xref: /linux/drivers/md/md.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define for_each_mddev(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 	bio_io_error(bio);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_put(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 	new->resync_max = MaxSector;
279 	new->level = LEVEL_NONE;
280 
281 	new->queue = blk_alloc_queue(GFP_KERNEL);
282 	if (!new->queue) {
283 		kfree(new);
284 		return NULL;
285 	}
286 	/* Can be unlocked because the queue is new: no concurrency */
287 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue);
288 
289 	blk_queue_make_request(new->queue, md_fail_request);
290 
291 	goto retry;
292 }
293 
294 static inline int mddev_lock(mddev_t * mddev)
295 {
296 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
297 }
298 
299 static inline int mddev_trylock(mddev_t * mddev)
300 {
301 	return mutex_trylock(&mddev->reconfig_mutex);
302 }
303 
304 static inline void mddev_unlock(mddev_t * mddev)
305 {
306 	mutex_unlock(&mddev->reconfig_mutex);
307 
308 	md_wakeup_thread(mddev->thread);
309 }
310 
311 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
312 {
313 	mdk_rdev_t * rdev;
314 	struct list_head *tmp;
315 
316 	rdev_for_each(rdev, tmp, mddev) {
317 		if (rdev->desc_nr == nr)
318 			return rdev;
319 	}
320 	return NULL;
321 }
322 
323 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
324 {
325 	struct list_head *tmp;
326 	mdk_rdev_t *rdev;
327 
328 	rdev_for_each(rdev, tmp, mddev) {
329 		if (rdev->bdev->bd_dev == dev)
330 			return rdev;
331 	}
332 	return NULL;
333 }
334 
335 static struct mdk_personality *find_pers(int level, char *clevel)
336 {
337 	struct mdk_personality *pers;
338 	list_for_each_entry(pers, &pers_list, list) {
339 		if (level != LEVEL_NONE && pers->level == level)
340 			return pers;
341 		if (strcmp(pers->name, clevel)==0)
342 			return pers;
343 	}
344 	return NULL;
345 }
346 
347 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
348 {
349 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
350 	return MD_NEW_SIZE_BLOCKS(size);
351 }
352 
353 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
354 {
355 	sector_t size;
356 
357 	size = rdev->sb_offset;
358 
359 	if (chunk_size)
360 		size &= ~((sector_t)chunk_size/1024 - 1);
361 	return size;
362 }
363 
364 static int alloc_disk_sb(mdk_rdev_t * rdev)
365 {
366 	if (rdev->sb_page)
367 		MD_BUG();
368 
369 	rdev->sb_page = alloc_page(GFP_KERNEL);
370 	if (!rdev->sb_page) {
371 		printk(KERN_ALERT "md: out of memory.\n");
372 		return -EINVAL;
373 	}
374 
375 	return 0;
376 }
377 
378 static void free_disk_sb(mdk_rdev_t * rdev)
379 {
380 	if (rdev->sb_page) {
381 		put_page(rdev->sb_page);
382 		rdev->sb_loaded = 0;
383 		rdev->sb_page = NULL;
384 		rdev->sb_offset = 0;
385 		rdev->size = 0;
386 	}
387 }
388 
389 
390 static void super_written(struct bio *bio, int error)
391 {
392 	mdk_rdev_t *rdev = bio->bi_private;
393 	mddev_t *mddev = rdev->mddev;
394 
395 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
396 		printk("md: super_written gets error=%d, uptodate=%d\n",
397 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
398 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
399 		md_error(mddev, rdev);
400 	}
401 
402 	if (atomic_dec_and_test(&mddev->pending_writes))
403 		wake_up(&mddev->sb_wait);
404 	bio_put(bio);
405 }
406 
407 static void super_written_barrier(struct bio *bio, int error)
408 {
409 	struct bio *bio2 = bio->bi_private;
410 	mdk_rdev_t *rdev = bio2->bi_private;
411 	mddev_t *mddev = rdev->mddev;
412 
413 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 	    error == -EOPNOTSUPP) {
415 		unsigned long flags;
416 		/* barriers don't appear to be supported :-( */
417 		set_bit(BarriersNotsupp, &rdev->flags);
418 		mddev->barriers_work = 0;
419 		spin_lock_irqsave(&mddev->write_lock, flags);
420 		bio2->bi_next = mddev->biolist;
421 		mddev->biolist = bio2;
422 		spin_unlock_irqrestore(&mddev->write_lock, flags);
423 		wake_up(&mddev->sb_wait);
424 		bio_put(bio);
425 	} else {
426 		bio_put(bio2);
427 		bio->bi_private = rdev;
428 		super_written(bio, error);
429 	}
430 }
431 
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 		   sector_t sector, int size, struct page *page)
434 {
435 	/* write first size bytes of page to sector of rdev
436 	 * Increment mddev->pending_writes before returning
437 	 * and decrement it on completion, waking up sb_wait
438 	 * if zero is reached.
439 	 * If an error occurred, call md_error
440 	 *
441 	 * As we might need to resubmit the request if BIO_RW_BARRIER
442 	 * causes ENOTSUPP, we allocate a spare bio...
443 	 */
444 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446 
447 	bio->bi_bdev = rdev->bdev;
448 	bio->bi_sector = sector;
449 	bio_add_page(bio, page, size, 0);
450 	bio->bi_private = rdev;
451 	bio->bi_end_io = super_written;
452 	bio->bi_rw = rw;
453 
454 	atomic_inc(&mddev->pending_writes);
455 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 		struct bio *rbio;
457 		rw |= (1<<BIO_RW_BARRIER);
458 		rbio = bio_clone(bio, GFP_NOIO);
459 		rbio->bi_private = bio;
460 		rbio->bi_end_io = super_written_barrier;
461 		submit_bio(rw, rbio);
462 	} else
463 		submit_bio(rw, bio);
464 }
465 
466 void md_super_wait(mddev_t *mddev)
467 {
468 	/* wait for all superblock writes that were scheduled to complete.
469 	 * if any had to be retried (due to BARRIER problems), retry them
470 	 */
471 	DEFINE_WAIT(wq);
472 	for(;;) {
473 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 		if (atomic_read(&mddev->pending_writes)==0)
475 			break;
476 		while (mddev->biolist) {
477 			struct bio *bio;
478 			spin_lock_irq(&mddev->write_lock);
479 			bio = mddev->biolist;
480 			mddev->biolist = bio->bi_next ;
481 			bio->bi_next = NULL;
482 			spin_unlock_irq(&mddev->write_lock);
483 			submit_bio(bio->bi_rw, bio);
484 		}
485 		schedule();
486 	}
487 	finish_wait(&mddev->sb_wait, &wq);
488 }
489 
490 static void bi_complete(struct bio *bio, int error)
491 {
492 	complete((struct completion*)bio->bi_private);
493 }
494 
495 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
496 		   struct page *page, int rw)
497 {
498 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
499 	struct completion event;
500 	int ret;
501 
502 	rw |= (1 << BIO_RW_SYNC);
503 
504 	bio->bi_bdev = bdev;
505 	bio->bi_sector = sector;
506 	bio_add_page(bio, page, size, 0);
507 	init_completion(&event);
508 	bio->bi_private = &event;
509 	bio->bi_end_io = bi_complete;
510 	submit_bio(rw, bio);
511 	wait_for_completion(&event);
512 
513 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
514 	bio_put(bio);
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(sync_page_io);
518 
519 static int read_disk_sb(mdk_rdev_t * rdev, int size)
520 {
521 	char b[BDEVNAME_SIZE];
522 	if (!rdev->sb_page) {
523 		MD_BUG();
524 		return -EINVAL;
525 	}
526 	if (rdev->sb_loaded)
527 		return 0;
528 
529 
530 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
531 		goto fail;
532 	rdev->sb_loaded = 1;
533 	return 0;
534 
535 fail:
536 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
537 		bdevname(rdev->bdev,b));
538 	return -EINVAL;
539 }
540 
541 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
542 {
543 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
544 		(sb1->set_uuid1 == sb2->set_uuid1) &&
545 		(sb1->set_uuid2 == sb2->set_uuid2) &&
546 		(sb1->set_uuid3 == sb2->set_uuid3))
547 
548 		return 1;
549 
550 	return 0;
551 }
552 
553 
554 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
555 {
556 	int ret;
557 	mdp_super_t *tmp1, *tmp2;
558 
559 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
560 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
561 
562 	if (!tmp1 || !tmp2) {
563 		ret = 0;
564 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
565 		goto abort;
566 	}
567 
568 	*tmp1 = *sb1;
569 	*tmp2 = *sb2;
570 
571 	/*
572 	 * nr_disks is not constant
573 	 */
574 	tmp1->nr_disks = 0;
575 	tmp2->nr_disks = 0;
576 
577 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
578 		ret = 0;
579 	else
580 		ret = 1;
581 
582 abort:
583 	kfree(tmp1);
584 	kfree(tmp2);
585 	return ret;
586 }
587 
588 
589 static u32 md_csum_fold(u32 csum)
590 {
591 	csum = (csum & 0xffff) + (csum >> 16);
592 	return (csum & 0xffff) + (csum >> 16);
593 }
594 
595 static unsigned int calc_sb_csum(mdp_super_t * sb)
596 {
597 	u64 newcsum = 0;
598 	u32 *sb32 = (u32*)sb;
599 	int i;
600 	unsigned int disk_csum, csum;
601 
602 	disk_csum = sb->sb_csum;
603 	sb->sb_csum = 0;
604 
605 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
606 		newcsum += sb32[i];
607 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
608 
609 
610 #ifdef CONFIG_ALPHA
611 	/* This used to use csum_partial, which was wrong for several
612 	 * reasons including that different results are returned on
613 	 * different architectures.  It isn't critical that we get exactly
614 	 * the same return value as before (we always csum_fold before
615 	 * testing, and that removes any differences).  However as we
616 	 * know that csum_partial always returned a 16bit value on
617 	 * alphas, do a fold to maximise conformity to previous behaviour.
618 	 */
619 	sb->sb_csum = md_csum_fold(disk_csum);
620 #else
621 	sb->sb_csum = disk_csum;
622 #endif
623 	return csum;
624 }
625 
626 
627 /*
628  * Handle superblock details.
629  * We want to be able to handle multiple superblock formats
630  * so we have a common interface to them all, and an array of
631  * different handlers.
632  * We rely on user-space to write the initial superblock, and support
633  * reading and updating of superblocks.
634  * Interface methods are:
635  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
636  *      loads and validates a superblock on dev.
637  *      if refdev != NULL, compare superblocks on both devices
638  *    Return:
639  *      0 - dev has a superblock that is compatible with refdev
640  *      1 - dev has a superblock that is compatible and newer than refdev
641  *          so dev should be used as the refdev in future
642  *     -EINVAL superblock incompatible or invalid
643  *     -othererror e.g. -EIO
644  *
645  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
646  *      Verify that dev is acceptable into mddev.
647  *       The first time, mddev->raid_disks will be 0, and data from
648  *       dev should be merged in.  Subsequent calls check that dev
649  *       is new enough.  Return 0 or -EINVAL
650  *
651  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
652  *     Update the superblock for rdev with data in mddev
653  *     This does not write to disc.
654  *
655  */
656 
657 struct super_type  {
658 	char 		*name;
659 	struct module	*owner;
660 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
661 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
662 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
663 };
664 
665 /*
666  * load_super for 0.90.0
667  */
668 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
669 {
670 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
671 	mdp_super_t *sb;
672 	int ret;
673 	sector_t sb_offset;
674 
675 	/*
676 	 * Calculate the position of the superblock,
677 	 * it's at the end of the disk.
678 	 *
679 	 * It also happens to be a multiple of 4Kb.
680 	 */
681 	sb_offset = calc_dev_sboffset(rdev->bdev);
682 	rdev->sb_offset = sb_offset;
683 
684 	ret = read_disk_sb(rdev, MD_SB_BYTES);
685 	if (ret) return ret;
686 
687 	ret = -EINVAL;
688 
689 	bdevname(rdev->bdev, b);
690 	sb = (mdp_super_t*)page_address(rdev->sb_page);
691 
692 	if (sb->md_magic != MD_SB_MAGIC) {
693 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
694 		       b);
695 		goto abort;
696 	}
697 
698 	if (sb->major_version != 0 ||
699 	    sb->minor_version < 90 ||
700 	    sb->minor_version > 91) {
701 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
702 			sb->major_version, sb->minor_version,
703 			b);
704 		goto abort;
705 	}
706 
707 	if (sb->raid_disks <= 0)
708 		goto abort;
709 
710 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
711 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
712 			b);
713 		goto abort;
714 	}
715 
716 	rdev->preferred_minor = sb->md_minor;
717 	rdev->data_offset = 0;
718 	rdev->sb_size = MD_SB_BYTES;
719 
720 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
721 		if (sb->level != 1 && sb->level != 4
722 		    && sb->level != 5 && sb->level != 6
723 		    && sb->level != 10) {
724 			/* FIXME use a better test */
725 			printk(KERN_WARNING
726 			       "md: bitmaps not supported for this level.\n");
727 			goto abort;
728 		}
729 	}
730 
731 	if (sb->level == LEVEL_MULTIPATH)
732 		rdev->desc_nr = -1;
733 	else
734 		rdev->desc_nr = sb->this_disk.number;
735 
736 	if (!refdev) {
737 		ret = 1;
738 	} else {
739 		__u64 ev1, ev2;
740 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
741 		if (!uuid_equal(refsb, sb)) {
742 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
743 				b, bdevname(refdev->bdev,b2));
744 			goto abort;
745 		}
746 		if (!sb_equal(refsb, sb)) {
747 			printk(KERN_WARNING "md: %s has same UUID"
748 			       " but different superblock to %s\n",
749 			       b, bdevname(refdev->bdev, b2));
750 			goto abort;
751 		}
752 		ev1 = md_event(sb);
753 		ev2 = md_event(refsb);
754 		if (ev1 > ev2)
755 			ret = 1;
756 		else
757 			ret = 0;
758 	}
759 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
760 
761 	if (rdev->size < sb->size && sb->level > 1)
762 		/* "this cannot possibly happen" ... */
763 		ret = -EINVAL;
764 
765  abort:
766 	return ret;
767 }
768 
769 /*
770  * validate_super for 0.90.0
771  */
772 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
773 {
774 	mdp_disk_t *desc;
775 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
776 	__u64 ev1 = md_event(sb);
777 
778 	rdev->raid_disk = -1;
779 	clear_bit(Faulty, &rdev->flags);
780 	clear_bit(In_sync, &rdev->flags);
781 	clear_bit(WriteMostly, &rdev->flags);
782 	clear_bit(BarriersNotsupp, &rdev->flags);
783 
784 	if (mddev->raid_disks == 0) {
785 		mddev->major_version = 0;
786 		mddev->minor_version = sb->minor_version;
787 		mddev->patch_version = sb->patch_version;
788 		mddev->external = 0;
789 		mddev->chunk_size = sb->chunk_size;
790 		mddev->ctime = sb->ctime;
791 		mddev->utime = sb->utime;
792 		mddev->level = sb->level;
793 		mddev->clevel[0] = 0;
794 		mddev->layout = sb->layout;
795 		mddev->raid_disks = sb->raid_disks;
796 		mddev->size = sb->size;
797 		mddev->events = ev1;
798 		mddev->bitmap_offset = 0;
799 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
800 
801 		if (mddev->minor_version >= 91) {
802 			mddev->reshape_position = sb->reshape_position;
803 			mddev->delta_disks = sb->delta_disks;
804 			mddev->new_level = sb->new_level;
805 			mddev->new_layout = sb->new_layout;
806 			mddev->new_chunk = sb->new_chunk;
807 		} else {
808 			mddev->reshape_position = MaxSector;
809 			mddev->delta_disks = 0;
810 			mddev->new_level = mddev->level;
811 			mddev->new_layout = mddev->layout;
812 			mddev->new_chunk = mddev->chunk_size;
813 		}
814 
815 		if (sb->state & (1<<MD_SB_CLEAN))
816 			mddev->recovery_cp = MaxSector;
817 		else {
818 			if (sb->events_hi == sb->cp_events_hi &&
819 				sb->events_lo == sb->cp_events_lo) {
820 				mddev->recovery_cp = sb->recovery_cp;
821 			} else
822 				mddev->recovery_cp = 0;
823 		}
824 
825 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
826 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
827 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
828 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
829 
830 		mddev->max_disks = MD_SB_DISKS;
831 
832 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
833 		    mddev->bitmap_file == NULL)
834 			mddev->bitmap_offset = mddev->default_bitmap_offset;
835 
836 	} else if (mddev->pers == NULL) {
837 		/* Insist on good event counter while assembling */
838 		++ev1;
839 		if (ev1 < mddev->events)
840 			return -EINVAL;
841 	} else if (mddev->bitmap) {
842 		/* if adding to array with a bitmap, then we can accept an
843 		 * older device ... but not too old.
