1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 static struct kobj_type md_ktype; 88 89 struct md_cluster_operations *md_cluster_ops; 90 EXPORT_SYMBOL(md_cluster_ops); 91 struct module *md_cluster_mod; 92 EXPORT_SYMBOL(md_cluster_mod); 93 94 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 95 static struct workqueue_struct *md_wq; 96 static struct workqueue_struct *md_misc_wq; 97 98 static int remove_and_add_spares(struct mddev *mddev, 99 struct md_rdev *this); 100 static void mddev_detach(struct mddev *mddev); 101 102 /* 103 * Default number of read corrections we'll attempt on an rdev 104 * before ejecting it from the array. We divide the read error 105 * count by 2 for every hour elapsed between read errors. 106 */ 107 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 108 /* 109 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 110 * is 1000 KB/sec, so the extra system load does not show up that much. 111 * Increase it if you want to have more _guaranteed_ speed. Note that 112 * the RAID driver will use the maximum available bandwidth if the IO 113 * subsystem is idle. There is also an 'absolute maximum' reconstruction 114 * speed limit - in case reconstruction slows down your system despite 115 * idle IO detection. 116 * 117 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 118 * or /sys/block/mdX/md/sync_speed_{min,max} 119 */ 120 121 static int sysctl_speed_limit_min = 1000; 122 static int sysctl_speed_limit_max = 200000; 123 static inline int speed_min(struct mddev *mddev) 124 { 125 return mddev->sync_speed_min ? 126 mddev->sync_speed_min : sysctl_speed_limit_min; 127 } 128 129 static inline int speed_max(struct mddev *mddev) 130 { 131 return mddev->sync_speed_max ? 132 mddev->sync_speed_max : sysctl_speed_limit_max; 133 } 134 135 static void * flush_info_alloc(gfp_t gfp_flags, void *data) 136 { 137 return kzalloc(sizeof(struct flush_info), gfp_flags); 138 } 139 static void flush_info_free(void *flush_info, void *data) 140 { 141 kfree(flush_info); 142 } 143 144 static void * flush_bio_alloc(gfp_t gfp_flags, void *data) 145 { 146 return kzalloc(sizeof(struct flush_bio), gfp_flags); 147 } 148 static void flush_bio_free(void *flush_bio, void *data) 149 { 150 kfree(flush_bio); 151 } 152 153 static struct ctl_table_header *raid_table_header; 154 155 static struct ctl_table raid_table[] = { 156 { 157 .procname = "speed_limit_min", 158 .data = &sysctl_speed_limit_min, 159 .maxlen = sizeof(int), 160 .mode = S_IRUGO|S_IWUSR, 161 .proc_handler = proc_dointvec, 162 }, 163 { 164 .procname = "speed_limit_max", 165 .data = &sysctl_speed_limit_max, 166 .maxlen = sizeof(int), 167 .mode = S_IRUGO|S_IWUSR, 168 .proc_handler = proc_dointvec, 169 }, 170 { } 171 }; 172 173 static struct ctl_table raid_dir_table[] = { 174 { 175 .procname = "raid", 176 .maxlen = 0, 177 .mode = S_IRUGO|S_IXUGO, 178 .child = raid_table, 179 }, 180 { } 181 }; 182 183 static struct ctl_table raid_root_table[] = { 184 { 185 .procname = "dev", 186 .maxlen = 0, 187 .mode = 0555, 188 .child = raid_dir_table, 189 }, 190 { } 191 }; 192 193 static const struct block_device_operations md_fops; 194 195 static int start_readonly; 196 197 /* 198 * The original mechanism for creating an md device is to create 199 * a device node in /dev and to open it. This causes races with device-close. 200 * The preferred method is to write to the "new_array" module parameter. 201 * This can avoid races. 202 * Setting create_on_open to false disables the original mechanism 203 * so all the races disappear. 204 */ 205 static bool create_on_open = true; 206 207 /* bio_clone_mddev 208 * like bio_clone_bioset, but with a local bio set 209 */ 210 211 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 212 struct mddev *mddev) 213 { 214 struct bio *b; 215 216 if (!mddev || !bioset_initialized(&mddev->bio_set)) 217 return bio_alloc(gfp_mask, nr_iovecs); 218 219 b = bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 220 if (!b) 221 return NULL; 222 return b; 223 } 224 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 225 226 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 227 { 228 if (!mddev || !bioset_initialized(&mddev->sync_set)) 229 return bio_alloc(GFP_NOIO, 1); 230 231 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 232 } 233 234 /* 235 * We have a system wide 'event count' that is incremented 236 * on any 'interesting' event, and readers of /proc/mdstat 237 * can use 'poll' or 'select' to find out when the event 238 * count increases. 239 * 240 * Events are: 241 * start array, stop array, error, add device, remove device, 242 * start build, activate spare 243 */ 244 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 245 static atomic_t md_event_count; 246 void md_new_event(struct mddev *mddev) 247 { 248 atomic_inc(&md_event_count); 249 wake_up(&md_event_waiters); 250 } 251 EXPORT_SYMBOL_GPL(md_new_event); 252 253 /* 254 * Enables to iterate over all existing md arrays 255 * all_mddevs_lock protects this list. 256 */ 257 static LIST_HEAD(all_mddevs); 258 static DEFINE_SPINLOCK(all_mddevs_lock); 259 260 /* 261 * iterates through all used mddevs in the system. 262 * We take care to grab the all_mddevs_lock whenever navigating 263 * the list, and to always hold a refcount when unlocked. 264 * Any code which breaks out of this loop while own 265 * a reference to the current mddev and must mddev_put it. 266 */ 267 #define for_each_mddev(_mddev,_tmp) \ 268 \ 269 for (({ spin_lock(&all_mddevs_lock); \ 270 _tmp = all_mddevs.next; \ 271 _mddev = NULL;}); \ 272 ({ if (_tmp != &all_mddevs) \ 273 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 274 spin_unlock(&all_mddevs_lock); \ 275 if (_mddev) mddev_put(_mddev); \ 276 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 277 _tmp != &all_mddevs;}); \ 278 ({ spin_lock(&all_mddevs_lock); \ 279 _tmp = _tmp->next;}) \ 280 ) 281 282 /* Rather than calling directly into the personality make_request function, 283 * IO requests come here first so that we can check if the device is 284 * being suspended pending a reconfiguration. 285 * We hold a refcount over the call to ->make_request. By the time that 286 * call has finished, the bio has been linked into some internal structure 287 * and so is visible to ->quiesce(), so we don't need the refcount any more. 288 */ 289 static bool is_suspended(struct mddev *mddev, struct bio *bio) 290 { 291 if (mddev->suspended) 292 return true; 293 if (bio_data_dir(bio) != WRITE) 294 return false; 295 if (mddev->suspend_lo >= mddev->suspend_hi) 296 return false; 297 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 298 return false; 299 if (bio_end_sector(bio) < mddev->suspend_lo) 300 return false; 301 return true; 302 } 303 304 void md_handle_request(struct mddev *mddev, struct bio *bio) 305 { 306 check_suspended: 307 rcu_read_lock(); 308 if (is_suspended(mddev, bio)) { 309 DEFINE_WAIT(__wait); 310 for (;;) { 311 prepare_to_wait(&mddev->sb_wait, &__wait, 312 TASK_UNINTERRUPTIBLE); 313 if (!is_suspended(mddev, bio)) 314 break; 315 rcu_read_unlock(); 316 schedule(); 317 rcu_read_lock(); 318 } 319 finish_wait(&mddev->sb_wait, &__wait); 320 } 321 atomic_inc(&mddev->active_io); 322 rcu_read_unlock(); 323 324 if (!mddev->pers->make_request(mddev, bio)) { 325 atomic_dec(&mddev->active_io); 326 wake_up(&mddev->sb_wait); 327 goto check_suspended; 328 } 329 330 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 331 wake_up(&mddev->sb_wait); 332 } 333 EXPORT_SYMBOL(md_handle_request); 334 335 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 336 { 337 const int rw = bio_data_dir(bio); 338 struct mddev *mddev = q->queuedata; 339 unsigned int sectors; 340 int cpu; 341 342 blk_queue_split(q, &bio); 343 344 if (mddev == NULL || mddev->pers == NULL) { 345 bio_io_error(bio); 346 return BLK_QC_T_NONE; 347 } 348 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 349 if (bio_sectors(bio) != 0) 350 bio->bi_status = BLK_STS_IOERR; 351 bio_endio(bio); 352 return BLK_QC_T_NONE; 353 } 354 355 /* 356 * save the sectors now since our bio can 357 * go away inside make_request 358 */ 359 sectors = bio_sectors(bio); 360 /* bio could be mergeable after passing to underlayer */ 361 bio->bi_opf &= ~REQ_NOMERGE; 362 363 md_handle_request(mddev, bio); 364 365 cpu = part_stat_lock(); 366 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 367 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 368 part_stat_unlock(); 369 370 return BLK_QC_T_NONE; 371 } 372 373 /* mddev_suspend makes sure no new requests are submitted 374 * to the device, and that any requests that have been submitted 375 * are completely handled. 376 * Once mddev_detach() is called and completes, the module will be 377 * completely unused. 378 */ 379 void mddev_suspend(struct mddev *mddev) 380 { 381 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 382 lockdep_assert_held(&mddev->reconfig_mutex); 383 if (mddev->suspended++) 384 return; 385 synchronize_rcu(); 386 wake_up(&mddev->sb_wait); 387 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 388 smp_mb__after_atomic(); 389 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 390 mddev->pers->quiesce(mddev, 1); 391 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 392 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 393 394 del_timer_sync(&mddev->safemode_timer); 395 } 396 EXPORT_SYMBOL_GPL(mddev_suspend); 397 398 void mddev_resume(struct mddev *mddev) 399 { 400 lockdep_assert_held(&mddev->reconfig_mutex); 401 if (--mddev->suspended) 402 return; 403 wake_up(&mddev->sb_wait); 404 mddev->pers->quiesce(mddev, 0); 405 406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 407 md_wakeup_thread(mddev->thread); 408 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 409 } 410 EXPORT_SYMBOL_GPL(mddev_resume); 411 412 int mddev_congested(struct mddev *mddev, int bits) 413 { 414 struct md_personality *pers = mddev->pers; 415 int ret = 0; 416 417 rcu_read_lock(); 418 if (mddev->suspended) 419 ret = 1; 420 else if (pers && pers->congested) 421 ret = pers->congested(mddev, bits); 422 rcu_read_unlock(); 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(mddev_congested); 426 static int md_congested(void *data, int bits) 427 { 428 struct mddev *mddev = data; 429 return mddev_congested(mddev, bits); 430 } 431 432 /* 433 * Generic flush handling for md 434 */ 435 static void submit_flushes(struct work_struct *ws) 436 { 437 struct flush_info *fi = container_of(ws, struct flush_info, flush_work); 438 struct mddev *mddev = fi->mddev; 439 struct bio *bio = fi->bio; 440 441 bio->bi_opf &= ~REQ_PREFLUSH; 442 md_handle_request(mddev, bio); 443 444 mempool_free(fi, mddev->flush_pool); 445 } 446 447 static void md_end_flush(struct bio *fbio) 448 { 449 struct flush_bio *fb = fbio->bi_private; 450 struct md_rdev *rdev = fb->rdev; 451 struct flush_info *fi = fb->fi; 452 struct bio *bio = fi->bio; 453 struct mddev *mddev = fi->mddev; 454 455 rdev_dec_pending(rdev, mddev); 456 457 if (atomic_dec_and_test(&fi->flush_pending)) { 458 if (bio->bi_iter.bi_size == 0) 459 /* an empty barrier - all done */ 460 bio_endio(bio); 461 else { 462 INIT_WORK(&fi->flush_work, submit_flushes); 463 queue_work(md_wq, &fi->flush_work); 464 } 465 } 466 467 mempool_free(fb, mddev->flush_bio_pool); 468 bio_put(fbio); 469 } 470 471 void md_flush_request(struct mddev *mddev, struct bio *bio) 472 { 473 struct md_rdev *rdev; 474 struct flush_info *fi; 475 476 fi = mempool_alloc(mddev->flush_pool, GFP_NOIO); 477 478 fi->bio = bio; 479 fi->mddev = mddev; 480 atomic_set(&fi->flush_pending, 1); 481 482 rcu_read_lock(); 483 rdev_for_each_rcu(rdev, mddev) 484 if (rdev->raid_disk >= 0 && 485 !test_bit(Faulty, &rdev->flags)) { 486 /* Take two references, one is dropped 487 * when request finishes, one after 488 * we reclaim rcu_read_lock 489 */ 490 struct bio *bi; 491 struct flush_bio *fb; 492 atomic_inc(&rdev->nr_pending); 493 atomic_inc(&rdev->nr_pending); 494 rcu_read_unlock(); 495 496 fb = mempool_alloc(mddev->flush_bio_pool, GFP_NOIO); 497 fb->fi = fi; 498 fb->rdev = rdev; 499 500 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 501 bio_set_dev(bi, rdev->bdev); 502 bi->bi_end_io = md_end_flush; 503 bi->bi_private = fb; 504 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 505 506 atomic_inc(&fi->flush_pending); 507 submit_bio(bi); 508 509 rcu_read_lock(); 510 rdev_dec_pending(rdev, mddev); 511 } 512 rcu_read_unlock(); 513 514 if (atomic_dec_and_test(&fi->flush_pending)) { 515 if (bio->bi_iter.bi_size == 0) 516 /* an empty barrier - all done */ 517 bio_endio(bio); 518 else { 519 INIT_WORK(&fi->flush_work, submit_flushes); 520 queue_work(md_wq, &fi->flush_work); 521 } 522 } 523 } 524 EXPORT_SYMBOL(md_flush_request); 525 526 static inline struct mddev *mddev_get(struct mddev *mddev) 527 { 528 atomic_inc(&mddev->active); 529 return mddev; 530 } 531 532 static void mddev_delayed_delete(struct work_struct *ws); 533 534 static void mddev_put(struct mddev *mddev) 535 { 536 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 537 return; 538 if (!mddev->raid_disks && list_empty(&mddev->disks) && 539 mddev->ctime == 0 && !mddev->hold_active) { 540 /* Array is not configured at all, and not held active, 541 * so destroy it */ 542 list_del_init(&mddev->all_mddevs); 543 544 /* 545 * Call queue_work inside the spinlock so that 546 * flush_workqueue() after mddev_find will succeed in waiting 547 * for the work to be done. 548 */ 549 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 550 queue_work(md_misc_wq, &mddev->del_work); 551 } 552 spin_unlock(&all_mddevs_lock); 553 } 554 555 static void md_safemode_timeout(struct timer_list *t); 556 557 void mddev_init(struct mddev *mddev) 558 { 559 kobject_init(&mddev->kobj, &md_ktype); 560 mutex_init(&mddev->open_mutex); 561 mutex_init(&mddev->reconfig_mutex); 562 mutex_init(&mddev->bitmap_info.mutex); 563 INIT_LIST_HEAD(&mddev->disks); 564 INIT_LIST_HEAD(&mddev->all_mddevs); 565 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 566 atomic_set(&mddev->active, 1); 567 atomic_set(&mddev->openers, 0); 568 atomic_set(&mddev->active_io, 0); 569 spin_lock_init(&mddev->lock); 570 init_waitqueue_head(&mddev->sb_wait); 571 init_waitqueue_head(&mddev->recovery_wait); 572 mddev->reshape_position = MaxSector; 573 mddev->reshape_backwards = 0; 574 mddev->last_sync_action = "none"; 575 mddev->resync_min = 0; 576 mddev->resync_max = MaxSector; 577 mddev->level = LEVEL_NONE; 578 } 579 EXPORT_SYMBOL_GPL(mddev_init); 580 581 static struct mddev *mddev_find(dev_t unit) 582 { 583 struct mddev *mddev, *new = NULL; 584 585 if (unit && MAJOR(unit) != MD_MAJOR) 586 unit &= ~((1<<MdpMinorShift)-1); 587 588 retry: 589 spin_lock(&all_mddevs_lock); 590 591 if (unit) { 592 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 593 if (mddev->unit == unit) { 594 mddev_get(mddev); 595 spin_unlock(&all_mddevs_lock); 596 kfree(new); 597 return mddev; 598 } 599 600 if (new) { 601 list_add(&new->all_mddevs, &all_mddevs); 602 spin_unlock(&all_mddevs_lock); 603 new->hold_active = UNTIL_IOCTL; 604 return new; 605 } 606 } else if (new) { 607 /* find an unused unit number */ 608 static int next_minor = 512; 609 int start = next_minor; 610 int is_free = 0; 611 int dev = 0; 612 while (!is_free) { 613 dev = MKDEV(MD_MAJOR, next_minor); 614 next_minor++; 615 if (next_minor > MINORMASK) 616 next_minor = 0; 617 if (next_minor == start) { 618 /* Oh dear, all in use. */ 619 spin_unlock(&all_mddevs_lock); 620 kfree(new); 621 return NULL; 622 } 623 624 is_free = 1; 625 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 626 if (mddev->unit == dev) { 627 is_free = 0; 628 break; 629 } 630 } 631 new->unit = dev; 632 new->md_minor = MINOR(dev); 633 new->hold_active = UNTIL_STOP; 634 list_add(&new->all_mddevs, &all_mddevs); 635 spin_unlock(&all_mddevs_lock); 636 return new; 637 } 638 spin_unlock(&all_mddevs_lock); 639 640 new = kzalloc(sizeof(*new), GFP_KERNEL); 641 if (!new) 642 return NULL; 643 644 new->unit = unit; 645 if (MAJOR(unit) == MD_MAJOR) 646 new->md_minor = MINOR(unit); 647 else 648 new->md_minor = MINOR(unit) >> MdpMinorShift; 649 650 mddev_init(new); 651 652 goto retry; 653 } 654 655 static struct attribute_group md_redundancy_group; 656 657 void mddev_unlock(struct mddev *mddev) 658 { 659 if (mddev->to_remove) { 660 /* These cannot be removed under reconfig_mutex as 661 * an access to the files will try to take reconfig_mutex 662 * while holding the file unremovable, which leads to 663 * a deadlock. 664 * So hold set sysfs_active while the remove in happeing, 665 * and anything else which might set ->to_remove or my 666 * otherwise change the sysfs namespace will fail with 667 * -EBUSY if sysfs_active is still set. 668 * We set sysfs_active under reconfig_mutex and elsewhere 669 * test it under the same mutex to ensure its correct value 670 * is seen. 671 */ 672 struct attribute_group *to_remove = mddev->to_remove; 673 mddev->to_remove = NULL; 674 mddev->sysfs_active = 1; 675 mutex_unlock(&mddev->reconfig_mutex); 676 677 if (mddev->kobj.sd) { 678 if (to_remove != &md_redundancy_group) 679 sysfs_remove_group(&mddev->kobj, to_remove); 680 if (mddev->pers == NULL || 681 mddev->pers->sync_request == NULL) { 682 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 683 if (mddev->sysfs_action) 684 sysfs_put(mddev->sysfs_action); 685 mddev->sysfs_action = NULL; 686 } 687 } 688 mddev->sysfs_active = 0; 689 } else 690 mutex_unlock(&mddev->reconfig_mutex); 691 692 /* As we've dropped the mutex we need a spinlock to 693 * make sure the thread doesn't disappear 694 */ 695 spin_lock(&pers_lock); 696 md_wakeup_thread(mddev->thread); 697 wake_up(&mddev->sb_wait); 698 spin_unlock(&pers_lock); 699 } 700 EXPORT_SYMBOL_GPL(mddev_unlock); 701 702 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 703 { 704 struct md_rdev *rdev; 705 706 rdev_for_each_rcu(rdev, mddev) 707 if (rdev->desc_nr == nr) 708 return rdev; 709 710 return NULL; 711 } 712 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 713 714 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 725 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 726 { 727 struct md_rdev *rdev; 728 729 rdev_for_each_rcu(rdev, mddev) 730 if (rdev->bdev->bd_dev == dev) 731 return rdev; 732 733 return NULL; 734 } 735 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 736 737 static struct md_personality *find_pers(int level, char *clevel) 738 { 739 struct md_personality *pers; 740 list_for_each_entry(pers, &pers_list, list) { 741 if (level != LEVEL_NONE && pers->level == level) 742 return pers; 743 if (strcmp(pers->name, clevel)==0) 744 return pers; 745 } 746 return NULL; 747 } 748 749 /* return the offset of the super block in 512byte sectors */ 750 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 751 { 752 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 753 return MD_NEW_SIZE_SECTORS(num_sectors); 754 } 755 756 static int alloc_disk_sb(struct md_rdev *rdev) 757 { 758 rdev->sb_page = alloc_page(GFP_KERNEL); 759 if (!rdev->sb_page) 760 return -ENOMEM; 761 return 0; 762 } 763 764 void md_rdev_clear(struct md_rdev *rdev) 765 { 766 if (rdev->sb_page) { 767 put_page(rdev->sb_page); 768 rdev->sb_loaded = 0; 769 rdev->sb_page = NULL; 770 rdev->sb_start = 0; 771 rdev->sectors = 0; 772 } 773 if (rdev->bb_page) { 774 put_page(rdev->bb_page); 775 rdev->bb_page = NULL; 776 } 777 badblocks_exit(&rdev->badblocks); 778 } 779 EXPORT_SYMBOL_GPL(md_rdev_clear); 780 781 static void super_written(struct bio *bio) 782 { 783 struct md_rdev *rdev = bio->bi_private; 784 struct mddev *mddev = rdev->mddev; 785 786 if (bio->bi_status) { 787 pr_err("md: super_written gets error=%d\n", bio->bi_status); 788 md_error(mddev, rdev); 789 if (!test_bit(Faulty, &rdev->flags) 790 && (bio->bi_opf & MD_FAILFAST)) { 791 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 792 set_bit(LastDev, &rdev->flags); 793 } 794 } else 795 clear_bit(LastDev, &rdev->flags); 796 797 if (atomic_dec_and_test(&mddev->pending_writes)) 798 wake_up(&mddev->sb_wait); 799 rdev_dec_pending(rdev, mddev); 800 bio_put(bio); 801 } 802 803 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 804 sector_t sector, int size, struct page *page) 805 { 806 /* write first size bytes of page to sector of rdev 807 * Increment mddev->pending_writes before returning 808 * and decrement it on completion, waking up sb_wait 809 * if zero is reached. 810 * If an error occurred, call md_error 811 */ 812 struct bio *bio; 813 int ff = 0; 814 815 if (!page) 816 return; 817 818 if (test_bit(Faulty, &rdev->flags)) 819 return; 820 821 bio = md_bio_alloc_sync(mddev); 822 823 atomic_inc(&rdev->nr_pending); 824 825 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 826 bio->bi_iter.bi_sector = sector; 827 bio_add_page(bio, page, size, 0); 828 bio->bi_private = rdev; 829 bio->bi_end_io = super_written; 830 831 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 832 test_bit(FailFast, &rdev->flags) && 833 !test_bit(LastDev, &rdev->flags)) 834 ff = MD_FAILFAST; 835 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 836 837 atomic_inc(&mddev->pending_writes); 838 submit_bio(bio); 839 } 840 841 int md_super_wait(struct mddev *mddev) 842 { 843 /* wait for all superblock writes that were scheduled to complete */ 844 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 845 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 846 return -EAGAIN; 847 return 0; 848 } 849 850 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 851 struct page *page, int op, int op_flags, bool metadata_op) 852 { 853 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 854 int ret; 855 856 if (metadata_op && rdev->meta_bdev) 857 bio_set_dev(bio, rdev->meta_bdev); 858 else 859 bio_set_dev(bio, rdev->bdev); 860 bio_set_op_attrs(bio, op, op_flags); 861 if (metadata_op) 862 bio->bi_iter.bi_sector = sector + rdev->sb_start; 863 else if (rdev->mddev->reshape_position != MaxSector && 864 (rdev->mddev->reshape_backwards == 865 (sector >= rdev->mddev->reshape_position))) 866 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 867 else 868 bio->bi_iter.bi_sector = sector + rdev->data_offset; 869 bio_add_page(bio, page, size, 0); 870 871 submit_bio_wait(bio); 872 873 ret = !bio->bi_status; 874 bio_put(bio); 875 return ret; 876 } 877 EXPORT_SYMBOL_GPL(sync_page_io); 878 879 static int read_disk_sb(struct md_rdev *rdev, int size) 880 { 881 char b[BDEVNAME_SIZE]; 882 883 if (rdev->sb_loaded) 884 return 0; 885 886 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 887 goto fail; 888 rdev->sb_loaded = 1; 889 return 0; 890 891 fail: 892 pr_err("md: disabled device %s, could not read superblock.\n", 893 bdevname(rdev->bdev,b)); 894 return -EINVAL; 895 } 896 897 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 898 { 899 return sb1->set_uuid0 == sb2->set_uuid0 && 900 sb1->set_uuid1 == sb2->set_uuid1 && 901 sb1->set_uuid2 == sb2->set_uuid2 && 902 sb1->set_uuid3 == sb2->set_uuid3; 903 } 904 905 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 906 { 907 int ret; 908 mdp_super_t *tmp1, *tmp2; 909 910 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 911 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 912 913 if (!tmp1 || !tmp2) { 914 ret = 0; 915 goto abort; 916 } 917 918 *tmp1 = *sb1; 919 *tmp2 = *sb2; 920 921 /* 922 * nr_disks is not constant 923 */ 924 tmp1->nr_disks = 0; 925 tmp2->nr_disks = 0; 926 927 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 928 abort: 929 kfree(tmp1); 930 kfree(tmp2); 931 return ret; 932 } 933 934 static u32 md_csum_fold(u32 csum) 935 { 936 csum = (csum & 0xffff) + (csum >> 16); 937 return (csum & 0xffff) + (csum >> 16); 938 } 939 940 static unsigned int calc_sb_csum(mdp_super_t *sb) 941 { 942 u64 newcsum = 0; 943 u32 *sb32 = (u32*)sb; 944 int i; 945 unsigned int disk_csum, csum; 946 947 disk_csum = sb->sb_csum; 948 sb->sb_csum = 0; 949 950 for (i = 0; i < MD_SB_BYTES/4 ; i++) 951 newcsum += sb32[i]; 952 csum = (newcsum & 0xffffffff) + (newcsum>>32); 953 954 #ifdef CONFIG_ALPHA 955 /* This used to use csum_partial, which was wrong for several 956 * reasons including that different results are returned on 957 * different architectures. It isn't critical that we get exactly 958 * the same return value as before (we always csum_fold before 959 * testing, and that removes any differences). However as we 960 * know that csum_partial always returned a 16bit value on 961 * alphas, do a fold to maximise conformity to previous behaviour. 962 */ 963 sb->sb_csum = md_csum_fold(disk_csum); 964 #else 965 sb->sb_csum = disk_csum; 966 #endif 967 return csum; 968 } 969 970 /* 971 * Handle superblock details. 972 * We want to be able to handle multiple superblock formats 973 * so we have a common interface to them all, and an array of 974 * different handlers. 975 * We rely on user-space to write the initial superblock, and support 976 * reading and updating of superblocks. 977 * Interface methods are: 978 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 979 * loads and validates a superblock on dev. 980 * if refdev != NULL, compare superblocks on both devices 981 * Return: 982 * 0 - dev has a superblock that is compatible with refdev 983 * 1 - dev has a superblock that is compatible and newer than refdev 984 * so dev should be used as the refdev in future 985 * -EINVAL superblock incompatible or invalid 986 * -othererror e.g. -EIO 987 * 988 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 989 * Verify that dev is acceptable into mddev. 990 * The first time, mddev->raid_disks will be 0, and data from 991 * dev should be merged in. Subsequent calls check that dev 992 * is new enough. Return 0 or -EINVAL 993 * 994 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 995 * Update the superblock for rdev with data in mddev 996 * This does not write to disc. 997 * 998 */ 999 1000 struct super_type { 1001 char *name; 1002 struct module *owner; 1003 int (*load_super)(struct md_rdev *rdev, 1004 struct md_rdev *refdev, 1005 int minor_version); 1006 int (*validate_super)(struct mddev *mddev, 1007 struct md_rdev *rdev); 1008 void (*sync_super)(struct mddev *mddev, 1009 struct md_rdev *rdev); 1010 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1011 sector_t num_sectors); 1012 int (*allow_new_offset)(struct md_rdev *rdev, 1013 unsigned long long new_offset); 1014 }; 1015 1016 /* 1017 * Check that the given mddev has no bitmap. 1018 * 1019 * This function is called from the run method of all personalities that do not 1020 * support bitmaps. It prints an error message and returns non-zero if mddev 1021 * has a bitmap. Otherwise, it returns 0. 1022 * 1023 */ 1024 int md_check_no_bitmap(struct mddev *mddev) 1025 { 1026 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1027 return 0; 1028 pr_warn("%s: bitmaps are not supported for %s\n", 1029 mdname(mddev), mddev->pers->name); 1030 return 1; 1031 } 1032 EXPORT_SYMBOL(md_check_no_bitmap); 1033 1034 /* 1035 * load_super for 0.90.0 1036 */ 1037 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1038 { 1039 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1040 mdp_super_t *sb; 1041 int ret; 1042 1043 /* 1044 * Calculate the position of the superblock (512byte sectors), 1045 * it's at the end of the disk. 1046 * 1047 * It also happens to be a multiple of 4Kb. 1048 */ 1049 rdev->sb_start = calc_dev_sboffset(rdev); 1050 1051 ret = read_disk_sb(rdev, MD_SB_BYTES); 1052 if (ret) 1053 return ret; 1054 1055 ret = -EINVAL; 1056 1057 bdevname(rdev->bdev, b); 1058 sb = page_address(rdev->sb_page); 1059 1060 if (sb->md_magic != MD_SB_MAGIC) { 1061 pr_warn("md: invalid raid superblock magic on %s\n", b); 1062 goto abort; 1063 } 1064 1065 if (sb->major_version != 0 || 1066 sb->minor_version < 90 || 1067 sb->minor_version > 91) { 1068 pr_warn("Bad version number %d.%d on %s\n", 1069 sb->major_version, sb->minor_version, b); 1070 goto abort; 1071 } 1072 1073 if (sb->raid_disks <= 0) 1074 goto abort; 1075 1076 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1077 pr_warn("md: invalid superblock checksum on %s\n", b); 1078 goto abort; 1079 } 1080 1081 rdev->preferred_minor = sb->md_minor; 1082 rdev->data_offset = 0; 1083 rdev->new_data_offset = 0; 1084 rdev->sb_size = MD_SB_BYTES; 1085 rdev->badblocks.shift = -1; 1086 1087 if (sb->level == LEVEL_MULTIPATH) 1088 rdev->desc_nr = -1; 1089 else 1090 rdev->desc_nr = sb->this_disk.number; 1091 1092 if (!refdev) { 1093 ret = 1; 1094 } else { 1095 __u64 ev1, ev2; 1096 mdp_super_t *refsb = page_address(refdev->sb_page); 1097 if (!md_uuid_equal(refsb, sb)) { 1098 pr_warn("md: %s has different UUID to %s\n", 1099 b, bdevname(refdev->bdev,b2)); 1100 goto abort; 1101 } 1102 if (!md_sb_equal(refsb, sb)) { 1103 pr_warn("md: %s has same UUID but different superblock to %s\n", 1104 b, bdevname(refdev->bdev, b2)); 1105 goto abort; 1106 } 1107 ev1 = md_event(sb); 1108 ev2 = md_event(refsb); 1109 if (ev1 > ev2) 1110 ret = 1; 1111 else 1112 ret = 0; 1113 } 1114 rdev->sectors = rdev->sb_start; 1115 /* Limit to 4TB as metadata cannot record more than that. 1116 * (not needed for Linear and RAID0 as metadata doesn't 1117 * record this size) 1118 */ 1119 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1120 sb->level >= 1) 1121 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1122 1123 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1124 /* "this cannot possibly happen" ... */ 1125 ret = -EINVAL; 1126 1127 abort: 1128 return ret; 1129 } 1130 1131 /* 1132 * validate_super for 0.90.0 1133 */ 1134 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1135 { 1136 mdp_disk_t *desc; 1137 mdp_super_t *sb = page_address(rdev->sb_page); 1138 __u64 ev1 = md_event(sb); 1139 1140 rdev->raid_disk = -1; 1141 clear_bit(Faulty, &rdev->flags); 1142 clear_bit(In_sync, &rdev->flags); 1143 clear_bit(Bitmap_sync, &rdev->flags); 1144 clear_bit(WriteMostly, &rdev->flags); 1145 1146 if (mddev->raid_disks == 0) { 1147 mddev->major_version = 0; 1148 mddev->minor_version = sb->minor_version; 1149 mddev->patch_version = sb->patch_version; 1150 mddev->external = 0; 1151 mddev->chunk_sectors = sb->chunk_size >> 9; 1152 mddev->ctime = sb->ctime; 1153 mddev->utime = sb->utime; 1154 mddev->level = sb->level; 1155 mddev->clevel[0] = 0; 1156 mddev->layout = sb->layout; 1157 mddev->raid_disks = sb->raid_disks; 1158 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1159 mddev->events = ev1; 1160 mddev->bitmap_info.offset = 0; 1161 mddev->bitmap_info.space = 0; 1162 /* bitmap can use 60 K after the 4K superblocks */ 1163 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1164 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1165 mddev->reshape_backwards = 0; 1166 1167 if (mddev->minor_version >= 91) { 1168 mddev->reshape_position = sb->reshape_position; 1169 mddev->delta_disks = sb->delta_disks; 1170 mddev->new_level = sb->new_level; 1171 mddev->new_layout = sb->new_layout; 1172 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1173 if (mddev->delta_disks < 0) 1174 mddev->reshape_backwards = 1; 1175 } else { 1176 mddev->reshape_position = MaxSector; 1177 mddev->delta_disks = 0; 1178 mddev->new_level = mddev->level; 1179 mddev->new_layout = mddev->layout; 1180 mddev->new_chunk_sectors = mddev->chunk_sectors; 1181 } 1182 1183 if (sb->state & (1<<MD_SB_CLEAN)) 1184 mddev->recovery_cp = MaxSector; 1185 else { 1186 if (sb->events_hi == sb->cp_events_hi && 1187 sb->events_lo == sb->cp_events_lo) { 1188 mddev->recovery_cp = sb->recovery_cp; 1189 } else 1190 mddev->recovery_cp = 0; 1191 } 1192 1193 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1194 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1195 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1196 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1197 1198 mddev->max_disks = MD_SB_DISKS; 1199 1200 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1201 mddev->bitmap_info.file == NULL) { 1202 mddev->bitmap_info.offset = 1203 mddev->bitmap_info.default_offset; 1204 mddev->bitmap_info.space = 1205 mddev->bitmap_info.default_space; 1206 } 1207 1208 } else if (mddev->pers == NULL) { 1209 /* Insist on good event counter while assembling, except 1210 * for spares (which don't need an event count) */ 1211 ++ev1; 1212 if (sb->disks[rdev->desc_nr].state & ( 1213 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1214 if (ev1 < mddev->events) 1215 return -EINVAL; 1216 } else if (mddev->bitmap) { 1217 /* if adding to array with a bitmap, then we can accept an 1218 * older device ... but not too old. 1219 */ 1220 if (ev1 < mddev->bitmap->events_cleared) 1221 return 0; 1222 if (ev1 < mddev->events) 1223 set_bit(Bitmap_sync, &rdev->flags); 1224 } else { 1225 if (ev1 < mddev->events) 1226 /* just a hot-add of a new device, leave raid_disk at -1 */ 1227 return 0; 1228 } 1229 1230 if (mddev->level != LEVEL_MULTIPATH) { 1231 desc = sb->disks + rdev->desc_nr; 1232 1233 if (desc->state & (1<<MD_DISK_FAULTY)) 1234 set_bit(Faulty, &rdev->flags); 1235 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1236 desc->raid_disk < mddev->raid_disks */) { 1237 set_bit(In_sync, &rdev->flags); 1238 rdev->raid_disk = desc->raid_disk; 1239 rdev->saved_raid_disk = desc->raid_disk; 1240 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1241 /* active but not in sync implies recovery up to 1242 * reshape position. We don't know exactly where 1243 * that is, so set to zero for now */ 1244 if (mddev->minor_version >= 91) { 1245 rdev->recovery_offset = 0; 1246 rdev->raid_disk = desc->raid_disk; 1247 } 1248 } 1249 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1250 set_bit(WriteMostly, &rdev->flags); 1251 if (desc->state & (1<<MD_DISK_FAILFAST)) 1252 set_bit(FailFast, &rdev->flags); 1253 } else /* MULTIPATH are always insync */ 1254 set_bit(In_sync, &rdev->flags); 1255 return 0; 1256 } 1257 1258 /* 1259 * sync_super for 0.90.0 1260 */ 1261 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1262 { 1263 mdp_super_t *sb; 1264 struct md_rdev *rdev2; 1265 int next_spare = mddev->raid_disks; 1266 1267 /* make rdev->sb match mddev data.. 1268 * 1269 * 1/ zero out disks 1270 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1271 * 3/ any empty disks < next_spare become removed 1272 * 1273 * disks[0] gets initialised to REMOVED because 1274 * we cannot be sure from other fields if it has 1275 * been initialised or not. 1276 */ 1277 int i; 1278 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1279 1280 rdev->sb_size = MD_SB_BYTES; 1281 1282 sb = page_address(rdev->sb_page); 1283 1284 memset(sb, 0, sizeof(*sb)); 1285 1286 sb->md_magic = MD_SB_MAGIC; 1287 sb->major_version = mddev->major_version; 1288 sb->patch_version = mddev->patch_version; 1289 sb->gvalid_words = 0; /* ignored */ 1290 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1291 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1292 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1293 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1294 1295 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1296 sb->level = mddev->level; 1297 sb->size = mddev->dev_sectors / 2; 1298 sb->raid_disks = mddev->raid_disks; 1299 sb->md_minor = mddev->md_minor; 1300 sb->not_persistent = 0; 1301 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1302 sb->state = 0; 1303 sb->events_hi = (mddev->events>>32); 1304 sb->events_lo = (u32)mddev->events; 1305 1306 if (mddev->reshape_position == MaxSector) 1307 sb->minor_version = 90; 1308 else { 1309 sb->minor_version = 91; 1310 sb->reshape_position = mddev->reshape_position; 1311 sb->new_level = mddev->new_level; 1312 sb->delta_disks = mddev->delta_disks; 1313 sb->new_layout = mddev->new_layout; 1314 sb->new_chunk = mddev->new_chunk_sectors << 9; 1315 } 1316 mddev->minor_version = sb->minor_version; 1317 if (mddev->in_sync) 1318 { 1319 sb->recovery_cp = mddev->recovery_cp; 1320 sb->cp_events_hi = (mddev->events>>32); 1321 sb->cp_events_lo = (u32)mddev->events; 1322 if (mddev->recovery_cp == MaxSector) 1323 sb->state = (1<< MD_SB_CLEAN); 1324 } else 1325 sb->recovery_cp = 0; 1326 1327 sb->layout = mddev->layout; 1328 sb->chunk_size = mddev->chunk_sectors << 9; 1329 1330 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1331 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1332 1333 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1334 rdev_for_each(rdev2, mddev) { 1335 mdp_disk_t *d; 1336 int desc_nr; 1337 int is_active = test_bit(In_sync, &rdev2->flags); 1338 1339 if (rdev2->raid_disk >= 0 && 1340 sb->minor_version >= 91) 1341 /* we have nowhere to store the recovery_offset, 1342 * but if it is not below the reshape_position, 1343 * we can piggy-back on that. 1344 */ 1345 is_active = 1; 1346 if (rdev2->raid_disk < 0 || 1347 test_bit(Faulty, &rdev2->flags)) 1348 is_active = 0; 1349 if (is_active) 1350 desc_nr = rdev2->raid_disk; 1351 else 1352 desc_nr = next_spare++; 1353 rdev2->desc_nr = desc_nr; 1354 d = &sb->disks[rdev2->desc_nr]; 1355 nr_disks++; 1356 d->number = rdev2->desc_nr; 1357 d->major = MAJOR(rdev2->bdev->bd_dev); 1358 d->minor = MINOR(rdev2->bdev->bd_dev); 1359 if (is_active) 1360 d->raid_disk = rdev2->raid_disk; 1361 else 1362 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1363 if (test_bit(Faulty, &rdev2->flags)) 1364 d->state = (1<<MD_DISK_FAULTY); 1365 else if (is_active) { 1366 d->state = (1<<MD_DISK_ACTIVE); 1367 if (test_bit(In_sync, &rdev2->flags)) 1368 d->state |= (1<<MD_DISK_SYNC); 1369 active++; 1370 working++; 1371 } else { 1372 d->state = 0; 1373 spare++; 1374 working++; 1375 } 1376 if (test_bit(WriteMostly, &rdev2->flags)) 1377 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1378 if (test_bit(FailFast, &rdev2->flags)) 1379 d->state |= (1<<MD_DISK_FAILFAST); 1380 } 1381 /* now set the "removed" and "faulty" bits on any missing devices */ 1382 for (i=0 ; i < mddev->raid_disks ; i++) { 1383 mdp_disk_t *d = &sb->disks[i]; 1384 if (d->state == 0 && d->number == 0) { 1385 d->number = i; 1386 d->raid_disk = i; 1387 d->state = (1<<MD_DISK_REMOVED); 1388 d->state |= (1<<MD_DISK_FAULTY); 1389 failed++; 1390 } 1391 } 1392 sb->nr_disks = nr_disks; 1393 sb->active_disks = active; 1394 sb->working_disks = working; 1395 sb->failed_disks = failed; 1396 sb->spare_disks = spare; 1397 1398 sb->this_disk = sb->disks[rdev->desc_nr]; 1399 sb->sb_csum = calc_sb_csum(sb); 1400 } 1401 1402 /* 1403 * rdev_size_change for 0.90.0 1404 */ 1405 static unsigned long long 1406 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1407 { 1408 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1409 return 0; /* component must fit device */ 1410 if (rdev->mddev->bitmap_info.offset) 1411 return 0; /* can't move bitmap */ 1412 rdev->sb_start = calc_dev_sboffset(rdev); 1413 if (!num_sectors || num_sectors > rdev->sb_start) 1414 num_sectors = rdev->sb_start; 1415 /* Limit to 4TB as metadata cannot record more than that. 1416 * 4TB == 2^32 KB, or 2*2^32 sectors. 