1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/kthread.h> 38 #include <linux/linkage.h> 39 #include <linux/raid/md.h> 40 #include <linux/raid/bitmap.h> 41 #include <linux/sysctl.h> 42 #include <linux/buffer_head.h> /* for invalidate_bdev */ 43 #include <linux/poll.h> 44 #include <linux/mutex.h> 45 #include <linux/ctype.h> 46 #include <linux/freezer.h> 47 48 #include <linux/init.h> 49 50 #include <linux/file.h> 51 52 #ifdef CONFIG_KMOD 53 #include <linux/kmod.h> 54 #endif 55 56 #include <asm/unaligned.h> 57 58 #define MAJOR_NR MD_MAJOR 59 #define MD_DRIVER 60 61 /* 63 partitions with the alternate major number (mdp) */ 62 #define MdpMinorShift 6 63 64 #define DEBUG 0 65 #define dprintk(x...) ((void)(DEBUG && printk(x))) 66 67 68 #ifndef MODULE 69 static void autostart_arrays (int part); 70 #endif 71 72 static LIST_HEAD(pers_list); 73 static DEFINE_SPINLOCK(pers_lock); 74 75 static void md_print_devices(void); 76 77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 78 79 /* 80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 81 * is 1000 KB/sec, so the extra system load does not show up that much. 82 * Increase it if you want to have more _guaranteed_ speed. Note that 83 * the RAID driver will use the maximum available bandwidth if the IO 84 * subsystem is idle. There is also an 'absolute maximum' reconstruction 85 * speed limit - in case reconstruction slows down your system despite 86 * idle IO detection. 87 * 88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 89 * or /sys/block/mdX/md/sync_speed_{min,max} 90 */ 91 92 static int sysctl_speed_limit_min = 1000; 93 static int sysctl_speed_limit_max = 200000; 94 static inline int speed_min(mddev_t *mddev) 95 { 96 return mddev->sync_speed_min ? 97 mddev->sync_speed_min : sysctl_speed_limit_min; 98 } 99 100 static inline int speed_max(mddev_t *mddev) 101 { 102 return mddev->sync_speed_max ? 103 mddev->sync_speed_max : sysctl_speed_limit_max; 104 } 105 106 static struct ctl_table_header *raid_table_header; 107 108 static ctl_table raid_table[] = { 109 { 110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 111 .procname = "speed_limit_min", 112 .data = &sysctl_speed_limit_min, 113 .maxlen = sizeof(int), 114 .mode = S_IRUGO|S_IWUSR, 115 .proc_handler = &proc_dointvec, 116 }, 117 { 118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = &proc_dointvec, 124 }, 125 { .ctl_name = 0 } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .ctl_name = DEV_RAID, 131 .procname = "raid", 132 .maxlen = 0, 133 .mode = S_IRUGO|S_IXUGO, 134 .child = raid_table, 135 }, 136 { .ctl_name = 0 } 137 }; 138 139 static ctl_table raid_root_table[] = { 140 { 141 .ctl_name = CTL_DEV, 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { .ctl_name = 0 } 148 }; 149 150 static struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* 155 * We have a system wide 'event count' that is incremented 156 * on any 'interesting' event, and readers of /proc/mdstat 157 * can use 'poll' or 'select' to find out when the event 158 * count increases. 159 * 160 * Events are: 161 * start array, stop array, error, add device, remove device, 162 * start build, activate spare 163 */ 164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 165 static atomic_t md_event_count; 166 void md_new_event(mddev_t *mddev) 167 { 168 atomic_inc(&md_event_count); 169 wake_up(&md_event_waiters); 170 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 171 } 172 EXPORT_SYMBOL_GPL(md_new_event); 173 174 /* Alternate version that can be called from interrupts 175 * when calling sysfs_notify isn't needed. 176 */ 177 static void md_new_event_inintr(mddev_t *mddev) 178 { 179 atomic_inc(&md_event_count); 180 wake_up(&md_event_waiters); 181 } 182 183 /* 184 * Enables to iterate over all existing md arrays 185 * all_mddevs_lock protects this list. 186 */ 187 static LIST_HEAD(all_mddevs); 188 static DEFINE_SPINLOCK(all_mddevs_lock); 189 190 191 /* 192 * iterates through all used mddevs in the system. 193 * We take care to grab the all_mddevs_lock whenever navigating 194 * the list, and to always hold a refcount when unlocked. 195 * Any code which breaks out of this loop while own 196 * a reference to the current mddev and must mddev_put it. 197 */ 198 #define for_each_mddev(mddev,tmp) \ 199 \ 200 for (({ spin_lock(&all_mddevs_lock); \ 201 tmp = all_mddevs.next; \ 202 mddev = NULL;}); \ 203 ({ if (tmp != &all_mddevs) \ 204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 205 spin_unlock(&all_mddevs_lock); \ 206 if (mddev) mddev_put(mddev); \ 207 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 208 tmp != &all_mddevs;}); \ 209 ({ spin_lock(&all_mddevs_lock); \ 210 tmp = tmp->next;}) \ 211 ) 212 213 214 static int md_fail_request (struct request_queue *q, struct bio *bio) 215 { 216 bio_io_error(bio); 217 return 0; 218 } 219 220 static inline mddev_t *mddev_get(mddev_t *mddev) 221 { 222 atomic_inc(&mddev->active); 223 return mddev; 224 } 225 226 static void mddev_put(mddev_t *mddev) 227 { 228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 229 return; 230 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 231 list_del(&mddev->all_mddevs); 232 spin_unlock(&all_mddevs_lock); 233 blk_cleanup_queue(mddev->queue); 234 kobject_put(&mddev->kobj); 235 } else 236 spin_unlock(&all_mddevs_lock); 237 } 238 239 static mddev_t * mddev_find(dev_t unit) 240 { 241 mddev_t *mddev, *new = NULL; 242 243 retry: 244 spin_lock(&all_mddevs_lock); 245 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 246 if (mddev->unit == unit) { 247 mddev_get(mddev); 248 spin_unlock(&all_mddevs_lock); 249 kfree(new); 250 return mddev; 251 } 252 253 if (new) { 254 list_add(&new->all_mddevs, &all_mddevs); 255 spin_unlock(&all_mddevs_lock); 256 return new; 257 } 258 spin_unlock(&all_mddevs_lock); 259 260 new = kzalloc(sizeof(*new), GFP_KERNEL); 261 if (!new) 262 return NULL; 263 264 new->unit = unit; 265 if (MAJOR(unit) == MD_MAJOR) 266 new->md_minor = MINOR(unit); 267 else 268 new->md_minor = MINOR(unit) >> MdpMinorShift; 269 270 mutex_init(&new->reconfig_mutex); 271 INIT_LIST_HEAD(&new->disks); 272 INIT_LIST_HEAD(&new->all_mddevs); 273 init_timer(&new->safemode_timer); 274 atomic_set(&new->active, 1); 275 spin_lock_init(&new->write_lock); 276 init_waitqueue_head(&new->sb_wait); 277 new->reshape_position = MaxSector; 278 new->resync_max = MaxSector; 279 new->level = LEVEL_NONE; 280 281 new->queue = blk_alloc_queue(GFP_KERNEL); 282 if (!new->queue) { 283 kfree(new); 284 return NULL; 285 } 286 /* Can be unlocked because the queue is new: no concurrency */ 287 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue); 288 289 blk_queue_make_request(new->queue, md_fail_request); 290 291 goto retry; 292 } 293 294 static inline int mddev_lock(mddev_t * mddev) 295 { 296 return mutex_lock_interruptible(&mddev->reconfig_mutex); 297 } 298 299 static inline int mddev_trylock(mddev_t * mddev) 300 { 301 return mutex_trylock(&mddev->reconfig_mutex); 302 } 303 304 static inline void mddev_unlock(mddev_t * mddev) 305 { 306 mutex_unlock(&mddev->reconfig_mutex); 307 308 md_wakeup_thread(mddev->thread); 309 } 310 311 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 312 { 313 mdk_rdev_t * rdev; 314 struct list_head *tmp; 315 316 rdev_for_each(rdev, tmp, mddev) { 317 if (rdev->desc_nr == nr) 318 return rdev; 319 } 320 return NULL; 321 } 322 323 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 324 { 325 struct list_head *tmp; 326 mdk_rdev_t *rdev; 327 328 rdev_for_each(rdev, tmp, mddev) { 329 if (rdev->bdev->bd_dev == dev) 330 return rdev; 331 } 332 return NULL; 333 } 334 335 static struct mdk_personality *find_pers(int level, char *clevel) 336 { 337 struct mdk_personality *pers; 338 list_for_each_entry(pers, &pers_list, list) { 339 if (level != LEVEL_NONE && pers->level == level) 340 return pers; 341 if (strcmp(pers->name, clevel)==0) 342 return pers; 343 } 344 return NULL; 345 } 346 347 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 348 { 349 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 350 return MD_NEW_SIZE_BLOCKS(size); 351 } 352 353 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 354 { 355 sector_t size; 356 357 size = rdev->sb_offset; 358 359 if (chunk_size) 360 size &= ~((sector_t)chunk_size/1024 - 1); 361 return size; 362 } 363 364 static int alloc_disk_sb(mdk_rdev_t * rdev) 365 { 366 if (rdev->sb_page) 367 MD_BUG(); 368 369 rdev->sb_page = alloc_page(GFP_KERNEL); 370 if (!rdev->sb_page) { 371 printk(KERN_ALERT "md: out of memory.\n"); 372 return -EINVAL; 373 } 374 375 return 0; 376 } 377 378 static void free_disk_sb(mdk_rdev_t * rdev) 379 { 380 if (rdev->sb_page) { 381 put_page(rdev->sb_page); 382 rdev->sb_loaded = 0; 383 rdev->sb_page = NULL; 384 rdev->sb_offset = 0; 385 rdev->size = 0; 386 } 387 } 388 389 390 static void super_written(struct bio *bio, int error) 391 { 392 mdk_rdev_t *rdev = bio->bi_private; 393 mddev_t *mddev = rdev->mddev; 394 395 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 396 printk("md: super_written gets error=%d, uptodate=%d\n", 397 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 398 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 399 md_error(mddev, rdev); 400 } 401 402 if (atomic_dec_and_test(&mddev->pending_writes)) 403 wake_up(&mddev->sb_wait); 404 bio_put(bio); 405 } 406 407 static void super_written_barrier(struct bio *bio, int error) 408 { 409 struct bio *bio2 = bio->bi_private; 410 mdk_rdev_t *rdev = bio2->bi_private; 411 mddev_t *mddev = rdev->mddev; 412 413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 414 error == -EOPNOTSUPP) { 415 unsigned long flags; 416 /* barriers don't appear to be supported :-( */ 417 set_bit(BarriersNotsupp, &rdev->flags); 418 mddev->barriers_work = 0; 419 spin_lock_irqsave(&mddev->write_lock, flags); 420 bio2->bi_next = mddev->biolist; 421 mddev->biolist = bio2; 422 spin_unlock_irqrestore(&mddev->write_lock, flags); 423 wake_up(&mddev->sb_wait); 424 bio_put(bio); 425 } else { 426 bio_put(bio2); 427 bio->bi_private = rdev; 428 super_written(bio, error); 429 } 430 } 431 432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 433 sector_t sector, int size, struct page *page) 434 { 435 /* write first size bytes of page to sector of rdev 436 * Increment mddev->pending_writes before returning 437 * and decrement it on completion, waking up sb_wait 438 * if zero is reached. 439 * If an error occurred, call md_error 440 * 441 * As we might need to resubmit the request if BIO_RW_BARRIER 442 * causes ENOTSUPP, we allocate a spare bio... 443 */ 444 struct bio *bio = bio_alloc(GFP_NOIO, 1); 445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 446 447 bio->bi_bdev = rdev->bdev; 448 bio->bi_sector = sector; 449 bio_add_page(bio, page, size, 0); 450 bio->bi_private = rdev; 451 bio->bi_end_io = super_written; 452 bio->bi_rw = rw; 453 454 atomic_inc(&mddev->pending_writes); 455 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 456 struct bio *rbio; 457 rw |= (1<<BIO_RW_BARRIER); 458 rbio = bio_clone(bio, GFP_NOIO); 459 rbio->bi_private = bio; 460 rbio->bi_end_io = super_written_barrier; 461 submit_bio(rw, rbio); 462 } else 463 submit_bio(rw, bio); 464 } 465 466 void md_super_wait(mddev_t *mddev) 467 { 468 /* wait for all superblock writes that were scheduled to complete. 469 * if any had to be retried (due to BARRIER problems), retry them 470 */ 471 DEFINE_WAIT(wq); 472 for(;;) { 473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 474 if (atomic_read(&mddev->pending_writes)==0) 475 break; 476 while (mddev->biolist) { 477 struct bio *bio; 478 spin_lock_irq(&mddev->write_lock); 479 bio = mddev->biolist; 480 mddev->biolist = bio->bi_next ; 481 bio->bi_next = NULL; 482 spin_unlock_irq(&mddev->write_lock); 483 submit_bio(bio->bi_rw, bio); 484 } 485 schedule(); 486 } 487 finish_wait(&mddev->sb_wait, &wq); 488 } 489 490 static void bi_complete(struct bio *bio, int error) 491 { 492 complete((struct completion*)bio->bi_private); 493 } 494 495 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 496 struct page *page, int rw) 497 { 498 struct bio *bio = bio_alloc(GFP_NOIO, 1); 499 struct completion event; 500 int ret; 501 502 rw |= (1 << BIO_RW_SYNC); 503 504 bio->bi_bdev = bdev; 505 bio->bi_sector = sector; 506 bio_add_page(bio, page, size, 0); 507 init_completion(&event); 508 bio->bi_private = &event; 509 bio->bi_end_io = bi_complete; 510 submit_bio(rw, bio); 511 wait_for_completion(&event); 512 513 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 514 bio_put(bio); 515 return ret; 516 } 517 EXPORT_SYMBOL_GPL(sync_page_io); 518 519 static int read_disk_sb(mdk_rdev_t * rdev, int size) 520 { 521 char b[BDEVNAME_SIZE]; 522 if (!rdev->sb_page) { 523 MD_BUG(); 524 return -EINVAL; 525 } 526 if (rdev->sb_loaded) 527 return 0; 528 529 530 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) 531 goto fail; 532 rdev->sb_loaded = 1; 533 return 0; 534 535 fail: 536 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 537 bdevname(rdev->bdev,b)); 538 return -EINVAL; 539 } 540 541 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 542 { 543 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 544 (sb1->set_uuid1 == sb2->set_uuid1) && 545 (sb1->set_uuid2 == sb2->set_uuid2) && 546 (sb1->set_uuid3 == sb2->set_uuid3)) 547 548 return 1; 549 550 return 0; 551 } 552 553 554 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 555 { 556 int ret; 557 mdp_super_t *tmp1, *tmp2; 558 559 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 560 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 561 562 if (!tmp1 || !tmp2) { 563 ret = 0; 564 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 565 goto abort; 566 } 567 568 *tmp1 = *sb1; 569 *tmp2 = *sb2; 570 571 /* 572 * nr_disks is not constant 573 */ 574 tmp1->nr_disks = 0; 575 tmp2->nr_disks = 0; 576 577 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 578 ret = 0; 579 else 580 ret = 1; 581 582 abort: 583 kfree(tmp1); 584 kfree(tmp2); 585 return ret; 586 } 587 588 589 static u32 md_csum_fold(u32 csum) 590 { 591 csum = (csum & 0xffff) + (csum >> 16); 592 return (csum & 0xffff) + (csum >> 16); 593 } 594 595 static unsigned int calc_sb_csum(mdp_super_t * sb) 596 { 597 u64 newcsum = 0; 598 u32 *sb32 = (u32*)sb; 599 int i; 600 unsigned int disk_csum, csum; 601 602 disk_csum = sb->sb_csum; 603 sb->sb_csum = 0; 604 605 for (i = 0; i < MD_SB_BYTES/4 ; i++) 606 newcsum += sb32[i]; 607 csum = (newcsum & 0xffffffff) + (newcsum>>32); 608 609 610 #ifdef CONFIG_ALPHA 611 /* This used to use csum_partial, which was wrong for several 612 * reasons including that different results are returned on 613 * different architectures. It isn't critical that we get exactly 614 * the same return value as before (we always csum_fold before 615 * testing, and that removes any differences). However as we 616 * know that csum_partial always returned a 16bit value on 617 * alphas, do a fold to maximise conformity to previous behaviour. 618 */ 619 sb->sb_csum = md_csum_fold(disk_csum); 620 #else 621 sb->sb_csum = disk_csum; 622 #endif 623 return csum; 624 } 625 626 627 /* 628 * Handle superblock details. 629 * We want to be able to handle multiple superblock formats 630 * so we have a common interface to them all, and an array of 631 * different handlers. 632 * We rely on user-space to write the initial superblock, and support 633 * reading and updating of superblocks. 634 * Interface methods are: 635 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 636 * loads and validates a superblock on dev. 637 * if refdev != NULL, compare superblocks on both devices 638 * Return: 639 * 0 - dev has a superblock that is compatible with refdev 640 * 1 - dev has a superblock that is compatible and newer than refdev 641 * so dev should be used as the refdev in future 642 * -EINVAL superblock incompatible or invalid 643 * -othererror e.g. -EIO 644 * 645 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 646 * Verify that dev is acceptable into mddev. 647 * The first time, mddev->raid_disks will be 0, and data from 648 * dev should be merged in. Subsequent calls check that dev 649 * is new enough. Return 0 or -EINVAL 650 * 651 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 652 * Update the superblock for rdev with data in mddev 653 * This does not write to disc. 654 * 655 */ 656 657 struct super_type { 658 char *name; 659 struct module *owner; 660 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 661 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 662 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 663 }; 664 665 /* 666 * load_super for 0.90.0 667 */ 668 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 669 { 670 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 671 mdp_super_t *sb; 672 int ret; 673 sector_t sb_offset; 674 675 /* 676 * Calculate the position of the superblock, 677 * it's at the end of the disk. 678 * 679 * It also happens to be a multiple of 4Kb. 680 */ 681 sb_offset = calc_dev_sboffset(rdev->bdev); 682 rdev->sb_offset = sb_offset; 683 684 ret = read_disk_sb(rdev, MD_SB_BYTES); 685 if (ret) return ret; 686 687 ret = -EINVAL; 688 689 bdevname(rdev->bdev, b); 690 sb = (mdp_super_t*)page_address(rdev->sb_page); 691 692 if (sb->md_magic != MD_SB_MAGIC) { 693 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 694 b); 695 goto abort; 696 } 697 698 if (sb->major_version != 0 || 699 sb->minor_version < 90 || 700 sb->minor_version > 91) { 701 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 702 sb->major_version, sb->minor_version, 703 b); 704 goto abort; 705 } 706 707 if (sb->raid_disks <= 0) 708 goto abort; 709 710 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 711 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 712 b); 713 goto abort; 714 } 715 716 rdev->preferred_minor = sb->md_minor; 717 rdev->data_offset = 0; 718 rdev->sb_size = MD_SB_BYTES; 719 720 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 721 if (sb->level != 1 && sb->level != 4 722 && sb->level != 5 && sb->level != 6 723 && sb->level != 10) { 724 /* FIXME use a better test */ 725 printk(KERN_WARNING 726 "md: bitmaps not supported for this level.\n"); 727 goto abort; 728 } 729 } 730 731 if (sb->level == LEVEL_MULTIPATH) 732 rdev->desc_nr = -1; 733 else 734 rdev->desc_nr = sb->this_disk.number; 735 736 if (!refdev) { 737 ret = 1; 738 } else { 739 __u64 ev1, ev2; 740 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 741 if (!uuid_equal(refsb, sb)) { 742 printk(KERN_WARNING "md: %s has different UUID to %s\n", 743 b, bdevname(refdev->bdev,b2)); 744 goto abort; 745 } 746 if (!sb_equal(refsb, sb)) { 747 printk(KERN_WARNING "md: %s has same UUID" 748 " but different superblock to %s\n", 749 b, bdevname(refdev->bdev, b2)); 750 goto abort; 751 } 752 ev1 = md_event(sb); 753 ev2 = md_event(refsb); 754 if (ev1 > ev2) 755 ret = 1; 756 else 757 ret = 0; 758 } 759 rdev->size = calc_dev_size(rdev, sb->chunk_size); 760 761 if (rdev->size < sb->size && sb->level > 1) 762 /* "this cannot possibly happen" ... */ 763 ret = -EINVAL; 764 765 abort: 766 return ret; 767 } 768 769 /* 770 * validate_super for 0.90.0 771 */ 772 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 773 { 774 mdp_disk_t *desc; 775 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 776 __u64 ev1 = md_event(sb); 777 778 rdev->raid_disk = -1; 779 clear_bit(Faulty, &rdev->flags); 780 clear_bit(In_sync, &rdev->flags); 781 clear_bit(WriteMostly, &rdev->flags); 782 clear_bit(BarriersNotsupp, &rdev->flags); 783 784 if (mddev->raid_disks == 0) { 785 mddev->major_version = 0; 786 mddev->minor_version = sb->minor_version; 787 mddev->patch_version = sb->patch_version; 788 mddev->external = 0; 789 mddev->chunk_size = sb->chunk_size; 790 mddev->ctime = sb->ctime; 791 mddev->utime = sb->utime; 792 mddev->level = sb->level; 793 mddev->clevel[0] = 0; 794 mddev->layout = sb->layout; 795 mddev->raid_disks = sb->raid_disks; 796 mddev->size = sb->size; 797 mddev->events = ev1; 798 mddev->bitmap_offset = 0; 799 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 800 801 if (mddev->minor_version >= 91) { 802 mddev->reshape_position = sb->reshape_position; 803 mddev->delta_disks = sb->delta_disks; 804 mddev->new_level = sb->new_level; 805 mddev->new_layout = sb->new_layout; 806 mddev->new_chunk = sb->new_chunk; 807 } else { 808 mddev->reshape_position = MaxSector; 809 mddev->delta_disks = 0; 810 mddev->new_level = mddev->level; 811 mddev->new_layout = mddev->layout; 812 mddev->new_chunk = mddev->chunk_size; 813 } 814 815 if (sb->state & (1<<MD_SB_CLEAN)) 816 mddev->recovery_cp = MaxSector; 817 else { 818 if (sb->events_hi == sb->cp_events_hi && 819 sb->events_lo == sb->cp_events_lo) { 820 mddev->recovery_cp = sb->recovery_cp; 821 } else 822 mddev->recovery_cp = 0; 823 } 824 825 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 826 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 827 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 828 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 829 830 mddev->max_disks = MD_SB_DISKS; 831 832 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 833 mddev->bitmap_file == NULL) 834 mddev->bitmap_offset = mddev->default_bitmap_offset; 835 836 } else if (mddev->pers == NULL) { 837 /* Insist on good event counter while assembling */ 838 ++ev1; 839 if (ev1 < mddev->events) 840 return -EINVAL; 841 } else if (mddev->bitmap) { 842 /* if adding to array with a bitmap, then we can accept an 843 * older device ... but not too old. 844 */ 845 if (ev1 < mddev->bitmap->events_cleared) 