844 		 */
845 		if (ev1 < mddev->bitmap->events_cleared)
846 			return 0;
847 	} else {
848 		if (ev1 < mddev->events)
849 			/* just a hot-add of a new device, leave raid_disk at -1 */
850 			return 0;
851 	}
852 
853 	if (mddev->level != LEVEL_MULTIPATH) {
854 		desc = sb->disks + rdev->desc_nr;
855 
856 		if (desc->state & (1<<MD_DISK_FAULTY))
857 			set_bit(Faulty, &rdev->flags);
858 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
859 			    desc->raid_disk < mddev->raid_disks */) {
860 			set_bit(In_sync, &rdev->flags);
861 			rdev->raid_disk = desc->raid_disk;
862 		}
863 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
864 			set_bit(WriteMostly, &rdev->flags);
865 	} else /* MULTIPATH are always insync */
866 		set_bit(In_sync, &rdev->flags);
867 	return 0;
868 }
869 
870 /*
871  * sync_super for 0.90.0
872  */
873 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
874 {
875 	mdp_super_t *sb;
876 	struct list_head *tmp;
877 	mdk_rdev_t *rdev2;
878 	int next_spare = mddev->raid_disks;
879 
880 
881 	/* make rdev->sb match mddev data..
882 	 *
883 	 * 1/ zero out disks
884 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
885 	 * 3/ any empty disks < next_spare become removed
886 	 *
887 	 * disks[0] gets initialised to REMOVED because
888 	 * we cannot be sure from other fields if it has
889 	 * been initialised or not.
890 	 */
891 	int i;
892 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
893 
894 	rdev->sb_size = MD_SB_BYTES;
895 
896 	sb = (mdp_super_t*)page_address(rdev->sb_page);
897 
898 	memset(sb, 0, sizeof(*sb));
899 
900 	sb->md_magic = MD_SB_MAGIC;
901 	sb->major_version = mddev->major_version;
902 	sb->patch_version = mddev->patch_version;
903 	sb->gvalid_words  = 0; /* ignored */
904 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
905 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
906 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
907 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
908 
909 	sb->ctime = mddev->ctime;
910 	sb->level = mddev->level;
911 	sb->size  = mddev->size;
912 	sb->raid_disks = mddev->raid_disks;
913 	sb->md_minor = mddev->md_minor;
914 	sb->not_persistent = 0;
915 	sb->utime = mddev->utime;
916 	sb->state = 0;
917 	sb->events_hi = (mddev->events>>32);
918 	sb->events_lo = (u32)mddev->events;
919 
920 	if (mddev->reshape_position == MaxSector)
921 		sb->minor_version = 90;
922 	else {
923 		sb->minor_version = 91;
924 		sb->reshape_position = mddev->reshape_position;
925 		sb->new_level = mddev->new_level;
926 		sb->delta_disks = mddev->delta_disks;
927 		sb->new_layout = mddev->new_layout;
928 		sb->new_chunk = mddev->new_chunk;
929 	}
930 	mddev->minor_version = sb->minor_version;
931 	if (mddev->in_sync)
932 	{
933 		sb->recovery_cp = mddev->recovery_cp;
934 		sb->cp_events_hi = (mddev->events>>32);
935 		sb->cp_events_lo = (u32)mddev->events;
936 		if (mddev->recovery_cp == MaxSector)
937 			sb->state = (1<< MD_SB_CLEAN);
938 	} else
939 		sb->recovery_cp = 0;
940 
941 	sb->layout = mddev->layout;
942 	sb->chunk_size = mddev->chunk_size;
943 
944 	if (mddev->bitmap && mddev->bitmap_file == NULL)
945 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
946 
947 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
948 	rdev_for_each(rdev2, tmp, mddev) {
949 		mdp_disk_t *d;
950 		int desc_nr;
951 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
952 		    && !test_bit(Faulty, &rdev2->flags))
953 			desc_nr = rdev2->raid_disk;
954 		else
955 			desc_nr = next_spare++;
956 		rdev2->desc_nr = desc_nr;
957 		d = &sb->disks[rdev2->desc_nr];
958 		nr_disks++;
959 		d->number = rdev2->desc_nr;
960 		d->major = MAJOR(rdev2->bdev->bd_dev);
961 		d->minor = MINOR(rdev2->bdev->bd_dev);
962 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
963 		    && !test_bit(Faulty, &rdev2->flags))
964 			d->raid_disk = rdev2->raid_disk;
965 		else
966 			d->raid_disk = rdev2->desc_nr; /* compatibility */
967 		if (test_bit(Faulty, &rdev2->flags))
968 			d->state = (1<<MD_DISK_FAULTY);
969 		else if (test_bit(In_sync, &rdev2->flags)) {
970 			d->state = (1<<MD_DISK_ACTIVE);
971 			d->state |= (1<<MD_DISK_SYNC);
972 			active++;
973 			working++;
974 		} else {
975 			d->state = 0;
976 			spare++;
977 			working++;
978 		}
979 		if (test_bit(WriteMostly, &rdev2->flags))
980 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
981 	}
982 	/* now set the "removed" and "faulty" bits on any missing devices */
983 	for (i=0 ; i < mddev->raid_disks ; i++) {
984 		mdp_disk_t *d = &sb->disks[i];
985 		if (d->state == 0 && d->number == 0) {
986 			d->number = i;
987 			d->raid_disk = i;
988 			d->state = (1<<MD_DISK_REMOVED);
989 			d->state |= (1<<MD_DISK_FAULTY);
990 			failed++;
991 		}
992 	}
993 	sb->nr_disks = nr_disks;
994 	sb->active_disks = active;
995 	sb->working_disks = working;
996 	sb->failed_disks = failed;
997 	sb->spare_disks = spare;
998 
999 	sb->this_disk = sb->disks[rdev->desc_nr];
1000 	sb->sb_csum = calc_sb_csum(sb);
1001 }
1002 
1003 /*
1004  * version 1 superblock
1005  */
1006 
1007 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1008 {
1009 	__le32 disk_csum;
1010 	u32 csum;
1011 	unsigned long long newcsum;
1012 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1013 	__le32 *isuper = (__le32*)sb;
1014 	int i;
1015 
1016 	disk_csum = sb->sb_csum;
1017 	sb->sb_csum = 0;
1018 	newcsum = 0;
1019 	for (i=0; size>=4; size -= 4 )
1020 		newcsum += le32_to_cpu(*isuper++);
1021 
1022 	if (size == 2)
1023 		newcsum += le16_to_cpu(*(__le16*) isuper);
1024 
1025 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1026 	sb->sb_csum = disk_csum;
1027 	return cpu_to_le32(csum);
1028 }
1029 
1030 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1031 {
1032 	struct mdp_superblock_1 *sb;
1033 	int ret;
1034 	sector_t sb_offset;
1035 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1036 	int bmask;
1037 
1038 	/*
1039 	 * Calculate the position of the superblock.
1040 	 * It is always aligned to a 4K boundary and
1041 	 * depeding on minor_version, it can be:
1042 	 * 0: At least 8K, but less than 12K, from end of device
1043 	 * 1: At start of device
1044 	 * 2: 4K from start of device.
1045 	 */
1046 	switch(minor_version) {
1047 	case 0:
1048 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1049 		sb_offset -= 8*2;
1050 		sb_offset &= ~(sector_t)(4*2-1);
1051 		/* convert from sectors to K */
1052 		sb_offset /= 2;
1053 		break;
1054 	case 1:
1055 		sb_offset = 0;
1056 		break;
1057 	case 2:
1058 		sb_offset = 4;
1059 		break;
1060 	default:
1061 		return -EINVAL;
1062 	}
1063 	rdev->sb_offset = sb_offset;
1064 
1065 	/* superblock is rarely larger than 1K, but it can be larger,
1066 	 * and it is safe to read 4k, so we do that
1067 	 */
1068 	ret = read_disk_sb(rdev, 4096);
1069 	if (ret) return ret;
1070 
1071 
1072 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1073 
1074 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1075 	    sb->major_version != cpu_to_le32(1) ||
1076 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1077 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1078 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1079 		return -EINVAL;
1080 
1081 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1082 		printk("md: invalid superblock checksum on %s\n",
1083 			bdevname(rdev->bdev,b));
1084 		return -EINVAL;
1085 	}
1086 	if (le64_to_cpu(sb->data_size) < 10) {
1087 		printk("md: data_size too small on %s\n",
1088 		       bdevname(rdev->bdev,b));
1089 		return -EINVAL;
1090 	}
1091 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1092 		if (sb->level != cpu_to_le32(1) &&
1093 		    sb->level != cpu_to_le32(4) &&
1094 		    sb->level != cpu_to_le32(5) &&
1095 		    sb->level != cpu_to_le32(6) &&
1096 		    sb->level != cpu_to_le32(10)) {
1097 			printk(KERN_WARNING
1098 			       "md: bitmaps not supported for this level.\n");
1099 			return -EINVAL;
1100 		}
1101 	}
1102 
1103 	rdev->preferred_minor = 0xffff;
1104 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1105 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1106 
1107 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1108 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1109 	if (rdev->sb_size & bmask)
1110 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1111 
1112 	if (minor_version
1113 	    && rdev->data_offset < sb_offset + (rdev->sb_size/512))
1114 		return -EINVAL;
1115 
1116 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1117 		rdev->desc_nr = -1;
1118 	else
1119 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1120 
1121 	if (!refdev) {
1122 		ret = 1;
1123 	} else {
1124 		__u64 ev1, ev2;
1125 		struct mdp_superblock_1 *refsb =
1126 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1127 
1128 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1129 		    sb->level != refsb->level ||
1130 		    sb->layout != refsb->layout ||
1131 		    sb->chunksize != refsb->chunksize) {
1132 			printk(KERN_WARNING "md: %s has strangely different"
1133 				" superblock to %s\n",
1134 				bdevname(rdev->bdev,b),
1135 				bdevname(refdev->bdev,b2));
1136 			return -EINVAL;
1137 		}
1138 		ev1 = le64_to_cpu(sb->events);
1139 		ev2 = le64_to_cpu(refsb->events);
1140 
1141 		if (ev1 > ev2)
1142 			ret = 1;
1143 		else
1144 			ret = 0;
1145 	}
1146 	if (minor_version)
1147 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1148 	else
1149 		rdev->size = rdev->sb_offset;
1150 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1151 		return -EINVAL;
1152 	rdev->size = le64_to_cpu(sb->data_size)/2;
1153 	if (le32_to_cpu(sb->chunksize))
1154 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1155 
1156 	if (le64_to_cpu(sb->size) > rdev->size*2)
1157 		return -EINVAL;
1158 	return ret;
1159 }
1160 
1161 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1162 {
1163 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1164 	__u64 ev1 = le64_to_cpu(sb->events);
1165 
1166 	rdev->raid_disk = -1;
1167 	clear_bit(Faulty, &rdev->flags);
1168 	clear_bit(In_sync, &rdev->flags);
1169 	clear_bit(WriteMostly, &rdev->flags);
1170 	clear_bit(BarriersNotsupp, &rdev->flags);
1171 
1172 	if (mddev->raid_disks == 0) {
1173 		mddev->major_version = 1;
1174 		mddev->patch_version = 0;
1175 		mddev->external = 0;
1176 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1177 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1178 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1179 		mddev->level = le32_to_cpu(sb->level);
1180 		mddev->clevel[0] = 0;
1181 		mddev->layout = le32_to_cpu(sb->layout);
1182 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1183 		mddev->size = le64_to_cpu(sb->size)/2;
1184 		mddev->events = ev1;
1185 		mddev->bitmap_offset = 0;
1186 		mddev->default_bitmap_offset = 1024 >> 9;
1187 
1188 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1189 		memcpy(mddev->uuid, sb->set_uuid, 16);
1190 
1191 		mddev->max_disks =  (4096-256)/2;
1192 
1193 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1194 		    mddev->bitmap_file == NULL )
1195 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1196 
1197 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1198 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1199 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1200 			mddev->new_level = le32_to_cpu(sb->new_level);
1201 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1202 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1203 		} else {
1204 			mddev->reshape_position = MaxSector;
1205 			mddev->delta_disks = 0;
1206 			mddev->new_level = mddev->level;
1207 			mddev->new_layout = mddev->layout;
1208 			mddev->new_chunk = mddev->chunk_size;
1209 		}
1210 
1211 	} else if (mddev->pers == NULL) {
1212 		/* Insist of good event counter while assembling */
1213 		++ev1;
1214 		if (ev1 < mddev->events)
1215 			return -EINVAL;
1216 	} else if (mddev->bitmap) {
1217 		/* If adding to array with a bitmap, then we can accept an
1218 		 * older device, but not too old.