1417 */ 1418 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1419 rdev->mddev->level >= 1) 1420 num_sectors = (sector_t)(2ULL << 32) - 2; 1421 do { 1422 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1423 rdev->sb_page); 1424 } while (md_super_wait(rdev->mddev) < 0); 1425 return num_sectors; 1426 } 1427 1428 static int 1429 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1430 { 1431 /* non-zero offset changes not possible with v0.90 */ 1432 return new_offset == 0; 1433 } 1434 1435 /* 1436 * version 1 superblock 1437 */ 1438 1439 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1440 { 1441 __le32 disk_csum; 1442 u32 csum; 1443 unsigned long long newcsum; 1444 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1445 __le32 *isuper = (__le32*)sb; 1446 1447 disk_csum = sb->sb_csum; 1448 sb->sb_csum = 0; 1449 newcsum = 0; 1450 for (; size >= 4; size -= 4) 1451 newcsum += le32_to_cpu(*isuper++); 1452 1453 if (size == 2) 1454 newcsum += le16_to_cpu(*(__le16*) isuper); 1455 1456 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1457 sb->sb_csum = disk_csum; 1458 return cpu_to_le32(csum); 1459 } 1460 1461 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1462 { 1463 struct mdp_superblock_1 *sb; 1464 int ret; 1465 sector_t sb_start; 1466 sector_t sectors; 1467 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1468 int bmask; 1469 1470 /* 1471 * Calculate the position of the superblock in 512byte sectors. 1472 * It is always aligned to a 4K boundary and 1473 * depeding on minor_version, it can be: 1474 * 0: At least 8K, but less than 12K, from end of device 1475 * 1: At start of device 1476 * 2: 4K from start of device. 1477 */ 1478 switch(minor_version) { 1479 case 0: 1480 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1481 sb_start -= 8*2; 1482 sb_start &= ~(sector_t)(4*2-1); 1483 break; 1484 case 1: 1485 sb_start = 0; 1486 break; 1487 case 2: 1488 sb_start = 8; 1489 break; 1490 default: 1491 return -EINVAL; 1492 } 1493 rdev->sb_start = sb_start; 1494 1495 /* superblock is rarely larger than 1K, but it can be larger, 1496 * and it is safe to read 4k, so we do that 1497 */ 1498 ret = read_disk_sb(rdev, 4096); 1499 if (ret) return ret; 1500 1501 sb = page_address(rdev->sb_page); 1502 1503 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1504 sb->major_version != cpu_to_le32(1) || 1505 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1506 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1507 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1508 return -EINVAL; 1509 1510 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1511 pr_warn("md: invalid superblock checksum on %s\n", 1512 bdevname(rdev->bdev,b)); 1513 return -EINVAL; 1514 } 1515 if (le64_to_cpu(sb->data_size) < 10) { 1516 pr_warn("md: data_size too small on %s\n", 1517 bdevname(rdev->bdev,b)); 1518 return -EINVAL; 1519 } 1520 if (sb->pad0 || 1521 sb->pad3[0] || 1522 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1523 /* Some padding is non-zero, might be a new feature */ 1524 return -EINVAL; 1525 1526 rdev->preferred_minor = 0xffff; 1527 rdev->data_offset = le64_to_cpu(sb->data_offset); 1528 rdev->new_data_offset = rdev->data_offset; 1529 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1530 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1531 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1532 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1533 1534 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1535 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1536 if (rdev->sb_size & bmask) 1537 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1538 1539 if (minor_version 1540 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1541 return -EINVAL; 1542 if (minor_version 1543 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1544 return -EINVAL; 1545 1546 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1547 rdev->desc_nr = -1; 1548 else 1549 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1550 1551 if (!rdev->bb_page) { 1552 rdev->bb_page = alloc_page(GFP_KERNEL); 1553 if (!rdev->bb_page) 1554 return -ENOMEM; 1555 } 1556 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1557 rdev->badblocks.count == 0) { 1558 /* need to load the bad block list. 1559 * Currently we limit it to one page. 1560 */ 1561 s32 offset; 1562 sector_t bb_sector; 1563 u64 *bbp; 1564 int i; 1565 int sectors = le16_to_cpu(sb->bblog_size); 1566 if (sectors > (PAGE_SIZE / 512)) 1567 return -EINVAL; 1568 offset = le32_to_cpu(sb->bblog_offset); 1569 if (offset == 0) 1570 return -EINVAL; 1571 bb_sector = (long long)offset; 1572 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1573 rdev->bb_page, REQ_OP_READ, 0, true)) 1574 return -EIO; 1575 bbp = (u64 *)page_address(rdev->bb_page); 1576 rdev->badblocks.shift = sb->bblog_shift; 1577 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1578 u64 bb = le64_to_cpu(*bbp); 1579 int count = bb & (0x3ff); 1580 u64 sector = bb >> 10; 1581 sector <<= sb->bblog_shift; 1582 count <<= sb->bblog_shift; 1583 if (bb + 1 == 0) 1584 break; 1585 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1586 return -EINVAL; 1587 } 1588 } else if (sb->bblog_offset != 0) 1589 rdev->badblocks.shift = 0; 1590 1591 if ((le32_to_cpu(sb->feature_map) & 1592 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1593 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1594 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1595 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1596 } 1597 1598 if (!refdev) { 1599 ret = 1; 1600 } else { 1601 __u64 ev1, ev2; 1602 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1603 1604 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1605 sb->level != refsb->level || 1606 sb->layout != refsb->layout || 1607 sb->chunksize != refsb->chunksize) { 1608 pr_warn("md: %s has strangely different superblock to %s\n", 1609 bdevname(rdev->bdev,b), 1610 bdevname(refdev->bdev,b2)); 1611 return -EINVAL; 1612 } 1613 ev1 = le64_to_cpu(sb->events); 1614 ev2 = le64_to_cpu(refsb->events); 1615 1616 if (ev1 > ev2) 1617 ret = 1; 1618 else 1619 ret = 0; 1620 } 1621 if (minor_version) { 1622 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1623 sectors -= rdev->data_offset; 1624 } else 1625 sectors = rdev->sb_start; 1626 if (sectors < le64_to_cpu(sb->data_size)) 1627 return -EINVAL; 1628 rdev->sectors = le64_to_cpu(sb->data_size); 1629 return ret; 1630 } 1631 1632 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1633 { 1634 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1635 __u64 ev1 = le64_to_cpu(sb->events); 1636 1637 rdev->raid_disk = -1; 1638 clear_bit(Faulty, &rdev->flags); 1639 clear_bit(In_sync, &rdev->flags); 1640 clear_bit(Bitmap_sync, &rdev->flags); 1641 clear_bit(WriteMostly, &rdev->flags); 1642 1643 if (mddev->raid_disks == 0) { 1644 mddev->major_version = 1; 1645 mddev->patch_version = 0; 1646 mddev->external = 0; 1647 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1648 mddev->ctime = le64_to_cpu(sb->ctime); 1649 mddev->utime = le64_to_cpu(sb->utime); 1650 mddev->level = le32_to_cpu(sb->level); 1651 mddev->clevel[0] = 0; 1652 mddev->layout = le32_to_cpu(sb->layout); 1653 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1654 mddev->dev_sectors = le64_to_cpu(sb->size); 1655 mddev->events = ev1; 1656 mddev->bitmap_info.offset = 0; 1657 mddev->bitmap_info.space = 0; 1658 /* Default location for bitmap is 1K after superblock 1659 * using 3K - total of 4K 1660 */ 1661 mddev->bitmap_info.default_offset = 1024 >> 9; 1662 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1663 mddev->reshape_backwards = 0; 1664 1665 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1666 memcpy(mddev->uuid, sb->set_uuid, 16); 1667 1668 mddev->max_disks = (4096-256)/2; 1669 1670 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1671 mddev->bitmap_info.file == NULL) { 1672 mddev->bitmap_info.offset = 1673 (__s32)le32_to_cpu(sb->bitmap_offset); 1674 /* Metadata doesn't record how much space is available. 1675 * For 1.0, we assume we can use up to the superblock 1676 * if before, else to 4K beyond superblock. 1677 * For others, assume no change is possible. 1678 */ 1679 if (mddev->minor_version > 0) 1680 mddev->bitmap_info.space = 0; 1681 else if (mddev->bitmap_info.offset > 0) 1682 mddev->bitmap_info.space = 1683 8 - mddev->bitmap_info.offset; 1684 else 1685 mddev->bitmap_info.space = 1686 -mddev->bitmap_info.offset; 1687 } 1688 1689 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1690 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1691 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1692 mddev->new_level = le32_to_cpu(sb->new_level); 1693 mddev->new_layout = le32_to_cpu(sb->new_layout); 1694 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1695 if (mddev->delta_disks < 0 || 1696 (mddev->delta_disks == 0 && 1697 (le32_to_cpu(sb->feature_map) 1698 & MD_FEATURE_RESHAPE_BACKWARDS))) 1699 mddev->reshape_backwards = 1; 1700 } else { 1701 mddev->reshape_position = MaxSector; 1702 mddev->delta_disks = 0; 1703 mddev->new_level = mddev->level; 1704 mddev->new_layout = mddev->layout; 1705 mddev->new_chunk_sectors = mddev->chunk_sectors; 1706 } 1707 1708 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1709 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1710 1711 if (le32_to_cpu(sb->feature_map) & 1712 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1713 if (le32_to_cpu(sb->feature_map) & 1714 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1715 return -EINVAL; 1716 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1717 (le32_to_cpu(sb->feature_map) & 1718 MD_FEATURE_MULTIPLE_PPLS)) 1719 return -EINVAL; 1720 set_bit(MD_HAS_PPL, &mddev->flags); 1721 } 1722 } else if (mddev->pers == NULL) { 1723 /* Insist of good event counter while assembling, except for 1724 * spares (which don't need an event count) */ 1725 ++ev1; 1726 if (rdev->desc_nr >= 0 && 1727 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1728 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1729 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1730 if (ev1 < mddev->events) 1731 return -EINVAL; 1732 } else if (mddev->bitmap) { 1733 /* If adding to array with a bitmap, then we can accept an 1734 * older device, but not too old. 1735 */ 1736 if (ev1 < mddev->bitmap->events_cleared) 1737 return 0; 1738 if (ev1 < mddev->events) 1739 set_bit(Bitmap_sync, &rdev->flags); 1740 } else { 1741 if (ev1 < mddev->events) 1742 /* just a hot-add of a new device, leave raid_disk at -1 */ 1743 return 0; 1744 } 1745 if (mddev->level != LEVEL_MULTIPATH) { 1746 int role; 1747 if (rdev->desc_nr < 0 || 1748 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1749 role = MD_DISK_ROLE_SPARE; 1750 rdev->desc_nr = -1; 1751 } else 1752 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1753 switch(role) { 1754 case MD_DISK_ROLE_SPARE: /* spare */ 1755 break; 1756 case MD_DISK_ROLE_FAULTY: /* faulty */ 1757 set_bit(Faulty, &rdev->flags); 1758 break; 1759 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1760 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1761 /* journal device without journal feature */ 1762 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1763 return -EINVAL; 1764 } 1765 set_bit(Journal, &rdev->flags); 1766 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1767 rdev->raid_disk = 0; 1768 break; 1769 default: 1770 rdev->saved_raid_disk = role; 1771 if ((le32_to_cpu(sb->feature_map) & 1772 MD_FEATURE_RECOVERY_OFFSET)) { 1773 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1774 if (!(le32_to_cpu(sb->feature_map) & 1775 MD_FEATURE_RECOVERY_BITMAP)) 1776 rdev->saved_raid_disk = -1; 1777 } else 1778 set_bit(In_sync, &rdev->flags); 1779 rdev->raid_disk = role; 1780 break; 1781 } 1782 if (sb->devflags & WriteMostly1) 1783 set_bit(WriteMostly, &rdev->flags); 1784 if (sb->devflags & FailFast1) 1785 set_bit(FailFast, &rdev->flags); 1786 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1787 set_bit(Replacement, &rdev->flags); 1788 } else /* MULTIPATH are always insync */ 1789 set_bit(In_sync, &rdev->flags); 1790 1791 return 0; 1792 } 1793 1794 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1795 { 1796 struct mdp_superblock_1 *sb; 1797 struct md_rdev *rdev2; 1798 int max_dev, i; 1799 /* make rdev->sb match mddev and rdev data. */ 1800 1801 sb = page_address(rdev->sb_page); 1802 1803 sb->feature_map = 0; 1804 sb->pad0 = 0; 1805 sb->recovery_offset = cpu_to_le64(0); 1806 memset(sb->pad3, 0, sizeof(sb->pad3)); 1807 1808 sb->utime = cpu_to_le64((__u64)mddev->utime); 1809 sb->events = cpu_to_le64(mddev->events); 1810 if (mddev->in_sync) 1811 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1812 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1813 sb->resync_offset = cpu_to_le64(MaxSector); 1814 else 1815 sb->resync_offset = cpu_to_le64(0); 1816 1817 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1818 1819 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1820 sb->size = cpu_to_le64(mddev->dev_sectors); 1821 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1822 sb->level = cpu_to_le32(mddev->level); 1823 sb->layout = cpu_to_le32(mddev->layout); 1824 if (test_bit(FailFast, &rdev->flags)) 1825 sb->devflags |= FailFast1; 1826 else 1827 sb->devflags &= ~FailFast1; 1828 1829 if (test_bit(WriteMostly, &rdev->flags)) 1830 sb->devflags |= WriteMostly1; 1831 else 1832 sb->devflags &= ~WriteMostly1; 1833 sb->data_offset = cpu_to_le64(rdev->data_offset); 1834 sb->data_size = cpu_to_le64(rdev->sectors); 1835 1836 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1837 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1838 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1839 } 1840 1841 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1842 !test_bit(In_sync, &rdev->flags)) { 1843 sb->feature_map |= 1844 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1845 sb->recovery_offset = 1846 cpu_to_le64(rdev->recovery_offset); 1847 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1848 sb->feature_map |= 1849 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1850 } 1851 /* Note: recovery_offset and journal_tail share space */ 1852 if (test_bit(Journal, &rdev->flags)) 1853 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1854 if (test_bit(Replacement, &rdev->flags)) 1855 sb->feature_map |= 1856 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1857 1858 if (mddev->reshape_position != MaxSector) { 1859 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1860 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1861 sb->new_layout = cpu_to_le32(mddev->new_layout); 1862 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1863 sb->new_level = cpu_to_le32(mddev->new_level); 1864 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1865 if (mddev->delta_disks == 0 && 1866 mddev->reshape_backwards) 1867 sb->feature_map 1868 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1869 if (rdev->new_data_offset != rdev->data_offset) { 1870 sb->feature_map 1871 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1872 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1873 - rdev->data_offset)); 1874 } 1875 } 1876 1877 if (mddev_is_clustered(mddev)) 1878 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1879 1880 if (rdev->badblocks.count == 0) 1881 /* Nothing to do for bad blocks*/ ; 1882 else if (sb->bblog_offset == 0) 1883 /* Cannot record bad blocks on this device */ 1884 md_error(mddev, rdev); 1885 else { 1886 struct badblocks *bb = &rdev->badblocks; 1887 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1888 u64 *p = bb->page; 1889 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1890 if (bb->changed) { 1891 unsigned seq; 1892 1893 retry: 1894 seq = read_seqbegin(&bb->lock); 1895 1896 memset(bbp, 0xff, PAGE_SIZE); 1897 1898 for (i = 0 ; i < bb->count ; i++) { 1899 u64 internal_bb = p[i]; 1900 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1901 | BB_LEN(internal_bb)); 1902 bbp[i] = cpu_to_le64(store_bb); 1903 } 1904 bb->changed = 0; 1905 if (read_seqretry(&bb->lock, seq)) 1906 goto retry; 1907 1908 bb->sector = (rdev->sb_start + 1909 (int)le32_to_cpu(sb->bblog_offset)); 1910 bb->size = le16_to_cpu(sb->bblog_size); 1911 } 1912 } 1913 1914 max_dev = 0; 1915 rdev_for_each(rdev2, mddev) 1916 if (rdev2->desc_nr+1 > max_dev) 1917 max_dev = rdev2->desc_nr+1; 1918 1919 if (max_dev > le32_to_cpu(sb->max_dev)) { 1920 int bmask; 1921 sb->max_dev = cpu_to_le32(max_dev); 1922 rdev->sb_size = max_dev * 2 + 256; 1923 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1924 if (rdev->sb_size & bmask) 1925 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1926 } else 1927 max_dev = le32_to_cpu(sb->max_dev); 1928 1929 for (i=0; i<max_dev;i++) 1930 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1931 1932 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1933 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1934 1935 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1936 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1937 sb->feature_map |= 1938 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1939 else 1940 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1941 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1942 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1943 } 1944 1945 rdev_for_each(rdev2, mddev) { 1946 i = rdev2->desc_nr; 1947 if (test_bit(Faulty, &rdev2->flags)) 1948 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1949 else if (test_bit(In_sync, &rdev2->flags)) 1950 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1951 else if (test_bit(Journal, &rdev2->flags)) 1952 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1953 else if (rdev2->raid_disk >= 0) 1954 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1955 else 1956 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1957 } 1958 1959 sb->sb_csum = calc_sb_1_csum(sb); 1960 } 1961 1962 static unsigned long long 1963 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1964 { 1965 struct mdp_superblock_1 *sb; 1966 sector_t max_sectors; 1967 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1968 return 0; /* component must fit device */ 1969 if (rdev->data_offset != rdev->new_data_offset) 1970 return 0; /* too confusing */ 1971 if (rdev->sb_start < rdev->data_offset) { 1972 /* minor versions 1 and 2; superblock before data */ 1973 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1974 max_sectors -= rdev->data_offset; 1975 if (!num_sectors || num_sectors > max_sectors) 1976 num_sectors = max_sectors; 1977 } else if (rdev->mddev->bitmap_info.offset) { 1978 /* minor version 0 with bitmap we can't move */ 1979 return 0; 1980 } else { 1981 /* minor version 0; superblock after data */ 1982 sector_t sb_start; 1983 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1984 sb_start &= ~(sector_t)(4*2 - 1); 1985 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1986 if (!num_sectors || num_sectors > max_sectors) 1987 num_sectors = max_sectors; 1988 rdev->sb_start = sb_start; 1989 } 1990 sb = page_address(rdev->sb_page); 1991 sb->data_size = cpu_to_le64(num_sectors); 1992 sb->super_offset = cpu_to_le64(rdev->sb_start); 1993 sb->sb_csum = calc_sb_1_csum(sb); 1994 do { 1995 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1996 rdev->sb_page); 1997 } while (md_super_wait(rdev->mddev) < 0); 1998 return num_sectors; 1999 2000 } 2001 2002 static int 2003 super_1_allow_new_offset(struct md_rdev *rdev, 2004 unsigned long long new_offset) 2005 { 2006 /* All necessary checks on new >= old have been done */ 2007 struct bitmap *bitmap; 2008 if (new_offset >= rdev->data_offset) 2009 return 1; 2010 2011 /* with 1.0 metadata, there is no metadata to tread on 2012 * so we can always move back */ 2013 if (rdev->mddev->minor_version == 0) 2014 return 1; 2015 2016 /* otherwise we must be sure not to step on 2017 * any metadata, so stay: 2018 * 36K beyond start of superblock 2019 * beyond end of badblocks 2020 * beyond write-intent bitmap 2021 */ 2022 if (rdev->sb_start + (32+4)*2 > new_offset) 2023 return 0; 2024 bitmap = rdev->mddev->bitmap; 2025 if (bitmap && !rdev->mddev->bitmap_info.file && 2026 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2027 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2028 return 0; 2029 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2030 return 0; 2031 2032 return 1; 2033 } 2034 2035 static struct super_type super_types[] = { 2036 [0] = { 2037 .name = "0.90.0", 2038 .owner = THIS_MODULE, 2039 .load_super = super_90_load, 2040 .validate_super = super_90_validate, 2041 .sync_super = super_90_sync, 2042 .rdev_size_change = super_90_rdev_size_change, 2043 .allow_new_offset = super_90_allow_new_offset, 2044 }, 2045 [1] = { 2046 .name = "md-1", 2047 .owner = THIS_MODULE, 2048 .load_super = super_1_load, 2049 .validate_super = super_1_validate, 2050 .sync_super = super_1_sync, 2051 .rdev_size_change = super_1_rdev_size_change, 2052 .allow_new_offset = super_1_allow_new_offset, 2053 }, 2054 }; 2055 2056 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2057 { 2058 if (mddev->sync_super) { 2059 mddev->sync_super(mddev, rdev); 2060 return; 2061 } 2062 2063 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2064 2065 super_types[mddev->major_version].sync_super(mddev, rdev); 2066 } 2067 2068 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2069 { 2070 struct md_rdev *rdev, *rdev2; 2071 2072 rcu_read_lock(); 2073 rdev_for_each_rcu(rdev, mddev1) { 2074 if (test_bit(Faulty, &rdev->flags) || 2075 test_bit(Journal, &rdev->flags) || 2076 rdev->raid_disk == -1) 2077 continue; 2078 rdev_for_each_rcu(rdev2, mddev2) { 2079 if (test_bit(Faulty, &rdev2->flags) || 2080 test_bit(Journal, &rdev2->flags) || 2081 rdev2->raid_disk == -1) 2082 continue; 2083 if (rdev->bdev->bd_contains == 2084 rdev2->bdev->bd_contains) { 2085 rcu_read_unlock(); 2086 return 1; 2087 } 2088 } 2089 } 2090 rcu_read_unlock(); 2091 return 0; 2092 } 2093 2094 static LIST_HEAD(pending_raid_disks); 2095 2096 /* 2097 * Try to register data integrity profile for an mddev 2098 * 2099 * This is called when an array is started and after a disk has been kicked 2100 * from the array. It only succeeds if all working and active component devices 2101 * are integrity capable with matching profiles. 2102 */ 2103 int md_integrity_register(struct mddev *mddev) 2104 { 2105 struct md_rdev *rdev, *reference = NULL; 2106 2107 if (list_empty(&mddev->disks)) 2108 return 0; /* nothing to do */ 2109 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2110 return 0; /* shouldn't register, or already is */ 2111 rdev_for_each(rdev, mddev) { 2112 /* skip spares and non-functional disks */ 2113 if (test_bit(Faulty, &rdev->flags)) 2114 continue; 2115 if (rdev->raid_disk < 0) 2116 continue; 2117 if (!reference) { 2118 /* Use the first rdev as the reference */ 2119 reference = rdev; 2120 continue; 2121 } 2122 /* does this rdev's profile match the reference profile? */ 2123 if (blk_integrity_compare(reference->bdev->bd_disk, 2124 rdev->bdev->bd_disk) < 0) 2125 return -EINVAL; 2126 } 2127 if (!reference || !bdev_get_integrity(reference->bdev)) 2128 return 0; 2129 /* 2130 * All component devices are integrity capable and have matching 2131 * profiles, register the common profile for the md device. 2132 */ 2133 blk_integrity_register(mddev->gendisk, 2134 bdev_get_integrity(reference->bdev)); 2135 2136 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2137 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2138 pr_err("md: failed to create integrity pool for %s\n", 2139 mdname(mddev)); 2140 return -EINVAL; 2141 } 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(md_integrity_register); 2145 2146 /* 2147 * Attempt to add an rdev, but only if it is consistent with the current 2148 * integrity profile 2149 */ 2150 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2151 { 2152 struct blk_integrity *bi_rdev; 2153 struct blk_integrity *bi_mddev; 2154 char name[BDEVNAME_SIZE]; 2155 2156 if (!mddev->gendisk) 2157 return 0; 2158 2159 bi_rdev = bdev_get_integrity(rdev->bdev); 2160 bi_mddev = blk_get_integrity(mddev->gendisk); 2161 2162 if (!bi_mddev) /* nothing to do */ 2163 return 0; 2164 2165 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2166 pr_err("%s: incompatible integrity profile for %s\n", 2167 mdname(mddev), bdevname(rdev->bdev, name)); 2168 return -ENXIO; 2169 } 2170 2171 return 0; 2172 } 2173 EXPORT_SYMBOL(md_integrity_add_rdev); 2174 2175 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2176 { 2177 char b[BDEVNAME_SIZE]; 2178 struct kobject *ko; 2179 int err; 2180 2181 /* prevent duplicates */ 2182 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2183 return -EEXIST; 2184 2185 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2186 mddev->pers) 2187 return -EROFS; 2188 2189 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2190 if (!test_bit(Journal, &rdev->flags) && 2191 rdev->sectors && 2192 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2193 if (mddev->pers) { 2194 /* Cannot change size, so fail 2195 * If mddev->level <= 0, then we don't care 2196 * about aligning sizes (e.g. linear) 2197 */ 2198 if (mddev->level > 0) 2199 return -ENOSPC; 2200 } else 2201 mddev->dev_sectors = rdev->sectors; 2202 } 2203 2204 /* Verify rdev->desc_nr is unique. 2205 * If it is -1, assign a free number, else 2206 * check number is not in use 2207 */ 2208 rcu_read_lock(); 2209 if (rdev->desc_nr < 0) { 2210 int choice = 0; 2211 if (mddev->pers) 2212 choice = mddev->raid_disks; 2213 while (md_find_rdev_nr_rcu(mddev, choice)) 2214 choice++; 2215 rdev->desc_nr = choice; 2216 } else { 2217 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2218 rcu_read_unlock(); 2219 return -EBUSY; 2220 } 2221 } 2222 rcu_read_unlock(); 2223 if (!test_bit(Journal, &rdev->flags) && 2224 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2225 pr_warn("md: %s: array is limited to %d devices\n", 2226 mdname(mddev), mddev->max_disks); 2227 return -EBUSY; 2228 } 2229 bdevname(rdev->bdev,b); 2230 strreplace(b, '/', '!'); 2231 2232 rdev->mddev = mddev; 2233 pr_debug("md: bind<%s>\n", b); 2234 2235 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2236 goto fail; 2237 2238 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2239 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2240 /* failure here is OK */; 2241 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2242 2243 list_add_rcu(&rdev->same_set, &mddev->disks); 2244 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2245 2246 /* May as well allow recovery to be retried once */ 2247 mddev->recovery_disabled++; 2248 2249 return 0; 2250 2251 fail: 2252 pr_warn("md: failed to register dev-%s for %s\n", 2253 b, mdname(mddev)); 2254 return err; 2255 } 2256 2257 static void md_delayed_delete(struct work_struct *ws) 2258 { 2259 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2260 kobject_del(&rdev->kobj); 2261 kobject_put(&rdev->kobj); 2262 } 2263 2264 static void unbind_rdev_from_array(struct md_rdev *rdev) 2265 { 2266 char b[BDEVNAME_SIZE]; 2267 2268 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2269 list_del_rcu(&rdev->same_set); 2270 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2271 rdev->mddev = NULL; 2272 sysfs_remove_link(&rdev->kobj, "block"); 2273 sysfs_put(rdev->sysfs_state); 2274 rdev->sysfs_state = NULL; 2275 rdev->badblocks.count = 0; 2276 /* We need to delay this, otherwise we can deadlock when 2277 * writing to 'remove' to "dev/state". We also need 2278 * to delay it due to rcu usage. 2279 */ 2280 synchronize_rcu(); 2281 INIT_WORK(&rdev->del_work, md_delayed_delete); 2282 kobject_get(&rdev->kobj); 2283 queue_work(md_misc_wq, &rdev->del_work); 2284 } 2285 2286 /* 2287 * prevent the device from being mounted, repartitioned or 2288 * otherwise reused by a RAID array (or any other kernel 2289 * subsystem), by bd_claiming the device. 2290 */ 2291 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2292 { 2293 int err = 0; 2294 struct block_device *bdev; 2295 char b[BDEVNAME_SIZE]; 2296 2297 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2298 shared ? (struct md_rdev *)lock_rdev : rdev); 2299 if (IS_ERR(bdev)) { 2300 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2301 return PTR_ERR(bdev); 2302 } 2303 rdev->bdev = bdev; 2304 return err; 2305 } 2306 2307 static void unlock_rdev(struct md_rdev *rdev) 2308 { 2309 struct block_device *bdev = rdev->bdev; 2310 rdev->bdev = NULL; 2311 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2312 } 2313 2314 void md_autodetect_dev(dev_t dev); 2315 2316 static void export_rdev(struct md_rdev *rdev) 2317 { 2318 char b[BDEVNAME_SIZE]; 2319 2320 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2321 md_rdev_clear(rdev); 2322 #ifndef MODULE 2323 if (test_bit(AutoDetected, &rdev->flags)) 2324 md_autodetect_dev(rdev->bdev->bd_dev); 2325 #endif 2326 unlock_rdev(rdev); 2327 kobject_put(&rdev->kobj); 2328 } 2329 2330 void md_kick_rdev_from_array(struct md_rdev *rdev) 2331 { 2332 unbind_rdev_from_array(rdev); 2333 export_rdev(rdev); 2334 } 2335 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2336 2337 static void export_array(struct mddev *mddev) 2338 { 2339 struct md_rdev *rdev; 2340 2341 while (!list_empty(&mddev->disks)) { 2342 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2343 same_set); 2344 md_kick_rdev_from_array(rdev); 2345 } 2346 mddev->raid_disks = 0; 2347 mddev->major_version = 0; 2348 } 2349 2350 static bool set_in_sync(struct mddev *mddev) 2351 { 2352 lockdep_assert_held(&mddev->lock); 2353 if (!mddev->in_sync) { 2354 mddev->sync_checkers++; 2355 spin_unlock(&mddev->lock); 2356 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2357 spin_lock(&mddev->lock); 2358 if (!mddev->in_sync && 2359 percpu_ref_is_zero(&mddev->writes_pending)) { 2360 mddev->in_sync = 1; 2361 /* 2362 * Ensure ->in_sync is visible before we clear 2363 * ->sync_checkers. 