846 return 0; 847 } else { 848 if (ev1 < mddev->events) 849 /* just a hot-add of a new device, leave raid_disk at -1 */ 850 return 0; 851 } 852 853 if (mddev->level != LEVEL_MULTIPATH) { 854 desc = sb->disks + rdev->desc_nr; 855 856 if (desc->state & (1<<MD_DISK_FAULTY)) 857 set_bit(Faulty, &rdev->flags); 858 else if (desc->state & (1<<MD_DISK_SYNC) /* && 859 desc->raid_disk < mddev->raid_disks */) { 860 set_bit(In_sync, &rdev->flags); 861 rdev->raid_disk = desc->raid_disk; 862 } 863 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 864 set_bit(WriteMostly, &rdev->flags); 865 } else /* MULTIPATH are always insync */ 866 set_bit(In_sync, &rdev->flags); 867 return 0; 868 } 869 870 /* 871 * sync_super for 0.90.0 872 */ 873 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 874 { 875 mdp_super_t *sb; 876 struct list_head *tmp; 877 mdk_rdev_t *rdev2; 878 int next_spare = mddev->raid_disks; 879 880 881 /* make rdev->sb match mddev data.. 882 * 883 * 1/ zero out disks 884 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 885 * 3/ any empty disks < next_spare become removed 886 * 887 * disks[0] gets initialised to REMOVED because 888 * we cannot be sure from other fields if it has 889 * been initialised or not. 890 */ 891 int i; 892 int active=0, working=0,failed=0,spare=0,nr_disks=0; 893 894 rdev->sb_size = MD_SB_BYTES; 895 896 sb = (mdp_super_t*)page_address(rdev->sb_page); 897 898 memset(sb, 0, sizeof(*sb)); 899 900 sb->md_magic = MD_SB_MAGIC; 901 sb->major_version = mddev->major_version; 902 sb->patch_version = mddev->patch_version; 903 sb->gvalid_words = 0; /* ignored */ 904 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 905 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 906 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 907 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 908 909 sb->ctime = mddev->ctime; 910 sb->level = mddev->level; 911 sb->size = mddev->size; 912 sb->raid_disks = mddev->raid_disks; 913 sb->md_minor = mddev->md_minor; 914 sb->not_persistent = 0; 915 sb->utime = mddev->utime; 916 sb->state = 0; 917 sb->events_hi = (mddev->events>>32); 918 sb->events_lo = (u32)mddev->events; 919 920 if (mddev->reshape_position == MaxSector) 921 sb->minor_version = 90; 922 else { 923 sb->minor_version = 91; 924 sb->reshape_position = mddev->reshape_position; 925 sb->new_level = mddev->new_level; 926 sb->delta_disks = mddev->delta_disks; 927 sb->new_layout = mddev->new_layout; 928 sb->new_chunk = mddev->new_chunk; 929 } 930 mddev->minor_version = sb->minor_version; 931 if (mddev->in_sync) 932 { 933 sb->recovery_cp = mddev->recovery_cp; 934 sb->cp_events_hi = (mddev->events>>32); 935 sb->cp_events_lo = (u32)mddev->events; 936 if (mddev->recovery_cp == MaxSector) 937 sb->state = (1<< MD_SB_CLEAN); 938 } else 939 sb->recovery_cp = 0; 940 941 sb->layout = mddev->layout; 942 sb->chunk_size = mddev->chunk_size; 943 944 if (mddev->bitmap && mddev->bitmap_file == NULL) 945 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 946 947 sb->disks[0].state = (1<<MD_DISK_REMOVED); 948 rdev_for_each(rdev2, tmp, mddev) { 949 mdp_disk_t *d; 950 int desc_nr; 951 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 952 && !test_bit(Faulty, &rdev2->flags)) 953 desc_nr = rdev2->raid_disk; 954 else 955 desc_nr = next_spare++; 956 rdev2->desc_nr = desc_nr; 957 d = &sb->disks[rdev2->desc_nr]; 958 nr_disks++; 959 d->number = rdev2->desc_nr; 960 d->major = MAJOR(rdev2->bdev->bd_dev); 961 d->minor = MINOR(rdev2->bdev->bd_dev); 962 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 963 && !test_bit(Faulty, &rdev2->flags)) 964 d->raid_disk = rdev2->raid_disk; 965 else 966 d->raid_disk = rdev2->desc_nr; /* compatibility */ 967 if (test_bit(Faulty, &rdev2->flags)) 968 d->state = (1<<MD_DISK_FAULTY); 969 else if (test_bit(In_sync, &rdev2->flags)) { 970 d->state = (1<<MD_DISK_ACTIVE); 971 d->state |= (1<<MD_DISK_SYNC); 972 active++; 973 working++; 974 } else { 975 d->state = 0; 976 spare++; 977 working++; 978 } 979 if (test_bit(WriteMostly, &rdev2->flags)) 980 d->state |= (1<<MD_DISK_WRITEMOSTLY); 981 } 982 /* now set the "removed" and "faulty" bits on any missing devices */ 983 for (i=0 ; i < mddev->raid_disks ; i++) { 984 mdp_disk_t *d = &sb->disks[i]; 985 if (d->state == 0 && d->number == 0) { 986 d->number = i; 987 d->raid_disk = i; 988 d->state = (1<<MD_DISK_REMOVED); 989 d->state |= (1<<MD_DISK_FAULTY); 990 failed++; 991 } 992 } 993 sb->nr_disks = nr_disks; 994 sb->active_disks = active; 995 sb->working_disks = working; 996 sb->failed_disks = failed; 997 sb->spare_disks = spare; 998 999 sb->this_disk = sb->disks[rdev->desc_nr]; 1000 sb->sb_csum = calc_sb_csum(sb); 1001 } 1002 1003 /* 1004 * version 1 superblock 1005 */ 1006 1007 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1008 { 1009 __le32 disk_csum; 1010 u32 csum; 1011 unsigned long long newcsum; 1012 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1013 __le32 *isuper = (__le32*)sb; 1014 int i; 1015 1016 disk_csum = sb->sb_csum; 1017 sb->sb_csum = 0; 1018 newcsum = 0; 1019 for (i=0; size>=4; size -= 4 ) 1020 newcsum += le32_to_cpu(*isuper++); 1021 1022 if (size == 2) 1023 newcsum += le16_to_cpu(*(__le16*) isuper); 1024 1025 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1026 sb->sb_csum = disk_csum; 1027 return cpu_to_le32(csum); 1028 } 1029 1030 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1031 { 1032 struct mdp_superblock_1 *sb; 1033 int ret; 1034 sector_t sb_offset; 1035 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1036 int bmask; 1037 1038 /* 1039 * Calculate the position of the superblock. 1040 * It is always aligned to a 4K boundary and 1041 * depeding on minor_version, it can be: 1042 * 0: At least 8K, but less than 12K, from end of device 1043 * 1: At start of device 1044 * 2: 4K from start of device. 1045 */ 1046 switch(minor_version) { 1047 case 0: 1048 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 1049 sb_offset -= 8*2; 1050 sb_offset &= ~(sector_t)(4*2-1); 1051 /* convert from sectors to K */ 1052 sb_offset /= 2; 1053 break; 1054 case 1: 1055 sb_offset = 0; 1056 break; 1057 case 2: 1058 sb_offset = 4; 1059 break; 1060 default: 1061 return -EINVAL; 1062 } 1063 rdev->sb_offset = sb_offset; 1064 1065 /* superblock is rarely larger than 1K, but it can be larger, 1066 * and it is safe to read 4k, so we do that 1067 */ 1068 ret = read_disk_sb(rdev, 4096); 1069 if (ret) return ret; 1070 1071 1072 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1073 1074 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1075 sb->major_version != cpu_to_le32(1) || 1076 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1077 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 1078 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1079 return -EINVAL; 1080 1081 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1082 printk("md: invalid superblock checksum on %s\n", 1083 bdevname(rdev->bdev,b)); 1084 return -EINVAL; 1085 } 1086 if (le64_to_cpu(sb->data_size) < 10) { 1087 printk("md: data_size too small on %s\n", 1088 bdevname(rdev->bdev,b)); 1089 return -EINVAL; 1090 } 1091 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1092 if (sb->level != cpu_to_le32(1) && 1093 sb->level != cpu_to_le32(4) && 1094 sb->level != cpu_to_le32(5) && 1095 sb->level != cpu_to_le32(6) && 1096 sb->level != cpu_to_le32(10)) { 1097 printk(KERN_WARNING 1098 "md: bitmaps not supported for this level.\n"); 1099 return -EINVAL; 1100 } 1101 } 1102 1103 rdev->preferred_minor = 0xffff; 1104 rdev->data_offset = le64_to_cpu(sb->data_offset); 1105 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1106 1107 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1108 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1109 if (rdev->sb_size & bmask) 1110 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1111 1112 if (minor_version 1113 && rdev->data_offset < sb_offset + (rdev->sb_size/512)) 1114 return -EINVAL; 1115 1116 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1117 rdev->desc_nr = -1; 1118 else 1119 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1120 1121 if (!refdev) { 1122 ret = 1; 1123 } else { 1124 __u64 ev1, ev2; 1125 struct mdp_superblock_1 *refsb = 1126 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1127 1128 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1129 sb->level != refsb->level || 1130 sb->layout != refsb->layout || 1131 sb->chunksize != refsb->chunksize) { 1132 printk(KERN_WARNING "md: %s has strangely different" 1133 " superblock to %s\n", 1134 bdevname(rdev->bdev,b), 1135 bdevname(refdev->bdev,b2)); 1136 return -EINVAL; 1137 } 1138 ev1 = le64_to_cpu(sb->events); 1139 ev2 = le64_to_cpu(refsb->events); 1140 1141 if (ev1 > ev2) 1142 ret = 1; 1143 else 1144 ret = 0; 1145 } 1146 if (minor_version) 1147 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1148 else 1149 rdev->size = rdev->sb_offset; 1150 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1151 return -EINVAL; 1152 rdev->size = le64_to_cpu(sb->data_size)/2; 1153 if (le32_to_cpu(sb->chunksize)) 1154 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1155 1156 if (le64_to_cpu(sb->size) > rdev->size*2) 1157 return -EINVAL; 1158 return ret; 1159 } 1160 1161 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1162 { 1163 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1164 __u64 ev1 = le64_to_cpu(sb->events); 1165 1166 rdev->raid_disk = -1; 1167 clear_bit(Faulty, &rdev->flags); 1168 clear_bit(In_sync, &rdev->flags); 1169 clear_bit(WriteMostly, &rdev->flags); 1170 clear_bit(BarriersNotsupp, &rdev->flags); 1171 1172 if (mddev->raid_disks == 0) { 1173 mddev->major_version = 1; 1174 mddev->patch_version = 0; 1175 mddev->external = 0; 1176 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1177 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1178 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1179 mddev->level = le32_to_cpu(sb->level); 1180 mddev->clevel[0] = 0; 1181 mddev->layout = le32_to_cpu(sb->layout); 1182 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1183 mddev->size = le64_to_cpu(sb->size)/2; 1184 mddev->events = ev1; 1185 mddev->bitmap_offset = 0; 1186 mddev->default_bitmap_offset = 1024 >> 9; 1187 1188 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1189 memcpy(mddev->uuid, sb->set_uuid, 16); 1190 1191 mddev->max_disks = (4096-256)/2; 1192 1193 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1194 mddev->bitmap_file == NULL ) 1195 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1196 1197 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1198 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1199 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1200 mddev->new_level = le32_to_cpu(sb->new_level); 1201 mddev->new_layout = le32_to_cpu(sb->new_layout); 1202 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1203 } else { 1204 mddev->reshape_position = MaxSector; 1205 mddev->delta_disks = 0; 1206 mddev->new_level = mddev->level; 1207 mddev->new_layout = mddev->layout; 1208 mddev->new_chunk = mddev->chunk_size; 1209 } 1210 1211 } else if (mddev->pers == NULL) { 1212 /* Insist of good event counter while assembling */ 1213 ++ev1; 1214 if (ev1 < mddev->events) 1215 return -EINVAL; 1216 } else if (mddev->bitmap) { 1217 /* If adding to array with a bitmap, then we can accept an 1218 * older device, but not too old. 1219 */ 1220 if (ev1 < mddev->bitmap->events_cleared) 1221 return 0; 1222 } else { 1223 if (ev1 < mddev->events) 1224 /* just a hot-add of a new device, leave raid_disk at -1 */ 1225 return 0; 1226 } 1227 if (mddev->level != LEVEL_MULTIPATH) { 1228 int role; 1229 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1230 switch(role) { 1231 case 0xffff: /* spare */ 1232 break; 1233 case 0xfffe: /* faulty */ 1234 set_bit(Faulty, &rdev->flags); 1235 break; 1236 default: 1237 if ((le32_to_cpu(sb->feature_map) & 1238 MD_FEATURE_RECOVERY_OFFSET)) 1239 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1240 else 1241 set_bit(In_sync, &rdev->flags); 1242 rdev->raid_disk = role; 1243 break; 1244 } 1245 if (sb->devflags & WriteMostly1) 1246 set_bit(WriteMostly, &rdev->flags); 1247 } else /* MULTIPATH are always insync */ 1248 set_bit(In_sync, &rdev->flags); 1249 1250 return 0; 1251 } 1252 1253 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1254 { 1255 struct mdp_superblock_1 *sb; 1256 struct list_head *tmp; 1257 mdk_rdev_t *rdev2; 1258 int max_dev, i; 1259 /* make rdev->sb match mddev and rdev data. */ 1260 1261 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1262 1263 sb->feature_map = 0; 1264 sb->pad0 = 0; 1265 sb->recovery_offset = cpu_to_le64(0); 1266 memset(sb->pad1, 0, sizeof(sb->pad1)); 1267 memset(sb->pad2, 0, sizeof(sb->pad2)); 1268 memset(sb->pad3, 0, sizeof(sb->pad3)); 1269 1270 sb->utime = cpu_to_le64((__u64)mddev->utime); 1271 sb->events = cpu_to_le64(mddev->events); 1272 if (mddev->in_sync) 1273 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1274 else 1275 sb->resync_offset = cpu_to_le64(0); 1276 1277 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1278 1279 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1280 sb->size = cpu_to_le64(mddev->size<<1); 1281 1282 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1283 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1284 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1285 } 1286 1287 if (rdev->raid_disk >= 0 && 1288 !test_bit(In_sync, &rdev->flags) && 1289 rdev->recovery_offset > 0) { 1290 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1291 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1292 } 1293 1294 if (mddev->reshape_position != MaxSector) { 1295 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1296 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1297 sb->new_layout = cpu_to_le32(mddev->new_layout); 1298 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1299 sb->new_level = cpu_to_le32(mddev->new_level); 1300 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1301 } 1302 1303 max_dev = 0; 1304 rdev_for_each(rdev2, tmp, mddev) 1305 if (rdev2->desc_nr+1 > max_dev) 1306 max_dev = rdev2->desc_nr+1; 1307 1308 if (max_dev > le32_to_cpu(sb->max_dev)) 1309 sb->max_dev = cpu_to_le32(max_dev); 1310 for (i=0; i<max_dev;i++) 1311 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1312 1313 rdev_for_each(rdev2, tmp, mddev) { 1314 i = rdev2->desc_nr; 1315 if (test_bit(Faulty, &rdev2->flags)) 1316 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1317 else if (test_bit(In_sync, &rdev2->flags)) 1318 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1319 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1320 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1321 else 1322 sb->dev_roles[i] = cpu_to_le16(0xffff); 1323 } 1324 1325 sb->sb_csum = calc_sb_1_csum(sb); 1326 } 1327 1328 1329 static struct super_type super_types[] = { 1330 [0] = { 1331 .name = "0.90.0", 1332 .owner = THIS_MODULE, 1333 .load_super = super_90_load, 1334 .validate_super = super_90_validate, 1335 .sync_super = super_90_sync, 1336 }, 1337 [1] = { 1338 .name = "md-1", 1339 .owner = THIS_MODULE, 1340 .load_super = super_1_load, 1341 .validate_super = super_1_validate, 1342 .sync_super = super_1_sync, 1343 }, 1344 }; 1345 1346 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1347 { 1348 struct list_head *tmp, *tmp2; 1349 mdk_rdev_t *rdev, *rdev2; 1350 1351 rdev_for_each(rdev, tmp, mddev1) 1352 rdev_for_each(rdev2, tmp2, mddev2) 1353 if (rdev->bdev->bd_contains == 1354 rdev2->bdev->bd_contains) 1355 return 1; 1356 1357 return 0; 1358 } 1359 1360 static LIST_HEAD(pending_raid_disks); 1361 1362 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1363 { 1364 char b[BDEVNAME_SIZE]; 1365 struct kobject *ko; 1366 char *s; 1367 int err; 1368 1369 if (rdev->mddev) { 1370 MD_BUG(); 1371 return -EINVAL; 1372 } 1373 1374 /* prevent duplicates */ 1375 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1376 return -EEXIST; 1377 1378 /* make sure rdev->size exceeds mddev->size */ 1379 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1380 if (mddev->pers) { 1381 /* Cannot change size, so fail 1382 * If mddev->level <= 0, then we don't care 1383 * about aligning sizes (e.g. linear) 1384 */ 1385 if (mddev->level > 0) 1386 return -ENOSPC; 1387 } else 1388 mddev->size = rdev->size; 1389 } 1390 1391 /* Verify rdev->desc_nr is unique. 1392 * If it is -1, assign a free number, else 1393 * check number is not in use 1394 */ 1395 if (rdev->desc_nr < 0) { 1396 int choice = 0; 1397 if (mddev->pers) choice = mddev->raid_disks; 1398 while (find_rdev_nr(mddev, choice)) 1399 choice++; 1400 rdev->desc_nr = choice; 1401 } else { 1402 if (find_rdev_nr(mddev, rdev->desc_nr)) 1403 return -EBUSY; 1404 } 1405 bdevname(rdev->bdev,b); 1406 while ( (s=strchr(b, '/')) != NULL) 1407 *s = '!'; 1408 1409 rdev->mddev = mddev; 1410 printk(KERN_INFO "md: bind<%s>\n", b); 1411 1412 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1413 goto fail; 1414 1415 if (rdev->bdev->bd_part) 1416 ko = &rdev->bdev->bd_part->dev.kobj; 1417 else 1418 ko = &rdev->bdev->bd_disk->dev.kobj; 1419 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1420 kobject_del(&rdev->kobj); 1421 goto fail; 1422 } 1423 list_add(&rdev->same_set, &mddev->disks); 1424 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1425 return 0; 1426 1427 fail: 1428 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1429 b, mdname(mddev)); 1430 return err; 1431 } 1432 1433 static void md_delayed_delete(struct work_struct *ws) 1434 { 1435 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1436 kobject_del(&rdev->kobj); 1437 kobject_put(&rdev->kobj); 1438 } 1439 1440 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1441 { 1442 char b[BDEVNAME_SIZE]; 1443 if (!rdev->mddev) { 1444 MD_BUG(); 1445 return; 1446 } 1447 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1448 list_del_init(&rdev->same_set); 1449 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1450 rdev->mddev = NULL; 1451 sysfs_remove_link(&rdev->kobj, "block"); 1452 1453 /* We need to delay this, otherwise we can deadlock when 1454 * writing to 'remove' to "dev/state" 1455 */ 1456 INIT_WORK(&rdev->del_work, md_delayed_delete); 1457 kobject_get(&rdev->kobj); 1458 schedule_work(&rdev->del_work); 1459 } 1460 1461 /* 1462 * prevent the device from being mounted, repartitioned or 1463 * otherwise reused by a RAID array (or any other kernel 1464 * subsystem), by bd_claiming the device. 1465 */ 1466 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1467 { 1468 int err = 0; 1469 struct block_device *bdev; 1470 char b[BDEVNAME_SIZE]; 1471 1472 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1473 if (IS_ERR(bdev)) { 1474 printk(KERN_ERR "md: could not open %s.\n", 1475 __bdevname(dev, b)); 1476 return PTR_ERR(bdev); 1477 } 1478 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1479 if (err) { 1480 printk(KERN_ERR "md: could not bd_claim %s.\n", 1481 bdevname(bdev, b)); 1482 blkdev_put(bdev); 1483 return err; 1484 } 1485 if (!shared) 1486 set_bit(AllReserved, &rdev->flags); 1487 rdev->bdev = bdev; 1488 return err; 1489 } 1490 1491 static void unlock_rdev(mdk_rdev_t *rdev) 1492 { 1493 struct block_device *bdev = rdev->bdev; 1494 rdev->bdev = NULL; 1495 if (!bdev) 1496 MD_BUG(); 1497 bd_release(bdev); 1498 blkdev_put(bdev); 1499 } 1500 1501 void md_autodetect_dev(dev_t dev); 1502 1503 static void export_rdev(mdk_rdev_t * rdev) 1504 { 1505 char b[BDEVNAME_SIZE]; 1506 printk(KERN_INFO "md: export_rdev(%s)\n", 1507 bdevname(rdev->bdev,b)); 1508 if (rdev->mddev) 1509 MD_BUG(); 1510 free_disk_sb(rdev); 1511 list_del_init(&rdev->same_set); 1512 #ifndef MODULE 1513 if (test_bit(AutoDetected, &rdev->flags)) 1514 md_autodetect_dev(rdev->bdev->bd_dev); 1515 #endif 1516 unlock_rdev(rdev); 1517 kobject_put(&rdev->kobj); 1518 } 1519 1520 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1521 { 1522 unbind_rdev_from_array(rdev); 1523 export_rdev(rdev); 1524 } 1525 1526 static void export_array(mddev_t *mddev) 1527 { 1528 struct list_head *tmp; 1529 mdk_rdev_t *rdev; 1530 1531 rdev_for_each(rdev, tmp, mddev) { 1532 if (!rdev->mddev) { 1533 MD_BUG(); 1534 continue; 1535 } 1536 kick_rdev_from_array(rdev); 1537 } 1538 if (!list_empty(&mddev->disks)) 1539 MD_BUG(); 1540 mddev->raid_disks = 0; 1541 mddev->major_version = 0; 1542 } 1543 1544 static void print_desc(mdp_disk_t *desc) 1545 { 1546 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1547 desc->major,desc->minor,desc->raid_disk,desc->state); 1548 } 1549 1550 static void print_sb(mdp_super_t *sb) 1551 { 1552 int i; 1553 1554 printk(KERN_INFO 1555 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1556 sb->major_version, sb->minor_version, sb->patch_version, 1557 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1558 sb->ctime); 1559 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1560 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1561 sb->md_minor, sb->layout, sb->chunk_size); 1562 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1563 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1564 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1565 sb->failed_disks, sb->spare_disks, 1566 sb->sb_csum, (unsigned long)sb->events_lo); 1567 1568 printk(KERN_INFO); 1569 for (i = 0; i < MD_SB_DISKS; i++) { 1570 mdp_disk_t *desc; 1571 1572 desc = sb->disks + i; 1573 if (desc->number || desc->major || desc->minor || 1574 desc->raid_disk || (desc->state && (desc->state != 4))) { 1575 printk(" D %2d: ", i); 1576 print_desc(desc); 1577 } 1578 } 1579 printk(KERN_INFO "md: THIS: "); 1580 print_desc(&sb->this_disk); 1581 1582 } 1583 1584 static void print_rdev(mdk_rdev_t *rdev) 1585 { 1586 char b[BDEVNAME_SIZE]; 1587 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1588 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1589 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1590 rdev->desc_nr); 1591 if (rdev->sb_loaded) { 1592 printk(KERN_INFO "md: rdev superblock:\n"); 1593 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1594 } else 1595 printk(KERN_INFO "md: no rdev superblock!