1219 		 */
1220 		if (ev1 < mddev->bitmap->events_cleared)
1221 			return 0;
1222 	} else {
1223 		if (ev1 < mddev->events)
1224 			/* just a hot-add of a new device, leave raid_disk at -1 */
1225 			return 0;
1226 	}
1227 	if (mddev->level != LEVEL_MULTIPATH) {
1228 		int role;
1229 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1230 		switch(role) {
1231 		case 0xffff: /* spare */
1232 			break;
1233 		case 0xfffe: /* faulty */
1234 			set_bit(Faulty, &rdev->flags);
1235 			break;
1236 		default:
1237 			if ((le32_to_cpu(sb->feature_map) &
1238 			     MD_FEATURE_RECOVERY_OFFSET))
1239 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1240 			else
1241 				set_bit(In_sync, &rdev->flags);
1242 			rdev->raid_disk = role;
1243 			break;
1244 		}
1245 		if (sb->devflags & WriteMostly1)
1246 			set_bit(WriteMostly, &rdev->flags);
1247 	} else /* MULTIPATH are always insync */
1248 		set_bit(In_sync, &rdev->flags);
1249 
1250 	return 0;
1251 }
1252 
1253 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1254 {
1255 	struct mdp_superblock_1 *sb;
1256 	struct list_head *tmp;
1257 	mdk_rdev_t *rdev2;
1258 	int max_dev, i;
1259 	/* make rdev->sb match mddev and rdev data. */
1260 
1261 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 
1263 	sb->feature_map = 0;
1264 	sb->pad0 = 0;
1265 	sb->recovery_offset = cpu_to_le64(0);
1266 	memset(sb->pad1, 0, sizeof(sb->pad1));
1267 	memset(sb->pad2, 0, sizeof(sb->pad2));
1268 	memset(sb->pad3, 0, sizeof(sb->pad3));
1269 
1270 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1271 	sb->events = cpu_to_le64(mddev->events);
1272 	if (mddev->in_sync)
1273 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1274 	else
1275 		sb->resync_offset = cpu_to_le64(0);
1276 
1277 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1278 
1279 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1280 	sb->size = cpu_to_le64(mddev->size<<1);
1281 
1282 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1283 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1284 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1285 	}
1286 
1287 	if (rdev->raid_disk >= 0 &&
1288 	    !test_bit(In_sync, &rdev->flags) &&
1289 	    rdev->recovery_offset > 0) {
1290 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1291 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1292 	}
1293 
1294 	if (mddev->reshape_position != MaxSector) {
1295 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1296 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1297 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1298 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1299 		sb->new_level = cpu_to_le32(mddev->new_level);
1300 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1301 	}
1302 
1303 	max_dev = 0;
1304 	rdev_for_each(rdev2, tmp, mddev)
1305 		if (rdev2->desc_nr+1 > max_dev)
1306 			max_dev = rdev2->desc_nr+1;
1307 
1308 	if (max_dev > le32_to_cpu(sb->max_dev))
1309 		sb->max_dev = cpu_to_le32(max_dev);
1310 	for (i=0; i<max_dev;i++)
1311 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1312 
1313 	rdev_for_each(rdev2, tmp, mddev) {
1314 		i = rdev2->desc_nr;
1315 		if (test_bit(Faulty, &rdev2->flags))
1316 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1317 		else if (test_bit(In_sync, &rdev2->flags))
1318 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1319 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1320 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1321 		else
1322 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1323 	}
1324 
1325 	sb->sb_csum = calc_sb_1_csum(sb);
1326 }
1327 
1328 
1329 static struct super_type super_types[] = {
1330 	[0] = {
1331 		.name	= "0.90.0",
1332 		.owner	= THIS_MODULE,
1333 		.load_super	= super_90_load,
1334 		.validate_super	= super_90_validate,
1335 		.sync_super	= super_90_sync,
1336 	},
1337 	[1] = {
1338 		.name	= "md-1",
1339 		.owner	= THIS_MODULE,
1340 		.load_super	= super_1_load,
1341 		.validate_super	= super_1_validate,
1342 		.sync_super	= super_1_sync,
1343 	},
1344 };
1345 
1346 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1347 {
1348 	struct list_head *tmp, *tmp2;
1349 	mdk_rdev_t *rdev, *rdev2;
1350 
1351 	rdev_for_each(rdev, tmp, mddev1)
1352 		rdev_for_each(rdev2, tmp2, mddev2)
1353 			if (rdev->bdev->bd_contains ==
1354 			    rdev2->bdev->bd_contains)
1355 				return 1;
1356 
1357 	return 0;
1358 }
1359 
1360 static LIST_HEAD(pending_raid_disks);
1361 
1362 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1363 {
1364 	char b[BDEVNAME_SIZE];
1365 	struct kobject *ko;
1366 	char *s;
1367 	int err;
1368 
1369 	if (rdev->mddev) {
1370 		MD_BUG();
1371 		return -EINVAL;
1372 	}
1373 
1374 	/* prevent duplicates */
1375 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1376 		return -EEXIST;
1377 
1378 	/* make sure rdev->size exceeds mddev->size */
1379 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1380 		if (mddev->pers) {
1381 			/* Cannot change size, so fail
1382 			 * If mddev->level <= 0, then we don't care
1383 			 * about aligning sizes (e.g. linear)
1384 			 */
1385 			if (mddev->level > 0)
1386 				return -ENOSPC;
1387 		} else
1388 			mddev->size = rdev->size;
1389 	}
1390 
1391 	/* Verify rdev->desc_nr is unique.
1392 	 * If it is -1, assign a free number, else
1393 	 * check number is not in use
1394 	 */
1395 	if (rdev->desc_nr < 0) {
1396 		int choice = 0;
1397 		if (mddev->pers) choice = mddev->raid_disks;
1398 		while (find_rdev_nr(mddev, choice))
1399 			choice++;
1400 		rdev->desc_nr = choice;
1401 	} else {
1402 		if (find_rdev_nr(mddev, rdev->desc_nr))
1403 			return -EBUSY;
1404 	}
1405 	bdevname(rdev->bdev,b);
1406 	while ( (s=strchr(b, '/')) != NULL)
1407 		*s = '!';
1408 
1409 	rdev->mddev = mddev;
1410 	printk(KERN_INFO "md: bind<%s>\n", b);
1411 
1412 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1413 		goto fail;
1414 
1415 	if (rdev->bdev->bd_part)
1416 		ko = &rdev->bdev->bd_part->dev.kobj;
1417 	else
1418 		ko = &rdev->bdev->bd_disk->dev.kobj;
1419 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1420 		kobject_del(&rdev->kobj);
1421 		goto fail;
1422 	}
1423 	list_add(&rdev->same_set, &mddev->disks);
1424 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1425 	return 0;
1426 
1427  fail:
1428 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1429 	       b, mdname(mddev));
1430 	return err;
1431 }
1432 
1433 static void md_delayed_delete(struct work_struct *ws)
1434 {
1435 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1436 	kobject_del(&rdev->kobj);
1437 	kobject_put(&rdev->kobj);
1438 }
1439 
1440 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1441 {
1442 	char b[BDEVNAME_SIZE];
1443 	if (!rdev->mddev) {
1444 		MD_BUG();
1445 		return;
1446 	}
1447 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1448 	list_del_init(&rdev->same_set);
1449 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1450 	rdev->mddev = NULL;
1451 	sysfs_remove_link(&rdev->kobj, "block");
1452 
1453 	/* We need to delay this, otherwise we can deadlock when
1454 	 * writing to 'remove' to "dev/state"
1455 	 */
1456 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1457 	kobject_get(&rdev->kobj);
1458 	schedule_work(&rdev->del_work);
1459 }
1460 
1461 /*
1462  * prevent the device from being mounted, repartitioned or
1463  * otherwise reused by a RAID array (or any other kernel
1464  * subsystem), by bd_claiming the device.
1465  */
1466 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1467 {
1468 	int err = 0;
1469 	struct block_device *bdev;
1470 	char b[BDEVNAME_SIZE];
1471 
1472 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1473 	if (IS_ERR(bdev)) {
1474 		printk(KERN_ERR "md: could not open %s.\n",
1475 			__bdevname(dev, b));
1476 		return PTR_ERR(bdev);
1477 	}
1478 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1479 	if (err) {
1480 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1481 			bdevname(bdev, b));
1482 		blkdev_put(bdev);
1483 		return err;
1484 	}
1485 	if (!shared)
1486 		set_bit(AllReserved, &rdev->flags);
1487 	rdev->bdev = bdev;
1488 	return err;
1489 }
1490 
1491 static void unlock_rdev(mdk_rdev_t *rdev)
1492 {
1493 	struct block_device *bdev = rdev->bdev;
1494 	rdev->bdev = NULL;
1495 	if (!bdev)
1496 		MD_BUG();
1497 	bd_release(bdev);
1498 	blkdev_put(bdev);
1499 }
1500 
1501 void md_autodetect_dev(dev_t dev);
1502 
1503 static void export_rdev(mdk_rdev_t * rdev)
1504 {
1505 	char b[BDEVNAME_SIZE];
1506 	printk(KERN_INFO "md: export_rdev(%s)\n",
1507 		bdevname(rdev->bdev,b));
1508 	if (rdev->mddev)
1509 		MD_BUG();
1510 	free_disk_sb(rdev);
1511 	list_del_init(&rdev->same_set);
1512 #ifndef MODULE
1513 	if (test_bit(AutoDetected, &rdev->flags))
1514 		md_autodetect_dev(rdev->bdev->bd_dev);
1515 #endif
1516 	unlock_rdev(rdev);
1517 	kobject_put(&rdev->kobj);
1518 }
1519 
1520 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1521 {
1522 	unbind_rdev_from_array(rdev);
1523 	export_rdev(rdev);
1524 }
1525 
1526 static void export_array(mddev_t *mddev)
1527 {
1528 	struct list_head *tmp;
1529 	mdk_rdev_t *rdev;
1530 
1531 	rdev_for_each(rdev, tmp, mddev) {
1532 		if (!rdev->mddev) {
1533 			MD_BUG();
1534 			continue;
1535 		}
1536 		kick_rdev_from_array(rdev);
1537 	}
1538 	if (!list_empty(&mddev->disks))
1539 		MD_BUG();
1540 	mddev->raid_disks = 0;
1541 	mddev->major_version = 0;
1542 }
1543 
1544 static void print_desc(mdp_disk_t *desc)
1545 {
1546 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1547 		desc->major,desc->minor,desc->raid_disk,desc->state);
1548 }
1549 
1550 static void print_sb(mdp_super_t *sb)
1551 {
1552 	int i;
1553 
1554 	printk(KERN_INFO
1555 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1556 		sb->major_version, sb->minor_version, sb->patch_version,
1557 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1558 		sb->ctime);
1559 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1560 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1561 		sb->md_minor, sb->layout, sb->chunk_size);
1562 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1563 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1564 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1565 		sb->failed_disks, sb->spare_disks,
1566 		sb->sb_csum, (unsigned long)sb->events_lo);
1567 
1568 	printk(KERN_INFO);
1569 	for (i = 0; i < MD_SB_DISKS; i++) {
1570 		mdp_disk_t *desc;
1571 
1572 		desc = sb->disks + i;
1573 		if (desc->number || desc->major || desc->minor ||
1574 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1575 			printk("     D %2d: ", i);
1576 			print_desc(desc);
1577 		}
1578 	}
1579 	printk(KERN_INFO "md:     THIS: ");
1580 	print_desc(&sb->this_disk);
1581 
1582 }
1583 
1584 static void print_rdev(mdk_rdev_t *rdev)
1585 {
1586 	char b[BDEVNAME_SIZE];
1587 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1588 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1589 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1590 	        rdev->desc_nr);
1591 	if (rdev->sb_loaded) {
1592 		printk(KERN_INFO "md: rdev superblock:\n");
1593 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1594 	} else
1595 		printk(KERN_INFO "md: no rdev superblock!\n");
1596 }
1597 
1598 static void md_print_devices(void)
1599 {
1600 	struct list_head *tmp, *tmp2;
1601 	mdk_rdev_t *rdev;
1602 	mddev_t *mddev;
1603 	char b[BDEVNAME_SIZE];
1604 
1605 	printk("\n");
1606 	printk("md:	**********************************\n");
1607 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1608 	printk("md:	**********************************\n");
1609 	for_each_mddev(mddev, tmp) {
1610 
1611 		if (mddev->bitmap)
1612 			bitmap_print_sb(mddev->bitmap);
1613 		else
1614 			printk("%s: ", mdname(mddev));
1615 		rdev_for_each(rdev, tmp2, mddev)
1616 			printk("<%s>", bdevname(rdev->bdev,b));
1617 		printk("\n");
1618 
1619 		rdev_for_each(rdev, tmp2, mddev)
1620 			print_rdev(rdev);
1621 	}
1622 	printk("md:	**********************************\n");
1623 	printk("\n");
1624 }
1625 
1626 
1627 static void sync_sbs(mddev_t * mddev, int nospares)
1628 {
1629 	/* Update each superblock (in-memory image), but
1630 	 * if we are allowed to, skip spares which already
1631 	 * have the right event counter, or have one earlier
1632 	 * (which would mean they aren't being marked as dirty
1633 	 * with the rest of the array)
1634 	 */
1635 	mdk_rdev_t *rdev;
1636 	struct list_head *tmp;
1637 
1638 	rdev_for_each(rdev, tmp, mddev) {
1639 		if (rdev->sb_events == mddev->events ||
1640 		    (nospares &&
1641 		     rdev->raid_disk < 0 &&
1642 		     (rdev->sb_events&1)==0 &&
1643 		     rdev->sb_events+1 == mddev->events)) {
1644 			/* Don't update this superblock */
1645 			rdev->sb_loaded = 2;
1646 		} else {
1647 			super_types[mddev->major_version].
1648 				sync_super(mddev, rdev);
1649 			rdev->sb_loaded = 1;
1650 		}
1651 	}
1652 }
1653 
1654 static void md_update_sb(mddev_t * mddev, int force_change)
1655 {
1656 	struct list_head *tmp;
1657 	mdk_rdev_t *rdev;
1658 	int sync_req;
1659 	int nospares = 0;
1660 
1661 	if (mddev->external)
1662 		return;
1663 repeat:
1664 	spin_lock_irq(&mddev->write_lock);
1665 
1666 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1667 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1668 		force_change = 1;
1669 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1670 		/* just a clean<-> dirty transition, possibly leave spares alone,
1671 		 * though if events isn't the right even/odd, we will have to do
1672 		 * spares after all
1673 		 */
1674 		nospares = 1;
1675 	if (force_change)
1676 		nospares = 0;
1677 	if (mddev->degraded)
1678 		/* If the array is degraded, then skipping spares is both
1679 		 * dangerous and fairly pointless.
1680 		 * Dangerous because a device that was removed from the array
1681 		 * might have a event_count that still looks up-to-date,
1682 		 * so it can be re-added without a resync.