2364 */ 2365 smp_mb(); 2366 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2367 sysfs_notify_dirent_safe(mddev->sysfs_state); 2368 } 2369 if (--mddev->sync_checkers == 0) 2370 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2371 } 2372 if (mddev->safemode == 1) 2373 mddev->safemode = 0; 2374 return mddev->in_sync; 2375 } 2376 2377 static void sync_sbs(struct mddev *mddev, int nospares) 2378 { 2379 /* Update each superblock (in-memory image), but 2380 * if we are allowed to, skip spares which already 2381 * have the right event counter, or have one earlier 2382 * (which would mean they aren't being marked as dirty 2383 * with the rest of the array) 2384 */ 2385 struct md_rdev *rdev; 2386 rdev_for_each(rdev, mddev) { 2387 if (rdev->sb_events == mddev->events || 2388 (nospares && 2389 rdev->raid_disk < 0 && 2390 rdev->sb_events+1 == mddev->events)) { 2391 /* Don't update this superblock */ 2392 rdev->sb_loaded = 2; 2393 } else { 2394 sync_super(mddev, rdev); 2395 rdev->sb_loaded = 1; 2396 } 2397 } 2398 } 2399 2400 static bool does_sb_need_changing(struct mddev *mddev) 2401 { 2402 struct md_rdev *rdev; 2403 struct mdp_superblock_1 *sb; 2404 int role; 2405 2406 /* Find a good rdev */ 2407 rdev_for_each(rdev, mddev) 2408 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2409 break; 2410 2411 /* No good device found. */ 2412 if (!rdev) 2413 return false; 2414 2415 sb = page_address(rdev->sb_page); 2416 /* Check if a device has become faulty or a spare become active */ 2417 rdev_for_each(rdev, mddev) { 2418 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2419 /* Device activated? */ 2420 if (role == 0xffff && rdev->raid_disk >=0 && 2421 !test_bit(Faulty, &rdev->flags)) 2422 return true; 2423 /* Device turned faulty? */ 2424 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2425 return true; 2426 } 2427 2428 /* Check if any mddev parameters have changed */ 2429 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2430 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2431 (mddev->layout != le32_to_cpu(sb->layout)) || 2432 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2433 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2434 return true; 2435 2436 return false; 2437 } 2438 2439 void md_update_sb(struct mddev *mddev, int force_change) 2440 { 2441 struct md_rdev *rdev; 2442 int sync_req; 2443 int nospares = 0; 2444 int any_badblocks_changed = 0; 2445 int ret = -1; 2446 2447 if (mddev->ro) { 2448 if (force_change) 2449 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2450 return; 2451 } 2452 2453 repeat: 2454 if (mddev_is_clustered(mddev)) { 2455 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2456 force_change = 1; 2457 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2458 nospares = 1; 2459 ret = md_cluster_ops->metadata_update_start(mddev); 2460 /* Has someone else has updated the sb */ 2461 if (!does_sb_need_changing(mddev)) { 2462 if (ret == 0) 2463 md_cluster_ops->metadata_update_cancel(mddev); 2464 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2465 BIT(MD_SB_CHANGE_DEVS) | 2466 BIT(MD_SB_CHANGE_CLEAN)); 2467 return; 2468 } 2469 } 2470 2471 /* 2472 * First make sure individual recovery_offsets are correct 2473 * curr_resync_completed can only be used during recovery. 2474 * During reshape/resync it might use array-addresses rather 2475 * that device addresses. 2476 */ 2477 rdev_for_each(rdev, mddev) { 2478 if (rdev->raid_disk >= 0 && 2479 mddev->delta_disks >= 0 && 2480 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2481 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2482 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2483 !test_bit(Journal, &rdev->flags) && 2484 !test_bit(In_sync, &rdev->flags) && 2485 mddev->curr_resync_completed > rdev->recovery_offset) 2486 rdev->recovery_offset = mddev->curr_resync_completed; 2487 2488 } 2489 if (!mddev->persistent) { 2490 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2491 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2492 if (!mddev->external) { 2493 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2494 rdev_for_each(rdev, mddev) { 2495 if (rdev->badblocks.changed) { 2496 rdev->badblocks.changed = 0; 2497 ack_all_badblocks(&rdev->badblocks); 2498 md_error(mddev, rdev); 2499 } 2500 clear_bit(Blocked, &rdev->flags); 2501 clear_bit(BlockedBadBlocks, &rdev->flags); 2502 wake_up(&rdev->blocked_wait); 2503 } 2504 } 2505 wake_up(&mddev->sb_wait); 2506 return; 2507 } 2508 2509 spin_lock(&mddev->lock); 2510 2511 mddev->utime = ktime_get_real_seconds(); 2512 2513 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2514 force_change = 1; 2515 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2516 /* just a clean<-> dirty transition, possibly leave spares alone, 2517 * though if events isn't the right even/odd, we will have to do 2518 * spares after all 2519 */ 2520 nospares = 1; 2521 if (force_change) 2522 nospares = 0; 2523 if (mddev->degraded) 2524 /* If the array is degraded, then skipping spares is both 2525 * dangerous and fairly pointless. 2526 * Dangerous because a device that was removed from the array 2527 * might have a event_count that still looks up-to-date, 2528 * so it can be re-added without a resync. 2529 * Pointless because if there are any spares to skip, 2530 * then a recovery will happen and soon that array won't 2531 * be degraded any more and the spare can go back to sleep then. 2532 */ 2533 nospares = 0; 2534 2535 sync_req = mddev->in_sync; 2536 2537 /* If this is just a dirty<->clean transition, and the array is clean 2538 * and 'events' is odd, we can roll back to the previous clean state */ 2539 if (nospares 2540 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2541 && mddev->can_decrease_events 2542 && mddev->events != 1) { 2543 mddev->events--; 2544 mddev->can_decrease_events = 0; 2545 } else { 2546 /* otherwise we have to go forward and ... */ 2547 mddev->events ++; 2548 mddev->can_decrease_events = nospares; 2549 } 2550 2551 /* 2552 * This 64-bit counter should never wrap. 2553 * Either we are in around ~1 trillion A.C., assuming 2554 * 1 reboot per second, or we have a bug... 2555 */ 2556 WARN_ON(mddev->events == 0); 2557 2558 rdev_for_each(rdev, mddev) { 2559 if (rdev->badblocks.changed) 2560 any_badblocks_changed++; 2561 if (test_bit(Faulty, &rdev->flags)) 2562 set_bit(FaultRecorded, &rdev->flags); 2563 } 2564 2565 sync_sbs(mddev, nospares); 2566 spin_unlock(&mddev->lock); 2567 2568 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2569 mdname(mddev), mddev->in_sync); 2570 2571 if (mddev->queue) 2572 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2573 rewrite: 2574 bitmap_update_sb(mddev->bitmap); 2575 rdev_for_each(rdev, mddev) { 2576 char b[BDEVNAME_SIZE]; 2577 2578 if (rdev->sb_loaded != 1) 2579 continue; /* no noise on spare devices */ 2580 2581 if (!test_bit(Faulty, &rdev->flags)) { 2582 md_super_write(mddev,rdev, 2583 rdev->sb_start, rdev->sb_size, 2584 rdev->sb_page); 2585 pr_debug("md: (write) %s's sb offset: %llu\n", 2586 bdevname(rdev->bdev, b), 2587 (unsigned long long)rdev->sb_start); 2588 rdev->sb_events = mddev->events; 2589 if (rdev->badblocks.size) { 2590 md_super_write(mddev, rdev, 2591 rdev->badblocks.sector, 2592 rdev->badblocks.size << 9, 2593 rdev->bb_page); 2594 rdev->badblocks.size = 0; 2595 } 2596 2597 } else 2598 pr_debug("md: %s (skipping faulty)\n", 2599 bdevname(rdev->bdev, b)); 2600 2601 if (mddev->level == LEVEL_MULTIPATH) 2602 /* only need to write one superblock... */ 2603 break; 2604 } 2605 if (md_super_wait(mddev) < 0) 2606 goto rewrite; 2607 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2608 2609 if (mddev_is_clustered(mddev) && ret == 0) 2610 md_cluster_ops->metadata_update_finish(mddev); 2611 2612 if (mddev->in_sync != sync_req || 2613 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2614 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2615 /* have to write it out again */ 2616 goto repeat; 2617 wake_up(&mddev->sb_wait); 2618 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2619 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2620 2621 rdev_for_each(rdev, mddev) { 2622 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2623 clear_bit(Blocked, &rdev->flags); 2624 2625 if (any_badblocks_changed) 2626 ack_all_badblocks(&rdev->badblocks); 2627 clear_bit(BlockedBadBlocks, &rdev->flags); 2628 wake_up(&rdev->blocked_wait); 2629 } 2630 } 2631 EXPORT_SYMBOL(md_update_sb); 2632 2633 static int add_bound_rdev(struct md_rdev *rdev) 2634 { 2635 struct mddev *mddev = rdev->mddev; 2636 int err = 0; 2637 bool add_journal = test_bit(Journal, &rdev->flags); 2638 2639 if (!mddev->pers->hot_remove_disk || add_journal) { 2640 /* If there is hot_add_disk but no hot_remove_disk 2641 * then added disks for geometry changes, 2642 * and should be added immediately. 2643 */ 2644 super_types[mddev->major_version]. 2645 validate_super(mddev, rdev); 2646 if (add_journal) 2647 mddev_suspend(mddev); 2648 err = mddev->pers->hot_add_disk(mddev, rdev); 2649 if (add_journal) 2650 mddev_resume(mddev); 2651 if (err) { 2652 md_kick_rdev_from_array(rdev); 2653 return err; 2654 } 2655 } 2656 sysfs_notify_dirent_safe(rdev->sysfs_state); 2657 2658 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2659 if (mddev->degraded) 2660 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2662 md_new_event(mddev); 2663 md_wakeup_thread(mddev->thread); 2664 return 0; 2665 } 2666 2667 /* words written to sysfs files may, or may not, be \n terminated. 2668 * We want to accept with case. For this we use cmd_match. 2669 */ 2670 static int cmd_match(const char *cmd, const char *str) 2671 { 2672 /* See if cmd, written into a sysfs file, matches 2673 * str. They must either be the same, or cmd can 2674 * have a trailing newline 2675 */ 2676 while (*cmd && *str && *cmd == *str) { 2677 cmd++; 2678 str++; 2679 } 2680 if (*cmd == '\n') 2681 cmd++; 2682 if (*str || *cmd) 2683 return 0; 2684 return 1; 2685 } 2686 2687 struct rdev_sysfs_entry { 2688 struct attribute attr; 2689 ssize_t (*show)(struct md_rdev *, char *); 2690 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2691 }; 2692 2693 static ssize_t 2694 state_show(struct md_rdev *rdev, char *page) 2695 { 2696 char *sep = ","; 2697 size_t len = 0; 2698 unsigned long flags = READ_ONCE(rdev->flags); 2699 2700 if (test_bit(Faulty, &flags) || 2701 (!test_bit(ExternalBbl, &flags) && 2702 rdev->badblocks.unacked_exist)) 2703 len += sprintf(page+len, "faulty%s", sep); 2704 if (test_bit(In_sync, &flags)) 2705 len += sprintf(page+len, "in_sync%s", sep); 2706 if (test_bit(Journal, &flags)) 2707 len += sprintf(page+len, "journal%s", sep); 2708 if (test_bit(WriteMostly, &flags)) 2709 len += sprintf(page+len, "write_mostly%s", sep); 2710 if (test_bit(Blocked, &flags) || 2711 (rdev->badblocks.unacked_exist 2712 && !test_bit(Faulty, &flags))) 2713 len += sprintf(page+len, "blocked%s", sep); 2714 if (!test_bit(Faulty, &flags) && 2715 !test_bit(Journal, &flags) && 2716 !test_bit(In_sync, &flags)) 2717 len += sprintf(page+len, "spare%s", sep); 2718 if (test_bit(WriteErrorSeen, &flags)) 2719 len += sprintf(page+len, "write_error%s", sep); 2720 if (test_bit(WantReplacement, &flags)) 2721 len += sprintf(page+len, "want_replacement%s", sep); 2722 if (test_bit(Replacement, &flags)) 2723 len += sprintf(page+len, "replacement%s", sep); 2724 if (test_bit(ExternalBbl, &flags)) 2725 len += sprintf(page+len, "external_bbl%s", sep); 2726 if (test_bit(FailFast, &flags)) 2727 len += sprintf(page+len, "failfast%s", sep); 2728 2729 if (len) 2730 len -= strlen(sep); 2731 2732 return len+sprintf(page+len, "\n"); 2733 } 2734 2735 static ssize_t 2736 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2737 { 2738 /* can write 2739 * faulty - simulates an error 2740 * remove - disconnects the device 2741 * writemostly - sets write_mostly 2742 * -writemostly - clears write_mostly 2743 * blocked - sets the Blocked flags 2744 * -blocked - clears the Blocked and possibly simulates an error 2745 * insync - sets Insync providing device isn't active 2746 * -insync - clear Insync for a device with a slot assigned, 2747 * so that it gets rebuilt based on bitmap 2748 * write_error - sets WriteErrorSeen 2749 * -write_error - clears WriteErrorSeen 2750 * {,-}failfast - set/clear FailFast 2751 */ 2752 int err = -EINVAL; 2753 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2754 md_error(rdev->mddev, rdev); 2755 if (test_bit(Faulty, &rdev->flags)) 2756 err = 0; 2757 else 2758 err = -EBUSY; 2759 } else if (cmd_match(buf, "remove")) { 2760 if (rdev->mddev->pers) { 2761 clear_bit(Blocked, &rdev->flags); 2762 remove_and_add_spares(rdev->mddev, rdev); 2763 } 2764 if (rdev->raid_disk >= 0) 2765 err = -EBUSY; 2766 else { 2767 struct mddev *mddev = rdev->mddev; 2768 err = 0; 2769 if (mddev_is_clustered(mddev)) 2770 err = md_cluster_ops->remove_disk(mddev, rdev); 2771 2772 if (err == 0) { 2773 md_kick_rdev_from_array(rdev); 2774 if (mddev->pers) { 2775 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2776 md_wakeup_thread(mddev->thread); 2777 } 2778 md_new_event(mddev); 2779 } 2780 } 2781 } else if (cmd_match(buf, "writemostly")) { 2782 set_bit(WriteMostly, &rdev->flags); 2783 err = 0; 2784 } else if (cmd_match(buf, "-writemostly")) { 2785 clear_bit(WriteMostly, &rdev->flags); 2786 err = 0; 2787 } else if (cmd_match(buf, "blocked")) { 2788 set_bit(Blocked, &rdev->flags); 2789 err = 0; 2790 } else if (cmd_match(buf, "-blocked")) { 2791 if (!test_bit(Faulty, &rdev->flags) && 2792 !test_bit(ExternalBbl, &rdev->flags) && 2793 rdev->badblocks.unacked_exist) { 2794 /* metadata handler doesn't understand badblocks, 2795 * so we need to fail the device 2796 */ 2797 md_error(rdev->mddev, rdev); 2798 } 2799 clear_bit(Blocked, &rdev->flags); 2800 clear_bit(BlockedBadBlocks, &rdev->flags); 2801 wake_up(&rdev->blocked_wait); 2802 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2803 md_wakeup_thread(rdev->mddev->thread); 2804 2805 err = 0; 2806 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2807 set_bit(In_sync, &rdev->flags); 2808 err = 0; 2809 } else if (cmd_match(buf, "failfast")) { 2810 set_bit(FailFast, &rdev->flags); 2811 err = 0; 2812 } else if (cmd_match(buf, "-failfast")) { 2813 clear_bit(FailFast, &rdev->flags); 2814 err = 0; 2815 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2816 !test_bit(Journal, &rdev->flags)) { 2817 if (rdev->mddev->pers == NULL) { 2818 clear_bit(In_sync, &rdev->flags); 2819 rdev->saved_raid_disk = rdev->raid_disk; 2820 rdev->raid_disk = -1; 2821 err = 0; 2822 } 2823 } else if (cmd_match(buf, "write_error")) { 2824 set_bit(WriteErrorSeen, &rdev->flags); 2825 err = 0; 2826 } else if (cmd_match(buf, "-write_error")) { 2827 clear_bit(WriteErrorSeen, &rdev->flags); 2828 err = 0; 2829 } else if (cmd_match(buf, "want_replacement")) { 2830 /* Any non-spare device that is not a replacement can 2831 * become want_replacement at any time, but we then need to 2832 * check if recovery is needed. 2833 */ 2834 if (rdev->raid_disk >= 0 && 2835 !test_bit(Journal, &rdev->flags) && 2836 !test_bit(Replacement, &rdev->flags)) 2837 set_bit(WantReplacement, &rdev->flags); 2838 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2839 md_wakeup_thread(rdev->mddev->thread); 2840 err = 0; 2841 } else if (cmd_match(buf, "-want_replacement")) { 2842 /* Clearing 'want_replacement' is always allowed. 2843 * Once replacements starts it is too late though. 2844 */ 2845 err = 0; 2846 clear_bit(WantReplacement, &rdev->flags); 2847 } else if (cmd_match(buf, "replacement")) { 2848 /* Can only set a device as a replacement when array has not 2849 * yet been started. Once running, replacement is automatic 2850 * from spares, or by assigning 'slot'. 2851 */ 2852 if (rdev->mddev->pers) 2853 err = -EBUSY; 2854 else { 2855 set_bit(Replacement, &rdev->flags); 2856 err = 0; 2857 } 2858 } else if (cmd_match(buf, "-replacement")) { 2859 /* Similarly, can only clear Replacement before start */ 2860 if (rdev->mddev->pers) 2861 err = -EBUSY; 2862 else { 2863 clear_bit(Replacement, &rdev->flags); 2864 err = 0; 2865 } 2866 } else if (cmd_match(buf, "re-add")) { 2867 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2868 rdev->saved_raid_disk >= 0) { 2869 /* clear_bit is performed _after_ all the devices 2870 * have their local Faulty bit cleared. If any writes 2871 * happen in the meantime in the local node, they 2872 * will land in the local bitmap, which will be synced 2873 * by this node eventually 2874 */ 2875 if (!mddev_is_clustered(rdev->mddev) || 2876 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2877 clear_bit(Faulty, &rdev->flags); 2878 err = add_bound_rdev(rdev); 2879 } 2880 } else 2881 err = -EBUSY; 2882 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2883 set_bit(ExternalBbl, &rdev->flags); 2884 rdev->badblocks.shift = 0; 2885 err = 0; 2886 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2887 clear_bit(ExternalBbl, &rdev->flags); 2888 err = 0; 2889 } 2890 if (!err) 2891 sysfs_notify_dirent_safe(rdev->sysfs_state); 2892 return err ? err : len; 2893 } 2894 static struct rdev_sysfs_entry rdev_state = 2895 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2896 2897 static ssize_t 2898 errors_show(struct md_rdev *rdev, char *page) 2899 { 2900 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2901 } 2902 2903 static ssize_t 2904 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2905 { 2906 unsigned int n; 2907 int rv; 2908 2909 rv = kstrtouint(buf, 10, &n); 2910 if (rv < 0) 2911 return rv; 2912 atomic_set(&rdev->corrected_errors, n); 2913 return len; 2914 } 2915 static struct rdev_sysfs_entry rdev_errors = 2916 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2917 2918 static ssize_t 2919 slot_show(struct md_rdev *rdev, char *page) 2920 { 2921 if (test_bit(Journal, &rdev->flags)) 2922 return sprintf(page, "journal\n"); 2923 else if (rdev->raid_disk < 0) 2924 return sprintf(page, "none\n"); 2925 else 2926 return sprintf(page, "%d\n", rdev->raid_disk); 2927 } 2928 2929 static ssize_t 2930 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2931 { 2932 int slot; 2933 int err; 2934 2935 if (test_bit(Journal, &rdev->flags)) 2936 return -EBUSY; 2937 if (strncmp(buf, "none", 4)==0) 2938 slot = -1; 2939 else { 2940 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2941 if (err < 0) 2942 return err; 2943 } 2944 if (rdev->mddev->pers && slot == -1) { 2945 /* Setting 'slot' on an active array requires also 2946 * updating the 'rd%d' link, and communicating 2947 * with the personality with ->hot_*_disk. 2948 * For now we only support removing 2949 * failed/spare devices. This normally happens automatically, 2950 * but not when the metadata is externally managed. 2951 */ 2952 if (rdev->raid_disk == -1) 2953 return -EEXIST; 2954 /* personality does all needed checks */ 2955 if (rdev->mddev->pers->hot_remove_disk == NULL) 2956 return -EINVAL; 2957 clear_bit(Blocked, &rdev->flags); 2958 remove_and_add_spares(rdev->mddev, rdev); 2959 if (rdev->raid_disk >= 0) 2960 return -EBUSY; 2961 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2962 md_wakeup_thread(rdev->mddev->thread); 2963 } else if (rdev->mddev->pers) { 2964 /* Activating a spare .. or possibly reactivating 2965 * if we ever get bitmaps working here. 2966 */ 2967 int err; 2968 2969 if (rdev->raid_disk != -1) 2970 return -EBUSY; 2971 2972 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2973 return -EBUSY; 2974 2975 if (rdev->mddev->pers->hot_add_disk == NULL) 2976 return -EINVAL; 2977 2978 if (slot >= rdev->mddev->raid_disks && 2979 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2980 return -ENOSPC; 2981 2982 rdev->raid_disk = slot; 2983 if (test_bit(In_sync, &rdev->flags)) 2984 rdev->saved_raid_disk = slot; 2985 else 2986 rdev->saved_raid_disk = -1; 2987 clear_bit(In_sync, &rdev->flags); 2988 clear_bit(Bitmap_sync, &rdev->flags); 2989 err = rdev->mddev->pers-> 2990 hot_add_disk(rdev->mddev, rdev); 2991 if (err) { 2992 rdev->raid_disk = -1; 2993 return err; 2994 } else 2995 sysfs_notify_dirent_safe(rdev->sysfs_state); 2996 if (sysfs_link_rdev(rdev->mddev, rdev)) 2997 /* failure here is OK */; 2998 /* don't wakeup anyone, leave that to userspace. */ 2999 } else { 3000 if (slot >= rdev->mddev->raid_disks && 3001 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3002 return -ENOSPC; 3003 rdev->raid_disk = slot; 3004 /* assume it is working */ 3005 clear_bit(Faulty, &rdev->flags); 3006 clear_bit(WriteMostly, &rdev->flags); 3007 set_bit(In_sync, &rdev->flags); 3008 sysfs_notify_dirent_safe(rdev->sysfs_state); 3009 } 3010 return len; 3011 } 3012 3013 static struct rdev_sysfs_entry rdev_slot = 3014 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3015 3016 static ssize_t 3017 offset_show(struct md_rdev *rdev, char *page) 3018 { 3019 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3020 } 3021 3022 static ssize_t 3023 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3024 { 3025 unsigned long long offset; 3026 if (kstrtoull(buf, 10, &offset) < 0) 3027 return -EINVAL; 3028 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3029 return -EBUSY; 3030 if (rdev->sectors && rdev->mddev->external) 3031 /* Must set offset before size, so overlap checks 3032 * can be sane */ 3033 return -EBUSY; 3034 rdev->data_offset = offset; 3035 rdev->new_data_offset = offset; 3036 return len; 3037 } 3038 3039 static struct rdev_sysfs_entry rdev_offset = 3040 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3041 3042 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3043 { 3044 return sprintf(page, "%llu\n", 3045 (unsigned long long)rdev->new_data_offset); 3046 } 3047 3048 static ssize_t new_offset_store(struct md_rdev *rdev, 3049 const char *buf, size_t len) 3050 { 3051 unsigned long long new_offset; 3052 struct mddev *mddev = rdev->mddev; 3053 3054 if (kstrtoull(buf, 10, &new_offset) < 0) 3055 return -EINVAL; 3056 3057 if (mddev->sync_thread || 3058 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3059 return -EBUSY; 3060 if (new_offset == rdev->data_offset) 3061 /* reset is always permitted */ 3062 ; 3063 else if (new_offset > rdev->data_offset) { 3064 /* must not push array size beyond rdev_sectors */ 3065 if (new_offset - rdev->data_offset 3066 + mddev->dev_sectors > rdev->sectors) 3067 return -E2BIG; 3068 } 3069 /* Metadata worries about other space details. */ 3070 3071 /* decreasing the offset is inconsistent with a backwards 3072 * reshape. 3073 */ 3074 if (new_offset < rdev->data_offset && 3075 mddev->reshape_backwards) 3076 return -EINVAL; 3077 /* Increasing offset is inconsistent with forwards 3078 * reshape. reshape_direction should be set to 3079 * 'backwards' first. 3080 */ 3081 if (new_offset > rdev->data_offset && 3082 !mddev->reshape_backwards) 3083 return -EINVAL; 3084 3085 if (mddev->pers && mddev->persistent && 3086 !super_types[mddev->major_version] 3087 .allow_new_offset(rdev, new_offset)) 3088 return -E2BIG; 3089 rdev->new_data_offset = new_offset; 3090 if (new_offset > rdev->data_offset) 3091 mddev->reshape_backwards = 1; 3092 else if (new_offset < rdev->data_offset) 3093 mddev->reshape_backwards = 0; 3094 3095 return len; 3096 } 3097 static struct rdev_sysfs_entry rdev_new_offset = 3098 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3099 3100 static ssize_t 3101 rdev_size_show(struct md_rdev *rdev, char *page) 3102 { 3103 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3104 } 3105 3106 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3107 { 3108 /* check if two start/length pairs overlap */ 3109 if (s1+l1 <= s2) 3110 return 0; 3111 if (s2+l2 <= s1) 3112 return 0; 3113 return 1; 3114 } 3115 3116 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3117 { 3118 unsigned long long blocks; 3119 sector_t new; 3120 3121 if (kstrtoull(buf, 10, &blocks) < 0) 3122 return -EINVAL; 3123 3124 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3125 return -EINVAL; /* sector conversion overflow */ 3126 3127 new = blocks * 2; 3128 if (new != blocks * 2) 3129 return -EINVAL; /* unsigned long long to sector_t overflow */ 3130 3131 *sectors = new; 3132 return 0; 3133 } 3134 3135 static ssize_t 3136 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3137 { 3138 struct mddev *my_mddev = rdev->mddev; 3139 sector_t oldsectors = rdev->sectors; 3140 sector_t sectors; 3141 3142 if (test_bit(Journal, &rdev->flags)) 3143 return -EBUSY; 3144 if (strict_blocks_to_sectors(buf, §ors) < 0) 3145 return -EINVAL; 3146 if (rdev->data_offset != rdev->new_data_offset) 3147 return -EINVAL; /* too confusing */ 3148 if (my_mddev->pers && rdev->raid_disk >= 0) { 3149 if (my_mddev->persistent) { 3150 sectors = super_types[my_mddev->major_version]. 3151 rdev_size_change(rdev, sectors); 3152 if (!sectors) 3153 return -EBUSY; 3154 } else if (!sectors) 3155 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3156 rdev->data_offset; 3157 if (!my_mddev->pers->resize) 3158 /* Cannot change size for RAID0 or Linear etc */ 3159 return -EINVAL; 3160 } 3161 if (sectors < my_mddev->dev_sectors) 3162 return -EINVAL; /* component must fit device */ 3163 3164 rdev->sectors = sectors; 3165 if (sectors > oldsectors && my_mddev->external) { 3166 /* Need to check that all other rdevs with the same 3167 * ->bdev do not overlap. 'rcu' is sufficient to walk 3168 * the rdev lists safely. 3169 * This check does not provide a hard guarantee, it 3170 * just helps avoid dangerous mistakes. 3171 */ 3172 struct mddev *mddev; 3173 int overlap = 0; 3174 struct list_head *tmp; 3175 3176 rcu_read_lock(); 3177 for_each_mddev(mddev, tmp) { 3178 struct md_rdev *rdev2; 3179 3180 rdev_for_each(rdev2, mddev) 3181 if (rdev->bdev == rdev2->bdev && 3182 rdev != rdev2 && 3183 overlaps(rdev->data_offset, rdev->sectors, 3184 rdev2->data_offset, 3185 rdev2->sectors)) { 3186 overlap = 1; 3187 break; 3188 } 3189 if (overlap) { 3190 mddev_put(mddev); 3191 break; 3192 } 3193 } 3194 rcu_read_unlock(); 3195 if (overlap) { 3196 /* Someone else could have slipped in a size 3197 * change here, but doing so is just silly. 3198 * We put oldsectors back because we *know* it is 3199 * safe, and trust userspace not to race with 3200 * itself 3201 */ 3202 rdev->sectors = oldsectors; 3203 return -EBUSY; 3204 } 3205 } 3206 return len; 3207 } 3208 3209 static struct rdev_sysfs_entry rdev_size = 3210 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3211 3212 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3213 { 3214 unsigned long long recovery_start = rdev->recovery_offset; 3215 3216 if (test_bit(In_sync, &rdev->flags) || 3217 recovery_start == MaxSector) 3218 return sprintf(page, "none\n"); 3219 3220 return sprintf(page, "%llu\n", recovery_start); 3221 } 3222 3223 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3224 { 3225 unsigned long long recovery_start; 3226 3227 if (cmd_match(buf, "none")) 3228 recovery_start = MaxSector; 3229 else if (kstrtoull(buf, 10, &recovery_start)) 3230 return -EINVAL; 3231 3232 if (rdev->mddev->pers && 3233 rdev->raid_disk >= 0) 3234 return -EBUSY; 3235 3236 rdev->recovery_offset = recovery_start; 3237 if (recovery_start == MaxSector) 3238 set_bit(In_sync, &rdev->flags); 3239 else 3240 clear_bit(In_sync, &rdev->flags); 3241 return len; 3242 } 3243 3244 static struct rdev_sysfs_entry rdev_recovery_start = 3245 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3246 3247 /* sysfs access to bad-blocks list. 3248 * We present two files. 3249 * 'bad-blocks' lists sector numbers and lengths of ranges that 3250 * are recorded as bad. The list is truncated to fit within 3251 * the one-page limit of sysfs. 3252 * Writing "sector length" to this file adds an acknowledged 3253 * bad block list. 3254 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3255 * been acknowledged. Writing to this file adds bad blocks 3256 * without acknowledging them. This is largely for testing. 3257 */ 3258 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3259 { 3260 return badblocks_show(&rdev->badblocks, page, 0); 3261 } 3262 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3263 { 3264 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3265 /* Maybe that ack was all we needed */ 3266 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3267 wake_up(&rdev->blocked_wait); 3268 return rv; 3269 } 3270 static struct rdev_sysfs_entry rdev_bad_blocks = 3271 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3272 3273 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3274 { 3275 return badblocks_show(&rdev->badblocks, page, 1); 3276 } 3277 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3278 { 3279 return badblocks_store(&rdev->badblocks, page, len, 1); 3280 } 3281 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3282 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3283 3284 static ssize_t 3285 ppl_sector_show(struct md_rdev *rdev, char *page) 3286 { 3287 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3288 } 3289 3290 static ssize_t 3291 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3292 { 3293 unsigned long long sector; 3294 3295 if (kstrtoull(buf, 10, §or) < 0) 3296 return -EINVAL; 3297 if (sector != (sector_t)sector) 3298 return -EINVAL; 3299 3300 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3301 rdev->raid_disk >= 0) 3302 return -EBUSY; 3303 3304 if (rdev->mddev->persistent) { 3305 if (rdev->mddev->major_version == 0) 3306 return -EINVAL; 3307 if ((sector > rdev->sb_start && 3308 sector - rdev->sb_start > S16_MAX) || 3309 (sector < rdev->sb_start && 3310 rdev->sb_start - sector > -S16_MIN)) 3311 return -EINVAL; 3312 rdev->ppl.offset = sector - rdev->sb_start; 3313 } else if (!rdev->mddev->external) { 3314 return -EBUSY; 3315 } 3316 rdev->ppl.sector = sector; 3317 return len; 3318 } 3319 3320 static struct rdev_sysfs_entry rdev_ppl_sector = 3321 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3322 3323 static ssize_t 3324 ppl_size_show(struct md_rdev *rdev, char *page) 3325 { 3326 return sprintf(page, "%u\n", rdev->ppl.size); 3327 } 3328 3329 static ssize_t 3330 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3331 { 3332 unsigned int size; 3333 3334 if (kstrtouint(buf, 10, &size) < 0) 3335 return -EINVAL; 3336 3337 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3338 rdev->raid_disk >= 0) 3339 return -EBUSY; 3340 3341 if (rdev->mddev->persistent) { 3342 if (rdev->mddev->major_version == 0) 3343 return -EINVAL; 3344 if (size > U16_MAX) 3345 return -EINVAL; 3346 } else if (!rdev->mddev->external) { 3347 return -EBUSY; 3348 } 3349 rdev->ppl.size = size; 3350 return len; 3351 } 3352 3353 static struct rdev_sysfs_entry rdev_ppl_size = 3354 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3355 3356 static struct attribute *rdev_default_attrs[] = { 3357 &rdev_state.attr, 3358 &rdev_errors.attr, 3359 &rdev_slot.attr, 3360 &rdev_offset.attr, 3361 &rdev_new_offset.attr, 3362 &rdev_size.attr, 3363 &rdev_recovery_start.attr, 3364 &rdev_bad_blocks.attr, 3365 &rdev_unack_bad_blocks.attr, 3366 &rdev_ppl_sector.attr, 3367 &rdev_ppl_size.attr, 3368 NULL, 3369 }; 3370 static ssize_t 3371 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3372 { 3373 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3374 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3375 3376 if (!entry->show) 3377 return -EIO; 3378 if (!rdev->mddev) 3379 return -EBUSY; 3380 return entry->show(rdev, page); 3381 } 3382 3383 static ssize_t 3384 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3385 const char *page, size_t length) 3386 { 3387 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3388 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3389 ssize_t rv; 3390 struct mddev *mddev = rdev->mddev; 3391 3392 if (!entry->store) 3393 return -EIO; 3394 if (!capable(CAP_SYS_ADMIN)) 3395 return -EACCES; 3396 rv = mddev ? mddev_lock(mddev): -EBUSY; 3397 if (!rv) { 3398 if (rdev->mddev == NULL) 3399 rv = -EBUSY; 3400 else 3401 rv = entry->store(rdev, page, length); 3402 mddev_unlock(mddev); 3403 } 3404 return rv; 3405 } 3406 3407 static void rdev_free(struct kobject *ko) 3408 { 3409 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3410 kfree(rdev); 3411 } 3412 static const struct sysfs_ops rdev_sysfs_ops = { 3413 .show = rdev_attr_show, 3414 .store = rdev_attr_store, 3415 }; 3416 static struct kobj_type rdev_ktype = { 3417 .release = rdev_free, 3418 .sysfs_ops = &rdev_sysfs_ops, 3419 .default_attrs = rdev_default_attrs, 3420 }; 3421 3422 int md_rdev_init(struct md_rdev *rdev) 3423 { 3424 rdev->desc_nr = -1; 3425 rdev->saved_raid_disk = -1; 3426 rdev->raid_disk = -1; 3427 rdev->flags = 0; 3428 rdev->data_offset = 0; 3429 rdev->new_data_offset = 0; 3430 rdev->sb_events = 0; 3431 rdev->last_read_error = 0; 3432 rdev->sb_loaded = 0; 3433 rdev->bb_page = NULL; 3434 atomic_set(&rdev->nr_pending, 0); 3435 atomic_set(&rdev->read_errors, 0); 3436 atomic_set(&rdev->corrected_errors, 0); 3437 3438 INIT_LIST_HEAD(&rdev->same_set); 3439 init_waitqueue_head(&rdev->blocked_wait); 3440 3441 /* Add space to store bad block list. 3442 * This reserves the space even on arrays where it cannot 3443 * be used - I wonder if that matters 3444 */ 3445 return badblocks_init(&rdev->badblocks, 0); 3446 } 3447 EXPORT_SYMBOL_GPL(md_rdev_init); 3448 /* 3449 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3450 * 3451 * mark the device faulty if: 3452 * 3453 * - the device is nonexistent (zero size) 3454 * - the device has no valid superblock 3455 * 3456 * a faulty rdev _never_ has rdev->sb set. 3457 */ 3458 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3459 { 3460 char b[BDEVNAME_SIZE]; 3461 int err; 3462 struct md_rdev *rdev; 3463 sector_t size; 3464 3465 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3466 if (!rdev) 3467 return ERR_PTR(-ENOMEM); 3468 3469 err = md_rdev_init(rdev); 3470 if (err) 3471 goto abort_free; 3472 err = alloc_disk_sb(rdev); 3473 if (err) 3474 goto abort_free; 3475 3476 err = lock_rdev(rdev, newdev, super_format == -2); 3477 if (err) 3478 goto abort_free; 3479 3480 kobject_init(&rdev->kobj, &rdev_ktype); 3481 3482 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3483 if (!size) { 3484 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3485 bdevname(rdev->bdev,b)); 3486 err = -EINVAL; 3487 goto abort_free; 3488 } 3489 3490 if (super_format >= 0) { 3491 err = super_types[super_format]. 