to_cpu(refsb->events);
1512 
1513 		if (ev1 > ev2)
1514 			ret = 1;
1515 		else
1516 			ret = 0;
1517 	}
1518 	if (minor_version) {
1519 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1520 		sectors -= rdev->data_offset;
1521 	} else
1522 		sectors = rdev->sb_start;
1523 	if (sectors < le64_to_cpu(sb->data_size))
1524 		return -EINVAL;
1525 	rdev->sectors = le64_to_cpu(sb->data_size);
1526 	return ret;
1527 }
1528 
1529 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1532 	__u64 ev1 = le64_to_cpu(sb->events);
1533 
1534 	rdev->raid_disk = -1;
1535 	clear_bit(Faulty, &rdev->flags);
1536 	clear_bit(In_sync, &rdev->flags);
1537 	clear_bit(Bitmap_sync, &rdev->flags);
1538 	clear_bit(WriteMostly, &rdev->flags);
1539 
1540 	if (mddev->raid_disks == 0) {
1541 		mddev->major_version = 1;
1542 		mddev->patch_version = 0;
1543 		mddev->external = 0;
1544 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1545 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1546 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1547 		mddev->level = le32_to_cpu(sb->level);
1548 		mddev->clevel[0] = 0;
1549 		mddev->layout = le32_to_cpu(sb->layout);
1550 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1551 		mddev->dev_sectors = le64_to_cpu(sb->size);
1552 		mddev->events = ev1;
1553 		mddev->bitmap_info.offset = 0;
1554 		mddev->bitmap_info.space = 0;
1555 		/* Default location for bitmap is 1K after superblock
1556 		 * using 3K - total of 4K
1557 		 */
1558 		mddev->bitmap_info.default_offset = 1024 >> 9;
1559 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1560 		mddev->reshape_backwards = 0;
1561 
1562 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1563 		memcpy(mddev->uuid, sb->set_uuid, 16);
1564 
1565 		mddev->max_disks =  (4096-256)/2;
1566 
1567 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1568 		    mddev->bitmap_info.file == NULL) {
1569 			mddev->bitmap_info.offset =
1570 				(__s32)le32_to_cpu(sb->bitmap_offset);
1571 			/* Metadata doesn't record how much space is available.
1572 			 * For 1.0, we assume we can use up to the superblock
1573 			 * if before, else to 4K beyond superblock.
1574 			 * For others, assume no change is possible.
1575 			 */
1576 			if (mddev->minor_version > 0)
1577 				mddev->bitmap_info.space = 0;
1578 			else if (mddev->bitmap_info.offset > 0)
1579 				mddev->bitmap_info.space =
1580 					8 - mddev->bitmap_info.offset;
1581 			else
1582 				mddev->bitmap_info.space =
1583 					-mddev->bitmap_info.offset;
1584 		}
1585 
1586 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1587 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1588 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1589 			mddev->new_level = le32_to_cpu(sb->new_level);
1590 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1591 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1592 			if (mddev->delta_disks < 0 ||
1593 			    (mddev->delta_disks == 0 &&
1594 			     (le32_to_cpu(sb->feature_map)
1595 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1596 				mddev->reshape_backwards = 1;
1597 		} else {
1598 			mddev->reshape_position = MaxSector;
1599 			mddev->delta_disks = 0;
1600 			mddev->new_level = mddev->level;
1601 			mddev->new_layout = mddev->layout;
1602 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1603 		}
1604 
1605 	} else if (mddev->pers == NULL) {
1606 		/* Insist of good event counter while assembling, except for
1607 		 * spares (which don't need an event count) */
1608 		++ev1;
1609 		if (rdev->desc_nr >= 0 &&
1610 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1611 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1612 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1613 			if (ev1 < mddev->events)
1614 				return -EINVAL;
1615 	} else if (mddev->bitmap) {
1616 		/* If adding to array with a bitmap, then we can accept an
1617 		 * older device, but not too old.
1618 		 */
1619 		if (ev1 < mddev->bitmap->events_cleared)
1620 			return 0;
1621 		if (ev1 < mddev->events)
1622 			set_bit(Bitmap_sync, &rdev->flags);
1623 	} else {
1624 		if (ev1 < mddev->events)
1625 			/* just a hot-add of a new device, leave raid_disk at -1 */
1626 			return 0;
1627 	}
1628 	if (mddev->level != LEVEL_MULTIPATH) {
1629 		int role;
1630 		if (rdev->desc_nr < 0 ||
1631 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1632 			role = MD_DISK_ROLE_SPARE;
1633 			rdev->desc_nr = -1;
1634 		} else
1635 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1636 		switch(role) {
1637 		case MD_DISK_ROLE_SPARE: /* spare */
1638 			break;
1639 		case MD_DISK_ROLE_FAULTY: /* faulty */
1640 			set_bit(Faulty, &rdev->flags);
1641 			break;
1642 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1643 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1644 				/* journal device without journal feature */
1645 				printk(KERN_WARNING
1646 				  "md: journal device provided without journal feature, ignoring the device\n");
1647 				return -EINVAL;
1648 			}
1649 			set_bit(Journal, &rdev->flags);
1650 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1651 			if (mddev->recovery_cp == MaxSector)
1652 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1653 			rdev->raid_disk = mddev->raid_disks;
1654 			break;
1655 		default:
1656 			rdev->saved_raid_disk = role;
1657 			if ((le32_to_cpu(sb->feature_map) &
1658 			     MD_FEATURE_RECOVERY_OFFSET)) {
1659 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1660 				if (!(le32_to_cpu(sb->feature_map) &
1661 				      MD_FEATURE_RECOVERY_BITMAP))
1662 					rdev->saved_raid_disk = -1;
1663 			} else
1664 				set_bit(In_sync, &rdev->flags);
1665 			rdev->raid_disk = role;
1666 			break;
1667 		}
1668 		if (sb->devflags & WriteMostly1)
1669 			set_bit(WriteMostly, &rdev->flags);
1670 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1671 			set_bit(Replacement, &rdev->flags);
1672 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1673 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1674 	} else /* MULTIPATH are always insync */
1675 		set_bit(In_sync, &rdev->flags);
1676 
1677 	return 0;
1678 }
1679 
1680 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 	struct mdp_superblock_1 *sb;
1683 	struct md_rdev *rdev2;
1684 	int max_dev, i;
1685 	/* make rdev->sb match mddev and rdev data. */
1686 
1687 	sb = page_address(rdev->sb_page);
1688 
1689 	sb->feature_map = 0;
1690 	sb->pad0 = 0;
1691 	sb->recovery_offset = cpu_to_le64(0);
1692 	memset(sb->pad3, 0, sizeof(sb->pad3));
1693 
1694 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1695 	sb->events = cpu_to_le64(mddev->events);
1696 	if (mddev->in_sync)
1697 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1698 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1699 		sb->resync_offset = cpu_to_le64(MaxSector);
1700 	else
1701 		sb->resync_offset = cpu_to_le64(0);
1702 
1703 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704 
1705 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 	sb->size = cpu_to_le64(mddev->dev_sectors);
1707 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 	sb->level = cpu_to_le32(mddev->level);
1709 	sb->layout = cpu_to_le32(mddev->layout);
1710 
1711 	if (test_bit(WriteMostly, &rdev->flags))
1712 		sb->devflags |= WriteMostly1;
1713 	else
1714 		sb->devflags &= ~WriteMostly1;
1715 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 	sb->data_size = cpu_to_le64(rdev->sectors);
1717 
1718 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 	}
1722 
1723 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1724 	    !test_bit(In_sync, &rdev->flags)) {
1725 		sb->feature_map |=
1726 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 		sb->recovery_offset =
1728 			cpu_to_le64(rdev->recovery_offset);
1729 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 			sb->feature_map |=
1731 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 	}
1733 	/* Note: recovery_offset and journal_tail share space  */
1734 	if (test_bit(Journal, &rdev->flags))
1735 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1736 	if (test_bit(Replacement, &rdev->flags))
1737 		sb->feature_map |=
1738 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1739 
1740 	if (mddev->reshape_position != MaxSector) {
1741 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1742 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1743 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1744 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1745 		sb->new_level = cpu_to_le32(mddev->new_level);
1746 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1747 		if (mddev->delta_disks == 0 &&
1748 		    mddev->reshape_backwards)
1749 			sb->feature_map
1750 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1751 		if (rdev->new_data_offset != rdev->data_offset) {
1752 			sb->feature_map
1753 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1754 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1755 							     - rdev->data_offset));
1756 		}
1757 	}
1758 
1759 	if (mddev_is_clustered(mddev))
1760 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1761 
1762 	if (rdev->badblocks.count == 0)
1763 		/* Nothing to do for bad blocks*/ ;
1764 	else if (sb->bblog_offset == 0)
1765 		/* Cannot record bad blocks on this device */
1766 		md_error(mddev, rdev);
1767 	else {
1768 		struct badblocks *bb = &rdev->badblocks;
1769 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1770 		u64 *p = bb->page;
1771 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1772 		if (bb->changed) {
1773 			unsigned seq;
1774 
1775 retry:
1776 			seq = read_seqbegin(&bb->lock);
1777 
1778 			memset(bbp, 0xff, PAGE_SIZE);
1779 
1780 			for (i = 0 ; i < bb->count ; i++) {
1781 				u64 internal_bb = p[i];
1782 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1783 						| BB_LEN(internal_bb));
1784 				bbp[i] = cpu_to_le64(store_bb);
1785 			}
1786 			bb->changed = 0;
1787 			if (read_seqretry(&bb->lock, seq))
1788 				goto retry;
1789 
1790 			bb->sector = (rdev->sb_start +
1791 				      (int)le32_to_cpu(sb->bblog_offset));
1792 			bb->size = le16_to_cpu(sb->bblog_size);
1793 		}
1794 	}
1795 
1796 	max_dev = 0;
1797 	rdev_for_each(rdev2, mddev)
1798 		if (rdev2->desc_nr+1 > max_dev)
1799 			max_dev = rdev2->desc_nr+1;
1800 
1801 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1802 		int bmask;
1803 		sb->max_dev = cpu_to_le32(max_dev);
1804 		rdev->sb_size = max_dev * 2 + 256;
1805 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1806 		if (rdev->sb_size & bmask)
1807 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1808 	} else
1809 		max_dev = le32_to_cpu(sb->max_dev);
1810 
1811 	for (i=0; i<max_dev;i++)
1812 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1813 
1814 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1815 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1816 
1817 	rdev_for_each(rdev2, mddev) {
1818 		i = rdev2->desc_nr;
1819 		if (test_bit(Faulty, &rdev2->flags))
1820 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1821 		else if (test_bit(In_sync, &rdev2->flags))
1822 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823 		else if (test_bit(Journal, &rdev2->flags))
1824 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1825 		else if (rdev2->raid_disk >= 0)
1826 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1827 		else
1828 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1829 	}
1830 
1831 	sb->sb_csum = calc_sb_1_csum(sb);
1832 }
1833 
1834 static unsigned long long
1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1836 {
1837 	struct mdp_superblock_1 *sb;
1838 	sector_t max_sectors;
1839 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1840 		return 0; /* component must fit device */
1841 	if (rdev->data_offset != rdev->new_data_offset)
1842 		return 0; /* too confusing */
1843 	if (rdev->sb_start < rdev->data_offset) {
1844 		/* minor versions 1 and 2; superblock before data */
1845 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1846 		max_sectors -= rdev->data_offset;
1847 		if (!num_sectors || num_sectors > max_sectors)
1848 			num_sectors = max_sectors;
1849 	} else if (rdev->mddev->bitmap_info.offset) {
1850 		/* minor version 0 with bitmap we can't move */
1851 		return 0;
1852 	} else {
1853 		/* minor version 0; superblock after data */
1854 		sector_t sb_start;
1855 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1856 		sb_start &= ~(sector_t)(4*2 - 1);
1857 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1858 		if (!num_sectors || num_sectors > max_sectors)
1859 			num_sectors = max_sectors;
1860 		rdev->sb_start = sb_start;
1861 	}
1862 	sb = page_address(rdev->sb_page);
1863 	sb->data_size = cpu_to_le64(num_sectors);
1864 	sb->super_offset = rdev->sb_start;
1865 	sb->sb_csum = calc_sb_1_csum(sb);
1866 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1867 		       rdev->sb_page);
1868 	md_super_wait(rdev->mddev);
1869 	return num_sectors;
1870 
1871 }
1872 
1873 static int
1874 super_1_allow_new_offset(struct md_rdev *rdev,
1875 			 unsigned long long new_offset)
1876 {
1877 	/* All necessary checks on new >= old have been done */
1878 	struct bitmap *bitmap;
1879 	if (new_offset >= rdev->data_offset)
1880 		return 1;
1881 
1882 	/* with 1.0 metadata, there is no metadata to tread on
1883 	 * so we can always move back */
1884 	if (rdev->mddev->minor_version == 0)
1885 		return 1;
1886 
1887 	/* otherwise we must be sure not to step on
1888 	 * any metadata, so stay:
1889 	 * 36K beyond start of superblock
1890 	 * beyond end of badblocks
1891 	 * beyond write-intent bitmap
1892 	 */
1893 	if (rdev->sb_start + (32+4)*2 > new_offset)
1894 		return 0;
1895 	bitmap = rdev->mddev->bitmap;
1896 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1897 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1898 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1899 		return 0;
1900 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1901 		return 0;
1902 
1903 	return 1;
1904 }
1905 
1906 static struct super_type super_types[] = {
1907 	[0] = {
1908 		.name	= "0.90.0",
1909 		.owner	= THIS_MODULE,
1910 		.load_super	    = super_90_load,
1911 		.validate_super	    = super_90_validate,
1912 		.sync_super	    = super_90_sync,
1913 		.rdev_size_change   = super_90_rdev_size_change,
1914 		.allow_new_offset   = super_90_allow_new_offset,
1915 	},
1916 	[1] = {
1917 		.name	= "md-1",
1918 		.owner	= THIS_MODULE,
1919 		.load_super	    = super_1_load,
1920 		.validate_super	    = super_1_validate,
1921 		.sync_super	    = super_1_sync,
1922 		.rdev_size_change   = super_1_rdev_size_change,
1923 		.allow_new_offset   = super_1_allow_new_offset,
1924 	},
1925 };
1926 
1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1928 {
1929 	if (mddev->sync_super) {
1930 		mddev->sync_super(mddev, rdev);
1931 		return;
1932 	}
1933 
1934 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1935 
1936 	super_types[mddev->major_version].sync_super(mddev, rdev);
1937 }
1938 
1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1940 {
1941 	struct md_rdev *rdev, *rdev2;
1942 
1943 	rcu_read_lock();
1944 	rdev_for_each_rcu(rdev, mddev1) {
1945 		if (test_bit(Faulty, &rdev->flags) ||
1946 		    test_bit(Journal, &rdev->flags) ||
1947 		    rdev->raid_disk == -1)
1948 			continue;
1949 		rdev_for_each_rcu(rdev2, mddev2) {
1950 			if (test_bit(Faulty, &rdev2->flags) ||
1951 			    test_bit(Journal, &rdev2->flags) ||
1952 			    rdev2->raid_disk == -1)
1953 				continue;
1954 			if (rdev->bdev->bd_contains ==
1955 			    rdev2->bdev->bd_contains) {
1956 				rcu_read_unlock();
1957 				return 1;
1958 			}
1959 		}
1960 	}
1961 	rcu_read_unlock();
1962 	return 0;
1963 }
1964 
1965 static LIST_HEAD(pending_raid_disks);
1966 
1967 /*
1968  * Try to register data integrity profile for an mddev
1969  *
1970  * This is called when an array is started and after a disk has been kicked
1971  * from the array. It only succeeds if all working and active component devices
1972  * are integrity capable with matching profiles.
1973  */
1974 int md_integrity_register(struct mddev *mddev)
1975 {
1976 	struct md_rdev *rdev, *reference = NULL;
1977 
1978 	if (list_empty(&mddev->disks))
1979 		return 0; /* nothing to do */
1980 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1981 		return 0; /* shouldn't register, or already is */
1982 	rdev_for_each(rdev, mddev) {
1983 		/* skip spares and non-functional disks */
1984 		if (test_bit(Faulty, &rdev->flags))
1985 			continue;
1986 		if (rdev->raid_disk < 0)
1987 			continue;
1988 		if (!reference) {
1989 			/* Use the first rdev as the reference */
1990 			reference = rdev;
1991 			continue;
1992 		}
1993 		/* does this rdev's profile match the reference profile? */
1994 		if (blk_integrity_compare(reference->bdev->bd_disk,
1995 				rdev->bdev->bd_disk) < 0)
1996 			return -EINVAL;
1997 	}
1998 	if (!reference || !bdev_get_integrity(reference->bdev))
1999 		return 0;
2000 	/*
2001 	 * All component devices are integrity capable and have matching
2002 	 * profiles, register the common profile for the md device.
2003 	 */
2004 	blk_integrity_register(mddev->gendisk,
2005 			       bdev_get_integrity(reference->bdev));
2006 
2007 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2008 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2009 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2010 		       mdname(mddev));
2011 		return -EINVAL;
2012 	}
2013 	return 0;
2014 }
2015 EXPORT_SYMBOL(md_integrity_register);
2016 
2017 /* Disable data integrity if non-capable/non-matching disk is being added */
2018 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2019 {
2020 	struct blk_integrity *bi_rdev;
2021 	struct blk_integrity *bi_mddev;
2022 
2023 	if (!mddev->gendisk)
2024 		return;
2025 
2026 	bi_rdev = bdev_get_integrity(rdev->bdev);
2027 	bi_mddev = blk_get_integrity(mddev->gendisk);
2028 
2029 	if (!bi_mddev) /* nothing to do */
2030 		return;
2031 	if (rdev->raid_disk < 0) /* skip spares */
2032 		return;
2033 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2034 					     rdev->bdev->bd_disk) >= 0)
2035 		return;
2036 	WARN_ON_ONCE(!mddev->suspended);
2037 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2038 	blk_integrity_unregister(mddev->gendisk);
2039 }
2040 EXPORT_SYMBOL(md_integrity_add_rdev);
2041 
2042 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2043 {
2044 	char b[BDEVNAME_SIZE];
2045 	struct kobject *ko;
2046 	int err;
2047 
2048 	/* prevent duplicates */
2049 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2050 		return -EEXIST;
2051 
2052 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2053 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2054 			rdev->sectors < mddev->dev_sectors)) {
2055 		if (mddev->pers) {
2056 			/* Cannot change size, so fail
2057 			 * If mddev->level <= 0, then we don't care
2058 			 * about aligning sizes (e.g. linear)
2059 			 */
2060 			if (mddev->level > 0)
2061 				return -ENOSPC;
2062 		} else
2063 			mddev->dev_sectors = rdev->sectors;
2064 	}
2065 
2066 	/* Verify rdev->desc_nr is unique.
2067 	 * If it is -1, assign a free number, else
2068 	 * check number is not in use
2069 	 */
2070 	rcu_read_lock();
2071 	if (rdev->desc_nr < 0) {
2072 		int choice = 0;
2073 		if (mddev->pers)
2074 			choice = mddev->raid_disks;
2075 		while (md_find_rdev_nr_rcu(mddev, choice))
2076 			choice++;
2077 		rdev->desc_nr = choice;
2078 	} else {
2079 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2080 			rcu_read_unlock();
2081 			return -EBUSY;
2082 		}
2083 	}
2084 	rcu_read_unlock();
2085 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2086 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2087 		       mdname(mddev), mddev->max_disks);
2088 		return -EBUSY;
2089 	}
2090 	bdevname(rdev->bdev,b);
2091 	strreplace(b, '/', '!');
2092 
2093 	rdev->mddev = mddev;
2094 	printk(KERN_INFO "md: bind<%s>\n", b);
2095 
2096 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2097 		goto fail;
2098 
2099 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2100 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2101 		/* failure here is OK */;
2102 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2103 
2104 	list_add_rcu(&rdev->same_set, &mddev->disks);
2105 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2106 
2107 	/* May as well allow recovery to be retried once */
2108 	mddev->recovery_disabled++;
2109 
2110 	return 0;
2111 
2112  fail:
2113 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2114 	       b, mdname(mddev));
2115 	return err;
2116 }
2117 
2118 static void md_delayed_delete(struct work_struct *ws)
2119 {
2120 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2121 	kobject_del(&rdev->kobj);
2122 	kobject_put(&rdev->kobj);
2123 }
2124 
2125 static void unbind_rdev_from_array(struct md_rdev *rdev)
2126 {
2127 	char b[BDEVNAME_SIZE];
2128 
2129 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2130 	list_del_rcu(&rdev->same_set);
2131 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2132 	rdev->mddev = NULL;
2133 	sysfs_remove_link(&rdev->kobj, "block");
2134 	sysfs_put(rdev->sysfs_state);
2135 	rdev->sysfs_state = NULL;
2136 	rdev->badblocks.count = 0;
2137 	/* We need to delay this, otherwise we can deadlock when
2138 	 * writing to 'remove' to "dev/state".  We also need
2139 	 * to delay it due to rcu usage.
2140 	 */
2141 	synchronize_rcu();
2142 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2143 	kobject_get(&rdev->kobj);
2144 	queue_work(md_misc_wq, &rdev->del_work);
2145 }
2146 
2147 /*
2148  * prevent the device from being mounted, repartitioned or
2149  * otherwise reused by a RAID array (or any other kernel
2150  * subsystem), by bd_claiming the device.
2151  */
2152 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2153 {
2154 	int err = 0;
2155 	struct block_device *bdev;
2156 	char b[BDEVNAME_SIZE];
2157 
2158 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2159 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2160 	if (IS_ERR(bdev)) {
2161 		printk(KERN_ERR "md: could not open %s.\n",
2162 			__bdevname(dev, b));
2163 		return PTR_ERR(bdev);
2164 	}
2165 	rdev->bdev = bdev;
2166 	return err;
2167 }
2168 
2169 static void unlock_rdev(struct md_rdev *rdev)
2170 {
2171 	struct block_device *bdev = rdev->bdev;
2172 	rdev->bdev = NULL;
2173 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2174 }
2175 
2176 void md_autodetect_dev(dev_t dev);
2177 
2178 static void export_rdev(struct md_rdev *rdev)
2179 {
2180 	char b[BDEVNAME_SIZE];
2181 
2182 	printk(KERN_INFO "md: export_rdev(%s)\n",
2183 		bdevname(rdev->bdev,b));
2184 	md_rdev_clear(rdev);
2185 #ifndef MODULE
2186 	if (test_bit(AutoDetected, &rdev->flags))
2187 		md_autodetect_dev(rdev->bdev->bd_dev);
2188 #endif
2189 	unlock_rdev(rdev);
2190 	kobject_put(&rdev->kobj);
2191 }
2192 
2193 void md_kick_rdev_from_array(struct md_rdev *rdev)
2194 {
2195 	unbind_rdev_from_array(rdev);
2196 	export_rdev(rdev);
2197 }
2198 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2199 
2200 static void export_array(struct mddev *mddev)
2201 {
2202 	struct md_rdev *rdev;
2203 
2204 	while (!list_empty(&mddev->disks)) {
2205 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2206 					same_set);
2207 		md_kick_rdev_from_array(rdev);
2208 	}
2209 	mddev->raid_disks = 0;
2210 	mddev->major_version = 0;
2211 }
2212 
2213 static void sync_sbs(struct mddev *mddev, int nospares)
2214 {
2215 	/* Update each superblock (in-memory image), but
2216 	 * if we are allowed to, skip spares which already
2217 	 * have the right event counter, or have one earlier
2218 	 * (which would mean they aren't being marked as dirty
2219 	 * with the rest of the array)
2220 	 */
2221 	struct md_rdev *rdev;
2222 	rdev_for_each(rdev, mddev) {
2223 		if (rdev->sb_events == mddev->events ||
2224 		    (nospares &&
2225 		     rdev->raid_disk < 0 &&
2226 		     rdev->sb_events+1 == mddev->events)) {
2227 			/* Don't update this superblock */
2228 			rdev->sb_loaded = 2;
2229 		} else {
2230 			sync_super(mddev, rdev);
2231 			rdev->sb_loaded = 1;
2232 		}
2233 	}
2234 }
2235 
2236 static bool does_sb_need_changing(struct mddev *mddev)
2237 {
2238 	struct md_rdev *rdev;
2239 	struct mdp_superblock_1 *sb;
2240 	int role;
2241 
2242 	/* Find a good rdev */
2243 	rdev_for_each(rdev, mddev)
2244 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2245 			break;
2246 
2247 	/* No good device found. */
2248 	if (!rdev)
2249 		return false;
2250 
2251 	sb = page_address(rdev->sb_page);
2252 	/* Check if a device has become faulty or a spare become active */
2253 	rdev_for_each(rdev, mddev) {
2254 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2255 		/* Device activated? */
2256 		if (role == 0xffff && rdev->raid_disk >=0 &&
2257 		    !test_bit(Faulty, &rdev->flags))
2258 			return true;
2259 		/* Device turned faulty? */
2260 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2261 			return true;
2262 	}
2263 
2264 	/* Check if any mddev parameters have changed */
2265 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2266 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2267 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2268 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2269 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2270 		return true;
2271 
2272 	return false;
2273 }
2274 
2275 void md_update_sb(struct mddev *mddev, int force_change)
2276 {
2277 	struct md_rdev *rdev;
2278 	int sync_req;
2279 	int nospares = 0;
2280 	int any_badblocks_changed = 0;
2281 	int ret = -1;
2282 
2283 	if (mddev->ro) {
2284 		if (force_change)
2285 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2286 		return;
2287 	}
2288 
2289 	if (mddev_is_clustered(mddev)) {
2290 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2291 			force_change = 1;
2292 		ret = md_cluster_ops->metadata_update_start(mddev);
2293 		/* Has someone else has updated the sb */
2294 		if (!does_sb_need_changing(mddev)) {
2295 			if (ret == 0)
2296 				md_cluster_ops->metadata_update_cancel(mddev);
2297 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2298 			return;
2299 		}
2300 	}
2301 repeat:
2302 	/* First make sure individual recovery_offsets are correct */
2303 	rdev_for_each(rdev, mddev) {
2304 		if (rdev->raid_disk >= 0 &&
2305 		    mddev->delta_disks >= 0 &&
2306 		    !test_bit(Journal, &rdev->flags) &&
2307 		    !test_bit(In_sync, &rdev->flags) &&
2308 		    mddev->curr_resync_completed > rdev->recovery_offset)
2309 				rdev->recovery_offset = mddev->curr_resync_completed;
2310 
2311 	}
2312 	if (!mddev->persistent) {
2313 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2314 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2315 		if (!mddev->external) {
2316 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2317 			rdev_for_each(rdev, mddev) {
2318 				if (rdev->badblocks.changed) {
2319 					rdev->badblocks.changed = 0;
2320 					md_ack_all_badblocks(&rdev->badblocks);
2321 					md_error(mddev, rdev);
2322 				}
2323 				clear_bit(Blocked, &rdev->flags);
2324 				clear_bit(BlockedBadBlocks, &rdev->flags);
2325 				wake_up(&rdev->blocked_wait);
2326 			}
2327 		}
2328 		wake_up(&mddev->sb_wait);
2329 		return;
2330 	}
2331 
2332 	spin_lock(&mddev->lock);
2333 
2334 	mddev->utime = get_seconds();
2335 
2336 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2337 		force_change = 1;
2338 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2339 		/* just a clean<-> dirty transition, possibly leave spares alone,
2340 		 * though if events isn't the right even/odd, we will have to do
2341 		 * spares after all
2342 		 */
2343 		nospares = 1;
2344 	if (force_change)
2345 		nospares = 0;
2346 	if (mddev->degraded)
2347 		/* If the array is degraded, then skipping spares is both
2348 		 * dangerous and fairly pointless.
2349 		 * Dangerous because a device that was removed from the array
2350 		 * might have a event_count that still looks up-to-date,
2351 		 * so it can be re-added without a resync.
2352 		 * Pointless because if there are any spares to skip,
2353 		 * then a recovery will happen and soon that array won't
2354 		 * be degraded any more and the spare can go back to sleep then.
2355 		 */
2356 		nospares = 0;
2357 
2358 	sync_req = mddev->in_sync;
2359 
2360 	/* If this is just a dirty<->clean transition, and the array is clean
2361 	 * and 'events' is odd, we can roll back to the previous clean state */
2362 	if (nospares
2363 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2364 	    && mddev->can_decrease_events
2365 	    && mddev->events != 1) {
2366 		mddev->events--;
2367 		mddev->can_decrease_events = 0;
2368 	} else {
2369 		/* otherwise we have to go forward and ... */
2370 		mddev->events ++;
2371 		mddev->can_decrease_events = nospares;
2372 	}
2373 
2374 	/*
2375 	 * This 64-bit counter should never wrap.
2376 	 * Either we are in around ~1 trillion A.C., assuming
2377 	 * 1 reboot per second, or we have a bug...
2378 	 */
2379 	WARN_ON(mddev->events == 0);
2380 
2381 	rdev_for_each(rdev, mddev) {
2382 		if (rdev->badblocks.changed)
2383 			any_badblocks_changed++;
2384 		if (test_bit(Faulty, &rdev->flags))
2385 			set_bit(FaultRecorded, &rdev->flags);
2386 	}
2387 
2388 	sync_sbs(mddev, nospares);
2389 	spin_unlock(&mddev->lock);
2390 
2391 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2392 		 mdname(mddev), mddev->in_sync);
2393 
2394 	bitmap_update_sb(mddev->bitmap);
2395 	rdev_for_each(rdev, mddev) {
2396 		char b[BDEVNAME_SIZE];
2397 
2398 		if (rdev->sb_loaded != 1)
2399 			continue; /* no noise on spare devices */
2400 
2401 		if (!test_bit(Faulty, &rdev->flags)) {
2402 			md_super_write(mddev,rdev,
2403 				       rdev->sb_start, rdev->sb_size,
2404 				       rdev->sb_page);
2405 			pr_debug("md: (write) %s's sb offset: %llu\n",
2406 				 bdevname(rdev->bdev, b),
2407 				 (unsigned long long)rdev->sb_start);
2408 			rdev->sb_events = mddev->events;
2409 			if (rdev->badblocks.size) {
2410 				md_super_write(mddev, rdev,
2411 					       rdev->badblocks.sector,
2412 					       rdev->badblocks.size << 9,
2413 					       rdev->bb_page);
2414 				rdev->badblocks.size = 0;
2415 			}
2416 
2417 		} else
2418 			pr_debug("md: %s (skipping faulty)\n",
2419 				 bdevname(rdev->bdev, b));
2420 
2421 		if (mddev->level == LEVEL_MULTIPATH)
2422 			/* only need to write one superblock... */
2423 			break;
2424 	}
2425 	md_super_wait(mddev);
2426 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2427 
2428 	spin_lock(&mddev->lock);
2429 	if (mddev->in_sync != sync_req ||
2430 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2431 		/* have to write it out again */
2432 		spin_unlock(&mddev->lock);
2433 		goto repeat;
2434 	}
2435 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2436 	spin_unlock(&mddev->lock);
2437 	wake_up(&mddev->sb_wait);
2438 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2439 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2440 
2441 	rdev_for_each(rdev, mddev) {
2442 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2443 			clear_bit(Blocked, &rdev->flags);
2444 
2445 		if (any_badblocks_changed)
2446 			md_ack_all_badblocks(&rdev->badblocks);
2447 		clear_bit(BlockedBadBlocks, &rdev->flags);
2448 		wake_up(&rdev->blocked_wait);
2449 	}
2450 
2451 	if (mddev_is_clustered(mddev) && ret == 0)
2452 		md_cluster_ops->metadata_update_finish(mddev);
2453 }
2454 EXPORT_SYMBOL(md_update_sb);
2455 
2456 static int add_bound_rdev(struct md_rdev *rdev)
2457 {
2458 	struct mddev *mddev = rdev->mddev;
2459 	int err = 0;
2460 
2461 	if (!mddev->pers->hot_remove_disk) {
2462 		/* If there is hot_add_disk but no hot_remove_disk
2463 		 * then added disks for geometry changes,
2464 		 * and should be added immediately.