1683 		 * Pointless because if there are any spares to skip,
1684 		 * then a recovery will happen and soon that array won't
1685 		 * be degraded any more and the spare can go back to sleep then.
1686 		 */
1687 		nospares = 0;
1688 
1689 	sync_req = mddev->in_sync;
1690 	mddev->utime = get_seconds();
1691 
1692 	/* If this is just a dirty<->clean transition, and the array is clean
1693 	 * and 'events' is odd, we can roll back to the previous clean state */
1694 	if (nospares
1695 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1696 	    && (mddev->events & 1)
1697 	    && mddev->events != 1)
1698 		mddev->events--;
1699 	else {
1700 		/* otherwise we have to go forward and ... */
1701 		mddev->events ++;
1702 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1703 			/* .. if the array isn't clean, insist on an odd 'events' */
1704 			if ((mddev->events&1)==0) {
1705 				mddev->events++;
1706 				nospares = 0;
1707 			}
1708 		} else {
1709 			/* otherwise insist on an even 'events' (for clean states) */
1710 			if ((mddev->events&1)) {
1711 				mddev->events++;
1712 				nospares = 0;
1713 			}
1714 		}
1715 	}
1716 
1717 	if (!mddev->events) {
1718 		/*
1719 		 * oops, this 64-bit counter should never wrap.
1720 		 * Either we are in around ~1 trillion A.C., assuming
1721 		 * 1 reboot per second, or we have a bug:
1722 		 */
1723 		MD_BUG();
1724 		mddev->events --;
1725 	}
1726 
1727 	/*
1728 	 * do not write anything to disk if using
1729 	 * nonpersistent superblocks
1730 	 */
1731 	if (!mddev->persistent) {
1732 		if (!mddev->external)
1733 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1734 
1735 		spin_unlock_irq(&mddev->write_lock);
1736 		wake_up(&mddev->sb_wait);
1737 		return;
1738 	}
1739 	sync_sbs(mddev, nospares);
1740 	spin_unlock_irq(&mddev->write_lock);
1741 
1742 	dprintk(KERN_INFO
1743 		"md: updating %s RAID superblock on device (in sync %d)\n",
1744 		mdname(mddev),mddev->in_sync);
1745 
1746 	bitmap_update_sb(mddev->bitmap);
1747 	rdev_for_each(rdev, tmp, mddev) {
1748 		char b[BDEVNAME_SIZE];
1749 		dprintk(KERN_INFO "md: ");
1750 		if (rdev->sb_loaded != 1)
1751 			continue; /* no noise on spare devices */
1752 		if (test_bit(Faulty, &rdev->flags))
1753 			dprintk("(skipping faulty ");
1754 
1755 		dprintk("%s ", bdevname(rdev->bdev,b));
1756 		if (!test_bit(Faulty, &rdev->flags)) {
1757 			md_super_write(mddev,rdev,
1758 				       rdev->sb_offset<<1, rdev->sb_size,
1759 				       rdev->sb_page);
1760 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1761 				bdevname(rdev->bdev,b),
1762 				(unsigned long long)rdev->sb_offset);
1763 			rdev->sb_events = mddev->events;
1764 
1765 		} else
1766 			dprintk(")\n");
1767 		if (mddev->level == LEVEL_MULTIPATH)
1768 			/* only need to write one superblock... */
1769 			break;
1770 	}
1771 	md_super_wait(mddev);
1772 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1773 
1774 	spin_lock_irq(&mddev->write_lock);
1775 	if (mddev->in_sync != sync_req ||
1776 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1777 		/* have to write it out again */
1778 		spin_unlock_irq(&mddev->write_lock);
1779 		goto repeat;
1780 	}
1781 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1782 	spin_unlock_irq(&mddev->write_lock);
1783 	wake_up(&mddev->sb_wait);
1784 
1785 }
1786 
1787 /* words written to sysfs files may, or my not, be \n terminated.
1788  * We want to accept with case. For this we use cmd_match.
1789  */
1790 static int cmd_match(const char *cmd, const char *str)
1791 {
1792 	/* See if cmd, written into a sysfs file, matches
1793 	 * str.  They must either be the same, or cmd can
1794 	 * have a trailing newline
1795 	 */
1796 	while (*cmd && *str && *cmd == *str) {
1797 		cmd++;
1798 		str++;
1799 	}
1800 	if (*cmd == '\n')
1801 		cmd++;
1802 	if (*str || *cmd)
1803 		return 0;
1804 	return 1;
1805 }
1806 
1807 struct rdev_sysfs_entry {
1808 	struct attribute attr;
1809 	ssize_t (*show)(mdk_rdev_t *, char *);
1810 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1811 };
1812 
1813 static ssize_t
1814 state_show(mdk_rdev_t *rdev, char *page)
1815 {
1816 	char *sep = "";
1817 	size_t len = 0;
1818 
1819 	if (test_bit(Faulty, &rdev->flags)) {
1820 		len+= sprintf(page+len, "%sfaulty",sep);
1821 		sep = ",";
1822 	}
1823 	if (test_bit(In_sync, &rdev->flags)) {
1824 		len += sprintf(page+len, "%sin_sync",sep);
1825 		sep = ",";
1826 	}
1827 	if (test_bit(WriteMostly, &rdev->flags)) {
1828 		len += sprintf(page+len, "%swrite_mostly",sep);
1829 		sep = ",";
1830 	}
1831 	if (test_bit(Blocked, &rdev->flags)) {
1832 		len += sprintf(page+len, "%sblocked", sep);
1833 		sep = ",";
1834 	}
1835 	if (!test_bit(Faulty, &rdev->flags) &&
1836 	    !test_bit(In_sync, &rdev->flags)) {
1837 		len += sprintf(page+len, "%sspare", sep);
1838 		sep = ",";
1839 	}
1840 	return len+sprintf(page+len, "\n");
1841 }
1842 
1843 static ssize_t
1844 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1845 {
1846 	/* can write
1847 	 *  faulty  - simulates and error
1848 	 *  remove  - disconnects the device
1849 	 *  writemostly - sets write_mostly
1850 	 *  -writemostly - clears write_mostly
1851 	 *  blocked - sets the Blocked flag
1852 	 *  -blocked - clears the Blocked flag
1853 	 */
1854 	int err = -EINVAL;
1855 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1856 		md_error(rdev->mddev, rdev);
1857 		err = 0;
1858 	} else if (cmd_match(buf, "remove")) {
1859 		if (rdev->raid_disk >= 0)
1860 			err = -EBUSY;
1861 		else {
1862 			mddev_t *mddev = rdev->mddev;
1863 			kick_rdev_from_array(rdev);
1864 			if (mddev->pers)
1865 				md_update_sb(mddev, 1);
1866 			md_new_event(mddev);
1867 			err = 0;
1868 		}
1869 	} else if (cmd_match(buf, "writemostly")) {
1870 		set_bit(WriteMostly, &rdev->flags);
1871 		err = 0;
1872 	} else if (cmd_match(buf, "-writemostly")) {
1873 		clear_bit(WriteMostly, &rdev->flags);
1874 		err = 0;
1875 	} else if (cmd_match(buf, "blocked")) {
1876 		set_bit(Blocked, &rdev->flags);
1877 		err = 0;
1878 	} else if (cmd_match(buf, "-blocked")) {
1879 		clear_bit(Blocked, &rdev->flags);
1880 		wake_up(&rdev->blocked_wait);
1881 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1882 		md_wakeup_thread(rdev->mddev->thread);
1883 
1884 		err = 0;
1885 	}
1886 	return err ? err : len;
1887 }
1888 static struct rdev_sysfs_entry rdev_state =
1889 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1890 
1891 static ssize_t
1892 errors_show(mdk_rdev_t *rdev, char *page)
1893 {
1894 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1895 }
1896 
1897 static ssize_t
1898 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1899 {
1900 	char *e;
1901 	unsigned long n = simple_strtoul(buf, &e, 10);
1902 	if (*buf && (*e == 0 || *e == '\n')) {
1903 		atomic_set(&rdev->corrected_errors, n);
1904 		return len;
1905 	}
1906 	return -EINVAL;
1907 }
1908 static struct rdev_sysfs_entry rdev_errors =
1909 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1910 
1911 static ssize_t
1912 slot_show(mdk_rdev_t *rdev, char *page)
1913 {
1914 	if (rdev->raid_disk < 0)
1915 		return sprintf(page, "none\n");
1916 	else
1917 		return sprintf(page, "%d\n", rdev->raid_disk);
1918 }
1919 
1920 static ssize_t
1921 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1922 {
1923 	char *e;
1924 	int err;
1925 	char nm[20];
1926 	int slot = simple_strtoul(buf, &e, 10);
1927 	if (strncmp(buf, "none", 4)==0)
1928 		slot = -1;
1929 	else if (e==buf || (*e && *e!= '\n'))
1930 		return -EINVAL;
1931 	if (rdev->mddev->pers) {
1932 		/* Setting 'slot' on an active array requires also
1933 		 * updating the 'rd%d' link, and communicating
1934 		 * with the personality with ->hot_*_disk.
1935 		 * For now we only support removing
1936 		 * failed/spare devices.  This normally happens automatically,
1937 		 * but not when the metadata is externally managed.
1938 		 */
1939 		if (slot != -1)
1940 			return -EBUSY;
1941 		if (rdev->raid_disk == -1)
1942 			return -EEXIST;
1943 		/* personality does all needed checks */
1944 		if (rdev->mddev->pers->hot_add_disk == NULL)
1945 			return -EINVAL;
1946 		err = rdev->mddev->pers->
1947 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
1948 		if (err)
1949 			return err;
1950 		sprintf(nm, "rd%d", rdev->raid_disk);
1951 		sysfs_remove_link(&rdev->mddev->kobj, nm);
1952 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1953 		md_wakeup_thread(rdev->mddev->thread);
1954 	} else {
1955 		if (slot >= rdev->mddev->raid_disks)
1956 			return -ENOSPC;
1957 		rdev->raid_disk = slot;
1958 		/* assume it is working */
1959 		clear_bit(Faulty, &rdev->flags);
1960 		clear_bit(WriteMostly, &rdev->flags);
1961 		set_bit(In_sync, &rdev->flags);
1962 	}
1963 	return len;
1964 }
1965 
1966 
1967 static struct rdev_sysfs_entry rdev_slot =
1968 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1969 
1970 static ssize_t
1971 offset_show(mdk_rdev_t *rdev, char *page)
1972 {
1973 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1974 }
1975 
1976 static ssize_t
1977 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1978 {
1979 	char *e;
1980 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1981 	if (e==buf || (*e && *e != '\n'))
1982 		return -EINVAL;
1983 	if (rdev->mddev->pers)
1984 		return -EBUSY;
1985 	if (rdev->size && rdev->mddev->external)
1986 		/* Must set offset before size, so overlap checks
1987 		 * can be sane */
1988 		return -EBUSY;
1989 	rdev->data_offset = offset;
1990 	return len;
1991 }
1992 
1993 static struct rdev_sysfs_entry rdev_offset =
1994 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1995 
1996 static ssize_t
1997 rdev_size_show(mdk_rdev_t *rdev, char *page)
1998 {
1999 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2000 }
2001 
2002 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2003 {
2004 	/* check if two start/length pairs overlap */
2005 	if (s1+l1 <= s2)
2006 		return 0;
2007 	if (s2+l2 <= s1)
2008 		return 0;
2009 	return 1;
2010 }
2011 
2012 static ssize_t
2013 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2014 {
2015 	char *e;
2016 	unsigned long long size = simple_strtoull(buf, &e, 10);
2017 	unsigned long long oldsize = rdev->size;
2018 	mddev_t *my_mddev = rdev->mddev;
2019 
2020 	if (e==buf || (*e && *e != '\n'))
2021 		return -EINVAL;
2022 	if (my_mddev->pers)
2023 		return -EBUSY;
2024 	rdev->size = size;
2025 	if (size > oldsize && rdev->mddev->external) {
2026 		/* need to check that all other rdevs with the same ->bdev
2027 		 * do not overlap.  We need to unlock the mddev to avoid
2028 		 * a deadlock.  We have already changed rdev->size, and if
2029 		 * we have to change it back, we will have the lock again.
2030 		 */
2031 		mddev_t *mddev;
2032 		int overlap = 0;
2033 		struct list_head *tmp, *tmp2;
2034 
2035 		mddev_unlock(my_mddev);
2036 		for_each_mddev(mddev, tmp) {
2037 			mdk_rdev_t *rdev2;
2038 
2039 			mddev_lock(mddev);
2040 			rdev_for_each(rdev2, tmp2, mddev)
2041 				if (test_bit(AllReserved, &rdev2->flags) ||
2042 				    (rdev->bdev == rdev2->bdev &&
2043 				     rdev != rdev2 &&
2044 				     overlaps(rdev->data_offset, rdev->size,
2045 					    rdev2->data_offset, rdev2->size))) {
2046 					overlap = 1;
2047 					break;
2048 				}
2049 			mddev_unlock(mddev);
2050 			if (overlap) {
2051 				mddev_put(mddev);
2052 				break;
2053 			}
2054 		}
2055 		mddev_lock(my_mddev);
2056 		if (overlap) {
2057 			/* Someone else could have slipped in a size
2058 			 * change here, but doing so is just silly.
2059 			 * We put oldsize back because we *know* it is
2060 			 * safe, and trust userspace not to race with
2061 			 * itself
2062 			 */
2063 			rdev->size = oldsize;
2064 			return -EBUSY;
2065 		}
2066 	}
2067 	if (size < my_mddev->size || my_mddev->size == 0)
2068 		my_mddev->size = size;
2069 	return len;
2070 }
2071 
2072 static struct rdev_sysfs_entry rdev_size =
2073 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2074 
2075 static struct attribute *rdev_default_attrs[] = {
2076 	&rdev_state.attr,
2077 	&rdev_errors.attr,
2078 	&rdev_slot.attr,
2079 	&rdev_offset.attr,
2080 	&rdev_size.attr,
2081 	NULL,
2082 };
2083 static ssize_t
2084 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2085 {
2086 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2087 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2088 	mddev_t *mddev = rdev->mddev;
2089 	ssize_t rv;
2090 
2091 	if (!entry->show)
2092 		return -EIO;
2093 
2094 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2095 	if (!rv) {
2096 		if (rdev->mddev == NULL)
2097 			rv = -EBUSY;
2098 		else
2099 			rv = entry->show(rdev, page);
2100 		mddev_unlock(mddev);
2101 	}
2102 	return rv;
2103 }
2104 
2105 static ssize_t
2106 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2107 	      const char *page, size_t length)
2108 {
2109 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2110 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2111 	ssize_t rv;
2112 	mddev_t *mddev = rdev->mddev;
2113 
2114 	if (!entry->store)
2115 		return -EIO;
2116 	if (!capable(CAP_SYS_ADMIN))
2117 		return -EACCES;
2118 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2119 	if (!rv) {
2120 		if (rdev->mddev == NULL)
2121 			rv = -EBUSY;
2122 		else
2123 			rv = entry->store(rdev, page, length);
2124 		mddev_unlock(mddev);
2125 	}
2126 	return rv;
2127 }
2128 
2129 static void rdev_free(struct kobject *ko)
2130 {
2131 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2132 	kfree(rdev);
2133 }
2134 static struct sysfs_ops rdev_sysfs_ops = {
2135 	.show		= rdev_attr_show,
2136 	.store		= rdev_attr_store,
2137 };
2138 static struct kobj_type rdev_ktype = {
2139 	.release	= rdev_free,
2140 	.sysfs_ops	= &rdev_sysfs_ops,
2141 	.default_attrs	= rdev_default_attrs,
2142 };
2143 
2144 /*
2145  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2146  *
2147  * mark the device faulty if:
2148  *
2149  *   - the device is nonexistent (zero size)
2150  *   - the device has no valid superblock
2151  *
2152  * a faulty rdev _never_ has rdev->sb set.