\n"); 1596 } 1597 1598 static void md_print_devices(void) 1599 { 1600 struct list_head *tmp, *tmp2; 1601 mdk_rdev_t *rdev; 1602 mddev_t *mddev; 1603 char b[BDEVNAME_SIZE]; 1604 1605 printk("\n"); 1606 printk("md: **********************************\n"); 1607 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1608 printk("md: **********************************\n"); 1609 for_each_mddev(mddev, tmp) { 1610 1611 if (mddev->bitmap) 1612 bitmap_print_sb(mddev->bitmap); 1613 else 1614 printk("%s: ", mdname(mddev)); 1615 rdev_for_each(rdev, tmp2, mddev) 1616 printk("<%s>", bdevname(rdev->bdev,b)); 1617 printk("\n"); 1618 1619 rdev_for_each(rdev, tmp2, mddev) 1620 print_rdev(rdev); 1621 } 1622 printk("md: **********************************\n"); 1623 printk("\n"); 1624 } 1625 1626 1627 static void sync_sbs(mddev_t * mddev, int nospares) 1628 { 1629 /* Update each superblock (in-memory image), but 1630 * if we are allowed to, skip spares which already 1631 * have the right event counter, or have one earlier 1632 * (which would mean they aren't being marked as dirty 1633 * with the rest of the array) 1634 */ 1635 mdk_rdev_t *rdev; 1636 struct list_head *tmp; 1637 1638 rdev_for_each(rdev, tmp, mddev) { 1639 if (rdev->sb_events == mddev->events || 1640 (nospares && 1641 rdev->raid_disk < 0 && 1642 (rdev->sb_events&1)==0 && 1643 rdev->sb_events+1 == mddev->events)) { 1644 /* Don't update this superblock */ 1645 rdev->sb_loaded = 2; 1646 } else { 1647 super_types[mddev->major_version]. 1648 sync_super(mddev, rdev); 1649 rdev->sb_loaded = 1; 1650 } 1651 } 1652 } 1653 1654 static void md_update_sb(mddev_t * mddev, int force_change) 1655 { 1656 struct list_head *tmp; 1657 mdk_rdev_t *rdev; 1658 int sync_req; 1659 int nospares = 0; 1660 1661 if (mddev->external) 1662 return; 1663 repeat: 1664 spin_lock_irq(&mddev->write_lock); 1665 1666 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1667 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1668 force_change = 1; 1669 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1670 /* just a clean<-> dirty transition, possibly leave spares alone, 1671 * though if events isn't the right even/odd, we will have to do 1672 * spares after all 1673 */ 1674 nospares = 1; 1675 if (force_change) 1676 nospares = 0; 1677 if (mddev->degraded) 1678 /* If the array is degraded, then skipping spares is both 1679 * dangerous and fairly pointless. 1680 * Dangerous because a device that was removed from the array 1681 * might have a event_count that still looks up-to-date, 1682 * so it can be re-added without a resync. 1683 * Pointless because if there are any spares to skip, 1684 * then a recovery will happen and soon that array won't 1685 * be degraded any more and the spare can go back to sleep then. 1686 */ 1687 nospares = 0; 1688 1689 sync_req = mddev->in_sync; 1690 mddev->utime = get_seconds(); 1691 1692 /* If this is just a dirty<->clean transition, and the array is clean 1693 * and 'events' is odd, we can roll back to the previous clean state */ 1694 if (nospares 1695 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1696 && (mddev->events & 1) 1697 && mddev->events != 1) 1698 mddev->events--; 1699 else { 1700 /* otherwise we have to go forward and ... */ 1701 mddev->events ++; 1702 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1703 /* .. if the array isn't clean, insist on an odd 'events' */ 1704 if ((mddev->events&1)==0) { 1705 mddev->events++; 1706 nospares = 0; 1707 } 1708 } else { 1709 /* otherwise insist on an even 'events' (for clean states) */ 1710 if ((mddev->events&1)) { 1711 mddev->events++; 1712 nospares = 0; 1713 } 1714 } 1715 } 1716 1717 if (!mddev->events) { 1718 /* 1719 * oops, this 64-bit counter should never wrap. 1720 * Either we are in around ~1 trillion A.C., assuming 1721 * 1 reboot per second, or we have a bug: 1722 */ 1723 MD_BUG(); 1724 mddev->events --; 1725 } 1726 1727 /* 1728 * do not write anything to disk if using 1729 * nonpersistent superblocks 1730 */ 1731 if (!mddev->persistent) { 1732 if (!mddev->external) 1733 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1734 1735 spin_unlock_irq(&mddev->write_lock); 1736 wake_up(&mddev->sb_wait); 1737 return; 1738 } 1739 sync_sbs(mddev, nospares); 1740 spin_unlock_irq(&mddev->write_lock); 1741 1742 dprintk(KERN_INFO 1743 "md: updating %s RAID superblock on device (in sync %d)\n", 1744 mdname(mddev),mddev->in_sync); 1745 1746 bitmap_update_sb(mddev->bitmap); 1747 rdev_for_each(rdev, tmp, mddev) { 1748 char b[BDEVNAME_SIZE]; 1749 dprintk(KERN_INFO "md: "); 1750 if (rdev->sb_loaded != 1) 1751 continue; /* no noise on spare devices */ 1752 if (test_bit(Faulty, &rdev->flags)) 1753 dprintk("(skipping faulty "); 1754 1755 dprintk("%s ", bdevname(rdev->bdev,b)); 1756 if (!test_bit(Faulty, &rdev->flags)) { 1757 md_super_write(mddev,rdev, 1758 rdev->sb_offset<<1, rdev->sb_size, 1759 rdev->sb_page); 1760 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1761 bdevname(rdev->bdev,b), 1762 (unsigned long long)rdev->sb_offset); 1763 rdev->sb_events = mddev->events; 1764 1765 } else 1766 dprintk(")\n"); 1767 if (mddev->level == LEVEL_MULTIPATH) 1768 /* only need to write one superblock... */ 1769 break; 1770 } 1771 md_super_wait(mddev); 1772 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1773 1774 spin_lock_irq(&mddev->write_lock); 1775 if (mddev->in_sync != sync_req || 1776 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1777 /* have to write it out again */ 1778 spin_unlock_irq(&mddev->write_lock); 1779 goto repeat; 1780 } 1781 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1782 spin_unlock_irq(&mddev->write_lock); 1783 wake_up(&mddev->sb_wait); 1784 1785 } 1786 1787 /* words written to sysfs files may, or my not, be \n terminated. 1788 * We want to accept with case. For this we use cmd_match. 1789 */ 1790 static int cmd_match(const char *cmd, const char *str) 1791 { 1792 /* See if cmd, written into a sysfs file, matches 1793 * str. They must either be the same, or cmd can 1794 * have a trailing newline 1795 */ 1796 while (*cmd && *str && *cmd == *str) { 1797 cmd++; 1798 str++; 1799 } 1800 if (*cmd == '\n') 1801 cmd++; 1802 if (*str || *cmd) 1803 return 0; 1804 return 1; 1805 } 1806 1807 struct rdev_sysfs_entry { 1808 struct attribute attr; 1809 ssize_t (*show)(mdk_rdev_t *, char *); 1810 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1811 }; 1812 1813 static ssize_t 1814 state_show(mdk_rdev_t *rdev, char *page) 1815 { 1816 char *sep = ""; 1817 size_t len = 0; 1818 1819 if (test_bit(Faulty, &rdev->flags)) { 1820 len+= sprintf(page+len, "%sfaulty",sep); 1821 sep = ","; 1822 } 1823 if (test_bit(In_sync, &rdev->flags)) { 1824 len += sprintf(page+len, "%sin_sync",sep); 1825 sep = ","; 1826 } 1827 if (test_bit(WriteMostly, &rdev->flags)) { 1828 len += sprintf(page+len, "%swrite_mostly",sep); 1829 sep = ","; 1830 } 1831 if (test_bit(Blocked, &rdev->flags)) { 1832 len += sprintf(page+len, "%sblocked", sep); 1833 sep = ","; 1834 } 1835 if (!test_bit(Faulty, &rdev->flags) && 1836 !test_bit(In_sync, &rdev->flags)) { 1837 len += sprintf(page+len, "%sspare", sep); 1838 sep = ","; 1839 } 1840 return len+sprintf(page+len, "\n"); 1841 } 1842 1843 static ssize_t 1844 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1845 { 1846 /* can write 1847 * faulty - simulates and error 1848 * remove - disconnects the device 1849 * writemostly - sets write_mostly 1850 * -writemostly - clears write_mostly 1851 * blocked - sets the Blocked flag 1852 * -blocked - clears the Blocked flag 1853 */ 1854 int err = -EINVAL; 1855 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1856 md_error(rdev->mddev, rdev); 1857 err = 0; 1858 } else if (cmd_match(buf, "remove")) { 1859 if (rdev->raid_disk >= 0) 1860 err = -EBUSY; 1861 else { 1862 mddev_t *mddev = rdev->mddev; 1863 kick_rdev_from_array(rdev); 1864 if (mddev->pers) 1865 md_update_sb(mddev, 1); 1866 md_new_event(mddev); 1867 err = 0; 1868 } 1869 } else if (cmd_match(buf, "writemostly")) { 1870 set_bit(WriteMostly, &rdev->flags); 1871 err = 0; 1872 } else if (cmd_match(buf, "-writemostly")) { 1873 clear_bit(WriteMostly, &rdev->flags); 1874 err = 0; 1875 } else if (cmd_match(buf, "blocked")) { 1876 set_bit(Blocked, &rdev->flags); 1877 err = 0; 1878 } else if (cmd_match(buf, "-blocked")) { 1879 clear_bit(Blocked, &rdev->flags); 1880 wake_up(&rdev->blocked_wait); 1881 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 1882 md_wakeup_thread(rdev->mddev->thread); 1883 1884 err = 0; 1885 } 1886 return err ? err : len; 1887 } 1888 static struct rdev_sysfs_entry rdev_state = 1889 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1890 1891 static ssize_t 1892 errors_show(mdk_rdev_t *rdev, char *page) 1893 { 1894 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1895 } 1896 1897 static ssize_t 1898 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1899 { 1900 char *e; 1901 unsigned long n = simple_strtoul(buf, &e, 10); 1902 if (*buf && (*e == 0 || *e == '\n')) { 1903 atomic_set(&rdev->corrected_errors, n); 1904 return len; 1905 } 1906 return -EINVAL; 1907 } 1908 static struct rdev_sysfs_entry rdev_errors = 1909 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1910 1911 static ssize_t 1912 slot_show(mdk_rdev_t *rdev, char *page) 1913 { 1914 if (rdev->raid_disk < 0) 1915 return sprintf(page, "none\n"); 1916 else 1917 return sprintf(page, "%d\n", rdev->raid_disk); 1918 } 1919 1920 static ssize_t 1921 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1922 { 1923 char *e; 1924 int err; 1925 char nm[20]; 1926 int slot = simple_strtoul(buf, &e, 10); 1927 if (strncmp(buf, "none", 4)==0) 1928 slot = -1; 1929 else if (e==buf || (*e && *e!= '\n')) 1930 return -EINVAL; 1931 if (rdev->mddev->pers) { 1932 /* Setting 'slot' on an active array requires also 1933 * updating the 'rd%d' link, and communicating 1934 * with the personality with ->hot_*_disk. 1935 * For now we only support removing 1936 * failed/spare devices. This normally happens automatically, 1937 * but not when the metadata is externally managed. 1938 */ 1939 if (slot != -1) 1940 return -EBUSY; 1941 if (rdev->raid_disk == -1) 1942 return -EEXIST; 1943 /* personality does all needed checks */ 1944 if (rdev->mddev->pers->hot_add_disk == NULL) 1945 return -EINVAL; 1946 err = rdev->mddev->pers-> 1947 hot_remove_disk(rdev->mddev, rdev->raid_disk); 1948 if (err) 1949 return err; 1950 sprintf(nm, "rd%d", rdev->raid_disk); 1951 sysfs_remove_link(&rdev->mddev->kobj, nm); 1952 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 1953 md_wakeup_thread(rdev->mddev->thread); 1954 } else { 1955 if (slot >= rdev->mddev->raid_disks) 1956 return -ENOSPC; 1957 rdev->raid_disk = slot; 1958 /* assume it is working */ 1959 clear_bit(Faulty, &rdev->flags); 1960 clear_bit(WriteMostly, &rdev->flags); 1961 set_bit(In_sync, &rdev->flags); 1962 } 1963 return len; 1964 } 1965 1966 1967 static struct rdev_sysfs_entry rdev_slot = 1968 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 1969 1970 static ssize_t 1971 offset_show(mdk_rdev_t *rdev, char *page) 1972 { 1973 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 1974 } 1975 1976 static ssize_t 1977 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1978 { 1979 char *e; 1980 unsigned long long offset = simple_strtoull(buf, &e, 10); 1981 if (e==buf || (*e && *e != '\n')) 1982 return -EINVAL; 1983 if (rdev->mddev->pers) 1984 return -EBUSY; 1985 if (rdev->size && rdev->mddev->external) 1986 /* Must set offset before size, so overlap checks 1987 * can be sane */ 1988 return -EBUSY; 1989 rdev->data_offset = offset; 1990 return len; 1991 } 1992 1993 static struct rdev_sysfs_entry rdev_offset = 1994 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 1995 1996 static ssize_t 1997 rdev_size_show(mdk_rdev_t *rdev, char *page) 1998 { 1999 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 2000 } 2001 2002 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2003 { 2004 /* check if two start/length pairs overlap */ 2005 if (s1+l1 <= s2) 2006 return 0; 2007 if (s2+l2 <= s1) 2008 return 0; 2009 return 1; 2010 } 2011 2012 static ssize_t 2013 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2014 { 2015 char *e; 2016 unsigned long long size = simple_strtoull(buf, &e, 10); 2017 unsigned long long oldsize = rdev->size; 2018 mddev_t *my_mddev = rdev->mddev; 2019 2020 if (e==buf || (*e && *e != '\n')) 2021 return -EINVAL; 2022 if (my_mddev->pers) 2023 return -EBUSY; 2024 rdev->size = size; 2025 if (size > oldsize && rdev->mddev->external) { 2026 /* need to check that all other rdevs with the same ->bdev 2027 * do not overlap. We need to unlock the mddev to avoid 2028 * a deadlock. We have already changed rdev->size, and if 2029 * we have to change it back, we will have the lock again. 2030 */ 2031 mddev_t *mddev; 2032 int overlap = 0; 2033 struct list_head *tmp, *tmp2; 2034 2035 mddev_unlock(my_mddev); 2036 for_each_mddev(mddev, tmp) { 2037 mdk_rdev_t *rdev2; 2038 2039 mddev_lock(mddev); 2040 rdev_for_each(rdev2, tmp2, mddev) 2041 if (test_bit(AllReserved, &rdev2->flags) || 2042 (rdev->bdev == rdev2->bdev && 2043 rdev != rdev2 && 2044 overlaps(rdev->data_offset, rdev->size, 2045 rdev2->data_offset, rdev2->size))) { 2046 overlap = 1; 2047 break; 2048 } 2049 mddev_unlock(mddev); 2050 if (overlap) { 2051 mddev_put(mddev); 2052 break; 2053 } 2054 } 2055 mddev_lock(my_mddev); 2056 if (overlap) { 2057 /* Someone else could have slipped in a size 2058 * change here, but doing so is just silly. 2059 * We put oldsize back because we *know* it is 2060 * safe, and trust userspace not to race with 2061 * itself 2062 */ 2063 rdev->size = oldsize; 2064 return -EBUSY; 2065 } 2066 } 2067 if (size < my_mddev->size || my_mddev->size == 0) 2068 my_mddev->size = size; 2069 return len; 2070 } 2071 2072 static struct rdev_sysfs_entry rdev_size = 2073 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2074 2075 static struct attribute *rdev_default_attrs[] = { 2076 &rdev_state.attr, 2077 &rdev_errors.attr, 2078 &rdev_slot.attr, 2079 &rdev_offset.attr, 2080 &rdev_size.attr, 2081 NULL, 2082 }; 2083 static ssize_t 2084 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2085 { 2086 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2087 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2088 mddev_t *mddev = rdev->mddev; 2089 ssize_t rv; 2090 2091 if (!entry->show) 2092 return -EIO; 2093 2094 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2095 if (!rv) { 2096 if (rdev->mddev == NULL) 2097 rv = -EBUSY; 2098 else 2099 rv = entry->show(rdev, page); 2100 mddev_unlock(mddev); 2101 } 2102 return rv; 2103 } 2104 2105 static ssize_t 2106 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2107 const char *page, size_t length) 2108 { 2109 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2110 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2111 ssize_t rv; 2112 mddev_t *mddev = rdev->mddev; 2113 2114 if (!entry->store) 2115 return -EIO; 2116 if (!capable(CAP_SYS_ADMIN)) 2117 return -EACCES; 2118 rv = mddev ? mddev_lock(mddev): -EBUSY; 2119 if (!rv) { 2120 if (rdev->mddev == NULL) 2121 rv = -EBUSY; 2122 else 2123 rv = entry->store(rdev, page, length); 2124 mddev_unlock(mddev); 2125 } 2126 return rv; 2127 } 2128 2129 static void rdev_free(struct kobject *ko) 2130 { 2131 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2132 kfree(rdev); 2133 } 2134 static struct sysfs_ops rdev_sysfs_ops = { 2135 .show = rdev_attr_show, 2136 .store = rdev_attr_store, 2137 }; 2138 static struct kobj_type rdev_ktype = { 2139 .release = rdev_free, 2140 .sysfs_ops = &rdev_sysfs_ops, 2141 .default_attrs = rdev_default_attrs, 2142 }; 2143 2144 /* 2145 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2146 * 2147 * mark the device faulty if: 2148 * 2149 * - the device is nonexistent (zero size) 2150 * - the device has no valid superblock 2151 * 2152 * a faulty rdev _never_ has rdev->sb set. 2153 */ 2154 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2155 { 2156 char b[BDEVNAME_SIZE]; 2157 int err; 2158 mdk_rdev_t *rdev; 2159 sector_t size; 2160 2161 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2162 if (!rdev) { 2163 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2164 return ERR_PTR(-ENOMEM); 2165 } 2166 2167 if ((err = alloc_disk_sb(rdev))) 2168 goto abort_free; 2169 2170 err = lock_rdev(rdev, newdev, super_format == -2); 2171 if (err) 2172 goto abort_free; 2173 2174 kobject_init(&rdev->kobj, &rdev_ktype); 2175 2176 rdev->desc_nr = -1; 2177 rdev->saved_raid_disk = -1; 2178 rdev->raid_disk = -1; 2179 rdev->flags = 0; 2180 rdev->data_offset = 0; 2181 rdev->sb_events = 0; 2182 atomic_set(&rdev->nr_pending, 0); 2183 atomic_set(&rdev->read_errors, 0); 2184 atomic_set(&rdev->corrected_errors, 0); 2185 2186 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2187 if (!size) { 2188 printk(KERN_WARNING 2189 "md: %s has zero or unknown size, marking faulty!\n", 2190 bdevname(rdev->bdev,b)); 2191 err = -EINVAL; 2192 goto abort_free; 2193 } 2194 2195 if (super_format >= 0) { 2196 err = super_types[super_format]. 2197 load_super(rdev, NULL, super_minor); 2198 if (err == -EINVAL) { 2199 printk(KERN_WARNING 2200 "md: %s does not have a valid v%d.%d " 2201 "superblock, not importing!\n", 2202 bdevname(rdev->bdev,b), 2203 super_format, super_minor); 2204 goto abort_free; 2205 } 2206 if (err < 0) { 2207 printk(KERN_WARNING 2208 "md: could not read %s's sb, not importing!\n", 2209 bdevname(rdev->bdev,b)); 2210 goto abort_free; 2211 } 2212 } 2213 2214 INIT_LIST_HEAD(&rdev->same_set); 2215 init_waitqueue_head(&rdev->blocked_wait); 2216 2217 return rdev; 2218 2219 abort_free: 2220 if (rdev->sb_page) { 2221 if (rdev->bdev) 2222 unlock_rdev(rdev); 2223 free_disk_sb(rdev); 2224 } 2225 kfree(rdev); 2226 return ERR_PTR(err); 2227 } 2228 2229 /* 2230 * Check a full RAID array for plausibility 2231 */ 2232 2233 2234 static void analyze_sbs(mddev_t * mddev) 2235 { 2236 int i; 2237 struct list_head *tmp; 2238 mdk_rdev_t *rdev, *freshest; 2239 char b[BDEVNAME_SIZE]; 2240 2241 freshest = NULL; 2242 rdev_for_each(rdev, tmp, mddev) 2243 switch (super_types[mddev->major_version]. 2244 load_super(rdev, freshest, mddev->minor_version)) { 2245 case 1: 2246 freshest = rdev; 2247 break; 2248 case 0: 2249 break; 2250 default: 2251 printk( KERN_ERR \ 2252 "md: fatal superblock inconsistency in %s" 2253 " -- removing from array\n", 2254 bdevname(rdev->bdev,b)); 2255 kick_rdev_from_array(rdev); 2256 } 2257 2258 2259 super_types[mddev->major_version]. 2260 validate_super(mddev, freshest); 2261 2262 i = 0; 2263 rdev_for_each(rdev, tmp, mddev) { 2264 if (rdev != freshest) 2265 if (super_types[mddev->major_version]. 2266 validate_super(mddev, rdev)) { 2267 printk(KERN_WARNING "md: kicking non-fresh %s" 2268 " from array!\n", 2269 bdevname(rdev->bdev,b)); 2270 kick_rdev_from_array(rdev); 2271 continue; 2272 } 2273 if (mddev->level == LEVEL_MULTIPATH) { 2274 rdev->desc_nr = i++; 2275 rdev->raid_disk = rdev->desc_nr; 2276 set_bit(In_sync, &rdev->flags); 2277 } else if (rdev->raid_disk >= mddev->raid_disks) { 2278 rdev->raid_disk = -1; 2279 clear_bit(In_sync, &rdev->flags); 2280 } 2281 } 2282 2283 2284 2285 if (mddev->recovery_cp != MaxSector && 2286 mddev->level >= 1) 2287 printk(KERN_ERR "md: %s: raid array is not clean" 2288 " -- starting background reconstruction\n", 2289 mdname(mddev)); 2290 2291 } 2292 2293 static ssize_t 2294 safe_delay_show(mddev_t *mddev, char *page) 2295 { 2296 int msec = (mddev->safemode_delay*1000)/HZ; 2297 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2298 } 2299 static ssize_t 2300 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2301 { 2302 int scale=1; 2303 int dot=0; 2304 int i; 2305 unsigned long msec; 2306 char buf[30]; 2307 char *e; 2308 /* remove a period, and count digits after it */ 2309 if (len >= sizeof(buf)) 2310 return -EINVAL; 2311 strlcpy(buf, cbuf, len); 2312 buf[len] = 0; 2313 for (i=0; i<len; i++) { 2314 if (dot) { 2315 if (isdigit(buf[i])) { 2316 buf[i-1] = buf[i]; 2317 scale *= 10; 2318 } 2319 buf[i] = 0; 2320 } else if (buf[i] == '.') { 2321 dot=1; 2322 buf[i] = 0; 2323 } 2324 } 2325 msec = simple_strtoul(buf, &e, 10); 2326 if (e == buf || (*e && *e != '\n')) 2327 return -EINVAL; 2328 msec = (msec * 1000) / scale; 2329 if (msec == 0) 2330 mddev->safemode_delay = 0; 2331 else { 2332 mddev->safemode_delay = (msec*HZ)/1000; 2333 if (mddev->safemode_delay == 0) 2334 mddev->safemode_delay = 1; 2335 } 2336 return len; 2337 } 2338 static struct md_sysfs_entry md_safe_delay = 2339 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2340 2341 static ssize_t 2342 level_show(mddev_t *mddev, char *page) 2343 { 2344 struct mdk_personality *p = mddev->pers; 2345 if (p) 2346 return sprintf(page, "%s\n", p->name); 2347 else if (mddev->clevel[0]) 2348 return sprintf(page, "%s\n", mddev->clevel); 2349 else if (mddev->level != LEVEL_NONE) 2350 return sprintf(page, "%d\n", mddev->level); 2351 else 2352 return 0; 2353 } 2354 2355 static ssize_t 2356 level_store(mddev_t *mddev, const char *buf, size_t len) 2357 { 2358 ssize_t rv = len; 2359 if (mddev->pers) 2360 return -EBUSY; 2361 if (len == 0) 2362 return 0; 2363 if (len >= sizeof(mddev->clevel)) 2364 return -ENOSPC; 2365 strncpy(mddev->clevel, buf, len); 2366 if (mddev->clevel[len-1] == '\n') 2367 len--; 2368 mddev->clevel[len] = 0; 2369 mddev->level = LEVEL_NONE; 2370 return rv; 2371 } 2372 2373 static struct md_sysfs_entry md_level = 2374 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2375 2376 2377 static ssize_t 2378 layout_show(mddev_t *mddev, char *page) 2379 { 2380 /* just a number, not meaningful for all levels */ 2381 if (mddev->reshape_position != MaxSector && 2382 mddev->layout != mddev->new_layout) 2383 return sprintf(page, "%d (%d)\n", 2384 mddev->new_layout, mddev->layout); 2385 return sprintf(page, "%d\n", mddev->layout); 2386 } 2387 2388 static ssize_t 2389 layout_store(mddev_t *mddev, const char *buf, size_t len) 2390 { 2391 char *e; 2392 unsigned long n = simple_strtoul(buf, &e, 10); 2393 2394 if (!