3492 load_super(rdev, NULL, super_minor); 3493 if (err == -EINVAL) { 3494 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3495 bdevname(rdev->bdev,b), 3496 super_format, super_minor); 3497 goto abort_free; 3498 } 3499 if (err < 0) { 3500 pr_warn("md: could not read %s's sb, not importing!\n", 3501 bdevname(rdev->bdev,b)); 3502 goto abort_free; 3503 } 3504 } 3505 3506 return rdev; 3507 3508 abort_free: 3509 if (rdev->bdev) 3510 unlock_rdev(rdev); 3511 md_rdev_clear(rdev); 3512 kfree(rdev); 3513 return ERR_PTR(err); 3514 } 3515 3516 /* 3517 * Check a full RAID array for plausibility 3518 */ 3519 3520 static void analyze_sbs(struct mddev *mddev) 3521 { 3522 int i; 3523 struct md_rdev *rdev, *freshest, *tmp; 3524 char b[BDEVNAME_SIZE]; 3525 3526 freshest = NULL; 3527 rdev_for_each_safe(rdev, tmp, mddev) 3528 switch (super_types[mddev->major_version]. 3529 load_super(rdev, freshest, mddev->minor_version)) { 3530 case 1: 3531 freshest = rdev; 3532 break; 3533 case 0: 3534 break; 3535 default: 3536 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3537 bdevname(rdev->bdev,b)); 3538 md_kick_rdev_from_array(rdev); 3539 } 3540 3541 super_types[mddev->major_version]. 3542 validate_super(mddev, freshest); 3543 3544 i = 0; 3545 rdev_for_each_safe(rdev, tmp, mddev) { 3546 if (mddev->max_disks && 3547 (rdev->desc_nr >= mddev->max_disks || 3548 i > mddev->max_disks)) { 3549 pr_warn("md: %s: %s: only %d devices permitted\n", 3550 mdname(mddev), bdevname(rdev->bdev, b), 3551 mddev->max_disks); 3552 md_kick_rdev_from_array(rdev); 3553 continue; 3554 } 3555 if (rdev != freshest) { 3556 if (super_types[mddev->major_version]. 3557 validate_super(mddev, rdev)) { 3558 pr_warn("md: kicking non-fresh %s from array!\n", 3559 bdevname(rdev->bdev,b)); 3560 md_kick_rdev_from_array(rdev); 3561 continue; 3562 } 3563 } 3564 if (mddev->level == LEVEL_MULTIPATH) { 3565 rdev->desc_nr = i++; 3566 rdev->raid_disk = rdev->desc_nr; 3567 set_bit(In_sync, &rdev->flags); 3568 } else if (rdev->raid_disk >= 3569 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3570 !test_bit(Journal, &rdev->flags)) { 3571 rdev->raid_disk = -1; 3572 clear_bit(In_sync, &rdev->flags); 3573 } 3574 } 3575 } 3576 3577 /* Read a fixed-point number. 3578 * Numbers in sysfs attributes should be in "standard" units where 3579 * possible, so time should be in seconds. 3580 * However we internally use a a much smaller unit such as 3581 * milliseconds or jiffies. 3582 * This function takes a decimal number with a possible fractional 3583 * component, and produces an integer which is the result of 3584 * multiplying that number by 10^'scale'. 3585 * all without any floating-point arithmetic. 3586 */ 3587 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3588 { 3589 unsigned long result = 0; 3590 long decimals = -1; 3591 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3592 if (*cp == '.') 3593 decimals = 0; 3594 else if (decimals < scale) { 3595 unsigned int value; 3596 value = *cp - '0'; 3597 result = result * 10 + value; 3598 if (decimals >= 0) 3599 decimals++; 3600 } 3601 cp++; 3602 } 3603 if (*cp == '\n') 3604 cp++; 3605 if (*cp) 3606 return -EINVAL; 3607 if (decimals < 0) 3608 decimals = 0; 3609 while (decimals < scale) { 3610 result *= 10; 3611 decimals ++; 3612 } 3613 *res = result; 3614 return 0; 3615 } 3616 3617 static ssize_t 3618 safe_delay_show(struct mddev *mddev, char *page) 3619 { 3620 int msec = (mddev->safemode_delay*1000)/HZ; 3621 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3622 } 3623 static ssize_t 3624 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3625 { 3626 unsigned long msec; 3627 3628 if (mddev_is_clustered(mddev)) { 3629 pr_warn("md: Safemode is disabled for clustered mode\n"); 3630 return -EINVAL; 3631 } 3632 3633 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3634 return -EINVAL; 3635 if (msec == 0) 3636 mddev->safemode_delay = 0; 3637 else { 3638 unsigned long old_delay = mddev->safemode_delay; 3639 unsigned long new_delay = (msec*HZ)/1000; 3640 3641 if (new_delay == 0) 3642 new_delay = 1; 3643 mddev->safemode_delay = new_delay; 3644 if (new_delay < old_delay || old_delay == 0) 3645 mod_timer(&mddev->safemode_timer, jiffies+1); 3646 } 3647 return len; 3648 } 3649 static struct md_sysfs_entry md_safe_delay = 3650 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3651 3652 static ssize_t 3653 level_show(struct mddev *mddev, char *page) 3654 { 3655 struct md_personality *p; 3656 int ret; 3657 spin_lock(&mddev->lock); 3658 p = mddev->pers; 3659 if (p) 3660 ret = sprintf(page, "%s\n", p->name); 3661 else if (mddev->clevel[0]) 3662 ret = sprintf(page, "%s\n", mddev->clevel); 3663 else if (mddev->level != LEVEL_NONE) 3664 ret = sprintf(page, "%d\n", mddev->level); 3665 else 3666 ret = 0; 3667 spin_unlock(&mddev->lock); 3668 return ret; 3669 } 3670 3671 static ssize_t 3672 level_store(struct mddev *mddev, const char *buf, size_t len) 3673 { 3674 char clevel[16]; 3675 ssize_t rv; 3676 size_t slen = len; 3677 struct md_personality *pers, *oldpers; 3678 long level; 3679 void *priv, *oldpriv; 3680 struct md_rdev *rdev; 3681 3682 if (slen == 0 || slen >= sizeof(clevel)) 3683 return -EINVAL; 3684 3685 rv = mddev_lock(mddev); 3686 if (rv) 3687 return rv; 3688 3689 if (mddev->pers == NULL) { 3690 strncpy(mddev->clevel, buf, slen); 3691 if (mddev->clevel[slen-1] == '\n') 3692 slen--; 3693 mddev->clevel[slen] = 0; 3694 mddev->level = LEVEL_NONE; 3695 rv = len; 3696 goto out_unlock; 3697 } 3698 rv = -EROFS; 3699 if (mddev->ro) 3700 goto out_unlock; 3701 3702 /* request to change the personality. Need to ensure: 3703 * - array is not engaged in resync/recovery/reshape 3704 * - old personality can be suspended 3705 * - new personality will access other array. 3706 */ 3707 3708 rv = -EBUSY; 3709 if (mddev->sync_thread || 3710 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3711 mddev->reshape_position != MaxSector || 3712 mddev->sysfs_active) 3713 goto out_unlock; 3714 3715 rv = -EINVAL; 3716 if (!mddev->pers->quiesce) { 3717 pr_warn("md: %s: %s does not support online personality change\n", 3718 mdname(mddev), mddev->pers->name); 3719 goto out_unlock; 3720 } 3721 3722 /* Now find the new personality */ 3723 strncpy(clevel, buf, slen); 3724 if (clevel[slen-1] == '\n') 3725 slen--; 3726 clevel[slen] = 0; 3727 if (kstrtol(clevel, 10, &level)) 3728 level = LEVEL_NONE; 3729 3730 if (request_module("md-%s", clevel) != 0) 3731 request_module("md-level-%s", clevel); 3732 spin_lock(&pers_lock); 3733 pers = find_pers(level, clevel); 3734 if (!pers || !try_module_get(pers->owner)) { 3735 spin_unlock(&pers_lock); 3736 pr_warn("md: personality %s not loaded\n", clevel); 3737 rv = -EINVAL; 3738 goto out_unlock; 3739 } 3740 spin_unlock(&pers_lock); 3741 3742 if (pers == mddev->pers) { 3743 /* Nothing to do! */ 3744 module_put(pers->owner); 3745 rv = len; 3746 goto out_unlock; 3747 } 3748 if (!pers->takeover) { 3749 module_put(pers->owner); 3750 pr_warn("md: %s: %s does not support personality takeover\n", 3751 mdname(mddev), clevel); 3752 rv = -EINVAL; 3753 goto out_unlock; 3754 } 3755 3756 rdev_for_each(rdev, mddev) 3757 rdev->new_raid_disk = rdev->raid_disk; 3758 3759 /* ->takeover must set new_* and/or delta_disks 3760 * if it succeeds, and may set them when it fails. 3761 */ 3762 priv = pers->takeover(mddev); 3763 if (IS_ERR(priv)) { 3764 mddev->new_level = mddev->level; 3765 mddev->new_layout = mddev->layout; 3766 mddev->new_chunk_sectors = mddev->chunk_sectors; 3767 mddev->raid_disks -= mddev->delta_disks; 3768 mddev->delta_disks = 0; 3769 mddev->reshape_backwards = 0; 3770 module_put(pers->owner); 3771 pr_warn("md: %s: %s would not accept array\n", 3772 mdname(mddev), clevel); 3773 rv = PTR_ERR(priv); 3774 goto out_unlock; 3775 } 3776 3777 /* Looks like we have a winner */ 3778 mddev_suspend(mddev); 3779 mddev_detach(mddev); 3780 3781 spin_lock(&mddev->lock); 3782 oldpers = mddev->pers; 3783 oldpriv = mddev->private; 3784 mddev->pers = pers; 3785 mddev->private = priv; 3786 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3787 mddev->level = mddev->new_level; 3788 mddev->layout = mddev->new_layout; 3789 mddev->chunk_sectors = mddev->new_chunk_sectors; 3790 mddev->delta_disks = 0; 3791 mddev->reshape_backwards = 0; 3792 mddev->degraded = 0; 3793 spin_unlock(&mddev->lock); 3794 3795 if (oldpers->sync_request == NULL && 3796 mddev->external) { 3797 /* We are converting from a no-redundancy array 3798 * to a redundancy array and metadata is managed 3799 * externally so we need to be sure that writes 3800 * won't block due to a need to transition 3801 * clean->dirty 3802 * until external management is started. 3803 */ 3804 mddev->in_sync = 0; 3805 mddev->safemode_delay = 0; 3806 mddev->safemode = 0; 3807 } 3808 3809 oldpers->free(mddev, oldpriv); 3810 3811 if (oldpers->sync_request == NULL && 3812 pers->sync_request != NULL) { 3813 /* need to add the md_redundancy_group */ 3814 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3815 pr_warn("md: cannot register extra attributes for %s\n", 3816 mdname(mddev)); 3817 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3818 } 3819 if (oldpers->sync_request != NULL && 3820 pers->sync_request == NULL) { 3821 /* need to remove the md_redundancy_group */ 3822 if (mddev->to_remove == NULL) 3823 mddev->to_remove = &md_redundancy_group; 3824 } 3825 3826 module_put(oldpers->owner); 3827 3828 rdev_for_each(rdev, mddev) { 3829 if (rdev->raid_disk < 0) 3830 continue; 3831 if (rdev->new_raid_disk >= mddev->raid_disks) 3832 rdev->new_raid_disk = -1; 3833 if (rdev->new_raid_disk == rdev->raid_disk) 3834 continue; 3835 sysfs_unlink_rdev(mddev, rdev); 3836 } 3837 rdev_for_each(rdev, mddev) { 3838 if (rdev->raid_disk < 0) 3839 continue; 3840 if (rdev->new_raid_disk == rdev->raid_disk) 3841 continue; 3842 rdev->raid_disk = rdev->new_raid_disk; 3843 if (rdev->raid_disk < 0) 3844 clear_bit(In_sync, &rdev->flags); 3845 else { 3846 if (sysfs_link_rdev(mddev, rdev)) 3847 pr_warn("md: cannot register rd%d for %s after level change\n", 3848 rdev->raid_disk, mdname(mddev)); 3849 } 3850 } 3851 3852 if (pers->sync_request == NULL) { 3853 /* this is now an array without redundancy, so 3854 * it must always be in_sync 3855 */ 3856 mddev->in_sync = 1; 3857 del_timer_sync(&mddev->safemode_timer); 3858 } 3859 blk_set_stacking_limits(&mddev->queue->limits); 3860 pers->run(mddev); 3861 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3862 mddev_resume(mddev); 3863 if (!mddev->thread) 3864 md_update_sb(mddev, 1); 3865 sysfs_notify(&mddev->kobj, NULL, "level"); 3866 md_new_event(mddev); 3867 rv = len; 3868 out_unlock: 3869 mddev_unlock(mddev); 3870 return rv; 3871 } 3872 3873 static struct md_sysfs_entry md_level = 3874 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3875 3876 static ssize_t 3877 layout_show(struct mddev *mddev, char *page) 3878 { 3879 /* just a number, not meaningful for all levels */ 3880 if (mddev->reshape_position != MaxSector && 3881 mddev->layout != mddev->new_layout) 3882 return sprintf(page, "%d (%d)\n", 3883 mddev->new_layout, mddev->layout); 3884 return sprintf(page, "%d\n", mddev->layout); 3885 } 3886 3887 static ssize_t 3888 layout_store(struct mddev *mddev, const char *buf, size_t len) 3889 { 3890 unsigned int n; 3891 int err; 3892 3893 err = kstrtouint(buf, 10, &n); 3894 if (err < 0) 3895 return err; 3896 err = mddev_lock(mddev); 3897 if (err) 3898 return err; 3899 3900 if (mddev->pers) { 3901 if (mddev->pers->check_reshape == NULL) 3902 err = -EBUSY; 3903 else if (mddev->ro) 3904 err = -EROFS; 3905 else { 3906 mddev->new_layout = n; 3907 err = mddev->pers->check_reshape(mddev); 3908 if (err) 3909 mddev->new_layout = mddev->layout; 3910 } 3911 } else { 3912 mddev->new_layout = n; 3913 if (mddev->reshape_position == MaxSector) 3914 mddev->layout = n; 3915 } 3916 mddev_unlock(mddev); 3917 return err ?: len; 3918 } 3919 static struct md_sysfs_entry md_layout = 3920 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3921 3922 static ssize_t 3923 raid_disks_show(struct mddev *mddev, char *page) 3924 { 3925 if (mddev->raid_disks == 0) 3926 return 0; 3927 if (mddev->reshape_position != MaxSector && 3928 mddev->delta_disks != 0) 3929 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3930 mddev->raid_disks - mddev->delta_disks); 3931 return sprintf(page, "%d\n", mddev->raid_disks); 3932 } 3933 3934 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3935 3936 static ssize_t 3937 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3938 { 3939 unsigned int n; 3940 int err; 3941 3942 err = kstrtouint(buf, 10, &n); 3943 if (err < 0) 3944 return err; 3945 3946 err = mddev_lock(mddev); 3947 if (err) 3948 return err; 3949 if (mddev->pers) 3950 err = update_raid_disks(mddev, n); 3951 else if (mddev->reshape_position != MaxSector) { 3952 struct md_rdev *rdev; 3953 int olddisks = mddev->raid_disks - mddev->delta_disks; 3954 3955 err = -EINVAL; 3956 rdev_for_each(rdev, mddev) { 3957 if (olddisks < n && 3958 rdev->data_offset < rdev->new_data_offset) 3959 goto out_unlock; 3960 if (olddisks > n && 3961 rdev->data_offset > rdev->new_data_offset) 3962 goto out_unlock; 3963 } 3964 err = 0; 3965 mddev->delta_disks = n - olddisks; 3966 mddev->raid_disks = n; 3967 mddev->reshape_backwards = (mddev->delta_disks < 0); 3968 } else 3969 mddev->raid_disks = n; 3970 out_unlock: 3971 mddev_unlock(mddev); 3972 return err ? err : len; 3973 } 3974 static struct md_sysfs_entry md_raid_disks = 3975 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3976 3977 static ssize_t 3978 chunk_size_show(struct mddev *mddev, char *page) 3979 { 3980 if (mddev->reshape_position != MaxSector && 3981 mddev->chunk_sectors != mddev->new_chunk_sectors) 3982 return sprintf(page, "%d (%d)\n", 3983 mddev->new_chunk_sectors << 9, 3984 mddev->chunk_sectors << 9); 3985 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3986 } 3987 3988 static ssize_t 3989 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3990 { 3991 unsigned long n; 3992 int err; 3993 3994 err = kstrtoul(buf, 10, &n); 3995 if (err < 0) 3996 return err; 3997 3998 err = mddev_lock(mddev); 3999 if (err) 4000 return err; 4001 if (mddev->pers) { 4002 if (mddev->pers->check_reshape == NULL) 4003 err = -EBUSY; 4004 else if (mddev->ro) 4005 err = -EROFS; 4006 else { 4007 mddev->new_chunk_sectors = n >> 9; 4008 err = mddev->pers->check_reshape(mddev); 4009 if (err) 4010 mddev->new_chunk_sectors = mddev->chunk_sectors; 4011 } 4012 } else { 4013 mddev->new_chunk_sectors = n >> 9; 4014 if (mddev->reshape_position == MaxSector) 4015 mddev->chunk_sectors = n >> 9; 4016 } 4017 mddev_unlock(mddev); 4018 return err ?: len; 4019 } 4020 static struct md_sysfs_entry md_chunk_size = 4021 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4022 4023 static ssize_t 4024 resync_start_show(struct mddev *mddev, char *page) 4025 { 4026 if (mddev->recovery_cp == MaxSector) 4027 return sprintf(page, "none\n"); 4028 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4029 } 4030 4031 static ssize_t 4032 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4033 { 4034 unsigned long long n; 4035 int err; 4036 4037 if (cmd_match(buf, "none")) 4038 n = MaxSector; 4039 else { 4040 err = kstrtoull(buf, 10, &n); 4041 if (err < 0) 4042 return err; 4043 if (n != (sector_t)n) 4044 return -EINVAL; 4045 } 4046 4047 err = mddev_lock(mddev); 4048 if (err) 4049 return err; 4050 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4051 err = -EBUSY; 4052 4053 if (!err) { 4054 mddev->recovery_cp = n; 4055 if (mddev->pers) 4056 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4057 } 4058 mddev_unlock(mddev); 4059 return err ?: len; 4060 } 4061 static struct md_sysfs_entry md_resync_start = 4062 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4063 resync_start_show, resync_start_store); 4064 4065 /* 4066 * The array state can be: 4067 * 4068 * clear 4069 * No devices, no size, no level 4070 * Equivalent to STOP_ARRAY ioctl 4071 * inactive 4072 * May have some settings, but array is not active 4073 * all IO results in error 4074 * When written, doesn't tear down array, but just stops it 4075 * suspended (not supported yet) 4076 * All IO requests will block. The array can be reconfigured. 4077 * Writing this, if accepted, will block until array is quiescent 4078 * readonly 4079 * no resync can happen. no superblocks get written. 4080 * write requests fail 4081 * read-auto 4082 * like readonly, but behaves like 'clean' on a write request. 4083 * 4084 * clean - no pending writes, but otherwise active. 4085 * When written to inactive array, starts without resync 4086 * If a write request arrives then 4087 * if metadata is known, mark 'dirty' and switch to 'active'. 4088 * if not known, block and switch to write-pending 4089 * If written to an active array that has pending writes, then fails. 4090 * active 4091 * fully active: IO and resync can be happening. 4092 * When written to inactive array, starts with resync 4093 * 4094 * write-pending 4095 * clean, but writes are blocked waiting for 'active' to be written. 4096 * 4097 * active-idle 4098 * like active, but no writes have been seen for a while (100msec). 4099 * 4100 */ 4101 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4102 write_pending, active_idle, bad_word}; 4103 static char *array_states[] = { 4104 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4105 "write-pending", "active-idle", NULL }; 4106 4107 static int match_word(const char *word, char **list) 4108 { 4109 int n; 4110 for (n=0; list[n]; n++) 4111 if (cmd_match(word, list[n])) 4112 break; 4113 return n; 4114 } 4115 4116 static ssize_t 4117 array_state_show(struct mddev *mddev, char *page) 4118 { 4119 enum array_state st = inactive; 4120 4121 if (mddev->pers) 4122 switch(mddev->ro) { 4123 case 1: 4124 st = readonly; 4125 break; 4126 case 2: 4127 st = read_auto; 4128 break; 4129 case 0: 4130 spin_lock(&mddev->lock); 4131 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4132 st = write_pending; 4133 else if (mddev->in_sync) 4134 st = clean; 4135 else if (mddev->safemode) 4136 st = active_idle; 4137 else 4138 st = active; 4139 spin_unlock(&mddev->lock); 4140 } 4141 else { 4142 if (list_empty(&mddev->disks) && 4143 mddev->raid_disks == 0 && 4144 mddev->dev_sectors == 0) 4145 st = clear; 4146 else 4147 st = inactive; 4148 } 4149 return sprintf(page, "%s\n", array_states[st]); 4150 } 4151 4152 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4153 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4154 static int do_md_run(struct mddev *mddev); 4155 static int restart_array(struct mddev *mddev); 4156 4157 static ssize_t 4158 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4159 { 4160 int err = 0; 4161 enum array_state st = match_word(buf, array_states); 4162 4163 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4164 /* don't take reconfig_mutex when toggling between 4165 * clean and active 4166 */ 4167 spin_lock(&mddev->lock); 4168 if (st == active) { 4169 restart_array(mddev); 4170 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4171 md_wakeup_thread(mddev->thread); 4172 wake_up(&mddev->sb_wait); 4173 } else /* st == clean */ { 4174 restart_array(mddev); 4175 if (!set_in_sync(mddev)) 4176 err = -EBUSY; 4177 } 4178 if (!err) 4179 sysfs_notify_dirent_safe(mddev->sysfs_state); 4180 spin_unlock(&mddev->lock); 4181 return err ?: len; 4182 } 4183 err = mddev_lock(mddev); 4184 if (err) 4185 return err; 4186 err = -EINVAL; 4187 switch(st) { 4188 case bad_word: 4189 break; 4190 case clear: 4191 /* stopping an active array */ 4192 err = do_md_stop(mddev, 0, NULL); 4193 break; 4194 case inactive: 4195 /* stopping an active array */ 4196 if (mddev->pers) 4197 err = do_md_stop(mddev, 2, NULL); 4198 else 4199 err = 0; /* already inactive */ 4200 break; 4201 case suspended: 4202 break; /* not supported yet */ 4203 case readonly: 4204 if (mddev->pers) 4205 err = md_set_readonly(mddev, NULL); 4206 else { 4207 mddev->ro = 1; 4208 set_disk_ro(mddev->gendisk, 1); 4209 err = do_md_run(mddev); 4210 } 4211 break; 4212 case read_auto: 4213 if (mddev->pers) { 4214 if (mddev->ro == 0) 4215 err = md_set_readonly(mddev, NULL); 4216 else if (mddev->ro == 1) 4217 err = restart_array(mddev); 4218 if (err == 0) { 4219 mddev->ro = 2; 4220 set_disk_ro(mddev->gendisk, 0); 4221 } 4222 } else { 4223 mddev->ro = 2; 4224 err = do_md_run(mddev); 4225 } 4226 break; 4227 case clean: 4228 if (mddev->pers) { 4229 err = restart_array(mddev); 4230 if (err) 4231 break; 4232 spin_lock(&mddev->lock); 4233 if (!set_in_sync(mddev)) 4234 err = -EBUSY; 4235 spin_unlock(&mddev->lock); 4236 } else 4237 err = -EINVAL; 4238 break; 4239 case active: 4240 if (mddev->pers) { 4241 err = restart_array(mddev); 4242 if (err) 4243 break; 4244 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4245 wake_up(&mddev->sb_wait); 4246 err = 0; 4247 } else { 4248 mddev->ro = 0; 4249 set_disk_ro(mddev->gendisk, 0); 4250 err = do_md_run(mddev); 4251 } 4252 break; 4253 case write_pending: 4254 case active_idle: 4255 /* these cannot be set */ 4256 break; 4257 } 4258 4259 if (!err) { 4260 if (mddev->hold_active == UNTIL_IOCTL) 4261 mddev->hold_active = 0; 4262 sysfs_notify_dirent_safe(mddev->sysfs_state); 4263 } 4264 mddev_unlock(mddev); 4265 return err ?: len; 4266 } 4267 static struct md_sysfs_entry md_array_state = 4268 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4269 4270 static ssize_t 4271 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4272 return sprintf(page, "%d\n", 4273 atomic_read(&mddev->max_corr_read_errors)); 4274 } 4275 4276 static ssize_t 4277 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4278 { 4279 unsigned int n; 4280 int rv; 4281 4282 rv = kstrtouint(buf, 10, &n); 4283 if (rv < 0) 4284 return rv; 4285 atomic_set(&mddev->max_corr_read_errors, n); 4286 return len; 4287 } 4288 4289 static struct md_sysfs_entry max_corr_read_errors = 4290 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4291 max_corrected_read_errors_store); 4292 4293 static ssize_t 4294 null_show(struct mddev *mddev, char *page) 4295 { 4296 return -EINVAL; 4297 } 4298 4299 static ssize_t 4300 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4301 { 4302 /* buf must be %d:%d\n? giving major and minor numbers */ 4303 /* The new device is added to the array. 4304 * If the array has a persistent superblock, we read the 4305 * superblock to initialise info and check validity. 4306 * Otherwise, only checking done is that in bind_rdev_to_array, 4307 * which mainly checks size. 4308 */ 4309 char *e; 4310 int major = simple_strtoul(buf, &e, 10); 4311 int minor; 4312 dev_t dev; 4313 struct md_rdev *rdev; 4314 int err; 4315 4316 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4317 return -EINVAL; 4318 minor = simple_strtoul(e+1, &e, 10); 4319 if (*e && *e != '\n') 4320 return -EINVAL; 4321 dev = MKDEV(major, minor); 4322 if (major != MAJOR(dev) || 4323 minor != MINOR(dev)) 4324 return -EOVERFLOW; 4325 4326 flush_workqueue(md_misc_wq); 4327 4328 err = mddev_lock(mddev); 4329 if (err) 4330 return err; 4331 if (mddev->persistent) { 4332 rdev = md_import_device(dev, mddev->major_version, 4333 mddev->minor_version); 4334 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4335 struct md_rdev *rdev0 4336 = list_entry(mddev->disks.next, 4337 struct md_rdev, same_set); 4338 err = super_types[mddev->major_version] 4339 .load_super(rdev, rdev0, mddev->minor_version); 4340 if (err < 0) 4341 goto out; 4342 } 4343 } else if (mddev->external) 4344 rdev = md_import_device(dev, -2, -1); 4345 else 4346 rdev = md_import_device(dev, -1, -1); 4347 4348 if (IS_ERR(rdev)) { 4349 mddev_unlock(mddev); 4350 return PTR_ERR(rdev); 4351 } 4352 err = bind_rdev_to_array(rdev, mddev); 4353 out: 4354 if (err) 4355 export_rdev(rdev); 4356 mddev_unlock(mddev); 4357 if (!err) 4358 md_new_event(mddev); 4359 return err ? err : len; 4360 } 4361 4362 static struct md_sysfs_entry md_new_device = 4363 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4364 4365 static ssize_t 4366 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4367 { 4368 char *end; 4369 unsigned long chunk, end_chunk; 4370 int err; 4371 4372 err = mddev_lock(mddev); 4373 if (err) 4374 return err; 4375 if (!mddev->bitmap) 4376 goto out; 4377 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4378 while (*buf) { 4379 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4380 if (buf == end) break; 4381 if (*end == '-') { /* range */ 4382 buf = end + 1; 4383 end_chunk = simple_strtoul(buf, &end, 0); 4384 if (buf == end) break; 4385 } 4386 if (*end && !isspace(*end)) break; 4387 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4388 buf = skip_spaces(end); 4389 } 4390 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4391 out: 4392 mddev_unlock(mddev); 4393 return len; 4394 } 4395 4396 static struct md_sysfs_entry md_bitmap = 4397 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4398 4399 static ssize_t 4400 size_show(struct mddev *mddev, char *page) 4401 { 4402 return sprintf(page, "%llu\n", 4403 (unsigned long long)mddev->dev_sectors / 2); 4404 } 4405 4406 static int update_size(struct mddev *mddev, sector_t num_sectors); 4407 4408 static ssize_t 4409 size_store(struct mddev *mddev, const char *buf, size_t len) 4410 { 4411 /* If array is inactive, we can reduce the component size, but 4412 * not increase it (except from 0). 4413 * If array is active, we can try an on-line resize 4414 */ 4415 sector_t sectors; 4416 int err = strict_blocks_to_sectors(buf, §ors); 4417 4418 if (err < 0) 4419 return err; 4420 err = mddev_lock(mddev); 4421 if (err) 4422 return err; 4423 if (mddev->pers) { 4424 err = update_size(mddev, sectors); 4425 if (err == 0) 4426 md_update_sb(mddev, 1); 4427 } else { 4428 if (mddev->dev_sectors == 0 || 4429 mddev->dev_sectors > sectors) 4430 mddev->dev_sectors = sectors; 4431 else 4432 err = -ENOSPC; 4433 } 4434 mddev_unlock(mddev); 4435 return err ? err : len; 4436 } 4437 4438 static struct md_sysfs_entry md_size = 4439 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4440 4441 /* Metadata version. 4442 * This is one of 4443 * 'none' for arrays with no metadata (good luck...) 4444 * 'external' for arrays with externally managed metadata, 4445 * or N.M for internally known formats 4446 */ 4447 static ssize_t 4448 metadata_show(struct mddev *mddev, char *page) 4449 { 4450 if (mddev->persistent) 4451 return sprintf(page, "%d.%d\n", 4452 mddev->major_version, mddev->minor_version); 4453 else if (mddev->external) 4454 return sprintf(page, "external:%s\n", mddev->metadata_type); 4455 else 4456 return sprintf(page, "none\n"); 4457 } 4458 4459 static ssize_t 4460 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4461 { 4462 int major, minor; 4463 char *e; 4464 int err; 4465 /* Changing the details of 'external' metadata is 4466 * always permitted. Otherwise there must be 4467 * no devices attached to the array. 4468 */ 4469 4470 err = mddev_lock(mddev); 4471 if (err) 4472 return err; 4473 err = -EBUSY; 4474 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4475 ; 4476 else if (!list_empty(&mddev->disks)) 4477 goto out_unlock; 4478 4479 err = 0; 4480 if (cmd_match(buf, "none")) { 4481 mddev->persistent = 0; 4482 mddev->external = 0; 4483 mddev->major_version = 0; 4484 mddev->minor_version = 90; 4485 goto out_unlock; 4486 } 4487 if (strncmp(buf, "external:", 9) == 0) { 4488 size_t namelen = len-9; 4489 if (namelen >= sizeof(mddev->metadata_type)) 4490 namelen = sizeof(mddev->metadata_type)-1; 4491 strncpy(mddev->metadata_type, buf+9, namelen); 4492 mddev->metadata_type[namelen] = 0; 4493 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4494 mddev->metadata_type[--namelen] = 0; 4495 mddev->persistent = 0; 4496 mddev->external = 1; 4497 mddev->major_version = 0; 4498 mddev->minor_version = 90; 4499 goto out_unlock; 4500 } 4501 major = simple_strtoul(buf, &e, 10); 4502 err = -EINVAL; 4503 if (e==buf || *e != '.') 4504 goto out_unlock; 4505 buf = e+1; 4506 minor = simple_strtoul(buf, &e, 10); 4507 if (e==buf || (*e && *e != '\n') ) 4508 goto out_unlock; 4509 err = -ENOENT; 4510 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4511 goto out_unlock; 4512 mddev->major_version = major; 4513 mddev->minor_version = minor; 4514 mddev->persistent = 1; 4515 mddev->external = 0; 4516 err = 0; 4517 out_unlock: 4518 mddev_unlock(mddev); 4519 return err ?: len; 4520 } 4521 4522 static struct md_sysfs_entry md_metadata = 4523 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4524 4525 static ssize_t 4526 action_show(struct mddev *mddev, char *page) 4527 { 4528 char *type = "idle"; 4529 unsigned long recovery = mddev->recovery; 4530 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4531 type = "frozen"; 4532 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4533 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4534 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4535 type = "reshape"; 4536 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4537 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4538 type = "resync"; 4539 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4540 type = "check"; 4541 else 4542 type = "repair"; 4543 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4544 type = "recover"; 4545 else if (mddev->reshape_position != MaxSector) 4546 type = "reshape"; 4547 } 4548 return sprintf(page, "%s\n", type); 4549 } 4550 4551 static ssize_t 4552 action_store(struct mddev *mddev, const char *page, size_t len) 4553 { 4554 if (!mddev->pers || !mddev->pers->sync_request) 4555 return -EINVAL; 4556 4557 4558 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4559 if (cmd_match(page, "frozen")) 4560 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4561 else 4562 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4563 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4564 mddev_lock(mddev) == 0) { 4565 flush_workqueue(md_misc_wq); 4566 if (mddev->sync_thread) { 4567 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4568 md_reap_sync_thread(mddev); 4569 } 4570 mddev_unlock(mddev); 4571 } 4572 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4573 return -EBUSY; 4574 else if (cmd_match(page, "resync")) 4575 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4576 else if (cmd_match(page, "recover")) { 4577 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4578 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4579 } else if (cmd_match(page, "reshape")) { 4580 int err; 4581 if (mddev->pers->start_reshape == NULL) 4582 return -EINVAL; 4583 err = mddev_lock(mddev); 4584 if (!err) { 4585 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4586 err = -EBUSY; 4587 else { 4588 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4589 err = mddev->pers->start_reshape(mddev); 4590 } 4591 mddev_unlock(mddev); 4592 } 4593 if (err) 4594 return err; 4595 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4596 } else { 4597 if (cmd_match(page, "check")) 4598 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4599 else if (!cmd_match(page, "repair")) 4600 return -EINVAL; 4601 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4602 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4603 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4604 } 4605 if (mddev->ro == 2) { 4606 /* A write to sync_action is enough to justify 4607 * canceling read-auto mode 4608 */ 4609 mddev->ro = 0; 4610 md_wakeup_thread(mddev->sync_thread); 4611 } 4612 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4613 md_wakeup_thread(mddev->thread); 4614 sysfs_notify_dirent_safe(mddev->sysfs_action); 4615 return len; 4616 } 4617 4618 static struct md_sysfs_entry md_scan_mode = 4619 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4620 4621 static ssize_t 4622 last_sync_action_show(struct mddev *mddev, char *page) 4623 { 4624 return sprintf(page, "%s\n", mddev->last_sync_action); 4625 } 4626 4627 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4628 4629 static ssize_t 4630 mismatch_cnt_show(struct mddev *mddev, char *page) 4631 { 4632 return sprintf(page, "%llu\n", 4633 (unsigned long long) 4634 atomic64_read(&mddev->resync_mismatches)); 4635 } 4636 4637 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4638 4639 static ssize_t 4640 sync_min_show(struct mddev *mddev, char *page) 4641 { 4642 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4643 mddev->sync_speed_min ? "local": "system"); 4644 } 4645 4646 static ssize_t 4647 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4648 { 4649 unsigned int min; 4650 int rv; 4651 4652 if (strncmp(buf, "system", 6)==0) { 4653 min = 0; 4654 } else { 4655 rv = kstrtouint(buf, 10, &min); 4656 if (rv < 0) 4657 return rv; 4658 if (min == 0) 4659 return -EINVAL; 4660 } 4661 mddev->sync_speed_min = min; 4662 return len; 4663 } 4664 4665 static struct md_sysfs_entry md_sync_min = 4666 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4667 4668 static ssize_t 4669 sync_max_show(struct mddev *mddev, char *page) 4670 { 4671 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4672 mddev->sync_speed_max ? "local": "system"); 4673 } 4674 4675 static ssize_t 4676 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4677 { 4678 unsigned int max; 4679 int rv; 4680 4681 if (strncmp(buf, "system", 6)==0) { 4682 max = 0; 4683 } else { 4684 rv = kstrtouint(buf, 10, &max); 4685 if (rv < 0) 4686 return rv; 4687 if (max == 0) 4688 return -EINVAL; 4689 } 4690 mddev->sync_speed_max = max; 4691 return len; 4692 } 4693 4694 static struct md_sysfs_entry md_sync_max = 4695 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4696 