2465 		 */
2466 		super_types[mddev->major_version].
2467 			validate_super(mddev, rdev);
2468 		err = mddev->pers->hot_add_disk(mddev, rdev);
2469 		if (err) {
2470 			unbind_rdev_from_array(rdev);
2471 			export_rdev(rdev);
2472 			return err;
2473 		}
2474 	}
2475 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2476 
2477 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2478 	if (mddev->degraded)
2479 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2480 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2481 	md_new_event(mddev);
2482 	md_wakeup_thread(mddev->thread);
2483 	return 0;
2484 }
2485 
2486 /* words written to sysfs files may, or may not, be \n terminated.
2487  * We want to accept with case. For this we use cmd_match.
2488  */
2489 static int cmd_match(const char *cmd, const char *str)
2490 {
2491 	/* See if cmd, written into a sysfs file, matches
2492 	 * str.  They must either be the same, or cmd can
2493 	 * have a trailing newline
2494 	 */
2495 	while (*cmd && *str && *cmd == *str) {
2496 		cmd++;
2497 		str++;
2498 	}
2499 	if (*cmd == '\n')
2500 		cmd++;
2501 	if (*str || *cmd)
2502 		return 0;
2503 	return 1;
2504 }
2505 
2506 struct rdev_sysfs_entry {
2507 	struct attribute attr;
2508 	ssize_t (*show)(struct md_rdev *, char *);
2509 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2510 };
2511 
2512 static ssize_t
2513 state_show(struct md_rdev *rdev, char *page)
2514 {
2515 	char *sep = "";
2516 	size_t len = 0;
2517 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2518 
2519 	if (test_bit(Faulty, &flags) ||
2520 	    rdev->badblocks.unacked_exist) {
2521 		len+= sprintf(page+len, "%sfaulty",sep);
2522 		sep = ",";
2523 	}
2524 	if (test_bit(In_sync, &flags)) {
2525 		len += sprintf(page+len, "%sin_sync",sep);
2526 		sep = ",";
2527 	}
2528 	if (test_bit(Journal, &flags)) {
2529 		len += sprintf(page+len, "%sjournal",sep);
2530 		sep = ",";
2531 	}
2532 	if (test_bit(WriteMostly, &flags)) {
2533 		len += sprintf(page+len, "%swrite_mostly",sep);
2534 		sep = ",";
2535 	}
2536 	if (test_bit(Blocked, &flags) ||
2537 	    (rdev->badblocks.unacked_exist
2538 	     && !test_bit(Faulty, &flags))) {
2539 		len += sprintf(page+len, "%sblocked", sep);
2540 		sep = ",";
2541 	}
2542 	if (!test_bit(Faulty, &flags) &&
2543 	    !test_bit(Journal, &flags) &&
2544 	    !test_bit(In_sync, &flags)) {
2545 		len += sprintf(page+len, "%sspare", sep);
2546 		sep = ",";
2547 	}
2548 	if (test_bit(WriteErrorSeen, &flags)) {
2549 		len += sprintf(page+len, "%swrite_error", sep);
2550 		sep = ",";
2551 	}
2552 	if (test_bit(WantReplacement, &flags)) {
2553 		len += sprintf(page+len, "%swant_replacement", sep);
2554 		sep = ",";
2555 	}
2556 	if (test_bit(Replacement, &flags)) {
2557 		len += sprintf(page+len, "%sreplacement", sep);
2558 		sep = ",";
2559 	}
2560 
2561 	return len+sprintf(page+len, "\n");
2562 }
2563 
2564 static ssize_t
2565 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2566 {
2567 	/* can write
2568 	 *  faulty  - simulates an error
2569 	 *  remove  - disconnects the device
2570 	 *  writemostly - sets write_mostly
2571 	 *  -writemostly - clears write_mostly
2572 	 *  blocked - sets the Blocked flags
2573 	 *  -blocked - clears the Blocked and possibly simulates an error
2574 	 *  insync - sets Insync providing device isn't active
2575 	 *  -insync - clear Insync for a device with a slot assigned,
2576 	 *            so that it gets rebuilt based on bitmap
2577 	 *  write_error - sets WriteErrorSeen
2578 	 *  -write_error - clears WriteErrorSeen
2579 	 */
2580 	int err = -EINVAL;
2581 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2582 		md_error(rdev->mddev, rdev);
2583 		if (test_bit(Faulty, &rdev->flags))
2584 			err = 0;
2585 		else
2586 			err = -EBUSY;
2587 	} else if (cmd_match(buf, "remove")) {
2588 		if (rdev->raid_disk >= 0)
2589 			err = -EBUSY;
2590 		else {
2591 			struct mddev *mddev = rdev->mddev;
2592 			err = 0;
2593 			if (mddev_is_clustered(mddev))
2594 				err = md_cluster_ops->remove_disk(mddev, rdev);
2595 
2596 			if (err == 0) {
2597 				md_kick_rdev_from_array(rdev);
2598 				if (mddev->pers)
2599 					md_update_sb(mddev, 1);
2600 				md_new_event(mddev);
2601 			}
2602 		}
2603 	} else if (cmd_match(buf, "writemostly")) {
2604 		set_bit(WriteMostly, &rdev->flags);
2605 		err = 0;
2606 	} else if (cmd_match(buf, "-writemostly")) {
2607 		clear_bit(WriteMostly, &rdev->flags);
2608 		err = 0;
2609 	} else if (cmd_match(buf, "blocked")) {
2610 		set_bit(Blocked, &rdev->flags);
2611 		err = 0;
2612 	} else if (cmd_match(buf, "-blocked")) {
2613 		if (!test_bit(Faulty, &rdev->flags) &&
2614 		    rdev->badblocks.unacked_exist) {
2615 			/* metadata handler doesn't understand badblocks,
2616 			 * so we need to fail the device
2617 			 */
2618 			md_error(rdev->mddev, rdev);
2619 		}
2620 		clear_bit(Blocked, &rdev->flags);
2621 		clear_bit(BlockedBadBlocks, &rdev->flags);
2622 		wake_up(&rdev->blocked_wait);
2623 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2624 		md_wakeup_thread(rdev->mddev->thread);
2625 
2626 		err = 0;
2627 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2628 		set_bit(In_sync, &rdev->flags);
2629 		err = 0;
2630 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2631 		   !test_bit(Journal, &rdev->flags)) {
2632 		if (rdev->mddev->pers == NULL) {
2633 			clear_bit(In_sync, &rdev->flags);
2634 			rdev->saved_raid_disk = rdev->raid_disk;
2635 			rdev->raid_disk = -1;
2636 			err = 0;
2637 		}
2638 	} else if (cmd_match(buf, "write_error")) {
2639 		set_bit(WriteErrorSeen, &rdev->flags);
2640 		err = 0;
2641 	} else if (cmd_match(buf, "-write_error")) {
2642 		clear_bit(WriteErrorSeen, &rdev->flags);
2643 		err = 0;
2644 	} else if (cmd_match(buf, "want_replacement")) {
2645 		/* Any non-spare device that is not a replacement can
2646 		 * become want_replacement at any time, but we then need to
2647 		 * check if recovery is needed.
2648 		 */
2649 		if (rdev->raid_disk >= 0 &&
2650 		    !test_bit(Journal, &rdev->flags) &&
2651 		    !test_bit(Replacement, &rdev->flags))
2652 			set_bit(WantReplacement, &rdev->flags);
2653 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 		md_wakeup_thread(rdev->mddev->thread);
2655 		err = 0;
2656 	} else if (cmd_match(buf, "-want_replacement")) {
2657 		/* Clearing 'want_replacement' is always allowed.
2658 		 * Once replacements starts it is too late though.
2659 		 */
2660 		err = 0;
2661 		clear_bit(WantReplacement, &rdev->flags);
2662 	} else if (cmd_match(buf, "replacement")) {
2663 		/* Can only set a device as a replacement when array has not
2664 		 * yet been started.  Once running, replacement is automatic
2665 		 * from spares, or by assigning 'slot'.
2666 		 */
2667 		if (rdev->mddev->pers)
2668 			err = -EBUSY;
2669 		else {
2670 			set_bit(Replacement, &rdev->flags);
2671 			err = 0;
2672 		}
2673 	} else if (cmd_match(buf, "-replacement")) {
2674 		/* Similarly, can only clear Replacement before start */
2675 		if (rdev->mddev->pers)
2676 			err = -EBUSY;
2677 		else {
2678 			clear_bit(Replacement, &rdev->flags);
2679 			err = 0;
2680 		}
2681 	} else if (cmd_match(buf, "re-add")) {
2682 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2683 			/* clear_bit is performed _after_ all the devices
2684 			 * have their local Faulty bit cleared. If any writes
2685 			 * happen in the meantime in the local node, they
2686 			 * will land in the local bitmap, which will be synced
2687 			 * by this node eventually
2688 			 */
2689 			if (!mddev_is_clustered(rdev->mddev) ||
2690 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2691 				clear_bit(Faulty, &rdev->flags);
2692 				err = add_bound_rdev(rdev);
2693 			}
2694 		} else
2695 			err = -EBUSY;
2696 	}
2697 	if (!err)
2698 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2699 	return err ? err : len;
2700 }
2701 static struct rdev_sysfs_entry rdev_state =
2702 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2703 
2704 static ssize_t
2705 errors_show(struct md_rdev *rdev, char *page)
2706 {
2707 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2708 }
2709 
2710 static ssize_t
2711 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2712 {
2713 	unsigned int n;
2714 	int rv;
2715 
2716 	rv = kstrtouint(buf, 10, &n);
2717 	if (rv < 0)
2718 		return rv;
2719 	atomic_set(&rdev->corrected_errors, n);
2720 	return len;
2721 }
2722 static struct rdev_sysfs_entry rdev_errors =
2723 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2724 
2725 static ssize_t
2726 slot_show(struct md_rdev *rdev, char *page)
2727 {
2728 	if (test_bit(Journal, &rdev->flags))
2729 		return sprintf(page, "journal\n");
2730 	else if (rdev->raid_disk < 0)
2731 		return sprintf(page, "none\n");
2732 	else
2733 		return sprintf(page, "%d\n", rdev->raid_disk);
2734 }
2735 
2736 static ssize_t
2737 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2738 {
2739 	int slot;
2740 	int err;
2741 
2742 	if (test_bit(Journal, &rdev->flags))
2743 		return -EBUSY;
2744 	if (strncmp(buf, "none", 4)==0)
2745 		slot = -1;
2746 	else {
2747 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2748 		if (err < 0)
2749 			return err;
2750 	}
2751 	if (rdev->mddev->pers && slot == -1) {
2752 		/* Setting 'slot' on an active array requires also
2753 		 * updating the 'rd%d' link, and communicating
2754 		 * with the personality with ->hot_*_disk.
2755 		 * For now we only support removing
2756 		 * failed/spare devices.  This normally happens automatically,
2757 		 * but not when the metadata is externally managed.
2758 		 */
2759 		if (rdev->raid_disk == -1)
2760 			return -EEXIST;
2761 		/* personality does all needed checks */
2762 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2763 			return -EINVAL;
2764 		clear_bit(Blocked, &rdev->flags);
2765 		remove_and_add_spares(rdev->mddev, rdev);
2766 		if (rdev->raid_disk >= 0)
2767 			return -EBUSY;
2768 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2769 		md_wakeup_thread(rdev->mddev->thread);
2770 	} else if (rdev->mddev->pers) {
2771 		/* Activating a spare .. or possibly reactivating
2772 		 * if we ever get bitmaps working here.
2773 		 */
2774 
2775 		if (rdev->raid_disk != -1)
2776 			return -EBUSY;
2777 
2778 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2779 			return -EBUSY;
2780 
2781 		if (rdev->mddev->pers->hot_add_disk == NULL)
2782 			return -EINVAL;
2783 
2784 		if (slot >= rdev->mddev->raid_disks &&
2785 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786 			return -ENOSPC;
2787 
2788 		rdev->raid_disk = slot;
2789 		if (test_bit(In_sync, &rdev->flags))
2790 			rdev->saved_raid_disk = slot;
2791 		else
2792 			rdev->saved_raid_disk = -1;
2793 		clear_bit(In_sync, &rdev->flags);
2794 		clear_bit(Bitmap_sync, &rdev->flags);
2795 		remove_and_add_spares(rdev->mddev, rdev);
2796 		if (rdev->raid_disk == -1)
2797 			return -EBUSY;
2798 		/* don't wakeup anyone, leave that to userspace. */
2799 	} else {
2800 		if (slot >= rdev->mddev->raid_disks &&
2801 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2802 			return -ENOSPC;
2803 		rdev->raid_disk = slot;
2804 		/* assume it is working */
2805 		clear_bit(Faulty, &rdev->flags);
2806 		clear_bit(WriteMostly, &rdev->flags);
2807 		set_bit(In_sync, &rdev->flags);
2808 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2809 	}
2810 	return len;
2811 }
2812 
2813 static struct rdev_sysfs_entry rdev_slot =
2814 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2815 
2816 static ssize_t
2817 offset_show(struct md_rdev *rdev, char *page)
2818 {
2819 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2820 }
2821 
2822 static ssize_t
2823 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2824 {
2825 	unsigned long long offset;
2826 	if (kstrtoull(buf, 10, &offset) < 0)
2827 		return -EINVAL;
2828 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2829 		return -EBUSY;
2830 	if (rdev->sectors && rdev->mddev->external)
2831 		/* Must set offset before size, so overlap checks
2832 		 * can be sane */
2833 		return -EBUSY;
2834 	rdev->data_offset = offset;
2835 	rdev->new_data_offset = offset;
2836 	return len;
2837 }
2838 
2839 static struct rdev_sysfs_entry rdev_offset =
2840 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2841 
2842 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2843 {
2844 	return sprintf(page, "%llu\n",
2845 		       (unsigned long long)rdev->new_data_offset);
2846 }
2847 
2848 static ssize_t new_offset_store(struct md_rdev *rdev,
2849 				const char *buf, size_t len)
2850 {
2851 	unsigned long long new_offset;
2852 	struct mddev *mddev = rdev->mddev;
2853 
2854 	if (kstrtoull(buf, 10, &new_offset) < 0)
2855 		return -EINVAL;
2856 
2857 	if (mddev->sync_thread ||
2858 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2859 		return -EBUSY;
2860 	if (new_offset == rdev->data_offset)
2861 		/* reset is always permitted */
2862 		;
2863 	else if (new_offset > rdev->data_offset) {
2864 		/* must not push array size beyond rdev_sectors */
2865 		if (new_offset - rdev->data_offset
2866 		    + mddev->dev_sectors > rdev->sectors)
2867 				return -E2BIG;
2868 	}
2869 	/* Metadata worries about other space details. */
2870 
2871 	/* decreasing the offset is inconsistent with a backwards
2872 	 * reshape.
2873 	 */
2874 	if (new_offset < rdev->data_offset &&
2875 	    mddev->reshape_backwards)
2876 		return -EINVAL;
2877 	/* Increasing offset is inconsistent with forwards
2878 	 * reshape.  reshape_direction should be set to
2879 	 * 'backwards' first.
2880 	 */
2881 	if (new_offset > rdev->data_offset &&
2882 	    !mddev->reshape_backwards)
2883 		return -EINVAL;
2884 
2885 	if (mddev->pers && mddev->persistent &&
2886 	    !super_types[mddev->major_version]
2887 	    .allow_new_offset(rdev, new_offset))
2888 		return -E2BIG;
2889 	rdev->new_data_offset = new_offset;
2890 	if (new_offset > rdev->data_offset)
2891 		mddev->reshape_backwards = 1;
2892 	else if (new_offset < rdev->data_offset)
2893 		mddev->reshape_backwards = 0;
2894 
2895 	return len;
2896 }
2897 static struct rdev_sysfs_entry rdev_new_offset =
2898 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2899 
2900 static ssize_t
2901 rdev_size_show(struct md_rdev *rdev, char *page)
2902 {
2903 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2904 }
2905 
2906 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2907 {
2908 	/* check if two start/length pairs overlap */
2909 	if (s1+l1 <= s2)
2910 		return 0;
2911 	if (s2+l2 <= s1)
2912 		return 0;
2913 	return 1;
2914 }
2915 
2916 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2917 {
2918 	unsigned long long blocks;
2919 	sector_t new;
2920 
2921 	if (kstrtoull(buf, 10, &blocks) < 0)
2922 		return -EINVAL;
2923 
2924 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2925 		return -EINVAL; /* sector conversion overflow */
2926 
2927 	new = blocks * 2;
2928 	if (new != blocks * 2)
2929 		return -EINVAL; /* unsigned long long to sector_t overflow */
2930 
2931 	*sectors = new;
2932 	return 0;
2933 }
2934 
2935 static ssize_t
2936 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2937 {
2938 	struct mddev *my_mddev = rdev->mddev;
2939 	sector_t oldsectors = rdev->sectors;
2940 	sector_t sectors;
2941 
2942 	if (test_bit(Journal, &rdev->flags))
2943 		return -EBUSY;
2944 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2945 		return -EINVAL;
2946 	if (rdev->data_offset != rdev->new_data_offset)
2947 		return -EINVAL; /* too confusing */
2948 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2949 		if (my_mddev->persistent) {
2950 			sectors = super_types[my_mddev->major_version].
2951 				rdev_size_change(rdev, sectors);
2952 			if (!sectors)
2953 				return -EBUSY;
2954 		} else if (!sectors)
2955 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2956 				rdev->data_offset;
2957 		if (!my_mddev->pers->resize)
2958 			/* Cannot change size for RAID0 or Linear etc */
2959 			return -EINVAL;
2960 	}
2961 	if (sectors < my_mddev->dev_sectors)
2962 		return -EINVAL; /* component must fit device */
2963 
2964 	rdev->sectors = sectors;
2965 	if (sectors > oldsectors && my_mddev->external) {
2966 		/* Need to check that all other rdevs with the same
2967 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2968 		 * the rdev lists safely.
2969 		 * This check does not provide a hard guarantee, it
2970 		 * just helps avoid dangerous mistakes.
2971 		 */
2972 		struct mddev *mddev;
2973 		int overlap = 0;
2974 		struct list_head *tmp;
2975 
2976 		rcu_read_lock();
2977 		for_each_mddev(mddev, tmp) {
2978 			struct md_rdev *rdev2;
2979 
2980 			rdev_for_each(rdev2, mddev)
2981 				if (rdev->bdev == rdev2->bdev &&
2982 				    rdev != rdev2 &&
2983 				    overlaps(rdev->data_offset, rdev->sectors,
2984 					     rdev2->data_offset,
2985 					     rdev2->sectors)) {
2986 					overlap = 1;
2987 					break;
2988 				}
2989 			if (overlap) {
2990 				mddev_put(mddev);
2991 				break;
2992 			}
2993 		}
2994 		rcu_read_unlock();
2995 		if (overlap) {
2996 			/* Someone else could have slipped in a size
2997 			 * change here, but doing so is just silly.
2998 			 * We put oldsectors back because we *know* it is
2999 			 * safe, and trust userspace not to race with
3000 			 * itself
3001 			 */
3002 			rdev->sectors = oldsectors;
3003 			return -EBUSY;
3004 		}
3005 	}
3006 	return len;
3007 }
3008 
3009 static struct rdev_sysfs_entry rdev_size =
3010 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3011 
3012 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3013 {
3014 	unsigned long long recovery_start = rdev->recovery_offset;
3015 
3016 	if (test_bit(In_sync, &rdev->flags) ||
3017 	    recovery_start == MaxSector)
3018 		return sprintf(page, "none\n");
3019 
3020 	return sprintf(page, "%llu\n", recovery_start);
3021 }
3022 
3023 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3024 {
3025 	unsigned long long recovery_start;
3026 
3027 	if (cmd_match(buf, "none"))
3028 		recovery_start = MaxSector;
3029 	else if (kstrtoull(buf, 10, &recovery_start))
3030 		return -EINVAL;
3031 
3032 	if (rdev->mddev->pers &&
3033 	    rdev->raid_disk >= 0)
3034 		return -EBUSY;
3035 
3036 	rdev->recovery_offset = recovery_start;
3037 	if (recovery_start == MaxSector)
3038 		set_bit(In_sync, &rdev->flags);
3039 	else
3040 		clear_bit(In_sync, &rdev->flags);
3041 	return len;
3042 }
3043 
3044 static struct rdev_sysfs_entry rdev_recovery_start =
3045 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3046 
3047 static ssize_t
3048 badblocks_show(struct badblocks *bb, char *page, int unack);
3049 static ssize_t
3050 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3051 
3052 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3053 {
3054 	return badblocks_show(&rdev->badblocks, page, 0);
3055 }
3056 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3057 {
3058 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3059 	/* Maybe that ack was all we needed */
3060 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3061 		wake_up(&rdev->blocked_wait);
3062 	return rv;
3063 }
3064 static struct rdev_sysfs_entry rdev_bad_blocks =
3065 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3066 
3067 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3068 {
3069 	return badblocks_show(&rdev->badblocks, page, 1);
3070 }
3071 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3072 {
3073 	return badblocks_store(&rdev->badblocks, page, len, 1);
3074 }
3075 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3076 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3077 
3078 static struct attribute *rdev_default_attrs[] = {
3079 	&rdev_state.attr,
3080 	&rdev_errors.attr,
3081 	&rdev_slot.attr,
3082 	&rdev_offset.attr,
3083 	&rdev_new_offset.attr,
3084 	&rdev_size.attr,
3085 	&rdev_recovery_start.attr,
3086 	&rdev_bad_blocks.attr,
3087 	&rdev_unack_bad_blocks.attr,
3088 	NULL,
3089 };
3090 static ssize_t
3091 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3092 {
3093 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3094 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3095 
3096 	if (!entry->show)
3097 		return -EIO;
3098 	if (!rdev->mddev)
3099 		return -EBUSY;
3100 	return entry->show(rdev, page);
3101 }
3102 
3103 static ssize_t
3104 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3105 	      const char *page, size_t length)
3106 {
3107 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3108 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3109 	ssize_t rv;
3110 	struct mddev *mddev = rdev->mddev;
3111 
3112 	if (!entry->store)
3113 		return -EIO;
3114 	if (!capable(CAP_SYS_ADMIN))
3115 		return -EACCES;
3116 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3117 	if (!rv) {
3118 		if (rdev->mddev == NULL)
3119 			rv = -EBUSY;
3120 		else
3121 			rv = entry->store(rdev, page, length);
3122 		mddev_unlock(mddev);
3123 	}
3124 	return rv;
3125 }
3126 
3127 static void rdev_free(struct kobject *ko)
3128 {
3129 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3130 	kfree(rdev);
3131 }
3132 static const struct sysfs_ops rdev_sysfs_ops = {
3133 	.show		= rdev_attr_show,
3134 	.store		= rdev_attr_store,
3135 };
3136 static struct kobj_type rdev_ktype = {
3137 	.release	= rdev_free,
3138 	.sysfs_ops	= &rdev_sysfs_ops,
3139 	.default_attrs	= rdev_default_attrs,
3140 };
3141 
3142 int md_rdev_init(struct md_rdev *rdev)
3143 {
3144 	rdev->desc_nr = -1;
3145 	rdev->saved_raid_disk = -1;
3146 	rdev->raid_disk = -1;
3147 	rdev->flags = 0;
3148 	rdev->data_offset = 0;
3149 	rdev->new_data_offset = 0;
3150 	rdev->sb_events = 0;
3151 	rdev->last_read_error.tv_sec  = 0;
3152 	rdev->last_read_error.tv_nsec = 0;
3153 	rdev->sb_loaded = 0;
3154 	rdev->bb_page = NULL;
3155 	atomic_set(&rdev->nr_pending, 0);
3156 	atomic_set(&rdev->read_errors, 0);
3157 	atomic_set(&rdev->corrected_errors, 0);
3158 
3159 	INIT_LIST_HEAD(&rdev->same_set);
3160 	init_waitqueue_head(&rdev->blocked_wait);
3161 
3162 	/* Add space to store bad block list.
3163 	 * This reserves the space even on arrays where it cannot
3164 	 * be used - I wonder if that matters
3165 	 */
3166 	rdev->badblocks.count = 0;
3167 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3168 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3169 	seqlock_init(&rdev->badblocks.lock);
3170 	if (rdev->badblocks.page == NULL)
3171 		return -ENOMEM;
3172 
3173 	return 0;
3174 }
3175 EXPORT_SYMBOL_GPL(md_rdev_init);
3176 /*
3177  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3178  *
3179  * mark the device faulty if:
3180  *
3181  *   - the device is nonexistent (zero size)
3182  *   - the device has no valid superblock
3183  *
3184  * a faulty rdev _never_ has rdev->sb set.
3185  */
3186 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3187 {
3188 	char b[BDEVNAME_SIZE];
3189 	int err;
3190 	struct md_rdev *rdev;
3191 	sector_t size;
3192 
3193 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3194 	if (!rdev) {
3195 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3196 		return ERR_PTR(-ENOMEM);
3197 	}
3198 
3199 	err = md_rdev_init(rdev);
3200 	if (err)
3201 		goto abort_free;
3202 	err = alloc_disk_sb(rdev);
3203 	if (err)
3204 		goto abort_free;
3205 
3206 	err = lock_rdev(rdev, newdev, super_format == -2);
3207 	if (err)
3208 		goto abort_free;
3209 
3210 	kobject_init(&rdev->kobj, &rdev_ktype);
3211 
3212 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3213 	if (!size) {
3214 		printk(KERN_WARNING
3215 			"md: %s has zero or unknown size, marking faulty!\n",
3216 			bdevname(rdev->bdev,b));
3217 		err = -EINVAL;
3218 		goto abort_free;
3219 	}
3220 
3221 	if (super_format >= 0) {
3222 		err = super_types[super_format].
3223 			load_super(rdev, NULL, super_minor);
3224 		if (err == -EINVAL) {
3225 			printk(KERN_WARNING
3226 				"md: %s does not have a valid v%d.%d "
3227 			       "superblock, not importing!\n",
3228 				bdevname(rdev->bdev,b),
3229 			       super_format, super_minor);
3230 			goto abort_free;
3231 		}
3232 		if (err < 0) {
3233 			printk(KERN_WARNING
3234 				"md: could not read %s's sb, not importing!\n",
3235 				bdevname(rdev->bdev,b));
3236 			goto abort_free;
3237 		}
3238 	}
3239 
3240 	return rdev;
3241 
3242 abort_free:
3243 	if (rdev->bdev)
3244 		unlock_rdev(rdev);
3245 	md_rdev_clear(rdev);
3246 	kfree(rdev);
3247 	return ERR_PTR(err);
3248 }
3249 
3250 /*
3251  * Check a full RAID array for plausibility
3252  */
3253 
3254 static void analyze_sbs(struct mddev *mddev)
3255 {
3256 	int i;
3257 	struct md_rdev *rdev, *freshest, *tmp;
3258 	char b[BDEVNAME_SIZE];
3259 
3260 	freshest = NULL;
3261 	rdev_for_each_safe(rdev, tmp, mddev)
3262 		switch (super_types[mddev->major_version].
3263 			load_super(rdev, freshest, mddev->minor_version)) {
3264 		case 1:
3265 			freshest = rdev;
3266 			break;
3267 		case 0:
3268 			break;
3269 		default:
3270 			printk( KERN_ERR \
3271 				"md: fatal superblock inconsistency in %s"
3272 				" -- removing from array\n",
3273 				bdevname(rdev->bdev,b));
3274 			md_kick_rdev_from_array(rdev);
3275 		}
3276 
3277 	super_types[mddev->major_version].
3278 		validate_super(mddev, freshest);
3279 
3280 	i = 0;
3281 	rdev_for_each_safe(rdev, tmp, mddev) {
3282 		if (mddev->max_disks &&
3283 		    (rdev->desc_nr >= mddev->max_disks ||
3284 		     i > mddev->max_disks)) {
3285 			printk(KERN_WARNING
3286 			       "md: %s: %s: only %d devices permitted\n",
3287 			       mdname(mddev), bdevname(rdev->bdev, b),
3288 			       mddev->max_disks);
3289 			md_kick_rdev_from_array(rdev);
3290 			continue;
3291 		}
3292 		if (rdev != freshest) {
3293 			if (super_types[mddev->major_version].
3294 			    validate_super(mddev, rdev)) {
3295 				printk(KERN_WARNING "md: kicking non-fresh %s"
3296 					" from array!\n",
3297 					bdevname(rdev->bdev,b));
3298 				md_kick_rdev_from_array(rdev);
3299 				continue;
3300 			}
3301 		}
3302 		if (mddev->level == LEVEL_MULTIPATH) {
3303 			rdev->desc_nr = i++;
3304 			rdev->raid_disk = rdev->desc_nr;
3305 			set_bit(In_sync, &rdev->flags);
3306 		} else if (rdev->raid_disk >=
3307 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3308 			   !test_bit(Journal, &rdev->flags)) {
3309 			rdev->raid_disk = -1;
3310 			clear_bit(In_sync, &rdev->flags);
3311 		}
3312 	}
3313 }
3314 
3315 /* Read a fixed-point number.
3316  * Numbers in sysfs attributes should be in "standard" units where
3317  * possible, so time should be in seconds.
3318  * However we internally use a a much smaller unit such as
3319  * milliseconds or jiffies.
3320  * This function takes a decimal number with a possible fractional
3321  * component, and produces an integer which is the result of
3322  * multiplying that number by 10^'scale'.
3323  * all without any floating-point arithmetic.
3324  */
3325 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3326 {
3327 	unsigned long result = 0;
3328 	long decimals = -1;
3329 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3330 		if (*cp == '.')
3331 			decimals = 0;
3332 		else if (decimals < scale) {
3333 			unsigned int value;
3334 			value = *cp - '0';
3335 			result = result * 10 + value;
3336 			if (decimals >= 0)
3337 				decimals++;
3338 		}
3339 		cp++;
3340 	}
3341 	if (*cp == '\n')
3342 		cp++;
3343 	if (*cp)
3344 		return -EINVAL;
3345 	if (decimals < 0)
3346 		decimals = 0;
3347 	while (decimals < scale) {
3348 		result *= 10;
3349 		decimals ++;
3350 	}
3351 	*res = result;
3352 	return 0;
3353 }
3354 
3355 static ssize_t
3356 safe_delay_show(struct mddev *mddev, char *page)
3357 {
3358 	int msec = (mddev->safemode_delay*1000)/HZ;
3359 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3360 }
3361 static ssize_t
3362 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3363 {
3364 	unsigned long msec;
3365 
3366 	if (mddev_is_clustered(mddev)) {
3367 		pr_info("md: Safemode is disabled for clustered mode\n");
3368 		return -EINVAL;
3369 	}
3370 
3371 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3372 		return -EINVAL;
3373 	if (msec == 0)
3374 		mddev->safemode_delay = 0;
3375 	else {
3376 		unsigned long old_delay = mddev->safemode_delay;
3377 		unsigned long new_delay = (msec*HZ)/1000;
3378 
3379 		if (new_delay == 0)
3380 			new_delay = 1;
3381 		mddev->safemode_delay = new_delay;
3382 		if (new_delay < old_delay || old_delay == 0)
3383 			mod_timer(&mddev->safemode_timer, jiffies+1);
3384 	}
3385 	return len;
3386 }
3387 static struct md_sysfs_entry md_safe_delay =
3388 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3389 
3390 static ssize_t
3391 level_show(struct mddev *mddev, char *page)
3392 {
3393 	struct md_personality *p;
3394 	int ret;
3395 	spin_lock(&mddev->lock);
3396 	p = mddev->pers;
3397 	if (p)
3398 		ret = sprintf(page, "%s\n", p->name);
3399 	else if (mddev->clevel[0])
3400 		ret = sprintf(page, "%s\n", mddev->clevel);
3401 	else if (mddev->level != LEVEL_NONE)
3402 		ret = sprintf(page, "%d\n", mddev->level);
3403 	else
3404 		ret = 0;
3405 	spin_unlock(&mddev->lock);
3406 	return ret;
3407 }
3408 
3409 static ssize_t
3410 level_store(struct mddev *mddev, const char *buf, size_t len)
3411 {
3412 	char clevel[16];
3413 	ssize_t rv;
3414 	size_t slen = len;
3415 	struct md_personality *pers, *oldpers;
3416 	long level;
3417 	void *priv, *oldpriv;
3418 	struct md_rdev *rdev;
3419 
3420 	if (slen == 0 || slen >= sizeof(clevel))
3421 		return -EINVAL;
3422 
3423 	rv = mddev_lock(mddev);
3424 	if (rv)
3425 		return rv;
3426 
3427 	if (mddev->pers == NULL) {
3428 		strncpy(mddev->clevel, buf, slen);
3429 		if (mddev->clevel[slen-1] == '\n')
3430 			slen--;
3431 		mddev->clevel[slen] = 0;
3432 		mddev->level = LEVEL_NONE;
3433 		rv = len;
3434 		goto out_unlock;
3435 	}
3436 	rv = -EROFS;
3437 	if (mddev->ro)
3438 		goto out_unlock;
3439 
3440 	/* request to change the personality.  Need to ensure:
3441 	 *  - array is not engaged in resync/recovery/reshape
3442 	 *  - old personality can be suspended
3443 	 *  - new personality will access other array.