*buf || (*e && *e != '\n')) 2395 return -EINVAL; 2396 2397 if (mddev->pers) 2398 return -EBUSY; 2399 if (mddev->reshape_position != MaxSector) 2400 mddev->new_layout = n; 2401 else 2402 mddev->layout = n; 2403 return len; 2404 } 2405 static struct md_sysfs_entry md_layout = 2406 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2407 2408 2409 static ssize_t 2410 raid_disks_show(mddev_t *mddev, char *page) 2411 { 2412 if (mddev->raid_disks == 0) 2413 return 0; 2414 if (mddev->reshape_position != MaxSector && 2415 mddev->delta_disks != 0) 2416 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2417 mddev->raid_disks - mddev->delta_disks); 2418 return sprintf(page, "%d\n", mddev->raid_disks); 2419 } 2420 2421 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2422 2423 static ssize_t 2424 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2425 { 2426 char *e; 2427 int rv = 0; 2428 unsigned long n = simple_strtoul(buf, &e, 10); 2429 2430 if (!*buf || (*e && *e != '\n')) 2431 return -EINVAL; 2432 2433 if (mddev->pers) 2434 rv = update_raid_disks(mddev, n); 2435 else if (mddev->reshape_position != MaxSector) { 2436 int olddisks = mddev->raid_disks - mddev->delta_disks; 2437 mddev->delta_disks = n - olddisks; 2438 mddev->raid_disks = n; 2439 } else 2440 mddev->raid_disks = n; 2441 return rv ? rv : len; 2442 } 2443 static struct md_sysfs_entry md_raid_disks = 2444 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2445 2446 static ssize_t 2447 chunk_size_show(mddev_t *mddev, char *page) 2448 { 2449 if (mddev->reshape_position != MaxSector && 2450 mddev->chunk_size != mddev->new_chunk) 2451 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2452 mddev->chunk_size); 2453 return sprintf(page, "%d\n", mddev->chunk_size); 2454 } 2455 2456 static ssize_t 2457 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2458 { 2459 /* can only set chunk_size if array is not yet active */ 2460 char *e; 2461 unsigned long n = simple_strtoul(buf, &e, 10); 2462 2463 if (!*buf || (*e && *e != '\n')) 2464 return -EINVAL; 2465 2466 if (mddev->pers) 2467 return -EBUSY; 2468 else if (mddev->reshape_position != MaxSector) 2469 mddev->new_chunk = n; 2470 else 2471 mddev->chunk_size = n; 2472 return len; 2473 } 2474 static struct md_sysfs_entry md_chunk_size = 2475 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2476 2477 static ssize_t 2478 resync_start_show(mddev_t *mddev, char *page) 2479 { 2480 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2481 } 2482 2483 static ssize_t 2484 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2485 { 2486 char *e; 2487 unsigned long long n = simple_strtoull(buf, &e, 10); 2488 2489 if (mddev->pers) 2490 return -EBUSY; 2491 if (!*buf || (*e && *e != '\n')) 2492 return -EINVAL; 2493 2494 mddev->recovery_cp = n; 2495 return len; 2496 } 2497 static struct md_sysfs_entry md_resync_start = 2498 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2499 2500 /* 2501 * The array state can be: 2502 * 2503 * clear 2504 * No devices, no size, no level 2505 * Equivalent to STOP_ARRAY ioctl 2506 * inactive 2507 * May have some settings, but array is not active 2508 * all IO results in error 2509 * When written, doesn't tear down array, but just stops it 2510 * suspended (not supported yet) 2511 * All IO requests will block. The array can be reconfigured. 2512 * Writing this, if accepted, will block until array is quiessent 2513 * readonly 2514 * no resync can happen. no superblocks get written. 2515 * write requests fail 2516 * read-auto 2517 * like readonly, but behaves like 'clean' on a write request. 2518 * 2519 * clean - no pending writes, but otherwise active. 2520 * When written to inactive array, starts without resync 2521 * If a write request arrives then 2522 * if metadata is known, mark 'dirty' and switch to 'active'. 2523 * if not known, block and switch to write-pending 2524 * If written to an active array that has pending writes, then fails. 2525 * active 2526 * fully active: IO and resync can be happening. 2527 * When written to inactive array, starts with resync 2528 * 2529 * write-pending 2530 * clean, but writes are blocked waiting for 'active' to be written. 2531 * 2532 * active-idle 2533 * like active, but no writes have been seen for a while (100msec). 2534 * 2535 */ 2536 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2537 write_pending, active_idle, bad_word}; 2538 static char *array_states[] = { 2539 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2540 "write-pending", "active-idle", NULL }; 2541 2542 static int match_word(const char *word, char **list) 2543 { 2544 int n; 2545 for (n=0; list[n]; n++) 2546 if (cmd_match(word, list[n])) 2547 break; 2548 return n; 2549 } 2550 2551 static ssize_t 2552 array_state_show(mddev_t *mddev, char *page) 2553 { 2554 enum array_state st = inactive; 2555 2556 if (mddev->pers) 2557 switch(mddev->ro) { 2558 case 1: 2559 st = readonly; 2560 break; 2561 case 2: 2562 st = read_auto; 2563 break; 2564 case 0: 2565 if (mddev->in_sync) 2566 st = clean; 2567 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2568 st = write_pending; 2569 else if (mddev->safemode) 2570 st = active_idle; 2571 else 2572 st = active; 2573 } 2574 else { 2575 if (list_empty(&mddev->disks) && 2576 mddev->raid_disks == 0 && 2577 mddev->size == 0) 2578 st = clear; 2579 else 2580 st = inactive; 2581 } 2582 return sprintf(page, "%s\n", array_states[st]); 2583 } 2584 2585 static int do_md_stop(mddev_t * mddev, int ro); 2586 static int do_md_run(mddev_t * mddev); 2587 static int restart_array(mddev_t *mddev); 2588 2589 static ssize_t 2590 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2591 { 2592 int err = -EINVAL; 2593 enum array_state st = match_word(buf, array_states); 2594 switch(st) { 2595 case bad_word: 2596 break; 2597 case clear: 2598 /* stopping an active array */ 2599 if (atomic_read(&mddev->active) > 1) 2600 return -EBUSY; 2601 err = do_md_stop(mddev, 0); 2602 break; 2603 case inactive: 2604 /* stopping an active array */ 2605 if (mddev->pers) { 2606 if (atomic_read(&mddev->active) > 1) 2607 return -EBUSY; 2608 err = do_md_stop(mddev, 2); 2609 } else 2610 err = 0; /* already inactive */ 2611 break; 2612 case suspended: 2613 break; /* not supported yet */ 2614 case readonly: 2615 if (mddev->pers) 2616 err = do_md_stop(mddev, 1); 2617 else { 2618 mddev->ro = 1; 2619 set_disk_ro(mddev->gendisk, 1); 2620 err = do_md_run(mddev); 2621 } 2622 break; 2623 case read_auto: 2624 if (mddev->pers) { 2625 if (mddev->ro != 1) 2626 err = do_md_stop(mddev, 1); 2627 else 2628 err = restart_array(mddev); 2629 if (err == 0) { 2630 mddev->ro = 2; 2631 set_disk_ro(mddev->gendisk, 0); 2632 } 2633 } else { 2634 mddev->ro = 2; 2635 err = do_md_run(mddev); 2636 } 2637 break; 2638 case clean: 2639 if (mddev->pers) { 2640 restart_array(mddev); 2641 spin_lock_irq(&mddev->write_lock); 2642 if (atomic_read(&mddev->writes_pending) == 0) { 2643 if (mddev->in_sync == 0) { 2644 mddev->in_sync = 1; 2645 if (mddev->safemode == 1) 2646 mddev->safemode = 0; 2647 if (mddev->persistent) 2648 set_bit(MD_CHANGE_CLEAN, 2649 &mddev->flags); 2650 } 2651 err = 0; 2652 } else 2653 err = -EBUSY; 2654 spin_unlock_irq(&mddev->write_lock); 2655 } else { 2656 mddev->ro = 0; 2657 mddev->recovery_cp = MaxSector; 2658 err = do_md_run(mddev); 2659 } 2660 break; 2661 case active: 2662 if (mddev->pers) { 2663 restart_array(mddev); 2664 if (mddev->external) 2665 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2666 wake_up(&mddev->sb_wait); 2667 err = 0; 2668 } else { 2669 mddev->ro = 0; 2670 set_disk_ro(mddev->gendisk, 0); 2671 err = do_md_run(mddev); 2672 } 2673 break; 2674 case write_pending: 2675 case active_idle: 2676 /* these cannot be set */ 2677 break; 2678 } 2679 if (err) 2680 return err; 2681 else 2682 return len; 2683 } 2684 static struct md_sysfs_entry md_array_state = 2685 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2686 2687 static ssize_t 2688 null_show(mddev_t *mddev, char *page) 2689 { 2690 return -EINVAL; 2691 } 2692 2693 static ssize_t 2694 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2695 { 2696 /* buf must be %d:%d\n? giving major and minor numbers */ 2697 /* The new device is added to the array. 2698 * If the array has a persistent superblock, we read the 2699 * superblock to initialise info and check validity. 2700 * Otherwise, only checking done is that in bind_rdev_to_array, 2701 * which mainly checks size. 2702 */ 2703 char *e; 2704 int major = simple_strtoul(buf, &e, 10); 2705 int minor; 2706 dev_t dev; 2707 mdk_rdev_t *rdev; 2708 int err; 2709 2710 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2711 return -EINVAL; 2712 minor = simple_strtoul(e+1, &e, 10); 2713 if (*e && *e != '\n') 2714 return -EINVAL; 2715 dev = MKDEV(major, minor); 2716 if (major != MAJOR(dev) || 2717 minor != MINOR(dev)) 2718 return -EOVERFLOW; 2719 2720 2721 if (mddev->persistent) { 2722 rdev = md_import_device(dev, mddev->major_version, 2723 mddev->minor_version); 2724 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2725 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2726 mdk_rdev_t, same_set); 2727 err = super_types[mddev->major_version] 2728 .load_super(rdev, rdev0, mddev->minor_version); 2729 if (err < 0) 2730 goto out; 2731 } 2732 } else if (mddev->external) 2733 rdev = md_import_device(dev, -2, -1); 2734 else 2735 rdev = md_import_device(dev, -1, -1); 2736 2737 if (IS_ERR(rdev)) 2738 return PTR_ERR(rdev); 2739 err = bind_rdev_to_array(rdev, mddev); 2740 out: 2741 if (err) 2742 export_rdev(rdev); 2743 return err ? err : len; 2744 } 2745 2746 static struct md_sysfs_entry md_new_device = 2747 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2748 2749 static ssize_t 2750 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2751 { 2752 char *end; 2753 unsigned long chunk, end_chunk; 2754 2755 if (!mddev->bitmap) 2756 goto out; 2757 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2758 while (*buf) { 2759 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2760 if (buf == end) break; 2761 if (*end == '-') { /* range */ 2762 buf = end + 1; 2763 end_chunk = simple_strtoul(buf, &end, 0); 2764 if (buf == end) break; 2765 } 2766 if (*end && !isspace(*end)) break; 2767 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2768 buf = end; 2769 while (isspace(*buf)) buf++; 2770 } 2771 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2772 out: 2773 return len; 2774 } 2775 2776 static struct md_sysfs_entry md_bitmap = 2777 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2778 2779 static ssize_t 2780 size_show(mddev_t *mddev, char *page) 2781 { 2782 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2783 } 2784 2785 static int update_size(mddev_t *mddev, unsigned long size); 2786 2787 static ssize_t 2788 size_store(mddev_t *mddev, const char *buf, size_t len) 2789 { 2790 /* If array is inactive, we can reduce the component size, but 2791 * not increase it (except from 0). 2792 * If array is active, we can try an on-line resize 2793 */ 2794 char *e; 2795 int err = 0; 2796 unsigned long long size = simple_strtoull(buf, &e, 10); 2797 if (!*buf || *buf == '\n' || 2798 (*e && *e != '\n')) 2799 return -EINVAL; 2800 2801 if (mddev->pers) { 2802 err = update_size(mddev, size); 2803 md_update_sb(mddev, 1); 2804 } else { 2805 if (mddev->size == 0 || 2806 mddev->size > size) 2807 mddev->size = size; 2808 else 2809 err = -ENOSPC; 2810 } 2811 return err ? err : len; 2812 } 2813 2814 static struct md_sysfs_entry md_size = 2815 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2816 2817 2818 /* Metdata version. 2819 * This is one of 2820 * 'none' for arrays with no metadata (good luck...) 2821 * 'external' for arrays with externally managed metadata, 2822 * or N.M for internally known formats 2823 */ 2824 static ssize_t 2825 metadata_show(mddev_t *mddev, char *page) 2826 { 2827 if (mddev->persistent) 2828 return sprintf(page, "%d.%d\n", 2829 mddev->major_version, mddev->minor_version); 2830 else if (mddev->external) 2831 return sprintf(page, "external:%s\n", mddev->metadata_type); 2832 else 2833 return sprintf(page, "none\n"); 2834 } 2835 2836 static ssize_t 2837 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2838 { 2839 int major, minor; 2840 char *e; 2841 if (!list_empty(&mddev->disks)) 2842 return -EBUSY; 2843 2844 if (cmd_match(buf, "none")) { 2845 mddev->persistent = 0; 2846 mddev->external = 0; 2847 mddev->major_version = 0; 2848 mddev->minor_version = 90; 2849 return len; 2850 } 2851 if (strncmp(buf, "external:", 9) == 0) { 2852 size_t namelen = len-9; 2853 if (namelen >= sizeof(mddev->metadata_type)) 2854 namelen = sizeof(mddev->metadata_type)-1; 2855 strncpy(mddev->metadata_type, buf+9, namelen); 2856 mddev->metadata_type[namelen] = 0; 2857 if (namelen && mddev->metadata_type[namelen-1] == '\n') 2858 mddev->metadata_type[--namelen] = 0; 2859 mddev->persistent = 0; 2860 mddev->external = 1; 2861 mddev->major_version = 0; 2862 mddev->minor_version = 90; 2863 return len; 2864 } 2865 major = simple_strtoul(buf, &e, 10); 2866 if (e==buf || *e != '.') 2867 return -EINVAL; 2868 buf = e+1; 2869 minor = simple_strtoul(buf, &e, 10); 2870 if (e==buf || (*e && *e != '\n') ) 2871 return -EINVAL; 2872 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 2873 return -ENOENT; 2874 mddev->major_version = major; 2875 mddev->minor_version = minor; 2876 mddev->persistent = 1; 2877 mddev->external = 0; 2878 return len; 2879 } 2880 2881 static struct md_sysfs_entry md_metadata = 2882 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2883 2884 static ssize_t 2885 action_show(mddev_t *mddev, char *page) 2886 { 2887 char *type = "idle"; 2888 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2889 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 2890 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2891 type = "reshape"; 2892 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2893 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2894 type = "resync"; 2895 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2896 type = "check"; 2897 else 2898 type = "repair"; 2899 } else 2900 type = "recover"; 2901 } 2902 return sprintf(page, "%s\n", type); 2903 } 2904 2905 static ssize_t 2906 action_store(mddev_t *mddev, const char *page, size_t len) 2907 { 2908 if (!mddev->pers || !mddev->pers->sync_request) 2909 return -EINVAL; 2910 2911 if (cmd_match(page, "idle")) { 2912 if (mddev->sync_thread) { 2913 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2914 md_unregister_thread(mddev->sync_thread); 2915 mddev->sync_thread = NULL; 2916 mddev->recovery = 0; 2917 } 2918 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2919 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 2920 return -EBUSY; 2921 else if (cmd_match(page, "resync") || cmd_match(page, "recover")) 2922 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2923 else if (cmd_match(page, "reshape")) { 2924 int err; 2925 if (mddev->pers->start_reshape == NULL) 2926 return -EINVAL; 2927 err = mddev->pers->start_reshape(mddev); 2928 if (err) 2929 return err; 2930 } else { 2931 if (cmd_match(page, "check")) 2932 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2933 else if (!cmd_match(page, "repair")) 2934 return -EINVAL; 2935 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 2936 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2937 } 2938 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2939 md_wakeup_thread(mddev->thread); 2940 return len; 2941 } 2942 2943 static ssize_t 2944 mismatch_cnt_show(mddev_t *mddev, char *page) 2945 { 2946 return sprintf(page, "%llu\n", 2947 (unsigned long long) mddev->resync_mismatches); 2948 } 2949 2950 static struct md_sysfs_entry md_scan_mode = 2951 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 2952 2953 2954 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 2955 2956 static ssize_t 2957 sync_min_show(mddev_t *mddev, char *page) 2958 { 2959 return sprintf(page, "%d (%s)\n", speed_min(mddev), 2960 mddev->sync_speed_min ? "local": "system"); 2961 } 2962 2963 static ssize_t 2964 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 2965 { 2966 int min; 2967 char *e; 2968 if (strncmp(buf, "system", 6)==0) { 2969 mddev->sync_speed_min = 0; 2970 return len; 2971 } 2972 min = simple_strtoul(buf, &e, 10); 2973 if (buf == e || (*e && *e != '\n') || min <= 0) 2974 return -EINVAL; 2975 mddev->sync_speed_min = min; 2976 return len; 2977 } 2978 2979 static struct md_sysfs_entry md_sync_min = 2980 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 2981 2982 static ssize_t 2983 sync_max_show(mddev_t *mddev, char *page) 2984 { 2985 return sprintf(page, "%d (%s)\n", speed_max(mddev), 2986 mddev->sync_speed_max ? "local": "system"); 2987 } 2988 2989 static ssize_t 2990 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 2991 { 2992 int max; 2993 char *e; 2994 if (strncmp(buf, "system", 6)==0) { 2995 mddev->sync_speed_max = 0; 2996 return len; 2997 } 2998 max = simple_strtoul(buf, &e, 10); 2999 if (buf == e || (*e && *e != '\n') || max <= 0) 3000 return -EINVAL; 3001 mddev->sync_speed_max = max; 3002 return len; 3003 } 3004 3005 static struct md_sysfs_entry md_sync_max = 3006 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3007 3008 static ssize_t 3009 degraded_show(mddev_t *mddev, char *page) 3010 { 3011 return sprintf(page, "%d\n", mddev->degraded); 3012 } 3013 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3014 3015 static ssize_t 3016 sync_speed_show(mddev_t *mddev, char *page) 3017 { 3018 unsigned long resync, dt, db; 3019 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)); 3020 dt = ((jiffies - mddev->resync_mark) / HZ); 3021 if (!dt) dt++; 3022 db = resync - (mddev->resync_mark_cnt); 3023 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ 3024 } 3025 3026 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3027 3028 static ssize_t 3029 sync_completed_show(mddev_t *mddev, char *page) 3030 { 3031 unsigned long max_blocks, resync; 3032 3033 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3034 max_blocks = mddev->resync_max_sectors; 3035 else 3036 max_blocks = mddev->size << 1; 3037 3038 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 3039 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 3040 } 3041 3042 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3043 3044 static ssize_t 3045 max_sync_show(mddev_t *mddev, char *page) 3046 { 3047 if (mddev->resync_max == MaxSector) 3048 return sprintf(page, "max\n"); 3049 else 3050 return sprintf(page, "%llu\n", 3051 (unsigned long long)mddev->resync_max); 3052 } 3053 static ssize_t 3054 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3055 { 3056 if (strncmp(buf, "max", 3) == 0) 3057 mddev->resync_max = MaxSector; 3058 else { 3059 char *ep; 3060 unsigned long long max = simple_strtoull(buf, &ep, 10); 3061 if (ep == buf || (*ep != 0 && *ep != '\n')) 3062 return -EINVAL; 3063 if (max < mddev->resync_max && 3064 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3065 return -EBUSY; 3066 3067 /* Must be a multiple of chunk_size */ 3068 if (mddev->chunk_size) { 3069 if (max & (sector_t)((mddev->chunk_size>>9)-1)) 3070 return -EINVAL; 3071 } 3072 mddev->resync_max = max; 3073 } 3074 wake_up(&mddev->recovery_wait); 3075 return len; 3076 } 3077 3078 static struct md_sysfs_entry md_max_sync = 3079 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3080 3081 static ssize_t 3082 suspend_lo_show(mddev_t *mddev, char *page) 3083 { 3084 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3085 } 3086 3087 static ssize_t 3088 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3089 { 3090 char *e; 3091 unsigned long long new = simple_strtoull(buf, &e, 10); 3092 3093 if (mddev->pers->quiesce == NULL) 3094 return -EINVAL; 3095 if (buf == e || (*e && *e != '\n')) 3096 return -EINVAL; 3097 if (new >= mddev->suspend_hi || 3098 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3099 mddev->suspend_lo = new; 3100 mddev->pers->quiesce(mddev, 2); 3101 return len; 3102 } else 3103 return -EINVAL; 3104 } 3105 static struct md_sysfs_entry md_suspend_lo = 3106 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3107 3108 3109 static ssize_t 3110 suspend_hi_show(mddev_t *mddev, char *page) 3111 { 3112 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3113 } 3114 3115 static ssize_t 3116 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3117 { 3118 char *e; 