2153  */
2154 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2155 {
2156 	char b[BDEVNAME_SIZE];
2157 	int err;
2158 	mdk_rdev_t *rdev;
2159 	sector_t size;
2160 
2161 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2162 	if (!rdev) {
2163 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2164 		return ERR_PTR(-ENOMEM);
2165 	}
2166 
2167 	if ((err = alloc_disk_sb(rdev)))
2168 		goto abort_free;
2169 
2170 	err = lock_rdev(rdev, newdev, super_format == -2);
2171 	if (err)
2172 		goto abort_free;
2173 
2174 	kobject_init(&rdev->kobj, &rdev_ktype);
2175 
2176 	rdev->desc_nr = -1;
2177 	rdev->saved_raid_disk = -1;
2178 	rdev->raid_disk = -1;
2179 	rdev->flags = 0;
2180 	rdev->data_offset = 0;
2181 	rdev->sb_events = 0;
2182 	atomic_set(&rdev->nr_pending, 0);
2183 	atomic_set(&rdev->read_errors, 0);
2184 	atomic_set(&rdev->corrected_errors, 0);
2185 
2186 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2187 	if (!size) {
2188 		printk(KERN_WARNING
2189 			"md: %s has zero or unknown size, marking faulty!\n",
2190 			bdevname(rdev->bdev,b));
2191 		err = -EINVAL;
2192 		goto abort_free;
2193 	}
2194 
2195 	if (super_format >= 0) {
2196 		err = super_types[super_format].
2197 			load_super(rdev, NULL, super_minor);
2198 		if (err == -EINVAL) {
2199 			printk(KERN_WARNING
2200 				"md: %s does not have a valid v%d.%d "
2201 			       "superblock, not importing!\n",
2202 				bdevname(rdev->bdev,b),
2203 			       super_format, super_minor);
2204 			goto abort_free;
2205 		}
2206 		if (err < 0) {
2207 			printk(KERN_WARNING
2208 				"md: could not read %s's sb, not importing!\n",
2209 				bdevname(rdev->bdev,b));
2210 			goto abort_free;
2211 		}
2212 	}
2213 
2214 	INIT_LIST_HEAD(&rdev->same_set);
2215 	init_waitqueue_head(&rdev->blocked_wait);
2216 
2217 	return rdev;
2218 
2219 abort_free:
2220 	if (rdev->sb_page) {
2221 		if (rdev->bdev)
2222 			unlock_rdev(rdev);
2223 		free_disk_sb(rdev);
2224 	}
2225 	kfree(rdev);
2226 	return ERR_PTR(err);
2227 }
2228 
2229 /*
2230  * Check a full RAID array for plausibility
2231  */
2232 
2233 
2234 static void analyze_sbs(mddev_t * mddev)
2235 {
2236 	int i;
2237 	struct list_head *tmp;
2238 	mdk_rdev_t *rdev, *freshest;
2239 	char b[BDEVNAME_SIZE];
2240 
2241 	freshest = NULL;
2242 	rdev_for_each(rdev, tmp, mddev)
2243 		switch (super_types[mddev->major_version].
2244 			load_super(rdev, freshest, mddev->minor_version)) {
2245 		case 1:
2246 			freshest = rdev;
2247 			break;
2248 		case 0:
2249 			break;
2250 		default:
2251 			printk( KERN_ERR \
2252 				"md: fatal superblock inconsistency in %s"
2253 				" -- removing from array\n",
2254 				bdevname(rdev->bdev,b));
2255 			kick_rdev_from_array(rdev);
2256 		}
2257 
2258 
2259 	super_types[mddev->major_version].
2260 		validate_super(mddev, freshest);
2261 
2262 	i = 0;
2263 	rdev_for_each(rdev, tmp, mddev) {
2264 		if (rdev != freshest)
2265 			if (super_types[mddev->major_version].
2266 			    validate_super(mddev, rdev)) {
2267 				printk(KERN_WARNING "md: kicking non-fresh %s"
2268 					" from array!\n",
2269 					bdevname(rdev->bdev,b));
2270 				kick_rdev_from_array(rdev);
2271 				continue;
2272 			}
2273 		if (mddev->level == LEVEL_MULTIPATH) {
2274 			rdev->desc_nr = i++;
2275 			rdev->raid_disk = rdev->desc_nr;
2276 			set_bit(In_sync, &rdev->flags);
2277 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2278 			rdev->raid_disk = -1;
2279 			clear_bit(In_sync, &rdev->flags);
2280 		}
2281 	}
2282 
2283 
2284 
2285 	if (mddev->recovery_cp != MaxSector &&
2286 	    mddev->level >= 1)
2287 		printk(KERN_ERR "md: %s: raid array is not clean"
2288 		       " -- starting background reconstruction\n",
2289 		       mdname(mddev));
2290 
2291 }
2292 
2293 static ssize_t
2294 safe_delay_show(mddev_t *mddev, char *page)
2295 {
2296 	int msec = (mddev->safemode_delay*1000)/HZ;
2297 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2298 }
2299 static ssize_t
2300 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2301 {
2302 	int scale=1;
2303 	int dot=0;
2304 	int i;
2305 	unsigned long msec;
2306 	char buf[30];
2307 	char *e;
2308 	/* remove a period, and count digits after it */
2309 	if (len >= sizeof(buf))
2310 		return -EINVAL;
2311 	strlcpy(buf, cbuf, len);
2312 	buf[len] = 0;
2313 	for (i=0; i<len; i++) {
2314 		if (dot) {
2315 			if (isdigit(buf[i])) {
2316 				buf[i-1] = buf[i];
2317 				scale *= 10;
2318 			}
2319 			buf[i] = 0;
2320 		} else if (buf[i] == '.') {
2321 			dot=1;
2322 			buf[i] = 0;
2323 		}
2324 	}
2325 	msec = simple_strtoul(buf, &e, 10);
2326 	if (e == buf || (*e && *e != '\n'))
2327 		return -EINVAL;
2328 	msec = (msec * 1000) / scale;
2329 	if (msec == 0)
2330 		mddev->safemode_delay = 0;
2331 	else {
2332 		mddev->safemode_delay = (msec*HZ)/1000;
2333 		if (mddev->safemode_delay == 0)
2334 			mddev->safemode_delay = 1;
2335 	}
2336 	return len;
2337 }
2338 static struct md_sysfs_entry md_safe_delay =
2339 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2340 
2341 static ssize_t
2342 level_show(mddev_t *mddev, char *page)
2343 {
2344 	struct mdk_personality *p = mddev->pers;
2345 	if (p)
2346 		return sprintf(page, "%s\n", p->name);
2347 	else if (mddev->clevel[0])
2348 		return sprintf(page, "%s\n", mddev->clevel);
2349 	else if (mddev->level != LEVEL_NONE)
2350 		return sprintf(page, "%d\n", mddev->level);
2351 	else
2352 		return 0;
2353 }
2354 
2355 static ssize_t
2356 level_store(mddev_t *mddev, const char *buf, size_t len)
2357 {
2358 	ssize_t rv = len;
2359 	if (mddev->pers)
2360 		return -EBUSY;
2361 	if (len == 0)
2362 		return 0;
2363 	if (len >= sizeof(mddev->clevel))
2364 		return -ENOSPC;
2365 	strncpy(mddev->clevel, buf, len);
2366 	if (mddev->clevel[len-1] == '\n')
2367 		len--;
2368 	mddev->clevel[len] = 0;
2369 	mddev->level = LEVEL_NONE;
2370 	return rv;
2371 }
2372 
2373 static struct md_sysfs_entry md_level =
2374 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2375 
2376 
2377 static ssize_t
2378 layout_show(mddev_t *mddev, char *page)
2379 {
2380 	/* just a number, not meaningful for all levels */
2381 	if (mddev->reshape_position != MaxSector &&
2382 	    mddev->layout != mddev->new_layout)
2383 		return sprintf(page, "%d (%d)\n",
2384 			       mddev->new_layout, mddev->layout);
2385 	return sprintf(page, "%d\n", mddev->layout);
2386 }
2387 
2388 static ssize_t
2389 layout_store(mddev_t *mddev, const char *buf, size_t len)
2390 {
2391 	char *e;
2392 	unsigned long n = simple_strtoul(buf, &e, 10);
2393 
2394 	if (!*buf || (*e && *e != '\n'))
2395 		return -EINVAL;
2396 
2397 	if (mddev->pers)
2398 		return -EBUSY;
2399 	if (mddev->reshape_position != MaxSector)
2400 		mddev->new_layout = n;
2401 	else
2402 		mddev->layout = n;
2403 	return len;
2404 }
2405 static struct md_sysfs_entry md_layout =
2406 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2407 
2408 
2409 static ssize_t
2410 raid_disks_show(mddev_t *mddev, char *page)
2411 {
2412 	if (mddev->raid_disks == 0)
2413 		return 0;
2414 	if (mddev->reshape_position != MaxSector &&
2415 	    mddev->delta_disks != 0)
2416 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2417 			       mddev->raid_disks - mddev->delta_disks);
2418 	return sprintf(page, "%d\n", mddev->raid_disks);
2419 }
2420 
2421 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2422 
2423 static ssize_t
2424 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2425 {
2426 	char *e;
2427 	int rv = 0;
2428 	unsigned long n = simple_strtoul(buf, &e, 10);
2429 
2430 	if (!*buf || (*e && *e != '\n'))
2431 		return -EINVAL;
2432 
2433 	if (mddev->pers)
2434 		rv = update_raid_disks(mddev, n);
2435 	else if (mddev->reshape_position != MaxSector) {
2436 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2437 		mddev->delta_disks = n - olddisks;
2438 		mddev->raid_disks = n;
2439 	} else
2440 		mddev->raid_disks = n;
2441 	return rv ? rv : len;
2442 }
2443 static struct md_sysfs_entry md_raid_disks =
2444 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2445 
2446 static ssize_t
2447 chunk_size_show(mddev_t *mddev, char *page)
2448 {
2449 	if (mddev->reshape_position != MaxSector &&
2450 	    mddev->chunk_size != mddev->new_chunk)
2451 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2452 			       mddev->chunk_size);
2453 	return sprintf(page, "%d\n", mddev->chunk_size);
2454 }
2455 
2456 static ssize_t
2457 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2458 {
2459 	/* can only set chunk_size if array is not yet active */
2460 	char *e;
2461 	unsigned long n = simple_strtoul(buf, &e, 10);
2462 
2463 	if (!*buf || (*e && *e != '\n'))
2464 		return -EINVAL;
2465 
2466 	if (mddev->pers)
2467 		return -EBUSY;
2468 	else if (mddev->reshape_position != MaxSector)
2469 		mddev->new_chunk = n;
2470 	else
2471 		mddev->chunk_size = n;
2472 	return len;
2473 }
2474 static struct md_sysfs_entry md_chunk_size =
2475 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2476 
2477 static ssize_t
2478 resync_start_show(mddev_t *mddev, char *page)
2479 {
2480 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2481 }
2482 
2483 static ssize_t
2484 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2485 {
2486 	char *e;
2487 	unsigned long long n = simple_strtoull(buf, &e, 10);
2488 
2489 	if (mddev->pers)
2490 		return -EBUSY;
2491 	if (!*buf || (*e && *e != '\n'))
2492 		return -EINVAL;
2493 
2494 	mddev->recovery_cp = n;
2495 	return len;
2496 }
2497 static struct md_sysfs_entry md_resync_start =
2498 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2499 
2500 /*
2501  * The array state can be:
2502  *
2503  * clear
2504  *     No devices, no size, no level
2505  *     Equivalent to STOP_ARRAY ioctl
2506  * inactive
2507  *     May have some settings, but array is not active
2508  *        all IO results in error
2509  *     When written, doesn't tear down array, but just stops it
2510  * suspended (not supported yet)
2511  *     All IO requests will block. The array can be reconfigured.
2512  *     Writing this, if accepted, will block until array is quiessent
2513  * readonly
2514  *     no resync can happen.  no superblocks get written.
2515  *     write requests fail
2516  * read-auto
2517  *     like readonly, but behaves like 'clean' on a write request.
2518  *
2519  * clean - no pending writes, but otherwise active.
2520  *     When written to inactive array, starts without resync
2521  *     If a write request arrives then
2522  *       if metadata is known, mark 'dirty' and switch to 'active'.
2523  *       if not known, block and switch to write-pending
2524  *     If written to an active array that has pending writes, then fails.
2525  * active
2526  *     fully active: IO and resync can be happening.
2527  *     When written to inactive array, starts with resync
2528  *
2529  * write-pending
2530  *     clean, but writes are blocked waiting for 'active' to be written.
2531  *
2532  * active-idle
2533  *     like active, but no writes have been seen for a while (100msec).