3444 	 */
3445 
3446 	rv = -EBUSY;
3447 	if (mddev->sync_thread ||
3448 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3449 	    mddev->reshape_position != MaxSector ||
3450 	    mddev->sysfs_active)
3451 		goto out_unlock;
3452 
3453 	rv = -EINVAL;
3454 	if (!mddev->pers->quiesce) {
3455 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3456 		       mdname(mddev), mddev->pers->name);
3457 		goto out_unlock;
3458 	}
3459 
3460 	/* Now find the new personality */
3461 	strncpy(clevel, buf, slen);
3462 	if (clevel[slen-1] == '\n')
3463 		slen--;
3464 	clevel[slen] = 0;
3465 	if (kstrtol(clevel, 10, &level))
3466 		level = LEVEL_NONE;
3467 
3468 	if (request_module("md-%s", clevel) != 0)
3469 		request_module("md-level-%s", clevel);
3470 	spin_lock(&pers_lock);
3471 	pers = find_pers(level, clevel);
3472 	if (!pers || !try_module_get(pers->owner)) {
3473 		spin_unlock(&pers_lock);
3474 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3475 		rv = -EINVAL;
3476 		goto out_unlock;
3477 	}
3478 	spin_unlock(&pers_lock);
3479 
3480 	if (pers == mddev->pers) {
3481 		/* Nothing to do! */
3482 		module_put(pers->owner);
3483 		rv = len;
3484 		goto out_unlock;
3485 	}
3486 	if (!pers->takeover) {
3487 		module_put(pers->owner);
3488 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3489 		       mdname(mddev), clevel);
3490 		rv = -EINVAL;
3491 		goto out_unlock;
3492 	}
3493 
3494 	rdev_for_each(rdev, mddev)
3495 		rdev->new_raid_disk = rdev->raid_disk;
3496 
3497 	/* ->takeover must set new_* and/or delta_disks
3498 	 * if it succeeds, and may set them when it fails.
3499 	 */
3500 	priv = pers->takeover(mddev);
3501 	if (IS_ERR(priv)) {
3502 		mddev->new_level = mddev->level;
3503 		mddev->new_layout = mddev->layout;
3504 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3505 		mddev->raid_disks -= mddev->delta_disks;
3506 		mddev->delta_disks = 0;
3507 		mddev->reshape_backwards = 0;
3508 		module_put(pers->owner);
3509 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3510 		       mdname(mddev), clevel);
3511 		rv = PTR_ERR(priv);
3512 		goto out_unlock;
3513 	}
3514 
3515 	/* Looks like we have a winner */
3516 	mddev_suspend(mddev);
3517 	mddev_detach(mddev);
3518 
3519 	spin_lock(&mddev->lock);
3520 	oldpers = mddev->pers;
3521 	oldpriv = mddev->private;
3522 	mddev->pers = pers;
3523 	mddev->private = priv;
3524 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3525 	mddev->level = mddev->new_level;
3526 	mddev->layout = mddev->new_layout;
3527 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3528 	mddev->delta_disks = 0;
3529 	mddev->reshape_backwards = 0;
3530 	mddev->degraded = 0;
3531 	spin_unlock(&mddev->lock);
3532 
3533 	if (oldpers->sync_request == NULL &&
3534 	    mddev->external) {
3535 		/* We are converting from a no-redundancy array
3536 		 * to a redundancy array and metadata is managed
3537 		 * externally so we need to be sure that writes
3538 		 * won't block due to a need to transition
3539 		 *      clean->dirty
3540 		 * until external management is started.
3541 		 */
3542 		mddev->in_sync = 0;
3543 		mddev->safemode_delay = 0;
3544 		mddev->safemode = 0;
3545 	}
3546 
3547 	oldpers->free(mddev, oldpriv);
3548 
3549 	if (oldpers->sync_request == NULL &&
3550 	    pers->sync_request != NULL) {
3551 		/* need to add the md_redundancy_group */
3552 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3553 			printk(KERN_WARNING
3554 			       "md: cannot register extra attributes for %s\n",
3555 			       mdname(mddev));
3556 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3557 	}
3558 	if (oldpers->sync_request != NULL &&
3559 	    pers->sync_request == NULL) {
3560 		/* need to remove the md_redundancy_group */
3561 		if (mddev->to_remove == NULL)
3562 			mddev->to_remove = &md_redundancy_group;
3563 	}
3564 
3565 	rdev_for_each(rdev, mddev) {
3566 		if (rdev->raid_disk < 0)
3567 			continue;
3568 		if (rdev->new_raid_disk >= mddev->raid_disks)
3569 			rdev->new_raid_disk = -1;
3570 		if (rdev->new_raid_disk == rdev->raid_disk)
3571 			continue;
3572 		sysfs_unlink_rdev(mddev, rdev);
3573 	}
3574 	rdev_for_each(rdev, mddev) {
3575 		if (rdev->raid_disk < 0)
3576 			continue;
3577 		if (rdev->new_raid_disk == rdev->raid_disk)
3578 			continue;
3579 		rdev->raid_disk = rdev->new_raid_disk;
3580 		if (rdev->raid_disk < 0)
3581 			clear_bit(In_sync, &rdev->flags);
3582 		else {
3583 			if (sysfs_link_rdev(mddev, rdev))
3584 				printk(KERN_WARNING "md: cannot register rd%d"
3585 				       " for %s after level change\n",
3586 				       rdev->raid_disk, mdname(mddev));
3587 		}
3588 	}
3589 
3590 	if (pers->sync_request == NULL) {
3591 		/* this is now an array without redundancy, so
3592 		 * it must always be in_sync
3593 		 */
3594 		mddev->in_sync = 1;
3595 		del_timer_sync(&mddev->safemode_timer);
3596 	}
3597 	blk_set_stacking_limits(&mddev->queue->limits);
3598 	pers->run(mddev);
3599 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3600 	mddev_resume(mddev);
3601 	if (!mddev->thread)
3602 		md_update_sb(mddev, 1);
3603 	sysfs_notify(&mddev->kobj, NULL, "level");
3604 	md_new_event(mddev);
3605 	rv = len;
3606 out_unlock:
3607 	mddev_unlock(mddev);
3608 	return rv;
3609 }
3610 
3611 static struct md_sysfs_entry md_level =
3612 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3613 
3614 static ssize_t
3615 layout_show(struct mddev *mddev, char *page)
3616 {
3617 	/* just a number, not meaningful for all levels */
3618 	if (mddev->reshape_position != MaxSector &&
3619 	    mddev->layout != mddev->new_layout)
3620 		return sprintf(page, "%d (%d)\n",
3621 			       mddev->new_layout, mddev->layout);
3622 	return sprintf(page, "%d\n", mddev->layout);
3623 }
3624 
3625 static ssize_t
3626 layout_store(struct mddev *mddev, const char *buf, size_t len)
3627 {
3628 	unsigned int n;
3629 	int err;
3630 
3631 	err = kstrtouint(buf, 10, &n);
3632 	if (err < 0)
3633 		return err;
3634 	err = mddev_lock(mddev);
3635 	if (err)
3636 		return err;
3637 
3638 	if (mddev->pers) {
3639 		if (mddev->pers->check_reshape == NULL)
3640 			err = -EBUSY;
3641 		else if (mddev->ro)
3642 			err = -EROFS;
3643 		else {
3644 			mddev->new_layout = n;
3645 			err = mddev->pers->check_reshape(mddev);
3646 			if (err)
3647 				mddev->new_layout = mddev->layout;
3648 		}
3649 	} else {
3650 		mddev->new_layout = n;
3651 		if (mddev->reshape_position == MaxSector)
3652 			mddev->layout = n;
3653 	}
3654 	mddev_unlock(mddev);
3655 	return err ?: len;
3656 }
3657 static struct md_sysfs_entry md_layout =
3658 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3659 
3660 static ssize_t
3661 raid_disks_show(struct mddev *mddev, char *page)
3662 {
3663 	if (mddev->raid_disks == 0)
3664 		return 0;
3665 	if (mddev->reshape_position != MaxSector &&
3666 	    mddev->delta_disks != 0)
3667 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3668 			       mddev->raid_disks - mddev->delta_disks);
3669 	return sprintf(page, "%d\n", mddev->raid_disks);
3670 }
3671 
3672 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3673 
3674 static ssize_t
3675 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3676 {
3677 	unsigned int n;
3678 	int err;
3679 
3680 	err = kstrtouint(buf, 10, &n);
3681 	if (err < 0)
3682 		return err;
3683 
3684 	err = mddev_lock(mddev);
3685 	if (err)
3686 		return err;
3687 	if (mddev->pers)
3688 		err = update_raid_disks(mddev, n);
3689 	else if (mddev->reshape_position != MaxSector) {
3690 		struct md_rdev *rdev;
3691 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3692 
3693 		err = -EINVAL;
3694 		rdev_for_each(rdev, mddev) {
3695 			if (olddisks < n &&
3696 			    rdev->data_offset < rdev->new_data_offset)
3697 				goto out_unlock;
3698 			if (olddisks > n &&
3699 			    rdev->data_offset > rdev->new_data_offset)
3700 				goto out_unlock;
3701 		}
3702 		err = 0;
3703 		mddev->delta_disks = n - olddisks;
3704 		mddev->raid_disks = n;
3705 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3706 	} else
3707 		mddev->raid_disks = n;
3708 out_unlock:
3709 	mddev_unlock(mddev);
3710 	return err ? err : len;
3711 }
3712 static struct md_sysfs_entry md_raid_disks =
3713 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3714 
3715 static ssize_t
3716 chunk_size_show(struct mddev *mddev, char *page)
3717 {
3718 	if (mddev->reshape_position != MaxSector &&
3719 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3720 		return sprintf(page, "%d (%d)\n",
3721 			       mddev->new_chunk_sectors << 9,
3722 			       mddev->chunk_sectors << 9);
3723 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3724 }
3725 
3726 static ssize_t
3727 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3728 {
3729 	unsigned long n;
3730 	int err;
3731 
3732 	err = kstrtoul(buf, 10, &n);
3733 	if (err < 0)
3734 		return err;
3735 
3736 	err = mddev_lock(mddev);
3737 	if (err)
3738 		return err;
3739 	if (mddev->pers) {
3740 		if (mddev->pers->check_reshape == NULL)
3741 			err = -EBUSY;
3742 		else if (mddev->ro)
3743 			err = -EROFS;
3744 		else {
3745 			mddev->new_chunk_sectors = n >> 9;
3746 			err = mddev->pers->check_reshape(mddev);
3747 			if (err)
3748 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3749 		}
3750 	} else {
3751 		mddev->new_chunk_sectors = n >> 9;
3752 		if (mddev->reshape_position == MaxSector)
3753 			mddev->chunk_sectors = n >> 9;
3754 	}
3755 	mddev_unlock(mddev);
3756 	return err ?: len;
3757 }
3758 static struct md_sysfs_entry md_chunk_size =
3759 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3760 
3761 static ssize_t
3762 resync_start_show(struct mddev *mddev, char *page)
3763 {
3764 	if (mddev->recovery_cp == MaxSector)
3765 		return sprintf(page, "none\n");
3766 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3767 }
3768 
3769 static ssize_t
3770 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3771 {
3772 	unsigned long long n;
3773 	int err;
3774 
3775 	if (cmd_match(buf, "none"))
3776 		n = MaxSector;
3777 	else {
3778 		err = kstrtoull(buf, 10, &n);
3779 		if (err < 0)
3780 			return err;
3781 		if (n != (sector_t)n)
3782 			return -EINVAL;
3783 	}
3784 
3785 	err = mddev_lock(mddev);
3786 	if (err)
3787 		return err;
3788 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3789 		err = -EBUSY;
3790 
3791 	if (!err) {
3792 		mddev->recovery_cp = n;
3793 		if (mddev->pers)
3794 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3795 	}
3796 	mddev_unlock(mddev);
3797 	return err ?: len;
3798 }
3799 static struct md_sysfs_entry md_resync_start =
3800 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3801 		resync_start_show, resync_start_store);
3802 
3803 /*
3804  * The array state can be:
3805  *
3806  * clear
3807  *     No devices, no size, no level
3808  *     Equivalent to STOP_ARRAY ioctl
3809  * inactive
3810  *     May have some settings, but array is not active
3811  *        all IO results in error
3812  *     When written, doesn't tear down array, but just stops it
3813  * suspended (not supported yet)
3814  *     All IO requests will block. The array can be reconfigured.
3815  *     Writing this, if accepted, will block until array is quiescent
3816  * readonly
3817  *     no resync can happen.  no superblocks get written.
3818  *     write requests fail
3819  * read-auto
3820  *     like readonly, but behaves like 'clean' on a write request.
3821  *
3822  * clean - no pending writes, but otherwise active.
3823  *     When written to inactive array, starts without resync
3824  *     If a write request arrives then
3825  *       if metadata is known, mark 'dirty' and switch to 'active'.
3826  *       if not known, block and switch to write-pending
3827  *     If written to an active array that has pending writes, then fails.
3828  * active
3829  *     fully active: IO and resync can be happening.
3830  *     When written to inactive array, starts with resync
3831  *
3832  * write-pending
3833  *     clean, but writes are blocked waiting for 'active' to be written.
3834  *
3835  * active-idle
3836  *     like active, but no writes have been seen for a while (100msec).
3837  *
3838  */
3839 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3840 		   write_pending, active_idle, bad_word};
3841 static char *array_states[] = {
3842 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3843 	"write-pending", "active-idle", NULL };
3844 
3845 static int match_word(const char *word, char **list)
3846 {
3847 	int n;
3848 	for (n=0; list[n]; n++)
3849 		if (cmd_match(word, list[n]))
3850 			break;
3851 	return n;
3852 }
3853 
3854 static ssize_t
3855 array_state_show(struct mddev *mddev, char *page)
3856 {
3857 	enum array_state st = inactive;
3858 
3859 	if (mddev->pers)
3860 		switch(mddev->ro) {
3861 		case 1:
3862 			st = readonly;
3863 			break;
3864 		case 2:
3865 			st = read_auto;
3866 			break;
3867 		case 0:
3868 			if (mddev->in_sync)
3869 				st = clean;
3870 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3871 				st = write_pending;
3872 			else if (mddev->safemode)
3873 				st = active_idle;
3874 			else
3875 				st = active;
3876 		}
3877 	else {
3878 		if (list_empty(&mddev->disks) &&
3879 		    mddev->raid_disks == 0 &&
3880 		    mddev->dev_sectors == 0)
3881 			st = clear;
3882 		else
3883 			st = inactive;
3884 	}
3885 	return sprintf(page, "%s\n", array_states[st]);
3886 }
3887 
3888 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3889 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3890 static int do_md_run(struct mddev *mddev);
3891 static int restart_array(struct mddev *mddev);
3892 
3893 static ssize_t
3894 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3895 {
3896 	int err;
3897 	enum array_state st = match_word(buf, array_states);
3898 
3899 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3900 		/* don't take reconfig_mutex when toggling between
3901 		 * clean and active
3902 		 */
3903 		spin_lock(&mddev->lock);
3904 		if (st == active) {
3905 			restart_array(mddev);
3906 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3907 			wake_up(&mddev->sb_wait);
3908 			err = 0;
3909 		} else /* st == clean */ {
3910 			restart_array(mddev);
3911 			if (atomic_read(&mddev->writes_pending) == 0) {
3912 				if (mddev->in_sync == 0) {
3913 					mddev->in_sync = 1;
3914 					if (mddev->safemode == 1)
3915 						mddev->safemode = 0;
3916 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3917 				}
3918 				err = 0;
3919 			} else
3920 				err = -EBUSY;
3921 		}
3922 		spin_unlock(&mddev->lock);
3923 		return err ?: len;
3924 	}
3925 	err = mddev_lock(mddev);
3926 	if (err)
3927 		return err;
3928 	err = -EINVAL;
3929 	switch(st) {
3930 	case bad_word:
3931 		break;
3932 	case clear:
3933 		/* stopping an active array */
3934 		err = do_md_stop(mddev, 0, NULL);
3935 		break;
3936 	case inactive:
3937 		/* stopping an active array */
3938 		if (mddev->pers)
3939 			err = do_md_stop(mddev, 2, NULL);
3940 		else
3941 			err = 0; /* already inactive */
3942 		break;
3943 	case suspended:
3944 		break; /* not supported yet */
3945 	case readonly:
3946 		if (mddev->pers)
3947 			err = md_set_readonly(mddev, NULL);
3948 		else {
3949 			mddev->ro = 1;
3950 			set_disk_ro(mddev->gendisk, 1);
3951 			err = do_md_run(mddev);
3952 		}
3953 		break;
3954 	case read_auto:
3955 		if (mddev->pers) {
3956 			if (mddev->ro == 0)
3957 				err = md_set_readonly(mddev, NULL);
3958 			else if (mddev->ro == 1)
3959 				err = restart_array(mddev);
3960 			if (err == 0) {
3961 				mddev->ro = 2;
3962 				set_disk_ro(mddev->gendisk, 0);
3963 			}
3964 		} else {
3965 			mddev->ro = 2;
3966 			err = do_md_run(mddev);
3967 		}
3968 		break;
3969 	case clean:
3970 		if (mddev->pers) {
3971 			err = restart_array(mddev);
3972 			if (err)
3973 				break;
3974 			spin_lock(&mddev->lock);
3975 			if (atomic_read(&mddev->writes_pending) == 0) {
3976 				if (mddev->in_sync == 0) {
3977 					mddev->in_sync = 1;
3978 					if (mddev->safemode == 1)
3979 						mddev->safemode = 0;
3980 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3981 				}
3982 				err = 0;
3983 			} else
3984 				err = -EBUSY;
3985 			spin_unlock(&mddev->lock);
3986 		} else
3987 			err = -EINVAL;
3988 		break;
3989 	case active:
3990 		if (mddev->pers) {
3991 			err = restart_array(mddev);
3992 			if (err)
3993 				break;
3994 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3995 			wake_up(&mddev->sb_wait);
3996 			err = 0;
3997 		} else {
3998 			mddev->ro = 0;
3999 			set_disk_ro(mddev->gendisk, 0);
4000 			err = do_md_run(mddev);
4001 		}
4002 		break;
4003 	case write_pending:
4004 	case active_idle:
4005 		/* these cannot be set */
4006 		break;
4007 	}
4008 
4009 	if (!err) {
4010 		if (mddev->hold_active == UNTIL_IOCTL)
4011 			mddev->hold_active = 0;
4012 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4013 	}
4014 	mddev_unlock(mddev);
4015 	return err ?: len;
4016 }
4017 static struct md_sysfs_entry md_array_state =
4018 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4019 
4020 static ssize_t
4021 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4022 	return sprintf(page, "%d\n",
4023 		       atomic_read(&mddev->max_corr_read_errors));
4024 }
4025 
4026 static ssize_t
4027 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4028 {
4029 	unsigned int n;
4030 	int rv;
4031 
4032 	rv = kstrtouint(buf, 10, &n);
4033 	if (rv < 0)
4034 		return rv;
4035 	atomic_set(&mddev->max_corr_read_errors, n);
4036 	return len;
4037 }
4038 
4039 static struct md_sysfs_entry max_corr_read_errors =
4040 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4041 	max_corrected_read_errors_store);
4042 
4043 static ssize_t
4044 null_show(struct mddev *mddev, char *page)
4045 {
4046 	return -EINVAL;
4047 }
4048 
4049 static ssize_t
4050 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4051 {
4052 	/* buf must be %d:%d\n? giving major and minor numbers */
4053 	/* The new device is added to the array.
4054 	 * If the array has a persistent superblock, we read the
4055 	 * superblock to initialise info and check validity.
4056 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4057 	 * which mainly checks size.
4058 	 */
4059 	char *e;
4060 	int major = simple_strtoul(buf, &e, 10);
4061 	int minor;
4062 	dev_t dev;
4063 	struct md_rdev *rdev;
4064 	int err;
4065 
4066 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4067 		return -EINVAL;
4068 	minor = simple_strtoul(e+1, &e, 10);
4069 	if (*e && *e != '\n')
4070 		return -EINVAL;
4071 	dev = MKDEV(major, minor);
4072 	if (major != MAJOR(dev) ||
4073 	    minor != MINOR(dev))
4074 		return -EOVERFLOW;
4075 
4076 	flush_workqueue(md_misc_wq);
4077 
4078 	err = mddev_lock(mddev);
4079 	if (err)
4080 		return err;
4081 	if (mddev->persistent) {
4082 		rdev = md_import_device(dev, mddev->major_version,
4083 					mddev->minor_version);
4084 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4085 			struct md_rdev *rdev0
4086 				= list_entry(mddev->disks.next,
4087 					     struct md_rdev, same_set);
4088 			err = super_types[mddev->major_version]
4089 				.load_super(rdev, rdev0, mddev->minor_version);
4090 			if (err < 0)
4091 				goto out;
4092 		}
4093 	} else if (mddev->external)
4094 		rdev = md_import_device(dev, -2, -1);
4095 	else
4096 		rdev = md_import_device(dev, -1, -1);
4097 
4098 	if (IS_ERR(rdev)) {
4099 		mddev_unlock(mddev);
4100 		return PTR_ERR(rdev);
4101 	}
4102 	err = bind_rdev_to_array(rdev, mddev);
4103  out:
4104 	if (err)
4105 		export_rdev(rdev);
4106 	mddev_unlock(mddev);
4107 	return err ? err : len;
4108 }
4109 
4110 static struct md_sysfs_entry md_new_device =
4111 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4112 
4113 static ssize_t
4114 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4115 {
4116 	char *end;
4117 	unsigned long chunk, end_chunk;
4118 	int err;
4119 
4120 	err = mddev_lock(mddev);
4121 	if (err)
4122 		return err;
4123 	if (!mddev->bitmap)
4124 		goto out;
4125 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4126 	while (*buf) {
4127 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4128 		if (buf == end) break;
4129 		if (*end == '-') { /* range */
4130 			buf = end + 1;
4131 			end_chunk = simple_strtoul(buf, &end, 0);
4132 			if (buf == end) break;
4133 		}
4134 		if (*end && !isspace(*end)) break;
4135 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4136 		buf = skip_spaces(end);
4137 	}
4138 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4139 out:
4140 	mddev_unlock(mddev);
4141 	return len;
4142 }
4143 
4144 static struct md_sysfs_entry md_bitmap =
4145 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4146 
4147 static ssize_t
4148 size_show(struct mddev *mddev, char *page)
4149 {
4150 	return sprintf(page, "%llu\n",
4151 		(unsigned long long)mddev->dev_sectors / 2);
4152 }
4153 
4154 static int update_size(struct mddev *mddev, sector_t num_sectors);
4155 
4156 static ssize_t
4157 size_store(struct mddev *mddev, const char *buf, size_t len)
4158 {
4159 	/* If array is inactive, we can reduce the component size, but
4160 	 * not increase it (except from 0).
4161 	 * If array is active, we can try an on-line resize
4162 	 */
4163 	sector_t sectors;
4164 	int err = strict_blocks_to_sectors(buf, &sectors);
4165 
4166 	if (err < 0)
4167 		return err;
4168 	err = mddev_lock(mddev);
4169 	if (err)
4170 		return err;
4171 	if (mddev->pers) {
4172 		err = update_size(mddev, sectors);
4173 		md_update_sb(mddev, 1);
4174 	} else {
4175 		if (mddev->dev_sectors == 0 ||
4176 		    mddev->dev_sectors > sectors)
4177 			mddev->dev_sectors = sectors;
4178 		else
4179 			err = -ENOSPC;
4180 	}
4181 	mddev_unlock(mddev);
4182 	return err ? err : len;
4183 }
4184 
4185 static struct md_sysfs_entry md_size =
4186 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4187 
4188 /* Metadata version.
4189  * This is one of
4190  *   'none' for arrays with no metadata (good luck...)
4191  *   'external' for arrays with externally managed metadata,
4192  * or N.M for internally known formats
4193  */
4194 static ssize_t
4195 metadata_show(struct mddev *mddev, char *page)
4196 {
4197 	if (mddev->persistent)
4198 		return sprintf(page, "%d.%d\n",
4199 			       mddev->major_version, mddev->minor_version);
4200 	else if (mddev->external)
4201 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4202 	else
4203 		return sprintf(page, "none\n");
4204 }
4205 
4206 static ssize_t
4207 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4208 {
4209 	int major, minor;
4210 	char *e;
4211 	int err;
4212 	/* Changing the details of 'external' metadata is
4213 	 * always permitted.  Otherwise there must be
4214 	 * no devices attached to the array.
4215 	 */
4216 
4217 	err = mddev_lock(mddev);
4218 	if (err)
4219 		return err;
4220 	err = -EBUSY;
4221 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4222 		;
4223 	else if (!list_empty(&mddev->disks))
4224 		goto out_unlock;
4225 
4226 	err = 0;
4227 	if (cmd_match(buf, "none")) {
4228 		mddev->persistent = 0;
4229 		mddev->external = 0;
4230 		mddev->major_version = 0;
4231 		mddev->minor_version = 90;
4232 		goto out_unlock;
4233 	}
4234 	if (strncmp(buf, "external:", 9) == 0) {
4235 		size_t namelen = len-9;
4236 		if (namelen >= sizeof(mddev->metadata_type))
4237 			namelen = sizeof(mddev->metadata_type)-1;
4238 		strncpy(mddev->metadata_type, buf+9, namelen);
4239 		mddev->metadata_type[namelen] = 0;
4240 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4241 			mddev->metadata_type[--namelen] = 0;
4242 		mddev->persistent = 0;
4243 		mddev->external = 1;
4244 		mddev->major_version = 0;
4245 		mddev->minor_version = 90;
4246 		goto out_unlock;
4247 	}
4248 	major = simple_strtoul(buf, &e, 10);
4249 	err = -EINVAL;
4250 	if (e==buf || *e != '.')