4697 static ssize_t 4698 degraded_show(struct mddev *mddev, char *page) 4699 { 4700 return sprintf(page, "%d\n", mddev->degraded); 4701 } 4702 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4703 4704 static ssize_t 4705 sync_force_parallel_show(struct mddev *mddev, char *page) 4706 { 4707 return sprintf(page, "%d\n", mddev->parallel_resync); 4708 } 4709 4710 static ssize_t 4711 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4712 { 4713 long n; 4714 4715 if (kstrtol(buf, 10, &n)) 4716 return -EINVAL; 4717 4718 if (n != 0 && n != 1) 4719 return -EINVAL; 4720 4721 mddev->parallel_resync = n; 4722 4723 if (mddev->sync_thread) 4724 wake_up(&resync_wait); 4725 4726 return len; 4727 } 4728 4729 /* force parallel resync, even with shared block devices */ 4730 static struct md_sysfs_entry md_sync_force_parallel = 4731 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4732 sync_force_parallel_show, sync_force_parallel_store); 4733 4734 static ssize_t 4735 sync_speed_show(struct mddev *mddev, char *page) 4736 { 4737 unsigned long resync, dt, db; 4738 if (mddev->curr_resync == 0) 4739 return sprintf(page, "none\n"); 4740 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4741 dt = (jiffies - mddev->resync_mark) / HZ; 4742 if (!dt) dt++; 4743 db = resync - mddev->resync_mark_cnt; 4744 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4745 } 4746 4747 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4748 4749 static ssize_t 4750 sync_completed_show(struct mddev *mddev, char *page) 4751 { 4752 unsigned long long max_sectors, resync; 4753 4754 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4755 return sprintf(page, "none\n"); 4756 4757 if (mddev->curr_resync == 1 || 4758 mddev->curr_resync == 2) 4759 return sprintf(page, "delayed\n"); 4760 4761 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4762 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4763 max_sectors = mddev->resync_max_sectors; 4764 else 4765 max_sectors = mddev->dev_sectors; 4766 4767 resync = mddev->curr_resync_completed; 4768 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4769 } 4770 4771 static struct md_sysfs_entry md_sync_completed = 4772 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4773 4774 static ssize_t 4775 min_sync_show(struct mddev *mddev, char *page) 4776 { 4777 return sprintf(page, "%llu\n", 4778 (unsigned long long)mddev->resync_min); 4779 } 4780 static ssize_t 4781 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4782 { 4783 unsigned long long min; 4784 int err; 4785 4786 if (kstrtoull(buf, 10, &min)) 4787 return -EINVAL; 4788 4789 spin_lock(&mddev->lock); 4790 err = -EINVAL; 4791 if (min > mddev->resync_max) 4792 goto out_unlock; 4793 4794 err = -EBUSY; 4795 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4796 goto out_unlock; 4797 4798 /* Round down to multiple of 4K for safety */ 4799 mddev->resync_min = round_down(min, 8); 4800 err = 0; 4801 4802 out_unlock: 4803 spin_unlock(&mddev->lock); 4804 return err ?: len; 4805 } 4806 4807 static struct md_sysfs_entry md_min_sync = 4808 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4809 4810 static ssize_t 4811 max_sync_show(struct mddev *mddev, char *page) 4812 { 4813 if (mddev->resync_max == MaxSector) 4814 return sprintf(page, "max\n"); 4815 else 4816 return sprintf(page, "%llu\n", 4817 (unsigned long long)mddev->resync_max); 4818 } 4819 static ssize_t 4820 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4821 { 4822 int err; 4823 spin_lock(&mddev->lock); 4824 if (strncmp(buf, "max", 3) == 0) 4825 mddev->resync_max = MaxSector; 4826 else { 4827 unsigned long long max; 4828 int chunk; 4829 4830 err = -EINVAL; 4831 if (kstrtoull(buf, 10, &max)) 4832 goto out_unlock; 4833 if (max < mddev->resync_min) 4834 goto out_unlock; 4835 4836 err = -EBUSY; 4837 if (max < mddev->resync_max && 4838 mddev->ro == 0 && 4839 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4840 goto out_unlock; 4841 4842 /* Must be a multiple of chunk_size */ 4843 chunk = mddev->chunk_sectors; 4844 if (chunk) { 4845 sector_t temp = max; 4846 4847 err = -EINVAL; 4848 if (sector_div(temp, chunk)) 4849 goto out_unlock; 4850 } 4851 mddev->resync_max = max; 4852 } 4853 wake_up(&mddev->recovery_wait); 4854 err = 0; 4855 out_unlock: 4856 spin_unlock(&mddev->lock); 4857 return err ?: len; 4858 } 4859 4860 static struct md_sysfs_entry md_max_sync = 4861 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4862 4863 static ssize_t 4864 suspend_lo_show(struct mddev *mddev, char *page) 4865 { 4866 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4867 } 4868 4869 static ssize_t 4870 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4871 { 4872 unsigned long long new; 4873 int err; 4874 4875 err = kstrtoull(buf, 10, &new); 4876 if (err < 0) 4877 return err; 4878 if (new != (sector_t)new) 4879 return -EINVAL; 4880 4881 err = mddev_lock(mddev); 4882 if (err) 4883 return err; 4884 err = -EINVAL; 4885 if (mddev->pers == NULL || 4886 mddev->pers->quiesce == NULL) 4887 goto unlock; 4888 mddev_suspend(mddev); 4889 mddev->suspend_lo = new; 4890 mddev_resume(mddev); 4891 4892 err = 0; 4893 unlock: 4894 mddev_unlock(mddev); 4895 return err ?: len; 4896 } 4897 static struct md_sysfs_entry md_suspend_lo = 4898 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4899 4900 static ssize_t 4901 suspend_hi_show(struct mddev *mddev, char *page) 4902 { 4903 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4904 } 4905 4906 static ssize_t 4907 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4908 { 4909 unsigned long long new; 4910 int err; 4911 4912 err = kstrtoull(buf, 10, &new); 4913 if (err < 0) 4914 return err; 4915 if (new != (sector_t)new) 4916 return -EINVAL; 4917 4918 err = mddev_lock(mddev); 4919 if (err) 4920 return err; 4921 err = -EINVAL; 4922 if (mddev->pers == NULL) 4923 goto unlock; 4924 4925 mddev_suspend(mddev); 4926 mddev->suspend_hi = new; 4927 mddev_resume(mddev); 4928 4929 err = 0; 4930 unlock: 4931 mddev_unlock(mddev); 4932 return err ?: len; 4933 } 4934 static struct md_sysfs_entry md_suspend_hi = 4935 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4936 4937 static ssize_t 4938 reshape_position_show(struct mddev *mddev, char *page) 4939 { 4940 if (mddev->reshape_position != MaxSector) 4941 return sprintf(page, "%llu\n", 4942 (unsigned long long)mddev->reshape_position); 4943 strcpy(page, "none\n"); 4944 return 5; 4945 } 4946 4947 static ssize_t 4948 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4949 { 4950 struct md_rdev *rdev; 4951 unsigned long long new; 4952 int err; 4953 4954 err = kstrtoull(buf, 10, &new); 4955 if (err < 0) 4956 return err; 4957 if (new != (sector_t)new) 4958 return -EINVAL; 4959 err = mddev_lock(mddev); 4960 if (err) 4961 return err; 4962 err = -EBUSY; 4963 if (mddev->pers) 4964 goto unlock; 4965 mddev->reshape_position = new; 4966 mddev->delta_disks = 0; 4967 mddev->reshape_backwards = 0; 4968 mddev->new_level = mddev->level; 4969 mddev->new_layout = mddev->layout; 4970 mddev->new_chunk_sectors = mddev->chunk_sectors; 4971 rdev_for_each(rdev, mddev) 4972 rdev->new_data_offset = rdev->data_offset; 4973 err = 0; 4974 unlock: 4975 mddev_unlock(mddev); 4976 return err ?: len; 4977 } 4978 4979 static struct md_sysfs_entry md_reshape_position = 4980 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4981 reshape_position_store); 4982 4983 static ssize_t 4984 reshape_direction_show(struct mddev *mddev, char *page) 4985 { 4986 return sprintf(page, "%s\n", 4987 mddev->reshape_backwards ? "backwards" : "forwards"); 4988 } 4989 4990 static ssize_t 4991 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4992 { 4993 int backwards = 0; 4994 int err; 4995 4996 if (cmd_match(buf, "forwards")) 4997 backwards = 0; 4998 else if (cmd_match(buf, "backwards")) 4999 backwards = 1; 5000 else 5001 return -EINVAL; 5002 if (mddev->reshape_backwards == backwards) 5003 return len; 5004 5005 err = mddev_lock(mddev); 5006 if (err) 5007 return err; 5008 /* check if we are allowed to change */ 5009 if (mddev->delta_disks) 5010 err = -EBUSY; 5011 else if (mddev->persistent && 5012 mddev->major_version == 0) 5013 err = -EINVAL; 5014 else 5015 mddev->reshape_backwards = backwards; 5016 mddev_unlock(mddev); 5017 return err ?: len; 5018 } 5019 5020 static struct md_sysfs_entry md_reshape_direction = 5021 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5022 reshape_direction_store); 5023 5024 static ssize_t 5025 array_size_show(struct mddev *mddev, char *page) 5026 { 5027 if (mddev->external_size) 5028 return sprintf(page, "%llu\n", 5029 (unsigned long long)mddev->array_sectors/2); 5030 else 5031 return sprintf(page, "default\n"); 5032 } 5033 5034 static ssize_t 5035 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5036 { 5037 sector_t sectors; 5038 int err; 5039 5040 err = mddev_lock(mddev); 5041 if (err) 5042 return err; 5043 5044 /* cluster raid doesn't support change array_sectors */ 5045 if (mddev_is_clustered(mddev)) { 5046 mddev_unlock(mddev); 5047 return -EINVAL; 5048 } 5049 5050 if (strncmp(buf, "default", 7) == 0) { 5051 if (mddev->pers) 5052 sectors = mddev->pers->size(mddev, 0, 0); 5053 else 5054 sectors = mddev->array_sectors; 5055 5056 mddev->external_size = 0; 5057 } else { 5058 if (strict_blocks_to_sectors(buf, §ors) < 0) 5059 err = -EINVAL; 5060 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5061 err = -E2BIG; 5062 else 5063 mddev->external_size = 1; 5064 } 5065 5066 if (!err) { 5067 mddev->array_sectors = sectors; 5068 if (mddev->pers) { 5069 set_capacity(mddev->gendisk, mddev->array_sectors); 5070 revalidate_disk(mddev->gendisk); 5071 } 5072 } 5073 mddev_unlock(mddev); 5074 return err ?: len; 5075 } 5076 5077 static struct md_sysfs_entry md_array_size = 5078 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5079 array_size_store); 5080 5081 static ssize_t 5082 consistency_policy_show(struct mddev *mddev, char *page) 5083 { 5084 int ret; 5085 5086 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5087 ret = sprintf(page, "journal\n"); 5088 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5089 ret = sprintf(page, "ppl\n"); 5090 } else if (mddev->bitmap) { 5091 ret = sprintf(page, "bitmap\n"); 5092 } else if (mddev->pers) { 5093 if (mddev->pers->sync_request) 5094 ret = sprintf(page, "resync\n"); 5095 else 5096 ret = sprintf(page, "none\n"); 5097 } else { 5098 ret = sprintf(page, "unknown\n"); 5099 } 5100 5101 return ret; 5102 } 5103 5104 static ssize_t 5105 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5106 { 5107 int err = 0; 5108 5109 if (mddev->pers) { 5110 if (mddev->pers->change_consistency_policy) 5111 err = mddev->pers->change_consistency_policy(mddev, buf); 5112 else 5113 err = -EBUSY; 5114 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5115 set_bit(MD_HAS_PPL, &mddev->flags); 5116 } else { 5117 err = -EINVAL; 5118 } 5119 5120 return err ? err : len; 5121 } 5122 5123 static struct md_sysfs_entry md_consistency_policy = 5124 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5125 consistency_policy_store); 5126 5127 static struct attribute *md_default_attrs[] = { 5128 &md_level.attr, 5129 &md_layout.attr, 5130 &md_raid_disks.attr, 5131 &md_chunk_size.attr, 5132 &md_size.attr, 5133 &md_resync_start.attr, 5134 &md_metadata.attr, 5135 &md_new_device.attr, 5136 &md_safe_delay.attr, 5137 &md_array_state.attr, 5138 &md_reshape_position.attr, 5139 &md_reshape_direction.attr, 5140 &md_array_size.attr, 5141 &max_corr_read_errors.attr, 5142 &md_consistency_policy.attr, 5143 NULL, 5144 }; 5145 5146 static struct attribute *md_redundancy_attrs[] = { 5147 &md_scan_mode.attr, 5148 &md_last_scan_mode.attr, 5149 &md_mismatches.attr, 5150 &md_sync_min.attr, 5151 &md_sync_max.attr, 5152 &md_sync_speed.attr, 5153 &md_sync_force_parallel.attr, 5154 &md_sync_completed.attr, 5155 &md_min_sync.attr, 5156 &md_max_sync.attr, 5157 &md_suspend_lo.attr, 5158 &md_suspend_hi.attr, 5159 &md_bitmap.attr, 5160 &md_degraded.attr, 5161 NULL, 5162 }; 5163 static struct attribute_group md_redundancy_group = { 5164 .name = NULL, 5165 .attrs = md_redundancy_attrs, 5166 }; 5167 5168 static ssize_t 5169 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5170 { 5171 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5172 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5173 ssize_t rv; 5174 5175 if (!entry->show) 5176 return -EIO; 5177 spin_lock(&all_mddevs_lock); 5178 if (list_empty(&mddev->all_mddevs)) { 5179 spin_unlock(&all_mddevs_lock); 5180 return -EBUSY; 5181 } 5182 mddev_get(mddev); 5183 spin_unlock(&all_mddevs_lock); 5184 5185 rv = entry->show(mddev, page); 5186 mddev_put(mddev); 5187 return rv; 5188 } 5189 5190 static ssize_t 5191 md_attr_store(struct kobject *kobj, struct attribute *attr, 5192 const char *page, size_t length) 5193 { 5194 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5195 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5196 ssize_t rv; 5197 5198 if (!entry->store) 5199 return -EIO; 5200 if (!capable(CAP_SYS_ADMIN)) 5201 return -EACCES; 5202 spin_lock(&all_mddevs_lock); 5203 if (list_empty(&mddev->all_mddevs)) { 5204 spin_unlock(&all_mddevs_lock); 5205 return -EBUSY; 5206 } 5207 mddev_get(mddev); 5208 spin_unlock(&all_mddevs_lock); 5209 rv = entry->store(mddev, page, length); 5210 mddev_put(mddev); 5211 return rv; 5212 } 5213 5214 static void md_free(struct kobject *ko) 5215 { 5216 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5217 5218 if (mddev->sysfs_state) 5219 sysfs_put(mddev->sysfs_state); 5220 5221 if (mddev->gendisk) 5222 del_gendisk(mddev->gendisk); 5223 if (mddev->queue) 5224 blk_cleanup_queue(mddev->queue); 5225 if (mddev->gendisk) 5226 put_disk(mddev->gendisk); 5227 percpu_ref_exit(&mddev->writes_pending); 5228 5229 bioset_exit(&mddev->bio_set); 5230 bioset_exit(&mddev->sync_set); 5231 kfree(mddev); 5232 } 5233 5234 static const struct sysfs_ops md_sysfs_ops = { 5235 .show = md_attr_show, 5236 .store = md_attr_store, 5237 }; 5238 static struct kobj_type md_ktype = { 5239 .release = md_free, 5240 .sysfs_ops = &md_sysfs_ops, 5241 .default_attrs = md_default_attrs, 5242 }; 5243 5244 int mdp_major = 0; 5245 5246 static void mddev_delayed_delete(struct work_struct *ws) 5247 { 5248 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5249 5250 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5251 kobject_del(&mddev->kobj); 5252 kobject_put(&mddev->kobj); 5253 } 5254 5255 static void no_op(struct percpu_ref *r) {} 5256 5257 int mddev_init_writes_pending(struct mddev *mddev) 5258 { 5259 if (mddev->writes_pending.percpu_count_ptr) 5260 return 0; 5261 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5262 return -ENOMEM; 5263 /* We want to start with the refcount at zero */ 5264 percpu_ref_put(&mddev->writes_pending); 5265 return 0; 5266 } 5267 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5268 5269 static int md_alloc(dev_t dev, char *name) 5270 { 5271 /* 5272 * If dev is zero, name is the name of a device to allocate with 5273 * an arbitrary minor number. It will be "md_???" 5274 * If dev is non-zero it must be a device number with a MAJOR of 5275 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5276 * the device is being created by opening a node in /dev. 5277 * If "name" is not NULL, the device is being created by 5278 * writing to /sys/module/md_mod/parameters/new_array. 5279 */ 5280 static DEFINE_MUTEX(disks_mutex); 5281 struct mddev *mddev = mddev_find(dev); 5282 struct gendisk *disk; 5283 int partitioned; 5284 int shift; 5285 int unit; 5286 int error; 5287 5288 if (!mddev) 5289 return -ENODEV; 5290 5291 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5292 shift = partitioned ? MdpMinorShift : 0; 5293 unit = MINOR(mddev->unit) >> shift; 5294 5295 /* wait for any previous instance of this device to be 5296 * completely removed (mddev_delayed_delete). 5297 */ 5298 flush_workqueue(md_misc_wq); 5299 5300 mutex_lock(&disks_mutex); 5301 error = -EEXIST; 5302 if (mddev->gendisk) 5303 goto abort; 5304 5305 if (name && !dev) { 5306 /* Need to ensure that 'name' is not a duplicate. 5307 */ 5308 struct mddev *mddev2; 5309 spin_lock(&all_mddevs_lock); 5310 5311 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5312 if (mddev2->gendisk && 5313 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5314 spin_unlock(&all_mddevs_lock); 5315 goto abort; 5316 } 5317 spin_unlock(&all_mddevs_lock); 5318 } 5319 if (name && dev) 5320 /* 5321 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5322 */ 5323 mddev->hold_active = UNTIL_STOP; 5324 5325 error = -ENOMEM; 5326 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5327 if (!mddev->queue) 5328 goto abort; 5329 mddev->queue->queuedata = mddev; 5330 5331 blk_queue_make_request(mddev->queue, md_make_request); 5332 blk_set_stacking_limits(&mddev->queue->limits); 5333 5334 disk = alloc_disk(1 << shift); 5335 if (!disk) { 5336 blk_cleanup_queue(mddev->queue); 5337 mddev->queue = NULL; 5338 goto abort; 5339 } 5340 disk->major = MAJOR(mddev->unit); 5341 disk->first_minor = unit << shift; 5342 if (name) 5343 strcpy(disk->disk_name, name); 5344 else if (partitioned) 5345 sprintf(disk->disk_name, "md_d%d", unit); 5346 else 5347 sprintf(disk->disk_name, "md%d", unit); 5348 disk->fops = &md_fops; 5349 disk->private_data = mddev; 5350 disk->queue = mddev->queue; 5351 blk_queue_write_cache(mddev->queue, true, true); 5352 /* Allow extended partitions. This makes the 5353 * 'mdp' device redundant, but we can't really 5354 * remove it now. 5355 */ 5356 disk->flags |= GENHD_FL_EXT_DEVT; 5357 mddev->gendisk = disk; 5358 /* As soon as we call add_disk(), another thread could get 5359 * through to md_open, so make sure it doesn't get too far 5360 */ 5361 mutex_lock(&mddev->open_mutex); 5362 add_disk(disk); 5363 5364 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5365 if (error) { 5366 /* This isn't possible, but as kobject_init_and_add is marked 5367 * __must_check, we must do something with the result 5368 */ 5369 pr_debug("md: cannot register %s/md - name in use\n", 5370 disk->disk_name); 5371 error = 0; 5372 } 5373 if (mddev->kobj.sd && 5374 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5375 pr_debug("pointless warning\n"); 5376 mutex_unlock(&mddev->open_mutex); 5377 abort: 5378 mutex_unlock(&disks_mutex); 5379 if (!error && mddev->kobj.sd) { 5380 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5381 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5382 } 5383 mddev_put(mddev); 5384 return error; 5385 } 5386 5387 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5388 { 5389 if (create_on_open) 5390 md_alloc(dev, NULL); 5391 return NULL; 5392 } 5393 5394 static int add_named_array(const char *val, const struct kernel_param *kp) 5395 { 5396 /* 5397 * val must be "md_*" or "mdNNN". 5398 * For "md_*" we allocate an array with a large free minor number, and 5399 * set the name to val. val must not already be an active name. 5400 * For "mdNNN" we allocate an array with the minor number NNN 5401 * which must not already be in use. 5402 */ 5403 int len = strlen(val); 5404 char buf[DISK_NAME_LEN]; 5405 unsigned long devnum; 5406 5407 while (len && val[len-1] == '\n') 5408 len--; 5409 if (len >= DISK_NAME_LEN) 5410 return -E2BIG; 5411 strlcpy(buf, val, len+1); 5412 if (strncmp(buf, "md_", 3) == 0) 5413 return md_alloc(0, buf); 5414 if (strncmp(buf, "md", 2) == 0 && 5415 isdigit(buf[2]) && 5416 kstrtoul(buf+2, 10, &devnum) == 0 && 5417 devnum <= MINORMASK) 5418 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5419 5420 return -EINVAL; 5421 } 5422 5423 static void md_safemode_timeout(struct timer_list *t) 5424 { 5425 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5426 5427 mddev->safemode = 1; 5428 if (mddev->external) 5429 sysfs_notify_dirent_safe(mddev->sysfs_state); 5430 5431 md_wakeup_thread(mddev->thread); 5432 } 5433 5434 static int start_dirty_degraded; 5435 5436 int md_run(struct mddev *mddev) 5437 { 5438 int err; 5439 struct md_rdev *rdev; 5440 struct md_personality *pers; 5441 5442 if (list_empty(&mddev->disks)) 5443 /* cannot run an array with no devices.. */ 5444 return -EINVAL; 5445 5446 if (mddev->pers) 5447 return -EBUSY; 5448 /* Cannot run until previous stop completes properly */ 5449 if (mddev->sysfs_active) 5450 return -EBUSY; 5451 5452 /* 5453 * Analyze all RAID superblock(s) 5454 */ 5455 if (!mddev->raid_disks) { 5456 if (!mddev->persistent) 5457 return -EINVAL; 5458 analyze_sbs(mddev); 5459 } 5460 5461 if (mddev->level != LEVEL_NONE) 5462 request_module("md-level-%d", mddev->level); 5463 else if (mddev->clevel[0]) 5464 request_module("md-%s", mddev->clevel); 5465 5466 /* 5467 * Drop all container device buffers, from now on 5468 * the only valid external interface is through the md 5469 * device. 5470 */ 5471 mddev->has_superblocks = false; 5472 rdev_for_each(rdev, mddev) { 5473 if (test_bit(Faulty, &rdev->flags)) 5474 continue; 5475 sync_blockdev(rdev->bdev); 5476 invalidate_bdev(rdev->bdev); 5477 if (mddev->ro != 1 && 5478 (bdev_read_only(rdev->bdev) || 5479 bdev_read_only(rdev->meta_bdev))) { 5480 mddev->ro = 1; 5481 if (mddev->gendisk) 5482 set_disk_ro(mddev->gendisk, 1); 5483 } 5484 5485 if (rdev->sb_page) 5486 mddev->has_superblocks = true; 5487 5488 /* perform some consistency tests on the device. 5489 * We don't want the data to overlap the metadata, 5490 * Internal Bitmap issues have been handled elsewhere. 5491 */ 5492 if (rdev->meta_bdev) { 5493 /* Nothing to check */; 5494 } else if (rdev->data_offset < rdev->sb_start) { 5495 if (mddev->dev_sectors && 5496 rdev->data_offset + mddev->dev_sectors 5497 > rdev->sb_start) { 5498 pr_warn("md: %s: data overlaps metadata\n", 5499 mdname(mddev)); 5500 return -EINVAL; 5501 } 5502 } else { 5503 if (rdev->sb_start + rdev->sb_size/512 5504 > rdev->data_offset) { 5505 pr_warn("md: %s: metadata overlaps data\n", 5506 mdname(mddev)); 5507 return -EINVAL; 5508 } 5509 } 5510 sysfs_notify_dirent_safe(rdev->sysfs_state); 5511 } 5512 5513 if (!bioset_initialized(&mddev->bio_set)) { 5514 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5515 if (err) 5516 return err; 5517 } 5518 if (!bioset_initialized(&mddev->sync_set)) { 5519 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5520 if (err) 5521 return err; 5522 } 5523 if (mddev->flush_pool == NULL) { 5524 mddev->flush_pool = mempool_create(NR_FLUSH_INFOS, flush_info_alloc, 5525 flush_info_free, mddev); 5526 if (!mddev->flush_pool) { 5527 err = -ENOMEM; 5528 goto abort; 5529 } 5530 } 5531 if (mddev->flush_bio_pool == NULL) { 5532 mddev->flush_bio_pool = mempool_create(NR_FLUSH_BIOS, flush_bio_alloc, 5533 flush_bio_free, mddev); 5534 if (!mddev->flush_bio_pool) { 5535 err = -ENOMEM; 5536 goto abort; 5537 } 5538 } 5539 5540 spin_lock(&pers_lock); 5541 pers = find_pers(mddev->level, mddev->clevel); 5542 if (!pers || !try_module_get(pers->owner)) { 5543 spin_unlock(&pers_lock); 5544 if (mddev->level != LEVEL_NONE) 5545 pr_warn("md: personality for level %d is not loaded!\n", 5546 mddev->level); 5547 else 5548 pr_warn("md: personality for level %s is not loaded!\n", 5549 mddev->clevel); 5550 err = -EINVAL; 5551 goto abort; 5552 } 5553 spin_unlock(&pers_lock); 5554 if (mddev->level != pers->level) { 5555 mddev->level = pers->level; 5556 mddev->new_level = pers->level; 5557 } 5558 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5559 5560 if (mddev->reshape_position != MaxSector && 5561 pers->start_reshape == NULL) { 5562 /* This personality cannot handle reshaping... */ 5563 module_put(pers->owner); 5564 err = -EINVAL; 5565 goto abort; 5566 } 5567 5568 if (pers->sync_request) { 5569 /* Warn if this is a potentially silly 5570 * configuration. 5571 */ 5572 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5573 struct md_rdev *rdev2; 5574 int warned = 0; 5575 5576 rdev_for_each(rdev, mddev) 5577 rdev_for_each(rdev2, mddev) { 5578 if (rdev < rdev2 && 5579 rdev->bdev->bd_contains == 5580 rdev2->bdev->bd_contains) { 5581 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5582 mdname(mddev), 5583 bdevname(rdev->bdev,b), 5584 bdevname(rdev2->bdev,b2)); 5585 warned = 1; 5586 } 5587 } 5588 5589 if (warned) 5590 pr_warn("True protection against single-disk failure might be compromised.\n"); 5591 } 5592 5593 mddev->recovery = 0; 5594 /* may be over-ridden by personality */ 5595 mddev->resync_max_sectors = mddev->dev_sectors; 5596 5597 mddev->ok_start_degraded = start_dirty_degraded; 5598 5599 if (start_readonly && mddev->ro == 0) 5600 mddev->ro = 2; /* read-only, but switch on first write */ 5601 5602 err = pers->run(mddev); 5603 if (err) 5604 pr_warn("md: pers->run() failed ...\n"); 5605 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5606 WARN_ONCE(!mddev->external_size, 5607 "%s: default size too small, but 'external_size' not in effect?\n", 5608 __func__); 5609 pr_warn("md: invalid array_size %llu > default size %llu\n", 5610 (unsigned long long)mddev->array_sectors / 2, 5611 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5612 err = -EINVAL; 5613 } 5614 if (err == 0 && pers->sync_request && 5615 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5616 struct bitmap *bitmap; 5617 5618 bitmap = bitmap_create(mddev, -1); 5619 if (IS_ERR(bitmap)) { 5620 err = PTR_ERR(bitmap); 5621 pr_warn("%s: failed to create bitmap (%d)\n", 5622 mdname(mddev), err); 5623 } else 5624 mddev->bitmap = bitmap; 5625 5626 } 5627 if (err) { 5628 mddev_detach(mddev); 5629 if (mddev->private) 5630 pers->free(mddev, mddev->private); 5631 mddev->private = NULL; 5632 module_put(pers->owner); 5633 bitmap_destroy(mddev); 5634 goto abort; 5635 } 5636 if (mddev->queue) { 5637 bool nonrot = true; 5638 5639 rdev_for_each(rdev, mddev) { 5640 if (rdev->raid_disk >= 0 && 5641 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5642 nonrot = false; 5643 break; 5644 } 5645 } 5646 if (mddev->degraded) 5647 nonrot = false; 5648 if (nonrot) 5649 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5650 else 5651 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5652 mddev->queue->backing_dev_info->congested_data = mddev; 5653 mddev->queue->backing_dev_info->congested_fn = md_congested; 5654 } 5655 if (pers->sync_request) { 5656 if (mddev->kobj.sd && 5657 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5658 pr_warn("md: cannot register extra attributes for %s\n", 5659 mdname(mddev)); 5660 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5661 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5662 mddev->ro = 0; 5663 5664 atomic_set(&mddev->max_corr_read_errors, 5665 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5666 mddev->safemode = 0; 5667 if (mddev_is_clustered(mddev)) 5668 mddev->safemode_delay = 0; 5669 else 5670 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5671 mddev->in_sync = 1; 5672 smp_wmb(); 5673 spin_lock(&mddev->lock); 5674 mddev->pers = pers; 5675 spin_unlock(&mddev->lock); 5676 rdev_for_each(rdev, mddev) 5677 if (rdev->raid_disk >= 0) 5678 if (sysfs_link_rdev(mddev, rdev)) 5679 /* failure here is OK */; 5680 5681 if (mddev->degraded && !mddev->ro) 5682 /* This ensures that recovering status is reported immediately 5683 * via sysfs - until a lack of spares is confirmed. 5684 */ 5685 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5687 5688 if (mddev->sb_flags) 5689 md_update_sb(mddev, 0); 5690 5691 md_new_event(mddev); 5692 sysfs_notify_dirent_safe(mddev->sysfs_state); 5693 sysfs_notify_dirent_safe(mddev->sysfs_action); 5694 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5695 return 0; 5696 5697 abort: 5698 if (mddev->flush_bio_pool) { 5699 mempool_destroy(mddev->flush_bio_pool); 5700 mddev->flush_bio_pool = NULL; 5701 } 5702 if (mddev->flush_pool){ 5703 mempool_destroy(mddev->flush_pool); 5704 mddev->flush_pool = NULL; 5705 } 5706 5707 return err; 5708 } 5709 EXPORT_SYMBOL_GPL(md_run); 5710 5711 static int do_md_run(struct mddev *mddev) 5712 { 5713 int err; 5714 5715 err = md_run(mddev); 5716 if (err) 5717 goto out; 5718 err = bitmap_load(mddev); 5719 if (err) { 5720 bitmap_destroy(mddev); 5721 goto out; 5722 } 5723 5724 if (mddev_is_clustered(mddev)) 5725 md_allow_write(mddev); 5726 5727 /* run start up tasks that require md_thread */ 5728 md_start(mddev); 5729 5730 md_wakeup_thread(mddev->thread); 5731 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5732 5733 set_capacity(mddev->gendisk, mddev->array_sectors); 5734 revalidate_disk(mddev->gendisk); 5735 mddev->changed = 1; 5736 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5737 out: 5738 return err; 5739 } 5740 5741 int md_start(struct mddev *mddev) 5742 { 5743 int ret = 0; 5744 5745 if (mddev->pers->start) { 5746 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5747 md_wakeup_thread(mddev->thread); 5748 ret = mddev->pers->start(mddev); 5749 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5750 md_wakeup_thread(mddev->sync_thread); 5751 } 5752 return ret; 5753 } 5754 EXPORT_SYMBOL_GPL(md_start); 5755 5756 static int restart_array(struct mddev *mddev) 5757 { 5758 struct gendisk *disk = mddev->gendisk; 5759 struct md_rdev *rdev; 5760 bool has_journal = false; 5761 bool has_readonly = false; 5762 5763 /* Complain if it has no devices */ 5764 if (list_empty(&mddev->disks)) 5765 return -ENXIO; 5766 if (!mddev->pers) 5767 return -EINVAL; 5768 if (!mddev->ro) 5769 return -EBUSY; 5770 5771 rcu_read_lock(); 5772 rdev_for_each_rcu(rdev, mddev) { 5773 if (test_bit(Journal, &rdev->flags) && 5774 !test_bit(Faulty, &rdev->flags)) 5775 has_journal = true; 5776 if (bdev_read_only(rdev->bdev)) 5777 has_readonly = true; 5778 } 5779 rcu_read_unlock(); 5780 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5781 /* Don't restart rw with journal missing/faulty */ 5782 return -EINVAL; 5783 if (has_readonly) 5784 return -EROFS; 5785 5786 mddev->safemode = 0; 5787 mddev->ro = 0; 5788 set_disk_ro(disk, 0); 5789 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5790 /* Kick recovery or resync if necessary */ 5791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5792 md_wakeup_thread(mddev->thread); 5793 md_wakeup_thread(mddev->sync_thread); 5794 sysfs_notify_dirent_safe(mddev->sysfs_state); 5795 return 0; 5796 } 5797 5798 static void md_clean(struct mddev *mddev) 5799 { 5800 mddev->array_sectors = 0; 5801 mddev->external_size = 0; 5802 mddev->dev_sectors = 0; 5803 mddev->raid_disks = 0; 5804 mddev->recovery_cp = 0; 5805 mddev->resync_min = 0; 5806 mddev->resync_max = MaxSector; 5807 mddev->reshape_position = MaxSector; 5808 mddev->external = 0; 5809 mddev->persistent = 0; 5810 mddev->level = LEVEL_NONE; 5811 mddev->clevel[0] = 0; 5812 mddev->flags = 0; 5813 mddev->sb_flags = 0; 5814 mddev->ro = 0; 5815 mddev->metadata_type[0] = 0; 5816 mddev->chunk_sectors = 0; 5817 mddev->ctime = mddev->utime = 0; 5818 mddev->layout = 0; 5819 mddev->max_disks = 0; 5820 mddev->events = 0; 5821 mddev->can_decrease_events = 0; 5822 mddev->delta_disks = 0; 5823 mddev->reshape_backwards = 0; 5824 mddev->new_level = LEVEL_NONE; 5825 mddev->new_layout = 0; 5826 mddev->new_chunk_sectors = 0; 5827 mddev->curr_resync = 0; 5828 atomic64_set(&mddev->resync_mismatches, 0); 5829 mddev->suspend_lo = mddev->suspend_hi = 0; 5830 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5831 mddev->recovery = 0; 5832 mddev->in_sync = 0; 5833 mddev->changed = 0; 5834 mddev->degraded = 0; 5835 mddev->safemode = 0; 5836 mddev->private = NULL; 5837 mddev->cluster_info = NULL; 5838 mddev->bitmap_info.offset = 0; 5839 mddev->bitmap_info.default_offset = 0; 5840 mddev->bitmap_info.default_space = 0; 5841 mddev->bitmap_info.chunksize = 0; 5842 mddev->bitmap_info.daemon_sleep = 0; 5843 mddev->bitmap_info.max_write_behind = 0; 5844 mddev->bitmap_info.nodes = 0; 5845 } 5846 5847 static void __md_stop_writes(struct mddev *mddev) 5848 { 5849 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5850 flush_workqueue(md_misc_wq); 5851 if (mddev->sync_thread) { 5852 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5853 md_reap_sync_thread(mddev); 5854 } 5855 5856 del_timer_sync(&mddev->safemode_timer); 5857 5858 if (mddev->pers && mddev->pers->quiesce) { 5859 mddev->pers->quiesce(mddev, 1); 5860 mddev->pers->quiesce(mddev, 0); 5861 } 5862 bitmap_flush(mddev); 5863 5864 if (mddev->ro == 0 && 5865 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5866 mddev->sb_flags)) { 5867 /* mark array as shutdown cleanly */ 5868 if (!mddev_is_clustered(mddev)) 5869 mddev->in_sync = 1; 5870 md_update_sb(mddev, 1); 5871 } 5872 } 5873 5874 void md_stop_writes(struct mddev *mddev) 5875 { 5876 mddev_lock_nointr(mddev); 5877 __md_stop_writes(mddev); 5878 mddev_unlock(mddev); 5879 } 5880 EXPORT_SYMBOL_GPL(md_stop_writes); 5881 5882 static void mddev_detach(struct mddev *mddev) 5883 { 5884 bitmap_wait_behind_writes(mddev); 5885 if (mddev->pers && mddev->pers->quiesce) { 5886 mddev->pers->quiesce(mddev, 1); 5887 mddev->pers->quiesce(mddev, 0); 5888 } 5889 md_unregister_thread(&mddev->thread); 5890 if (mddev->queue) 5891 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5892 } 5893 5894 static void __md_stop(struct mddev *mddev) 5895 { 5896 struct md_personality *pers = mddev->pers; 5897 bitmap_destroy(mddev); 5898 mddev_detach(mddev); 5899 /* Ensure ->event_work is done */ 5900 flush_workqueue(md_misc_wq); 5901 spin_lock(&mddev->lock); 5902 mddev->pers = NULL; 5903 spin_unlock(&mddev->lock); 5904 pers->free(mddev, mddev->private); 5905 mddev->private = NULL; 5906 if (pers->sync_request && mddev->to_remove == NULL) 5907 mddev->to_remove = &md_redundancy_group; 5908 module_put(pers->owner); 5909 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5910 } 5911 5912 void md_stop(struct mddev *mddev) 5913 { 5914 /* stop the array and free an attached data structures. 