3119 unsigned long long new = simple_strtoull(buf, &e, 10); 3120 3121 if (mddev->pers->quiesce == NULL) 3122 return -EINVAL; 3123 if (buf == e || (*e && *e != '\n')) 3124 return -EINVAL; 3125 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3126 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3127 mddev->suspend_hi = new; 3128 mddev->pers->quiesce(mddev, 1); 3129 mddev->pers->quiesce(mddev, 0); 3130 return len; 3131 } else 3132 return -EINVAL; 3133 } 3134 static struct md_sysfs_entry md_suspend_hi = 3135 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3136 3137 static ssize_t 3138 reshape_position_show(mddev_t *mddev, char *page) 3139 { 3140 if (mddev->reshape_position != MaxSector) 3141 return sprintf(page, "%llu\n", 3142 (unsigned long long)mddev->reshape_position); 3143 strcpy(page, "none\n"); 3144 return 5; 3145 } 3146 3147 static ssize_t 3148 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3149 { 3150 char *e; 3151 unsigned long long new = simple_strtoull(buf, &e, 10); 3152 if (mddev->pers) 3153 return -EBUSY; 3154 if (buf == e || (*e && *e != '\n')) 3155 return -EINVAL; 3156 mddev->reshape_position = new; 3157 mddev->delta_disks = 0; 3158 mddev->new_level = mddev->level; 3159 mddev->new_layout = mddev->layout; 3160 mddev->new_chunk = mddev->chunk_size; 3161 return len; 3162 } 3163 3164 static struct md_sysfs_entry md_reshape_position = 3165 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3166 reshape_position_store); 3167 3168 3169 static struct attribute *md_default_attrs[] = { 3170 &md_level.attr, 3171 &md_layout.attr, 3172 &md_raid_disks.attr, 3173 &md_chunk_size.attr, 3174 &md_size.attr, 3175 &md_resync_start.attr, 3176 &md_metadata.attr, 3177 &md_new_device.attr, 3178 &md_safe_delay.attr, 3179 &md_array_state.attr, 3180 &md_reshape_position.attr, 3181 NULL, 3182 }; 3183 3184 static struct attribute *md_redundancy_attrs[] = { 3185 &md_scan_mode.attr, 3186 &md_mismatches.attr, 3187 &md_sync_min.attr, 3188 &md_sync_max.attr, 3189 &md_sync_speed.attr, 3190 &md_sync_completed.attr, 3191 &md_max_sync.attr, 3192 &md_suspend_lo.attr, 3193 &md_suspend_hi.attr, 3194 &md_bitmap.attr, 3195 &md_degraded.attr, 3196 NULL, 3197 }; 3198 static struct attribute_group md_redundancy_group = { 3199 .name = NULL, 3200 .attrs = md_redundancy_attrs, 3201 }; 3202 3203 3204 static ssize_t 3205 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3206 { 3207 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3208 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3209 ssize_t rv; 3210 3211 if (!entry->show) 3212 return -EIO; 3213 rv = mddev_lock(mddev); 3214 if (!rv) { 3215 rv = entry->show(mddev, page); 3216 mddev_unlock(mddev); 3217 } 3218 return rv; 3219 } 3220 3221 static ssize_t 3222 md_attr_store(struct kobject *kobj, struct attribute *attr, 3223 const char *page, size_t length) 3224 { 3225 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3226 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3227 ssize_t rv; 3228 3229 if (!entry->store) 3230 return -EIO; 3231 if (!capable(CAP_SYS_ADMIN)) 3232 return -EACCES; 3233 rv = mddev_lock(mddev); 3234 if (!rv) { 3235 rv = entry->store(mddev, page, length); 3236 mddev_unlock(mddev); 3237 } 3238 return rv; 3239 } 3240 3241 static void md_free(struct kobject *ko) 3242 { 3243 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3244 kfree(mddev); 3245 } 3246 3247 static struct sysfs_ops md_sysfs_ops = { 3248 .show = md_attr_show, 3249 .store = md_attr_store, 3250 }; 3251 static struct kobj_type md_ktype = { 3252 .release = md_free, 3253 .sysfs_ops = &md_sysfs_ops, 3254 .default_attrs = md_default_attrs, 3255 }; 3256 3257 int mdp_major = 0; 3258 3259 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3260 { 3261 static DEFINE_MUTEX(disks_mutex); 3262 mddev_t *mddev = mddev_find(dev); 3263 struct gendisk *disk; 3264 int partitioned = (MAJOR(dev) != MD_MAJOR); 3265 int shift = partitioned ? MdpMinorShift : 0; 3266 int unit = MINOR(dev) >> shift; 3267 int error; 3268 3269 if (!mddev) 3270 return NULL; 3271 3272 mutex_lock(&disks_mutex); 3273 if (mddev->gendisk) { 3274 mutex_unlock(&disks_mutex); 3275 mddev_put(mddev); 3276 return NULL; 3277 } 3278 disk = alloc_disk(1 << shift); 3279 if (!disk) { 3280 mutex_unlock(&disks_mutex); 3281 mddev_put(mddev); 3282 return NULL; 3283 } 3284 disk->major = MAJOR(dev); 3285 disk->first_minor = unit << shift; 3286 if (partitioned) 3287 sprintf(disk->disk_name, "md_d%d", unit); 3288 else 3289 sprintf(disk->disk_name, "md%d", unit); 3290 disk->fops = &md_fops; 3291 disk->private_data = mddev; 3292 disk->queue = mddev->queue; 3293 add_disk(disk); 3294 mddev->gendisk = disk; 3295 mutex_unlock(&disks_mutex); 3296 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj, 3297 "%s", "md"); 3298 if (error) 3299 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3300 disk->disk_name); 3301 else 3302 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3303 return NULL; 3304 } 3305 3306 static void md_safemode_timeout(unsigned long data) 3307 { 3308 mddev_t *mddev = (mddev_t *) data; 3309 3310 mddev->safemode = 1; 3311 md_wakeup_thread(mddev->thread); 3312 } 3313 3314 static int start_dirty_degraded; 3315 3316 static int do_md_run(mddev_t * mddev) 3317 { 3318 int err; 3319 int chunk_size; 3320 struct list_head *tmp; 3321 mdk_rdev_t *rdev; 3322 struct gendisk *disk; 3323 struct mdk_personality *pers; 3324 char b[BDEVNAME_SIZE]; 3325 3326 if (list_empty(&mddev->disks)) 3327 /* cannot run an array with no devices.. */ 3328 return -EINVAL; 3329 3330 if (mddev->pers) 3331 return -EBUSY; 3332 3333 /* 3334 * Analyze all RAID superblock(s) 3335 */ 3336 if (!mddev->raid_disks) { 3337 if (!mddev->persistent) 3338 return -EINVAL; 3339 analyze_sbs(mddev); 3340 } 3341 3342 chunk_size = mddev->chunk_size; 3343 3344 if (chunk_size) { 3345 if (chunk_size > MAX_CHUNK_SIZE) { 3346 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3347 chunk_size, MAX_CHUNK_SIZE); 3348 return -EINVAL; 3349 } 3350 /* 3351 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3352 */ 3353 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3354 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3355 return -EINVAL; 3356 } 3357 if (chunk_size < PAGE_SIZE) { 3358 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3359 chunk_size, PAGE_SIZE); 3360 return -EINVAL; 3361 } 3362 3363 /* devices must have minimum size of one chunk */ 3364 rdev_for_each(rdev, tmp, mddev) { 3365 if (test_bit(Faulty, &rdev->flags)) 3366 continue; 3367 if (rdev->size < chunk_size / 1024) { 3368 printk(KERN_WARNING 3369 "md: Dev %s smaller than chunk_size:" 3370 " %lluk < %dk\n", 3371 bdevname(rdev->bdev,b), 3372 (unsigned long long)rdev->size, 3373 chunk_size / 1024); 3374 return -EINVAL; 3375 } 3376 } 3377 } 3378 3379 #ifdef CONFIG_KMOD 3380 if (mddev->level != LEVEL_NONE) 3381 request_module("md-level-%d", mddev->level); 3382 else if (mddev->clevel[0]) 3383 request_module("md-%s", mddev->clevel); 3384 #endif 3385 3386 /* 3387 * Drop all container device buffers, from now on 3388 * the only valid external interface is through the md 3389 * device. 3390 */ 3391 rdev_for_each(rdev, tmp, mddev) { 3392 if (test_bit(Faulty, &rdev->flags)) 3393 continue; 3394 sync_blockdev(rdev->bdev); 3395 invalidate_bdev(rdev->bdev); 3396 3397 /* perform some consistency tests on the device. 3398 * We don't want the data to overlap the metadata, 3399 * Internal Bitmap issues has handled elsewhere. 3400 */ 3401 if (rdev->data_offset < rdev->sb_offset) { 3402 if (mddev->size && 3403 rdev->data_offset + mddev->size*2 3404 > rdev->sb_offset*2) { 3405 printk("md: %s: data overlaps metadata\n", 3406 mdname(mddev)); 3407 return -EINVAL; 3408 } 3409 } else { 3410 if (rdev->sb_offset*2 + rdev->sb_size/512 3411 > rdev->data_offset) { 3412 printk("md: %s: metadata overlaps data\n", 3413 mdname(mddev)); 3414 return -EINVAL; 3415 } 3416 } 3417 } 3418 3419 md_probe(mddev->unit, NULL, NULL); 3420 disk = mddev->gendisk; 3421 if (!disk) 3422 return -ENOMEM; 3423 3424 spin_lock(&pers_lock); 3425 pers = find_pers(mddev->level, mddev->clevel); 3426 if (!pers || !try_module_get(pers->owner)) { 3427 spin_unlock(&pers_lock); 3428 if (mddev->level != LEVEL_NONE) 3429 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3430 mddev->level); 3431 else 3432 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3433 mddev->clevel); 3434 return -EINVAL; 3435 } 3436 mddev->pers = pers; 3437 spin_unlock(&pers_lock); 3438 mddev->level = pers->level; 3439 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3440 3441 if (mddev->reshape_position != MaxSector && 3442 pers->start_reshape == NULL) { 3443 /* This personality cannot handle reshaping... */ 3444 mddev->pers = NULL; 3445 module_put(pers->owner); 3446 return -EINVAL; 3447 } 3448 3449 if (pers->sync_request) { 3450 /* Warn if this is a potentially silly 3451 * configuration. 3452 */ 3453 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3454 mdk_rdev_t *rdev2; 3455 struct list_head *tmp2; 3456 int warned = 0; 3457 rdev_for_each(rdev, tmp, mddev) { 3458 rdev_for_each(rdev2, tmp2, mddev) { 3459 if (rdev < rdev2 && 3460 rdev->bdev->bd_contains == 3461 rdev2->bdev->bd_contains) { 3462 printk(KERN_WARNING 3463 "%s: WARNING: %s appears to be" 3464 " on the same physical disk as" 3465 " %s.\n", 3466 mdname(mddev), 3467 bdevname(rdev->bdev,b), 3468 bdevname(rdev2->bdev,b2)); 3469 warned = 1; 3470 } 3471 } 3472 } 3473 if (warned) 3474 printk(KERN_WARNING 3475 "True protection against single-disk" 3476 " failure might be compromised.\n"); 3477 } 3478 3479 mddev->recovery = 0; 3480 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3481 mddev->barriers_work = 1; 3482 mddev->ok_start_degraded = start_dirty_degraded; 3483 3484 if (start_readonly) 3485 mddev->ro = 2; /* read-only, but switch on first write */ 3486 3487 err = mddev->pers->run(mddev); 3488 if (!err && mddev->pers->sync_request) { 3489 err = bitmap_create(mddev); 3490 if (err) { 3491 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3492 mdname(mddev), err); 3493 mddev->pers->stop(mddev); 3494 } 3495 } 3496 if (err) { 3497 printk(KERN_ERR "md: pers->run() failed ...\n"); 3498 module_put(mddev->pers->owner); 3499 mddev->pers = NULL; 3500 bitmap_destroy(mddev); 3501 return err; 3502 } 3503 if (mddev->pers->sync_request) { 3504 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3505 printk(KERN_WARNING 3506 "md: cannot register extra attributes for %s\n", 3507 mdname(mddev)); 3508 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3509 mddev->ro = 0; 3510 3511 atomic_set(&mddev->writes_pending,0); 3512 mddev->safemode = 0; 3513 mddev->safemode_timer.function = md_safemode_timeout; 3514 mddev->safemode_timer.data = (unsigned long) mddev; 3515 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3516 mddev->in_sync = 1; 3517 3518 rdev_for_each(rdev, tmp, mddev) 3519 if (rdev->raid_disk >= 0) { 3520 char nm[20]; 3521 sprintf(nm, "rd%d", rdev->raid_disk); 3522 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3523 printk("md: cannot register %s for %s\n", 3524 nm, mdname(mddev)); 3525 } 3526 3527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3528 3529 if (mddev->flags) 3530 md_update_sb(mddev, 0); 3531 3532 set_capacity(disk, mddev->array_size<<1); 3533 3534 /* If we call blk_queue_make_request here, it will 3535 * re-initialise max_sectors etc which may have been 3536 * refined inside -> run. So just set the bits we need to set. 3537 * Most initialisation happended when we called 3538 * blk_queue_make_request(..., md_fail_request) 3539 * earlier. 3540 */ 3541 mddev->queue->queuedata = mddev; 3542 mddev->queue->make_request_fn = mddev->pers->make_request; 3543 3544 /* If there is a partially-recovered drive we need to 3545 * start recovery here. If we leave it to md_check_recovery, 3546 * it will remove the drives and not do the right thing 3547 */ 3548 if (mddev->degraded && !mddev->sync_thread) { 3549 struct list_head *rtmp; 3550 int spares = 0; 3551 rdev_for_each(rdev, rtmp, mddev) 3552 if (rdev->raid_disk >= 0 && 3553 !test_bit(In_sync, &rdev->flags) && 3554 !test_bit(Faulty, &rdev->flags)) 3555 /* complete an interrupted recovery */ 3556 spares++; 3557 if (spares && mddev->pers->sync_request) { 3558 mddev->recovery = 0; 3559 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3560 mddev->sync_thread = md_register_thread(md_do_sync, 3561 mddev, 3562 "%s_resync"); 3563 if (!mddev->sync_thread) { 3564 printk(KERN_ERR "%s: could not start resync" 3565 " thread...\n", 3566 mdname(mddev)); 3567 /* leave the spares where they are, it shouldn't hurt */ 3568 mddev->recovery = 0; 3569 } 3570 } 3571 } 3572 md_wakeup_thread(mddev->thread); 3573 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3574 3575 mddev->changed = 1; 3576 md_new_event(mddev); 3577 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE); 3578 return 0; 3579 } 3580 3581 static int restart_array(mddev_t *mddev) 3582 { 3583 struct gendisk *disk = mddev->gendisk; 3584 int err; 3585 3586 /* 3587 * Complain if it has no devices 3588 */ 3589 err = -ENXIO; 3590 if (list_empty(&mddev->disks)) 3591 goto out; 3592 3593 if (mddev->pers) { 3594 err = -EBUSY; 3595 if (!mddev->ro) 3596 goto out; 3597 3598 mddev->safemode = 0; 3599 mddev->ro = 0; 3600 set_disk_ro(disk, 0); 3601 3602 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3603 mdname(mddev)); 3604 /* 3605 * Kick recovery or resync if necessary 3606 */ 3607 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3608 md_wakeup_thread(mddev->thread); 3609 md_wakeup_thread(mddev->sync_thread); 3610 err = 0; 3611 } else 3612 err = -EINVAL; 3613 3614 out: 3615 return err; 3616 } 3617 3618 /* similar to deny_write_access, but accounts for our holding a reference 3619 * to the file ourselves */ 3620 static int deny_bitmap_write_access(struct file * file) 3621 { 3622 struct inode *inode = file->f_mapping->host; 3623 3624 spin_lock(&inode->i_lock); 3625 if (atomic_read(&inode->i_writecount) > 1) { 3626 spin_unlock(&inode->i_lock); 3627 return -ETXTBSY; 3628 } 3629 atomic_set(&inode->i_writecount, -1); 3630 spin_unlock(&inode->i_lock); 3631 3632 return 0; 3633 } 3634 3635 static void restore_bitmap_write_access(struct file *file) 3636 { 3637 struct inode *inode = file->f_mapping->host; 3638 3639 spin_lock(&inode->i_lock); 3640 atomic_set(&inode->i_writecount, 1); 3641 spin_unlock(&inode->i_lock); 3642 } 3643 3644 /* mode: 3645 * 0 - completely stop and dis-assemble array 3646 * 1 - switch to readonly 3647 * 2 - stop but do not disassemble array 3648 */ 3649 static int do_md_stop(mddev_t * mddev, int mode) 3650 { 3651 int err = 0; 3652 struct gendisk *disk = mddev->gendisk; 3653 3654 if (mddev->pers) { 3655 if (atomic_read(&mddev->active)>2) { 3656 printk("md: %s still in use.\n",mdname(mddev)); 3657 return -EBUSY; 3658 } 3659 3660 if (mddev->sync_thread) { 3661 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3662 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3663 md_unregister_thread(mddev->sync_thread); 3664 mddev->sync_thread = NULL; 3665 } 3666 3667 del_timer_sync(&mddev->safemode_timer); 3668 3669 invalidate_partition(disk, 0); 3670 3671 switch(mode) { 3672 case 1: /* readonly */ 3673 err = -ENXIO; 3674 if (mddev->ro==1) 3675 goto out; 3676 mddev->ro = 1; 3677 break; 3678 case 0: /* disassemble */ 3679 case 2: /* stop */ 3680 bitmap_flush(mddev); 3681 md_super_wait(mddev); 3682 if (mddev->ro) 3683 set_disk_ro(disk, 0); 3684 blk_queue_make_request(mddev->queue, md_fail_request); 3685 mddev->pers->stop(mddev); 3686 mddev->queue->merge_bvec_fn = NULL; 3687 mddev->queue->unplug_fn = NULL; 3688 mddev->queue->backing_dev_info.congested_fn = NULL; 3689 if (mddev->pers->sync_request) 3690 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3691 3692 module_put(mddev->pers->owner); 3693 mddev->pers = NULL; 3694 3695 set_capacity(disk, 0); 3696 mddev->changed = 1; 3697 3698 if (mddev->ro) 3699 mddev->ro = 0; 3700 } 3701 if (!mddev->in_sync || mddev->flags) { 3702 /* mark array as shutdown cleanly */ 3703 mddev->in_sync = 1; 3704 md_update_sb(mddev, 1); 3705 } 3706 if (mode == 1) 3707 set_disk_ro(disk, 1); 3708 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3709 } 3710 3711 /* 3712 * Free resources if final stop 3713 */ 3714 if (mode == 0) { 3715 mdk_rdev_t *rdev; 3716 struct list_head *tmp; 3717 3718 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3719 3720 bitmap_destroy(mddev); 3721 if (mddev->bitmap_file) { 3722 restore_bitmap_write_access(mddev->bitmap_file); 3723 fput(mddev->bitmap_file); 3724 mddev->bitmap_file = NULL; 3725 } 3726 mddev->bitmap_offset = 0; 3727 3728 rdev_for_each(rdev, tmp, mddev) 3729 if (rdev->raid_disk >= 0) { 3730 char nm[20]; 3731 sprintf(nm, "rd%d", rdev->raid_disk); 3732 sysfs_remove_link(&mddev->kobj, nm); 3733 } 3734 3735 /* make sure all md_delayed_delete calls have finished */ 3736 flush_scheduled_work(); 3737 3738 export_array(mddev); 3739 3740 mddev->array_size = 0; 3741 mddev->size = 0; 3742 mddev->raid_disks = 0; 3743 mddev->recovery_cp = 0; 3744 mddev->resync_max = MaxSector; 3745 mddev->reshape_position = MaxSector; 3746 mddev->external = 0; 3747 mddev->persistent = 0; 3748 mddev->level = LEVEL_NONE; 3749 mddev->clevel[0] = 0; 3750 mddev->flags = 0; 3751 mddev->ro = 0; 3752 mddev->metadata_type[0] = 0; 3753 mddev->chunk_size = 0; 3754 mddev->ctime = mddev->utime = 0; 3755 mddev->layout = 0; 3756 mddev->max_disks = 0; 3757 mddev->events = 0; 3758 mddev->delta_disks = 0; 3759 mddev->new_level = LEVEL_NONE; 3760 mddev->new_layout = 0; 3761 mddev->new_chunk = 0; 3762 mddev->curr_resync = 0; 3763 mddev->resync_mismatches = 0; 3764 mddev->suspend_lo = mddev->suspend_hi = 0; 3765 mddev->sync_speed_min = mddev->sync_speed_max = 0; 3766 mddev->recovery = 0; 3767 mddev->in_sync = 0; 3768 mddev->changed = 0; 3769 mddev->degraded = 0; 3770 mddev->barriers_work = 0; 3771 mddev->safemode = 0; 3772 3773 } else if (mddev->pers) 3774 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3775 mdname(mddev)); 3776 err = 0; 3777 md_new_event(mddev); 3778 out: 3779 return err; 3780 } 3781 3782 #ifndef MODULE 3783 static void autorun_array(mddev_t *mddev) 3784 { 3785 mdk_rdev_t *rdev; 3786 struct list_head *tmp; 3787 int err; 3788 3789 if (list_empty(&mddev->disks)) 3790 return; 3791 3792 printk(KERN_INFO "md: running: "); 3793 3794 rdev_for_each(rdev, tmp, mddev) { 3795 char b[BDEVNAME_SIZE]; 3796 printk("<%s>", bdevname(rdev->bdev,b)); 3797 } 3798 printk("\n"); 3799 3800 err = do_md_run (mddev); 3801 if (err) { 3802 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3803 do_md_stop (mddev, 0); 3804 } 3805 } 3806 3807 /* 3808 * lets try to run arrays based on all disks that have arrived 3809 * until now. (those are in pending_raid_disks) 3810 * 3811 * the method: pick the first pending disk, collect all disks with 3812 * the same UUID, remove all from the pending list and put them into 3813 * the 'same_array' list. Then order this list based on superblock 3814 * update time (freshest comes first), kick out 'old' disks and 3815 * compare superblocks. If everything's fine then run it. 3816 * 3817 * If "unit" is allocated, then bump its reference count 3818 */ 3819 static void autorun_devices(int part) 3820 { 3821 struct list_head *tmp; 3822 mdk_rdev_t *rdev0, *rdev; 3823 mddev_t *mddev; 3824 char b[BDEVNAME_SIZE]; 3825 3826 printk(KERN_INFO "md: autorun ...\n"); 3827 while (!list_empty(&pending_raid_disks)) { 3828 int unit; 3829 dev_t dev; 3830 LIST_HEAD(candidates); 3831 rdev0 = list_entry(pending_raid_disks.next, 3832 mdk_rdev_t, same_set); 3833 3834 printk(KERN_INFO "md: considering %s ...\n", 3835 bdevname(rdev0->bdev,b)); 3836 INIT_LIST_HEAD(&candidates); 3837 rdev_for_each_list(rdev, tmp, pending_raid_disks) 3838 if (super_90_load(rdev, rdev0, 0) >= 0) { 3839 printk(KERN_INFO "md: adding %s ...\n", 3840 bdevname(rdev->bdev,b)); 3841 list_move(&rdev->same_set, &candidates); 3842 } 3843 /* 3844 * now we have a set of devices, with all of them having 3845 * mostly sane superblocks. It's time to allocate the 3846 * mddev. 3847 */ 3848 if (part) { 3849 dev = MKDEV(mdp_major, 3850 rdev0->preferred_minor << MdpMinorShift); 3851 unit = MINOR(dev) >> MdpMinorShift; 3852 } else { 3853 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 3854 unit = MINOR(dev); 3855 } 3856 if (rdev0->preferred_minor != unit) { 3857 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 3858 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 3859 break; 3860 } 3861 3862 md_probe(dev, NULL, NULL); 3863 mddev = mddev_find(dev); 3864 if (!mddev) { 3865 printk(KERN_ERR 3866 "md: cannot allocate memory for md drive.\n"); 3867 break; 3868 } 3869 if (mddev_lock(mddev)) 3870 printk(KERN_WARNING "md: %s locked, cannot run\n", 3871 mdname(mddev)); 3872 else if (mddev->raid_disks || mddev->major_version 3873 || !list_empty(&mddev->disks)) { 3874 printk(KERN_WARNING 3875 "md: %s already running, cannot run %s\n", 3876 mdname(mddev), bdevname(rdev0->bdev,b)); 3877 mddev_unlock(mddev); 3878 } else { 3879 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 3880 mddev->persistent = 1; 3881 rdev_for_each_list(rdev, tmp, candidates) { 3882 list_del_init(&rdev->same_set); 3883 if (bind_rdev_to_array(rdev, mddev)) 3884 export_rdev(rdev); 3885 } 3886 autorun_array(mddev); 3887 mddev_unlock(mddev); 3888 } 3889 /* on success, candidates will be empty, on error 3890 * it won't... 3891 */ 3892 rdev_for_each_list(rdev, tmp, candidates) 3893 export_rdev(rdev); 3894 mddev_put(mddev); 3895 } 3896 printk(KERN_INFO "md: ... autorun DONE.