4251 		goto out_unlock;
4252 	buf = e+1;
4253 	minor = simple_strtoul(buf, &e, 10);
4254 	if (e==buf || (*e && *e != '\n') )
4255 		goto out_unlock;
4256 	err = -ENOENT;
4257 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4258 		goto out_unlock;
4259 	mddev->major_version = major;
4260 	mddev->minor_version = minor;
4261 	mddev->persistent = 1;
4262 	mddev->external = 0;
4263 	err = 0;
4264 out_unlock:
4265 	mddev_unlock(mddev);
4266 	return err ?: len;
4267 }
4268 
4269 static struct md_sysfs_entry md_metadata =
4270 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4271 
4272 static ssize_t
4273 action_show(struct mddev *mddev, char *page)
4274 {
4275 	char *type = "idle";
4276 	unsigned long recovery = mddev->recovery;
4277 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4278 		type = "frozen";
4279 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4280 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4281 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4282 			type = "reshape";
4283 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4284 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4285 				type = "resync";
4286 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4287 				type = "check";
4288 			else
4289 				type = "repair";
4290 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4291 			type = "recover";
4292 		else if (mddev->reshape_position != MaxSector)
4293 			type = "reshape";
4294 	}
4295 	return sprintf(page, "%s\n", type);
4296 }
4297 
4298 static ssize_t
4299 action_store(struct mddev *mddev, const char *page, size_t len)
4300 {
4301 	if (!mddev->pers || !mddev->pers->sync_request)
4302 		return -EINVAL;
4303 
4304 
4305 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4306 		if (cmd_match(page, "frozen"))
4307 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4308 		else
4309 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4310 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4311 		    mddev_lock(mddev) == 0) {
4312 			flush_workqueue(md_misc_wq);
4313 			if (mddev->sync_thread) {
4314 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4315 				md_reap_sync_thread(mddev);
4316 			}
4317 			mddev_unlock(mddev);
4318 		}
4319 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4320 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4321 		return -EBUSY;
4322 	else if (cmd_match(page, "resync"))
4323 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324 	else if (cmd_match(page, "recover")) {
4325 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4327 	} else if (cmd_match(page, "reshape")) {
4328 		int err;
4329 		if (mddev->pers->start_reshape == NULL)
4330 			return -EINVAL;
4331 		err = mddev_lock(mddev);
4332 		if (!err) {
4333 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4334 			err = mddev->pers->start_reshape(mddev);
4335 			mddev_unlock(mddev);
4336 		}
4337 		if (err)
4338 			return err;
4339 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4340 	} else {
4341 		if (cmd_match(page, "check"))
4342 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4343 		else if (!cmd_match(page, "repair"))
4344 			return -EINVAL;
4345 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4346 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4347 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4348 	}
4349 	if (mddev->ro == 2) {
4350 		/* A write to sync_action is enough to justify
4351 		 * canceling read-auto mode
4352 		 */
4353 		mddev->ro = 0;
4354 		md_wakeup_thread(mddev->sync_thread);
4355 	}
4356 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4357 	md_wakeup_thread(mddev->thread);
4358 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4359 	return len;
4360 }
4361 
4362 static struct md_sysfs_entry md_scan_mode =
4363 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4364 
4365 static ssize_t
4366 last_sync_action_show(struct mddev *mddev, char *page)
4367 {
4368 	return sprintf(page, "%s\n", mddev->last_sync_action);
4369 }
4370 
4371 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4372 
4373 static ssize_t
4374 mismatch_cnt_show(struct mddev *mddev, char *page)
4375 {
4376 	return sprintf(page, "%llu\n",
4377 		       (unsigned long long)
4378 		       atomic64_read(&mddev->resync_mismatches));
4379 }
4380 
4381 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4382 
4383 static ssize_t
4384 sync_min_show(struct mddev *mddev, char *page)
4385 {
4386 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4387 		       mddev->sync_speed_min ? "local": "system");
4388 }
4389 
4390 static ssize_t
4391 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4392 {
4393 	unsigned int min;
4394 	int rv;
4395 
4396 	if (strncmp(buf, "system", 6)==0) {
4397 		min = 0;
4398 	} else {
4399 		rv = kstrtouint(buf, 10, &min);
4400 		if (rv < 0)
4401 			return rv;
4402 		if (min == 0)
4403 			return -EINVAL;
4404 	}
4405 	mddev->sync_speed_min = min;
4406 	return len;
4407 }
4408 
4409 static struct md_sysfs_entry md_sync_min =
4410 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4411 
4412 static ssize_t
4413 sync_max_show(struct mddev *mddev, char *page)
4414 {
4415 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4416 		       mddev->sync_speed_max ? "local": "system");
4417 }
4418 
4419 static ssize_t
4420 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4421 {
4422 	unsigned int max;
4423 	int rv;
4424 
4425 	if (strncmp(buf, "system", 6)==0) {
4426 		max = 0;
4427 	} else {
4428 		rv = kstrtouint(buf, 10, &max);
4429 		if (rv < 0)
4430 			return rv;
4431 		if (max == 0)
4432 			return -EINVAL;
4433 	}
4434 	mddev->sync_speed_max = max;
4435 	return len;
4436 }
4437 
4438 static struct md_sysfs_entry md_sync_max =
4439 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4440 
4441 static ssize_t
4442 degraded_show(struct mddev *mddev, char *page)
4443 {
4444 	return sprintf(page, "%d\n", mddev->degraded);
4445 }
4446 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4447 
4448 static ssize_t
4449 sync_force_parallel_show(struct mddev *mddev, char *page)
4450 {
4451 	return sprintf(page, "%d\n", mddev->parallel_resync);
4452 }
4453 
4454 static ssize_t
4455 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4456 {
4457 	long n;
4458 
4459 	if (kstrtol(buf, 10, &n))
4460 		return -EINVAL;
4461 
4462 	if (n != 0 && n != 1)
4463 		return -EINVAL;
4464 
4465 	mddev->parallel_resync = n;
4466 
4467 	if (mddev->sync_thread)
4468 		wake_up(&resync_wait);
4469 
4470 	return len;
4471 }
4472 
4473 /* force parallel resync, even with shared block devices */
4474 static struct md_sysfs_entry md_sync_force_parallel =
4475 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4476        sync_force_parallel_show, sync_force_parallel_store);
4477 
4478 static ssize_t
4479 sync_speed_show(struct mddev *mddev, char *page)
4480 {
4481 	unsigned long resync, dt, db;
4482 	if (mddev->curr_resync == 0)
4483 		return sprintf(page, "none\n");
4484 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4485 	dt = (jiffies - mddev->resync_mark) / HZ;
4486 	if (!dt) dt++;
4487 	db = resync - mddev->resync_mark_cnt;
4488 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4489 }
4490 
4491 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4492 
4493 static ssize_t
4494 sync_completed_show(struct mddev *mddev, char *page)
4495 {
4496 	unsigned long long max_sectors, resync;
4497 
4498 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4499 		return sprintf(page, "none\n");
4500 
4501 	if (mddev->curr_resync == 1 ||
4502 	    mddev->curr_resync == 2)
4503 		return sprintf(page, "delayed\n");
4504 
4505 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4506 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4507 		max_sectors = mddev->resync_max_sectors;
4508 	else
4509 		max_sectors = mddev->dev_sectors;
4510 
4511 	resync = mddev->curr_resync_completed;
4512 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4513 }
4514 
4515 static struct md_sysfs_entry md_sync_completed =
4516 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4517 
4518 static ssize_t
4519 min_sync_show(struct mddev *mddev, char *page)
4520 {
4521 	return sprintf(page, "%llu\n",
4522 		       (unsigned long long)mddev->resync_min);
4523 }
4524 static ssize_t
4525 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4526 {
4527 	unsigned long long min;
4528 	int err;
4529 
4530 	if (kstrtoull(buf, 10, &min))
4531 		return -EINVAL;
4532 
4533 	spin_lock(&mddev->lock);
4534 	err = -EINVAL;
4535 	if (min > mddev->resync_max)
4536 		goto out_unlock;
4537 
4538 	err = -EBUSY;
4539 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4540 		goto out_unlock;
4541 
4542 	/* Round down to multiple of 4K for safety */
4543 	mddev->resync_min = round_down(min, 8);
4544 	err = 0;
4545 
4546 out_unlock:
4547 	spin_unlock(&mddev->lock);
4548 	return err ?: len;
4549 }
4550 
4551 static struct md_sysfs_entry md_min_sync =
4552 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4553 
4554 static ssize_t
4555 max_sync_show(struct mddev *mddev, char *page)
4556 {
4557 	if (mddev->resync_max == MaxSector)
4558 		return sprintf(page, "max\n");
4559 	else
4560 		return sprintf(page, "%llu\n",
4561 			       (unsigned long long)mddev->resync_max);
4562 }
4563 static ssize_t
4564 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4565 {
4566 	int err;
4567 	spin_lock(&mddev->lock);
4568 	if (strncmp(buf, "max", 3) == 0)
4569 		mddev->resync_max = MaxSector;
4570 	else {
4571 		unsigned long long max;
4572 		int chunk;
4573 
4574 		err = -EINVAL;
4575 		if (kstrtoull(buf, 10, &max))
4576 			goto out_unlock;
4577 		if (max < mddev->resync_min)
4578 			goto out_unlock;
4579 
4580 		err = -EBUSY;
4581 		if (max < mddev->resync_max &&
4582 		    mddev->ro == 0 &&
4583 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4584 			goto out_unlock;
4585 
4586 		/* Must be a multiple of chunk_size */
4587 		chunk = mddev->chunk_sectors;
4588 		if (chunk) {
4589 			sector_t temp = max;
4590 
4591 			err = -EINVAL;
4592 			if (sector_div(temp, chunk))
4593 				goto out_unlock;
4594 		}
4595 		mddev->resync_max = max;
4596 	}
4597 	wake_up(&mddev->recovery_wait);
4598 	err = 0;
4599 out_unlock:
4600 	spin_unlock(&mddev->lock);
4601 	return err ?: len;
4602 }
4603 
4604 static struct md_sysfs_entry md_max_sync =
4605 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4606 
4607 static ssize_t
4608 suspend_lo_show(struct mddev *mddev, char *page)
4609 {
4610 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4611 }
4612 
4613 static ssize_t
4614 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4615 {
4616 	unsigned long long old, new;
4617 	int err;
4618 
4619 	err = kstrtoull(buf, 10, &new);
4620 	if (err < 0)
4621 		return err;
4622 	if (new != (sector_t)new)
4623 		return -EINVAL;
4624 
4625 	err = mddev_lock(mddev);
4626 	if (err)
4627 		return err;
4628 	err = -EINVAL;
4629 	if (mddev->pers == NULL ||
4630 	    mddev->pers->quiesce == NULL)
4631 		goto unlock;
4632 	old = mddev->suspend_lo;
4633 	mddev->suspend_lo = new;
4634 	if (new >= old)
4635 		/* Shrinking suspended region */
4636 		mddev->pers->quiesce(mddev, 2);
4637 	else {
4638 		/* Expanding suspended region - need to wait */
4639 		mddev->pers->quiesce(mddev, 1);
4640 		mddev->pers->quiesce(mddev, 0);
4641 	}
4642 	err = 0;
4643 unlock:
4644 	mddev_unlock(mddev);
4645 	return err ?: len;
4646 }
4647 static struct md_sysfs_entry md_suspend_lo =
4648 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4649 
4650 static ssize_t
4651 suspend_hi_show(struct mddev *mddev, char *page)
4652 {
4653 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4654 }
4655 
4656 static ssize_t
4657 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4658 {
4659 	unsigned long long old, new;
4660 	int err;
4661 
4662 	err = kstrtoull(buf, 10, &new);
4663 	if (err < 0)
4664 		return err;
4665 	if (new != (sector_t)new)
4666 		return -EINVAL;
4667 
4668 	err = mddev_lock(mddev);
4669 	if (err)
4670 		return err;
4671 	err = -EINVAL;
4672 	if (mddev->pers == NULL ||
4673 	    mddev->pers->quiesce == NULL)
4674 		goto unlock;
4675 	old = mddev->suspend_hi;
4676 	mddev->suspend_hi = new;
4677 	if (new <= old)
4678 		/* Shrinking suspended region */
4679 		mddev->pers->quiesce(mddev, 2);
4680 	else {
4681 		/* Expanding suspended region - need to wait */
4682 		mddev->pers->quiesce(mddev, 1);
4683 		mddev->pers->quiesce(mddev, 0);
4684 	}
4685 	err = 0;
4686 unlock:
4687 	mddev_unlock(mddev);
4688 	return err ?: len;
4689 }
4690 static struct md_sysfs_entry md_suspend_hi =
4691 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4692 
4693 static ssize_t
4694 reshape_position_show(struct mddev *mddev, char *page)
4695 {
4696 	if (mddev->reshape_position != MaxSector)
4697 		return sprintf(page, "%llu\n",
4698 			       (unsigned long long)mddev->reshape_position);
4699 	strcpy(page, "none\n");
4700 	return 5;
4701 }
4702 
4703 static ssize_t
4704 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4705 {
4706 	struct md_rdev *rdev;
4707 	unsigned long long new;
4708 	int err;
4709 
4710 	err = kstrtoull(buf, 10, &new);
4711 	if (err < 0)
4712 		return err;
4713 	if (new != (sector_t)new)
4714 		return -EINVAL;
4715 	err = mddev_lock(mddev);
4716 	if (err)
4717 		return err;
4718 	err = -EBUSY;
4719 	if (mddev->pers)
4720 		goto unlock;
4721 	mddev->reshape_position = new;
4722 	mddev->delta_disks = 0;
4723 	mddev->reshape_backwards = 0;
4724 	mddev->new_level = mddev->level;
4725 	mddev->new_layout = mddev->layout;
4726 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4727 	rdev_for_each(rdev, mddev)
4728 		rdev->new_data_offset = rdev->data_offset;
4729 	err = 0;
4730 unlock:
4731 	mddev_unlock(mddev);
4732 	return err ?: len;
4733 }
4734 
4735 static struct md_sysfs_entry md_reshape_position =
4736 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4737        reshape_position_store);
4738 
4739 static ssize_t
4740 reshape_direction_show(struct mddev *mddev, char *page)
4741 {
4742 	return sprintf(page, "%s\n",
4743 		       mddev->reshape_backwards ? "backwards" : "forwards");
4744 }
4745 
4746 static ssize_t
4747 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4748 {
4749 	int backwards = 0;
4750 	int err;
4751 
4752 	if (cmd_match(buf, "forwards"))
4753 		backwards = 0;
4754 	else if (cmd_match(buf, "backwards"))
4755 		backwards = 1;
4756 	else
4757 		return -EINVAL;
4758 	if (mddev->reshape_backwards == backwards)
4759 		return len;
4760 
4761 	err = mddev_lock(mddev);
4762 	if (err)
4763 		return err;
4764 	/* check if we are allowed to change */
4765 	if (mddev->delta_disks)
4766 		err = -EBUSY;
4767 	else if (mddev->persistent &&
4768 	    mddev->major_version == 0)
4769 		err =  -EINVAL;
4770 	else
4771 		mddev->reshape_backwards = backwards;
4772 	mddev_unlock(mddev);
4773 	return err ?: len;
4774 }
4775 
4776 static struct md_sysfs_entry md_reshape_direction =
4777 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4778        reshape_direction_store);
4779 
4780 static ssize_t
4781 array_size_show(struct mddev *mddev, char *page)
4782 {
4783 	if (mddev->external_size)
4784 		return sprintf(page, "%llu\n",
4785 			       (unsigned long long)mddev->array_sectors/2);
4786 	else
4787 		return sprintf(page, "default\n");
4788 }
4789 
4790 static ssize_t
4791 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4792 {
4793 	sector_t sectors;
4794 	int err;
4795 
4796 	err = mddev_lock(mddev);
4797 	if (err)
4798 		return err;
4799 
4800 	if (strncmp(buf, "default", 7) == 0) {
4801 		if (mddev->pers)
4802 			sectors = mddev->pers->size(mddev, 0, 0);
4803 		else
4804 			sectors = mddev->array_sectors;
4805 
4806 		mddev->external_size = 0;
4807 	} else {
4808 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4809 			err = -EINVAL;
4810 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4811 			err = -E2BIG;
4812 		else
4813 			mddev->external_size = 1;
4814 	}
4815 
4816 	if (!err) {
4817 		mddev->array_sectors = sectors;
4818 		if (mddev->pers) {
4819 			set_capacity(mddev->gendisk, mddev->array_sectors);
4820 			revalidate_disk(mddev->gendisk);
4821 		}
4822 	}
4823 	mddev_unlock(mddev);
4824 	return err ?: len;
4825 }
4826 
4827 static struct md_sysfs_entry md_array_size =
4828 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4829        array_size_store);
4830 
4831 static struct attribute *md_default_attrs[] = {
4832 	&md_level.attr,
4833 	&md_layout.attr,
4834 	&md_raid_disks.attr,
4835 	&md_chunk_size.attr,
4836 	&md_size.attr,
4837 	&md_resync_start.attr,
4838 	&md_metadata.attr,
4839 	&md_new_device.attr,
4840 	&md_safe_delay.attr,
4841 	&md_array_state.attr,
4842 	&md_reshape_position.attr,
4843 	&md_reshape_direction.attr,
4844 	&md_array_size.attr,
4845 	&max_corr_read_errors.attr,
4846 	NULL,
4847 };
4848 
4849 static struct attribute *md_redundancy_attrs[] = {
4850 	&md_scan_mode.attr,
4851 	&md_last_scan_mode.attr,
4852 	&md_mismatches.attr,
4853 	&md_sync_min.attr,
4854 	&md_sync_max.attr,
4855 	&md_sync_speed.attr,
4856 	&md_sync_force_parallel.attr,
4857 	&md_sync_completed.attr,
4858 	&md_min_sync.attr,
4859 	&md_max_sync.attr,
4860 	&md_suspend_lo.attr,
4861 	&md_suspend_hi.attr,
4862 	&md_bitmap.attr,
4863 	&md_degraded.attr,
4864 	NULL,
4865 };
4866 static struct attribute_group md_redundancy_group = {
4867 	.name = NULL,
4868 	.attrs = md_redundancy_attrs,
4869 };
4870 
4871 static ssize_t
4872 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4873 {
4874 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4875 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4876 	ssize_t rv;
4877 
4878 	if (!entry->show)
4879 		return -EIO;
4880 	spin_lock(&all_mddevs_lock);
4881 	if (list_empty(&mddev->all_mddevs)) {
4882 		spin_unlock(&all_mddevs_lock);
4883 		return -EBUSY;
4884 	}
4885 	mddev_get(mddev);
4886 	spin_unlock(&all_mddevs_lock);
4887 
4888 	rv = entry->show(mddev, page);
4889 	mddev_put(mddev);
4890 	return rv;
4891 }
4892 
4893 static ssize_t
4894 md_attr_store(struct kobject *kobj, struct attribute *attr,
4895 	      const char *page, size_t length)
4896 {
4897 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4898 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4899 	ssize_t rv;
4900 
4901 	if (!entry->store)
4902 		return -EIO;
4903 	if (!capable(CAP_SYS_ADMIN))
4904 		return -EACCES;
4905 	spin_lock(&all_mddevs_lock);
4906 	if (list_empty(&mddev->all_mddevs)) {
4907 		spin_unlock(&all_mddevs_lock);
4908 		return -EBUSY;
4909 	}
4910 	mddev_get(mddev);
4911 	spin_unlock(&all_mddevs_lock);
4912 	rv = entry->store(mddev, page, length);
4913 	mddev_put(mddev);
4914 	return rv;
4915 }
4916 
4917 static void md_free(struct kobject *ko)
4918 {
4919 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4920 
4921 	if (mddev->sysfs_state)
4922 		sysfs_put(mddev->sysfs_state);
4923 
4924 	if (mddev->queue)
4925 		blk_cleanup_queue(mddev->queue);
4926 	if (mddev->gendisk) {
4927 		del_gendisk(mddev->gendisk);
4928 		put_disk(mddev->gendisk);
4929 	}
4930 
4931 	kfree(mddev);
4932 }
4933 
4934 static const struct sysfs_ops md_sysfs_ops = {
4935 	.show	= md_attr_show,
4936 	.store	= md_attr_store,
4937 };
4938 static struct kobj_type md_ktype = {
4939 	.release	= md_free,
4940 	.sysfs_ops	= &md_sysfs_ops,
4941 	.default_attrs	= md_default_attrs,
4942 };
4943 
4944 int mdp_major = 0;
4945 
4946 static void mddev_delayed_delete(struct work_struct *ws)
4947 {
4948 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4949 
4950 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4951 	kobject_del(&mddev->kobj);
4952 	kobject_put(&mddev->kobj);
4953 }
4954 
4955 static int md_alloc(dev_t dev, char *name)
4956 {
4957 	static DEFINE_MUTEX(disks_mutex);
4958 	struct mddev *mddev = mddev_find(dev);
4959 	struct gendisk *disk;
4960 	int partitioned;
4961 	int shift;
4962 	int unit;
4963 	int error;
4964 
4965 	if (!mddev)
4966 		return -ENODEV;
4967 
4968 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4969 	shift = partitioned ? MdpMinorShift : 0;
4970 	unit = MINOR(mddev->unit) >> shift;
4971 
4972 	/* wait for any previous instance of this device to be
4973 	 * completely removed (mddev_delayed_delete).
4974 	 */
4975 	flush_workqueue(md_misc_wq);
4976 
4977 	mutex_lock(&disks_mutex);
4978 	error = -EEXIST;
4979 	if (mddev->gendisk)
4980 		goto abort;
4981 
4982 	if (name) {
4983 		/* Need to ensure that 'name' is not a duplicate.
4984 		 */
4985 		struct mddev *mddev2;
4986 		spin_lock(&all_mddevs_lock);
4987 
4988 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4989 			if (mddev2->gendisk &&
4990 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4991 				spin_unlock(&all_mddevs_lock);
4992 				goto abort;
4993 			}
4994 		spin_unlock(&all_mddevs_lock);
4995 	}
4996 
4997 	error = -ENOMEM;
4998 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4999 	if (!mddev->queue)
5000 		goto abort;
5001 	mddev->queue->queuedata = mddev;
5002 
5003 	blk_queue_make_request(mddev->queue, md_make_request);
5004 	blk_set_stacking_limits(&mddev->queue->limits);
5005 
5006 	disk = alloc_disk(1 << shift);
5007 	if (!disk) {
5008 		blk_cleanup_queue(mddev->queue);
5009 		mddev->queue = NULL;
5010 		goto abort;
5011 	}
5012 	disk->major = MAJOR(mddev->unit);
5013 	disk->first_minor = unit << shift;
5014 	if (name)
5015 		strcpy(disk->disk_name, name);
5016 	else if (partitioned)
5017 		sprintf(disk->disk_name, "md_d%d", unit);
5018 	else
5019 		sprintf(disk->disk_name, "md%d", unit);
5020 	disk->fops = &md_fops;
5021 	disk->private_data = mddev;
5022 	disk->queue = mddev->queue;
5023 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5024 	/* Allow extended partitions.  This makes the
5025 	 * 'mdp' device redundant, but we can't really
5026 	 * remove it now.
5027 	 */
5028 	disk->flags |= GENHD_FL_EXT_DEVT;
5029 	mddev->gendisk = disk;
5030 	/* As soon as we call add_disk(), another thread could get
5031 	 * through to md_open, so make sure it doesn't get too far
5032 	 */
5033 	mutex_lock(&mddev->open_mutex);
5034 	add_disk(disk);
5035 
5036 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5037 				     &disk_to_dev(disk)->kobj, "%s", "md");
5038 	if (error) {
5039 		/* This isn't possible, but as kobject_init_and_add is marked
5040 		 * __must_check, we must do something with the result
5041 		 */
5042 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5043 		       disk->disk_name);
5044 		error = 0;
5045 	}
5046 	if (mddev->kobj.sd &&
5047 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5048 		printk(KERN_DEBUG "pointless warning\n");
5049 	mutex_unlock(&mddev->open_mutex);
5050  abort:
5051 	mutex_unlock(&disks_mutex);
5052 	if (!error && mddev->kobj.sd) {
5053 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5054 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5055 	}
5056 	mddev_put(mddev);
5057 	return error;
5058 }
5059 
5060 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5061 {
5062 	md_alloc(dev, NULL);
5063 	return NULL;
5064 }
5065 
5066 static int add_named_array(const char *val, struct kernel_param *kp)
5067 {
5068 	/* val must be "md_*" where * is not all digits.
5069 	 * We allocate an array with a large free minor number, and
5070 	 * set the name to val.  val must not already be an active name.
5071 	 */
5072 	int len = strlen(val);
5073 	char buf[DISK_NAME_LEN];
5074 
5075 	while (len && val[len-1] == '\n')
5076 		len--;
5077 	if (len >= DISK_NAME_LEN)
5078 		return -E2BIG;
5079 	strlcpy(buf, val, len+1);
5080 	if (strncmp(buf, "md_", 3) != 0)
5081 		return -EINVAL;
5082 	return md_alloc(0, buf);
5083 }
5084 
5085 static void md_safemode_timeout(unsigned long data)
5086 {
5087 	struct mddev *mddev = (struct mddev *) data;
5088 
5089 	if (!atomic_read(&mddev->writes_pending)) {
5090 		mddev->safemode = 1;
5091 		if (mddev->external)
5092 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5093 	}
5094 	md_wakeup_thread(mddev->thread);
5095 }
5096 
5097 static int start_dirty_degraded;
5098 
5099 int md_run(struct mddev *mddev)
5100 {
5101 	int err;
5102 	struct md_rdev *rdev;
5103 	struct md_personality *pers;
5104 
5105 	if (list_empty(&mddev->disks))
5106 		/* cannot run an array with no devices.. */
5107 		return -EINVAL;
5108 
5109 	if (mddev->pers)
5110 		return -EBUSY;
5111 	/* Cannot run until previous stop completes properly */
5112 	if (mddev->sysfs_active)
5113 		return -EBUSY;
5114 
5115 	/*
5116 	 * Analyze all RAID superblock(s)
5117 	 */
5118 	if (!mddev->raid_disks) {
5119 		if (!mddev->persistent)
5120 			return -EINVAL;
5121 		analyze_sbs(mddev);
5122 	}
5123 
5124 	if (mddev->level != LEVEL_NONE)
5125 		request_module("md-level-%d", mddev->level);
5126 	else if (mddev->clevel[0])
5127 		request_module("md-%s", mddev->clevel);
5128 
5129 	/*
5130 	 * Drop all container device buffers, from now on
5131 	 * the only valid external interface is through the md
5132 	 * device.
5133 	 */
5134 	rdev_for_each(rdev, mddev) {
5135 		if (test_bit(Faulty, &rdev->flags))
5136 			continue;
5137 		sync_blockdev(rdev->bdev);
5138 		invalidate_bdev(rdev->bdev);
5139 
5140 		/* perform some consistency tests on the device.
5141 		 * We don't want the data to overlap the metadata,
5142 		 * Internal Bitmap issues have been handled elsewhere.
5143 		 */
5144 		if (rdev->meta_bdev) {
5145 			/* Nothing to check */;
5146 		} else if (rdev->data_offset < rdev->sb_start) {
5147 			if (mddev->dev_sectors &&
5148 			    rdev->data_offset + mddev->dev_sectors
5149 			    > rdev->sb_start) {
5150 				printk("md: %s: data overlaps metadata\n",
5151 				       mdname(mddev));
5152 				return -EINVAL;
5153 			}
5154 		} else {
5155 			if (rdev->sb_start + rdev->sb_size/512
5156 			    > rdev->data_offset) {
5157 				printk("md: %s: metadata overlaps data\n",
5158 				       mdname(mddev));
5159 				return -EINVAL;
5160 			}
5161 		}
5162 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5163 	}
5164 
5165 	if (mddev->bio_set == NULL)
5166 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5167 
5168 	spin_lock(&pers_lock);
5169 	pers = find_pers(mddev->level, mddev->clevel);
5170 	if (!pers || !try_module_get(pers->owner)) {
5171 		spin_unlock(&pers_lock);
5172 		if (mddev->level != LEVEL_NONE)
5173 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5174 			       mddev->level);
5175 		else
5176 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5177 			       mddev->clevel);
5178 		return -EINVAL;
5179 	}
5180 	spin_unlock(&pers_lock);
5181 	if (mddev->level != pers->level) {
5182 		mddev->level = pers->level;
5183 		mddev->new_level = pers->level;
5184 	}
5185 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5186 
5187 	if (mddev->reshape_position != MaxSector &&
5188 	    pers->start_reshape == NULL) {
5189 		/* This personality cannot handle reshaping... */
5190 		module_put(pers->owner);
5191 		return -EINVAL;
5192 	}
5193 
5194 	if (pers->sync_request) {
5195 		/* Warn if this is a potentially silly
5196 		 * configuration.
5197 		 */
5198 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5199 		struct md_rdev *rdev2;
5200 		int warned = 0;
5201 
5202 		rdev_for_each(rdev, mddev)
5203 			rdev_for_each(rdev2, mddev) {
5204 				if (rdev < rdev2 &&
5205 				    rdev->bdev->bd_contains ==
5206 				    rdev2->bdev->bd_contains) {
5207 					printk(KERN_WARNING
5208 					       "%s: WARNING: %s appears to be"
5209 					       " on the same physical disk as"
5210 					       " %s.\n",
5211 					       mdname(mddev),
5212 					       bdevname(rdev->bdev,b),
5213 					       bdevname(rdev2->bdev,b2));
5214 					warned = 1;
5215 				}
5216 			}
5217 
5218 		if (warned)
5219 			printk(KERN_WARNING
5220 			       "True protection against single-disk"
5221 			       " failure might be compromised.\n");
5222 	}
5223 
5224 	mddev->recovery = 0;
5225 	/* may be over-ridden by personality */
5226 	mddev->resync_max_sectors = mddev->dev_sectors;
5227 
5228 	mddev->ok_start_degraded = start_dirty_degraded;
5229 
5230 	if (start_readonly && mddev->ro == 0)
5231 		mddev->ro = 2; /* read-only, but switch on first write */
5232 
5233 	err = pers->run(mddev);
5234 	if (err)
5235 		printk(KERN_ERR "md: pers->run() failed ...\n");
5236 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5237 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5238 			  " but 'external_size' not in effect?\n", __func__);
5239 		printk(KERN_ERR
5240 		       "md: invalid array_size %llu > default size %llu\n",
5241 		       (unsigned long long)mddev->array_sectors / 2,
5242 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5243 		err = -EINVAL;
5244 	}
5245 	if (err == 0 && pers->sync_request &&
5246 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5247 		struct bitmap *bitmap;
5248 
5249 		bitmap = bitmap_create(mddev, -1);
5250 		if (IS_ERR(bitmap)) {
5251 			err = PTR_ERR(bitmap);
5252 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5253 			       mdname(mddev), err);
5254 		} else
5255 			mddev->bitmap = bitmap;
5256 
5257 	}
5258 	if (err) {
5259 		mddev_detach(mddev);
5260 		if (mddev->private)
5261 			pers->free(mddev, mddev->private);
5262 		mddev->private = NULL;
5263 		module_put(pers->owner);
5264 		bitmap_destroy(mddev);
5265 		return err;
5266 	}
5267 	if (mddev->queue) {
5268 		mddev->queue->backing_dev_info.congested_data = mddev;
5269 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5270 	}
5271 	if (pers->sync_request) {
5272 		if (mddev->kobj.sd &&
5273 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5274 			printk(KERN_WARNING
5275 			       "md: cannot register extra attributes for %s\n",
5276 			       mdname(mddev));
5277 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5278 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5279 		mddev->ro = 0;
5280 
5281 	atomic_set(&mddev->writes_pending,0);
5282 	atomic_set(&mddev->max_corr_read_errors,
5283 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5284 	mddev->safemode = 0;
5285 	if (mddev_is_clustered(mddev))
5286 		mddev->safemode_delay = 0;
5287 	else
5288 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5289 	mddev->in_sync = 1;
5290 	smp_wmb();
5291 	spin_lock(&mddev->lock);
5292 	mddev->pers = pers;
5293 	mddev->ready = 1;
5294 	spin_unlock(&mddev->lock);
5295 	rdev_for_each(rdev, mddev)
5296 		if (rdev->raid_disk >= 0)
5297 			if (sysfs_link_rdev(mddev, rdev))
5298 				/* failure here is OK */;
5299 
5300 	if (mddev->degraded && !mddev->ro)
5301 		/* This ensures that recovering status is reported immediately
5302 		 * via sysfs - until a lack of spares is confirmed.
5303 		 */
5304 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5305 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5306 
5307 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5308 		md_update_sb(mddev, 0);
5309 
5310 	md_new_event(mddev);
5311 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5312 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5313 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5314 	return 0;
5315 }
5316 EXPORT_SYMBOL_GPL(md_run);
5317 
5318 static int do_md_run(struct mddev *mddev)
5319 {
5320 	int err;
5321 
5322 	err = md_run(mddev);
5323 	if (err)
5324 		goto out;
5325 	err = bitmap_load(mddev);
5326 	if (err) {
5327 		bitmap_destroy(mddev);
5328 		goto out;
5329 	}
5330 
5331 	if (mddev_is_clustered(mddev))
5332 		md_allow_write(mddev);
5333 
5334 	md_wakeup_thread(mddev->thread);
5335 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5336 
5337 	set_capacity(mddev->gendisk, mddev->array_sectors);
5338 	revalidate_disk(mddev->gendisk);
5339 	mddev->changed = 1;
5340 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5341 out:
5342 	return err;
5343 }
5344 
5345 static int restart_array(struct mddev *mddev)
5346 {
5347 	struct gendisk *disk = mddev->gendisk;
5348 
5349 	/* Complain if it has no devices */
5350 	if (list_empty(&mddev->disks))
5351 		return -ENXIO;
5352 	if (!mddev->pers)
5353 		return -EINVAL;
5354 	if (!mddev->ro)
5355 		return -EBUSY;
5356 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5357 		struct md_rdev *rdev;
5358 		bool has_journal = false;
5359 
5360 		rcu_read_lock();
5361 		rdev_for_each_rcu(rdev, mddev) {
5362 			if (test_bit(Journal, &rdev->flags) &&
5363 			    !test_bit(Faulty, &rdev->flags)) {
5364 				has_journal = true;
5365 				break;
5366 			}
5367 		}
5368 		rcu_read_unlock();
5369 
5370 		/* Don't restart rw with journal missing/faulty */
5371 		if (!has_journal)
5372 			return -EINVAL;
5373 	}
5374 
5375 	mddev->safemode = 0;
5376 	mddev->ro = 0;
5377 	set_disk_ro(disk, 0);
5378 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5379 		mdname(mddev));
5380 	/* Kick recovery or resync if necessary */
5381 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5382 	md_wakeup_thread(mddev->thread);
5383 	md_wakeup_thread(mddev->sync_thread);
5384 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5385 	return 0;
5386 }
5387 
5388 static void md_clean(struct mddev *mddev)
5389 {
5390 	mddev->array_sectors = 0;
5391 	mddev->external_size = 0;
5392 	mddev->dev_sectors = 0;
5393 	mddev->raid_disks = 0;
5394 	mddev->recovery_cp = 0;
5395 	mddev->resync_min = 0;
5396 	mddev->resync_max = MaxSector;
5397 	mddev->reshape_position = MaxSector;
5398 	mddev->external = 0;
5399 	mddev->persistent = 0;
5400 	mddev->level = LEVEL_NONE;
5401 	mddev->clevel[0] = 0;
5402 	mddev->flags = 0;
5403 	mddev->ro = 0;
5404 	mddev->metadata_type[0] = 0;
5405 	mddev->chunk_sectors = 0;
5406 	mddev->ctime = mddev->utime = 0;
5407 	mddev->layout = 0;
5408 	mddev->max_disks = 0;
5409 	mddev->events = 0;
5410 	mddev->can_decrease_events = 0;
5411 	mddev->delta_disks = 0;
5412 	mddev->reshape_backwards = 0;
5413 	mddev->new_level = LEVEL_NONE;
5414 	mddev->new_layout = 0;
5415 	mddev->new_chunk_sectors = 0;
5416 	mddev->curr_resync = 0;
5417 	atomic64_set(&mddev->resync_mismatches, 0);
5418 	mddev->suspend_lo = mddev->suspend_hi = 0;
5419 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5420 	mddev->recovery = 0;
5421 	mddev->in_sync = 0;
5422 	mddev->changed = 0;
5423 	mddev->degraded = 0;
5424 	mddev->safemode = 0;
5425 	mddev->private = NULL;
5426 	mddev->bitmap_info.offset = 0;
5427 	mddev->bitmap_info.default_offset = 0;
5428 	mddev->bitmap_info.default_space = 0;
5429 	mddev->bitmap_info.chunksize = 0;
5430 	mddev->bitmap_info.daemon_sleep = 0;
5431 	mddev->bitmap_info.max_write_behind = 0;
5432 }
5433 
5434 static void __md_stop_writes(struct mddev *mddev)
5435 {
5436 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5437 	flush_workqueue(md_misc_wq);
5438 	if (mddev->sync_thread) {
5439 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5440 		md_reap_sync_thread(mddev);
5441 	}
5442 
5443 	del_timer_sync(&mddev->safemode_timer);
5444 
5445 	bitmap_flush(mddev);
5446 	md_super_wait(mddev);
5447 
5448 	if (mddev->ro == 0 &&
5449 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5450 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5451 		/* mark array as shutdown cleanly */
5452 		if (!mddev_is_clustered(mddev))
5453 			mddev->in_sync = 1;
5454 		md_update_sb(mddev, 1);
5455 	}
5456 }
5457 
5458 void md_stop_writes(struct mddev *mddev)
5459 {
5460 	mddev_lock_nointr(mddev);
5461 	__md_stop_writes(mddev);
5462 	mddev_unlock(mddev);
5463 }
5464 EXPORT_SYMBOL_GPL(md_stop_writes);
5465 
5466 static void mddev_detach(struct mddev *mddev)
5467 {
5468 	struct bitmap *bitmap = mddev->bitmap;
5469 	/* wait for behind writes to complete */
5470 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5471 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5472 		       mdname(mddev));
5473 		/* need to kick something here to make sure I/O goes? */
5474 		wait_event(bitmap->behind_wait,
5475 			   atomic_read(&bitmap->behind_writes) == 0);
5476 	}
5477 	if (mddev->pers && mddev->pers->quiesce) {
5478 		mddev->pers->quiesce(mddev, 1);
5479 		mddev->pers->quiesce(mddev, 0);
5480 	}
5481 	md_unregister_thread(&mddev->thread);
5482 	if (mddev->queue)
5483 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5484 }
5485 
5486 static void __md_stop(struct mddev *mddev)
5487 {
5488 	struct md_personality *pers = mddev->pers;
5489 	mddev_detach(mddev);
5490 	/* Ensure ->event_work is done */
5491 	flush_workqueue(md_misc_wq);
5492 	spin_lock(&mddev->lock);
5493 	mddev->ready = 0;
5494 	mddev->pers = NULL;
5495 	spin_unlock(&mddev->lock);
5496 	pers->free(mddev, mddev->private);
5497 	mddev->private = NULL;
5498 	if (pers->sync_request && mddev->to_remove == NULL)
5499 		mddev->to_remove = &md_redundancy_group;
5500 	module_put(pers->owner);
5501 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5502 }
5503 
5504 void md_stop(struct mddev *mddev)
5505 {
5506 	/* stop the array and free an attached data structures.