5915 * This is called from dm-raid 5916 */ 5917 __md_stop(mddev); 5918 if (mddev->flush_bio_pool) { 5919 mempool_destroy(mddev->flush_bio_pool); 5920 mddev->flush_bio_pool = NULL; 5921 } 5922 if (mddev->flush_pool) { 5923 mempool_destroy(mddev->flush_pool); 5924 mddev->flush_pool = NULL; 5925 } 5926 bioset_exit(&mddev->bio_set); 5927 bioset_exit(&mddev->sync_set); 5928 } 5929 5930 EXPORT_SYMBOL_GPL(md_stop); 5931 5932 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5933 { 5934 int err = 0; 5935 int did_freeze = 0; 5936 5937 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5938 did_freeze = 1; 5939 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5940 md_wakeup_thread(mddev->thread); 5941 } 5942 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5943 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5944 if (mddev->sync_thread) 5945 /* Thread might be blocked waiting for metadata update 5946 * which will now never happen */ 5947 wake_up_process(mddev->sync_thread->tsk); 5948 5949 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5950 return -EBUSY; 5951 mddev_unlock(mddev); 5952 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5953 &mddev->recovery)); 5954 wait_event(mddev->sb_wait, 5955 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5956 mddev_lock_nointr(mddev); 5957 5958 mutex_lock(&mddev->open_mutex); 5959 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5960 mddev->sync_thread || 5961 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5962 pr_warn("md: %s still in use.\n",mdname(mddev)); 5963 if (did_freeze) { 5964 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5965 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5966 md_wakeup_thread(mddev->thread); 5967 } 5968 err = -EBUSY; 5969 goto out; 5970 } 5971 if (mddev->pers) { 5972 __md_stop_writes(mddev); 5973 5974 err = -ENXIO; 5975 if (mddev->ro==1) 5976 goto out; 5977 mddev->ro = 1; 5978 set_disk_ro(mddev->gendisk, 1); 5979 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5980 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5981 md_wakeup_thread(mddev->thread); 5982 sysfs_notify_dirent_safe(mddev->sysfs_state); 5983 err = 0; 5984 } 5985 out: 5986 mutex_unlock(&mddev->open_mutex); 5987 return err; 5988 } 5989 5990 /* mode: 5991 * 0 - completely stop and dis-assemble array 5992 * 2 - stop but do not disassemble array 5993 */ 5994 static int do_md_stop(struct mddev *mddev, int mode, 5995 struct block_device *bdev) 5996 { 5997 struct gendisk *disk = mddev->gendisk; 5998 struct md_rdev *rdev; 5999 int did_freeze = 0; 6000 6001 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6002 did_freeze = 1; 6003 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6004 md_wakeup_thread(mddev->thread); 6005 } 6006 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6007 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6008 if (mddev->sync_thread) 6009 /* Thread might be blocked waiting for metadata update 6010 * which will now never happen */ 6011 wake_up_process(mddev->sync_thread->tsk); 6012 6013 mddev_unlock(mddev); 6014 wait_event(resync_wait, (mddev->sync_thread == NULL && 6015 !test_bit(MD_RECOVERY_RUNNING, 6016 &mddev->recovery))); 6017 mddev_lock_nointr(mddev); 6018 6019 mutex_lock(&mddev->open_mutex); 6020 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6021 mddev->sysfs_active || 6022 mddev->sync_thread || 6023 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6024 pr_warn("md: %s still in use.\n",mdname(mddev)); 6025 mutex_unlock(&mddev->open_mutex); 6026 if (did_freeze) { 6027 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6029 md_wakeup_thread(mddev->thread); 6030 } 6031 return -EBUSY; 6032 } 6033 if (mddev->pers) { 6034 if (mddev->ro) 6035 set_disk_ro(disk, 0); 6036 6037 __md_stop_writes(mddev); 6038 __md_stop(mddev); 6039 mddev->queue->backing_dev_info->congested_fn = NULL; 6040 6041 /* tell userspace to handle 'inactive' */ 6042 sysfs_notify_dirent_safe(mddev->sysfs_state); 6043 6044 rdev_for_each(rdev, mddev) 6045 if (rdev->raid_disk >= 0) 6046 sysfs_unlink_rdev(mddev, rdev); 6047 6048 set_capacity(disk, 0); 6049 mutex_unlock(&mddev->open_mutex); 6050 mddev->changed = 1; 6051 revalidate_disk(disk); 6052 6053 if (mddev->ro) 6054 mddev->ro = 0; 6055 } else 6056 mutex_unlock(&mddev->open_mutex); 6057 /* 6058 * Free resources if final stop 6059 */ 6060 if (mode == 0) { 6061 pr_info("md: %s stopped.\n", mdname(mddev)); 6062 6063 if (mddev->bitmap_info.file) { 6064 struct file *f = mddev->bitmap_info.file; 6065 spin_lock(&mddev->lock); 6066 mddev->bitmap_info.file = NULL; 6067 spin_unlock(&mddev->lock); 6068 fput(f); 6069 } 6070 mddev->bitmap_info.offset = 0; 6071 6072 export_array(mddev); 6073 6074 md_clean(mddev); 6075 if (mddev->hold_active == UNTIL_STOP) 6076 mddev->hold_active = 0; 6077 } 6078 md_new_event(mddev); 6079 sysfs_notify_dirent_safe(mddev->sysfs_state); 6080 return 0; 6081 } 6082 6083 #ifndef MODULE 6084 static void autorun_array(struct mddev *mddev) 6085 { 6086 struct md_rdev *rdev; 6087 int err; 6088 6089 if (list_empty(&mddev->disks)) 6090 return; 6091 6092 pr_info("md: running: "); 6093 6094 rdev_for_each(rdev, mddev) { 6095 char b[BDEVNAME_SIZE]; 6096 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6097 } 6098 pr_cont("\n"); 6099 6100 err = do_md_run(mddev); 6101 if (err) { 6102 pr_warn("md: do_md_run() returned %d\n", err); 6103 do_md_stop(mddev, 0, NULL); 6104 } 6105 } 6106 6107 /* 6108 * lets try to run arrays based on all disks that have arrived 6109 * until now. (those are in pending_raid_disks) 6110 * 6111 * the method: pick the first pending disk, collect all disks with 6112 * the same UUID, remove all from the pending list and put them into 6113 * the 'same_array' list. Then order this list based on superblock 6114 * update time (freshest comes first), kick out 'old' disks and 6115 * compare superblocks. If everything's fine then run it. 6116 * 6117 * If "unit" is allocated, then bump its reference count 6118 */ 6119 static void autorun_devices(int part) 6120 { 6121 struct md_rdev *rdev0, *rdev, *tmp; 6122 struct mddev *mddev; 6123 char b[BDEVNAME_SIZE]; 6124 6125 pr_info("md: autorun ...\n"); 6126 while (!list_empty(&pending_raid_disks)) { 6127 int unit; 6128 dev_t dev; 6129 LIST_HEAD(candidates); 6130 rdev0 = list_entry(pending_raid_disks.next, 6131 struct md_rdev, same_set); 6132 6133 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6134 INIT_LIST_HEAD(&candidates); 6135 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6136 if (super_90_load(rdev, rdev0, 0) >= 0) { 6137 pr_debug("md: adding %s ...\n", 6138 bdevname(rdev->bdev,b)); 6139 list_move(&rdev->same_set, &candidates); 6140 } 6141 /* 6142 * now we have a set of devices, with all of them having 6143 * mostly sane superblocks. It's time to allocate the 6144 * mddev. 6145 */ 6146 if (part) { 6147 dev = MKDEV(mdp_major, 6148 rdev0->preferred_minor << MdpMinorShift); 6149 unit = MINOR(dev) >> MdpMinorShift; 6150 } else { 6151 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6152 unit = MINOR(dev); 6153 } 6154 if (rdev0->preferred_minor != unit) { 6155 pr_warn("md: unit number in %s is bad: %d\n", 6156 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6157 break; 6158 } 6159 6160 md_probe(dev, NULL, NULL); 6161 mddev = mddev_find(dev); 6162 if (!mddev || !mddev->gendisk) { 6163 if (mddev) 6164 mddev_put(mddev); 6165 break; 6166 } 6167 if (mddev_lock(mddev)) 6168 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6169 else if (mddev->raid_disks || mddev->major_version 6170 || !list_empty(&mddev->disks)) { 6171 pr_warn("md: %s already running, cannot run %s\n", 6172 mdname(mddev), bdevname(rdev0->bdev,b)); 6173 mddev_unlock(mddev); 6174 } else { 6175 pr_debug("md: created %s\n", mdname(mddev)); 6176 mddev->persistent = 1; 6177 rdev_for_each_list(rdev, tmp, &candidates) { 6178 list_del_init(&rdev->same_set); 6179 if (bind_rdev_to_array(rdev, mddev)) 6180 export_rdev(rdev); 6181 } 6182 autorun_array(mddev); 6183 mddev_unlock(mddev); 6184 } 6185 /* on success, candidates will be empty, on error 6186 * it won't... 6187 */ 6188 rdev_for_each_list(rdev, tmp, &candidates) { 6189 list_del_init(&rdev->same_set); 6190 export_rdev(rdev); 6191 } 6192 mddev_put(mddev); 6193 } 6194 pr_info("md: ... autorun DONE.\n"); 6195 } 6196 #endif /* !MODULE */ 6197 6198 static int get_version(void __user *arg) 6199 { 6200 mdu_version_t ver; 6201 6202 ver.major = MD_MAJOR_VERSION; 6203 ver.minor = MD_MINOR_VERSION; 6204 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6205 6206 if (copy_to_user(arg, &ver, sizeof(ver))) 6207 return -EFAULT; 6208 6209 return 0; 6210 } 6211 6212 static int get_array_info(struct mddev *mddev, void __user *arg) 6213 { 6214 mdu_array_info_t info; 6215 int nr,working,insync,failed,spare; 6216 struct md_rdev *rdev; 6217 6218 nr = working = insync = failed = spare = 0; 6219 rcu_read_lock(); 6220 rdev_for_each_rcu(rdev, mddev) { 6221 nr++; 6222 if (test_bit(Faulty, &rdev->flags)) 6223 failed++; 6224 else { 6225 working++; 6226 if (test_bit(In_sync, &rdev->flags)) 6227 insync++; 6228 else if (test_bit(Journal, &rdev->flags)) 6229 /* TODO: add journal count to md_u.h */ 6230 ; 6231 else 6232 spare++; 6233 } 6234 } 6235 rcu_read_unlock(); 6236 6237 info.major_version = mddev->major_version; 6238 info.minor_version = mddev->minor_version; 6239 info.patch_version = MD_PATCHLEVEL_VERSION; 6240 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6241 info.level = mddev->level; 6242 info.size = mddev->dev_sectors / 2; 6243 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6244 info.size = -1; 6245 info.nr_disks = nr; 6246 info.raid_disks = mddev->raid_disks; 6247 info.md_minor = mddev->md_minor; 6248 info.not_persistent= !mddev->persistent; 6249 6250 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6251 info.state = 0; 6252 if (mddev->in_sync) 6253 info.state = (1<<MD_SB_CLEAN); 6254 if (mddev->bitmap && mddev->bitmap_info.offset) 6255 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6256 if (mddev_is_clustered(mddev)) 6257 info.state |= (1<<MD_SB_CLUSTERED); 6258 info.active_disks = insync; 6259 info.working_disks = working; 6260 info.failed_disks = failed; 6261 info.spare_disks = spare; 6262 6263 info.layout = mddev->layout; 6264 info.chunk_size = mddev->chunk_sectors << 9; 6265 6266 if (copy_to_user(arg, &info, sizeof(info))) 6267 return -EFAULT; 6268 6269 return 0; 6270 } 6271 6272 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6273 { 6274 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6275 char *ptr; 6276 int err; 6277 6278 file = kzalloc(sizeof(*file), GFP_NOIO); 6279 if (!file) 6280 return -ENOMEM; 6281 6282 err = 0; 6283 spin_lock(&mddev->lock); 6284 /* bitmap enabled */ 6285 if (mddev->bitmap_info.file) { 6286 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6287 sizeof(file->pathname)); 6288 if (IS_ERR(ptr)) 6289 err = PTR_ERR(ptr); 6290 else 6291 memmove(file->pathname, ptr, 6292 sizeof(file->pathname)-(ptr-file->pathname)); 6293 } 6294 spin_unlock(&mddev->lock); 6295 6296 if (err == 0 && 6297 copy_to_user(arg, file, sizeof(*file))) 6298 err = -EFAULT; 6299 6300 kfree(file); 6301 return err; 6302 } 6303 6304 static int get_disk_info(struct mddev *mddev, void __user * arg) 6305 { 6306 mdu_disk_info_t info; 6307 struct md_rdev *rdev; 6308 6309 if (copy_from_user(&info, arg, sizeof(info))) 6310 return -EFAULT; 6311 6312 rcu_read_lock(); 6313 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6314 if (rdev) { 6315 info.major = MAJOR(rdev->bdev->bd_dev); 6316 info.minor = MINOR(rdev->bdev->bd_dev); 6317 info.raid_disk = rdev->raid_disk; 6318 info.state = 0; 6319 if (test_bit(Faulty, &rdev->flags)) 6320 info.state |= (1<<MD_DISK_FAULTY); 6321 else if (test_bit(In_sync, &rdev->flags)) { 6322 info.state |= (1<<MD_DISK_ACTIVE); 6323 info.state |= (1<<MD_DISK_SYNC); 6324 } 6325 if (test_bit(Journal, &rdev->flags)) 6326 info.state |= (1<<MD_DISK_JOURNAL); 6327 if (test_bit(WriteMostly, &rdev->flags)) 6328 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6329 if (test_bit(FailFast, &rdev->flags)) 6330 info.state |= (1<<MD_DISK_FAILFAST); 6331 } else { 6332 info.major = info.minor = 0; 6333 info.raid_disk = -1; 6334 info.state = (1<<MD_DISK_REMOVED); 6335 } 6336 rcu_read_unlock(); 6337 6338 if (copy_to_user(arg, &info, sizeof(info))) 6339 return -EFAULT; 6340 6341 return 0; 6342 } 6343 6344 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6345 { 6346 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6347 struct md_rdev *rdev; 6348 dev_t dev = MKDEV(info->major,info->minor); 6349 6350 if (mddev_is_clustered(mddev) && 6351 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6352 pr_warn("%s: Cannot add to clustered mddev.\n", 6353 mdname(mddev)); 6354 return -EINVAL; 6355 } 6356 6357 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6358 return -EOVERFLOW; 6359 6360 if (!mddev->raid_disks) { 6361 int err; 6362 /* expecting a device which has a superblock */ 6363 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6364 if (IS_ERR(rdev)) { 6365 pr_warn("md: md_import_device returned %ld\n", 6366 PTR_ERR(rdev)); 6367 return PTR_ERR(rdev); 6368 } 6369 if (!list_empty(&mddev->disks)) { 6370 struct md_rdev *rdev0 6371 = list_entry(mddev->disks.next, 6372 struct md_rdev, same_set); 6373 err = super_types[mddev->major_version] 6374 .load_super(rdev, rdev0, mddev->minor_version); 6375 if (err < 0) { 6376 pr_warn("md: %s has different UUID to %s\n", 6377 bdevname(rdev->bdev,b), 6378 bdevname(rdev0->bdev,b2)); 6379 export_rdev(rdev); 6380 return -EINVAL; 6381 } 6382 } 6383 err = bind_rdev_to_array(rdev, mddev); 6384 if (err) 6385 export_rdev(rdev); 6386 return err; 6387 } 6388 6389 /* 6390 * add_new_disk can be used once the array is assembled 6391 * to add "hot spares". They must already have a superblock 6392 * written 6393 */ 6394 if (mddev->pers) { 6395 int err; 6396 if (!mddev->pers->hot_add_disk) { 6397 pr_warn("%s: personality does not support diskops!\n", 6398 mdname(mddev)); 6399 return -EINVAL; 6400 } 6401 if (mddev->persistent) 6402 rdev = md_import_device(dev, mddev->major_version, 6403 mddev->minor_version); 6404 else 6405 rdev = md_import_device(dev, -1, -1); 6406 if (IS_ERR(rdev)) { 6407 pr_warn("md: md_import_device returned %ld\n", 6408 PTR_ERR(rdev)); 6409 return PTR_ERR(rdev); 6410 } 6411 /* set saved_raid_disk if appropriate */ 6412 if (!mddev->persistent) { 6413 if (info->state & (1<<MD_DISK_SYNC) && 6414 info->raid_disk < mddev->raid_disks) { 6415 rdev->raid_disk = info->raid_disk; 6416 set_bit(In_sync, &rdev->flags); 6417 clear_bit(Bitmap_sync, &rdev->flags); 6418 } else 6419 rdev->raid_disk = -1; 6420 rdev->saved_raid_disk = rdev->raid_disk; 6421 } else 6422 super_types[mddev->major_version]. 6423 validate_super(mddev, rdev); 6424 if ((info->state & (1<<MD_DISK_SYNC)) && 6425 rdev->raid_disk != info->raid_disk) { 6426 /* This was a hot-add request, but events doesn't 6427 * match, so reject it. 6428 */ 6429 export_rdev(rdev); 6430 return -EINVAL; 6431 } 6432 6433 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6434 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6435 set_bit(WriteMostly, &rdev->flags); 6436 else 6437 clear_bit(WriteMostly, &rdev->flags); 6438 if (info->state & (1<<MD_DISK_FAILFAST)) 6439 set_bit(FailFast, &rdev->flags); 6440 else 6441 clear_bit(FailFast, &rdev->flags); 6442 6443 if (info->state & (1<<MD_DISK_JOURNAL)) { 6444 struct md_rdev *rdev2; 6445 bool has_journal = false; 6446 6447 /* make sure no existing journal disk */ 6448 rdev_for_each(rdev2, mddev) { 6449 if (test_bit(Journal, &rdev2->flags)) { 6450 has_journal = true; 6451 break; 6452 } 6453 } 6454 if (has_journal || mddev->bitmap) { 6455 export_rdev(rdev); 6456 return -EBUSY; 6457 } 6458 set_bit(Journal, &rdev->flags); 6459 } 6460 /* 6461 * check whether the device shows up in other nodes 6462 */ 6463 if (mddev_is_clustered(mddev)) { 6464 if (info->state & (1 << MD_DISK_CANDIDATE)) 6465 set_bit(Candidate, &rdev->flags); 6466 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6467 /* --add initiated by this node */ 6468 err = md_cluster_ops->add_new_disk(mddev, rdev); 6469 if (err) { 6470 export_rdev(rdev); 6471 return err; 6472 } 6473 } 6474 } 6475 6476 rdev->raid_disk = -1; 6477 err = bind_rdev_to_array(rdev, mddev); 6478 6479 if (err) 6480 export_rdev(rdev); 6481 6482 if (mddev_is_clustered(mddev)) { 6483 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6484 if (!err) { 6485 err = md_cluster_ops->new_disk_ack(mddev, 6486 err == 0); 6487 if (err) 6488 md_kick_rdev_from_array(rdev); 6489 } 6490 } else { 6491 if (err) 6492 md_cluster_ops->add_new_disk_cancel(mddev); 6493 else 6494 err = add_bound_rdev(rdev); 6495 } 6496 6497 } else if (!err) 6498 err = add_bound_rdev(rdev); 6499 6500 return err; 6501 } 6502 6503 /* otherwise, add_new_disk is only allowed 6504 * for major_version==0 superblocks 6505 */ 6506 if (mddev->major_version != 0) { 6507 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6508 return -EINVAL; 6509 } 6510 6511 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6512 int err; 6513 rdev = md_import_device(dev, -1, 0); 6514 if (IS_ERR(rdev)) { 6515 pr_warn("md: error, md_import_device() returned %ld\n", 6516 PTR_ERR(rdev)); 6517 return PTR_ERR(rdev); 6518 } 6519 rdev->desc_nr = info->number; 6520 if (info->raid_disk < mddev->raid_disks) 6521 rdev->raid_disk = info->raid_disk; 6522 else 6523 rdev->raid_disk = -1; 6524 6525 if (rdev->raid_disk < mddev->raid_disks) 6526 if (info->state & (1<<MD_DISK_SYNC)) 6527 set_bit(In_sync, &rdev->flags); 6528 6529 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6530 set_bit(WriteMostly, &rdev->flags); 6531 if (info->state & (1<<MD_DISK_FAILFAST)) 6532 set_bit(FailFast, &rdev->flags); 6533 6534 if (!mddev->persistent) { 6535 pr_debug("md: nonpersistent superblock ...\n"); 6536 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6537 } else 6538 rdev->sb_start = calc_dev_sboffset(rdev); 6539 rdev->sectors = rdev->sb_start; 6540 6541 err = bind_rdev_to_array(rdev, mddev); 6542 if (err) { 6543 export_rdev(rdev); 6544 return err; 6545 } 6546 } 6547 6548 return 0; 6549 } 6550 6551 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6552 { 6553 char b[BDEVNAME_SIZE]; 6554 struct md_rdev *rdev; 6555 6556 if (!mddev->pers) 6557 return -ENODEV; 6558 6559 rdev = find_rdev(mddev, dev); 6560 if (!rdev) 6561 return -ENXIO; 6562 6563 if (rdev->raid_disk < 0) 6564 goto kick_rdev; 6565 6566 clear_bit(Blocked, &rdev->flags); 6567 remove_and_add_spares(mddev, rdev); 6568 6569 if (rdev->raid_disk >= 0) 6570 goto busy; 6571 6572 kick_rdev: 6573 if (mddev_is_clustered(mddev)) 6574 md_cluster_ops->remove_disk(mddev, rdev); 6575 6576 md_kick_rdev_from_array(rdev); 6577 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6578 if (mddev->thread) 6579 md_wakeup_thread(mddev->thread); 6580 else 6581 md_update_sb(mddev, 1); 6582 md_new_event(mddev); 6583 6584 return 0; 6585 busy: 6586 pr_debug("md: cannot remove active disk %s from %s ...\n", 6587 bdevname(rdev->bdev,b), mdname(mddev)); 6588 return -EBUSY; 6589 } 6590 6591 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6592 { 6593 char b[BDEVNAME_SIZE]; 6594 int err; 6595 struct md_rdev *rdev; 6596 6597 if (!mddev->pers) 6598 return -ENODEV; 6599 6600 if (mddev->major_version != 0) { 6601 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6602 mdname(mddev)); 6603 return -EINVAL; 6604 } 6605 if (!mddev->pers->hot_add_disk) { 6606 pr_warn("%s: personality does not support diskops!\n", 6607 mdname(mddev)); 6608 return -EINVAL; 6609 } 6610 6611 rdev = md_import_device(dev, -1, 0); 6612 if (IS_ERR(rdev)) { 6613 pr_warn("md: error, md_import_device() returned %ld\n", 6614 PTR_ERR(rdev)); 6615 return -EINVAL; 6616 } 6617 6618 if (mddev->persistent) 6619 rdev->sb_start = calc_dev_sboffset(rdev); 6620 else 6621 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6622 6623 rdev->sectors = rdev->sb_start; 6624 6625 if (test_bit(Faulty, &rdev->flags)) { 6626 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6627 bdevname(rdev->bdev,b), mdname(mddev)); 6628 err = -EINVAL; 6629 goto abort_export; 6630 } 6631 6632 clear_bit(In_sync, &rdev->flags); 6633 rdev->desc_nr = -1; 6634 rdev->saved_raid_disk = -1; 6635 err = bind_rdev_to_array(rdev, mddev); 6636 if (err) 6637 goto abort_export; 6638 6639 /* 6640 * The rest should better be atomic, we can have disk failures 6641 * noticed in interrupt contexts ... 6642 */ 6643 6644 rdev->raid_disk = -1; 6645 6646 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6647 if (!mddev->thread) 6648 md_update_sb(mddev, 1); 6649 /* 6650 * Kick recovery, maybe this spare has to be added to the 6651 * array immediately. 6652 */ 6653 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6654 md_wakeup_thread(mddev->thread); 6655 md_new_event(mddev); 6656 return 0; 6657 6658 abort_export: 6659 export_rdev(rdev); 6660 return err; 6661 } 6662 6663 static int set_bitmap_file(struct mddev *mddev, int fd) 6664 { 6665 int err = 0; 6666 6667 if (mddev->pers) { 6668 if (!mddev->pers->quiesce || !mddev->thread) 6669 return -EBUSY; 6670 if (mddev->recovery || mddev->sync_thread) 6671 return -EBUSY; 6672 /* we should be able to change the bitmap.. */ 6673 } 6674 6675 if (fd >= 0) { 6676 struct inode *inode; 6677 struct file *f; 6678 6679 if (mddev->bitmap || mddev->bitmap_info.file) 6680 return -EEXIST; /* cannot add when bitmap is present */ 6681 f = fget(fd); 6682 6683 if (f == NULL) { 6684 pr_warn("%s: error: failed to get bitmap file\n", 6685 mdname(mddev)); 6686 return -EBADF; 6687 } 6688 6689 inode = f->f_mapping->host; 6690 if (!S_ISREG(inode->i_mode)) { 6691 pr_warn("%s: error: bitmap file must be a regular file\n", 6692 mdname(mddev)); 6693 err = -EBADF; 6694 } else if (!(f->f_mode & FMODE_WRITE)) { 6695 pr_warn("%s: error: bitmap file must open for write\n", 6696 mdname(mddev)); 6697 err = -EBADF; 6698 } else if (atomic_read(&inode->i_writecount) != 1) { 6699 pr_warn("%s: error: bitmap file is already in use\n", 6700 mdname(mddev)); 6701 err = -EBUSY; 6702 } 6703 if (err) { 6704 fput(f); 6705 return err; 6706 } 6707 mddev->bitmap_info.file = f; 6708 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6709 } else if (mddev->bitmap == NULL) 6710 return -ENOENT; /* cannot remove what isn't there */ 6711 err = 0; 6712 if (mddev->pers) { 6713 if (fd >= 0) { 6714 struct bitmap *bitmap; 6715 6716 bitmap = bitmap_create(mddev, -1); 6717 mddev_suspend(mddev); 6718 if (!IS_ERR(bitmap)) { 6719 mddev->bitmap = bitmap; 6720 err = bitmap_load(mddev); 6721 } else 6722 err = PTR_ERR(bitmap); 6723 if (err) { 6724 bitmap_destroy(mddev); 6725 fd = -1; 6726 } 6727 mddev_resume(mddev); 6728 } else if (fd < 0) { 6729 mddev_suspend(mddev); 6730 bitmap_destroy(mddev); 6731 mddev_resume(mddev); 6732 } 6733 } 6734 if (fd < 0) { 6735 struct file *f = mddev->bitmap_info.file; 6736 if (f) { 6737 spin_lock(&mddev->lock); 6738 mddev->bitmap_info.file = NULL; 6739 spin_unlock(&mddev->lock); 6740 fput(f); 6741 } 6742 } 6743 6744 return err; 6745 } 6746 6747 /* 6748 * set_array_info is used two different ways 6749 * The original usage is when creating a new array. 6750 * In this usage, raid_disks is > 0 and it together with 6751 * level, size, not_persistent,layout,chunksize determine the 6752 * shape of the array. 6753 * This will always create an array with a type-0.90.0 superblock. 6754 * The newer usage is when assembling an array. 6755 * In this case raid_disks will be 0, and the major_version field is 6756 * use to determine which style super-blocks are to be found on the devices. 6757 * The minor and patch _version numbers are also kept incase the 6758 * super_block handler wishes to interpret them. 6759 */ 6760 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6761 { 6762 6763 if (info->raid_disks == 0) { 6764 /* just setting version number for superblock loading */ 6765 if (info->major_version < 0 || 6766 info->major_version >= ARRAY_SIZE(super_types) || 6767 super_types[info->major_version].name == NULL) { 6768 /* maybe try to auto-load a module? */ 6769 pr_warn("md: superblock version %d not known\n", 6770 info->major_version); 6771 return -EINVAL; 6772 } 6773 mddev->major_version = info->major_version; 6774 mddev->minor_version = info->minor_version; 6775 mddev->patch_version = info->patch_version; 6776 mddev->persistent = !info->not_persistent; 6777 /* ensure mddev_put doesn't delete this now that there 6778 * is some minimal configuration. 6779 */ 6780 mddev->ctime = ktime_get_real_seconds(); 6781 return 0; 6782 } 6783 mddev->major_version = MD_MAJOR_VERSION; 6784 mddev->minor_version = MD_MINOR_VERSION; 6785 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6786 mddev->ctime = ktime_get_real_seconds(); 6787 6788 mddev->level = info->level; 6789 mddev->clevel[0] = 0; 6790 mddev->dev_sectors = 2 * (sector_t)info->size; 6791 mddev->raid_disks = info->raid_disks; 6792 /* don't set md_minor, it is determined by which /dev/md* was 6793 * openned 6794 */ 6795 if (info->state & (1<<MD_SB_CLEAN)) 6796 mddev->recovery_cp = MaxSector; 6797 else 6798 mddev->recovery_cp = 0; 6799 mddev->persistent = ! info->not_persistent; 6800 mddev->external = 0; 6801 6802 mddev->layout = info->layout; 6803 mddev->chunk_sectors = info->chunk_size >> 9; 6804 6805 if (mddev->persistent) { 6806 mddev->max_disks = MD_SB_DISKS; 6807 mddev->flags = 0; 6808 mddev->sb_flags = 0; 6809 } 6810 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6811 6812 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6813 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6814 mddev->bitmap_info.offset = 0; 6815 6816 mddev->reshape_position = MaxSector; 6817 6818 /* 6819 * Generate a 128 bit UUID 6820 */ 6821 get_random_bytes(mddev->uuid, 16); 6822 6823 mddev->new_level = mddev->level; 6824 mddev->new_chunk_sectors = mddev->chunk_sectors; 6825 mddev->new_layout = mddev->layout; 6826 mddev->delta_disks = 0; 6827 mddev->reshape_backwards = 0; 6828 6829 return 0; 6830 } 6831 6832 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6833 { 6834 lockdep_assert_held(&mddev->reconfig_mutex); 6835 6836 if (mddev->external_size) 6837 return; 6838 6839 mddev->array_sectors = array_sectors; 6840 } 6841 EXPORT_SYMBOL(md_set_array_sectors); 6842 6843 static int update_size(struct mddev *mddev, sector_t num_sectors) 6844 { 6845 struct md_rdev *rdev; 6846 int rv; 6847 int fit = (num_sectors == 0); 6848 sector_t old_dev_sectors = mddev->dev_sectors; 6849 6850 if (mddev->pers->resize == NULL) 6851 return -EINVAL; 6852 /* The "num_sectors" is the number of sectors of each device that 6853 * is used. This can only make sense for arrays with redundancy. 6854 * linear and raid0 always use whatever space is available. We can only 6855 * consider changing this number if no resync or reconstruction is 6856 * happening, and if the new size is acceptable. It must fit before the 6857 * sb_start or, if that is <data_offset, it must fit before the size 6858 * of each device. If num_sectors is zero, we find the largest size 6859 * that fits. 6860 */ 6861 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6862 mddev->sync_thread) 6863 return -EBUSY; 6864 if (mddev->ro) 6865 return -EROFS; 6866 6867 rdev_for_each(rdev, mddev) { 6868 sector_t avail = rdev->sectors; 6869 6870 if (fit && (num_sectors == 0 || num_sectors > avail)) 6871 num_sectors = avail; 6872 if (avail < num_sectors) 6873 return -ENOSPC; 6874 } 6875 rv = mddev->pers->resize(mddev, num_sectors); 6876 if (!rv) { 6877 if (mddev_is_clustered(mddev)) 6878 md_cluster_ops->update_size(mddev, old_dev_sectors); 6879 else if (mddev->queue) { 6880 set_capacity(mddev->gendisk, mddev->array_sectors); 6881 revalidate_disk(mddev->gendisk); 6882 } 6883 } 6884 return rv; 6885 } 6886 6887 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6888 { 6889 int rv; 6890 struct md_rdev *rdev; 6891 /* change the number of raid disks */ 6892 if (mddev->pers->check_reshape == NULL) 6893 return -EINVAL; 6894 if (mddev->ro) 6895 return -EROFS; 6896 if (raid_disks <= 0 || 6897 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6898 return -EINVAL; 6899 if (mddev->sync_thread || 6900 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6901 mddev->reshape_position != MaxSector) 6902 return -EBUSY; 6903 6904 rdev_for_each(rdev, mddev) { 6905 if (mddev->raid_disks < raid_disks && 6906 rdev->data_offset < rdev->new_data_offset) 6907 return -EINVAL; 6908 if (mddev->raid_disks > raid_disks && 6909 rdev->data_offset > rdev->new_data_offset) 6910 return -EINVAL; 6911 } 6912 6913 mddev->delta_disks = raid_disks - mddev->raid_disks; 6914 if (mddev->delta_disks < 0) 6915 mddev->reshape_backwards = 1; 6916 else if (mddev->delta_disks > 0) 6917 mddev->reshape_backwards = 0; 6918 6919 rv = mddev->pers->check_reshape(mddev); 6920 if (rv < 0) { 6921 mddev->delta_disks = 0; 6922 mddev->reshape_backwards = 0; 6923 } 6924 return rv; 6925 } 6926 6927 /* 6928 * update_array_info is used to change the configuration of an 6929 * on-line array. 6930 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6931 * fields in the info are checked against the array. 6932 * Any differences that cannot be handled will cause an error. 6933 * Normally, only one change can be managed at a time. 6934 */ 6935 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6936 { 6937 int rv = 0; 6938 int cnt = 0; 6939 int state = 0; 6940 6941 /* calculate expected state,ignoring low bits */ 6942 if (mddev->bitmap && mddev->bitmap_info.offset) 6943 state |= (1 << MD_SB_BITMAP_PRESENT); 6944 6945 if (mddev->major_version != info->major_version || 6946 mddev->minor_version != info->minor_version || 6947 /* mddev->patch_version != info->patch_version || */ 6948 mddev->ctime != info->ctime || 6949 mddev->level != info->level || 6950 /* mddev->layout != info->layout || */ 6951 mddev->persistent != !info->not_persistent || 6952 mddev->chunk_sectors != info->chunk_size >> 9 || 6953 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6954 ((state^info->state) & 0xfffffe00) 6955 ) 6956 return -EINVAL; 6957 /* Check there is only one change */ 6958 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6959 cnt++; 6960 if (mddev->raid_disks != info->raid_disks) 6961 cnt++; 6962 if (mddev->layout != info->layout) 6963 cnt++; 6964 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6965 cnt++; 6966 if (cnt == 0) 6967 return 0; 6968 if (cnt > 1) 6969 return -EINVAL; 6970 6971 if (mddev->layout != info->layout) { 6972 /* Change layout 6973 * we don't need to do anything at the md level, the 6974 * personality will take care of it all. 6975 */ 6976 if (mddev->pers->check_reshape == NULL) 6977 return -EINVAL; 6978 else { 6979 mddev->new_layout = info->layout; 6980 rv = mddev->pers->check_reshape(mddev); 6981 if (rv) 6982 mddev->new_layout = mddev->layout; 6983 return rv; 6984 } 6985 } 6986 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6987 rv = update_size(mddev, (sector_t)info->size * 2); 6988 6989 if (mddev->raid_disks != info->raid_disks) 6990 rv = update_raid_disks(mddev, info->raid_disks); 6991 6992 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6993 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6994 rv = -EINVAL; 6995 goto err; 6996 } 6997 if (mddev->recovery || mddev->sync_thread) { 6998 rv = -EBUSY; 6999 goto err; 7000 } 7001 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7002 struct bitmap *bitmap; 7003 /* add the bitmap */ 7004 if (mddev->bitmap) { 7005 rv = -EEXIST; 7006 goto err; 7007 } 7008 if (mddev->bitmap_info.default_offset == 0) { 7009 rv = -EINVAL; 7010 goto err; 7011 } 7012 mddev->bitmap_info.offset = 7013 mddev->bitmap_info.default_offset; 7014 mddev->bitmap_info.space = 7015 mddev->bitmap_info.default_space; 7016 bitmap = bitmap_create(mddev, -1); 7017 mddev_suspend(mddev); 7018 if (!IS_ERR(bitmap)) { 7019 mddev->bitmap = bitmap; 7020 rv = bitmap_load(mddev); 7021 } else 7022 rv = PTR_ERR(bitmap); 7023 if (rv) 7024 bitmap_destroy(mddev); 7025 mddev_resume(mddev); 7026 } else { 7027 /* remove the bitmap */ 7028 if (!mddev->bitmap) { 7029 rv = -ENOENT; 7030 goto err; 7031 } 7032 if (mddev->bitmap->storage.file) { 7033 rv = -EINVAL; 7034 goto err; 7035 } 7036 if (mddev->bitmap_info.nodes) { 7037 /* hold PW on all the bitmap lock */ 7038 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7039 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7040 rv = -EPERM; 7041 md_cluster_ops->unlock_all_bitmaps(mddev); 7042 goto err; 7043 } 7044 7045 mddev->bitmap_info.nodes = 0; 7046 md_cluster_ops->leave(mddev); 7047 } 7048 mddev_suspend(mddev); 7049 bitmap_destroy(mddev); 7050 mddev_resume(mddev); 7051 mddev->bitmap_info.offset = 0; 7052 } 7053 } 7054 md_update_sb(mddev, 1); 7055 return rv; 7056 err: 7057 return rv; 7058 } 7059 7060 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7061 { 7062 struct md_rdev *rdev; 7063 int err = 0; 7064 7065 if (mddev->pers == NULL) 7066 return -ENODEV; 7067 7068 rcu_read_lock(); 7069 rdev = md_find_rdev_rcu(mddev, dev); 7070 if (!rdev) 7071 err = -ENODEV; 7072 else { 7073 md_error(mddev, rdev); 7074 if (!test_bit(Faulty, &rdev->flags)) 7075 err = -EBUSY; 7076 } 7077 rcu_read_unlock(); 7078 return err; 7079 } 7080 7081 /* 7082 * We have a problem here : there is no easy way to give a CHS 7083 * virtual geometry. We currently pretend that we have a 2 heads 7084 * 4 sectors (with a BIG number of cylinders...). This drives 7085 * dosfs just mad... ;-) 7086 */ 7087 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7088 { 7089 struct mddev *mddev = bdev->bd_disk->private_data; 7090 7091 geo->heads = 2; 7092 geo->sectors = 4; 7093 geo->cylinders = mddev->array_sectors / 8; 7094 return 0; 7095 } 7096 7097 static inline bool md_ioctl_valid(unsigned int cmd) 7098 { 7099 switch (cmd) { 7100 case ADD_NEW_DISK: 7101 case BLKROSET: 7102 case GET_ARRAY_INFO: 7103 case GET_BITMAP_FILE: 7104 case GET_DISK_INFO: 7105 case HOT_ADD_DISK: 7106 case HOT_REMOVE_DISK: 7107 case RAID_AUTORUN: 7108 case RAID_VERSION: 7109 case RESTART_ARRAY_RW: 7110 case RUN_ARRAY: 7111 case SET_ARRAY_INFO: 7112 case SET_BITMAP_FILE: 7113 case SET_DISK_FAULTY: 7114 case STOP_ARRAY: 7115 case STOP_ARRAY_RO: 7116 case CLUSTERED_DISK_NACK: 7117 return true; 7118 default: 7119 return false; 7120 } 7121 } 7122 7123 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7124 unsigned int cmd, unsigned long arg) 7125 { 7126 int err = 0; 7127 void __user *argp = (void __user *)arg; 7128 struct mddev *mddev = NULL; 7129 int ro; 7130 bool did_set_md_closing = false; 7131 7132 if (!md_ioctl_valid(cmd)) 7133 return -ENOTTY; 7134 7135 switch (cmd) { 7136 case RAID_VERSION: 7137 case GET_ARRAY_INFO: 7138 case GET_DISK_INFO: 7139 break; 7140 default: 7141 if (!capable(CAP_SYS_ADMIN)) 7142 return -EACCES; 7143 } 7144 7145 /* 7146 * Commands dealing with the RAID driver but not any 7147 * particular array: 7148 */ 7149 switch (cmd) { 7150 case RAID_VERSION: 7151 err = get_version(argp); 7152 goto out; 7153 7154 #ifndef MODULE 7155 case RAID_AUTORUN: 7156 err = 0; 7157 autostart_arrays(arg); 7158 goto out; 7159 #endif 7160 default:; 7161 } 7162 7163 /* 7164 * Commands creating/starting a new array: 7165 */ 7166 7167 mddev = bdev->bd_disk->private_data; 7168 7169 if (!mddev) { 7170 BUG(); 7171 goto out; 7172 } 7173 7174 /* Some actions do not requires the mutex */ 7175 switch (cmd) { 7176 case GET_ARRAY_INFO: 7177 if (!mddev->raid_disks && !mddev->external) 7178 err = -ENODEV; 7179 else 7180 err = get_array_info(mddev, argp); 7181 goto out; 7182 7183 case GET_DISK_INFO: 7184 if (!mddev->raid_disks && !mddev->external) 7185 err = -ENODEV; 7186 else 7187 err = get_disk_info(mddev, argp); 7188 goto out; 7189 7190 case SET_DISK_FAULTY: 7191 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7192 goto out; 7193 7194 case GET_BITMAP_FILE: 7195 err = get_bitmap_file(mddev, argp); 7196 goto out; 7197 7198 } 7199 7200 if (cmd == ADD_NEW_DISK) 7201 /* need to ensure md_delayed_delete() has completed */ 7202 flush_workqueue(md_misc_wq); 7203 7204 if (cmd == HOT_REMOVE_DISK) 7205 /* need to ensure recovery thread has run */ 7206 wait_event_interruptible_timeout(mddev->sb_wait, 7207 !test_bit(MD_RECOVERY_NEEDED, 7208 &mddev->recovery), 7209 msecs_to_jiffies(5000)); 7210 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7211 /* Need to flush page cache, and ensure no-one else opens 7212 * and writes 7213 */ 7214 mutex_lock(&mddev->open_mutex); 7215 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7216 mutex_unlock(&mddev->open_mutex); 7217 err = -EBUSY; 7218 goto out; 7219 } 7220 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7221 set_bit(MD_CLOSING, &mddev->flags); 7222 did_set_md_closing = true; 7223 mutex_unlock(&mddev->open_mutex); 7224 sync_blockdev(bdev); 7225 } 7226 err = mddev_lock(mddev); 7227 if (err) { 7228 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7229 err, cmd); 7230 goto out; 7231 } 7232 7233 if (cmd == SET_ARRAY_INFO) { 7234 mdu_array_info_t info; 7235 if (!arg) 7236 memset(&info, 0, sizeof(info)); 7237 else if (copy_from_user(&info, argp, sizeof(info))) { 7238 err = -EFAULT; 7239 goto unlock; 7240 } 7241 if (mddev->pers) { 7242 err = update_array_info(mddev, &info); 7243 if (err) { 7244 pr_warn("md: couldn't update array info. %d\n", err); 7245 goto unlock; 7246 } 7247 goto unlock; 7248 } 7249 if (!list_empty(&mddev->disks)) { 7250 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7251 err = -EBUSY; 7252 goto unlock; 7253 } 7254 if (mddev->raid_disks) { 7255 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7256 err = -EBUSY; 7257 goto unlock; 7258 } 7259 err = set_array_info(mddev, &info); 7260 if (err) { 7261 pr_warn("md: couldn't set array info. %d\n", err); 7262 goto unlock; 7263 } 7264 goto unlock; 7265 } 7266 7267 /* 7268 * Commands querying/configuring an existing array: 7269 */ 7270 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7271 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7272 if ((!mddev->raid_disks && !mddev->external) 7273 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7274 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7275 && cmd != GET_BITMAP_FILE) { 7276 err = -ENODEV; 7277 goto unlock; 7278 } 7279 7280 /* 7281 * Commands even a read-only array can execute: 7282 */ 7283 switch (cmd) { 7284 case RESTART_ARRAY_RW: 7285 err = restart_array(mddev); 7286 goto unlock; 7287 7288 case STOP_ARRAY: 7289 err = do_md_stop(mddev, 0, bdev); 7290 goto unlock; 7291 7292 case STOP_ARRAY_RO: 7293 err = md_set_readonly(mddev, bdev); 7294 goto unlock; 7295 7296 case HOT_REMOVE_DISK: 7297 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7298 goto unlock; 7299 7300 case ADD_NEW_DISK: 7301 /* We can support ADD_NEW_DISK on read-only arrays 7302 * only if we are re-adding a preexisting device. 