\n"); 3897 } 3898 #endif /* !MODULE */ 3899 3900 static int get_version(void __user * arg) 3901 { 3902 mdu_version_t ver; 3903 3904 ver.major = MD_MAJOR_VERSION; 3905 ver.minor = MD_MINOR_VERSION; 3906 ver.patchlevel = MD_PATCHLEVEL_VERSION; 3907 3908 if (copy_to_user(arg, &ver, sizeof(ver))) 3909 return -EFAULT; 3910 3911 return 0; 3912 } 3913 3914 static int get_array_info(mddev_t * mddev, void __user * arg) 3915 { 3916 mdu_array_info_t info; 3917 int nr,working,active,failed,spare; 3918 mdk_rdev_t *rdev; 3919 struct list_head *tmp; 3920 3921 nr=working=active=failed=spare=0; 3922 rdev_for_each(rdev, tmp, mddev) { 3923 nr++; 3924 if (test_bit(Faulty, &rdev->flags)) 3925 failed++; 3926 else { 3927 working++; 3928 if (test_bit(In_sync, &rdev->flags)) 3929 active++; 3930 else 3931 spare++; 3932 } 3933 } 3934 3935 info.major_version = mddev->major_version; 3936 info.minor_version = mddev->minor_version; 3937 info.patch_version = MD_PATCHLEVEL_VERSION; 3938 info.ctime = mddev->ctime; 3939 info.level = mddev->level; 3940 info.size = mddev->size; 3941 if (info.size != mddev->size) /* overflow */ 3942 info.size = -1; 3943 info.nr_disks = nr; 3944 info.raid_disks = mddev->raid_disks; 3945 info.md_minor = mddev->md_minor; 3946 info.not_persistent= !mddev->persistent; 3947 3948 info.utime = mddev->utime; 3949 info.state = 0; 3950 if (mddev->in_sync) 3951 info.state = (1<<MD_SB_CLEAN); 3952 if (mddev->bitmap && mddev->bitmap_offset) 3953 info.state = (1<<MD_SB_BITMAP_PRESENT); 3954 info.active_disks = active; 3955 info.working_disks = working; 3956 info.failed_disks = failed; 3957 info.spare_disks = spare; 3958 3959 info.layout = mddev->layout; 3960 info.chunk_size = mddev->chunk_size; 3961 3962 if (copy_to_user(arg, &info, sizeof(info))) 3963 return -EFAULT; 3964 3965 return 0; 3966 } 3967 3968 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 3969 { 3970 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 3971 char *ptr, *buf = NULL; 3972 int err = -ENOMEM; 3973 3974 md_allow_write(mddev); 3975 3976 file = kmalloc(sizeof(*file), GFP_KERNEL); 3977 if (!file) 3978 goto out; 3979 3980 /* bitmap disabled, zero the first byte and copy out */ 3981 if (!mddev->bitmap || !mddev->bitmap->file) { 3982 file->pathname[0] = '\0'; 3983 goto copy_out; 3984 } 3985 3986 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 3987 if (!buf) 3988 goto out; 3989 3990 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 3991 if (!ptr) 3992 goto out; 3993 3994 strcpy(file->pathname, ptr); 3995 3996 copy_out: 3997 err = 0; 3998 if (copy_to_user(arg, file, sizeof(*file))) 3999 err = -EFAULT; 4000 out: 4001 kfree(buf); 4002 kfree(file); 4003 return err; 4004 } 4005 4006 static int get_disk_info(mddev_t * mddev, void __user * arg) 4007 { 4008 mdu_disk_info_t info; 4009 unsigned int nr; 4010 mdk_rdev_t *rdev; 4011 4012 if (copy_from_user(&info, arg, sizeof(info))) 4013 return -EFAULT; 4014 4015 nr = info.number; 4016 4017 rdev = find_rdev_nr(mddev, nr); 4018 if (rdev) { 4019 info.major = MAJOR(rdev->bdev->bd_dev); 4020 info.minor = MINOR(rdev->bdev->bd_dev); 4021 info.raid_disk = rdev->raid_disk; 4022 info.state = 0; 4023 if (test_bit(Faulty, &rdev->flags)) 4024 info.state |= (1<<MD_DISK_FAULTY); 4025 else if (test_bit(In_sync, &rdev->flags)) { 4026 info.state |= (1<<MD_DISK_ACTIVE); 4027 info.state |= (1<<MD_DISK_SYNC); 4028 } 4029 if (test_bit(WriteMostly, &rdev->flags)) 4030 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4031 } else { 4032 info.major = info.minor = 0; 4033 info.raid_disk = -1; 4034 info.state = (1<<MD_DISK_REMOVED); 4035 } 4036 4037 if (copy_to_user(arg, &info, sizeof(info))) 4038 return -EFAULT; 4039 4040 return 0; 4041 } 4042 4043 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4044 { 4045 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4046 mdk_rdev_t *rdev; 4047 dev_t dev = MKDEV(info->major,info->minor); 4048 4049 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4050 return -EOVERFLOW; 4051 4052 if (!mddev->raid_disks) { 4053 int err; 4054 /* expecting a device which has a superblock */ 4055 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4056 if (IS_ERR(rdev)) { 4057 printk(KERN_WARNING 4058 "md: md_import_device returned %ld\n", 4059 PTR_ERR(rdev)); 4060 return PTR_ERR(rdev); 4061 } 4062 if (!list_empty(&mddev->disks)) { 4063 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4064 mdk_rdev_t, same_set); 4065 int err = super_types[mddev->major_version] 4066 .load_super(rdev, rdev0, mddev->minor_version); 4067 if (err < 0) { 4068 printk(KERN_WARNING 4069 "md: %s has different UUID to %s\n", 4070 bdevname(rdev->bdev,b), 4071 bdevname(rdev0->bdev,b2)); 4072 export_rdev(rdev); 4073 return -EINVAL; 4074 } 4075 } 4076 err = bind_rdev_to_array(rdev, mddev); 4077 if (err) 4078 export_rdev(rdev); 4079 return err; 4080 } 4081 4082 /* 4083 * add_new_disk can be used once the array is assembled 4084 * to add "hot spares". They must already have a superblock 4085 * written 4086 */ 4087 if (mddev->pers) { 4088 int err; 4089 if (!mddev->pers->hot_add_disk) { 4090 printk(KERN_WARNING 4091 "%s: personality does not support diskops!\n", 4092 mdname(mddev)); 4093 return -EINVAL; 4094 } 4095 if (mddev->persistent) 4096 rdev = md_import_device(dev, mddev->major_version, 4097 mddev->minor_version); 4098 else 4099 rdev = md_import_device(dev, -1, -1); 4100 if (IS_ERR(rdev)) { 4101 printk(KERN_WARNING 4102 "md: md_import_device returned %ld\n", 4103 PTR_ERR(rdev)); 4104 return PTR_ERR(rdev); 4105 } 4106 /* set save_raid_disk if appropriate */ 4107 if (!mddev->persistent) { 4108 if (info->state & (1<<MD_DISK_SYNC) && 4109 info->raid_disk < mddev->raid_disks) 4110 rdev->raid_disk = info->raid_disk; 4111 else 4112 rdev->raid_disk = -1; 4113 } else 4114 super_types[mddev->major_version]. 4115 validate_super(mddev, rdev); 4116 rdev->saved_raid_disk = rdev->raid_disk; 4117 4118 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 4119 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4120 set_bit(WriteMostly, &rdev->flags); 4121 4122 rdev->raid_disk = -1; 4123 err = bind_rdev_to_array(rdev, mddev); 4124 if (!err && !mddev->pers->hot_remove_disk) { 4125 /* If there is hot_add_disk but no hot_remove_disk 4126 * then added disks for geometry changes, 4127 * and should be added immediately. 4128 */ 4129 super_types[mddev->major_version]. 4130 validate_super(mddev, rdev); 4131 err = mddev->pers->hot_add_disk(mddev, rdev); 4132 if (err) 4133 unbind_rdev_from_array(rdev); 4134 } 4135 if (err) 4136 export_rdev(rdev); 4137 4138 md_update_sb(mddev, 1); 4139 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4140 md_wakeup_thread(mddev->thread); 4141 return err; 4142 } 4143 4144 /* otherwise, add_new_disk is only allowed 4145 * for major_version==0 superblocks 4146 */ 4147 if (mddev->major_version != 0) { 4148 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 4149 mdname(mddev)); 4150 return -EINVAL; 4151 } 4152 4153 if (!(info->state & (1<<MD_DISK_FAULTY))) { 4154 int err; 4155 rdev = md_import_device (dev, -1, 0); 4156 if (IS_ERR(rdev)) { 4157 printk(KERN_WARNING 4158 "md: error, md_import_device() returned %ld\n", 4159 PTR_ERR(rdev)); 4160 return PTR_ERR(rdev); 4161 } 4162 rdev->desc_nr = info->number; 4163 if (info->raid_disk < mddev->raid_disks) 4164 rdev->raid_disk = info->raid_disk; 4165 else 4166 rdev->raid_disk = -1; 4167 4168 if (rdev->raid_disk < mddev->raid_disks) 4169 if (info->state & (1<<MD_DISK_SYNC)) 4170 set_bit(In_sync, &rdev->flags); 4171 4172 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4173 set_bit(WriteMostly, &rdev->flags); 4174 4175 if (!mddev->persistent) { 4176 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 4177 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 4178 } else 4179 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 4180 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 4181 4182 err = bind_rdev_to_array(rdev, mddev); 4183 if (err) { 4184 export_rdev(rdev); 4185 return err; 4186 } 4187 } 4188 4189 return 0; 4190 } 4191 4192 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 4193 { 4194 char b[BDEVNAME_SIZE]; 4195 mdk_rdev_t *rdev; 4196 4197 if (!mddev->pers) 4198 return -ENODEV; 4199 4200 rdev = find_rdev(mddev, dev); 4201 if (!rdev) 4202 return -ENXIO; 4203 4204 if (rdev->raid_disk >= 0) 4205 goto busy; 4206 4207 kick_rdev_from_array(rdev); 4208 md_update_sb(mddev, 1); 4209 md_new_event(mddev); 4210 4211 return 0; 4212 busy: 4213 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 4214 bdevname(rdev->bdev,b), mdname(mddev)); 4215 return -EBUSY; 4216 } 4217 4218 static int hot_add_disk(mddev_t * mddev, dev_t dev) 4219 { 4220 char b[BDEVNAME_SIZE]; 4221 int err; 4222 unsigned int size; 4223 mdk_rdev_t *rdev; 4224 4225 if (!mddev->pers) 4226 return -ENODEV; 4227 4228 if (mddev->major_version != 0) { 4229 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 4230 " version-0 superblocks.\n", 4231 mdname(mddev)); 4232 return -EINVAL; 4233 } 4234 if (!mddev->pers->hot_add_disk) { 4235 printk(KERN_WARNING 4236 "%s: personality does not support diskops!\n", 4237 mdname(mddev)); 4238 return -EINVAL; 4239 } 4240 4241 rdev = md_import_device (dev, -1, 0); 4242 if (IS_ERR(rdev)) { 4243 printk(KERN_WARNING 4244 "md: error, md_import_device() returned %ld\n", 4245 PTR_ERR(rdev)); 4246 return -EINVAL; 4247 } 4248 4249 if (mddev->persistent) 4250 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 4251 else 4252 rdev->sb_offset = 4253 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 4254 4255 size = calc_dev_size(rdev, mddev->chunk_size); 4256 rdev->size = size; 4257 4258 if (test_bit(Faulty, &rdev->flags)) { 4259 printk(KERN_WARNING 4260 "md: can not hot-add faulty %s disk to %s!\n", 4261 bdevname(rdev->bdev,b), mdname(mddev)); 4262 err = -EINVAL; 4263 goto abort_export; 4264 } 4265 clear_bit(In_sync, &rdev->flags); 4266 rdev->desc_nr = -1; 4267 rdev->saved_raid_disk = -1; 4268 err = bind_rdev_to_array(rdev, mddev); 4269 if (err) 4270 goto abort_export; 4271 4272 /* 4273 * The rest should better be atomic, we can have disk failures 4274 * noticed in interrupt contexts ... 4275 */ 4276 4277 if (rdev->desc_nr == mddev->max_disks) { 4278 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 4279 mdname(mddev)); 4280 err = -EBUSY; 4281 goto abort_unbind_export; 4282 } 4283 4284 rdev->raid_disk = -1; 4285 4286 md_update_sb(mddev, 1); 4287 4288 /* 4289 * Kick recovery, maybe this spare has to be added to the 4290 * array immediately. 4291 */ 4292 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4293 md_wakeup_thread(mddev->thread); 4294 md_new_event(mddev); 4295 return 0; 4296 4297 abort_unbind_export: 4298 unbind_rdev_from_array(rdev); 4299 4300 abort_export: 4301 export_rdev(rdev); 4302 return err; 4303 } 4304 4305 static int set_bitmap_file(mddev_t *mddev, int fd) 4306 { 4307 int err; 4308 4309 if (mddev->pers) { 4310 if (!mddev->pers->quiesce) 4311 return -EBUSY; 4312 if (mddev->recovery || mddev->sync_thread) 4313 return -EBUSY; 4314 /* we should be able to change the bitmap.. */ 4315 } 4316 4317 4318 if (fd >= 0) { 4319 if (mddev->bitmap) 4320 return -EEXIST; /* cannot add when bitmap is present */ 4321 mddev->bitmap_file = fget(fd); 4322 4323 if (mddev->bitmap_file == NULL) { 4324 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4325 mdname(mddev)); 4326 return -EBADF; 4327 } 4328 4329 err = deny_bitmap_write_access(mddev->bitmap_file); 4330 if (err) { 4331 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4332 mdname(mddev)); 4333 fput(mddev->bitmap_file); 4334 mddev->bitmap_file = NULL; 4335 return err; 4336 } 4337 mddev->bitmap_offset = 0; /* file overrides offset */ 4338 } else if (mddev->bitmap == NULL) 4339 return -ENOENT; /* cannot remove what isn't there */ 4340 err = 0; 4341 if (mddev->pers) { 4342 mddev->pers->quiesce(mddev, 1); 4343 if (fd >= 0) 4344 err = bitmap_create(mddev); 4345 if (fd < 0 || err) { 4346 bitmap_destroy(mddev); 4347 fd = -1; /* make sure to put the file */ 4348 } 4349 mddev->pers->quiesce(mddev, 0); 4350 } 4351 if (fd < 0) { 4352 if (mddev->bitmap_file) { 4353 restore_bitmap_write_access(mddev->bitmap_file); 4354 fput(mddev->bitmap_file); 4355 } 4356 mddev->bitmap_file = NULL; 4357 } 4358 4359 return err; 4360 } 4361 4362 /* 4363 * set_array_info is used two different ways 4364 * The original usage is when creating a new array. 4365 * In this usage, raid_disks is > 0 and it together with 4366 * level, size, not_persistent,layout,chunksize determine the 4367 * shape of the array. 4368 * This will always create an array with a type-0.90.0 superblock. 4369 * The newer usage is when assembling an array. 4370 * In this case raid_disks will be 0, and the major_version field is 4371 * use to determine which style super-blocks are to be found on the devices. 4372 * The minor and patch _version numbers are also kept incase the 4373 * super_block handler wishes to interpret them. 4374 */ 4375 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4376 { 4377 4378 if (info->raid_disks == 0) { 4379 /* just setting version number for superblock loading */ 4380 if (info->major_version < 0 || 4381 info->major_version >= ARRAY_SIZE(super_types) || 4382 super_types[info->major_version].name == NULL) { 4383 /* maybe try to auto-load a module? */ 4384 printk(KERN_INFO 4385 "md: superblock version %d not known\n", 4386 info->major_version); 4387 return -EINVAL; 4388 } 4389 mddev->major_version = info->major_version; 4390 mddev->minor_version = info->minor_version; 4391 mddev->patch_version = info->patch_version; 4392 mddev->persistent = !info->not_persistent; 4393 return 0; 4394 } 4395 mddev->major_version = MD_MAJOR_VERSION; 4396 mddev->minor_version = MD_MINOR_VERSION; 4397 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4398 mddev->ctime = get_seconds(); 4399 4400 mddev->level = info->level; 4401 mddev->clevel[0] = 0; 4402 mddev->size = info->size; 4403 mddev->raid_disks = info->raid_disks; 4404 /* don't set md_minor, it is determined by which /dev/md* was 4405 * openned 4406 */ 4407 if (info->state & (1<<MD_SB_CLEAN)) 4408 mddev->recovery_cp = MaxSector; 4409 else 4410 mddev->recovery_cp = 0; 4411 mddev->persistent = ! info->not_persistent; 4412 mddev->external = 0; 4413 4414 mddev->layout = info->layout; 4415 mddev->chunk_size = info->chunk_size; 4416 4417 mddev->max_disks = MD_SB_DISKS; 4418 4419 if (mddev->persistent) 4420 mddev->flags = 0; 4421 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4422 4423 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4424 mddev->bitmap_offset = 0; 4425 4426 mddev->reshape_position = MaxSector; 4427 4428 /* 4429 * Generate a 128 bit UUID 4430 */ 4431 get_random_bytes(mddev->uuid, 16); 4432 4433 mddev->new_level = mddev->level; 4434 mddev->new_chunk = mddev->chunk_size; 4435 mddev->new_layout = mddev->layout; 4436 mddev->delta_disks = 0; 4437 4438 return 0; 4439 } 4440 4441 static int update_size(mddev_t *mddev, unsigned long size) 4442 { 4443 mdk_rdev_t * rdev; 4444 int rv; 4445 struct list_head *tmp; 4446 int fit = (size == 0); 4447 4448 if (mddev->pers->resize == NULL) 4449 return -EINVAL; 4450 /* The "size" is the amount of each device that is used. 4451 * This can only make sense for arrays with redundancy. 4452 * linear and raid0 always use whatever space is available 4453 * We can only consider changing the size if no resync 4454 * or reconstruction is happening, and if the new size 4455 * is acceptable. It must fit before the sb_offset or, 4456 * if that is <data_offset, it must fit before the 4457 * size of each device. 4458 * If size is zero, we find the largest size that fits. 4459 */ 4460 if (mddev->sync_thread) 4461 return -EBUSY; 4462 rdev_for_each(rdev, tmp, mddev) { 4463 sector_t avail; 4464 avail = rdev->size * 2; 4465 4466 if (fit && (size == 0 || size > avail/2)) 4467 size = avail/2; 4468 if (avail < ((sector_t)size << 1)) 4469 return -ENOSPC; 4470 } 4471 rv = mddev->pers->resize(mddev, (sector_t)size *2); 4472 if (!rv) { 4473 struct block_device *bdev; 4474 4475 bdev = bdget_disk(mddev->gendisk, 0); 4476 if (bdev) { 4477 mutex_lock(&bdev->bd_inode->i_mutex); 4478 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10); 4479 mutex_unlock(&bdev->bd_inode->i_mutex); 4480 bdput(bdev); 4481 } 4482 } 4483 return rv; 4484 } 4485 4486 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4487 { 4488 int rv; 4489 /* change the number of raid disks */ 4490 if (mddev->pers->check_reshape == NULL) 4491 return -EINVAL; 4492 if (raid_disks <= 0 || 4493 raid_disks >= mddev->max_disks) 4494 return -EINVAL; 4495 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4496 return -EBUSY; 4497 mddev->delta_disks = raid_disks - mddev->raid_disks; 4498 4499 rv = mddev->pers->check_reshape(mddev); 4500 return rv; 4501 } 4502 4503 4504 /* 4505 * update_array_info is used to change the configuration of an 4506 * on-line array. 4507 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4508 * fields in the info are checked against the array. 4509 * Any differences that cannot be handled will cause an error. 4510 * Normally, only one change can be managed at a time. 4511 */ 4512 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4513 { 4514 int rv = 0; 4515 int cnt = 0; 4516 int state = 0; 4517 4518 /* calculate expected state,ignoring low bits */ 4519 if (mddev->bitmap && mddev->bitmap_offset) 4520 state |= (1 << MD_SB_BITMAP_PRESENT); 4521 4522 if (mddev->major_version != info->major_version || 4523 mddev->minor_version != info->minor_version || 4524 /* mddev->patch_version != info->patch_version || */ 4525 mddev->ctime != info->ctime || 4526 mddev->level != info->level || 4527 /* mddev->layout != info->layout || */ 4528 !mddev->persistent != info->not_persistent|| 4529 mddev->chunk_size != info->chunk_size || 4530 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4531 ((state^info->state) & 0xfffffe00) 4532 ) 4533 return -EINVAL; 4534 /* Check there is only one change */ 4535 if (info->size >= 0 && mddev->size != info->size) cnt++; 4536 if (mddev->raid_disks != info->raid_disks) cnt++; 4537 if (mddev->layout != info->layout) cnt++; 4538 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4539 if (cnt == 0) return 0; 4540 if (cnt > 1) return -EINVAL; 4541 4542 if (mddev->layout != info->layout) { 4543 /* Change layout 4544 * we don't need to do anything at the md level, the 4545 * personality will take care of it all. 4546 */ 4547 if (mddev->pers->reconfig == NULL) 4548 return -EINVAL; 4549 else 4550 return mddev->pers->reconfig(mddev, info->layout, -1); 4551 } 4552 if (info->size >= 0 && mddev->size != info->size) 4553 rv = update_size(mddev, info->size); 4554 4555 if (mddev->raid_disks != info->raid_disks) 4556 rv = update_raid_disks(mddev, info->raid_disks); 4557 4558 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4559 if (mddev->pers->quiesce == NULL) 4560 return -EINVAL; 4561 if (mddev->recovery || mddev->sync_thread) 4562 return -EBUSY; 4563 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4564 /* add the bitmap */ 4565 if (mddev->bitmap) 4566 return -EEXIST; 4567 if (mddev->default_bitmap_offset == 0) 4568 return -EINVAL; 4569 mddev->bitmap_offset = mddev->default_bitmap_offset; 4570 mddev->pers->quiesce(mddev, 1); 4571 rv = bitmap_create(mddev); 4572 if (rv) 4573 bitmap_destroy(mddev); 4574 mddev->pers->quiesce(mddev, 0); 4575 } else { 4576 /* remove the bitmap */ 4577 if (!mddev->bitmap) 4578 return -ENOENT; 4579 if (mddev->bitmap->file) 4580 return -EINVAL; 4581 mddev->pers->quiesce(mddev, 1); 4582 bitmap_destroy(mddev); 4583 mddev->pers->quiesce(mddev, 0); 4584 mddev->bitmap_offset = 0; 4585 } 4586 } 4587 md_update_sb(mddev, 1); 4588 return rv; 4589 } 4590 4591 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4592 { 4593 mdk_rdev_t *rdev; 4594 4595 if (mddev->pers == NULL) 4596 return -ENODEV; 4597 4598 rdev = find_rdev(mddev, dev); 4599 if (!rdev) 4600 return -ENODEV; 4601 4602 md_error(mddev, rdev); 4603 return 0; 4604 } 4605 4606 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4607 { 4608 mddev_t *mddev = bdev->bd_disk->private_data; 4609 4610 geo->heads = 2; 4611 geo->sectors = 4; 4612 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4613 return 0; 4614 } 4615 4616 static int md_ioctl(struct inode *inode, struct file *file, 4617 unsigned int cmd, unsigned long arg) 4618 { 4619 int err = 0; 4620 void __user *argp = (void __user *)arg; 4621 mddev_t *mddev = NULL; 4622 4623 if (!capable(CAP_SYS_ADMIN)) 4624 return -EACCES; 4625 4626 /* 4627 * Commands dealing with the RAID driver but not any 4628 * particular array: 4629 */ 4630 switch (cmd) 4631 { 4632 case RAID_VERSION: 4633 err = get_version(argp); 4634 goto done; 4635 4636 case PRINT_RAID_DEBUG: 4637 err = 0; 4638 md_print_devices(); 4639 goto done; 4640 4641 #ifndef MODULE 4642 case RAID_AUTORUN: 4643 err = 0; 4644 autostart_arrays(arg); 4645 goto done; 4646 #endif 4647 default:; 4648 } 4649 4650 /* 4651 * Commands creating/starting a new array: 4652 */ 4653 4654 mddev = inode->i_bdev->bd_disk->private_data; 4655 4656 if (!mddev) { 4657 BUG(); 4658 goto abort; 4659 } 4660 4661 err = mddev_lock(mddev); 4662 if (err) { 4663 printk(KERN_INFO 4664 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4665 err, cmd); 4666 goto abort; 4667 } 4668 4669 switch (cmd) 4670 { 4671 case SET_ARRAY_INFO: 4672 { 4673 mdu_array_info_t info; 4674 if (!arg) 4675 memset(&info, 0, sizeof(info)); 4676 else if (copy_from_user(&info, argp, sizeof(info))) { 4677 err = -EFAULT; 4678 goto abort_unlock; 4679 } 4680 if (mddev->pers) { 4681 err = update_array_info(mddev, &info); 4682 if (err) { 4683 printk(KERN_WARNING "md: couldn't update" 4684 " array info. %d\n", err); 4685 goto abort_unlock; 4686 } 4687 goto done_unlock; 4688 } 4689 if (!list_empty(&mddev->disks)) { 4690 printk(KERN_WARNING 4691 "md: array %s already has disks!