5507 	 * This is called from dm-raid
5508 	 */
5509 	__md_stop(mddev);
5510 	bitmap_destroy(mddev);
5511 	if (mddev->bio_set)
5512 		bioset_free(mddev->bio_set);
5513 }
5514 
5515 EXPORT_SYMBOL_GPL(md_stop);
5516 
5517 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5518 {
5519 	int err = 0;
5520 	int did_freeze = 0;
5521 
5522 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5523 		did_freeze = 1;
5524 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5525 		md_wakeup_thread(mddev->thread);
5526 	}
5527 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5528 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5529 	if (mddev->sync_thread)
5530 		/* Thread might be blocked waiting for metadata update
5531 		 * which will now never happen */
5532 		wake_up_process(mddev->sync_thread->tsk);
5533 
5534 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5535 		return -EBUSY;
5536 	mddev_unlock(mddev);
5537 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5538 					  &mddev->recovery));
5539 	wait_event(mddev->sb_wait,
5540 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5541 	mddev_lock_nointr(mddev);
5542 
5543 	mutex_lock(&mddev->open_mutex);
5544 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5545 	    mddev->sync_thread ||
5546 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5547 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5548 		printk("md: %s still in use.\n",mdname(mddev));
5549 		if (did_freeze) {
5550 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5551 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5552 			md_wakeup_thread(mddev->thread);
5553 		}
5554 		err = -EBUSY;
5555 		goto out;
5556 	}
5557 	if (mddev->pers) {
5558 		__md_stop_writes(mddev);
5559 
5560 		err  = -ENXIO;
5561 		if (mddev->ro==1)
5562 			goto out;
5563 		mddev->ro = 1;
5564 		set_disk_ro(mddev->gendisk, 1);
5565 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5566 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5567 		md_wakeup_thread(mddev->thread);
5568 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5569 		err = 0;
5570 	}
5571 out:
5572 	mutex_unlock(&mddev->open_mutex);
5573 	return err;
5574 }
5575 
5576 /* mode:
5577  *   0 - completely stop and dis-assemble array
5578  *   2 - stop but do not disassemble array
5579  */
5580 static int do_md_stop(struct mddev *mddev, int mode,
5581 		      struct block_device *bdev)
5582 {
5583 	struct gendisk *disk = mddev->gendisk;
5584 	struct md_rdev *rdev;
5585 	int did_freeze = 0;
5586 
5587 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5588 		did_freeze = 1;
5589 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5590 		md_wakeup_thread(mddev->thread);
5591 	}
5592 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5593 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5594 	if (mddev->sync_thread)
5595 		/* Thread might be blocked waiting for metadata update
5596 		 * which will now never happen */
5597 		wake_up_process(mddev->sync_thread->tsk);
5598 
5599 	mddev_unlock(mddev);
5600 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5601 				 !test_bit(MD_RECOVERY_RUNNING,
5602 					   &mddev->recovery)));
5603 	mddev_lock_nointr(mddev);
5604 
5605 	mutex_lock(&mddev->open_mutex);
5606 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5607 	    mddev->sysfs_active ||
5608 	    mddev->sync_thread ||
5609 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5610 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5611 		printk("md: %s still in use.\n",mdname(mddev));
5612 		mutex_unlock(&mddev->open_mutex);
5613 		if (did_freeze) {
5614 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5615 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5616 			md_wakeup_thread(mddev->thread);
5617 		}
5618 		return -EBUSY;
5619 	}
5620 	if (mddev->pers) {
5621 		if (mddev->ro)
5622 			set_disk_ro(disk, 0);
5623 
5624 		__md_stop_writes(mddev);
5625 		__md_stop(mddev);
5626 		mddev->queue->backing_dev_info.congested_fn = NULL;
5627 
5628 		/* tell userspace to handle 'inactive' */
5629 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5630 
5631 		rdev_for_each(rdev, mddev)
5632 			if (rdev->raid_disk >= 0)
5633 				sysfs_unlink_rdev(mddev, rdev);
5634 
5635 		set_capacity(disk, 0);
5636 		mutex_unlock(&mddev->open_mutex);
5637 		mddev->changed = 1;
5638 		revalidate_disk(disk);
5639 
5640 		if (mddev->ro)
5641 			mddev->ro = 0;
5642 	} else
5643 		mutex_unlock(&mddev->open_mutex);
5644 	/*
5645 	 * Free resources if final stop
5646 	 */
5647 	if (mode == 0) {
5648 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5649 
5650 		bitmap_destroy(mddev);
5651 		if (mddev->bitmap_info.file) {
5652 			struct file *f = mddev->bitmap_info.file;
5653 			spin_lock(&mddev->lock);
5654 			mddev->bitmap_info.file = NULL;
5655 			spin_unlock(&mddev->lock);
5656 			fput(f);
5657 		}
5658 		mddev->bitmap_info.offset = 0;
5659 
5660 		export_array(mddev);
5661 
5662 		md_clean(mddev);
5663 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5664 		if (mddev->hold_active == UNTIL_STOP)
5665 			mddev->hold_active = 0;
5666 	}
5667 	md_new_event(mddev);
5668 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5669 	return 0;
5670 }
5671 
5672 #ifndef MODULE
5673 static void autorun_array(struct mddev *mddev)
5674 {
5675 	struct md_rdev *rdev;
5676 	int err;
5677 
5678 	if (list_empty(&mddev->disks))
5679 		return;
5680 
5681 	printk(KERN_INFO "md: running: ");
5682 
5683 	rdev_for_each(rdev, mddev) {
5684 		char b[BDEVNAME_SIZE];
5685 		printk("<%s>", bdevname(rdev->bdev,b));
5686 	}
5687 	printk("\n");
5688 
5689 	err = do_md_run(mddev);
5690 	if (err) {
5691 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5692 		do_md_stop(mddev, 0, NULL);
5693 	}
5694 }
5695 
5696 /*
5697  * lets try to run arrays based on all disks that have arrived
5698  * until now. (those are in pending_raid_disks)
5699  *
5700  * the method: pick the first pending disk, collect all disks with
5701  * the same UUID, remove all from the pending list and put them into
5702  * the 'same_array' list. Then order this list based on superblock
5703  * update time (freshest comes first), kick out 'old' disks and
5704  * compare superblocks. If everything's fine then run it.
5705  *
5706  * If "unit" is allocated, then bump its reference count
5707  */
5708 static void autorun_devices(int part)
5709 {
5710 	struct md_rdev *rdev0, *rdev, *tmp;
5711 	struct mddev *mddev;
5712 	char b[BDEVNAME_SIZE];
5713 
5714 	printk(KERN_INFO "md: autorun ...\n");
5715 	while (!list_empty(&pending_raid_disks)) {
5716 		int unit;
5717 		dev_t dev;
5718 		LIST_HEAD(candidates);
5719 		rdev0 = list_entry(pending_raid_disks.next,
5720 					 struct md_rdev, same_set);
5721 
5722 		printk(KERN_INFO "md: considering %s ...\n",
5723 			bdevname(rdev0->bdev,b));
5724 		INIT_LIST_HEAD(&candidates);
5725 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5726 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5727 				printk(KERN_INFO "md:  adding %s ...\n",
5728 					bdevname(rdev->bdev,b));
5729 				list_move(&rdev->same_set, &candidates);
5730 			}
5731 		/*
5732 		 * now we have a set of devices, with all of them having
5733 		 * mostly sane superblocks. It's time to allocate the
5734 		 * mddev.
5735 		 */
5736 		if (part) {
5737 			dev = MKDEV(mdp_major,
5738 				    rdev0->preferred_minor << MdpMinorShift);
5739 			unit = MINOR(dev) >> MdpMinorShift;
5740 		} else {
5741 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5742 			unit = MINOR(dev);
5743 		}
5744 		if (rdev0->preferred_minor != unit) {
5745 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5746 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5747 			break;
5748 		}
5749 
5750 		md_probe(dev, NULL, NULL);
5751 		mddev = mddev_find(dev);
5752 		if (!mddev || !mddev->gendisk) {
5753 			if (mddev)
5754 				mddev_put(mddev);
5755 			printk(KERN_ERR
5756 				"md: cannot allocate memory for md drive.\n");
5757 			break;
5758 		}
5759 		if (mddev_lock(mddev))
5760 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5761 			       mdname(mddev));
5762 		else if (mddev->raid_disks || mddev->major_version
5763 			 || !list_empty(&mddev->disks)) {
5764 			printk(KERN_WARNING
5765 				"md: %s already running, cannot run %s\n",
5766 				mdname(mddev), bdevname(rdev0->bdev,b));
5767 			mddev_unlock(mddev);
5768 		} else {
5769 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5770 			mddev->persistent = 1;
5771 			rdev_for_each_list(rdev, tmp, &candidates) {
5772 				list_del_init(&rdev->same_set);
5773 				if (bind_rdev_to_array(rdev, mddev))
5774 					export_rdev(rdev);
5775 			}
5776 			autorun_array(mddev);
5777 			mddev_unlock(mddev);
5778 		}
5779 		/* on success, candidates will be empty, on error
5780 		 * it won't...
5781 		 */
5782 		rdev_for_each_list(rdev, tmp, &candidates) {
5783 			list_del_init(&rdev->same_set);
5784 			export_rdev(rdev);
5785 		}
5786 		mddev_put(mddev);
5787 	}
5788 	printk(KERN_INFO "md: ... autorun DONE.\n");
5789 }
5790 #endif /* !MODULE */
5791 
5792 static int get_version(void __user *arg)
5793 {
5794 	mdu_version_t ver;
5795 
5796 	ver.major = MD_MAJOR_VERSION;
5797 	ver.minor = MD_MINOR_VERSION;
5798 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5799 
5800 	if (copy_to_user(arg, &ver, sizeof(ver)))
5801 		return -EFAULT;
5802 
5803 	return 0;
5804 }
5805 
5806 static int get_array_info(struct mddev *mddev, void __user *arg)
5807 {
5808 	mdu_array_info_t info;
5809 	int nr,working,insync,failed,spare;
5810 	struct md_rdev *rdev;
5811 
5812 	nr = working = insync = failed = spare = 0;
5813 	rcu_read_lock();
5814 	rdev_for_each_rcu(rdev, mddev) {
5815 		nr++;
5816 		if (test_bit(Faulty, &rdev->flags))
5817 			failed++;
5818 		else {
5819 			working++;
5820 			if (test_bit(In_sync, &rdev->flags))
5821 				insync++;
5822 			else
5823 				spare++;
5824 		}
5825 	}
5826 	rcu_read_unlock();
5827 
5828 	info.major_version = mddev->major_version;
5829 	info.minor_version = mddev->minor_version;
5830 	info.patch_version = MD_PATCHLEVEL_VERSION;
5831 	info.ctime         = mddev->ctime;
5832 	info.level         = mddev->level;
5833 	info.size          = mddev->dev_sectors / 2;
5834 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5835 		info.size = -1;
5836 	info.nr_disks      = nr;
5837 	info.raid_disks    = mddev->raid_disks;
5838 	info.md_minor      = mddev->md_minor;
5839 	info.not_persistent= !mddev->persistent;
5840 
5841 	info.utime         = mddev->utime;
5842 	info.state         = 0;
5843 	if (mddev->in_sync)
5844 		info.state = (1<<MD_SB_CLEAN);
5845 	if (mddev->bitmap && mddev->bitmap_info.offset)
5846 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5847 	if (mddev_is_clustered(mddev))
5848 		info.state |= (1<<MD_SB_CLUSTERED);
5849 	info.active_disks  = insync;
5850 	info.working_disks = working;
5851 	info.failed_disks  = failed;
5852 	info.spare_disks   = spare;
5853 
5854 	info.layout        = mddev->layout;
5855 	info.chunk_size    = mddev->chunk_sectors << 9;
5856 
5857 	if (copy_to_user(arg, &info, sizeof(info)))
5858 		return -EFAULT;
5859 
5860 	return 0;
5861 }
5862 
5863 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5864 {
5865 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5866 	char *ptr;
5867 	int err;
5868 
5869 	file = kzalloc(sizeof(*file), GFP_NOIO);
5870 	if (!file)
5871 		return -ENOMEM;
5872 
5873 	err = 0;
5874 	spin_lock(&mddev->lock);
5875 	/* bitmap enabled */
5876 	if (mddev->bitmap_info.file) {
5877 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5878 				sizeof(file->pathname));
5879 		if (IS_ERR(ptr))
5880 			err = PTR_ERR(ptr);
5881 		else
5882 			memmove(file->pathname, ptr,
5883 				sizeof(file->pathname)-(ptr-file->pathname));
5884 	}
5885 	spin_unlock(&mddev->lock);
5886 
5887 	if (err == 0 &&
5888 	    copy_to_user(arg, file, sizeof(*file)))
5889 		err = -EFAULT;
5890 
5891 	kfree(file);
5892 	return err;
5893 }
5894 
5895 static int get_disk_info(struct mddev *mddev, void __user * arg)
5896 {
5897 	mdu_disk_info_t info;
5898 	struct md_rdev *rdev;
5899 
5900 	if (copy_from_user(&info, arg, sizeof(info)))
5901 		return -EFAULT;
5902 
5903 	rcu_read_lock();
5904 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5905 	if (rdev) {
5906 		info.major = MAJOR(rdev->bdev->bd_dev);
5907 		info.minor = MINOR(rdev->bdev->bd_dev);
5908 		info.raid_disk = rdev->raid_disk;
5909 		info.state = 0;
5910 		if (test_bit(Faulty, &rdev->flags))
5911 			info.state |= (1<<MD_DISK_FAULTY);
5912 		else if (test_bit(In_sync, &rdev->flags)) {
5913 			info.state |= (1<<MD_DISK_ACTIVE);
5914 			info.state |= (1<<MD_DISK_SYNC);
5915 		}
5916 		if (test_bit(Journal, &rdev->flags))
5917 			info.state |= (1<<MD_DISK_JOURNAL);
5918 		if (test_bit(WriteMostly, &rdev->flags))
5919 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5920 	} else {
5921 		info.major = info.minor = 0;
5922 		info.raid_disk = -1;
5923 		info.state = (1<<MD_DISK_REMOVED);
5924 	}
5925 	rcu_read_unlock();
5926 
5927 	if (copy_to_user(arg, &info, sizeof(info)))
5928 		return -EFAULT;
5929 
5930 	return 0;
5931 }
5932 
5933 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5934 {
5935 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5936 	struct md_rdev *rdev;
5937 	dev_t dev = MKDEV(info->major,info->minor);
5938 
5939 	if (mddev_is_clustered(mddev) &&
5940 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5941 		pr_err("%s: Cannot add to clustered mddev.\n",
5942 			       mdname(mddev));
5943 		return -EINVAL;
5944 	}
5945 
5946 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5947 		return -EOVERFLOW;
5948 
5949 	if (!mddev->raid_disks) {
5950 		int err;
5951 		/* expecting a device which has a superblock */
5952 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5953 		if (IS_ERR(rdev)) {
5954 			printk(KERN_WARNING
5955 				"md: md_import_device returned %ld\n",
5956 				PTR_ERR(rdev));
5957 			return PTR_ERR(rdev);
5958 		}
5959 		if (!list_empty(&mddev->disks)) {
5960 			struct md_rdev *rdev0
5961 				= list_entry(mddev->disks.next,
5962 					     struct md_rdev, same_set);
5963 			err = super_types[mddev->major_version]
5964 				.load_super(rdev, rdev0, mddev->minor_version);
5965 			if (err < 0) {
5966 				printk(KERN_WARNING
5967 					"md: %s has different UUID to %s\n",
5968 					bdevname(rdev->bdev,b),
5969 					bdevname(rdev0->bdev,b2));
5970 				export_rdev(rdev);
5971 				return -EINVAL;
5972 			}
5973 		}
5974 		err = bind_rdev_to_array(rdev, mddev);
5975 		if (err)
5976 			export_rdev(rdev);
5977 		return err;
5978 	}
5979 
5980 	/*
5981 	 * add_new_disk can be used once the array is assembled
5982 	 * to add "hot spares".  They must already have a superblock
5983 	 * written
5984 	 */
5985 	if (mddev->pers) {
5986 		int err;
5987 		if (!mddev->pers->hot_add_disk) {
5988 			printk(KERN_WARNING
5989 				"%s: personality does not support diskops!\n",
5990 			       mdname(mddev));
5991 			return -EINVAL;
5992 		}
5993 		if (mddev->persistent)
5994 			rdev = md_import_device(dev, mddev->major_version,
5995 						mddev->minor_version);
5996 		else
5997 			rdev = md_import_device(dev, -1, -1);
5998 		if (IS_ERR(rdev)) {
5999 			printk(KERN_WARNING
6000 				"md: md_import_device returned %ld\n",
6001 				PTR_ERR(rdev));
6002 			return PTR_ERR(rdev);
6003 		}
6004 		/* set saved_raid_disk if appropriate */
6005 		if (!mddev->persistent) {
6006 			if (info->state & (1<<MD_DISK_SYNC)  &&
6007 			    info->raid_disk < mddev->raid_disks) {
6008 				rdev->raid_disk = info->raid_disk;
6009 				set_bit(In_sync, &rdev->flags);
6010 				clear_bit(Bitmap_sync, &rdev->flags);
6011 			} else
6012 				rdev->raid_disk = -1;
6013 			rdev->saved_raid_disk = rdev->raid_disk;
6014 		} else
6015 			super_types[mddev->major_version].
6016 				validate_super(mddev, rdev);
6017 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6018 		     rdev->raid_disk != info->raid_disk) {
6019 			/* This was a hot-add request, but events doesn't
6020 			 * match, so reject it.
6021 			 */
6022 			export_rdev(rdev);
6023 			return -EINVAL;
6024 		}
6025 
6026 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6027 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6028 			set_bit(WriteMostly, &rdev->flags);
6029 		else
6030 			clear_bit(WriteMostly, &rdev->flags);
6031 
6032 		if (info->state & (1<<MD_DISK_JOURNAL))
6033 			set_bit(Journal, &rdev->flags);
6034 		/*
6035 		 * check whether the device shows up in other nodes
6036 		 */
6037 		if (mddev_is_clustered(mddev)) {
6038 			if (info->state & (1 << MD_DISK_CANDIDATE))
6039 				set_bit(Candidate, &rdev->flags);
6040 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6041 				/* --add initiated by this node */
6042 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6043 				if (err) {
6044 					export_rdev(rdev);
6045 					return err;
6046 				}
6047 			}
6048 		}
6049 
6050 		rdev->raid_disk = -1;
6051 		err = bind_rdev_to_array(rdev, mddev);
6052 
6053 		if (err)
6054 			export_rdev(rdev);
6055 
6056 		if (mddev_is_clustered(mddev)) {
6057 			if (info->state & (1 << MD_DISK_CANDIDATE))
6058 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6059 			else {
6060 				if (err)
6061 					md_cluster_ops->add_new_disk_cancel(mddev);
6062 				else
6063 					err = add_bound_rdev(rdev);
6064 			}
6065 
6066 		} else if (!err)
6067 			err = add_bound_rdev(rdev);
6068 
6069 		return err;
6070 	}
6071 
6072 	/* otherwise, add_new_disk is only allowed
6073 	 * for major_version==0 superblocks
6074 	 */
6075 	if (mddev->major_version != 0) {
6076 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6077 		       mdname(mddev));
6078 		return -EINVAL;
6079 	}
6080 
6081 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6082 		int err;
6083 		rdev = md_import_device(dev, -1, 0);
6084 		if (IS_ERR(rdev)) {
6085 			printk(KERN_WARNING
6086 				"md: error, md_import_device() returned %ld\n",
6087 				PTR_ERR(rdev));
6088 			return PTR_ERR(rdev);
6089 		}
6090 		rdev->desc_nr = info->number;
6091 		if (info->raid_disk < mddev->raid_disks)
6092 			rdev->raid_disk = info->raid_disk;
6093 		else
6094 			rdev->raid_disk = -1;
6095 
6096 		if (rdev->raid_disk < mddev->raid_disks)
6097 			if (info->state & (1<<MD_DISK_SYNC))
6098 				set_bit(In_sync, &rdev->flags);
6099 
6100 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6101 			set_bit(WriteMostly, &rdev->flags);
6102 
6103 		if (!mddev->persistent) {
6104 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6105 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6106 		} else
6107 			rdev->sb_start = calc_dev_sboffset(rdev);
6108 		rdev->sectors = rdev->sb_start;
6109 
6110 		err = bind_rdev_to_array(rdev, mddev);
6111 		if (err) {
6112 			export_rdev(rdev);
6113 			return err;
6114 		}
6115 	}
6116 
6117 	return 0;
6118 }
6119 
6120 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6121 {
6122 	char b[BDEVNAME_SIZE];
6123 	struct md_rdev *rdev;
6124 	int ret = -1;
6125 
6126 	rdev = find_rdev(mddev, dev);
6127 	if (!rdev)
6128 		return -ENXIO;
6129 
6130 	if (mddev_is_clustered(mddev))
6131 		ret = md_cluster_ops->metadata_update_start(mddev);
6132 
6133 	if (rdev->raid_disk < 0)
6134 		goto kick_rdev;
6135 
6136 	clear_bit(Blocked, &rdev->flags);
6137 	remove_and_add_spares(mddev, rdev);
6138 
6139 	if (rdev->raid_disk >= 0)
6140 		goto busy;
6141 
6142 kick_rdev:
6143 	if (mddev_is_clustered(mddev) && ret == 0)
6144 		md_cluster_ops->remove_disk(mddev, rdev);
6145 
6146 	md_kick_rdev_from_array(rdev);
6147 	md_update_sb(mddev, 1);
6148 	md_new_event(mddev);
6149 
6150 	return 0;
6151 busy:
6152 	if (mddev_is_clustered(mddev) && ret == 0)
6153 		md_cluster_ops->metadata_update_cancel(mddev);
6154 
6155 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6156 		bdevname(rdev->bdev,b), mdname(mddev));
6157 	return -EBUSY;
6158 }
6159 
6160 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6161 {
6162 	char b[BDEVNAME_SIZE];
6163 	int err;
6164 	struct md_rdev *rdev;
6165 
6166 	if (!mddev->pers)
6167 		return -ENODEV;
6168 
6169 	if (mddev->major_version != 0) {
6170 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6171 			" version-0 superblocks.\n",
6172 			mdname(mddev));
6173 		return -EINVAL;
6174 	}
6175 	if (!mddev->pers->hot_add_disk) {
6176 		printk(KERN_WARNING
6177 			"%s: personality does not support diskops!\n",
6178 			mdname(mddev));
6179 		return -EINVAL;
6180 	}
6181 
6182 	rdev = md_import_device(dev, -1, 0);
6183 	if (IS_ERR(rdev)) {
6184 		printk(KERN_WARNING
6185 			"md: error, md_import_device() returned %ld\n",
6186 			PTR_ERR(rdev));
6187 		return -EINVAL;
6188 	}
6189 
6190 	if (mddev->persistent)
6191 		rdev->sb_start = calc_dev_sboffset(rdev);
6192 	else
6193 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6194 
6195 	rdev->sectors = rdev->sb_start;
6196 
6197 	if (test_bit(Faulty, &rdev->flags)) {
6198 		printk(KERN_WARNING
6199 			"md: can not hot-add faulty %s disk to %s!\n",
6200 			bdevname(rdev->bdev,b), mdname(mddev));
6201 		err = -EINVAL;
6202 		goto abort_export;
6203 	}
6204 
6205 	clear_bit(In_sync, &rdev->flags);
6206 	rdev->desc_nr = -1;
6207 	rdev->saved_raid_disk = -1;
6208 	err = bind_rdev_to_array(rdev, mddev);
6209 	if (err)
6210 		goto abort_export;
6211 
6212 	/*
6213 	 * The rest should better be atomic, we can have disk failures
6214 	 * noticed in interrupt contexts ...
6215 	 */
6216 
6217 	rdev->raid_disk = -1;
6218 
6219 	md_update_sb(mddev, 1);
6220 	/*
6221 	 * Kick recovery, maybe this spare has to be added to the
6222 	 * array immediately.
6223 	 */
6224 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6225 	md_wakeup_thread(mddev->thread);
6226 	md_new_event(mddev);
6227 	return 0;
6228 
6229 abort_export:
6230 	export_rdev(rdev);
6231 	return err;
6232 }
6233 
6234 static int set_bitmap_file(struct mddev *mddev, int fd)
6235 {
6236 	int err = 0;
6237 
6238 	if (mddev->pers) {
6239 		if (!mddev->pers->quiesce || !mddev->thread)
6240 			return -EBUSY;
6241 		if (mddev->recovery || mddev->sync_thread)
6242 			return -EBUSY;
6243 		/* we should be able to change the bitmap.. */
6244 	}
6245 
6246 	if (fd >= 0) {
6247 		struct inode *inode;
6248 		struct file *f;
6249 
6250 		if (mddev->bitmap || mddev->bitmap_info.file)
6251 			return -EEXIST; /* cannot add when bitmap is present */
6252 		f = fget(fd);
6253 
6254 		if (f == NULL) {
6255 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6256 			       mdname(mddev));
6257 			return -EBADF;
6258 		}
6259 
6260 		inode = f->f_mapping->host;
6261 		if (!S_ISREG(inode->i_mode)) {
6262 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6263 			       mdname(mddev));
6264 			err = -EBADF;
6265 		} else if (!(f->f_mode & FMODE_WRITE)) {
6266 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6267 			       mdname(mddev));
6268 			err = -EBADF;
6269 		} else if (atomic_read(&inode->i_writecount) != 1) {
6270 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6271 			       mdname(mddev));
6272 			err = -EBUSY;
6273 		}
6274 		if (err) {
6275 			fput(f);
6276 			return err;
6277 		}
6278 		mddev->bitmap_info.file = f;
6279 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6280 	} else if (mddev->bitmap == NULL)
6281 		return -ENOENT; /* cannot remove what isn't there */
6282 	err = 0;
6283 	if (mddev->pers) {
6284 		mddev->pers->quiesce(mddev, 1);
6285 		if (fd >= 0) {
6286 			struct bitmap *bitmap;
6287 
6288 			bitmap = bitmap_create(mddev, -1);
6289 			if (!IS_ERR(bitmap)) {
6290 				mddev->bitmap = bitmap;
6291 				err = bitmap_load(mddev);
6292 			} else
6293 				err = PTR_ERR(bitmap);
6294 		}
6295 		if (fd < 0 || err) {
6296 			bitmap_destroy(mddev);
6297 			fd = -1; /* make sure to put the file */
6298 		}
6299 		mddev->pers->quiesce(mddev, 0);
6300 	}
6301 	if (fd < 0) {
6302 		struct file *f = mddev->bitmap_info.file;
6303 		if (f) {
6304 			spin_lock(&mddev->lock);
6305 			mddev->bitmap_info.file = NULL;
6306 			spin_unlock(&mddev->lock);
6307 			fput(f);
6308 		}
6309 	}
6310 
6311 	return err;
6312 }
6313 
6314 /*
6315  * set_array_info is used two different ways
6316  * The original usage is when creating a new array.
6317  * In this usage, raid_disks is > 0 and it together with
6318  *  level, size, not_persistent,layout,chunksize determine the
6319  *  shape of the array.
6320  *  This will always create an array with a type-0.90.0 superblock.
6321  * The newer usage is when assembling an array.
6322  *  In this case raid_disks will be 0, and the major_version field is
6323  *  use to determine which style super-blocks are to be found on the devices.
6324  *  The minor and patch _version numbers are also kept incase the
6325  *  super_block handler wishes to interpret them.
6326  */
6327 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6328 {
6329 
6330 	if (info->raid_disks == 0) {
6331 		/* just setting version number for superblock loading */
6332 		if (info->major_version < 0 ||
6333 		    info->major_version >= ARRAY_SIZE(super_types) ||
6334 		    super_types[info->major_version].name == NULL) {
6335 			/* maybe try to auto-load a module? */
6336 			printk(KERN_INFO
6337 				"md: superblock version %d not known\n",
6338 				info->major_version);
6339 			return -EINVAL;
6340 		}
6341 		mddev->major_version = info->major_version;
6342 		mddev->minor_version = info->minor_version;
6343 		mddev->patch_version = info->patch_version;
6344 		mddev->persistent = !info->not_persistent;
6345 		/* ensure mddev_put doesn't delete this now that there
6346 		 * is some minimal configuration.