2534  *
2535  */
2536 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2537 		   write_pending, active_idle, bad_word};
2538 static char *array_states[] = {
2539 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2540 	"write-pending", "active-idle", NULL };
2541 
2542 static int match_word(const char *word, char **list)
2543 {
2544 	int n;
2545 	for (n=0; list[n]; n++)
2546 		if (cmd_match(word, list[n]))
2547 			break;
2548 	return n;
2549 }
2550 
2551 static ssize_t
2552 array_state_show(mddev_t *mddev, char *page)
2553 {
2554 	enum array_state st = inactive;
2555 
2556 	if (mddev->pers)
2557 		switch(mddev->ro) {
2558 		case 1:
2559 			st = readonly;
2560 			break;
2561 		case 2:
2562 			st = read_auto;
2563 			break;
2564 		case 0:
2565 			if (mddev->in_sync)
2566 				st = clean;
2567 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2568 				st = write_pending;
2569 			else if (mddev->safemode)
2570 				st = active_idle;
2571 			else
2572 				st = active;
2573 		}
2574 	else {
2575 		if (list_empty(&mddev->disks) &&
2576 		    mddev->raid_disks == 0 &&
2577 		    mddev->size == 0)
2578 			st = clear;
2579 		else
2580 			st = inactive;
2581 	}
2582 	return sprintf(page, "%s\n", array_states[st]);
2583 }
2584 
2585 static int do_md_stop(mddev_t * mddev, int ro);
2586 static int do_md_run(mddev_t * mddev);
2587 static int restart_array(mddev_t *mddev);
2588 
2589 static ssize_t
2590 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2591 {
2592 	int err = -EINVAL;
2593 	enum array_state st = match_word(buf, array_states);
2594 	switch(st) {
2595 	case bad_word:
2596 		break;
2597 	case clear:
2598 		/* stopping an active array */
2599 		if (atomic_read(&mddev->active) > 1)
2600 			return -EBUSY;
2601 		err = do_md_stop(mddev, 0);
2602 		break;
2603 	case inactive:
2604 		/* stopping an active array */
2605 		if (mddev->pers) {
2606 			if (atomic_read(&mddev->active) > 1)
2607 				return -EBUSY;
2608 			err = do_md_stop(mddev, 2);
2609 		} else
2610 			err = 0; /* already inactive */
2611 		break;
2612 	case suspended:
2613 		break; /* not supported yet */
2614 	case readonly:
2615 		if (mddev->pers)
2616 			err = do_md_stop(mddev, 1);
2617 		else {
2618 			mddev->ro = 1;
2619 			set_disk_ro(mddev->gendisk, 1);
2620 			err = do_md_run(mddev);
2621 		}
2622 		break;
2623 	case read_auto:
2624 		if (mddev->pers) {
2625 			if (mddev->ro != 1)
2626 				err = do_md_stop(mddev, 1);
2627 			else
2628 				err = restart_array(mddev);
2629 			if (err == 0) {
2630 				mddev->ro = 2;
2631 				set_disk_ro(mddev->gendisk, 0);
2632 			}
2633 		} else {
2634 			mddev->ro = 2;
2635 			err = do_md_run(mddev);
2636 		}
2637 		break;
2638 	case clean:
2639 		if (mddev->pers) {
2640 			restart_array(mddev);
2641 			spin_lock_irq(&mddev->write_lock);
2642 			if (atomic_read(&mddev->writes_pending) == 0) {
2643 				if (mddev->in_sync == 0) {
2644 					mddev->in_sync = 1;
2645 					if (mddev->safemode == 1)
2646 						mddev->safemode = 0;
2647 					if (mddev->persistent)
2648 						set_bit(MD_CHANGE_CLEAN,
2649 							&mddev->flags);
2650 				}
2651 				err = 0;
2652 			} else
2653 				err = -EBUSY;
2654 			spin_unlock_irq(&mddev->write_lock);
2655 		} else {
2656 			mddev->ro = 0;
2657 			mddev->recovery_cp = MaxSector;
2658 			err = do_md_run(mddev);
2659 		}
2660 		break;
2661 	case active:
2662 		if (mddev->pers) {
2663 			restart_array(mddev);
2664 			if (mddev->external)
2665 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2666 			wake_up(&mddev->sb_wait);
2667 			err = 0;
2668 		} else {
2669 			mddev->ro = 0;
2670 			set_disk_ro(mddev->gendisk, 0);
2671 			err = do_md_run(mddev);
2672 		}
2673 		break;
2674 	case write_pending:
2675 	case active_idle:
2676 		/* these cannot be set */
2677 		break;
2678 	}
2679 	if (err)
2680 		return err;
2681 	else
2682 		return len;
2683 }
2684 static struct md_sysfs_entry md_array_state =
2685 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2686 
2687 static ssize_t
2688 null_show(mddev_t *mddev, char *page)
2689 {
2690 	return -EINVAL;
2691 }
2692 
2693 static ssize_t
2694 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2695 {
2696 	/* buf must be %d:%d\n? giving major and minor numbers */
2697 	/* The new device is added to the array.
2698 	 * If the array has a persistent superblock, we read the
2699 	 * superblock to initialise info and check validity.
2700 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2701 	 * which mainly checks size.
2702 	 */
2703 	char *e;
2704 	int major = simple_strtoul(buf, &e, 10);
2705 	int minor;
2706 	dev_t dev;
2707 	mdk_rdev_t *rdev;
2708 	int err;
2709 
2710 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2711 		return -EINVAL;
2712 	minor = simple_strtoul(e+1, &e, 10);
2713 	if (*e && *e != '\n')
2714 		return -EINVAL;
2715 	dev = MKDEV(major, minor);
2716 	if (major != MAJOR(dev) ||
2717 	    minor != MINOR(dev))
2718 		return -EOVERFLOW;
2719 
2720 
2721 	if (mddev->persistent) {
2722 		rdev = md_import_device(dev, mddev->major_version,
2723 					mddev->minor_version);
2724 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2725 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2726 						       mdk_rdev_t, same_set);
2727 			err = super_types[mddev->major_version]
2728 				.load_super(rdev, rdev0, mddev->minor_version);
2729 			if (err < 0)
2730 				goto out;
2731 		}
2732 	} else if (mddev->external)
2733 		rdev = md_import_device(dev, -2, -1);
2734 	else
2735 		rdev = md_import_device(dev, -1, -1);
2736 
2737 	if (IS_ERR(rdev))
2738 		return PTR_ERR(rdev);
2739 	err = bind_rdev_to_array(rdev, mddev);
2740  out:
2741 	if (err)
2742 		export_rdev(rdev);
2743 	return err ? err : len;
2744 }
2745 
2746 static struct md_sysfs_entry md_new_device =
2747 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2748 
2749 static ssize_t
2750 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2751 {
2752 	char *end;
2753 	unsigned long chunk, end_chunk;
2754 
2755 	if (!mddev->bitmap)
2756 		goto out;
2757 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2758 	while (*buf) {
2759 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2760 		if (buf == end) break;
2761 		if (*end == '-') { /* range */
2762 			buf = end + 1;
2763 			end_chunk = simple_strtoul(buf, &end, 0);
2764 			if (buf == end) break;
2765 		}
2766 		if (*end && !isspace(*end)) break;
2767 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2768 		buf = end;
2769 		while (isspace(*buf)) buf++;
2770 	}
2771 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2772 out:
2773 	return len;
2774 }
2775 
2776 static struct md_sysfs_entry md_bitmap =
2777 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2778 
2779 static ssize_t
2780 size_show(mddev_t *mddev, char *page)
2781 {
2782 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2783 }
2784 
2785 static int update_size(mddev_t *mddev, unsigned long size);
2786 
2787 static ssize_t
2788 size_store(mddev_t *mddev, const char *buf, size_t len)
2789 {
2790 	/* If array is inactive, we can reduce the component size, but
2791 	 * not increase it (except from 0).
2792 	 * If array is active, we can try an on-line resize
2793 	 */
2794 	char *e;
2795 	int err = 0;
2796 	unsigned long long size = simple_strtoull(buf, &e, 10);
2797 	if (!*buf || *buf == '\n' ||
2798 	    (*e && *e != '\n'))
2799 		return -EINVAL;
2800 
2801 	if (mddev->pers) {
2802 		err = update_size(mddev, size);
2803 		md_update_sb(mddev, 1);
2804 	} else {
2805 		if (mddev->size == 0 ||
2806 		    mddev->size > size)
2807 			mddev->size = size;
2808 		else
2809 			err = -ENOSPC;
2810 	}
2811 	return err ? err : len;
2812 }
2813 
2814 static struct md_sysfs_entry md_size =
2815 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2816 
2817 
2818 /* Metdata version.
2819  * This is one of
2820  *   'none' for arrays with no metadata (good luck...)
2821  *   'external' for arrays with externally managed metadata,
2822  * or N.M for internally known formats
2823  */
2824 static ssize_t
2825 metadata_show(mddev_t *mddev, char *page)
2826 {
2827 	if (mddev->persistent)
2828 		return sprintf(page, "%d.%d\n",
2829 			       mddev->major_version, mddev->minor_version);
2830 	else if (mddev->external)
2831 		return sprintf(page, "external:%s\n", mddev->metadata_type);
2832 	else
2833 		return sprintf(page, "none\n");
2834 }
2835 
2836 static ssize_t
2837 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2838 {
2839 	int major, minor;
2840 	char *e;
2841 	if (!list_empty(&mddev->disks))
2842 		return -EBUSY;
2843 
2844 	if (cmd_match(buf, "none")) {
2845 		mddev->persistent = 0;
2846 		mddev->external = 0;
2847 		mddev->major_version = 0;
2848 		mddev->minor_version = 90;
2849 		return len;
2850 	}
2851 	if (strncmp(buf, "external:", 9) == 0) {
2852 		size_t namelen = len-9;
2853 		if (namelen >= sizeof(mddev->metadata_type))
2854 			namelen = sizeof(mddev->metadata_type)-1;
2855 		strncpy(mddev->metadata_type, buf+9, namelen);
2856 		mddev->metadata_type[namelen] = 0;
2857 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
2858 			mddev->metadata_type[--namelen] = 0;
2859 		mddev->persistent = 0;
2860 		mddev->external = 1;
2861 		mddev->major_version = 0;
2862 		mddev->minor_version = 90;
2863 		return len;
2864 	}
2865 	major = simple_strtoul(buf, &e, 10);
2866 	if (e==buf || *e != '.')
2867 		return -EINVAL;
2868 	buf = e+1;
2869 	minor = simple_strtoul(buf, &e, 10);
2870 	if (e==buf || (*e && *e != '\n') )
2871 		return -EINVAL;
2872 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2873 		return -ENOENT;
2874 	mddev->major_version = major;
2875 	mddev->minor_version = minor;
2876 	mddev->persistent = 1;
2877 	mddev->external = 0;
2878 	return len;
2879 }
2880 
2881 static struct md_sysfs_entry md_metadata =
2882 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2883 
2884 static ssize_t
2885 action_show(mddev_t *mddev, char *page)
2886 {
2887 	char *type = "idle";
2888 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2889 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2890 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2891 			type = "reshape";
2892 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2893 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2894 				type = "resync";
2895 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2896 				type = "check";
2897 			else
2898 				type = "repair";
2899 		} else
2900 			type = "recover";
2901 	}
2902 	return sprintf(page, "%s\n", type);
2903 }
2904 
2905 static ssize_t
2906 action_store(mddev_t *mddev, const char *page, size_t len)
2907 {
2908 	if (!mddev->pers || !mddev->pers->sync_request)
2909 		return -EINVAL;
2910 
2911 	if (cmd_match(page, "idle")) {
2912 		if (mddev->sync_thread) {
2913 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2914 			md_unregister_thread(mddev->sync_thread);
2915 			mddev->sync_thread = NULL;
2916 			mddev->recovery = 0;
2917 		}
2918 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2919 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2920 		return -EBUSY;
2921 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2922 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2923 	else if (cmd_match(page, "reshape")) {
2924 		int err;
2925 		if (mddev->pers->start_reshape == NULL)
2926 			return -EINVAL;
2927 		err = mddev->pers->start_reshape(mddev);
2928 		if (err)
2929 			return err;
2930 	} else {
2931 		if (cmd_match(page, "check"))
2932 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2933 		else if (!cmd_match(page, "repair"))
2934 			return -EINVAL;
2935 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2936 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2937 	}
2938 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2939 	md_wakeup_thread(mddev->thread);
2940 	return len;
2941 }
2942 
2943 static ssize_t
2944 mismatch_cnt_show(mddev_t *mddev, char *page)
2945 {
2946 	return sprintf(page, "%llu\n",
2947 		       (unsigned long long) mddev->resync_mismatches);
2948 }
2949 
2950 static struct md_sysfs_entry md_scan_mode =
2951 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2952 
2953 
2954 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2955 
2956 static ssize_t
2957 sync_min_show(mddev_t *mddev, char *page)
2958 {
2959 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2960 		       mddev->sync_speed_min ? "local": "system");
2961 }
2962 
2963 static ssize_t
2964 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2965 {
2966 	int min;
2967 	char *e;
2968 	if (strncmp(buf, "system", 6)==0) {
2969 		mddev->sync_speed_min = 0;
2970 		return len;
2971 	}
2972 	min = simple_strtoul(buf, &e, 10);
2973 	if (buf == e || (*e && *e != '\n') || min <= 0)
2974 		return -EINVAL;
2975 	mddev->sync_speed_min = min;
2976 	return len;
2977 }
2978 
2979 static struct md_sysfs_entry md_sync_min =
2980 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2981 
2982 static ssize_t
2983 sync_max_show(mddev_t *mddev, char *page)
2984 {
2985 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2986 		       mddev->sync_speed_max ? "local": "system");
2987 }
2988 
2989 static ssize_t
2990 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2991 {
2992 	int max;
2993 	char *e;
2994 	if (strncmp(buf, "system", 6)==0) {
2995 		mddev->sync_speed_max = 0;
2996 		return len;
2997 	}
2998 	max = simple_strtoul(buf, &e, 10);
2999 	if (buf == e || (*e && *e != '\n') || max <= 0)
3000 		return -EINVAL;
3001 	mddev->sync_speed_max = max;
3002 	return len;
3003 }
3004 
3005 static struct md_sysfs_entry md_sync_max =
3006 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3007 
3008 static ssize_t
3009 degraded_show(mddev_t *mddev, char *page)
3010 {
3011 	return sprintf(page, "%d\n", mddev->degraded);
3012 }
3013 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3014 
3015 static ssize_t
3016 sync_speed_show(mddev_t *mddev, char *page)
3017 {
3018 	unsigned long resync, dt, db;
3019 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
3020 	dt = ((jiffies - mddev->resync_mark) / HZ);
3021 	if (!dt) dt++;
3022 	db = resync - (mddev->resync_mark_cnt);
3023 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
3024 }
3025 
3026 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3027 
3028 static ssize_t
3029 sync_completed_show(mddev_t *mddev, char *page)
3030 {
3031 	unsigned long max_blocks, resync;
3032 
3033 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3034 		max_blocks = mddev->resync_max_sectors;
3035 	else
3036 		max_blocks = mddev->size << 1;
3037 