\n", 4692 mdname(mddev)); 4693 err = -EBUSY; 4694 goto abort_unlock; 4695 } 4696 if (mddev->raid_disks) { 4697 printk(KERN_WARNING 4698 "md: array %s already initialised!\n", 4699 mdname(mddev)); 4700 err = -EBUSY; 4701 goto abort_unlock; 4702 } 4703 err = set_array_info(mddev, &info); 4704 if (err) { 4705 printk(KERN_WARNING "md: couldn't set" 4706 " array info. %d\n", err); 4707 goto abort_unlock; 4708 } 4709 } 4710 goto done_unlock; 4711 4712 default:; 4713 } 4714 4715 /* 4716 * Commands querying/configuring an existing array: 4717 */ 4718 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4719 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4720 if ((!mddev->raid_disks && !mddev->external) 4721 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4722 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4723 && cmd != GET_BITMAP_FILE) { 4724 err = -ENODEV; 4725 goto abort_unlock; 4726 } 4727 4728 /* 4729 * Commands even a read-only array can execute: 4730 */ 4731 switch (cmd) 4732 { 4733 case GET_ARRAY_INFO: 4734 err = get_array_info(mddev, argp); 4735 goto done_unlock; 4736 4737 case GET_BITMAP_FILE: 4738 err = get_bitmap_file(mddev, argp); 4739 goto done_unlock; 4740 4741 case GET_DISK_INFO: 4742 err = get_disk_info(mddev, argp); 4743 goto done_unlock; 4744 4745 case RESTART_ARRAY_RW: 4746 err = restart_array(mddev); 4747 goto done_unlock; 4748 4749 case STOP_ARRAY: 4750 err = do_md_stop (mddev, 0); 4751 goto done_unlock; 4752 4753 case STOP_ARRAY_RO: 4754 err = do_md_stop (mddev, 1); 4755 goto done_unlock; 4756 4757 /* 4758 * We have a problem here : there is no easy way to give a CHS 4759 * virtual geometry. We currently pretend that we have a 2 heads 4760 * 4 sectors (with a BIG number of cylinders...). This drives 4761 * dosfs just mad... ;-) 4762 */ 4763 } 4764 4765 /* 4766 * The remaining ioctls are changing the state of the 4767 * superblock, so we do not allow them on read-only arrays. 4768 * However non-MD ioctls (e.g. get-size) will still come through 4769 * here and hit the 'default' below, so only disallow 4770 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4771 */ 4772 if (_IOC_TYPE(cmd) == MD_MAJOR && 4773 mddev->ro && mddev->pers) { 4774 if (mddev->ro == 2) { 4775 mddev->ro = 0; 4776 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4777 md_wakeup_thread(mddev->thread); 4778 4779 } else { 4780 err = -EROFS; 4781 goto abort_unlock; 4782 } 4783 } 4784 4785 switch (cmd) 4786 { 4787 case ADD_NEW_DISK: 4788 { 4789 mdu_disk_info_t info; 4790 if (copy_from_user(&info, argp, sizeof(info))) 4791 err = -EFAULT; 4792 else 4793 err = add_new_disk(mddev, &info); 4794 goto done_unlock; 4795 } 4796 4797 case HOT_REMOVE_DISK: 4798 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4799 goto done_unlock; 4800 4801 case HOT_ADD_DISK: 4802 err = hot_add_disk(mddev, new_decode_dev(arg)); 4803 goto done_unlock; 4804 4805 case SET_DISK_FAULTY: 4806 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4807 goto done_unlock; 4808 4809 case RUN_ARRAY: 4810 err = do_md_run (mddev); 4811 goto done_unlock; 4812 4813 case SET_BITMAP_FILE: 4814 err = set_bitmap_file(mddev, (int)arg); 4815 goto done_unlock; 4816 4817 default: 4818 err = -EINVAL; 4819 goto abort_unlock; 4820 } 4821 4822 done_unlock: 4823 abort_unlock: 4824 mddev_unlock(mddev); 4825 4826 return err; 4827 done: 4828 if (err) 4829 MD_BUG(); 4830 abort: 4831 return err; 4832 } 4833 4834 static int md_open(struct inode *inode, struct file *file) 4835 { 4836 /* 4837 * Succeed if we can lock the mddev, which confirms that 4838 * it isn't being stopped right now. 4839 */ 4840 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4841 int err; 4842 4843 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 4844 goto out; 4845 4846 err = 0; 4847 mddev_get(mddev); 4848 mddev_unlock(mddev); 4849 4850 check_disk_change(inode->i_bdev); 4851 out: 4852 return err; 4853 } 4854 4855 static int md_release(struct inode *inode, struct file * file) 4856 { 4857 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4858 4859 BUG_ON(!mddev); 4860 mddev_put(mddev); 4861 4862 return 0; 4863 } 4864 4865 static int md_media_changed(struct gendisk *disk) 4866 { 4867 mddev_t *mddev = disk->private_data; 4868 4869 return mddev->changed; 4870 } 4871 4872 static int md_revalidate(struct gendisk *disk) 4873 { 4874 mddev_t *mddev = disk->private_data; 4875 4876 mddev->changed = 0; 4877 return 0; 4878 } 4879 static struct block_device_operations md_fops = 4880 { 4881 .owner = THIS_MODULE, 4882 .open = md_open, 4883 .release = md_release, 4884 .ioctl = md_ioctl, 4885 .getgeo = md_getgeo, 4886 .media_changed = md_media_changed, 4887 .revalidate_disk= md_revalidate, 4888 }; 4889 4890 static int md_thread(void * arg) 4891 { 4892 mdk_thread_t *thread = arg; 4893 4894 /* 4895 * md_thread is a 'system-thread', it's priority should be very 4896 * high. We avoid resource deadlocks individually in each 4897 * raid personality. (RAID5 does preallocation) We also use RR and 4898 * the very same RT priority as kswapd, thus we will never get 4899 * into a priority inversion deadlock. 4900 * 4901 * we definitely have to have equal or higher priority than 4902 * bdflush, otherwise bdflush will deadlock if there are too 4903 * many dirty RAID5 blocks. 4904 */ 4905 4906 allow_signal(SIGKILL); 4907 while (!kthread_should_stop()) { 4908 4909 /* We need to wait INTERRUPTIBLE so that 4910 * we don't add to the load-average. 4911 * That means we need to be sure no signals are 4912 * pending 4913 */ 4914 if (signal_pending(current)) 4915 flush_signals(current); 4916 4917 wait_event_interruptible_timeout 4918 (thread->wqueue, 4919 test_bit(THREAD_WAKEUP, &thread->flags) 4920 || kthread_should_stop(), 4921 thread->timeout); 4922 4923 clear_bit(THREAD_WAKEUP, &thread->flags); 4924 4925 thread->run(thread->mddev); 4926 } 4927 4928 return 0; 4929 } 4930 4931 void md_wakeup_thread(mdk_thread_t *thread) 4932 { 4933 if (thread) { 4934 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 4935 set_bit(THREAD_WAKEUP, &thread->flags); 4936 wake_up(&thread->wqueue); 4937 } 4938 } 4939 4940 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 4941 const char *name) 4942 { 4943 mdk_thread_t *thread; 4944 4945 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 4946 if (!thread) 4947 return NULL; 4948 4949 init_waitqueue_head(&thread->wqueue); 4950 4951 thread->run = run; 4952 thread->mddev = mddev; 4953 thread->timeout = MAX_SCHEDULE_TIMEOUT; 4954 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 4955 if (IS_ERR(thread->tsk)) { 4956 kfree(thread); 4957 return NULL; 4958 } 4959 return thread; 4960 } 4961 4962 void md_unregister_thread(mdk_thread_t *thread) 4963 { 4964 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 4965 4966 kthread_stop(thread->tsk); 4967 kfree(thread); 4968 } 4969 4970 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 4971 { 4972 if (!mddev) { 4973 MD_BUG(); 4974 return; 4975 } 4976 4977 if (!rdev || test_bit(Faulty, &rdev->flags)) 4978 return; 4979 4980 if (mddev->external) 4981 set_bit(Blocked, &rdev->flags); 4982 /* 4983 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 4984 mdname(mddev), 4985 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 4986 __builtin_return_address(0),__builtin_return_address(1), 4987 __builtin_return_address(2),__builtin_return_address(3)); 4988 */ 4989 if (!mddev->pers) 4990 return; 4991 if (!mddev->pers->error_handler) 4992 return; 4993 mddev->pers->error_handler(mddev,rdev); 4994 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4995 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4996 md_wakeup_thread(mddev->thread); 4997 md_new_event_inintr(mddev); 4998 } 4999 5000 /* seq_file implementation /proc/mdstat */ 5001 5002 static void status_unused(struct seq_file *seq) 5003 { 5004 int i = 0; 5005 mdk_rdev_t *rdev; 5006 struct list_head *tmp; 5007 5008 seq_printf(seq, "unused devices: "); 5009 5010 rdev_for_each_list(rdev, tmp, pending_raid_disks) { 5011 char b[BDEVNAME_SIZE]; 5012 i++; 5013 seq_printf(seq, "%s ", 5014 bdevname(rdev->bdev,b)); 5015 } 5016 if (!i) 5017 seq_printf(seq, "<none>"); 5018 5019 seq_printf(seq, "\n"); 5020 } 5021 5022 5023 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5024 { 5025 sector_t max_blocks, resync, res; 5026 unsigned long dt, db, rt; 5027 int scale; 5028 unsigned int per_milli; 5029 5030 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 5031 5032 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5033 max_blocks = mddev->resync_max_sectors >> 1; 5034 else 5035 max_blocks = mddev->size; 5036 5037 /* 5038 * Should not happen. 5039 */ 5040 if (!max_blocks) { 5041 MD_BUG(); 5042 return; 5043 } 5044 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5045 * in a sector_t, and (max_blocks>>scale) will fit in a 5046 * u32, as those are the requirements for sector_div. 5047 * Thus 'scale' must be at least 10 5048 */ 5049 scale = 10; 5050 if (sizeof(sector_t) > sizeof(unsigned long)) { 5051 while ( max_blocks/2 > (1ULL<<(scale+32))) 5052 scale++; 5053 } 5054 res = (resync>>scale)*1000; 5055 sector_div(res, (u32)((max_blocks>>scale)+1)); 5056 5057 per_milli = res; 5058 { 5059 int i, x = per_milli/50, y = 20-x; 5060 seq_printf(seq, "["); 5061 for (i = 0; i < x; i++) 5062 seq_printf(seq, "="); 5063 seq_printf(seq, ">"); 5064 for (i = 0; i < y; i++) 5065 seq_printf(seq, "."); 5066 seq_printf(seq, "] "); 5067 } 5068 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 5069 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 5070 "reshape" : 5071 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 5072 "check" : 5073 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 5074 "resync" : "recovery"))), 5075 per_milli/10, per_milli % 10, 5076 (unsigned long long) resync, 5077 (unsigned long long) max_blocks); 5078 5079 /* 5080 * We do not want to overflow, so the order of operands and 5081 * the * 100 / 100 trick are important. We do a +1 to be 5082 * safe against division by zero. We only estimate anyway. 5083 * 5084 * dt: time from mark until now 5085 * db: blocks written from mark until now 5086 * rt: remaining time 5087 */ 5088 dt = ((jiffies - mddev->resync_mark) / HZ); 5089 if (!dt) dt++; 5090 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 5091 - mddev->resync_mark_cnt; 5092 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 5093 5094 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 5095 5096 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 5097 } 5098 5099 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 5100 { 5101 struct list_head *tmp; 5102 loff_t l = *pos; 5103 mddev_t *mddev; 5104 5105 if (l >= 0x10000) 5106 return NULL; 5107 if (!l--) 5108 /* header */ 5109 return (void*)1; 5110 5111 spin_lock(&all_mddevs_lock); 5112 list_for_each(tmp,&all_mddevs) 5113 if (!l--) { 5114 mddev = list_entry(tmp, mddev_t, all_mddevs); 5115 mddev_get(mddev); 5116 spin_unlock(&all_mddevs_lock); 5117 return mddev; 5118 } 5119 spin_unlock(&all_mddevs_lock); 5120 if (!l--) 5121 return (void*)2;/* tail */ 5122 return NULL; 5123 } 5124 5125 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 5126 { 5127 struct list_head *tmp; 5128 mddev_t *next_mddev, *mddev = v; 5129 5130 ++*pos; 5131 if (v == (void*)2) 5132 return NULL; 5133 5134 spin_lock(&all_mddevs_lock); 5135 if (v == (void*)1) 5136 tmp = all_mddevs.next; 5137 else 5138 tmp = mddev->all_mddevs.next; 5139 if (tmp != &all_mddevs) 5140 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 5141 else { 5142 next_mddev = (void*)2; 5143 *pos = 0x10000; 5144 } 5145 spin_unlock(&all_mddevs_lock); 5146 5147 if (v != (void*)1) 5148 mddev_put(mddev); 5149 return next_mddev; 5150 5151 } 5152 5153 static void md_seq_stop(struct seq_file *seq, void *v) 5154 { 5155 mddev_t *mddev = v; 5156 5157 if (mddev && v != (void*)1 && v != (void*)2) 5158 mddev_put(mddev); 5159 } 5160 5161 struct mdstat_info { 5162 int event; 5163 }; 5164 5165 static int md_seq_show(struct seq_file *seq, void *v) 5166 { 5167 mddev_t *mddev = v; 5168 sector_t size; 5169 struct list_head *tmp2; 5170 mdk_rdev_t *rdev; 5171 struct mdstat_info *mi = seq->private; 5172 struct bitmap *bitmap; 5173 5174 if (v == (void*)1) { 5175 struct mdk_personality *pers; 5176 seq_printf(seq, "Personalities : "); 5177 spin_lock(&pers_lock); 5178 list_for_each_entry(pers, &pers_list, list) 5179 seq_printf(seq, "[%s] ", pers->name); 5180 5181 spin_unlock(&pers_lock); 5182 seq_printf(seq, "\n"); 5183 mi->event = atomic_read(&md_event_count); 5184 return 0; 5185 } 5186 if (v == (void*)2) { 5187 status_unused(seq); 5188 return 0; 5189 } 5190 5191 if (mddev_lock(mddev) < 0) 5192 return -EINTR; 5193 5194 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 5195 seq_printf(seq, "%s : %sactive", mdname(mddev), 5196 mddev->pers ? "" : "in"); 5197 if (mddev->pers) { 5198 if (mddev->ro==1) 5199 seq_printf(seq, " (read-only)"); 5200 if (mddev->ro==2) 5201 seq_printf(seq, " (auto-read-only)"); 5202 seq_printf(seq, " %s", mddev->pers->name); 5203 } 5204 5205 size = 0; 5206 rdev_for_each(rdev, tmp2, mddev) { 5207 char b[BDEVNAME_SIZE]; 5208 seq_printf(seq, " %s[%d]", 5209 bdevname(rdev->bdev,b), rdev->desc_nr); 5210 if (test_bit(WriteMostly, &rdev->flags)) 5211 seq_printf(seq, "(W)"); 5212 if (test_bit(Faulty, &rdev->flags)) { 5213 seq_printf(seq, "(F)"); 5214 continue; 5215 } else if (rdev->raid_disk < 0) 5216 seq_printf(seq, "(S)"); /* spare */ 5217 size += rdev->size; 5218 } 5219 5220 if (!list_empty(&mddev->disks)) { 5221 if (mddev->pers) 5222 seq_printf(seq, "\n %llu blocks", 5223 (unsigned long long)mddev->array_size); 5224 else 5225 seq_printf(seq, "\n %llu blocks", 5226 (unsigned long long)size); 5227 } 5228 if (mddev->persistent) { 5229 if (mddev->major_version != 0 || 5230 mddev->minor_version != 90) { 5231 seq_printf(seq," super %d.%d", 5232 mddev->major_version, 5233 mddev->minor_version); 5234 } 5235 } else if (mddev->external) 5236 seq_printf(seq, " super external:%s", 5237 mddev->metadata_type); 5238 else 5239 seq_printf(seq, " super non-persistent"); 5240 5241 if (mddev->pers) { 5242 mddev->pers->status (seq, mddev); 5243 seq_printf(seq, "\n "); 5244 if (mddev->pers->sync_request) { 5245 if (mddev->curr_resync > 2) { 5246 status_resync (seq, mddev); 5247 seq_printf(seq, "\n "); 5248 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 5249 seq_printf(seq, "\tresync=DELAYED\n "); 5250 else if (mddev->recovery_cp < MaxSector) 5251 seq_printf(seq, "\tresync=PENDING\n "); 5252 } 5253 } else 5254 seq_printf(seq, "\n "); 5255 5256 if ((bitmap = mddev->bitmap)) { 5257 unsigned long chunk_kb; 5258 unsigned long flags; 5259 spin_lock_irqsave(&bitmap->lock, flags); 5260 chunk_kb = bitmap->chunksize >> 10; 5261 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5262 "%lu%s chunk", 5263 bitmap->pages - bitmap->missing_pages, 5264 bitmap->pages, 5265 (bitmap->pages - bitmap->missing_pages) 5266 << (PAGE_SHIFT - 10), 5267 chunk_kb ? chunk_kb : bitmap->chunksize, 5268 chunk_kb ? "KB" : "B"); 5269 if (bitmap->file) { 5270 seq_printf(seq, ", file: "); 5271 seq_path(seq, &bitmap->file->f_path, " \t\n"); 5272 } 5273 5274 seq_printf(seq, "\n"); 5275 spin_unlock_irqrestore(&bitmap->lock, flags); 5276 } 5277 5278 seq_printf(seq, "\n"); 5279 } 5280 mddev_unlock(mddev); 5281 5282 return 0; 5283 } 5284 5285 static struct seq_operations md_seq_ops = { 5286 .start = md_seq_start, 5287 .next = md_seq_next, 5288 .stop = md_seq_stop, 5289 .show = md_seq_show, 5290 }; 5291 5292 static int md_seq_open(struct inode *inode, struct file *file) 5293 { 5294 int error; 5295 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5296 if (mi == NULL) 5297 return -ENOMEM; 5298 5299 error = seq_open(file, &md_seq_ops); 5300 if (error) 5301 kfree(mi); 5302 else { 5303 struct seq_file *p = file->private_data; 5304 p->private = mi; 5305 mi->event = atomic_read(&md_event_count); 5306 } 5307 return error; 5308 } 5309 5310 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5311 { 5312 struct seq_file *m = filp->private_data; 5313 struct mdstat_info *mi = m->private; 5314 int mask; 5315 5316 poll_wait(filp, &md_event_waiters, wait); 5317 5318 /* always allow read */ 5319 mask = POLLIN | POLLRDNORM; 5320 5321 if (mi->event != atomic_read(&md_event_count)) 5322 mask |= POLLERR | POLLPRI; 5323 return mask; 5324 } 5325 5326 static const struct file_operations md_seq_fops = { 5327 .owner = THIS_MODULE, 5328 .open = md_seq_open, 5329 .read = seq_read, 5330 .llseek = seq_lseek, 5331 .release = seq_release_private, 5332 .poll = mdstat_poll, 5333 }; 5334 5335 int register_md_personality(struct mdk_personality *p) 5336 { 5337 spin_lock(&pers_lock); 5338 list_add_tail(&p->list, &pers_list); 5339 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 5340 spin_unlock(&pers_lock); 5341 return 0; 5342 } 5343 5344 int unregister_md_personality(struct mdk_personality *p) 5345 { 5346 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 5347 spin_lock(&pers_lock); 5348 list_del_init(&p->list); 5349 spin_unlock(&pers_lock); 5350 return 0; 5351 } 5352 5353 static int is_mddev_idle(mddev_t *mddev) 5354 { 5355 mdk_rdev_t * rdev; 5356 struct list_head *tmp; 5357 int idle; 5358 long curr_events; 5359 5360 idle = 1; 5361 rdev_for_each(rdev, tmp, mddev) { 5362 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5363 curr_events = disk_stat_read(disk, sectors[0]) + 5364 disk_stat_read(disk, sectors[1]) - 5365 atomic_read(&disk->sync_io); 5366 /* sync IO will cause sync_io to increase before the disk_stats 5367 * as sync_io is counted when a request starts, and 5368 * disk_stats is counted when it completes. 5369 * So resync activity will cause curr_events to be smaller than 5370 * when there was no such activity. 5371 * non-sync IO will cause disk_stat to increase without 5372 * increasing sync_io so curr_events will (eventually) 5373 * be larger than it was before. Once it becomes 5374 * substantially larger, the test below will cause 5375 * the array to appear non-idle, and resync will slow 5376 * down. 5377 * If there is a lot of outstanding resync activity when 5378 * we set last_event to curr_events, then all that activity 5379 * completing might cause the array to appear non-idle 5380 * and resync will be slowed down even though there might 5381 * not have been non-resync activity. This will only 5382 * happen once though. 'last_events' will soon reflect 5383 * the state where there is little or no outstanding 5384 * resync requests, and further resync activity will 5385 * always make curr_events less than last_events. 5386 * 5387 */ 5388 if (curr_events - rdev->last_events > 4096) { 5389 rdev->last_events = curr_events; 5390 idle = 0; 5391 } 5392 } 5393 return idle; 5394 } 5395 5396 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5397 { 5398 /* another "blocks" (512byte) blocks have been synced */ 5399 atomic_sub(blocks, &mddev->recovery_active); 5400 wake_up(&mddev->recovery_wait); 5401 if (!ok) { 5402 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5403 md_wakeup_thread(mddev->thread); 5404 // stop recovery, signal do_sync .... 5405 } 5406 } 5407 5408 5409 /* md_write_start(mddev, bi) 5410 * If we need to update some array metadata (e.g. 'active' flag 5411 * in superblock) before writing, schedule a superblock update 5412 * and wait for it to complete. 