6347 		 */
6348 		mddev->ctime         = get_seconds();
6349 		return 0;
6350 	}
6351 	mddev->major_version = MD_MAJOR_VERSION;
6352 	mddev->minor_version = MD_MINOR_VERSION;
6353 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6354 	mddev->ctime         = get_seconds();
6355 
6356 	mddev->level         = info->level;
6357 	mddev->clevel[0]     = 0;
6358 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6359 	mddev->raid_disks    = info->raid_disks;
6360 	/* don't set md_minor, it is determined by which /dev/md* was
6361 	 * openned
6362 	 */
6363 	if (info->state & (1<<MD_SB_CLEAN))
6364 		mddev->recovery_cp = MaxSector;
6365 	else
6366 		mddev->recovery_cp = 0;
6367 	mddev->persistent    = ! info->not_persistent;
6368 	mddev->external	     = 0;
6369 
6370 	mddev->layout        = info->layout;
6371 	mddev->chunk_sectors = info->chunk_size >> 9;
6372 
6373 	mddev->max_disks     = MD_SB_DISKS;
6374 
6375 	if (mddev->persistent)
6376 		mddev->flags         = 0;
6377 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6378 
6379 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6380 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6381 	mddev->bitmap_info.offset = 0;
6382 
6383 	mddev->reshape_position = MaxSector;
6384 
6385 	/*
6386 	 * Generate a 128 bit UUID
6387 	 */
6388 	get_random_bytes(mddev->uuid, 16);
6389 
6390 	mddev->new_level = mddev->level;
6391 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6392 	mddev->new_layout = mddev->layout;
6393 	mddev->delta_disks = 0;
6394 	mddev->reshape_backwards = 0;
6395 
6396 	return 0;
6397 }
6398 
6399 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6400 {
6401 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6402 
6403 	if (mddev->external_size)
6404 		return;
6405 
6406 	mddev->array_sectors = array_sectors;
6407 }
6408 EXPORT_SYMBOL(md_set_array_sectors);
6409 
6410 static int update_size(struct mddev *mddev, sector_t num_sectors)
6411 {
6412 	struct md_rdev *rdev;
6413 	int rv;
6414 	int fit = (num_sectors == 0);
6415 
6416 	if (mddev->pers->resize == NULL)
6417 		return -EINVAL;
6418 	/* The "num_sectors" is the number of sectors of each device that
6419 	 * is used.  This can only make sense for arrays with redundancy.
6420 	 * linear and raid0 always use whatever space is available. We can only
6421 	 * consider changing this number if no resync or reconstruction is
6422 	 * happening, and if the new size is acceptable. It must fit before the
6423 	 * sb_start or, if that is <data_offset, it must fit before the size
6424 	 * of each device.  If num_sectors is zero, we find the largest size
6425 	 * that fits.
6426 	 */
6427 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6428 	    mddev->sync_thread)
6429 		return -EBUSY;
6430 	if (mddev->ro)
6431 		return -EROFS;
6432 
6433 	rdev_for_each(rdev, mddev) {
6434 		sector_t avail = rdev->sectors;
6435 
6436 		if (fit && (num_sectors == 0 || num_sectors > avail))
6437 			num_sectors = avail;
6438 		if (avail < num_sectors)
6439 			return -ENOSPC;
6440 	}
6441 	rv = mddev->pers->resize(mddev, num_sectors);
6442 	if (!rv)
6443 		revalidate_disk(mddev->gendisk);
6444 	return rv;
6445 }
6446 
6447 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6448 {
6449 	int rv;
6450 	struct md_rdev *rdev;
6451 	/* change the number of raid disks */
6452 	if (mddev->pers->check_reshape == NULL)
6453 		return -EINVAL;
6454 	if (mddev->ro)
6455 		return -EROFS;
6456 	if (raid_disks <= 0 ||
6457 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6458 		return -EINVAL;
6459 	if (mddev->sync_thread ||
6460 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6461 	    mddev->reshape_position != MaxSector)
6462 		return -EBUSY;
6463 
6464 	rdev_for_each(rdev, mddev) {
6465 		if (mddev->raid_disks < raid_disks &&
6466 		    rdev->data_offset < rdev->new_data_offset)
6467 			return -EINVAL;
6468 		if (mddev->raid_disks > raid_disks &&
6469 		    rdev->data_offset > rdev->new_data_offset)
6470 			return -EINVAL;
6471 	}
6472 
6473 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6474 	if (mddev->delta_disks < 0)
6475 		mddev->reshape_backwards = 1;
6476 	else if (mddev->delta_disks > 0)
6477 		mddev->reshape_backwards = 0;
6478 
6479 	rv = mddev->pers->check_reshape(mddev);
6480 	if (rv < 0) {
6481 		mddev->delta_disks = 0;
6482 		mddev->reshape_backwards = 0;
6483 	}
6484 	return rv;
6485 }
6486 
6487 /*
6488  * update_array_info is used to change the configuration of an
6489  * on-line array.
6490  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6491  * fields in the info are checked against the array.
6492  * Any differences that cannot be handled will cause an error.
6493  * Normally, only one change can be managed at a time.
6494  */
6495 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6496 {
6497 	int rv = 0;
6498 	int cnt = 0;
6499 	int state = 0;
6500 
6501 	/* calculate expected state,ignoring low bits */
6502 	if (mddev->bitmap && mddev->bitmap_info.offset)
6503 		state |= (1 << MD_SB_BITMAP_PRESENT);
6504 
6505 	if (mddev->major_version != info->major_version ||
6506 	    mddev->minor_version != info->minor_version ||
6507 /*	    mddev->patch_version != info->patch_version || */
6508 	    mddev->ctime         != info->ctime         ||
6509 	    mddev->level         != info->level         ||
6510 /*	    mddev->layout        != info->layout        || */
6511 	    mddev->persistent	 != !info->not_persistent ||
6512 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6513 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6514 	    ((state^info->state) & 0xfffffe00)
6515 		)
6516 		return -EINVAL;
6517 	/* Check there is only one change */
6518 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6519 		cnt++;
6520 	if (mddev->raid_disks != info->raid_disks)
6521 		cnt++;
6522 	if (mddev->layout != info->layout)
6523 		cnt++;
6524 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6525 		cnt++;
6526 	if (cnt == 0)
6527 		return 0;
6528 	if (cnt > 1)
6529 		return -EINVAL;
6530 
6531 	if (mddev->layout != info->layout) {
6532 		/* Change layout
6533 		 * we don't need to do anything at the md level, the
6534 		 * personality will take care of it all.
6535 		 */
6536 		if (mddev->pers->check_reshape == NULL)
6537 			return -EINVAL;
6538 		else {
6539 			mddev->new_layout = info->layout;
6540 			rv = mddev->pers->check_reshape(mddev);
6541 			if (rv)
6542 				mddev->new_layout = mddev->layout;
6543 			return rv;
6544 		}
6545 	}
6546 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6547 		rv = update_size(mddev, (sector_t)info->size * 2);
6548 
6549 	if (mddev->raid_disks    != info->raid_disks)
6550 		rv = update_raid_disks(mddev, info->raid_disks);
6551 
6552 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6553 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6554 			rv = -EINVAL;
6555 			goto err;
6556 		}
6557 		if (mddev->recovery || mddev->sync_thread) {
6558 			rv = -EBUSY;
6559 			goto err;
6560 		}
6561 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6562 			struct bitmap *bitmap;
6563 			/* add the bitmap */
6564 			if (mddev->bitmap) {
6565 				rv = -EEXIST;
6566 				goto err;
6567 			}
6568 			if (mddev->bitmap_info.default_offset == 0) {
6569 				rv = -EINVAL;
6570 				goto err;
6571 			}
6572 			mddev->bitmap_info.offset =
6573 				mddev->bitmap_info.default_offset;
6574 			mddev->bitmap_info.space =
6575 				mddev->bitmap_info.default_space;
6576 			mddev->pers->quiesce(mddev, 1);
6577 			bitmap = bitmap_create(mddev, -1);
6578 			if (!IS_ERR(bitmap)) {
6579 				mddev->bitmap = bitmap;
6580 				rv = bitmap_load(mddev);
6581 			} else
6582 				rv = PTR_ERR(bitmap);
6583 			if (rv)
6584 				bitmap_destroy(mddev);
6585 			mddev->pers->quiesce(mddev, 0);
6586 		} else {
6587 			/* remove the bitmap */
6588 			if (!mddev->bitmap) {
6589 				rv = -ENOENT;
6590 				goto err;
6591 			}
6592 			if (mddev->bitmap->storage.file) {
6593 				rv = -EINVAL;
6594 				goto err;
6595 			}
6596 			mddev->pers->quiesce(mddev, 1);
6597 			bitmap_destroy(mddev);
6598 			mddev->pers->quiesce(mddev, 0);
6599 			mddev->bitmap_info.offset = 0;
6600 		}
6601 	}
6602 	md_update_sb(mddev, 1);
6603 	return rv;
6604 err:
6605 	return rv;
6606 }
6607 
6608 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6609 {
6610 	struct md_rdev *rdev;
6611 	int err = 0;
6612 
6613 	if (mddev->pers == NULL)
6614 		return -ENODEV;
6615 
6616 	rcu_read_lock();
6617 	rdev = find_rdev_rcu(mddev, dev);
6618 	if (!rdev)
6619 		err =  -ENODEV;
6620 	else {
6621 		md_error(mddev, rdev);
6622 		if (!test_bit(Faulty, &rdev->flags))
6623 			err = -EBUSY;
6624 	}
6625 	rcu_read_unlock();
6626 	return err;
6627 }
6628 
6629 /*
6630  * We have a problem here : there is no easy way to give a CHS
6631  * virtual geometry. We currently pretend that we have a 2 heads
6632  * 4 sectors (with a BIG number of cylinders...). This drives
6633  * dosfs just mad... ;-)
6634  */
6635 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6636 {
6637 	struct mddev *mddev = bdev->bd_disk->private_data;
6638 
6639 	geo->heads = 2;
6640 	geo->sectors = 4;
6641 	geo->cylinders = mddev->array_sectors / 8;
6642 	return 0;
6643 }
6644 
6645 static inline bool md_ioctl_valid(unsigned int cmd)
6646 {
6647 	switch (cmd) {
6648 	case ADD_NEW_DISK:
6649 	case BLKROSET:
6650 	case GET_ARRAY_INFO:
6651 	case GET_BITMAP_FILE:
6652 	case GET_DISK_INFO:
6653 	case HOT_ADD_DISK:
6654 	case HOT_REMOVE_DISK:
6655 	case RAID_AUTORUN:
6656 	case RAID_VERSION:
6657 	case RESTART_ARRAY_RW:
6658 	case RUN_ARRAY:
6659 	case SET_ARRAY_INFO:
6660 	case SET_BITMAP_FILE:
6661 	case SET_DISK_FAULTY:
6662 	case STOP_ARRAY:
6663 	case STOP_ARRAY_RO:
6664 	case CLUSTERED_DISK_NACK:
6665 		return true;
6666 	default:
6667 		return false;
6668 	}
6669 }
6670 
6671 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6672 			unsigned int cmd, unsigned long arg)
6673 {
6674 	int err = 0;
6675 	void __user *argp = (void __user *)arg;
6676 	struct mddev *mddev = NULL;
6677 	int ro;
6678 
6679 	if (!md_ioctl_valid(cmd))
6680 		return -ENOTTY;
6681 
6682 	switch (cmd) {
6683 	case RAID_VERSION:
6684 	case GET_ARRAY_INFO:
6685 	case GET_DISK_INFO:
6686 		break;
6687 	default:
6688 		if (!capable(CAP_SYS_ADMIN))
6689 			return -EACCES;
6690 	}
6691 
6692 	/*
6693 	 * Commands dealing with the RAID driver but not any
6694 	 * particular array:
6695 	 */
6696 	switch (cmd) {
6697 	case RAID_VERSION:
6698 		err = get_version(argp);
6699 		goto out;
6700 
6701 #ifndef MODULE
6702 	case RAID_AUTORUN:
6703 		err = 0;
6704 		autostart_arrays(arg);
6705 		goto out;
6706 #endif
6707 	default:;
6708 	}
6709 
6710 	/*
6711 	 * Commands creating/starting a new array:
6712 	 */
6713 
6714 	mddev = bdev->bd_disk->private_data;
6715 
6716 	if (!mddev) {
6717 		BUG();
6718 		goto out;
6719 	}
6720 
6721 	/* Some actions do not requires the mutex */
6722 	switch (cmd) {
6723 	case GET_ARRAY_INFO:
6724 		if (!mddev->raid_disks && !mddev->external)
6725 			err = -ENODEV;
6726 		else
6727 			err = get_array_info(mddev, argp);
6728 		goto out;
6729 
6730 	case GET_DISK_INFO:
6731 		if (!mddev->raid_disks && !mddev->external)
6732 			err = -ENODEV;
6733 		else
6734 			err = get_disk_info(mddev, argp);
6735 		goto out;
6736 
6737 	case SET_DISK_FAULTY:
6738 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6739 		goto out;
6740 
6741 	case GET_BITMAP_FILE:
6742 		err = get_bitmap_file(mddev, argp);
6743 		goto out;
6744 
6745 	}
6746 
6747 	if (cmd == ADD_NEW_DISK)
6748 		/* need to ensure md_delayed_delete() has completed */
6749 		flush_workqueue(md_misc_wq);
6750 
6751 	if (cmd == HOT_REMOVE_DISK)
6752 		/* need to ensure recovery thread has run */
6753 		wait_event_interruptible_timeout(mddev->sb_wait,
6754 						 !test_bit(MD_RECOVERY_NEEDED,
6755 							   &mddev->flags),
6756 						 msecs_to_jiffies(5000));
6757 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6758 		/* Need to flush page cache, and ensure no-one else opens
6759 		 * and writes
6760 		 */
6761 		mutex_lock(&mddev->open_mutex);
6762 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6763 			mutex_unlock(&mddev->open_mutex);
6764 			err = -EBUSY;
6765 			goto out;
6766 		}
6767 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6768 		mutex_unlock(&mddev->open_mutex);
6769 		sync_blockdev(bdev);
6770 	}
6771 	err = mddev_lock(mddev);
6772 	if (err) {
6773 		printk(KERN_INFO
6774 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6775 			err, cmd);
6776 		goto out;
6777 	}
6778 
6779 	if (cmd == SET_ARRAY_INFO) {
6780 		mdu_array_info_t info;
6781 		if (!arg)
6782 			memset(&info, 0, sizeof(info));
6783 		else if (copy_from_user(&info, argp, sizeof(info))) {
6784 			err = -EFAULT;
6785 			goto unlock;
6786 		}
6787 		if (mddev->pers) {
6788 			err = update_array_info(mddev, &info);
6789 			if (err) {
6790 				printk(KERN_WARNING "md: couldn't update"
6791 				       " array info. %d\n", err);
6792 				goto unlock;
6793 			}
6794 			goto unlock;
6795 		}
6796 		if (!list_empty(&mddev->disks)) {
6797 			printk(KERN_WARNING
6798 			       "md: array %s already has disks!\n",
6799 			       mdname(mddev));
6800 			err = -EBUSY;
6801 			goto unlock;
6802 		}
6803 		if (mddev->raid_disks) {
6804 			printk(KERN_WARNING
6805 			       "md: array %s already initialised!\n",
6806 			       mdname(mddev));
6807 			err = -EBUSY;
6808 			goto unlock;
6809 		}
6810 		err = set_array_info(mddev, &info);
6811 		if (err) {
6812 			printk(KERN_WARNING "md: couldn't set"
6813 			       " array info. %d\n", err);
6814 			goto unlock;
6815 		}
6816 		goto unlock;
6817 	}
6818 
6819 	/*
6820 	 * Commands querying/configuring an existing array:
6821 	 */
6822 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6823 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6824 	if ((!mddev->raid_disks && !mddev->external)
6825 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6826 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6827 	    && cmd != GET_BITMAP_FILE) {
6828 		err = -ENODEV;
6829 		goto unlock;
6830 	}
6831 
6832 	/*
6833 	 * Commands even a read-only array can execute:
6834 	 */
6835 	switch (cmd) {
6836 	case RESTART_ARRAY_RW:
6837 		err = restart_array(mddev);
6838 		goto unlock;
6839 
6840 	case STOP_ARRAY:
6841 		err = do_md_stop(mddev, 0, bdev);
6842 		goto unlock;
6843 
6844 	case STOP_ARRAY_RO:
6845 		err = md_set_readonly(mddev, bdev);
6846 		goto unlock;
6847 
6848 	case HOT_REMOVE_DISK:
6849 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6850 		goto unlock;
6851 
6852 	case ADD_NEW_DISK:
6853 		/* We can support ADD_NEW_DISK on read-only arrays
6854 		 * on if we are re-adding a preexisting device.
6855 		 * So require mddev->pers and MD_DISK_SYNC.
6856 		 */
6857 		if (mddev->pers) {
6858 			mdu_disk_info_t info;
6859 			if (copy_from_user(&info, argp, sizeof(info)))
6860 				err = -EFAULT;
6861 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6862 				/* Need to clear read-only for this */
6863 				break;
6864 			else
6865 				err = add_new_disk(mddev, &info);
6866 			goto unlock;
6867 		}
6868 		break;
6869 
6870 	case BLKROSET:
6871 		if (get_user(ro, (int __user *)(arg))) {
6872 			err = -EFAULT;
6873 			goto unlock;
6874 		}
6875 		err = -EINVAL;
6876 
6877 		/* if the bdev is going readonly the value of mddev->ro
6878 		 * does not matter, no writes are coming
6879 		 */
6880 		if (ro)
6881 			goto unlock;
6882 
6883 		/* are we are already prepared for writes? */
6884 		if (mddev->ro != 1)
6885 			goto unlock;
6886 
6887 		/* transitioning to readauto need only happen for
6888 		 * arrays that call md_write_start
6889 		 */
6890 		if (mddev->pers) {
6891 			err = restart_array(mddev);
6892 			if (err == 0) {
6893 				mddev->ro = 2;
6894 				set_disk_ro(mddev->gendisk, 0);
6895 			}
6896 		}
6897 		goto unlock;
6898 	}
6899 
6900 	/*
6901 	 * The remaining ioctls are changing the state of the
6902 	 * superblock, so we do not allow them on read-only arrays.
6903 	 */
6904 	if (mddev->ro && mddev->pers) {
6905 		if (mddev->ro == 2) {
6906 			mddev->ro = 0;
6907 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6908 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6909 			/* mddev_unlock will wake thread */
6910 			/* If a device failed while we were read-only, we
6911 			 * need to make sure the metadata is updated now.
6912 			 */
6913 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6914 				mddev_unlock(mddev);
6915 				wait_event(mddev->sb_wait,
6916 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6917 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6918 				mddev_lock_nointr(mddev);
6919 			}
6920 		} else {
6921 			err = -EROFS;
6922 			goto unlock;
6923 		}
6924 	}
6925 
6926 	switch (cmd) {
6927 	case ADD_NEW_DISK:
6928 	{
6929 		mdu_disk_info_t info;
6930 		if (copy_from_user(&info, argp, sizeof(info)))
6931 			err = -EFAULT;
6932 		else
6933 			err = add_new_disk(mddev, &info);
6934 		goto unlock;
6935 	}
6936 
6937 	case CLUSTERED_DISK_NACK:
6938 		if (mddev_is_clustered(mddev))
6939 			md_cluster_ops->new_disk_ack(mddev, false);
6940 		else
6941 			err = -EINVAL;
6942 		goto unlock;
6943 
6944 	case HOT_ADD_DISK:
6945 		err = hot_add_disk(mddev, new_decode_dev(arg));
6946 		goto unlock;
6947 
6948 	case RUN_ARRAY:
6949 		err = do_md_run(mddev);
6950 		goto unlock;
6951 
6952 	case SET_BITMAP_FILE:
6953 		err = set_bitmap_file(mddev, (int)arg);
6954 		goto unlock;
6955 
6956 	default:
6957 		err = -EINVAL;
6958 		goto unlock;
6959 	}
6960 
6961 unlock:
6962 	if (mddev->hold_active == UNTIL_IOCTL &&
6963 	    err != -EINVAL)
6964 		mddev->hold_active = 0;
6965 	mddev_unlock(mddev);
6966 out:
6967 	return err;
6968 }
6969 #ifdef CONFIG_COMPAT
6970 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6971 		    unsigned int cmd, unsigned long arg)
6972 {
6973 	switch (cmd) {
6974 	case HOT_REMOVE_DISK:
6975 	case HOT_ADD_DISK:
6976 	case SET_DISK_FAULTY:
6977 	case SET_BITMAP_FILE:
6978 		/* These take in integer arg, do not convert */
6979 		break;
6980 	default:
6981 		arg = (unsigned long)compat_ptr(arg);
6982 		break;
6983 	}
6984 
6985 	return md_ioctl(bdev, mode, cmd, arg);
6986 }
6987 #endif /* CONFIG_COMPAT */
6988 
6989 static int md_open(struct block_device *bdev, fmode_t mode)
6990 {
6991 	/*
6992 	 * Succeed if we can lock the mddev, which confirms that
6993 	 * it isn't being stopped right now.
6994 	 */
6995 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6996 	int err;
6997 
6998 	if (!mddev)
6999 		return -ENODEV;
7000 
7001 	if (mddev->gendisk != bdev->bd_disk) {
7002 		/* we are racing with mddev_put which is discarding this
7003 		 * bd_disk.
7004 		 */
7005 		mddev_put(mddev);
7006 		/* Wait until bdev->bd_disk is definitely gone */
7007 		flush_workqueue(md_misc_wq);
7008 		/* Then retry the open from the top */
7009 		return -ERESTARTSYS;
7010 	}
7011 	BUG_ON(mddev != bdev->bd_disk->private_data);
7012 
7013 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7014 		goto out;
7015 
7016 	err = 0;
7017 	atomic_inc(&mddev->openers);
7018 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7019 	mutex_unlock(&mddev->open_mutex);
7020 
7021 	check_disk_change(bdev);
7022  out:
7023 	return err;
7024 }
7025 
7026 static void md_release(struct gendisk *disk, fmode_t mode)
7027 {
7028 	struct mddev *mddev = disk->private_data;
7029 
7030 	BUG_ON(!mddev);
7031 	atomic_dec(&mddev->openers);
7032 	mddev_put(mddev);
7033 }
7034 
7035 static int md_media_changed(struct gendisk *disk)
7036 {
7037 	struct mddev *mddev = disk->private_data;
7038 
7039 	return mddev->changed;
7040 }
7041 
7042 static int md_revalidate(struct gendisk *disk)
7043 {
7044 	struct mddev *mddev = disk->private_data;
7045 
7046 	mddev->changed = 0;
7047 	return 0;
7048 }
7049 static const struct block_device_operations md_fops =
7050 {
7051 	.owner		= THIS_MODULE,
7052 	.open		= md_open,
7053 	.release	= md_release,
7054 	.ioctl		= md_ioctl,
7055 #ifdef CONFIG_COMPAT
7056 	.compat_ioctl	= md_compat_ioctl,
7057 #endif
7058 	.getgeo		= md_getgeo,
7059 	.media_changed  = md_media_changed,
7060 	.revalidate_disk= md_revalidate,
7061 };
7062 
7063 static int md_thread(void *arg)
7064 {
7065 	struct md_thread *thread = arg;
7066 
7067 	/*
7068 	 * md_thread is a 'system-thread', it's priority should be very
7069 	 * high. We avoid resource deadlocks individually in each
7070 	 * raid personality. (RAID5 does preallocation) We also use RR and
7071 	 * the very same RT priority as kswapd, thus we will never get
7072 	 * into a priority inversion deadlock.
7073 	 *
7074 	 * we definitely have to have equal or higher priority than
7075 	 * bdflush, otherwise bdflush will deadlock if there are too
7076 	 * many dirty RAID5 blocks.
7077 	 */
7078 
7079 	allow_signal(SIGKILL);
7080 	while (!kthread_should_stop()) {
7081 
7082 		/* We need to wait INTERRUPTIBLE so that
7083 		 * we don't add to the load-average.
7084 		 * That means we need to be sure no signals are
7085 		 * pending
7086 		 */
7087 		if (signal_pending(current))
7088 			flush_signals(current);
7089 
7090 		wait_event_interruptible_timeout
7091 			(thread->wqueue,
7092 			 test_bit(THREAD_WAKEUP, &thread->flags)
7093 			 || kthread_should_stop(),
7094 			 thread->timeout);
7095 
7096 		clear_bit(THREAD_WAKEUP, &thread->flags);
7097 		if (!kthread_should_stop())
7098 			thread->run(thread);
7099 	}
7100 
7101 	return 0;
7102 }
7103 
7104 void md_wakeup_thread(struct md_thread *thread)
7105 {
7106 	if (thread) {
7107 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7108 		set_bit(THREAD_WAKEUP, &thread->flags);
7109 		wake_up(&thread->wqueue);
7110 	}
7111 }
7112 EXPORT_SYMBOL(md_wakeup_thread);
7113 
7114 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7115 		struct mddev *mddev, const char *name)
7116 {
7117 	struct md_thread *thread;
7118 
7119 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7120 	if (!thread)
7121 		return NULL;
7122 
7123 	init_waitqueue_head(&thread->wqueue);
7124 
7125 	thread->run = run;
7126 	thread->mddev = mddev;
7127 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7128 	thread->tsk = kthread_run(md_thread, thread,
7129 				  "%s_%s",
7130 				  mdname(thread->mddev),
7131 				  name);
7132 	if (IS_ERR(thread->tsk)) {
7133 		kfree(thread);
7134 		return NULL;
7135 	}
7136 	return thread;
7137 }
7138 EXPORT_SYMBOL(md_register_thread);
7139 
7140 void md_unregister_thread(struct md_thread **threadp)
7141 {
7142 	struct md_thread *thread = *threadp;
7143 	if (!thread)
7144 		return;
7145 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7146 	/* Locking ensures that mddev_unlock does not wake_up a
7147 	 * non-existent thread
7148 	 */
7149 	spin_lock(&pers_lock);
7150 	*threadp = NULL;
7151 	spin_unlock(&pers_lock);
7152 
7153 	kthread_stop(thread->tsk);
7154 	kfree(thread);
7155 }
7156 EXPORT_SYMBOL(md_unregister_thread);
7157 
7158 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7159 {
7160 	if (!rdev || test_bit(Faulty, &rdev->flags))
7161 		return;
7162 
7163 	if (!mddev->pers || !mddev->pers->error_handler)
7164 		return;
7165 	mddev->pers->error_handler(mddev,rdev);
7166 	if (mddev->degraded)
7167 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7168 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7169 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7170 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7171 	md_wakeup_thread(mddev->thread);
7172 	if (mddev->event_work.func)
7173 		queue_work(md_misc_wq, &mddev->event_work);
7174 	md_new_event_inintr(mddev);
7175 }
7176 EXPORT_SYMBOL(md_error);
7177 
7178 /* seq_file implementation /proc/mdstat */
7179 
7180 static void status_unused(struct seq_file *seq)
7181 {
7182 	int i = 0;
7183 	struct md_rdev *rdev;
7184 
7185 	seq_printf(seq, "unused devices: ");
7186 
7187 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7188 		char b[BDEVNAME_SIZE];
7189 		i++;
7190 		seq_printf(seq, "%s ",
7191 			      bdevname(rdev->bdev,b));
7192 	}
7193 	if (!i)
7194 		seq_printf(seq, "<none>");
7195 
7196 	seq_printf(seq, "\n");
7197 }
7198 
7199 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7200 {
7201 	sector_t max_sectors, resync, res;
7202 	unsigned long dt, db;
7203 	sector_t rt;
7204 	int scale;
7205 	unsigned int per_milli;
7206 
7207 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7208 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7209 		max_sectors = mddev->resync_max_sectors;
7210 	else
7211 		max_sectors = mddev->dev_sectors;
7212 
7213 	resync = mddev->curr_resync;
7214 	if (resync <= 3) {
7215 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7216 			/* Still cleaning up */
7217 			resync = max_sectors;
7218 	} else
7219 		resync -= atomic_read(&mddev->recovery_active);
7220 
7221 	if (resync == 0) {
7222 		if (mddev->recovery_cp < MaxSector) {
7223 			seq_printf(seq, "\tresync=PENDING");
7224 			return 1;
7225 		}
7226 		return 0;
7227 	}
7228 	if (resync < 3) {
7229 		seq_printf(seq, "\tresync=DELAYED");
7230 		return 1;
7231 	}
7232 
7233 	WARN_ON(max_sectors == 0);
7234 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7235 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7236 	 * u32, as those are the requirements for sector_div.
7237 	 * Thus 'scale' must be at least 10
7238 	 */
7239 	scale = 10;
7240 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7241 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7242 			scale++;
7243 	}
7244 	res = (resync>>scale)*1000;
7245 	sector_div(res, (u32)((max_sectors>>scale)+1));
7246 
7247 	per_milli = res;
7248 	{
7249 		int i, x = per_milli/50, y = 20-x;
7250 		seq_printf(seq, "[");
7251 		for (i = 0; i < x; i++)
7252 			seq_printf(seq, "=");
7253 		seq_printf(seq, ">");
7254 		for (i = 0; i < y; i++)
7255 			seq_printf(seq, ".");
7256 		seq_printf(seq, "] ");
7257 	}
7258 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7259 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7260 		    "reshape" :
7261 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7262 		     "check" :
7263 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7264 		      "resync" : "recovery"))),
7265 		   per_milli/10, per_milli % 10,
7266 		   (unsigned long long) resync/2,
7267 		   (unsigned long long) max_sectors/2);
7268 
7269 	/*
7270 	 * dt: time from mark until now
7271 	 * db: blocks written from mark until now
7272 	 * rt: remaining time
7273 	 *
7274 	 * rt is a sector_t, so could be 32bit or 64bit.
7275 	 * So we divide before multiply in case it is 32bit and close
7276 	 * to the limit.
7277 	 * We scale the divisor (db) by 32 to avoid losing precision
7278 	 * near the end of resync when the number of remaining sectors
7279 	 * is close to 'db'.
7280 	 * We then divide rt by 32 after multiplying by db to compensate.
7281 	 * The '+1' avoids division by zero if db is very small.