7303 * So require mddev->pers and MD_DISK_SYNC. 7304 */ 7305 if (mddev->pers) { 7306 mdu_disk_info_t info; 7307 if (copy_from_user(&info, argp, sizeof(info))) 7308 err = -EFAULT; 7309 else if (!(info.state & (1<<MD_DISK_SYNC))) 7310 /* Need to clear read-only for this */ 7311 break; 7312 else 7313 err = add_new_disk(mddev, &info); 7314 goto unlock; 7315 } 7316 break; 7317 7318 case BLKROSET: 7319 if (get_user(ro, (int __user *)(arg))) { 7320 err = -EFAULT; 7321 goto unlock; 7322 } 7323 err = -EINVAL; 7324 7325 /* if the bdev is going readonly the value of mddev->ro 7326 * does not matter, no writes are coming 7327 */ 7328 if (ro) 7329 goto unlock; 7330 7331 /* are we are already prepared for writes? */ 7332 if (mddev->ro != 1) 7333 goto unlock; 7334 7335 /* transitioning to readauto need only happen for 7336 * arrays that call md_write_start 7337 */ 7338 if (mddev->pers) { 7339 err = restart_array(mddev); 7340 if (err == 0) { 7341 mddev->ro = 2; 7342 set_disk_ro(mddev->gendisk, 0); 7343 } 7344 } 7345 goto unlock; 7346 } 7347 7348 /* 7349 * The remaining ioctls are changing the state of the 7350 * superblock, so we do not allow them on read-only arrays. 7351 */ 7352 if (mddev->ro && mddev->pers) { 7353 if (mddev->ro == 2) { 7354 mddev->ro = 0; 7355 sysfs_notify_dirent_safe(mddev->sysfs_state); 7356 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7357 /* mddev_unlock will wake thread */ 7358 /* If a device failed while we were read-only, we 7359 * need to make sure the metadata is updated now. 7360 */ 7361 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7362 mddev_unlock(mddev); 7363 wait_event(mddev->sb_wait, 7364 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7365 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7366 mddev_lock_nointr(mddev); 7367 } 7368 } else { 7369 err = -EROFS; 7370 goto unlock; 7371 } 7372 } 7373 7374 switch (cmd) { 7375 case ADD_NEW_DISK: 7376 { 7377 mdu_disk_info_t info; 7378 if (copy_from_user(&info, argp, sizeof(info))) 7379 err = -EFAULT; 7380 else 7381 err = add_new_disk(mddev, &info); 7382 goto unlock; 7383 } 7384 7385 case CLUSTERED_DISK_NACK: 7386 if (mddev_is_clustered(mddev)) 7387 md_cluster_ops->new_disk_ack(mddev, false); 7388 else 7389 err = -EINVAL; 7390 goto unlock; 7391 7392 case HOT_ADD_DISK: 7393 err = hot_add_disk(mddev, new_decode_dev(arg)); 7394 goto unlock; 7395 7396 case RUN_ARRAY: 7397 err = do_md_run(mddev); 7398 goto unlock; 7399 7400 case SET_BITMAP_FILE: 7401 err = set_bitmap_file(mddev, (int)arg); 7402 goto unlock; 7403 7404 default: 7405 err = -EINVAL; 7406 goto unlock; 7407 } 7408 7409 unlock: 7410 if (mddev->hold_active == UNTIL_IOCTL && 7411 err != -EINVAL) 7412 mddev->hold_active = 0; 7413 mddev_unlock(mddev); 7414 out: 7415 if(did_set_md_closing) 7416 clear_bit(MD_CLOSING, &mddev->flags); 7417 return err; 7418 } 7419 #ifdef CONFIG_COMPAT 7420 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7421 unsigned int cmd, unsigned long arg) 7422 { 7423 switch (cmd) { 7424 case HOT_REMOVE_DISK: 7425 case HOT_ADD_DISK: 7426 case SET_DISK_FAULTY: 7427 case SET_BITMAP_FILE: 7428 /* These take in integer arg, do not convert */ 7429 break; 7430 default: 7431 arg = (unsigned long)compat_ptr(arg); 7432 break; 7433 } 7434 7435 return md_ioctl(bdev, mode, cmd, arg); 7436 } 7437 #endif /* CONFIG_COMPAT */ 7438 7439 static int md_open(struct block_device *bdev, fmode_t mode) 7440 { 7441 /* 7442 * Succeed if we can lock the mddev, which confirms that 7443 * it isn't being stopped right now. 7444 */ 7445 struct mddev *mddev = mddev_find(bdev->bd_dev); 7446 int err; 7447 7448 if (!mddev) 7449 return -ENODEV; 7450 7451 if (mddev->gendisk != bdev->bd_disk) { 7452 /* we are racing with mddev_put which is discarding this 7453 * bd_disk. 7454 */ 7455 mddev_put(mddev); 7456 /* Wait until bdev->bd_disk is definitely gone */ 7457 flush_workqueue(md_misc_wq); 7458 /* Then retry the open from the top */ 7459 return -ERESTARTSYS; 7460 } 7461 BUG_ON(mddev != bdev->bd_disk->private_data); 7462 7463 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7464 goto out; 7465 7466 if (test_bit(MD_CLOSING, &mddev->flags)) { 7467 mutex_unlock(&mddev->open_mutex); 7468 err = -ENODEV; 7469 goto out; 7470 } 7471 7472 err = 0; 7473 atomic_inc(&mddev->openers); 7474 mutex_unlock(&mddev->open_mutex); 7475 7476 check_disk_change(bdev); 7477 out: 7478 if (err) 7479 mddev_put(mddev); 7480 return err; 7481 } 7482 7483 static void md_release(struct gendisk *disk, fmode_t mode) 7484 { 7485 struct mddev *mddev = disk->private_data; 7486 7487 BUG_ON(!mddev); 7488 atomic_dec(&mddev->openers); 7489 mddev_put(mddev); 7490 } 7491 7492 static int md_media_changed(struct gendisk *disk) 7493 { 7494 struct mddev *mddev = disk->private_data; 7495 7496 return mddev->changed; 7497 } 7498 7499 static int md_revalidate(struct gendisk *disk) 7500 { 7501 struct mddev *mddev = disk->private_data; 7502 7503 mddev->changed = 0; 7504 return 0; 7505 } 7506 static const struct block_device_operations md_fops = 7507 { 7508 .owner = THIS_MODULE, 7509 .open = md_open, 7510 .release = md_release, 7511 .ioctl = md_ioctl, 7512 #ifdef CONFIG_COMPAT 7513 .compat_ioctl = md_compat_ioctl, 7514 #endif 7515 .getgeo = md_getgeo, 7516 .media_changed = md_media_changed, 7517 .revalidate_disk= md_revalidate, 7518 }; 7519 7520 static int md_thread(void *arg) 7521 { 7522 struct md_thread *thread = arg; 7523 7524 /* 7525 * md_thread is a 'system-thread', it's priority should be very 7526 * high. We avoid resource deadlocks individually in each 7527 * raid personality. (RAID5 does preallocation) We also use RR and 7528 * the very same RT priority as kswapd, thus we will never get 7529 * into a priority inversion deadlock. 7530 * 7531 * we definitely have to have equal or higher priority than 7532 * bdflush, otherwise bdflush will deadlock if there are too 7533 * many dirty RAID5 blocks. 7534 */ 7535 7536 allow_signal(SIGKILL); 7537 while (!kthread_should_stop()) { 7538 7539 /* We need to wait INTERRUPTIBLE so that 7540 * we don't add to the load-average. 7541 * That means we need to be sure no signals are 7542 * pending 7543 */ 7544 if (signal_pending(current)) 7545 flush_signals(current); 7546 7547 wait_event_interruptible_timeout 7548 (thread->wqueue, 7549 test_bit(THREAD_WAKEUP, &thread->flags) 7550 || kthread_should_stop() || kthread_should_park(), 7551 thread->timeout); 7552 7553 clear_bit(THREAD_WAKEUP, &thread->flags); 7554 if (kthread_should_park()) 7555 kthread_parkme(); 7556 if (!kthread_should_stop()) 7557 thread->run(thread); 7558 } 7559 7560 return 0; 7561 } 7562 7563 void md_wakeup_thread(struct md_thread *thread) 7564 { 7565 if (thread) { 7566 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7567 set_bit(THREAD_WAKEUP, &thread->flags); 7568 wake_up(&thread->wqueue); 7569 } 7570 } 7571 EXPORT_SYMBOL(md_wakeup_thread); 7572 7573 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7574 struct mddev *mddev, const char *name) 7575 { 7576 struct md_thread *thread; 7577 7578 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7579 if (!thread) 7580 return NULL; 7581 7582 init_waitqueue_head(&thread->wqueue); 7583 7584 thread->run = run; 7585 thread->mddev = mddev; 7586 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7587 thread->tsk = kthread_run(md_thread, thread, 7588 "%s_%s", 7589 mdname(thread->mddev), 7590 name); 7591 if (IS_ERR(thread->tsk)) { 7592 kfree(thread); 7593 return NULL; 7594 } 7595 return thread; 7596 } 7597 EXPORT_SYMBOL(md_register_thread); 7598 7599 void md_unregister_thread(struct md_thread **threadp) 7600 { 7601 struct md_thread *thread = *threadp; 7602 if (!thread) 7603 return; 7604 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7605 /* Locking ensures that mddev_unlock does not wake_up a 7606 * non-existent thread 7607 */ 7608 spin_lock(&pers_lock); 7609 *threadp = NULL; 7610 spin_unlock(&pers_lock); 7611 7612 kthread_stop(thread->tsk); 7613 kfree(thread); 7614 } 7615 EXPORT_SYMBOL(md_unregister_thread); 7616 7617 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7618 { 7619 if (!rdev || test_bit(Faulty, &rdev->flags)) 7620 return; 7621 7622 if (!mddev->pers || !mddev->pers->error_handler) 7623 return; 7624 mddev->pers->error_handler(mddev,rdev); 7625 if (mddev->degraded) 7626 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7627 sysfs_notify_dirent_safe(rdev->sysfs_state); 7628 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7629 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7630 md_wakeup_thread(mddev->thread); 7631 if (mddev->event_work.func) 7632 queue_work(md_misc_wq, &mddev->event_work); 7633 md_new_event(mddev); 7634 } 7635 EXPORT_SYMBOL(md_error); 7636 7637 /* seq_file implementation /proc/mdstat */ 7638 7639 static void status_unused(struct seq_file *seq) 7640 { 7641 int i = 0; 7642 struct md_rdev *rdev; 7643 7644 seq_printf(seq, "unused devices: "); 7645 7646 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7647 char b[BDEVNAME_SIZE]; 7648 i++; 7649 seq_printf(seq, "%s ", 7650 bdevname(rdev->bdev,b)); 7651 } 7652 if (!i) 7653 seq_printf(seq, "<none>"); 7654 7655 seq_printf(seq, "\n"); 7656 } 7657 7658 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7659 { 7660 sector_t max_sectors, resync, res; 7661 unsigned long dt, db; 7662 sector_t rt; 7663 int scale; 7664 unsigned int per_milli; 7665 7666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7667 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7668 max_sectors = mddev->resync_max_sectors; 7669 else 7670 max_sectors = mddev->dev_sectors; 7671 7672 resync = mddev->curr_resync; 7673 if (resync <= 3) { 7674 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7675 /* Still cleaning up */ 7676 resync = max_sectors; 7677 } else if (resync > max_sectors) 7678 resync = max_sectors; 7679 else 7680 resync -= atomic_read(&mddev->recovery_active); 7681 7682 if (resync == 0) { 7683 if (mddev->recovery_cp < MaxSector) { 7684 seq_printf(seq, "\tresync=PENDING"); 7685 return 1; 7686 } 7687 return 0; 7688 } 7689 if (resync < 3) { 7690 seq_printf(seq, "\tresync=DELAYED"); 7691 return 1; 7692 } 7693 7694 WARN_ON(max_sectors == 0); 7695 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7696 * in a sector_t, and (max_sectors>>scale) will fit in a 7697 * u32, as those are the requirements for sector_div. 7698 * Thus 'scale' must be at least 10 7699 */ 7700 scale = 10; 7701 if (sizeof(sector_t) > sizeof(unsigned long)) { 7702 while ( max_sectors/2 > (1ULL<<(scale+32))) 7703 scale++; 7704 } 7705 res = (resync>>scale)*1000; 7706 sector_div(res, (u32)((max_sectors>>scale)+1)); 7707 7708 per_milli = res; 7709 { 7710 int i, x = per_milli/50, y = 20-x; 7711 seq_printf(seq, "["); 7712 for (i = 0; i < x; i++) 7713 seq_printf(seq, "="); 7714 seq_printf(seq, ">"); 7715 for (i = 0; i < y; i++) 7716 seq_printf(seq, "."); 7717 seq_printf(seq, "] "); 7718 } 7719 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7720 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7721 "reshape" : 7722 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7723 "check" : 7724 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7725 "resync" : "recovery"))), 7726 per_milli/10, per_milli % 10, 7727 (unsigned long long) resync/2, 7728 (unsigned long long) max_sectors/2); 7729 7730 /* 7731 * dt: time from mark until now 7732 * db: blocks written from mark until now 7733 * rt: remaining time 7734 * 7735 * rt is a sector_t, so could be 32bit or 64bit. 7736 * So we divide before multiply in case it is 32bit and close 7737 * to the limit. 7738 * We scale the divisor (db) by 32 to avoid losing precision 7739 * near the end of resync when the number of remaining sectors 7740 * is close to 'db'. 7741 * We then divide rt by 32 after multiplying by db to compensate. 7742 * The '+1' avoids division by zero if db is very small. 7743 */ 7744 dt = ((jiffies - mddev->resync_mark) / HZ); 7745 if (!dt) dt++; 7746 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7747 - mddev->resync_mark_cnt; 7748 7749 rt = max_sectors - resync; /* number of remaining sectors */ 7750 sector_div(rt, db/32+1); 7751 rt *= dt; 7752 rt >>= 5; 7753 7754 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7755 ((unsigned long)rt % 60)/6); 7756 7757 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7758 return 1; 7759 } 7760 7761 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7762 { 7763 struct list_head *tmp; 7764 loff_t l = *pos; 7765 struct mddev *mddev; 7766 7767 if (l >= 0x10000) 7768 return NULL; 7769 if (!l--) 7770 /* header */ 7771 return (void*)1; 7772 7773 spin_lock(&all_mddevs_lock); 7774 list_for_each(tmp,&all_mddevs) 7775 if (!l--) { 7776 mddev = list_entry(tmp, struct mddev, all_mddevs); 7777 mddev_get(mddev); 7778 spin_unlock(&all_mddevs_lock); 7779 return mddev; 7780 } 7781 spin_unlock(&all_mddevs_lock); 7782 if (!l--) 7783 return (void*)2;/* tail */ 7784 return NULL; 7785 } 7786 7787 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7788 { 7789 struct list_head *tmp; 7790 struct mddev *next_mddev, *mddev = v; 7791 7792 ++*pos; 7793 if (v == (void*)2) 7794 return NULL; 7795 7796 spin_lock(&all_mddevs_lock); 7797 if (v == (void*)1) 7798 tmp = all_mddevs.next; 7799 else 7800 tmp = mddev->all_mddevs.next; 7801 if (tmp != &all_mddevs) 7802 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7803 else { 7804 next_mddev = (void*)2; 7805 *pos = 0x10000; 7806 } 7807 spin_unlock(&all_mddevs_lock); 7808 7809 if (v != (void*)1) 7810 mddev_put(mddev); 7811 return next_mddev; 7812 7813 } 7814 7815 static void md_seq_stop(struct seq_file *seq, void *v) 7816 { 7817 struct mddev *mddev = v; 7818 7819 if (mddev && v != (void*)1 && v != (void*)2) 7820 mddev_put(mddev); 7821 } 7822 7823 static int md_seq_show(struct seq_file *seq, void *v) 7824 { 7825 struct mddev *mddev = v; 7826 sector_t sectors; 7827 struct md_rdev *rdev; 7828 7829 if (v == (void*)1) { 7830 struct md_personality *pers; 7831 seq_printf(seq, "Personalities : "); 7832 spin_lock(&pers_lock); 7833 list_for_each_entry(pers, &pers_list, list) 7834 seq_printf(seq, "[%s] ", pers->name); 7835 7836 spin_unlock(&pers_lock); 7837 seq_printf(seq, "\n"); 7838 seq->poll_event = atomic_read(&md_event_count); 7839 return 0; 7840 } 7841 if (v == (void*)2) { 7842 status_unused(seq); 7843 return 0; 7844 } 7845 7846 spin_lock(&mddev->lock); 7847 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7848 seq_printf(seq, "%s : %sactive", mdname(mddev), 7849 mddev->pers ? "" : "in"); 7850 if (mddev->pers) { 7851 if (mddev->ro==1) 7852 seq_printf(seq, " (read-only)"); 7853 if (mddev->ro==2) 7854 seq_printf(seq, " (auto-read-only)"); 7855 seq_printf(seq, " %s", mddev->pers->name); 7856 } 7857 7858 sectors = 0; 7859 rcu_read_lock(); 7860 rdev_for_each_rcu(rdev, mddev) { 7861 char b[BDEVNAME_SIZE]; 7862 seq_printf(seq, " %s[%d]", 7863 bdevname(rdev->bdev,b), rdev->desc_nr); 7864 if (test_bit(WriteMostly, &rdev->flags)) 7865 seq_printf(seq, "(W)"); 7866 if (test_bit(Journal, &rdev->flags)) 7867 seq_printf(seq, "(J)"); 7868 if (test_bit(Faulty, &rdev->flags)) { 7869 seq_printf(seq, "(F)"); 7870 continue; 7871 } 7872 if (rdev->raid_disk < 0) 7873 seq_printf(seq, "(S)"); /* spare */ 7874 if (test_bit(Replacement, &rdev->flags)) 7875 seq_printf(seq, "(R)"); 7876 sectors += rdev->sectors; 7877 } 7878 rcu_read_unlock(); 7879 7880 if (!list_empty(&mddev->disks)) { 7881 if (mddev->pers) 7882 seq_printf(seq, "\n %llu blocks", 7883 (unsigned long long) 7884 mddev->array_sectors / 2); 7885 else 7886 seq_printf(seq, "\n %llu blocks", 7887 (unsigned long long)sectors / 2); 7888 } 7889 if (mddev->persistent) { 7890 if (mddev->major_version != 0 || 7891 mddev->minor_version != 90) { 7892 seq_printf(seq," super %d.%d", 7893 mddev->major_version, 7894 mddev->minor_version); 7895 } 7896 } else if (mddev->external) 7897 seq_printf(seq, " super external:%s", 7898 mddev->metadata_type); 7899 else 7900 seq_printf(seq, " super non-persistent"); 7901 7902 if (mddev->pers) { 7903 mddev->pers->status(seq, mddev); 7904 seq_printf(seq, "\n "); 7905 if (mddev->pers->sync_request) { 7906 if (status_resync(seq, mddev)) 7907 seq_printf(seq, "\n "); 7908 } 7909 } else 7910 seq_printf(seq, "\n "); 7911 7912 bitmap_status(seq, mddev->bitmap); 7913 7914 seq_printf(seq, "\n"); 7915 } 7916 spin_unlock(&mddev->lock); 7917 7918 return 0; 7919 } 7920 7921 static const struct seq_operations md_seq_ops = { 7922 .start = md_seq_start, 7923 .next = md_seq_next, 7924 .stop = md_seq_stop, 7925 .show = md_seq_show, 7926 }; 7927 7928 static int md_seq_open(struct inode *inode, struct file *file) 7929 { 7930 struct seq_file *seq; 7931 int error; 7932 7933 error = seq_open(file, &md_seq_ops); 7934 if (error) 7935 return error; 7936 7937 seq = file->private_data; 7938 seq->poll_event = atomic_read(&md_event_count); 7939 return error; 7940 } 7941 7942 static int md_unloading; 7943 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7944 { 7945 struct seq_file *seq = filp->private_data; 7946 __poll_t mask; 7947 7948 if (md_unloading) 7949 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7950 poll_wait(filp, &md_event_waiters, wait); 7951 7952 /* always allow read */ 7953 mask = EPOLLIN | EPOLLRDNORM; 7954 7955 if (seq->poll_event != atomic_read(&md_event_count)) 7956 mask |= EPOLLERR | EPOLLPRI; 7957 return mask; 7958 } 7959 7960 static const struct file_operations md_seq_fops = { 7961 .owner = THIS_MODULE, 7962 .open = md_seq_open, 7963 .read = seq_read, 7964 .llseek = seq_lseek, 7965 .release = seq_release, 7966 .poll = mdstat_poll, 7967 }; 7968 7969 int register_md_personality(struct md_personality *p) 7970 { 7971 pr_debug("md: %s personality registered for level %d\n", 7972 p->name, p->level); 7973 spin_lock(&pers_lock); 7974 list_add_tail(&p->list, &pers_list); 7975 spin_unlock(&pers_lock); 7976 return 0; 7977 } 7978 EXPORT_SYMBOL(register_md_personality); 7979 7980 int unregister_md_personality(struct md_personality *p) 7981 { 7982 pr_debug("md: %s personality unregistered\n", p->name); 7983 spin_lock(&pers_lock); 7984 list_del_init(&p->list); 7985 spin_unlock(&pers_lock); 7986 return 0; 7987 } 7988 EXPORT_SYMBOL(unregister_md_personality); 7989 7990 int register_md_cluster_operations(struct md_cluster_operations *ops, 7991 struct module *module) 7992 { 7993 int ret = 0; 7994 spin_lock(&pers_lock); 7995 if (md_cluster_ops != NULL) 7996 ret = -EALREADY; 7997 else { 7998 md_cluster_ops = ops; 7999 md_cluster_mod = module; 8000 } 8001 spin_unlock(&pers_lock); 8002 return ret; 8003 } 8004 EXPORT_SYMBOL(register_md_cluster_operations); 8005 8006 int unregister_md_cluster_operations(void) 8007 { 8008 spin_lock(&pers_lock); 8009 md_cluster_ops = NULL; 8010 spin_unlock(&pers_lock); 8011 return 0; 8012 } 8013 EXPORT_SYMBOL(unregister_md_cluster_operations); 8014 8015 int md_setup_cluster(struct mddev *mddev, int nodes) 8016 { 8017 if (!md_cluster_ops) 8018 request_module("md-cluster"); 8019 spin_lock(&pers_lock); 8020 /* ensure module won't be unloaded */ 8021 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8022 pr_warn("can't find md-cluster module or get it's reference.\n"); 8023 spin_unlock(&pers_lock); 8024 return -ENOENT; 8025 } 8026 spin_unlock(&pers_lock); 8027 8028 return md_cluster_ops->join(mddev, nodes); 8029 } 8030 8031 void md_cluster_stop(struct mddev *mddev) 8032 { 8033 if (!md_cluster_ops) 8034 return; 8035 md_cluster_ops->leave(mddev); 8036 module_put(md_cluster_mod); 8037 } 8038 8039 static int is_mddev_idle(struct mddev *mddev, int init) 8040 { 8041 struct md_rdev *rdev; 8042 int idle; 8043 int curr_events; 8044 8045 idle = 1; 8046 rcu_read_lock(); 8047 rdev_for_each_rcu(rdev, mddev) { 8048 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8049 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 8050 (int)part_stat_read(&disk->part0, sectors[1]) - 8051 atomic_read(&disk->sync_io); 8052 /* sync IO will cause sync_io to increase before the disk_stats 8053 * as sync_io is counted when a request starts, and 8054 * disk_stats is counted when it completes. 8055 * So resync activity will cause curr_events to be smaller than 8056 * when there was no such activity. 8057 * non-sync IO will cause disk_stat to increase without 8058 * increasing sync_io so curr_events will (eventually) 8059 * be larger than it was before. Once it becomes 8060 * substantially larger, the test below will cause 8061 * the array to appear non-idle, and resync will slow 8062 * down. 8063 * If there is a lot of outstanding resync activity when 8064 * we set last_event to curr_events, then all that activity 8065 * completing might cause the array to appear non-idle 8066 * and resync will be slowed down even though there might 8067 * not have been non-resync activity. This will only 8068 * happen once though. 'last_events' will soon reflect 8069 * the state where there is little or no outstanding 8070 * resync requests, and further resync activity will 8071 * always make curr_events less than last_events. 8072 * 8073 */ 8074 if (init || curr_events - rdev->last_events > 64) { 8075 rdev->last_events = curr_events; 8076 idle = 0; 8077 } 8078 } 8079 rcu_read_unlock(); 8080 return idle; 8081 } 8082 8083 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8084 { 8085 /* another "blocks" (512byte) blocks have been synced */ 8086 atomic_sub(blocks, &mddev->recovery_active); 8087 wake_up(&mddev->recovery_wait); 8088 if (!ok) { 8089 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8090 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8091 md_wakeup_thread(mddev->thread); 8092 // stop recovery, signal do_sync .... 8093 } 8094 } 8095 EXPORT_SYMBOL(md_done_sync); 8096 8097 /* md_write_start(mddev, bi) 8098 * If we need to update some array metadata (e.g. 'active' flag 8099 * in superblock) before writing, schedule a superblock update 8100 * and wait for it to complete. 8101 * A return value of 'false' means that the write wasn't recorded 8102 * and cannot proceed as the array is being suspend. 8103 */ 8104 bool md_write_start(struct mddev *mddev, struct bio *bi) 8105 { 8106 int did_change = 0; 8107 8108 if (bio_data_dir(bi) != WRITE) 8109 return true; 8110 8111 BUG_ON(mddev->ro == 1); 8112 if (mddev->ro == 2) { 8113 /* need to switch to read/write */ 8114 mddev->ro = 0; 8115 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8116 md_wakeup_thread(mddev->thread); 8117 md_wakeup_thread(mddev->sync_thread); 8118 did_change = 1; 8119 } 8120 rcu_read_lock(); 8121 percpu_ref_get(&mddev->writes_pending); 8122 smp_mb(); /* Match smp_mb in set_in_sync() */ 8123 if (mddev->safemode == 1) 8124 mddev->safemode = 0; 8125 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8126 if (mddev->in_sync || mddev->sync_checkers) { 8127 spin_lock(&mddev->lock); 8128 if (mddev->in_sync) { 8129 mddev->in_sync = 0; 8130 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8131 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8132 md_wakeup_thread(mddev->thread); 8133 did_change = 1; 8134 } 8135 spin_unlock(&mddev->lock); 8136 } 8137 rcu_read_unlock(); 8138 if (did_change) 8139 sysfs_notify_dirent_safe(mddev->sysfs_state); 8140 if (!mddev->has_superblocks) 8141 return true; 8142 wait_event(mddev->sb_wait, 8143 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8144 mddev->suspended); 8145 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8146 percpu_ref_put(&mddev->writes_pending); 8147 return false; 8148 } 8149 return true; 8150 } 8151 EXPORT_SYMBOL(md_write_start); 8152 8153 /* md_write_inc can only be called when md_write_start() has 8154 * already been called at least once of the current request. 8155 * It increments the counter and is useful when a single request 8156 * is split into several parts. Each part causes an increment and 8157 * so needs a matching md_write_end(). 8158 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8159 * a spinlocked region. 8160 */ 8161 void md_write_inc(struct mddev *mddev, struct bio *bi) 8162 { 8163 if (bio_data_dir(bi) != WRITE) 8164 return; 8165 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8166 percpu_ref_get(&mddev->writes_pending); 8167 } 8168 EXPORT_SYMBOL(md_write_inc); 8169 8170 void md_write_end(struct mddev *mddev) 8171 { 8172 percpu_ref_put(&mddev->writes_pending); 8173 8174 if (mddev->safemode == 2) 8175 md_wakeup_thread(mddev->thread); 8176 else if (mddev->safemode_delay) 8177 /* The roundup() ensures this only performs locking once 8178 * every ->safemode_delay jiffies 8179 */ 8180 mod_timer(&mddev->safemode_timer, 8181 roundup(jiffies, mddev->safemode_delay) + 8182 mddev->safemode_delay); 8183 } 8184 8185 EXPORT_SYMBOL(md_write_end); 8186 8187 /* md_allow_write(mddev) 8188 * Calling this ensures that the array is marked 'active' so that writes 8189 * may proceed without blocking. It is important to call this before 8190 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8191 * Must be called with mddev_lock held. 8192 */ 8193 void md_allow_write(struct mddev *mddev) 8194 { 8195 if (!mddev->pers) 8196 return; 8197 if (mddev->ro) 8198 return; 8199 if (!mddev->pers->sync_request) 8200 return; 8201 8202 spin_lock(&mddev->lock); 8203 if (mddev->in_sync) { 8204 mddev->in_sync = 0; 8205 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8206 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8207 if (mddev->safemode_delay && 8208 mddev->safemode == 0) 8209 mddev->safemode = 1; 8210 spin_unlock(&mddev->lock); 8211 md_update_sb(mddev, 0); 8212 sysfs_notify_dirent_safe(mddev->sysfs_state); 8213 /* wait for the dirty state to be recorded in the metadata */ 8214 wait_event(mddev->sb_wait, 8215 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8216 } else 8217 spin_unlock(&mddev->lock); 8218 } 8219 EXPORT_SYMBOL_GPL(md_allow_write); 8220 8221 #define SYNC_MARKS 10 8222 #define SYNC_MARK_STEP (3*HZ) 8223 #define UPDATE_FREQUENCY (5*60*HZ) 8224 void md_do_sync(struct md_thread *thread) 8225 { 8226 struct mddev *mddev = thread->mddev; 8227 struct mddev *mddev2; 8228 unsigned int currspeed = 0, 8229 window; 8230 sector_t max_sectors,j, io_sectors, recovery_done; 8231 unsigned long mark[SYNC_MARKS]; 8232 unsigned long update_time; 8233 sector_t mark_cnt[SYNC_MARKS]; 8234 int last_mark,m; 8235 struct list_head *tmp; 8236 sector_t last_check; 8237 int skipped = 0; 8238 struct md_rdev *rdev; 8239 char *desc, *action = NULL; 8240 struct blk_plug plug; 8241 int ret; 8242 8243 /* just incase thread restarts... */ 8244 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8245 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8246 return; 8247 if (mddev->ro) {/* never try to sync a read-only array */ 8248 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8249 return; 8250 } 8251 8252 if (mddev_is_clustered(mddev)) { 8253 ret = md_cluster_ops->resync_start(mddev); 8254 if (ret) 8255 goto skip; 8256 8257 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8258 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8259 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8260 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8261 && ((unsigned long long)mddev->curr_resync_completed 8262 < (unsigned long long)mddev->resync_max_sectors)) 8263 goto skip; 8264 } 8265 8266 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8267 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8268 desc = "data-check"; 8269 action = "check"; 8270 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8271 desc = "requested-resync"; 8272 action = "repair"; 8273 } else 8274 desc = "resync"; 8275 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8276 desc = "reshape"; 8277 else 8278 desc = "recovery"; 8279 8280 mddev->last_sync_action = action ?: desc; 8281 8282 /* we overload curr_resync somewhat here. 8283 * 0 == not engaged in resync at all 8284 * 2 == checking that there is no conflict with another sync 8285 * 1 == like 2, but have yielded to allow conflicting resync to 8286 * commense 8287 * other == active in resync - this many blocks 8288 * 8289 * Before starting a resync we must have set curr_resync to 8290 * 2, and then checked that every "conflicting" array has curr_resync 8291 * less than ours. When we find one that is the same or higher 8292 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8293 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8294 * This will mean we have to start checking from the beginning again. 8295 * 8296 */ 8297 8298 do { 8299 int mddev2_minor = -1; 8300 mddev->curr_resync = 2; 8301 8302 try_again: 8303 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8304 goto skip; 8305 for_each_mddev(mddev2, tmp) { 8306 if (mddev2 == mddev) 8307 continue; 8308 if (!mddev->parallel_resync 8309 && mddev2->curr_resync 8310 && match_mddev_units(mddev, mddev2)) { 8311 DEFINE_WAIT(wq); 8312 if (mddev < mddev2 && mddev->curr_resync == 2) { 8313 /* arbitrarily yield */ 8314 mddev->curr_resync = 1; 8315 wake_up(&resync_wait); 8316 } 8317 if (mddev > mddev2 && mddev->curr_resync == 1) 8318 /* no need to wait here, we can wait the next 8319 * time 'round when curr_resync == 2 8320 */ 8321 continue; 8322 /* We need to wait 'interruptible' so as not to 8323 * contribute to the load average, and not to 8324 * be caught by 'softlockup' 8325 */ 8326 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8327 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8328 mddev2->curr_resync >= mddev->curr_resync) { 8329 if (mddev2_minor != mddev2->md_minor) { 8330 mddev2_minor = mddev2->md_minor; 8331 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8332 desc, mdname(mddev), 8333 mdname(mddev2)); 8334 } 8335 mddev_put(mddev2); 8336 if (signal_pending(current)) 8337 flush_signals(current); 8338 schedule(); 8339 finish_wait(&resync_wait, &wq); 8340 goto try_again; 8341 } 8342 finish_wait(&resync_wait, &wq); 8343 } 8344 } 8345 } while (mddev->curr_resync < 2); 8346 8347 j = 0; 8348 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8349 /* resync follows the size requested by the personality, 8350 * which defaults to physical size, but can be virtual size 8351 */ 8352 max_sectors = mddev->resync_max_sectors; 8353 atomic64_set(&mddev->resync_mismatches, 0); 8354 /* we don't use the checkpoint if there's a bitmap */ 8355 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8356 j = mddev->resync_min; 8357 else if (!mddev->bitmap) 8358 j = mddev->recovery_cp; 8359 8360 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8361 max_sectors = mddev->resync_max_sectors; 8362 else { 8363 /* recovery follows the physical size of devices */ 8364 max_sectors = mddev->dev_sectors; 8365 j = MaxSector; 8366 rcu_read_lock(); 8367 rdev_for_each_rcu(rdev, mddev) 8368 if (rdev->raid_disk >= 0 && 8369 !test_bit(Journal, &rdev->flags) && 8370 !test_bit(Faulty, &rdev->flags) && 8371 !test_bit(In_sync, &rdev->flags) && 8372 rdev->recovery_offset < j) 8373 j = rdev->recovery_offset; 8374 rcu_read_unlock(); 8375 8376 /* If there is a bitmap, we need to make sure all 8377 * writes that started before we added a spare 8378 * complete before we start doing a recovery. 