5413 */ 5414 void md_write_start(mddev_t *mddev, struct bio *bi) 5415 { 5416 if (bio_data_dir(bi) != WRITE) 5417 return; 5418 5419 BUG_ON(mddev->ro == 1); 5420 if (mddev->ro == 2) { 5421 /* need to switch to read/write */ 5422 mddev->ro = 0; 5423 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5424 md_wakeup_thread(mddev->thread); 5425 md_wakeup_thread(mddev->sync_thread); 5426 } 5427 atomic_inc(&mddev->writes_pending); 5428 if (mddev->safemode == 1) 5429 mddev->safemode = 0; 5430 if (mddev->in_sync) { 5431 spin_lock_irq(&mddev->write_lock); 5432 if (mddev->in_sync) { 5433 mddev->in_sync = 0; 5434 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5435 md_wakeup_thread(mddev->thread); 5436 } 5437 spin_unlock_irq(&mddev->write_lock); 5438 } 5439 wait_event(mddev->sb_wait, mddev->flags==0); 5440 } 5441 5442 void md_write_end(mddev_t *mddev) 5443 { 5444 if (atomic_dec_and_test(&mddev->writes_pending)) { 5445 if (mddev->safemode == 2) 5446 md_wakeup_thread(mddev->thread); 5447 else if (mddev->safemode_delay) 5448 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5449 } 5450 } 5451 5452 /* md_allow_write(mddev) 5453 * Calling this ensures that the array is marked 'active' so that writes 5454 * may proceed without blocking. It is important to call this before 5455 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5456 * Must be called with mddev_lock held. 5457 */ 5458 void md_allow_write(mddev_t *mddev) 5459 { 5460 if (!mddev->pers) 5461 return; 5462 if (mddev->ro) 5463 return; 5464 5465 spin_lock_irq(&mddev->write_lock); 5466 if (mddev->in_sync) { 5467 mddev->in_sync = 0; 5468 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5469 if (mddev->safemode_delay && 5470 mddev->safemode == 0) 5471 mddev->safemode = 1; 5472 spin_unlock_irq(&mddev->write_lock); 5473 md_update_sb(mddev, 0); 5474 } else 5475 spin_unlock_irq(&mddev->write_lock); 5476 } 5477 EXPORT_SYMBOL_GPL(md_allow_write); 5478 5479 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 5480 5481 #define SYNC_MARKS 10 5482 #define SYNC_MARK_STEP (3*HZ) 5483 void md_do_sync(mddev_t *mddev) 5484 { 5485 mddev_t *mddev2; 5486 unsigned int currspeed = 0, 5487 window; 5488 sector_t max_sectors,j, io_sectors; 5489 unsigned long mark[SYNC_MARKS]; 5490 sector_t mark_cnt[SYNC_MARKS]; 5491 int last_mark,m; 5492 struct list_head *tmp; 5493 sector_t last_check; 5494 int skipped = 0; 5495 struct list_head *rtmp; 5496 mdk_rdev_t *rdev; 5497 char *desc; 5498 5499 /* just incase thread restarts... */ 5500 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5501 return; 5502 if (mddev->ro) /* never try to sync a read-only array */ 5503 return; 5504 5505 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5506 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5507 desc = "data-check"; 5508 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5509 desc = "requested-resync"; 5510 else 5511 desc = "resync"; 5512 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5513 desc = "reshape"; 5514 else 5515 desc = "recovery"; 5516 5517 /* we overload curr_resync somewhat here. 5518 * 0 == not engaged in resync at all 5519 * 2 == checking that there is no conflict with another sync 5520 * 1 == like 2, but have yielded to allow conflicting resync to 5521 * commense 5522 * other == active in resync - this many blocks 5523 * 5524 * Before starting a resync we must have set curr_resync to 5525 * 2, and then checked that every "conflicting" array has curr_resync 5526 * less than ours. When we find one that is the same or higher 5527 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5528 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5529 * This will mean we have to start checking from the beginning again. 5530 * 5531 */ 5532 5533 do { 5534 mddev->curr_resync = 2; 5535 5536 try_again: 5537 if (kthread_should_stop()) { 5538 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5539 goto skip; 5540 } 5541 for_each_mddev(mddev2, tmp) { 5542 if (mddev2 == mddev) 5543 continue; 5544 if (mddev2->curr_resync && 5545 match_mddev_units(mddev,mddev2)) { 5546 DEFINE_WAIT(wq); 5547 if (mddev < mddev2 && mddev->curr_resync == 2) { 5548 /* arbitrarily yield */ 5549 mddev->curr_resync = 1; 5550 wake_up(&resync_wait); 5551 } 5552 if (mddev > mddev2 && mddev->curr_resync == 1) 5553 /* no need to wait here, we can wait the next 5554 * time 'round when curr_resync == 2 5555 */ 5556 continue; 5557 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5558 if (!kthread_should_stop() && 5559 mddev2->curr_resync >= mddev->curr_resync) { 5560 printk(KERN_INFO "md: delaying %s of %s" 5561 " until %s has finished (they" 5562 " share one or more physical units)\n", 5563 desc, mdname(mddev), mdname(mddev2)); 5564 mddev_put(mddev2); 5565 schedule(); 5566 finish_wait(&resync_wait, &wq); 5567 goto try_again; 5568 } 5569 finish_wait(&resync_wait, &wq); 5570 } 5571 } 5572 } while (mddev->curr_resync < 2); 5573 5574 j = 0; 5575 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5576 /* resync follows the size requested by the personality, 5577 * which defaults to physical size, but can be virtual size 5578 */ 5579 max_sectors = mddev->resync_max_sectors; 5580 mddev->resync_mismatches = 0; 5581 /* we don't use the checkpoint if there's a bitmap */ 5582 if (!mddev->bitmap && 5583 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5584 j = mddev->recovery_cp; 5585 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5586 max_sectors = mddev->size << 1; 5587 else { 5588 /* recovery follows the physical size of devices */ 5589 max_sectors = mddev->size << 1; 5590 j = MaxSector; 5591 rdev_for_each(rdev, rtmp, mddev) 5592 if (rdev->raid_disk >= 0 && 5593 !test_bit(Faulty, &rdev->flags) && 5594 !test_bit(In_sync, &rdev->flags) && 5595 rdev->recovery_offset < j) 5596 j = rdev->recovery_offset; 5597 } 5598 5599 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5600 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5601 " %d KB/sec/disk.\n", speed_min(mddev)); 5602 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5603 "(but not more than %d KB/sec) for %s.\n", 5604 speed_max(mddev), desc); 5605 5606 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5607 5608 io_sectors = 0; 5609 for (m = 0; m < SYNC_MARKS; m++) { 5610 mark[m] = jiffies; 5611 mark_cnt[m] = io_sectors; 5612 } 5613 last_mark = 0; 5614 mddev->resync_mark = mark[last_mark]; 5615 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5616 5617 /* 5618 * Tune reconstruction: 5619 */ 5620 window = 32*(PAGE_SIZE/512); 5621 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5622 window/2,(unsigned long long) max_sectors/2); 5623 5624 atomic_set(&mddev->recovery_active, 0); 5625 init_waitqueue_head(&mddev->recovery_wait); 5626 last_check = 0; 5627 5628 if (j>2) { 5629 printk(KERN_INFO 5630 "md: resuming %s of %s from checkpoint.\n", 5631 desc, mdname(mddev)); 5632 mddev->curr_resync = j; 5633 } 5634 5635 while (j < max_sectors) { 5636 sector_t sectors; 5637 5638 skipped = 0; 5639 if (j >= mddev->resync_max) { 5640 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5641 wait_event(mddev->recovery_wait, 5642 mddev->resync_max > j 5643 || kthread_should_stop()); 5644 } 5645 if (kthread_should_stop()) 5646 goto interrupted; 5647 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5648 currspeed < speed_min(mddev)); 5649 if (sectors == 0) { 5650 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5651 goto out; 5652 } 5653 5654 if (!skipped) { /* actual IO requested */ 5655 io_sectors += sectors; 5656 atomic_add(sectors, &mddev->recovery_active); 5657 } 5658 5659 j += sectors; 5660 if (j>1) mddev->curr_resync = j; 5661 mddev->curr_mark_cnt = io_sectors; 5662 if (last_check == 0) 5663 /* this is the earliers that rebuilt will be 5664 * visible in /proc/mdstat 5665 */ 5666 md_new_event(mddev); 5667 5668 if (last_check + window > io_sectors || j == max_sectors) 5669 continue; 5670 5671 last_check = io_sectors; 5672 5673 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 5674 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 5675 break; 5676 5677 repeat: 5678 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5679 /* step marks */ 5680 int next = (last_mark+1) % SYNC_MARKS; 5681 5682 mddev->resync_mark = mark[next]; 5683 mddev->resync_mark_cnt = mark_cnt[next]; 5684 mark[next] = jiffies; 5685 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5686 last_mark = next; 5687 } 5688 5689 5690 if (kthread_should_stop()) 5691 goto interrupted; 5692 5693 5694 /* 5695 * this loop exits only if either when we are slower than 5696 * the 'hard' speed limit, or the system was IO-idle for 5697 * a jiffy. 5698 * the system might be non-idle CPU-wise, but we only care 5699 * about not overloading the IO subsystem. (things like an 5700 * e2fsck being done on the RAID array should execute fast) 5701 */ 5702 blk_unplug(mddev->queue); 5703 cond_resched(); 5704 5705 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5706 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5707 5708 if (currspeed > speed_min(mddev)) { 5709 if ((currspeed > speed_max(mddev)) || 5710 !is_mddev_idle(mddev)) { 5711 msleep(500); 5712 goto repeat; 5713 } 5714 } 5715 } 5716 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5717 /* 5718 * this also signals 'finished resyncing' to md_stop 5719 */ 5720 out: 5721 blk_unplug(mddev->queue); 5722 5723 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5724 5725 /* tell personality that we are finished */ 5726 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5727 5728 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5729 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5730 mddev->curr_resync > 2) { 5731 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5732 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5733 if (mddev->curr_resync >= mddev->recovery_cp) { 5734 printk(KERN_INFO 5735 "md: checkpointing %s of %s.\n", 5736 desc, mdname(mddev)); 5737 mddev->recovery_cp = mddev->curr_resync; 5738 } 5739 } else 5740 mddev->recovery_cp = MaxSector; 5741 } else { 5742 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5743 mddev->curr_resync = MaxSector; 5744 rdev_for_each(rdev, rtmp, mddev) 5745 if (rdev->raid_disk >= 0 && 5746 !test_bit(Faulty, &rdev->flags) && 5747 !test_bit(In_sync, &rdev->flags) && 5748 rdev->recovery_offset < mddev->curr_resync) 5749 rdev->recovery_offset = mddev->curr_resync; 5750 } 5751 } 5752 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5753 5754 skip: 5755 mddev->curr_resync = 0; 5756 mddev->resync_max = MaxSector; 5757 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5758 wake_up(&resync_wait); 5759 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5760 md_wakeup_thread(mddev->thread); 5761 return; 5762 5763 interrupted: 5764 /* 5765 * got a signal, exit. 5766 */ 5767 printk(KERN_INFO 5768 "md: md_do_sync() got signal ... exiting\n"); 5769 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5770 goto out; 5771 5772 } 5773 EXPORT_SYMBOL_GPL(md_do_sync); 5774 5775 5776 static int remove_and_add_spares(mddev_t *mddev) 5777 { 5778 mdk_rdev_t *rdev; 5779 struct list_head *rtmp; 5780 int spares = 0; 5781 5782 rdev_for_each(rdev, rtmp, mddev) 5783 if (rdev->raid_disk >= 0 && 5784 !test_bit(Blocked, &rdev->flags) && 5785 (test_bit(Faulty, &rdev->flags) || 5786 ! test_bit(In_sync, &rdev->flags)) && 5787 atomic_read(&rdev->nr_pending)==0) { 5788 if (mddev->pers->hot_remove_disk( 5789 mddev, rdev->raid_disk)==0) { 5790 char nm[20]; 5791 sprintf(nm,"rd%d", rdev->raid_disk); 5792 sysfs_remove_link(&mddev->kobj, nm); 5793 rdev->raid_disk = -1; 5794 } 5795 } 5796 5797 if (mddev->degraded) { 5798 rdev_for_each(rdev, rtmp, mddev) 5799 if (rdev->raid_disk < 0 5800 && !test_bit(Faulty, &rdev->flags)) { 5801 rdev->recovery_offset = 0; 5802 if (mddev->pers->hot_add_disk(mddev,rdev)) { 5803 char nm[20]; 5804 sprintf(nm, "rd%d", rdev->raid_disk); 5805 if (sysfs_create_link(&mddev->kobj, 5806 &rdev->kobj, nm)) 5807 printk(KERN_WARNING 5808 "md: cannot register " 5809 "%s for %s\n", 5810 nm, mdname(mddev)); 5811 spares++; 5812 md_new_event(mddev); 5813 } else 5814 break; 5815 } 5816 } 5817 return spares; 5818 } 5819 /* 5820 * This routine is regularly called by all per-raid-array threads to 5821 * deal with generic issues like resync and super-block update. 5822 * Raid personalities that don't have a thread (linear/raid0) do not 5823 * need this as they never do any recovery or update the superblock. 5824 * 5825 * It does not do any resync itself, but rather "forks" off other threads 5826 * to do that as needed. 5827 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 5828 * "->recovery" and create a thread at ->sync_thread. 5829 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 5830 * and wakeups up this thread which will reap the thread and finish up. 5831 * This thread also removes any faulty devices (with nr_pending == 0). 5832 * 5833 * The overall approach is: 5834 * 1/ if the superblock needs updating, update it. 5835 * 2/ If a recovery thread is running, don't do anything else. 5836 * 3/ If recovery has finished, clean up, possibly marking spares active. 5837 * 4/ If there are any faulty devices, remove them. 5838 * 5/ If array is degraded, try to add spares devices 5839 * 6/ If array has spares or is not in-sync, start a resync thread. 5840 */ 5841 void md_check_recovery(mddev_t *mddev) 5842 { 5843 mdk_rdev_t *rdev; 5844 struct list_head *rtmp; 5845 5846 5847 if (mddev->bitmap) 5848 bitmap_daemon_work(mddev->bitmap); 5849 5850 if (mddev->ro) 5851 return; 5852 5853 if (signal_pending(current)) { 5854 if (mddev->pers->sync_request && !mddev->external) { 5855 printk(KERN_INFO "md: %s in immediate safe mode\n", 5856 mdname(mddev)); 5857 mddev->safemode = 2; 5858 } 5859 flush_signals(current); 5860 } 5861 5862 if ( ! ( 5863 (mddev->flags && !mddev->external) || 5864 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 5865 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 5866 (mddev->external == 0 && mddev->safemode == 1) || 5867 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 5868 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 5869 )) 5870 return; 5871 5872 if (mddev_trylock(mddev)) { 5873 int spares = 0; 5874 5875 if (!mddev->external) { 5876 spin_lock_irq(&mddev->write_lock); 5877 if (mddev->safemode && 5878 !atomic_read(&mddev->writes_pending) && 5879 !mddev->in_sync && 5880 mddev->recovery_cp == MaxSector) { 5881 mddev->in_sync = 1; 5882 if (mddev->persistent) 5883 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5884 } 5885 if (mddev->safemode == 1) 5886 mddev->safemode = 0; 5887 spin_unlock_irq(&mddev->write_lock); 5888 } 5889 5890 if (mddev->flags) 5891 md_update_sb(mddev, 0); 5892 5893 5894 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5895 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 5896 /* resync/recovery still happening */ 5897 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5898 goto unlock; 5899 } 5900 if (mddev->sync_thread) { 5901 /* resync has finished, collect result */ 5902 md_unregister_thread(mddev->sync_thread); 5903 mddev->sync_thread = NULL; 5904 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5905 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5906 /* success...*/ 5907 /* activate any spares */ 5908 mddev->pers->spare_active(mddev); 5909 } 5910 md_update_sb(mddev, 1); 5911 5912 /* if array is no-longer degraded, then any saved_raid_disk 5913 * information must be scrapped 5914 */ 5915 if (!mddev->degraded) 5916 rdev_for_each(rdev, rtmp, mddev) 5917 rdev->saved_raid_disk = -1; 5918 5919 mddev->recovery = 0; 5920 /* flag recovery needed just to double check */ 5921 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5922 md_new_event(mddev); 5923 goto unlock; 5924 } 5925 /* Clear some bits that don't mean anything, but 5926 * might be left set 5927 */ 5928 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5929 clear_bit(MD_RECOVERY_ERR, &mddev->recovery); 5930 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 5931 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 5932 5933 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 5934 goto unlock; 5935 /* no recovery is running. 5936 * remove any failed drives, then 5937 * add spares if possible. 5938 * Spare are also removed and re-added, to allow 5939 * the personality to fail the re-add. 5940 */ 5941 5942 if (mddev->reshape_position != MaxSector) { 5943 if (mddev->pers->check_reshape(mddev) != 0) 5944 /* Cannot proceed */ 5945 goto unlock; 5946 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5947 } else if ((spares = remove_and_add_spares(mddev))) { 5948 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5949 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5950 } else if (mddev->recovery_cp < MaxSector) { 5951 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5952 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5953 /* nothing to be done ... */ 5954 goto unlock; 5955 5956 if (mddev->pers->sync_request) { 5957 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5958 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 5959 /* We are adding a device or devices to an array 5960 * which has the bitmap stored on all devices. 5961 * So make sure all bitmap pages get written 5962 */ 5963 bitmap_write_all(mddev->bitmap); 5964 } 5965 mddev->sync_thread = md_register_thread(md_do_sync, 5966 mddev, 5967 "%s_resync"); 5968 if (!mddev->sync_thread) { 5969 printk(KERN_ERR "%s: could not start resync" 5970 " thread...\n", 5971 mdname(mddev)); 5972 /* leave the spares where they are, it shouldn't hurt */ 5973 mddev->recovery = 0; 5974 } else 5975 md_wakeup_thread(mddev->sync_thread); 5976 md_new_event(mddev); 5977 } 5978 unlock: 5979 mddev_unlock(mddev); 5980 } 5981 } 5982 5983 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 5984 { 5985 sysfs_notify(&rdev->kobj, NULL, "state"); 5986 wait_event_timeout(rdev->blocked_wait, 5987 !test_bit(Blocked, &rdev->flags), 5988 msecs_to_jiffies(5000)); 5989 rdev_dec_pending(rdev, mddev); 5990 } 5991 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 5992 5993 static int md_notify_reboot(struct notifier_block *this, 5994 unsigned long code, void *x) 5995 { 5996 struct list_head *tmp; 5997 mddev_t *mddev; 5998 5999 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 6000 6001 printk(KERN_INFO "md: stopping all md devices.\n"); 6002 6003 for_each_mddev(mddev, tmp) 6004 if (mddev_trylock(mddev)) { 6005 do_md_stop (mddev, 1); 6006 mddev_unlock(mddev); 6007 } 6008 /* 6009 * certain more exotic SCSI devices are known to be 6010 * volatile wrt too early system reboots. While the 6011 * right place to handle this issue is the given 6012 * driver, we do want to have a safe RAID driver ... 6013 */ 6014 mdelay(1000*1); 6015 } 6016 return NOTIFY_DONE; 6017 } 6018 6019 static struct notifier_block md_notifier = { 6020 .notifier_call = md_notify_reboot, 6021 .next = NULL, 6022 .priority = INT_MAX, /* before any real devices */ 6023 }; 6024 6025 static void md_geninit(void) 6026 { 6027 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 6028 6029 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 6030 } 6031 6032 static int __init md_init(void) 6033 { 6034 if (register_blkdev(MAJOR_NR, "md")) 6035 return -1; 6036 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 6037 unregister_blkdev(MAJOR_NR, "md"); 6038 return -1; 6039 } 6040 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 6041 md_probe, NULL, NULL); 6042 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 6043 md_probe, NULL, NULL); 6044 6045 register_reboot_notifier(&md_notifier); 6046 raid_table_header = register_sysctl_table(raid_root_table); 6047 6048 md_geninit(); 6049 return (0); 6050 } 6051 6052 6053 #ifndef MODULE 6054 6055 /* 6056 * Searches all registered partitions for autorun RAID arrays 6057 * at boot time. 6058 */ 6059 6060 static LIST_HEAD(all_detected_devices); 6061 struct detected_devices_node { 6062 struct list_head list; 6063 dev_t dev; 6064 }; 6065 6066 void md_autodetect_dev(dev_t dev) 6067 { 6068 struct detected_devices_node *node_detected_dev; 6069 6070 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 6071 if (node_detected_dev) { 6072 node_detected_dev->dev = dev; 6073 list_add_tail(&node_detected_dev->list, &all_detected_devices); 6074 } else { 6075 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 6076 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 6077 } 6078 } 6079 6080 6081 static void autostart_arrays(int part) 6082 { 6083 mdk_rdev_t *rdev; 6084 struct detected_devices_node *node_detected_dev; 6085 dev_t dev; 6086 int i_scanned, i_passed; 6087 6088 i_scanned = 0; 6089 i_passed = 0; 6090 6091 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 6092 6093 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 6094 i_scanned++; 6095 node_detected_dev = list_entry(all_detected_devices.next, 6096 struct detected_devices_node, list); 6097 list_del(&node_detected_dev->list); 6098 dev = node_detected_dev->dev; 6099 kfree(node_detected_dev); 6100 rdev = md_import_device(dev,0, 90); 6101 if (IS_ERR(rdev)) 6102 continue; 6103 6104 if (test_bit(Faulty, &rdev->flags)) { 6105 MD_BUG(); 6106 continue; 6107 } 6108 set_bit(AutoDetected, &rdev->flags); 6109 list_add(&rdev->same_set, &pending_raid_disks); 6110 i_passed++; 6111 } 6112 6113 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 6114 i_scanned, i_passed); 6115 6116 autorun_devices(part); 6117 } 6118 6119 #endif /* !MODULE */ 6120 6121 static __exit void md_exit(void) 6122 { 6123 mddev_t *mddev; 6124 struct list_head *tmp; 6125 6126 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 6127 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 6128 6129 unregister_blkdev(MAJOR_NR,"md"); 6130 unregister_blkdev(mdp_major, "mdp"); 6131 unregister_reboot_notifier(&md_notifier); 6132 unregister_sysctl_table(raid_table_header); 6133 remove_proc_entry("mdstat", NULL); 6134 for_each_mddev(mddev, tmp) { 6135 struct gendisk *disk = mddev->gendisk; 6136 if (!disk) 6137 continue; 6138 export_array(mddev); 6139 del_gendisk(disk); 6140 put_disk(disk); 6141 mddev->gendisk = NULL; 6142 mddev_put(mddev); 6143 } 6144 } 6145 6146 subsys_initcall(md_init); 6147 module_exit(md_exit) 6148 6149 static int get_ro(char *buffer, struct kernel_param *kp) 6150 { 6151 return sprintf(buffer, "%d", start_readonly); 6152 } 6153 static int set_ro(const char *val, struct kernel_param *kp) 6154 { 6155 char *e; 6156 int num = simple_strtoul(val, &e, 10); 6157 if (*val && (*e == '\0' || *e == '\n')) { 6158 start_readonly = num; 6159 return 0; 6160 } 6161 return -EINVAL; 6162 } 6163 6164 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 6165 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 6166 6167 6168 EXPORT_SYMBOL(register_md_personality); 6169 EXPORT_SYMBOL(unregister_md_personality); 6170 EXPORT_SYMBOL(md_error); 6171 EXPORT_SYMBOL(md_done_sync); 6172 EXPORT_SYMBOL(md_write_start); 6173 EXPORT_SYMBOL(md_write_end); 6174 EXPORT_SYMBOL(md_register_thread); 6175 EXPORT_SYMBOL(md_unregister_thread); 6176 EXPORT_SYMBOL(md_wakeup_thread); 6177 EXPORT_SYMBOL(md_check_recovery); 6178 MODULE_LICENSE("GPL"); 6179 MODULE_ALIAS("md"); 6180 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 6181