7282 	 */
7283 	dt = ((jiffies - mddev->resync_mark) / HZ);
7284 	if (!dt) dt++;
7285 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7286 		- mddev->resync_mark_cnt;
7287 
7288 	rt = max_sectors - resync;    /* number of remaining sectors */
7289 	sector_div(rt, db/32+1);
7290 	rt *= dt;
7291 	rt >>= 5;
7292 
7293 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7294 		   ((unsigned long)rt % 60)/6);
7295 
7296 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7297 	return 1;
7298 }
7299 
7300 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7301 {
7302 	struct list_head *tmp;
7303 	loff_t l = *pos;
7304 	struct mddev *mddev;
7305 
7306 	if (l >= 0x10000)
7307 		return NULL;
7308 	if (!l--)
7309 		/* header */
7310 		return (void*)1;
7311 
7312 	spin_lock(&all_mddevs_lock);
7313 	list_for_each(tmp,&all_mddevs)
7314 		if (!l--) {
7315 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7316 			mddev_get(mddev);
7317 			spin_unlock(&all_mddevs_lock);
7318 			return mddev;
7319 		}
7320 	spin_unlock(&all_mddevs_lock);
7321 	if (!l--)
7322 		return (void*)2;/* tail */
7323 	return NULL;
7324 }
7325 
7326 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7327 {
7328 	struct list_head *tmp;
7329 	struct mddev *next_mddev, *mddev = v;
7330 
7331 	++*pos;
7332 	if (v == (void*)2)
7333 		return NULL;
7334 
7335 	spin_lock(&all_mddevs_lock);
7336 	if (v == (void*)1)
7337 		tmp = all_mddevs.next;
7338 	else
7339 		tmp = mddev->all_mddevs.next;
7340 	if (tmp != &all_mddevs)
7341 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7342 	else {
7343 		next_mddev = (void*)2;
7344 		*pos = 0x10000;
7345 	}
7346 	spin_unlock(&all_mddevs_lock);
7347 
7348 	if (v != (void*)1)
7349 		mddev_put(mddev);
7350 	return next_mddev;
7351 
7352 }
7353 
7354 static void md_seq_stop(struct seq_file *seq, void *v)
7355 {
7356 	struct mddev *mddev = v;
7357 
7358 	if (mddev && v != (void*)1 && v != (void*)2)
7359 		mddev_put(mddev);
7360 }
7361 
7362 static int md_seq_show(struct seq_file *seq, void *v)
7363 {
7364 	struct mddev *mddev = v;
7365 	sector_t sectors;
7366 	struct md_rdev *rdev;
7367 
7368 	if (v == (void*)1) {
7369 		struct md_personality *pers;
7370 		seq_printf(seq, "Personalities : ");
7371 		spin_lock(&pers_lock);
7372 		list_for_each_entry(pers, &pers_list, list)
7373 			seq_printf(seq, "[%s] ", pers->name);
7374 
7375 		spin_unlock(&pers_lock);
7376 		seq_printf(seq, "\n");
7377 		seq->poll_event = atomic_read(&md_event_count);
7378 		return 0;
7379 	}
7380 	if (v == (void*)2) {
7381 		status_unused(seq);
7382 		return 0;
7383 	}
7384 
7385 	spin_lock(&mddev->lock);
7386 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7387 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7388 						mddev->pers ? "" : "in");
7389 		if (mddev->pers) {
7390 			if (mddev->ro==1)
7391 				seq_printf(seq, " (read-only)");
7392 			if (mddev->ro==2)
7393 				seq_printf(seq, " (auto-read-only)");
7394 			seq_printf(seq, " %s", mddev->pers->name);
7395 		}
7396 
7397 		sectors = 0;
7398 		rcu_read_lock();
7399 		rdev_for_each_rcu(rdev, mddev) {
7400 			char b[BDEVNAME_SIZE];
7401 			seq_printf(seq, " %s[%d]",
7402 				bdevname(rdev->bdev,b), rdev->desc_nr);
7403 			if (test_bit(WriteMostly, &rdev->flags))
7404 				seq_printf(seq, "(W)");
7405 			if (test_bit(Journal, &rdev->flags))
7406 				seq_printf(seq, "(J)");
7407 			if (test_bit(Faulty, &rdev->flags)) {
7408 				seq_printf(seq, "(F)");
7409 				continue;
7410 			}
7411 			if (rdev->raid_disk < 0)
7412 				seq_printf(seq, "(S)"); /* spare */
7413 			if (test_bit(Replacement, &rdev->flags))
7414 				seq_printf(seq, "(R)");
7415 			sectors += rdev->sectors;
7416 		}
7417 		rcu_read_unlock();
7418 
7419 		if (!list_empty(&mddev->disks)) {
7420 			if (mddev->pers)
7421 				seq_printf(seq, "\n      %llu blocks",
7422 					   (unsigned long long)
7423 					   mddev->array_sectors / 2);
7424 			else
7425 				seq_printf(seq, "\n      %llu blocks",
7426 					   (unsigned long long)sectors / 2);
7427 		}
7428 		if (mddev->persistent) {
7429 			if (mddev->major_version != 0 ||
7430 			    mddev->minor_version != 90) {
7431 				seq_printf(seq," super %d.%d",
7432 					   mddev->major_version,
7433 					   mddev->minor_version);
7434 			}
7435 		} else if (mddev->external)
7436 			seq_printf(seq, " super external:%s",
7437 				   mddev->metadata_type);
7438 		else
7439 			seq_printf(seq, " super non-persistent");
7440 
7441 		if (mddev->pers) {
7442 			mddev->pers->status(seq, mddev);
7443 			seq_printf(seq, "\n      ");
7444 			if (mddev->pers->sync_request) {
7445 				if (status_resync(seq, mddev))
7446 					seq_printf(seq, "\n      ");
7447 			}
7448 		} else
7449 			seq_printf(seq, "\n       ");
7450 
7451 		bitmap_status(seq, mddev->bitmap);
7452 
7453 		seq_printf(seq, "\n");
7454 	}
7455 	spin_unlock(&mddev->lock);
7456 
7457 	return 0;
7458 }
7459 
7460 static const struct seq_operations md_seq_ops = {
7461 	.start  = md_seq_start,
7462 	.next   = md_seq_next,
7463 	.stop   = md_seq_stop,
7464 	.show   = md_seq_show,
7465 };
7466 
7467 static int md_seq_open(struct inode *inode, struct file *file)
7468 {
7469 	struct seq_file *seq;
7470 	int error;
7471 
7472 	error = seq_open(file, &md_seq_ops);
7473 	if (error)
7474 		return error;
7475 
7476 	seq = file->private_data;
7477 	seq->poll_event = atomic_read(&md_event_count);
7478 	return error;
7479 }
7480 
7481 static int md_unloading;
7482 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7483 {
7484 	struct seq_file *seq = filp->private_data;
7485 	int mask;
7486 
7487 	if (md_unloading)
7488 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7489 	poll_wait(filp, &md_event_waiters, wait);
7490 
7491 	/* always allow read */
7492 	mask = POLLIN | POLLRDNORM;
7493 
7494 	if (seq->poll_event != atomic_read(&md_event_count))
7495 		mask |= POLLERR | POLLPRI;
7496 	return mask;
7497 }
7498 
7499 static const struct file_operations md_seq_fops = {
7500 	.owner		= THIS_MODULE,
7501 	.open           = md_seq_open,
7502 	.read           = seq_read,
7503 	.llseek         = seq_lseek,
7504 	.release	= seq_release_private,
7505 	.poll		= mdstat_poll,
7506 };
7507 
7508 int register_md_personality(struct md_personality *p)
7509 {
7510 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7511 						p->name, p->level);
7512 	spin_lock(&pers_lock);
7513 	list_add_tail(&p->list, &pers_list);
7514 	spin_unlock(&pers_lock);
7515 	return 0;
7516 }
7517 EXPORT_SYMBOL(register_md_personality);
7518 
7519 int unregister_md_personality(struct md_personality *p)
7520 {
7521 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7522 	spin_lock(&pers_lock);
7523 	list_del_init(&p->list);
7524 	spin_unlock(&pers_lock);
7525 	return 0;
7526 }
7527 EXPORT_SYMBOL(unregister_md_personality);
7528 
7529 int register_md_cluster_operations(struct md_cluster_operations *ops,
7530 				   struct module *module)
7531 {
7532 	int ret = 0;
7533 	spin_lock(&pers_lock);
7534 	if (md_cluster_ops != NULL)
7535 		ret = -EALREADY;
7536 	else {
7537 		md_cluster_ops = ops;
7538 		md_cluster_mod = module;
7539 	}
7540 	spin_unlock(&pers_lock);
7541 	return ret;
7542 }
7543 EXPORT_SYMBOL(register_md_cluster_operations);
7544 
7545 int unregister_md_cluster_operations(void)
7546 {
7547 	spin_lock(&pers_lock);
7548 	md_cluster_ops = NULL;
7549 	spin_unlock(&pers_lock);
7550 	return 0;
7551 }
7552 EXPORT_SYMBOL(unregister_md_cluster_operations);
7553 
7554 int md_setup_cluster(struct mddev *mddev, int nodes)
7555 {
7556 	int err;
7557 
7558 	err = request_module("md-cluster");
7559 	if (err) {
7560 		pr_err("md-cluster module not found.\n");
7561 		return -ENOENT;
7562 	}
7563 
7564 	spin_lock(&pers_lock);
7565 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7566 		spin_unlock(&pers_lock);
7567 		return -ENOENT;
7568 	}
7569 	spin_unlock(&pers_lock);
7570 
7571 	return md_cluster_ops->join(mddev, nodes);
7572 }
7573 
7574 void md_cluster_stop(struct mddev *mddev)
7575 {
7576 	if (!md_cluster_ops)
7577 		return;
7578 	md_cluster_ops->leave(mddev);
7579 	module_put(md_cluster_mod);
7580 }
7581 
7582 static int is_mddev_idle(struct mddev *mddev, int init)
7583 {
7584 	struct md_rdev *rdev;
7585 	int idle;
7586 	int curr_events;
7587 
7588 	idle = 1;
7589 	rcu_read_lock();
7590 	rdev_for_each_rcu(rdev, mddev) {
7591 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7592 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7593 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7594 			      atomic_read(&disk->sync_io);
7595 		/* sync IO will cause sync_io to increase before the disk_stats
7596 		 * as sync_io is counted when a request starts, and
7597 		 * disk_stats is counted when it completes.
7598 		 * So resync activity will cause curr_events to be smaller than
7599 		 * when there was no such activity.
7600 		 * non-sync IO will cause disk_stat to increase without
7601 		 * increasing sync_io so curr_events will (eventually)
7602 		 * be larger than it was before.  Once it becomes
7603 		 * substantially larger, the test below will cause
7604 		 * the array to appear non-idle, and resync will slow
7605 		 * down.
7606 		 * If there is a lot of outstanding resync activity when
7607 		 * we set last_event to curr_events, then all that activity
7608 		 * completing might cause the array to appear non-idle
7609 		 * and resync will be slowed down even though there might
7610 		 * not have been non-resync activity.  This will only
7611 		 * happen once though.  'last_events' will soon reflect
7612 		 * the state where there is little or no outstanding
7613 		 * resync requests, and further resync activity will
7614 		 * always make curr_events less than last_events.
7615 		 *
7616 		 */
7617 		if (init || curr_events - rdev->last_events > 64) {
7618 			rdev->last_events = curr_events;
7619 			idle = 0;
7620 		}
7621 	}
7622 	rcu_read_unlock();
7623 	return idle;
7624 }
7625 
7626 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7627 {
7628 	/* another "blocks" (512byte) blocks have been synced */
7629 	atomic_sub(blocks, &mddev->recovery_active);
7630 	wake_up(&mddev->recovery_wait);
7631 	if (!ok) {
7632 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7633 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7634 		md_wakeup_thread(mddev->thread);
7635 		// stop recovery, signal do_sync ....
7636 	}
7637 }
7638 EXPORT_SYMBOL(md_done_sync);
7639 
7640 /* md_write_start(mddev, bi)
7641  * If we need to update some array metadata (e.g. 'active' flag
7642  * in superblock) before writing, schedule a superblock update
7643  * and wait for it to complete.
7644  */
7645 void md_write_start(struct mddev *mddev, struct bio *bi)
7646 {
7647 	int did_change = 0;
7648 	if (bio_data_dir(bi) != WRITE)
7649 		return;
7650 
7651 	BUG_ON(mddev->ro == 1);
7652 	if (mddev->ro == 2) {
7653 		/* need to switch to read/write */
7654 		mddev->ro = 0;
7655 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7656 		md_wakeup_thread(mddev->thread);
7657 		md_wakeup_thread(mddev->sync_thread);
7658 		did_change = 1;
7659 	}
7660 	atomic_inc(&mddev->writes_pending);
7661 	if (mddev->safemode == 1)
7662 		mddev->safemode = 0;
7663 	if (mddev->in_sync) {
7664 		spin_lock(&mddev->lock);
7665 		if (mddev->in_sync) {
7666 			mddev->in_sync = 0;
7667 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7668 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7669 			md_wakeup_thread(mddev->thread);
7670 			did_change = 1;
7671 		}
7672 		spin_unlock(&mddev->lock);
7673 	}
7674 	if (did_change)
7675 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7676 	wait_event(mddev->sb_wait,
7677 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7678 }
7679 EXPORT_SYMBOL(md_write_start);
7680 
7681 void md_write_end(struct mddev *mddev)
7682 {
7683 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7684 		if (mddev->safemode == 2)
7685 			md_wakeup_thread(mddev->thread);
7686 		else if (mddev->safemode_delay)
7687 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7688 	}
7689 }
7690 EXPORT_SYMBOL(md_write_end);
7691 
7692 /* md_allow_write(mddev)
7693  * Calling this ensures that the array is marked 'active' so that writes
7694  * may proceed without blocking.  It is important to call this before
7695  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7696  * Must be called with mddev_lock held.
7697  *
7698  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7699  * is dropped, so return -EAGAIN after notifying userspace.
7700  */
7701 int md_allow_write(struct mddev *mddev)
7702 {
7703 	if (!mddev->pers)
7704 		return 0;
7705 	if (mddev->ro)
7706 		return 0;
7707 	if (!mddev->pers->sync_request)
7708 		return 0;
7709 
7710 	spin_lock(&mddev->lock);
7711 	if (mddev->in_sync) {
7712 		mddev->in_sync = 0;
7713 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7714 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7715 		if (mddev->safemode_delay &&
7716 		    mddev->safemode == 0)
7717 			mddev->safemode = 1;
7718 		spin_unlock(&mddev->lock);
7719 		md_update_sb(mddev, 0);
7720 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7721 	} else
7722 		spin_unlock(&mddev->lock);
7723 
7724 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7725 		return -EAGAIN;
7726 	else
7727 		return 0;
7728 }
7729 EXPORT_SYMBOL_GPL(md_allow_write);
7730 
7731 #define SYNC_MARKS	10
7732 #define	SYNC_MARK_STEP	(3*HZ)
7733 #define UPDATE_FREQUENCY (5*60*HZ)
7734 void md_do_sync(struct md_thread *thread)
7735 {
7736 	struct mddev *mddev = thread->mddev;
7737 	struct mddev *mddev2;
7738 	unsigned int currspeed = 0,
7739 		 window;
7740 	sector_t max_sectors,j, io_sectors, recovery_done;
7741 	unsigned long mark[SYNC_MARKS];
7742 	unsigned long update_time;
7743 	sector_t mark_cnt[SYNC_MARKS];
7744 	int last_mark,m;
7745 	struct list_head *tmp;
7746 	sector_t last_check;
7747 	int skipped = 0;
7748 	struct md_rdev *rdev;
7749 	char *desc, *action = NULL;
7750 	struct blk_plug plug;
7751 	bool cluster_resync_finished = false;
7752 
7753 	/* just incase thread restarts... */
7754 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7755 		return;
7756 	if (mddev->ro) {/* never try to sync a read-only array */
7757 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7758 		return;
7759 	}
7760 
7761 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7762 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7763 			desc = "data-check";
7764 			action = "check";
7765 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7766 			desc = "requested-resync";
7767 			action = "repair";
7768 		} else
7769 			desc = "resync";
7770 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7771 		desc = "reshape";
7772 	else
7773 		desc = "recovery";
7774 
7775 	mddev->last_sync_action = action ?: desc;
7776 
7777 	/* we overload curr_resync somewhat here.
7778 	 * 0 == not engaged in resync at all
7779 	 * 2 == checking that there is no conflict with another sync
7780 	 * 1 == like 2, but have yielded to allow conflicting resync to
7781 	 *		commense
7782 	 * other == active in resync - this many blocks
7783 	 *
7784 	 * Before starting a resync we must have set curr_resync to
7785 	 * 2, and then checked that every "conflicting" array has curr_resync
7786 	 * less than ours.  When we find one that is the same or higher
7787 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7788 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7789 	 * This will mean we have to start checking from the beginning again.
7790 	 *
7791 	 */
7792 
7793 	do {
7794 		mddev->curr_resync = 2;
7795 
7796 	try_again:
7797 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7798 			goto skip;
7799 		for_each_mddev(mddev2, tmp) {
7800 			if (mddev2 == mddev)
7801 				continue;
7802 			if (!mddev->parallel_resync
7803 			&&  mddev2->curr_resync
7804 			&&  match_mddev_units(mddev, mddev2)) {
7805 				DEFINE_WAIT(wq);
7806 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7807 					/* arbitrarily yield */
7808 					mddev->curr_resync = 1;
7809 					wake_up(&resync_wait);
7810 				}
7811 				if (mddev > mddev2 && mddev->curr_resync == 1)
7812 					/* no need to wait here, we can wait the next
7813 					 * time 'round when curr_resync == 2
7814 					 */
7815 					continue;
7816 				/* We need to wait 'interruptible' so as not to
7817 				 * contribute to the load average, and not to
7818 				 * be caught by 'softlockup'
7819 				 */
7820 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7821 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7822 				    mddev2->curr_resync >= mddev->curr_resync) {
7823 					printk(KERN_INFO "md: delaying %s of %s"
7824 					       " until %s has finished (they"
7825 					       " share one or more physical units)\n",
7826 					       desc, mdname(mddev), mdname(mddev2));
7827 					mddev_put(mddev2);
7828 					if (signal_pending(current))
7829 						flush_signals(current);
7830 					schedule();
7831 					finish_wait(&resync_wait, &wq);
7832 					goto try_again;
7833 				}
7834 				finish_wait(&resync_wait, &wq);
7835 			}
7836 		}
7837 	} while (mddev->curr_resync < 2);
7838 
7839 	j = 0;
7840 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7841 		/* resync follows the size requested by the personality,
7842 		 * which defaults to physical size, but can be virtual size
7843 		 */
7844 		max_sectors = mddev->resync_max_sectors;
7845 		atomic64_set(&mddev->resync_mismatches, 0);
7846 		/* we don't use the checkpoint if there's a bitmap */
7847 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7848 			j = mddev->resync_min;
7849 		else if (!mddev->bitmap)
7850 			j = mddev->recovery_cp;
7851 
7852 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7853 		max_sectors = mddev->resync_max_sectors;
7854 	else {
7855 		/* recovery follows the physical size of devices */
7856 		max_sectors = mddev->dev_sectors;
7857 		j = MaxSector;
7858 		rcu_read_lock();
7859 		rdev_for_each_rcu(rdev, mddev)
7860 			if (rdev->raid_disk >= 0 &&
7861 			    !test_bit(Journal, &rdev->flags) &&
7862 			    !test_bit(Faulty, &rdev->flags) &&
7863 			    !test_bit(In_sync, &rdev->flags) &&
7864 			    rdev->recovery_offset < j)
7865 				j = rdev->recovery_offset;
7866 		rcu_read_unlock();
7867 
7868 		/* If there is a bitmap, we need to make sure all
7869 		 * writes that started before we added a spare
7870 		 * complete before we start doing a recovery.
7871 		 * Otherwise the write might complete and (via
7872 		 * bitmap_endwrite) set a bit in the bitmap after the
7873 		 * recovery has checked that bit and skipped that
7874 		 * region.
7875 		 */
7876 		if (mddev->bitmap) {
7877 			mddev->pers->quiesce(mddev, 1);
7878 			mddev->pers->quiesce(mddev, 0);
7879 		}
7880 	}
7881 
7882 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7883 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7884 		" %d KB/sec/disk.\n", speed_min(mddev));
7885 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7886 	       "(but not more than %d KB/sec) for %s.\n",
7887 	       speed_max(mddev), desc);
7888 
7889 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7890 
7891 	io_sectors = 0;
7892 	for (m = 0; m < SYNC_MARKS; m++) {
7893 		mark[m] = jiffies;
7894 		mark_cnt[m] = io_sectors;
7895 	}
7896 	last_mark = 0;
7897 	mddev->resync_mark = mark[last_mark];
7898 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7899 
7900 	/*
7901 	 * Tune reconstruction:
7902 	 */
7903 	window = 32*(PAGE_SIZE/512);
7904 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7905 		window/2, (unsigned long long)max_sectors/2);
7906 
7907 	atomic_set(&mddev->recovery_active, 0);
7908 	last_check = 0;
7909 
7910 	if (j>2) {
7911 		printk(KERN_INFO
7912 		       "md: resuming %s of %s from checkpoint.\n",
7913 		       desc, mdname(mddev));
7914 		mddev->curr_resync = j;
7915 	} else
7916 		mddev->curr_resync = 3; /* no longer delayed */
7917 	mddev->curr_resync_completed = j;
7918 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7919 	md_new_event(mddev);
7920 	update_time = jiffies;
7921 
7922 	blk_start_plug(&plug);
7923 	while (j < max_sectors) {
7924 		sector_t sectors;
7925 
7926 		skipped = 0;
7927 
7928 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7929 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7930 		      (mddev->curr_resync - mddev->curr_resync_completed)
7931 		      > (max_sectors >> 4)) ||
7932 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7933 		     (j - mddev->curr_resync_completed)*2
7934 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7935 		     mddev->curr_resync_completed > mddev->resync_max
7936 			    )) {
7937 			/* time to update curr_resync_completed */
7938 			wait_event(mddev->recovery_wait,
7939 				   atomic_read(&mddev->recovery_active) == 0);
7940 			mddev->curr_resync_completed = j;
7941 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7942 			    j > mddev->recovery_cp)
7943 				mddev->recovery_cp = j;
7944 			update_time = jiffies;
7945 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7946 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7947 		}
7948 
7949 		while (j >= mddev->resync_max &&
7950 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7951 			/* As this condition is controlled by user-space,
7952 			 * we can block indefinitely, so use '_interruptible'
7953 			 * to avoid triggering warnings.
7954 			 */
7955 			flush_signals(current); /* just in case */
7956 			wait_event_interruptible(mddev->recovery_wait,
7957 						 mddev->resync_max > j
7958 						 || test_bit(MD_RECOVERY_INTR,
7959 							     &mddev->recovery));
7960 		}
7961 
7962 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7963 			break;
7964 
7965 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7966 		if (sectors == 0) {
7967 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7968 			break;
7969 		}
7970 
7971 		if (!skipped) { /* actual IO requested */
7972 			io_sectors += sectors;
7973 			atomic_add(sectors, &mddev->recovery_active);
7974 		}
7975 
7976 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7977 			break;
7978 
7979 		j += sectors;
7980 		if (j > max_sectors)
7981 			/* when skipping, extra large numbers can be returned. */
7982 			j = max_sectors;
7983 		if (j > 2)
7984 			mddev->curr_resync = j;
7985 		mddev->curr_mark_cnt = io_sectors;
7986 		if (last_check == 0)
7987 			/* this is the earliest that rebuild will be
7988 			 * visible in /proc/mdstat
7989 			 */
7990 			md_new_event(mddev);
7991 
7992 		if (last_check + window > io_sectors || j == max_sectors)
7993 			continue;
7994 
7995 		last_check = io_sectors;
7996 	repeat:
7997 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7998 			/* step marks */
7999 			int next = (last_mark+1) % SYNC_MARKS;
8000 
8001 			mddev->resync_mark = mark[next];
8002 			mddev->resync_mark_cnt = mark_cnt[next];
8003 			mark[next] = jiffies;
8004 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8005 			last_mark = next;
8006 		}
8007 
8008 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8009 			break;
8010 
8011 		/*
8012 		 * this loop exits only if either when we are slower than
8013 		 * the 'hard' speed limit, or the system was IO-idle for
8014 		 * a jiffy.
8015 		 * the system might be non-idle CPU-wise, but we only care
8016 		 * about not overloading the IO subsystem. (things like an
8017 		 * e2fsck being done on the RAID array should execute fast)
8018 		 */
8019 		cond_resched();
8020 
8021 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8022 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8023 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8024 
8025 		if (currspeed > speed_min(mddev)) {
8026 			if (currspeed > speed_max(mddev)) {
8027 				msleep(500);
8028 				goto repeat;
8029 			}
8030 			if (!is_mddev_idle(mddev, 0)) {
8031 				/*
8032 				 * Give other IO more of a chance.
8033 				 * The faster the devices, the less we wait.
8034 				 */
8035 				wait_event(mddev->recovery_wait,
8036 					   !atomic_read(&mddev->recovery_active));
8037 			}
8038 		}
8039 	}
8040 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8041 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8042 	       ? "interrupted" : "done");
8043 	/*
8044 	 * this also signals 'finished resyncing' to md_stop
8045 	 */
8046 	blk_finish_plug(&plug);
8047 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8048 
8049 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8050 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8051 	    mddev->curr_resync > 2) {
8052 		mddev->curr_resync_completed = mddev->curr_resync;
8053 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8054 	}
8055 	/* tell personality and other nodes that we are finished */
8056 	if (mddev_is_clustered(mddev)) {
8057 		md_cluster_ops->resync_finish(mddev);
8058 		cluster_resync_finished = true;
8059 	}
8060 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8061 
8062 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8063 	    mddev->curr_resync > 2) {
8064 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8065 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8066 				if (mddev->curr_resync >= mddev->recovery_cp) {
8067 					printk(KERN_INFO
8068 					       "md: checkpointing %s of %s.\n",
8069 					       desc, mdname(mddev));
8070 					if (test_bit(MD_RECOVERY_ERROR,
8071 						&mddev->recovery))
8072 						mddev->recovery_cp =
8073 							mddev->curr_resync_completed;
8074 					else
8075 						mddev->recovery_cp =
8076 							mddev->curr_resync;
8077 				}
8078 			} else
8079 				mddev->recovery_cp = MaxSector;
8080 		} else {
8081 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8082 				mddev->curr_resync = MaxSector;
8083 			rcu_read_lock();
8084 			rdev_for_each_rcu(rdev, mddev)
8085 				if (rdev->raid_disk >= 0 &&
8086 				    mddev->delta_disks >= 0 &&
8087 				    !test_bit(Journal, &rdev->flags) &&
8088 				    !test_bit(Faulty, &rdev->flags) &&
8089 				    !test_bit(In_sync, &rdev->flags) &&
8090 				    rdev->recovery_offset < mddev->curr_resync)
8091 					rdev->recovery_offset = mddev->curr_resync;
8092 			rcu_read_unlock();
8093 		}
8094 	}
8095  skip:
8096 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8097 
8098 	if (mddev_is_clustered(mddev) &&
8099 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8100 	    !cluster_resync_finished)
8101 		md_cluster_ops->resync_finish(mddev);
8102 
8103 	spin_lock(&mddev->lock);
8104 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8105 		/* We completed so min/max setting can be forgotten if used. */
8106 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8107 			mddev->resync_min = 0;
8108 		mddev->resync_max = MaxSector;
8109 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8110 		mddev->resync_min = mddev->curr_resync_completed;
8111 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8112 	mddev->curr_resync = 0;
8113 	spin_unlock(&mddev->lock);
8114 
8115 	wake_up(&resync_wait);
8116 	md_wakeup_thread(mddev->thread);
8117 	return;
8118 }
8119 EXPORT_SYMBOL_GPL(md_do_sync);
8120 
8121 static int remove_and_add_spares(struct mddev *mddev,
8122 				 struct md_rdev *this)
8123 {
8124 	struct md_rdev *rdev;
8125 	int spares = 0;
8126 	int removed = 0;
8127 
8128 	rdev_for_each(rdev, mddev)
8129 		if ((this == NULL || rdev == this) &&
8130 		    rdev->raid_disk >= 0 &&
8131 		    !test_bit(Blocked, &rdev->flags) &&
8132 		    (test_bit(Faulty, &rdev->flags) ||
8133 		     (!test_bit(In_sync, &rdev->flags) &&
8134 		      !test_bit(Journal, &rdev->flags))) &&
8135 		    atomic_read(&rdev->nr_pending)==0) {
8136 			if (mddev->pers->hot_remove_disk(
8137 				    mddev, rdev) == 0) {
8138 				sysfs_unlink_rdev(mddev, rdev);
8139 				rdev->raid_disk = -1;
8140 				removed++;
8141 			}
8142 		}
8143 	if (removed && mddev->kobj.sd)
8144 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8145 
8146 	if (this && removed)
8147 		goto no_add;
8148 
8149 	rdev_for_each(rdev, mddev) {
8150 		if (this && this != rdev)
8151 			continue;
8152 		if (test_bit(Candidate, &rdev->flags))
8153 			continue;
8154 		if (rdev->raid_disk >= 0 &&
8155 		    !test_bit(In_sync, &rdev->flags) &&
8156 		    !test_bit(Journal, &rdev->flags) &&
8157 		    !test_bit(Faulty, &rdev->flags))
8158 			spares++;
8159 		if (rdev->raid_disk >= 0)
8160 			continue;
8161 		if (test_bit(Faulty, &rdev->flags))
8162 			continue;
8163 		if (test_bit(Journal, &rdev->flags))
8164 			continue;
8165 		if (mddev->ro &&
8166 		    ! (rdev->saved_raid_disk >= 0 &&
8167 		       !test_bit(Bitmap_sync, &rdev->flags)))
8168 			continue;
8169 
8170 		rdev->recovery_offset = 0;
8171 		if (mddev->pers->
8172 		    hot_add_disk(mddev, rdev) == 0) {
8173 			if (sysfs_link_rdev(mddev, rdev))
8174 				/* failure here is OK */;
8175 			spares++;
8176 			md_new_event(mddev);
8177 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8178 		}
8179 	}
8180 no_add:
8181 	if (removed)
8182 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8183 	return spares;
8184 }
8185 
8186 static void md_start_sync(struct work_struct *ws)
8187 {
8188 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8189 	int ret = 0;
8190 
8191 	if (mddev_is_clustered(mddev)) {
8192 		ret = md_cluster_ops->resync_start(mddev);
8193 		if (ret) {
8194 			mddev->sync_thread = NULL;
8195 			goto out;
8196 		}
8197 	}
8198 
8199 	mddev->sync_thread = md_register_thread(md_do_sync,
8200 						mddev,
8201 						"resync");
8202 out:
8203 	if (!mddev->sync_thread) {
8204 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8205 			printk(KERN_ERR "%s: could not start resync"
8206 			       " thread...\n",
8207 			       mdname(mddev));
8208 		/* leave the spares where they are, it shouldn't hurt */
8209 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8210 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8211 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8212 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8213 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8214 		wake_up(&resync_wait);
8215 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8216 				       &mddev->recovery))
8217 			if (mddev->sysfs_action)
8218 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8219 	} else
8220 		md_wakeup_thread(mddev->sync_thread);
8221 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8222 	md_new_event(mddev);
8223 }
8224 
8225 /*
8226  * This routine is regularly called by all per-raid-array threads to
8227  * deal with generic issues like resync and super-block update.
8228  * Raid personalities that don't have a thread (linear/raid0) do not
8229  * need this as they never do any recovery or update the superblock.
8230  *
8231  * It does not do any resync itself, but rather "forks" off other threads
8232  * to do that as needed.
8233  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8234  * "->recovery" and create a thread at ->sync_thread.
8235  * When the thread finishes it sets MD_RECOVERY_DONE
8236  * and wakeups up this thread which will reap the thread and finish up.
8237  * This thread also removes any faulty devices (with nr_pending == 0).
8238  *
8239  * The overall approach is:
8240  *  1/ if the superblock needs updating, update it.
8241  *  2/ If a recovery thread is running, don't do anything else.
8242  *  3/ If recovery has finished, clean up, possibly marking spares active.
8243  *  4/ If there are any faulty devices, remove them.
8244  *  5/ If array is degraded, try to add spares devices
8245  *  6/ If array has spares or is not in-sync, start a resync thread.
8246  */
8247 void md_check_recovery(struct mddev *mddev)
8248 {
8249 	if (mddev->suspended)
8250 		return;
8251 
8252 	if (mddev->bitmap)
8253 		bitmap_daemon_work(mddev);
8254 
8255 	if (signal_pending(current)) {
8256 		if (mddev->pers->sync_request && !mddev->external) {
8257 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8258 			       mdname(mddev));
8259 			mddev->safemode = 2;
8260 		}
8261 		flush_signals(current);
8262 	}
8263 
8264 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8265 		return;
8266 	if ( ! (
8267 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8268 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8269 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8270 		(mddev->external == 0 && mddev->safemode == 1) ||
8271 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8272 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8273 		))
8274 		return;
8275 
8276 	if (mddev_trylock(mddev)) {
8277 		int spares = 0;
8278 
8279 		if (mddev->ro) {
8280 			struct md_rdev *rdev;
8281 			if (!mddev->external && mddev->in_sync)
8282 				/* 'Blocked' flag not needed as failed devices
8283 				 * will be recorded if array switched to read/write.
8284 				 * Leaving it set will prevent the device
8285 				 * from being removed.