3038 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3039 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3040 }
3041 
3042 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3043 
3044 static ssize_t
3045 max_sync_show(mddev_t *mddev, char *page)
3046 {
3047 	if (mddev->resync_max == MaxSector)
3048 		return sprintf(page, "max\n");
3049 	else
3050 		return sprintf(page, "%llu\n",
3051 			       (unsigned long long)mddev->resync_max);
3052 }
3053 static ssize_t
3054 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3055 {
3056 	if (strncmp(buf, "max", 3) == 0)
3057 		mddev->resync_max = MaxSector;
3058 	else {
3059 		char *ep;
3060 		unsigned long long max = simple_strtoull(buf, &ep, 10);
3061 		if (ep == buf || (*ep != 0 && *ep != '\n'))
3062 			return -EINVAL;
3063 		if (max < mddev->resync_max &&
3064 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3065 			return -EBUSY;
3066 
3067 		/* Must be a multiple of chunk_size */
3068 		if (mddev->chunk_size) {
3069 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3070 				return -EINVAL;
3071 		}
3072 		mddev->resync_max = max;
3073 	}
3074 	wake_up(&mddev->recovery_wait);
3075 	return len;
3076 }
3077 
3078 static struct md_sysfs_entry md_max_sync =
3079 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3080 
3081 static ssize_t
3082 suspend_lo_show(mddev_t *mddev, char *page)
3083 {
3084 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3085 }
3086 
3087 static ssize_t
3088 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3089 {
3090 	char *e;
3091 	unsigned long long new = simple_strtoull(buf, &e, 10);
3092 
3093 	if (mddev->pers->quiesce == NULL)
3094 		return -EINVAL;
3095 	if (buf == e || (*e && *e != '\n'))
3096 		return -EINVAL;
3097 	if (new >= mddev->suspend_hi ||
3098 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3099 		mddev->suspend_lo = new;
3100 		mddev->pers->quiesce(mddev, 2);
3101 		return len;
3102 	} else
3103 		return -EINVAL;
3104 }
3105 static struct md_sysfs_entry md_suspend_lo =
3106 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3107 
3108 
3109 static ssize_t
3110 suspend_hi_show(mddev_t *mddev, char *page)
3111 {
3112 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3113 }
3114 
3115 static ssize_t
3116 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3117 {
3118 	char *e;
3119 	unsigned long long new = simple_strtoull(buf, &e, 10);
3120 
3121 	if (mddev->pers->quiesce == NULL)
3122 		return -EINVAL;
3123 	if (buf == e || (*e && *e != '\n'))
3124 		return -EINVAL;
3125 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3126 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3127 		mddev->suspend_hi = new;
3128 		mddev->pers->quiesce(mddev, 1);
3129 		mddev->pers->quiesce(mddev, 0);
3130 		return len;
3131 	} else
3132 		return -EINVAL;
3133 }
3134 static struct md_sysfs_entry md_suspend_hi =
3135 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3136 
3137 static ssize_t
3138 reshape_position_show(mddev_t *mddev, char *page)
3139 {
3140 	if (mddev->reshape_position != MaxSector)
3141 		return sprintf(page, "%llu\n",
3142 			       (unsigned long long)mddev->reshape_position);
3143 	strcpy(page, "none\n");
3144 	return 5;
3145 }
3146 
3147 static ssize_t
3148 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3149 {
3150 	char *e;
3151 	unsigned long long new = simple_strtoull(buf, &e, 10);
3152 	if (mddev->pers)
3153 		return -EBUSY;
3154 	if (buf == e || (*e && *e != '\n'))
3155 		return -EINVAL;
3156 	mddev->reshape_position = new;
3157 	mddev->delta_disks = 0;
3158 	mddev->new_level = mddev->level;
3159 	mddev->new_layout = mddev->layout;
3160 	mddev->new_chunk = mddev->chunk_size;
3161 	return len;
3162 }
3163 
3164 static struct md_sysfs_entry md_reshape_position =
3165 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3166        reshape_position_store);
3167 
3168 
3169 static struct attribute *md_default_attrs[] = {
3170 	&md_level.attr,
3171 	&md_layout.attr,
3172 	&md_raid_disks.attr,
3173 	&md_chunk_size.attr,
3174 	&md_size.attr,
3175 	&md_resync_start.attr,
3176 	&md_metadata.attr,
3177 	&md_new_device.attr,
3178 	&md_safe_delay.attr,
3179 	&md_array_state.attr,
3180 	&md_reshape_position.attr,
3181 	NULL,
3182 };
3183 
3184 static struct attribute *md_redundancy_attrs[] = {
3185 	&md_scan_mode.attr,
3186 	&md_mismatches.attr,
3187 	&md_sync_min.attr,
3188 	&md_sync_max.attr,
3189 	&md_sync_speed.attr,
3190 	&md_sync_completed.attr,
3191 	&md_max_sync.attr,
3192 	&md_suspend_lo.attr,
3193 	&md_suspend_hi.attr,
3194 	&md_bitmap.attr,
3195 	&md_degraded.attr,
3196 	NULL,
3197 };
3198 static struct attribute_group md_redundancy_group = {
3199 	.name = NULL,
3200 	.attrs = md_redundancy_attrs,
3201 };
3202 
3203 
3204 static ssize_t
3205 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3206 {
3207 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3208 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3209 	ssize_t rv;
3210 
3211 	if (!entry->show)
3212 		return -EIO;
3213 	rv = mddev_lock(mddev);
3214 	if (!rv) {
3215 		rv = entry->show(mddev, page);
3216 		mddev_unlock(mddev);
3217 	}
3218 	return rv;
3219 }
3220 
3221 static ssize_t
3222 md_attr_store(struct kobject *kobj, struct attribute *attr,
3223 	      const char *page, size_t length)
3224 {
3225 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3226 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3227 	ssize_t rv;
3228 
3229 	if (!entry->store)
3230 		return -EIO;
3231 	if (!capable(CAP_SYS_ADMIN))
3232 		return -EACCES;
3233 	rv = mddev_lock(mddev);
3234 	if (!rv) {
3235 		rv = entry->store(mddev, page, length);
3236 		mddev_unlock(mddev);
3237 	}
3238 	return rv;
3239 }
3240 
3241 static void md_free(struct kobject *ko)
3242 {
3243 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3244 	kfree(mddev);
3245 }
3246 
3247 static struct sysfs_ops md_sysfs_ops = {
3248 	.show	= md_attr_show,
3249 	.store	= md_attr_store,
3250 };
3251 static struct kobj_type md_ktype = {
3252 	.release	= md_free,
3253 	.sysfs_ops	= &md_sysfs_ops,
3254 	.default_attrs	= md_default_attrs,
3255 };
3256 
3257 int mdp_major = 0;
3258 
3259 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3260 {
3261 	static DEFINE_MUTEX(disks_mutex);
3262 	mddev_t *mddev = mddev_find(dev);
3263 	struct gendisk *disk;
3264 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3265 	int shift = partitioned ? MdpMinorShift : 0;
3266 	int unit = MINOR(dev) >> shift;
3267 	int error;
3268 
3269 	if (!mddev)
3270 		return NULL;
3271 
3272 	mutex_lock(&disks_mutex);
3273 	if (mddev->gendisk) {
3274 		mutex_unlock(&disks_mutex);
3275 		mddev_put(mddev);
3276 		return NULL;
3277 	}
3278 	disk = alloc_disk(1 << shift);
3279 	if (!disk) {
3280 		mutex_unlock(&disks_mutex);
3281 		mddev_put(mddev);
3282 		return NULL;
3283 	}
3284 	disk->major = MAJOR(dev);
3285 	disk->first_minor = unit << shift;
3286 	if (partitioned)
3287 		sprintf(disk->disk_name, "md_d%d", unit);
3288 	else
3289 		sprintf(disk->disk_name, "md%d", unit);
3290 	disk->fops = &md_fops;
3291 	disk->private_data = mddev;
3292 	disk->queue = mddev->queue;
3293 	add_disk(disk);
3294 	mddev->gendisk = disk;
3295 	mutex_unlock(&disks_mutex);
3296 	error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3297 				     "%s", "md");
3298 	if (error)
3299 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3300 		       disk->disk_name);
3301 	else
3302 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3303 	return NULL;
3304 }
3305 
3306 static void md_safemode_timeout(unsigned long data)
3307 {
3308 	mddev_t *mddev = (mddev_t *) data;
3309 
3310 	mddev->safemode = 1;
3311 	md_wakeup_thread(mddev->thread);
3312 }
3313 
3314 static int start_dirty_degraded;
3315 
3316 static int do_md_run(mddev_t * mddev)
3317 {
3318 	int err;
3319 	int chunk_size;
3320 	struct list_head *tmp;
3321 	mdk_rdev_t *rdev;
3322 	struct gendisk *disk;
3323 	struct mdk_personality *pers;
3324 	char b[BDEVNAME_SIZE];
3325 
3326 	if (list_empty(&mddev->disks))
3327 		/* cannot run an array with no devices.. */
3328 		return -EINVAL;
3329 
3330 	if (mddev->pers)
3331 		return -EBUSY;
3332 
3333 	/*
3334 	 * Analyze all RAID superblock(s)
3335 	 */
3336 	if (!mddev->raid_disks) {
3337 		if (!mddev->persistent)
3338 			return -EINVAL;
3339 		analyze_sbs(mddev);
3340 	}
3341 
3342 	chunk_size = mddev->chunk_size;
3343 
3344 	if (chunk_size) {
3345 		if (chunk_size > MAX_CHUNK_SIZE) {
3346 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3347 				chunk_size, MAX_CHUNK_SIZE);
3348 			return -EINVAL;
3349 		}
3350 		/*
3351 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3352 		 */
3353 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3354 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3355 			return -EINVAL;
3356 		}
3357 		if (chunk_size < PAGE_SIZE) {
3358 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3359 				chunk_size, PAGE_SIZE);
3360 			return -EINVAL;
3361 		}
3362 
3363 		/* devices must have minimum size of one chunk */
3364 		rdev_for_each(rdev, tmp, mddev) {
3365 			if (test_bit(Faulty, &rdev->flags))
3366 				continue;
3367 			if (rdev->size < chunk_size / 1024) {
3368 				printk(KERN_WARNING
3369 					"md: Dev %s smaller than chunk_size:"
3370 					" %lluk < %dk\n",
3371 					bdevname(rdev->bdev,b),
3372 					(unsigned long long)rdev->size,
3373 					chunk_size / 1024);
3374 				return -EINVAL;
3375 			}
3376 		}
3377 	}
3378 
3379 #ifdef CONFIG_KMOD
3380 	if (mddev->level != LEVEL_NONE)
3381 		request_module("md-level-%d", mddev->level);
3382 	else if (mddev->clevel[0])
3383 		request_module("md-%s", mddev->clevel);
3384 #endif
3385 
3386 	/*
3387 	 * Drop all container device buffers, from now on
3388 	 * the only valid external interface is through the md
3389 	 * device.
3390 	 */
3391 	rdev_for_each(rdev, tmp, mddev) {
3392 		if (test_bit(Faulty, &rdev->flags))
3393 			continue;
3394 		sync_blockdev(rdev->bdev);
3395 		invalidate_bdev(rdev->bdev);
3396 
3397 		/* perform some consistency tests on the device.
3398 		 * We don't want the data to overlap the metadata,
3399 		 * Internal Bitmap issues has handled elsewhere.
3400 		 */
3401 		if (rdev->data_offset < rdev->sb_offset) {
3402 			if (mddev->size &&
3403 			    rdev->data_offset + mddev->size*2
3404 			    > rdev->sb_offset*2) {
3405 				printk("md: %s: data overlaps metadata\n",
3406 				       mdname(mddev));
3407 				return -EINVAL;
3408 			}
3409 		} else {
3410 			if (rdev->sb_offset*2 + rdev->sb_size/512
3411 			    > rdev->data_offset) {
3412 				printk("md: %s: metadata overlaps data\n",
3413 				       mdname(mddev));
3414 				return -EINVAL;
3415 			}
3416 		}
3417 	}
3418 
3419 	md_probe(mddev->unit, NULL, NULL);
3420 	disk = mddev->gendisk;
3421 	if (!disk)
3422 		return -ENOMEM;
3423 
3424 	spin_lock(&pers_lock);
3425 	pers = find_pers(mddev->level, mddev->clevel);
3426 	if (!pers || !try_module_get(pers->owner)) {
3427 		spin_unlock(&pers_lock);
3428 		if (mddev->level != LEVEL_NONE)
3429 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3430 			       mddev->level);
3431 		else
3432 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3433 			       mddev->clevel);
3434 		return -EINVAL;
3435 	}
3436 	mddev->pers = pers;
3437 	spin_unlock(&pers_lock);
3438 	mddev->level = pers->level;
3439 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3440 
3441 	if (mddev->reshape_position != MaxSector &&
3442 	    pers->start_reshape == NULL) {
3443 		/* This personality cannot handle reshaping... */
3444 		mddev->pers = NULL;
3445 		module_put(pers->owner);
3446 		return -EINVAL;
3447 	}
3448 
3449 	if (pers->sync_request) {
3450 		/* Warn if this is a potentially silly
3451 		 * configuration.
3452 		 */
3453 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3454 		mdk_rdev_t *rdev2;
3455 		struct list_head *tmp2;
3456 		int warned = 0;
3457 		rdev_for_each(rdev, tmp, mddev) {
3458 			rdev_for_each(rdev2, tmp2, mddev) {
3459 				if (rdev < rdev2 &&
3460 				    rdev->bdev->bd_contains ==
3461 				    rdev2->bdev->bd_contains) {
3462 					printk(KERN_WARNING
3463 					       "%s: WARNING: %s appears to be"
3464 					       " on the same physical disk as"
3465 					       " %s.\n",
3466 					       mdname(mddev),
3467 					       bdevname(rdev->bdev,b),
3468 					       bdevname(rdev2->bdev,b2));
3469 					warned = 1;
3470 				}
3471 			}
3472 		}
3473 		if (warned)
3474 			printk(KERN_WARNING
3475 			       "True protection against single-disk"
3476 			       " failure might be compromised.\n");
3477 	}
3478 
3479 	mddev->recovery = 0;
3480 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3481 	mddev->barriers_work = 1;
3482 	mddev->ok_start_degraded = start_dirty_degraded;
3483 
3484 	if (start_readonly)
3485 		mddev->ro = 2; /* read-only, but switch on first write */
3486 
3487 	err = mddev->pers->run(mddev);
3488 	if (!err && mddev->pers->sync_request) {
3489 		err = bitmap_create(mddev);
3490 		if (err) {
3491 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3492 			       mdname(mddev), err);
3493 			mddev->pers->stop(mddev);
3494 		}
3495 	}
3496 	if (err) {
3497 		printk(KERN_ERR "md: pers->run() failed ...\n");
3498 		module_put(mddev->pers->owner);
3499 		mddev->pers = NULL;
3500 		bitmap_destroy(mddev);
3501 		return err;
3502 	}
3503 	if (mddev->pers->sync_request) {
3504 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3505 			printk(KERN_WARNING
3506 			       "md: cannot register extra attributes for %s\n",
3507 			       mdname(mddev));
3508 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3509 		mddev->ro = 0;
3510 
3511  	atomic_set(&mddev->writes_pending,0);
3512 	mddev->safemode = 0;
3513 	mddev->safemode_timer.function = md_safemode_timeout;
3514 	mddev->safemode_timer.data = (unsigned long) mddev;
3515 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3516 	mddev->in_sync = 1;
3517 
3518 	rdev_for_each(rdev, tmp, mddev)
3519 		if (rdev->raid_disk >= 0) {
3520 			char nm[20];
3521 			sprintf(nm, "rd%d", rdev->raid_disk);
3522 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3523 				printk("md: cannot register %s for %s\n",
3524 				       nm, mdname(mddev));
3525 		}
3526 
3527 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3528 
3529 	if (mddev->flags)
3530 		md_update_sb(mddev, 0);
3531 
3532 	set_capacity(disk, mddev->array_size<<1);
3533 
3534 	/* If we call blk_queue_make_request here, it will
3535 	 * re-initialise max_sectors etc which may have been
3536 	 * refined inside -> run.  So just set the bits we need to set.