8379 * Otherwise the write might complete and (via 8380 * bitmap_endwrite) set a bit in the bitmap after the 8381 * recovery has checked that bit and skipped that 8382 * region. 8383 */ 8384 if (mddev->bitmap) { 8385 mddev->pers->quiesce(mddev, 1); 8386 mddev->pers->quiesce(mddev, 0); 8387 } 8388 } 8389 8390 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8391 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8392 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8393 speed_max(mddev), desc); 8394 8395 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8396 8397 io_sectors = 0; 8398 for (m = 0; m < SYNC_MARKS; m++) { 8399 mark[m] = jiffies; 8400 mark_cnt[m] = io_sectors; 8401 } 8402 last_mark = 0; 8403 mddev->resync_mark = mark[last_mark]; 8404 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8405 8406 /* 8407 * Tune reconstruction: 8408 */ 8409 window = 32*(PAGE_SIZE/512); 8410 pr_debug("md: using %dk window, over a total of %lluk.\n", 8411 window/2, (unsigned long long)max_sectors/2); 8412 8413 atomic_set(&mddev->recovery_active, 0); 8414 last_check = 0; 8415 8416 if (j>2) { 8417 pr_debug("md: resuming %s of %s from checkpoint.\n", 8418 desc, mdname(mddev)); 8419 mddev->curr_resync = j; 8420 } else 8421 mddev->curr_resync = 3; /* no longer delayed */ 8422 mddev->curr_resync_completed = j; 8423 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8424 md_new_event(mddev); 8425 update_time = jiffies; 8426 8427 blk_start_plug(&plug); 8428 while (j < max_sectors) { 8429 sector_t sectors; 8430 8431 skipped = 0; 8432 8433 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8434 ((mddev->curr_resync > mddev->curr_resync_completed && 8435 (mddev->curr_resync - mddev->curr_resync_completed) 8436 > (max_sectors >> 4)) || 8437 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8438 (j - mddev->curr_resync_completed)*2 8439 >= mddev->resync_max - mddev->curr_resync_completed || 8440 mddev->curr_resync_completed > mddev->resync_max 8441 )) { 8442 /* time to update curr_resync_completed */ 8443 wait_event(mddev->recovery_wait, 8444 atomic_read(&mddev->recovery_active) == 0); 8445 mddev->curr_resync_completed = j; 8446 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8447 j > mddev->recovery_cp) 8448 mddev->recovery_cp = j; 8449 update_time = jiffies; 8450 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8451 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8452 } 8453 8454 while (j >= mddev->resync_max && 8455 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8456 /* As this condition is controlled by user-space, 8457 * we can block indefinitely, so use '_interruptible' 8458 * to avoid triggering warnings. 8459 */ 8460 flush_signals(current); /* just in case */ 8461 wait_event_interruptible(mddev->recovery_wait, 8462 mddev->resync_max > j 8463 || test_bit(MD_RECOVERY_INTR, 8464 &mddev->recovery)); 8465 } 8466 8467 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8468 break; 8469 8470 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8471 if (sectors == 0) { 8472 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8473 break; 8474 } 8475 8476 if (!skipped) { /* actual IO requested */ 8477 io_sectors += sectors; 8478 atomic_add(sectors, &mddev->recovery_active); 8479 } 8480 8481 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8482 break; 8483 8484 j += sectors; 8485 if (j > max_sectors) 8486 /* when skipping, extra large numbers can be returned. */ 8487 j = max_sectors; 8488 if (j > 2) 8489 mddev->curr_resync = j; 8490 mddev->curr_mark_cnt = io_sectors; 8491 if (last_check == 0) 8492 /* this is the earliest that rebuild will be 8493 * visible in /proc/mdstat 8494 */ 8495 md_new_event(mddev); 8496 8497 if (last_check + window > io_sectors || j == max_sectors) 8498 continue; 8499 8500 last_check = io_sectors; 8501 repeat: 8502 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8503 /* step marks */ 8504 int next = (last_mark+1) % SYNC_MARKS; 8505 8506 mddev->resync_mark = mark[next]; 8507 mddev->resync_mark_cnt = mark_cnt[next]; 8508 mark[next] = jiffies; 8509 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8510 last_mark = next; 8511 } 8512 8513 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8514 break; 8515 8516 /* 8517 * this loop exits only if either when we are slower than 8518 * the 'hard' speed limit, or the system was IO-idle for 8519 * a jiffy. 8520 * the system might be non-idle CPU-wise, but we only care 8521 * about not overloading the IO subsystem. (things like an 8522 * e2fsck being done on the RAID array should execute fast) 8523 */ 8524 cond_resched(); 8525 8526 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8527 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8528 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8529 8530 if (currspeed > speed_min(mddev)) { 8531 if (currspeed > speed_max(mddev)) { 8532 msleep(500); 8533 goto repeat; 8534 } 8535 if (!is_mddev_idle(mddev, 0)) { 8536 /* 8537 * Give other IO more of a chance. 8538 * The faster the devices, the less we wait. 8539 */ 8540 wait_event(mddev->recovery_wait, 8541 !atomic_read(&mddev->recovery_active)); 8542 } 8543 } 8544 } 8545 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8546 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8547 ? "interrupted" : "done"); 8548 /* 8549 * this also signals 'finished resyncing' to md_stop 8550 */ 8551 blk_finish_plug(&plug); 8552 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8553 8554 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8555 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8556 mddev->curr_resync > 3) { 8557 mddev->curr_resync_completed = mddev->curr_resync; 8558 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8559 } 8560 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8561 8562 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8563 mddev->curr_resync > 3) { 8564 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8565 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8566 if (mddev->curr_resync >= mddev->recovery_cp) { 8567 pr_debug("md: checkpointing %s of %s.\n", 8568 desc, mdname(mddev)); 8569 if (test_bit(MD_RECOVERY_ERROR, 8570 &mddev->recovery)) 8571 mddev->recovery_cp = 8572 mddev->curr_resync_completed; 8573 else 8574 mddev->recovery_cp = 8575 mddev->curr_resync; 8576 } 8577 } else 8578 mddev->recovery_cp = MaxSector; 8579 } else { 8580 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8581 mddev->curr_resync = MaxSector; 8582 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8583 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8584 rcu_read_lock(); 8585 rdev_for_each_rcu(rdev, mddev) 8586 if (rdev->raid_disk >= 0 && 8587 mddev->delta_disks >= 0 && 8588 !test_bit(Journal, &rdev->flags) && 8589 !test_bit(Faulty, &rdev->flags) && 8590 !test_bit(In_sync, &rdev->flags) && 8591 rdev->recovery_offset < mddev->curr_resync) 8592 rdev->recovery_offset = mddev->curr_resync; 8593 rcu_read_unlock(); 8594 } 8595 } 8596 } 8597 skip: 8598 /* set CHANGE_PENDING here since maybe another update is needed, 8599 * so other nodes are informed. It should be harmless for normal 8600 * raid */ 8601 set_mask_bits(&mddev->sb_flags, 0, 8602 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8603 8604 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8605 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8606 mddev->delta_disks > 0 && 8607 mddev->pers->finish_reshape && 8608 mddev->pers->size && 8609 mddev->queue) { 8610 mddev_lock_nointr(mddev); 8611 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8612 mddev_unlock(mddev); 8613 set_capacity(mddev->gendisk, mddev->array_sectors); 8614 revalidate_disk(mddev->gendisk); 8615 } 8616 8617 spin_lock(&mddev->lock); 8618 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8619 /* We completed so min/max setting can be forgotten if used. */ 8620 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8621 mddev->resync_min = 0; 8622 mddev->resync_max = MaxSector; 8623 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8624 mddev->resync_min = mddev->curr_resync_completed; 8625 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8626 mddev->curr_resync = 0; 8627 spin_unlock(&mddev->lock); 8628 8629 wake_up(&resync_wait); 8630 md_wakeup_thread(mddev->thread); 8631 return; 8632 } 8633 EXPORT_SYMBOL_GPL(md_do_sync); 8634 8635 static int remove_and_add_spares(struct mddev *mddev, 8636 struct md_rdev *this) 8637 { 8638 struct md_rdev *rdev; 8639 int spares = 0; 8640 int removed = 0; 8641 bool remove_some = false; 8642 8643 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8644 /* Mustn't remove devices when resync thread is running */ 8645 return 0; 8646 8647 rdev_for_each(rdev, mddev) { 8648 if ((this == NULL || rdev == this) && 8649 rdev->raid_disk >= 0 && 8650 !test_bit(Blocked, &rdev->flags) && 8651 test_bit(Faulty, &rdev->flags) && 8652 atomic_read(&rdev->nr_pending)==0) { 8653 /* Faulty non-Blocked devices with nr_pending == 0 8654 * never get nr_pending incremented, 8655 * never get Faulty cleared, and never get Blocked set. 8656 * So we can synchronize_rcu now rather than once per device 8657 */ 8658 remove_some = true; 8659 set_bit(RemoveSynchronized, &rdev->flags); 8660 } 8661 } 8662 8663 if (remove_some) 8664 synchronize_rcu(); 8665 rdev_for_each(rdev, mddev) { 8666 if ((this == NULL || rdev == this) && 8667 rdev->raid_disk >= 0 && 8668 !test_bit(Blocked, &rdev->flags) && 8669 ((test_bit(RemoveSynchronized, &rdev->flags) || 8670 (!test_bit(In_sync, &rdev->flags) && 8671 !test_bit(Journal, &rdev->flags))) && 8672 atomic_read(&rdev->nr_pending)==0)) { 8673 if (mddev->pers->hot_remove_disk( 8674 mddev, rdev) == 0) { 8675 sysfs_unlink_rdev(mddev, rdev); 8676 rdev->saved_raid_disk = rdev->raid_disk; 8677 rdev->raid_disk = -1; 8678 removed++; 8679 } 8680 } 8681 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8682 clear_bit(RemoveSynchronized, &rdev->flags); 8683 } 8684 8685 if (removed && mddev->kobj.sd) 8686 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8687 8688 if (this && removed) 8689 goto no_add; 8690 8691 rdev_for_each(rdev, mddev) { 8692 if (this && this != rdev) 8693 continue; 8694 if (test_bit(Candidate, &rdev->flags)) 8695 continue; 8696 if (rdev->raid_disk >= 0 && 8697 !test_bit(In_sync, &rdev->flags) && 8698 !test_bit(Journal, &rdev->flags) && 8699 !test_bit(Faulty, &rdev->flags)) 8700 spares++; 8701 if (rdev->raid_disk >= 0) 8702 continue; 8703 if (test_bit(Faulty, &rdev->flags)) 8704 continue; 8705 if (!test_bit(Journal, &rdev->flags)) { 8706 if (mddev->ro && 8707 ! (rdev->saved_raid_disk >= 0 && 8708 !test_bit(Bitmap_sync, &rdev->flags))) 8709 continue; 8710 8711 rdev->recovery_offset = 0; 8712 } 8713 if (mddev->pers-> 8714 hot_add_disk(mddev, rdev) == 0) { 8715 if (sysfs_link_rdev(mddev, rdev)) 8716 /* failure here is OK */; 8717 if (!test_bit(Journal, &rdev->flags)) 8718 spares++; 8719 md_new_event(mddev); 8720 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8721 } 8722 } 8723 no_add: 8724 if (removed) 8725 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8726 return spares; 8727 } 8728 8729 static void md_start_sync(struct work_struct *ws) 8730 { 8731 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8732 8733 mddev->sync_thread = md_register_thread(md_do_sync, 8734 mddev, 8735 "resync"); 8736 if (!mddev->sync_thread) { 8737 pr_warn("%s: could not start resync thread...\n", 8738 mdname(mddev)); 8739 /* leave the spares where they are, it shouldn't hurt */ 8740 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8741 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8742 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8743 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8744 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8745 wake_up(&resync_wait); 8746 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8747 &mddev->recovery)) 8748 if (mddev->sysfs_action) 8749 sysfs_notify_dirent_safe(mddev->sysfs_action); 8750 } else 8751 md_wakeup_thread(mddev->sync_thread); 8752 sysfs_notify_dirent_safe(mddev->sysfs_action); 8753 md_new_event(mddev); 8754 } 8755 8756 /* 8757 * This routine is regularly called by all per-raid-array threads to 8758 * deal with generic issues like resync and super-block update. 8759 * Raid personalities that don't have a thread (linear/raid0) do not 8760 * need this as they never do any recovery or update the superblock. 8761 * 8762 * It does not do any resync itself, but rather "forks" off other threads 8763 * to do that as needed. 8764 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8765 * "->recovery" and create a thread at ->sync_thread. 8766 * When the thread finishes it sets MD_RECOVERY_DONE 8767 * and wakeups up this thread which will reap the thread and finish up. 8768 * This thread also removes any faulty devices (with nr_pending == 0). 8769 * 8770 * The overall approach is: 8771 * 1/ if the superblock needs updating, update it. 8772 * 2/ If a recovery thread is running, don't do anything else. 8773 * 3/ If recovery has finished, clean up, possibly marking spares active. 8774 * 4/ If there are any faulty devices, remove them. 8775 * 5/ If array is degraded, try to add spares devices 8776 * 6/ If array has spares or is not in-sync, start a resync thread. 8777 */ 8778 void md_check_recovery(struct mddev *mddev) 8779 { 8780 if (mddev->suspended) 8781 return; 8782 8783 if (mddev->bitmap) 8784 bitmap_daemon_work(mddev); 8785 8786 if (signal_pending(current)) { 8787 if (mddev->pers->sync_request && !mddev->external) { 8788 pr_debug("md: %s in immediate safe mode\n", 8789 mdname(mddev)); 8790 mddev->safemode = 2; 8791 } 8792 flush_signals(current); 8793 } 8794 8795 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8796 return; 8797 if ( ! ( 8798 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8799 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8800 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8801 (mddev->external == 0 && mddev->safemode == 1) || 8802 (mddev->safemode == 2 8803 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8804 )) 8805 return; 8806 8807 if (mddev_trylock(mddev)) { 8808 int spares = 0; 8809 8810 if (!mddev->external && mddev->safemode == 1) 8811 mddev->safemode = 0; 8812 8813 if (mddev->ro) { 8814 struct md_rdev *rdev; 8815 if (!mddev->external && mddev->in_sync) 8816 /* 'Blocked' flag not needed as failed devices 8817 * will be recorded if array switched to read/write. 8818 * Leaving it set will prevent the device 8819 * from being removed. 8820 */ 8821 rdev_for_each(rdev, mddev) 8822 clear_bit(Blocked, &rdev->flags); 8823 /* On a read-only array we can: 8824 * - remove failed devices 8825 * - add already-in_sync devices if the array itself 8826 * is in-sync. 8827 * As we only add devices that are already in-sync, 8828 * we can activate the spares immediately. 8829 */ 8830 remove_and_add_spares(mddev, NULL); 8831 /* There is no thread, but we need to call 8832 * ->spare_active and clear saved_raid_disk 8833 */ 8834 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8835 md_reap_sync_thread(mddev); 8836 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8837 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8838 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8839 goto unlock; 8840 } 8841 8842 if (mddev_is_clustered(mddev)) { 8843 struct md_rdev *rdev; 8844 /* kick the device if another node issued a 8845 * remove disk. 8846 */ 8847 rdev_for_each(rdev, mddev) { 8848 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8849 rdev->raid_disk < 0) 8850 md_kick_rdev_from_array(rdev); 8851 } 8852 } 8853 8854 if (!mddev->external && !mddev->in_sync) { 8855 spin_lock(&mddev->lock); 8856 set_in_sync(mddev); 8857 spin_unlock(&mddev->lock); 8858 } 8859 8860 if (mddev->sb_flags) 8861 md_update_sb(mddev, 0); 8862 8863 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8864 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8865 /* resync/recovery still happening */ 8866 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8867 goto unlock; 8868 } 8869 if (mddev->sync_thread) { 8870 md_reap_sync_thread(mddev); 8871 goto unlock; 8872 } 8873 /* Set RUNNING before clearing NEEDED to avoid 8874 * any transients in the value of "sync_action". 8875 */ 8876 mddev->curr_resync_completed = 0; 8877 spin_lock(&mddev->lock); 8878 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8879 spin_unlock(&mddev->lock); 8880 /* Clear some bits that don't mean anything, but 8881 * might be left set 8882 */ 8883 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8884 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8885 8886 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8887 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8888 goto not_running; 8889 /* no recovery is running. 8890 * remove any failed drives, then 8891 * add spares if possible. 8892 * Spares are also removed and re-added, to allow 8893 * the personality to fail the re-add. 8894 */ 8895 8896 if (mddev->reshape_position != MaxSector) { 8897 if (mddev->pers->check_reshape == NULL || 8898 mddev->pers->check_reshape(mddev) != 0) 8899 /* Cannot proceed */ 8900 goto not_running; 8901 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8902 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8903 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8904 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8905 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8906 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8907 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8908 } else if (mddev->recovery_cp < MaxSector) { 8909 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8910 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8911 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8912 /* nothing to be done ... */ 8913 goto not_running; 8914 8915 if (mddev->pers->sync_request) { 8916 if (spares) { 8917 /* We are adding a device or devices to an array 8918 * which has the bitmap stored on all devices. 8919 * So make sure all bitmap pages get written 8920 */ 8921 bitmap_write_all(mddev->bitmap); 8922 } 8923 INIT_WORK(&mddev->del_work, md_start_sync); 8924 queue_work(md_misc_wq, &mddev->del_work); 8925 goto unlock; 8926 } 8927 not_running: 8928 if (!mddev->sync_thread) { 8929 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8930 wake_up(&resync_wait); 8931 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8932 &mddev->recovery)) 8933 if (mddev->sysfs_action) 8934 sysfs_notify_dirent_safe(mddev->sysfs_action); 8935 } 8936 unlock: 8937 wake_up(&mddev->sb_wait); 8938 mddev_unlock(mddev); 8939 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8940 /* Write superblock - thread that called mddev_suspend() 8941 * holds reconfig_mutex for us. 8942 */ 8943 set_bit(MD_UPDATING_SB, &mddev->flags); 8944 smp_mb__after_atomic(); 8945 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8946 md_update_sb(mddev, 0); 8947 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8948 wake_up(&mddev->sb_wait); 8949 } 8950 } 8951 EXPORT_SYMBOL(md_check_recovery); 8952 8953 void md_reap_sync_thread(struct mddev *mddev) 8954 { 8955 struct md_rdev *rdev; 8956 8957 /* resync has finished, collect result */ 8958 md_unregister_thread(&mddev->sync_thread); 8959 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8960 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8961 /* success...*/ 8962 /* activate any spares */ 8963 if (mddev->pers->spare_active(mddev)) { 8964 sysfs_notify(&mddev->kobj, NULL, 8965 "degraded"); 8966 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8967 } 8968 } 8969 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8970 mddev->pers->finish_reshape) 8971 mddev->pers->finish_reshape(mddev); 8972 8973 /* If array is no-longer degraded, then any saved_raid_disk 8974 * information must be scrapped. 8975 */ 8976 if (!mddev->degraded) 8977 rdev_for_each(rdev, mddev) 8978 rdev->saved_raid_disk = -1; 8979 8980 md_update_sb(mddev, 1); 8981 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8982 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8983 * clustered raid */ 8984 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8985 md_cluster_ops->resync_finish(mddev); 8986 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8987 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8988 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8989 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8990 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8991 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8992 wake_up(&resync_wait); 8993 /* flag recovery needed just to double check */ 8994 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8995 sysfs_notify_dirent_safe(mddev->sysfs_action); 8996 md_new_event(mddev); 8997 if (mddev->event_work.func) 8998 queue_work(md_misc_wq, &mddev->event_work); 8999 } 9000 EXPORT_SYMBOL(md_reap_sync_thread); 9001 9002 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9003 { 9004 sysfs_notify_dirent_safe(rdev->sysfs_state); 9005 wait_event_timeout(rdev->blocked_wait, 9006 !test_bit(Blocked, &rdev->flags) && 9007 !test_bit(BlockedBadBlocks, &rdev->flags), 9008 msecs_to_jiffies(5000)); 9009 rdev_dec_pending(rdev, mddev); 9010 } 9011 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9012 9013 void md_finish_reshape(struct mddev *mddev) 9014 { 9015 /* called be personality module when reshape completes. */ 9016 struct md_rdev *rdev; 9017 9018 rdev_for_each(rdev, mddev) { 9019 if (rdev->data_offset > rdev->new_data_offset) 9020 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9021 else 9022 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9023 rdev->data_offset = rdev->new_data_offset; 9024 } 9025 } 9026 EXPORT_SYMBOL(md_finish_reshape); 9027 9028 /* Bad block management */ 9029 9030 /* Returns 1 on success, 0 on failure */ 9031 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9032 int is_new) 9033 { 9034 struct mddev *mddev = rdev->mddev; 9035 int rv; 9036 if (is_new) 9037 s += rdev->new_data_offset; 9038 else 9039 s += rdev->data_offset; 9040 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9041 if (rv == 0) { 9042 /* Make sure they get written out promptly */ 9043 if (test_bit(ExternalBbl, &rdev->flags)) 9044 sysfs_notify(&rdev->kobj, NULL, 9045 "unacknowledged_bad_blocks"); 9046 sysfs_notify_dirent_safe(rdev->sysfs_state); 9047 set_mask_bits(&mddev->sb_flags, 0, 9048 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9049 md_wakeup_thread(rdev->mddev->thread); 9050 return 1; 9051 } else 9052 return 0; 9053 } 9054 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9055 9056 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9057 int is_new) 9058 { 9059 int rv; 9060 if (is_new) 9061 s += rdev->new_data_offset; 9062 else 9063 s += rdev->data_offset; 9064 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9065 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9066 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9067 return rv; 9068 } 9069 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9070 9071 static int md_notify_reboot(struct notifier_block *this, 9072 unsigned long code, void *x) 9073 { 9074 struct list_head *tmp; 9075 struct mddev *mddev; 9076 int need_delay = 0; 9077 9078 for_each_mddev(mddev, tmp) { 9079 if (mddev_trylock(mddev)) { 9080 if (mddev->pers) 9081 __md_stop_writes(mddev); 9082 if (mddev->persistent) 9083 mddev->safemode = 2; 9084 mddev_unlock(mddev); 9085 } 9086 need_delay = 1; 9087 } 9088 /* 9089 * certain more exotic SCSI devices are known to be 9090 * volatile wrt too early system reboots. While the 9091 * right place to handle this issue is the given 9092 * driver, we do want to have a safe RAID driver ... 9093 */ 9094 if (need_delay) 9095 mdelay(1000*1); 9096 9097 return NOTIFY_DONE; 9098 } 9099 9100 static struct notifier_block md_notifier = { 9101 .notifier_call = md_notify_reboot, 9102 .next = NULL, 9103 .priority = INT_MAX, /* before any real devices */ 9104 }; 9105 9106 static void md_geninit(void) 9107 { 9108 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9109 9110 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9111 } 9112 9113 static int __init md_init(void) 9114 { 9115 int ret = -ENOMEM; 9116 9117 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9118 if (!md_wq) 9119 goto err_wq; 9120 9121 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9122 if (!md_misc_wq) 9123 goto err_misc_wq; 9124 9125 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9126 goto err_md; 9127 9128 if ((ret = register_blkdev(0, "mdp")) < 0) 9129 goto err_mdp; 9130 mdp_major = ret; 9131 9132 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9133 md_probe, NULL, NULL); 9134 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9135 md_probe, NULL, NULL); 9136 9137 register_reboot_notifier(&md_notifier); 9138 raid_table_header = register_sysctl_table(raid_root_table); 9139 9140 md_geninit(); 9141 return 0; 9142 9143 err_mdp: 9144 unregister_blkdev(MD_MAJOR, "md"); 9145 err_md: 9146 destroy_workqueue(md_misc_wq); 9147 err_misc_wq: 9148 destroy_workqueue(md_wq); 9149 err_wq: 9150 return ret; 9151 } 9152 9153 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9154 { 9155 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9156 struct md_rdev *rdev2; 9157 int role, ret; 9158 char b[BDEVNAME_SIZE]; 9159 9160 /* 9161 * If size is changed in another node then we need to 9162 * do resize as well. 9163 */ 9164 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9165 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9166 if (ret) 9167 pr_info("md-cluster: resize failed\n"); 9168 else 9169 bitmap_update_sb(mddev->bitmap); 9170 } 9171 9172 /* Check for change of roles in the active devices */ 9173 rdev_for_each(rdev2, mddev) { 9174 if (test_bit(Faulty, &rdev2->flags)) 9175 continue; 9176 9177 /* Check if the roles changed */ 9178 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9179 9180 if (test_bit(Candidate, &rdev2->flags)) { 9181 if (role == 0xfffe) { 9182 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9183 md_kick_rdev_from_array(rdev2); 9184 continue; 9185 } 9186 else 9187 clear_bit(Candidate, &rdev2->flags); 9188 } 9189 9190 if (role != rdev2->raid_disk) { 9191 /* got activated */ 9192 if (rdev2->raid_disk == -1 && role != 0xffff) { 9193 rdev2->saved_raid_disk = role; 9194 ret = remove_and_add_spares(mddev, rdev2); 9195 pr_info("Activated spare: %s\n", 9196 bdevname(rdev2->bdev,b)); 9197 /* wakeup mddev->thread here, so array could 9198 * perform resync with the new activated disk */ 9199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9200 md_wakeup_thread(mddev->thread); 9201 9202 } 9203 /* device faulty 9204 * We just want to do the minimum to mark the disk 9205 * as faulty. The recovery is performed by the 9206 * one who initiated the error. 9207 */ 9208 if ((role == 0xfffe) || (role == 0xfffd)) { 9209 md_error(mddev, rdev2); 9210 clear_bit(Blocked, &rdev2->flags); 9211 } 9212 } 9213 } 9214 9215 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9216 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9217 9218 /* Finally set the event to be up to date */ 9219 mddev->events = le64_to_cpu(sb->events); 9220 } 9221 9222 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9223 { 9224 int err; 9225 struct page *swapout = rdev->sb_page; 9226 struct mdp_superblock_1 *sb; 9227 9228 /* Store the sb page of the rdev in the swapout temporary 9229 * variable in case we err in the future 9230 */ 9231 rdev->sb_page = NULL; 9232 err = alloc_disk_sb(rdev); 9233 if (err == 0) { 9234 ClearPageUptodate(rdev->sb_page); 9235 rdev->sb_loaded = 0; 9236 err = super_types[mddev->major_version]. 9237 load_super(rdev, NULL, mddev->minor_version); 9238 } 9239 if (err < 0) { 9240 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9241 __func__, __LINE__, rdev->desc_nr, err); 9242 if (rdev->sb_page) 9243 put_page(rdev->sb_page); 9244 rdev->sb_page = swapout; 9245 rdev->sb_loaded = 1; 9246 return err; 9247 } 9248 9249 sb = page_address(rdev->sb_page); 9250 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9251 * is not set 9252 */ 9253 9254 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9255 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9256 9257 /* The other node finished recovery, call spare_active to set 9258 * device In_sync and mddev->degraded 9259 */ 9260 if (rdev->recovery_offset == MaxSector && 9261 !test_bit(In_sync, &rdev->flags) && 9262 mddev->pers->spare_active(mddev)) 9263 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9264 9265 put_page(swapout); 9266 return 0; 9267 } 9268 9269 void md_reload_sb(struct mddev *mddev, int nr) 9270 { 9271 struct md_rdev *rdev; 9272 int err; 9273 9274 /* Find the rdev */ 9275 rdev_for_each_rcu(rdev, mddev) { 9276 if (rdev->desc_nr == nr) 9277 break; 9278 } 9279 9280 if (!rdev || rdev->desc_nr != nr) { 9281 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9282 return; 9283 } 9284 9285 err = read_rdev(mddev, rdev); 9286 if (err < 0) 9287 return; 9288 9289 check_sb_changes(mddev, rdev); 9290 9291 /* Read all rdev's to update recovery_offset */ 9292 rdev_for_each_rcu(rdev, mddev) { 9293 if (!test_bit(Faulty, &rdev->flags)) 9294 read_rdev(mddev, rdev); 9295 } 9296 } 9297 EXPORT_SYMBOL(md_reload_sb); 9298 9299 #ifndef MODULE 9300 9301 /* 9302 * Searches all registered partitions for autorun RAID arrays 9303 * at boot time. 9304 */ 9305 9306 static DEFINE_MUTEX(detected_devices_mutex); 9307 static LIST_HEAD(all_detected_devices); 9308 struct detected_devices_node { 9309 struct list_head list; 9310 dev_t dev; 9311 }; 9312 9313 void md_autodetect_dev(dev_t dev) 9314 { 9315 struct detected_devices_node *node_detected_dev; 9316 9317 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9318 if (node_detected_dev) { 9319 node_detected_dev->dev = dev; 9320 mutex_lock(&detected_devices_mutex); 9321 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9322 mutex_unlock(&detected_devices_mutex); 9323 } 9324 } 9325 9326 static void autostart_arrays(int part) 9327 { 9328 struct md_rdev *rdev; 9329 struct detected_devices_node *node_detected_dev; 9330 dev_t dev; 9331 int i_scanned, i_passed; 9332 9333 i_scanned = 0; 9334 i_passed = 0; 9335 9336 pr_info("md: Autodetecting RAID arrays.\n"); 9337 9338 mutex_lock(&detected_devices_mutex); 9339 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9340 i_scanned++; 9341 node_detected_dev = list_entry(all_detected_devices.next, 9342 struct detected_devices_node, list); 9343 list_del(&node_detected_dev->list); 9344 dev = node_detected_dev->dev; 9345 kfree(node_detected_dev); 9346 mutex_unlock(&detected_devices_mutex); 9347 rdev = md_import_device(dev,0, 90); 9348 mutex_lock(&detected_devices_mutex); 9349 if (IS_ERR(rdev)) 9350 continue; 9351 9352 if (test_bit(Faulty, &rdev->flags)) 9353 continue; 9354 9355 set_bit(AutoDetected, &rdev->flags); 9356 list_add(&rdev->same_set, &pending_raid_disks); 9357 i_passed++; 9358 } 9359 mutex_unlock(&detected_devices_mutex); 9360 9361 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9362 9363 autorun_devices(part); 9364 } 9365 9366 #endif /* !MODULE */ 9367 9368 static __exit void md_exit(void) 9369 { 9370 struct mddev *mddev; 9371 struct list_head *tmp; 9372 int delay = 1; 9373 9374 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9375 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9376 9377 unregister_blkdev(MD_MAJOR,"md"); 9378 unregister_blkdev(mdp_major, "mdp"); 9379 unregister_reboot_notifier(&md_notifier); 9380 unregister_sysctl_table(raid_table_header); 9381 9382 /* We cannot unload the modules while some process is 9383 * waiting for us in select() or poll() - wake them up 9384 */ 9385 md_unloading = 1; 9386 while (waitqueue_active(&md_event_waiters)) { 9387 /* not safe to leave yet */ 9388 wake_up(&md_event_waiters); 9389 msleep(delay); 9390 delay += delay; 9391 } 9392 remove_proc_entry("mdstat", NULL); 9393 9394 for_each_mddev(mddev, tmp) { 9395 export_array(mddev); 9396 mddev->ctime = 0; 9397 mddev->hold_active = 0; 9398 /* 9399 * for_each_mddev() will call mddev_put() at the end of each 9400 * iteration. As the mddev is now fully clear, this will 9401 * schedule the mddev for destruction by a workqueue, and the 9402 * destroy_workqueue() below will wait for that to complete. 9403 */ 9404 } 9405 destroy_workqueue(md_misc_wq); 9406 destroy_workqueue(md_wq); 9407 } 9408 9409 subsys_initcall(md_init); 9410 module_exit(md_exit) 9411 9412 static int get_ro(char *buffer, const struct kernel_param *kp) 9413 { 9414 return sprintf(buffer, "%d", start_readonly); 9415 } 9416 static int set_ro(const char *val, const struct kernel_param *kp) 9417 { 9418 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9419 } 9420 9421 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9422 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9423 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9424 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9425 9426 MODULE_LICENSE("GPL"); 9427 MODULE_DESCRIPTION("MD RAID framework"); 9428 MODULE_ALIAS("md"); 9429 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9430