8286 				 */
8287 				rdev_for_each(rdev, mddev)
8288 					clear_bit(Blocked, &rdev->flags);
8289 			/* On a read-only array we can:
8290 			 * - remove failed devices
8291 			 * - add already-in_sync devices if the array itself
8292 			 *   is in-sync.
8293 			 * As we only add devices that are already in-sync,
8294 			 * we can activate the spares immediately.
8295 			 */
8296 			remove_and_add_spares(mddev, NULL);
8297 			/* There is no thread, but we need to call
8298 			 * ->spare_active and clear saved_raid_disk
8299 			 */
8300 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8301 			md_reap_sync_thread(mddev);
8302 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8303 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8304 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8305 			goto unlock;
8306 		}
8307 
8308 		if (!mddev->external) {
8309 			int did_change = 0;
8310 			spin_lock(&mddev->lock);
8311 			if (mddev->safemode &&
8312 			    !atomic_read(&mddev->writes_pending) &&
8313 			    !mddev->in_sync &&
8314 			    mddev->recovery_cp == MaxSector) {
8315 				mddev->in_sync = 1;
8316 				did_change = 1;
8317 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8318 			}
8319 			if (mddev->safemode == 1)
8320 				mddev->safemode = 0;
8321 			spin_unlock(&mddev->lock);
8322 			if (did_change)
8323 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8324 		}
8325 
8326 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8327 			md_update_sb(mddev, 0);
8328 
8329 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8330 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8331 			/* resync/recovery still happening */
8332 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8333 			goto unlock;
8334 		}
8335 		if (mddev->sync_thread) {
8336 			md_reap_sync_thread(mddev);
8337 			goto unlock;
8338 		}
8339 		/* Set RUNNING before clearing NEEDED to avoid
8340 		 * any transients in the value of "sync_action".
8341 		 */
8342 		mddev->curr_resync_completed = 0;
8343 		spin_lock(&mddev->lock);
8344 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8345 		spin_unlock(&mddev->lock);
8346 		/* Clear some bits that don't mean anything, but
8347 		 * might be left set
8348 		 */
8349 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8350 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8351 
8352 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8353 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8354 			goto not_running;
8355 		/* no recovery is running.
8356 		 * remove any failed drives, then
8357 		 * add spares if possible.
8358 		 * Spares are also removed and re-added, to allow
8359 		 * the personality to fail the re-add.
8360 		 */
8361 
8362 		if (mddev->reshape_position != MaxSector) {
8363 			if (mddev->pers->check_reshape == NULL ||
8364 			    mddev->pers->check_reshape(mddev) != 0)
8365 				/* Cannot proceed */
8366 				goto not_running;
8367 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8368 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8369 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8370 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8371 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8372 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8373 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8374 		} else if (mddev->recovery_cp < MaxSector) {
8375 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8376 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8377 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8378 			/* nothing to be done ... */
8379 			goto not_running;
8380 
8381 		if (mddev->pers->sync_request) {
8382 			if (spares) {
8383 				/* We are adding a device or devices to an array
8384 				 * which has the bitmap stored on all devices.
8385 				 * So make sure all bitmap pages get written
8386 				 */
8387 				bitmap_write_all(mddev->bitmap);
8388 			}
8389 			INIT_WORK(&mddev->del_work, md_start_sync);
8390 			queue_work(md_misc_wq, &mddev->del_work);
8391 			goto unlock;
8392 		}
8393 	not_running:
8394 		if (!mddev->sync_thread) {
8395 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8396 			wake_up(&resync_wait);
8397 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8398 					       &mddev->recovery))
8399 				if (mddev->sysfs_action)
8400 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8401 		}
8402 	unlock:
8403 		wake_up(&mddev->sb_wait);
8404 		mddev_unlock(mddev);
8405 	}
8406 }
8407 EXPORT_SYMBOL(md_check_recovery);
8408 
8409 void md_reap_sync_thread(struct mddev *mddev)
8410 {
8411 	struct md_rdev *rdev;
8412 
8413 	/* resync has finished, collect result */
8414 	md_unregister_thread(&mddev->sync_thread);
8415 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8416 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8417 		/* success...*/
8418 		/* activate any spares */
8419 		if (mddev->pers->spare_active(mddev)) {
8420 			sysfs_notify(&mddev->kobj, NULL,
8421 				     "degraded");
8422 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8423 		}
8424 	}
8425 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8426 	    mddev->pers->finish_reshape)
8427 		mddev->pers->finish_reshape(mddev);
8428 
8429 	/* If array is no-longer degraded, then any saved_raid_disk
8430 	 * information must be scrapped.
8431 	 */
8432 	if (!mddev->degraded)
8433 		rdev_for_each(rdev, mddev)
8434 			rdev->saved_raid_disk = -1;
8435 
8436 	md_update_sb(mddev, 1);
8437 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8438 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8439 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8440 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8441 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8442 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8443 	wake_up(&resync_wait);
8444 	/* flag recovery needed just to double check */
8445 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8446 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8447 	md_new_event(mddev);
8448 	if (mddev->event_work.func)
8449 		queue_work(md_misc_wq, &mddev->event_work);
8450 }
8451 EXPORT_SYMBOL(md_reap_sync_thread);
8452 
8453 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8454 {
8455 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8456 	wait_event_timeout(rdev->blocked_wait,
8457 			   !test_bit(Blocked, &rdev->flags) &&
8458 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8459 			   msecs_to_jiffies(5000));
8460 	rdev_dec_pending(rdev, mddev);
8461 }
8462 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8463 
8464 void md_finish_reshape(struct mddev *mddev)
8465 {
8466 	/* called be personality module when reshape completes. */
8467 	struct md_rdev *rdev;
8468 
8469 	rdev_for_each(rdev, mddev) {
8470 		if (rdev->data_offset > rdev->new_data_offset)
8471 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8472 		else
8473 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8474 		rdev->data_offset = rdev->new_data_offset;
8475 	}
8476 }
8477 EXPORT_SYMBOL(md_finish_reshape);
8478 
8479 /* Bad block management.
8480  * We can record which blocks on each device are 'bad' and so just
8481  * fail those blocks, or that stripe, rather than the whole device.
8482  * Entries in the bad-block table are 64bits wide.  This comprises:
8483  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8484  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8485  *  A 'shift' can be set so that larger blocks are tracked and
8486  *  consequently larger devices can be covered.
8487  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8488  *
8489  * Locking of the bad-block table uses a seqlock so md_is_badblock
8490  * might need to retry if it is very unlucky.
8491  * We will sometimes want to check for bad blocks in a bi_end_io function,
8492  * so we use the write_seqlock_irq variant.
8493  *
8494  * When looking for a bad block we specify a range and want to
8495  * know if any block in the range is bad.  So we binary-search
8496  * to the last range that starts at-or-before the given endpoint,
8497  * (or "before the sector after the target range")
8498  * then see if it ends after the given start.
8499  * We return
8500  *  0 if there are no known bad blocks in the range
8501  *  1 if there are known bad block which are all acknowledged
8502  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8503  * plus the start/length of the first bad section we overlap.
8504  */
8505 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8506 		   sector_t *first_bad, int *bad_sectors)
8507 {
8508 	int hi;
8509 	int lo;
8510 	u64 *p = bb->page;
8511 	int rv;
8512 	sector_t target = s + sectors;
8513 	unsigned seq;
8514 
8515 	if (bb->shift > 0) {
8516 		/* round the start down, and the end up */
8517 		s >>= bb->shift;
8518 		target += (1<<bb->shift) - 1;
8519 		target >>= bb->shift;
8520 		sectors = target - s;
8521 	}
8522 	/* 'target' is now the first block after the bad range */
8523 
8524 retry:
8525 	seq = read_seqbegin(&bb->lock);
8526 	lo = 0;
8527 	rv = 0;
8528 	hi = bb->count;
8529 
8530 	/* Binary search between lo and hi for 'target'
8531 	 * i.e. for the last range that starts before 'target'
8532 	 */
8533 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8534 	 * are known not to be the last range before target.
8535 	 * VARIANT: hi-lo is the number of possible
8536 	 * ranges, and decreases until it reaches 1
8537 	 */
8538 	while (hi - lo > 1) {
8539 		int mid = (lo + hi) / 2;
8540 		sector_t a = BB_OFFSET(p[mid]);
8541 		if (a < target)
8542 			/* This could still be the one, earlier ranges
8543 			 * could not. */
8544 			lo = mid;
8545 		else
8546 			/* This and later ranges are definitely out. */
8547 			hi = mid;
8548 	}
8549 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8550 	if (hi > lo) {
8551 		/* need to check all range that end after 's' to see if
8552 		 * any are unacknowledged.
8553 		 */
8554 		while (lo >= 0 &&
8555 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8556 			if (BB_OFFSET(p[lo]) < target) {
8557 				/* starts before the end, and finishes after
8558 				 * the start, so they must overlap
8559 				 */
8560 				if (rv != -1 && BB_ACK(p[lo]))
8561 					rv = 1;
8562 				else
8563 					rv = -1;
8564 				*first_bad = BB_OFFSET(p[lo]);
8565 				*bad_sectors = BB_LEN(p[lo]);
8566 			}
8567 			lo--;
8568 		}
8569 	}
8570 
8571 	if (read_seqretry(&bb->lock, seq))
8572 		goto retry;
8573 
8574 	return rv;
8575 }
8576 EXPORT_SYMBOL_GPL(md_is_badblock);
8577 
8578 /*
8579  * Add a range of bad blocks to the table.
8580  * This might extend the table, or might contract it
8581  * if two adjacent ranges can be merged.
8582  * We binary-search to find the 'insertion' point, then
8583  * decide how best to handle it.
8584  */
8585 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8586 			    int acknowledged)
8587 {
8588 	u64 *p;
8589 	int lo, hi;
8590 	int rv = 1;
8591 	unsigned long flags;
8592 
8593 	if (bb->shift < 0)
8594 		/* badblocks are disabled */
8595 		return 0;
8596 
8597 	if (bb->shift) {
8598 		/* round the start down, and the end up */
8599 		sector_t next = s + sectors;
8600 		s >>= bb->shift;
8601 		next += (1<<bb->shift) - 1;
8602 		next >>= bb->shift;
8603 		sectors = next - s;
8604 	}
8605 
8606 	write_seqlock_irqsave(&bb->lock, flags);
8607 
8608 	p = bb->page;
8609 	lo = 0;
8610 	hi = bb->count;
8611 	/* Find the last range that starts at-or-before 's' */
8612 	while (hi - lo > 1) {
8613 		int mid = (lo + hi) / 2;
8614 		sector_t a = BB_OFFSET(p[mid]);
8615 		if (a <= s)
8616 			lo = mid;
8617 		else
8618 			hi = mid;
8619 	}
8620 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8621 		hi = lo;
8622 
8623 	if (hi > lo) {
8624 		/* we found a range that might merge with the start
8625 		 * of our new range
8626 		 */
8627 		sector_t a = BB_OFFSET(p[lo]);
8628 		sector_t e = a + BB_LEN(p[lo]);
8629 		int ack = BB_ACK(p[lo]);
8630 		if (e >= s) {
8631 			/* Yes, we can merge with a previous range */
8632 			if (s == a && s + sectors >= e)
8633 				/* new range covers old */
8634 				ack = acknowledged;
8635 			else
8636 				ack = ack && acknowledged;
8637 
8638 			if (e < s + sectors)
8639 				e = s + sectors;
8640 			if (e - a <= BB_MAX_LEN) {
8641 				p[lo] = BB_MAKE(a, e-a, ack);
8642 				s = e;
8643 			} else {
8644 				/* does not all fit in one range,
8645 				 * make p[lo] maximal
8646 				 */
8647 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8648 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8649 				s = a + BB_MAX_LEN;
8650 			}
8651 			sectors = e - s;
8652 		}
8653 	}
8654 	if (sectors && hi < bb->count) {
8655 		/* 'hi' points to the first range that starts after 's'.
8656 		 * Maybe we can merge with the start of that range */
8657 		sector_t a = BB_OFFSET(p[hi]);
8658 		sector_t e = a + BB_LEN(p[hi]);
8659 		int ack = BB_ACK(p[hi]);
8660 		if (a <= s + sectors) {
8661 			/* merging is possible */
8662 			if (e <= s + sectors) {
8663 				/* full overlap */
8664 				e = s + sectors;
8665 				ack = acknowledged;
8666 			} else
8667 				ack = ack && acknowledged;
8668 
8669 			a = s;
8670 			if (e - a <= BB_MAX_LEN) {
8671 				p[hi] = BB_MAKE(a, e-a, ack);
8672 				s = e;
8673 			} else {
8674 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8675 				s = a + BB_MAX_LEN;
8676 			}
8677 			sectors = e - s;
8678 			lo = hi;
8679 			hi++;
8680 		}
8681 	}
8682 	if (sectors == 0 && hi < bb->count) {
8683 		/* we might be able to combine lo and hi */
8684 		/* Note: 's' is at the end of 'lo' */
8685 		sector_t a = BB_OFFSET(p[hi]);
8686 		int lolen = BB_LEN(p[lo]);
8687 		int hilen = BB_LEN(p[hi]);
8688 		int newlen = lolen + hilen - (s - a);
8689 		if (s >= a && newlen < BB_MAX_LEN) {
8690 			/* yes, we can combine them */
8691 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8692 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8693 			memmove(p + hi, p + hi + 1,
8694 				(bb->count - hi - 1) * 8);
8695 			bb->count--;
8696 		}
8697 	}
8698 	while (sectors) {
8699 		/* didn't merge (it all).
8700 		 * Need to add a range just before 'hi' */
8701 		if (bb->count >= MD_MAX_BADBLOCKS) {
8702 			/* No room for more */
8703 			rv = 0;
8704 			break;
8705 		} else {
8706 			int this_sectors = sectors;
8707 			memmove(p + hi + 1, p + hi,
8708 				(bb->count - hi) * 8);
8709 			bb->count++;
8710 
8711 			if (this_sectors > BB_MAX_LEN)
8712 				this_sectors = BB_MAX_LEN;
8713 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8714 			sectors -= this_sectors;
8715 			s += this_sectors;
8716 		}
8717 	}
8718 
8719 	bb->changed = 1;
8720 	if (!acknowledged)
8721 		bb->unacked_exist = 1;
8722 	write_sequnlock_irqrestore(&bb->lock, flags);
8723 
8724 	return rv;
8725 }
8726 
8727 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8728 		       int is_new)
8729 {
8730 	int rv;
8731 	if (is_new)
8732 		s += rdev->new_data_offset;
8733 	else
8734 		s += rdev->data_offset;
8735 	rv = md_set_badblocks(&rdev->badblocks,
8736 			      s, sectors, 0);
8737 	if (rv) {
8738 		/* Make sure they get written out promptly */
8739 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8740 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8741 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8742 		md_wakeup_thread(rdev->mddev->thread);
8743 	}
8744 	return rv;
8745 }
8746 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8747 
8748 /*
8749  * Remove a range of bad blocks from the table.
8750  * This may involve extending the table if we spilt a region,
8751  * but it must not fail.  So if the table becomes full, we just
8752  * drop the remove request.
8753  */
8754 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8755 {
8756 	u64 *p;
8757 	int lo, hi;
8758 	sector_t target = s + sectors;
8759 	int rv = 0;
8760 
8761 	if (bb->shift > 0) {
8762 		/* When clearing we round the start up and the end down.
8763 		 * This should not matter as the shift should align with
8764 		 * the block size and no rounding should ever be needed.
8765 		 * However it is better the think a block is bad when it
8766 		 * isn't than to think a block is not bad when it is.
8767 		 */
8768 		s += (1<<bb->shift) - 1;
8769 		s >>= bb->shift;
8770 		target >>= bb->shift;
8771 		sectors = target - s;
8772 	}
8773 
8774 	write_seqlock_irq(&bb->lock);
8775 
8776 	p = bb->page;
8777 	lo = 0;
8778 	hi = bb->count;
8779 	/* Find the last range that starts before 'target' */
8780 	while (hi - lo > 1) {
8781 		int mid = (lo + hi) / 2;
8782 		sector_t a = BB_OFFSET(p[mid]);
8783 		if (a < target)
8784 			lo = mid;
8785 		else
8786 			hi = mid;
8787 	}
8788 	if (hi > lo) {
8789 		/* p[lo] is the last range that could overlap the
8790 		 * current range.  Earlier ranges could also overlap,
8791 		 * but only this one can overlap the end of the range.
8792 		 */
8793 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8794 			/* Partial overlap, leave the tail of this range */
8795 			int ack = BB_ACK(p[lo]);
8796 			sector_t a = BB_OFFSET(p[lo]);
8797 			sector_t end = a + BB_LEN(p[lo]);
8798 
8799 			if (a < s) {
8800 				/* we need to split this range */
8801 				if (bb->count >= MD_MAX_BADBLOCKS) {
8802 					rv = -ENOSPC;
8803 					goto out;
8804 				}
8805 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8806 				bb->count++;
8807 				p[lo] = BB_MAKE(a, s-a, ack);
8808 				lo++;
8809 			}
8810 			p[lo] = BB_MAKE(target, end - target, ack);
8811 			/* there is no longer an overlap */
8812 			hi = lo;
8813 			lo--;
8814 		}
8815 		while (lo >= 0 &&
8816 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8817 			/* This range does overlap */
8818 			if (BB_OFFSET(p[lo]) < s) {
8819 				/* Keep the early parts of this range. */
8820 				int ack = BB_ACK(p[lo]);
8821 				sector_t start = BB_OFFSET(p[lo]);
8822 				p[lo] = BB_MAKE(start, s - start, ack);
8823 				/* now low doesn't overlap, so.. */
8824 				break;
8825 			}
8826 			lo--;
8827 		}
8828 		/* 'lo' is strictly before, 'hi' is strictly after,
8829 		 * anything between needs to be discarded
8830 		 */
8831 		if (hi - lo > 1) {
8832 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8833 			bb->count -= (hi - lo - 1);
8834 		}
8835 	}
8836 
8837 	bb->changed = 1;
8838 out:
8839 	write_sequnlock_irq(&bb->lock);
8840 	return rv;
8841 }
8842 
8843 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8844 			 int is_new)
8845 {
8846 	if (is_new)
8847 		s += rdev->new_data_offset;
8848 	else
8849 		s += rdev->data_offset;
8850 	return md_clear_badblocks(&rdev->badblocks,
8851 				  s, sectors);
8852 }
8853 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8854 
8855 /*
8856  * Acknowledge all bad blocks in a list.
8857  * This only succeeds if ->changed is clear.  It is used by
8858  * in-kernel metadata updates
8859  */
8860 void md_ack_all_badblocks(struct badblocks *bb)
8861 {
8862 	if (bb->page == NULL || bb->changed)
8863 		/* no point even trying */
8864 		return;
8865 	write_seqlock_irq(&bb->lock);
8866 
8867 	if (bb->changed == 0 && bb->unacked_exist) {
8868 		u64 *p = bb->page;
8869 		int i;
8870 		for (i = 0; i < bb->count ; i++) {
8871 			if (!BB_ACK(p[i])) {
8872 				sector_t start = BB_OFFSET(p[i]);
8873 				int len = BB_LEN(p[i]);
8874 				p[i] = BB_MAKE(start, len, 1);
8875 			}
8876 		}
8877 		bb->unacked_exist = 0;
8878 	}
8879 	write_sequnlock_irq(&bb->lock);
8880 }
8881 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8882 
8883 /* sysfs access to bad-blocks list.
8884  * We present two files.
8885  * 'bad-blocks' lists sector numbers and lengths of ranges that
8886  *    are recorded as bad.  The list is truncated to fit within
8887  *    the one-page limit of sysfs.
8888  *    Writing "sector length" to this file adds an acknowledged
8889  *    bad block list.
8890  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8891  *    been acknowledged.  Writing to this file adds bad blocks
8892  *    without acknowledging them.  This is largely for testing.
8893  */
8894 
8895 static ssize_t
8896 badblocks_show(struct badblocks *bb, char *page, int unack)
8897 {
8898 	size_t len;
8899 	int i;
8900 	u64 *p = bb->page;
8901 	unsigned seq;
8902 
8903 	if (bb->shift < 0)
8904 		return 0;
8905 
8906 retry:
8907 	seq = read_seqbegin(&bb->lock);
8908 
8909 	len = 0;
8910 	i = 0;
8911 
8912 	while (len < PAGE_SIZE && i < bb->count) {
8913 		sector_t s = BB_OFFSET(p[i]);
8914 		unsigned int length = BB_LEN(p[i]);
8915 		int ack = BB_ACK(p[i]);
8916 		i++;
8917 
8918 		if (unack && ack)
8919 			continue;
8920 
8921 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8922 				(unsigned long long)s << bb->shift,
8923 				length << bb->shift);
8924 	}
8925 	if (unack && len == 0)
8926 		bb->unacked_exist = 0;
8927 
8928 	if (read_seqretry(&bb->lock, seq))
8929 		goto retry;
8930 
8931 	return len;
8932 }
8933 
8934 #define DO_DEBUG 1
8935 
8936 static ssize_t
8937 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8938 {
8939 	unsigned long long sector;
8940 	int length;
8941 	char newline;
8942 #ifdef DO_DEBUG
8943 	/* Allow clearing via sysfs *only* for testing/debugging.
8944 	 * Normally only a successful write may clear a badblock
8945 	 */
8946 	int clear = 0;
8947 	if (page[0] == '-') {
8948 		clear = 1;
8949 		page++;
8950 	}
8951 #endif /* DO_DEBUG */
8952 
8953 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8954 	case 3:
8955 		if (newline != '\n')
8956 			return -EINVAL;
8957 	case 2:
8958 		if (length <= 0)
8959 			return -EINVAL;
8960 		break;
8961 	default:
8962 		return -EINVAL;
8963 	}
8964 
8965 #ifdef DO_DEBUG
8966 	if (clear) {
8967 		md_clear_badblocks(bb, sector, length);
8968 		return len;
8969 	}
8970 #endif /* DO_DEBUG */
8971 	if (md_set_badblocks(bb, sector, length, !unack))
8972 		return len;
8973 	else
8974 		return -ENOSPC;
8975 }
8976 
8977 static int md_notify_reboot(struct notifier_block *this,
8978 			    unsigned long code, void *x)
8979 {
8980 	struct list_head *tmp;
8981 	struct mddev *mddev;
8982 	int need_delay = 0;
8983 
8984 	for_each_mddev(mddev, tmp) {
8985 		if (mddev_trylock(mddev)) {
8986 			if (mddev->pers)
8987 				__md_stop_writes(mddev);
8988 			if (mddev->persistent)
8989 				mddev->safemode = 2;
8990 			mddev_unlock(mddev);
8991 		}
8992 		need_delay = 1;
8993 	}
8994 	/*
8995 	 * certain more exotic SCSI devices are known to be
8996 	 * volatile wrt too early system reboots. While the
8997 	 * right place to handle this issue is the given
8998 	 * driver, we do want to have a safe RAID driver ...
8999 	 */
9000 	if (need_delay)
9001 		mdelay(1000*1);
9002 
9003 	return NOTIFY_DONE;
9004 }
9005 
9006 static struct notifier_block md_notifier = {
9007 	.notifier_call	= md_notify_reboot,
9008 	.next		= NULL,
9009 	.priority	= INT_MAX, /* before any real devices */
9010 };
9011 
9012 static void md_geninit(void)
9013 {
9014 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9015 
9016 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9017 }
9018 
9019 static int __init md_init(void)
9020 {
9021 	int ret = -ENOMEM;
9022 
9023 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9024 	if (!md_wq)
9025 		goto err_wq;
9026 
9027 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9028 	if (!md_misc_wq)
9029 		goto err_misc_wq;
9030 
9031 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9032 		goto err_md;
9033 
9034 	if ((ret = register_blkdev(0, "mdp")) < 0)
9035 		goto err_mdp;
9036 	mdp_major = ret;
9037 
9038 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9039 			    md_probe, NULL, NULL);
9040 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9041 			    md_probe, NULL, NULL);
9042 
9043 	register_reboot_notifier(&md_notifier);
9044 	raid_table_header = register_sysctl_table(raid_root_table);
9045 
9046 	md_geninit();
9047 	return 0;
9048 
9049 err_mdp:
9050 	unregister_blkdev(MD_MAJOR, "md");
9051 err_md:
9052 	destroy_workqueue(md_misc_wq);
9053 err_misc_wq:
9054 	destroy_workqueue(md_wq);
9055 err_wq:
9056 	return ret;
9057 }
9058 
9059 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9060 {
9061 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9062 	struct md_rdev *rdev2;
9063 	int role, ret;
9064 	char b[BDEVNAME_SIZE];
9065 
9066 	/* Check for change of roles in the active devices */
9067 	rdev_for_each(rdev2, mddev) {
9068 		if (test_bit(Faulty, &rdev2->flags))
9069 			continue;
9070 
9071 		/* Check if the roles changed */
9072 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9073 
9074 		if (test_bit(Candidate, &rdev2->flags)) {
9075 			if (role == 0xfffe) {
9076 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9077 				md_kick_rdev_from_array(rdev2);
9078 				continue;
9079 			}
9080 			else
9081 				clear_bit(Candidate, &rdev2->flags);
9082 		}
9083 
9084 		if (role != rdev2->raid_disk) {
9085 			/* got activated */
9086 			if (rdev2->raid_disk == -1 && role != 0xffff) {
9087 				rdev2->saved_raid_disk = role;
9088 				ret = remove_and_add_spares(mddev, rdev2);
9089 				pr_info("Activated spare: %s\n",
9090 						bdevname(rdev2->bdev,b));
9091 				continue;
9092 			}
9093 			/* device faulty
9094 			 * We just want to do the minimum to mark the disk
9095 			 * as faulty. The recovery is performed by the
9096 			 * one who initiated the error.
9097 			 */
9098 			if ((role == 0xfffe) || (role == 0xfffd)) {
9099 				md_error(mddev, rdev2);
9100 				clear_bit(Blocked, &rdev2->flags);
9101 			}
9102 		}
9103 	}
9104 
9105 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9106 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9107 
9108 	/* Finally set the event to be up to date */
9109 	mddev->events = le64_to_cpu(sb->events);
9110 }
9111 
9112 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9113 {
9114 	int err;
9115 	struct page *swapout = rdev->sb_page;
9116 	struct mdp_superblock_1 *sb;
9117 
9118 	/* Store the sb page of the rdev in the swapout temporary
9119 	 * variable in case we err in the future
9120 	 */
9121 	rdev->sb_page = NULL;
9122 	alloc_disk_sb(rdev);
9123 	ClearPageUptodate(rdev->sb_page);
9124 	rdev->sb_loaded = 0;
9125 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9126 
9127 	if (err < 0) {
9128 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9129 				__func__, __LINE__, rdev->desc_nr, err);
9130 		put_page(rdev->sb_page);
9131 		rdev->sb_page = swapout;
9132 		rdev->sb_loaded = 1;
9133 		return err;
9134 	}
9135 
9136 	sb = page_address(rdev->sb_page);
9137 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9138 	 * is not set
9139 	 */
9140 
9141 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9142 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9143 
9144 	/* The other node finished recovery, call spare_active to set
9145 	 * device In_sync and mddev->degraded
9146 	 */
9147 	if (rdev->recovery_offset == MaxSector &&
9148 	    !test_bit(In_sync, &rdev->flags) &&
9149 	    mddev->pers->spare_active(mddev))
9150 		sysfs_notify(&mddev->kobj, NULL, "degraded");
9151 
9152 	put_page(swapout);
9153 	return 0;
9154 }
9155 
9156 void md_reload_sb(struct mddev *mddev, int nr)
9157 {
9158 	struct md_rdev *rdev;
9159 	int err;
9160 
9161 	/* Find the rdev */
9162 	rdev_for_each_rcu(rdev, mddev) {
9163 		if (rdev->desc_nr == nr)
9164 			break;
9165 	}
9166 
9167 	if (!rdev || rdev->desc_nr != nr) {
9168 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9169 		return;
9170 	}
9171 
9172 	err = read_rdev(mddev, rdev);
9173 	if (err < 0)
9174 		return;
9175 
9176 	check_sb_changes(mddev, rdev);
9177 
9178 	/* Read all rdev's to update recovery_offset */
9179 	rdev_for_each_rcu(rdev, mddev)
9180 		read_rdev(mddev, rdev);
9181 }
9182 EXPORT_SYMBOL(md_reload_sb);
9183 
9184 #ifndef MODULE
9185 
9186 /*
9187  * Searches all registered partitions for autorun RAID arrays
9188  * at boot time.
9189  */
9190 
9191 static LIST_HEAD(all_detected_devices);
9192 struct detected_devices_node {
9193 	struct list_head list;
9194 	dev_t dev;
9195 };
9196 
9197 void md_autodetect_dev(dev_t dev)
9198 {
9199 	struct detected_devices_node *node_detected_dev;
9200 
9201 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9202 	if (node_detected_dev) {
9203 		node_detected_dev->dev = dev;
9204 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9205 	} else {
9206 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9207 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9208 	}
9209 }
9210 
9211 static void autostart_arrays(int part)
9212 {
9213 	struct md_rdev *rdev;
9214 	struct detected_devices_node *node_detected_dev;
9215 	dev_t dev;
9216 	int i_scanned, i_passed;
9217 
9218 	i_scanned = 0;
9219 	i_passed = 0;
9220 
9221 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9222 
9223 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9224 		i_scanned++;
9225 		node_detected_dev = list_entry(all_detected_devices.next,
9226 					struct detected_devices_node, list);
9227 		list_del(&node_detected_dev->list);
9228 		dev = node_detected_dev->dev;
9229 		kfree(node_detected_dev);
9230 		rdev = md_import_device(dev,0, 90);
9231 		if (IS_ERR(rdev))
9232 			continue;
9233 
9234 		if (test_bit(Faulty, &rdev->flags))
9235 			continue;
9236 
9237 		set_bit(AutoDetected, &rdev->flags);
9238 		list_add(&rdev->same_set, &pending_raid_disks);
9239 		i_passed++;
9240 	}
9241 
9242 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9243 						i_scanned, i_passed);
9244 
9245 	autorun_devices(part);
9246 }
9247 
9248 #endif /* !MODULE */
9249 
9250 static __exit void md_exit(void)
9251 {
9252 	struct mddev *mddev;
9253 	struct list_head *tmp;
9254 	int delay = 1;
9255 
9256 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9257 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9258 
9259 	unregister_blkdev(MD_MAJOR,"md");
9260 	unregister_blkdev(mdp_major, "mdp");
9261 	unregister_reboot_notifier(&md_notifier);
9262 	unregister_sysctl_table(raid_table_header);
9263 
9264 	/* We cannot unload the modules while some process is
9265 	 * waiting for us in select() or poll() - wake them up
9266 	 */
9267 	md_unloading = 1;
9268 	while (waitqueue_active(&md_event_waiters)) {
9269 		/* not safe to leave yet */
9270 		wake_up(&md_event_waiters);
9271 		msleep(delay);
9272 		delay += delay;
9273 	}
9274 	remove_proc_entry("mdstat", NULL);
9275 
9276 	for_each_mddev(mddev, tmp) {
9277 		export_array(mddev);
9278 		mddev->hold_active = 0;
9279 	}
9280 	destroy_workqueue(md_misc_wq);
9281 	destroy_workqueue(md_wq);
9282 }
9283 
9284 subsys_initcall(md_init);
9285 module_exit(md_exit)
9286 
9287 static int get_ro(char *buffer, struct kernel_param *kp)
9288 {
9289 	return sprintf(buffer, "%d", start_readonly);
9290 }
9291 static int set_ro(const char *val, struct kernel_param *kp)
9292 {
9293 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9294 }
9295 
9296 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9297 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9298 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9299 
9300 MODULE_LICENSE("GPL");
9301 MODULE_DESCRIPTION("MD RAID framework");
9302 MODULE_ALIAS("md");
9303 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9304