3537 	 * Most initialisation happended when we called
3538 	 * blk_queue_make_request(..., md_fail_request)
3539 	 * earlier.
3540 	 */
3541 	mddev->queue->queuedata = mddev;
3542 	mddev->queue->make_request_fn = mddev->pers->make_request;
3543 
3544 	/* If there is a partially-recovered drive we need to
3545 	 * start recovery here.  If we leave it to md_check_recovery,
3546 	 * it will remove the drives and not do the right thing
3547 	 */
3548 	if (mddev->degraded && !mddev->sync_thread) {
3549 		struct list_head *rtmp;
3550 		int spares = 0;
3551 		rdev_for_each(rdev, rtmp, mddev)
3552 			if (rdev->raid_disk >= 0 &&
3553 			    !test_bit(In_sync, &rdev->flags) &&
3554 			    !test_bit(Faulty, &rdev->flags))
3555 				/* complete an interrupted recovery */
3556 				spares++;
3557 		if (spares && mddev->pers->sync_request) {
3558 			mddev->recovery = 0;
3559 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3560 			mddev->sync_thread = md_register_thread(md_do_sync,
3561 								mddev,
3562 								"%s_resync");
3563 			if (!mddev->sync_thread) {
3564 				printk(KERN_ERR "%s: could not start resync"
3565 				       " thread...\n",
3566 				       mdname(mddev));
3567 				/* leave the spares where they are, it shouldn't hurt */
3568 				mddev->recovery = 0;
3569 			}
3570 		}
3571 	}
3572 	md_wakeup_thread(mddev->thread);
3573 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3574 
3575 	mddev->changed = 1;
3576 	md_new_event(mddev);
3577 	kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3578 	return 0;
3579 }
3580 
3581 static int restart_array(mddev_t *mddev)
3582 {
3583 	struct gendisk *disk = mddev->gendisk;
3584 	int err;
3585 
3586 	/*
3587 	 * Complain if it has no devices
3588 	 */
3589 	err = -ENXIO;
3590 	if (list_empty(&mddev->disks))
3591 		goto out;
3592 
3593 	if (mddev->pers) {
3594 		err = -EBUSY;
3595 		if (!mddev->ro)
3596 			goto out;
3597 
3598 		mddev->safemode = 0;
3599 		mddev->ro = 0;
3600 		set_disk_ro(disk, 0);
3601 
3602 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3603 			mdname(mddev));
3604 		/*
3605 		 * Kick recovery or resync if necessary
3606 		 */
3607 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3608 		md_wakeup_thread(mddev->thread);
3609 		md_wakeup_thread(mddev->sync_thread);
3610 		err = 0;
3611 	} else
3612 		err = -EINVAL;
3613 
3614 out:
3615 	return err;
3616 }
3617 
3618 /* similar to deny_write_access, but accounts for our holding a reference
3619  * to the file ourselves */
3620 static int deny_bitmap_write_access(struct file * file)
3621 {
3622 	struct inode *inode = file->f_mapping->host;
3623 
3624 	spin_lock(&inode->i_lock);
3625 	if (atomic_read(&inode->i_writecount) > 1) {
3626 		spin_unlock(&inode->i_lock);
3627 		return -ETXTBSY;
3628 	}
3629 	atomic_set(&inode->i_writecount, -1);
3630 	spin_unlock(&inode->i_lock);
3631 
3632 	return 0;
3633 }
3634 
3635 static void restore_bitmap_write_access(struct file *file)
3636 {
3637 	struct inode *inode = file->f_mapping->host;
3638 
3639 	spin_lock(&inode->i_lock);
3640 	atomic_set(&inode->i_writecount, 1);
3641 	spin_unlock(&inode->i_lock);
3642 }
3643 
3644 /* mode:
3645  *   0 - completely stop and dis-assemble array
3646  *   1 - switch to readonly
3647  *   2 - stop but do not disassemble array
3648  */
3649 static int do_md_stop(mddev_t * mddev, int mode)
3650 {
3651 	int err = 0;
3652 	struct gendisk *disk = mddev->gendisk;
3653 
3654 	if (mddev->pers) {
3655 		if (atomic_read(&mddev->active)>2) {
3656 			printk("md: %s still in use.\n",mdname(mddev));
3657 			return -EBUSY;
3658 		}
3659 
3660 		if (mddev->sync_thread) {
3661 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3662 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3663 			md_unregister_thread(mddev->sync_thread);
3664 			mddev->sync_thread = NULL;
3665 		}
3666 
3667 		del_timer_sync(&mddev->safemode_timer);
3668 
3669 		invalidate_partition(disk, 0);
3670 
3671 		switch(mode) {
3672 		case 1: /* readonly */
3673 			err  = -ENXIO;
3674 			if (mddev->ro==1)
3675 				goto out;
3676 			mddev->ro = 1;
3677 			break;
3678 		case 0: /* disassemble */
3679 		case 2: /* stop */
3680 			bitmap_flush(mddev);
3681 			md_super_wait(mddev);
3682 			if (mddev->ro)
3683 				set_disk_ro(disk, 0);
3684 			blk_queue_make_request(mddev->queue, md_fail_request);
3685 			mddev->pers->stop(mddev);
3686 			mddev->queue->merge_bvec_fn = NULL;
3687 			mddev->queue->unplug_fn = NULL;
3688 			mddev->queue->backing_dev_info.congested_fn = NULL;
3689 			if (mddev->pers->sync_request)
3690 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3691 
3692 			module_put(mddev->pers->owner);
3693 			mddev->pers = NULL;
3694 
3695 			set_capacity(disk, 0);
3696 			mddev->changed = 1;
3697 
3698 			if (mddev->ro)
3699 				mddev->ro = 0;
3700 		}
3701 		if (!mddev->in_sync || mddev->flags) {
3702 			/* mark array as shutdown cleanly */
3703 			mddev->in_sync = 1;
3704 			md_update_sb(mddev, 1);
3705 		}
3706 		if (mode == 1)
3707 			set_disk_ro(disk, 1);
3708 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3709 	}
3710 
3711 	/*
3712 	 * Free resources if final stop
3713 	 */
3714 	if (mode == 0) {
3715 		mdk_rdev_t *rdev;
3716 		struct list_head *tmp;
3717 
3718 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3719 
3720 		bitmap_destroy(mddev);
3721 		if (mddev->bitmap_file) {
3722 			restore_bitmap_write_access(mddev->bitmap_file);
3723 			fput(mddev->bitmap_file);
3724 			mddev->bitmap_file = NULL;
3725 		}
3726 		mddev->bitmap_offset = 0;
3727 
3728 		rdev_for_each(rdev, tmp, mddev)
3729 			if (rdev->raid_disk >= 0) {
3730 				char nm[20];
3731 				sprintf(nm, "rd%d", rdev->raid_disk);
3732 				sysfs_remove_link(&mddev->kobj, nm);
3733 			}
3734 
3735 		/* make sure all md_delayed_delete calls have finished */
3736 		flush_scheduled_work();
3737 
3738 		export_array(mddev);
3739 
3740 		mddev->array_size = 0;
3741 		mddev->size = 0;
3742 		mddev->raid_disks = 0;
3743 		mddev->recovery_cp = 0;
3744 		mddev->resync_max = MaxSector;
3745 		mddev->reshape_position = MaxSector;
3746 		mddev->external = 0;
3747 		mddev->persistent = 0;
3748 		mddev->level = LEVEL_NONE;
3749 		mddev->clevel[0] = 0;
3750 		mddev->flags = 0;
3751 		mddev->ro = 0;
3752 		mddev->metadata_type[0] = 0;
3753 		mddev->chunk_size = 0;
3754 		mddev->ctime = mddev->utime = 0;
3755 		mddev->layout = 0;
3756 		mddev->max_disks = 0;
3757 		mddev->events = 0;
3758 		mddev->delta_disks = 0;
3759 		mddev->new_level = LEVEL_NONE;
3760 		mddev->new_layout = 0;
3761 		mddev->new_chunk = 0;
3762 		mddev->curr_resync = 0;
3763 		mddev->resync_mismatches = 0;
3764 		mddev->suspend_lo = mddev->suspend_hi = 0;
3765 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
3766 		mddev->recovery = 0;
3767 		mddev->in_sync = 0;
3768 		mddev->changed = 0;
3769 		mddev->degraded = 0;
3770 		mddev->barriers_work = 0;
3771 		mddev->safemode = 0;
3772 
3773 	} else if (mddev->pers)
3774 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3775 			mdname(mddev));
3776 	err = 0;
3777 	md_new_event(mddev);
3778 out:
3779 	return err;
3780 }
3781 
3782 #ifndef MODULE
3783 static void autorun_array(mddev_t *mddev)
3784 {
3785 	mdk_rdev_t *rdev;
3786 	struct list_head *tmp;
3787 	int err;
3788 
3789 	if (list_empty(&mddev->disks))
3790 		return;
3791 
3792 	printk(KERN_INFO "md: running: ");
3793 
3794 	rdev_for_each(rdev, tmp, mddev) {
3795 		char b[BDEVNAME_SIZE];
3796 		printk("<%s>", bdevname(rdev->bdev,b));
3797 	}
3798 	printk("\n");
3799 
3800 	err = do_md_run (mddev);
3801 	if (err) {
3802 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3803 		do_md_stop (mddev, 0);
3804 	}
3805 }
3806 
3807 /*
3808  * lets try to run arrays based on all disks that have arrived
3809  * until now. (those are in pending_raid_disks)
3810  *
3811  * the method: pick the first pending disk, collect all disks with
3812  * the same UUID, remove all from the pending list and put them into
3813  * the 'same_array' list. Then order this list based on superblock
3814  * update time (freshest comes first), kick out 'old' disks and
3815  * compare superblocks. If everything's fine then run it.
3816  *
3817  * If "unit" is allocated, then bump its reference count
3818  */
3819 static void autorun_devices(int part)
3820 {
3821 	struct list_head *tmp;
3822 	mdk_rdev_t *rdev0, *rdev;
3823 	mddev_t *mddev;
3824 	char b[BDEVNAME_SIZE];
3825 
3826 	printk(KERN_INFO "md: autorun ...\n");
3827 	while (!list_empty(&pending_raid_disks)) {
3828 		int unit;
3829 		dev_t dev;
3830 		LIST_HEAD(candidates);
3831 		rdev0 = list_entry(pending_raid_disks.next,
3832 					 mdk_rdev_t, same_set);
3833 
3834 		printk(KERN_INFO "md: considering %s ...\n",
3835 			bdevname(rdev0->bdev,b));
3836 		INIT_LIST_HEAD(&candidates);
3837 		rdev_for_each_list(rdev, tmp, pending_raid_disks)
3838 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3839 				printk(KERN_INFO "md:  adding %s ...\n",
3840 					bdevname(rdev->bdev,b));
3841 				list_move(&rdev->same_set, &candidates);
3842 			}
3843 		/*
3844 		 * now we have a set of devices, with all of them having
3845 		 * mostly sane superblocks. It's time to allocate the
3846 		 * mddev.
3847 		 */
3848 		if (part) {
3849 			dev = MKDEV(mdp_major,
3850 				    rdev0->preferred_minor << MdpMinorShift);
3851 			unit = MINOR(dev) >> MdpMinorShift;
3852 		} else {
3853 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3854 			unit = MINOR(dev);
3855 		}
3856 		if (rdev0->preferred_minor != unit) {
3857 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3858 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3859 			break;
3860 		}
3861 
3862 		md_probe(dev, NULL, NULL);
3863 		mddev = mddev_find(dev);
3864 		if (!mddev) {
3865 			printk(KERN_ERR
3866 				"md: cannot allocate memory for md drive.\n");
3867 			break;
3868 		}
3869 		if (mddev_lock(mddev))
3870 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3871 			       mdname(mddev));
3872 		else if (mddev->raid_disks || mddev->major_version
3873 			 || !list_empty(&mddev->disks)) {
3874 			printk(KERN_WARNING
3875 				"md: %s already running, cannot run %s\n",
3876 				mdname(mddev), bdevname(rdev0->bdev,b));
3877 			mddev_unlock(mddev);
3878 		} else {
3879 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3880 			mddev->persistent = 1;
3881 			rdev_for_each_list(rdev, tmp, candidates) {
3882 				list_del_init(&rdev->same_set);
3883 				if (bind_rdev_to_array(rdev, mddev))
3884 					export_rdev(rdev);
3885 			}
3886 			autorun_array(mddev);
3887 			mddev_unlock(mddev);
3888 		}
3889 		/* on success, candidates will be empty, on error
3890 		 * it won't...
3891 		 */
3892 		rdev_for_each_list(rdev, tmp, candidates)
3893 			export_rdev(rdev);
3894 		mddev_put(mddev);
3895 	}
3896 	printk(KERN_INFO "md: ... autorun DONE.\n");
3897 }
3898 #endif /* !MODULE */
3899 
3900 static int get_version(void __user * arg)
3901 {
3902 	mdu_version_t ver;
3903 
3904 	ver.major = MD_MAJOR_VERSION;
3905 	ver.minor = MD_MINOR_VERSION;
3906 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3907 
3908 	if (copy_to_user(arg, &ver, sizeof(ver)))
3909 		return -EFAULT;
3910 
3911 	return 0;
3912 }
3913 
3914 static int get_array_info(mddev_t * mddev, void __user * arg)
3915 {
3916 	mdu_array_info_t info;
3917 	int nr,working,active,failed,spare;
3918 	mdk_rdev_t *rdev;
3919 	struct list_head *tmp;
3920 
3921 	nr=working=active=failed=spare=0;
3922 	rdev_for_each(rdev, tmp, mddev) {
3923 		nr++;
3924 		if (test_bit(Faulty, &rdev->flags))
3925 			failed++;
3926 		else {
3927 			working++;
3928 			if (test_bit(In_sync, &rdev->flags))
3929 				active++;
3930 			else
3931 				spare++;
3932 		}
3933 	}
3934 
3935 	info.major_version = mddev->major_version;
3936 	info.minor_version = mddev->minor_version;
3937 	info.patch_version = MD_PATCHLEVEL_VERSION;
3938 	info.ctime         = mddev->ctime;
3939 	info.level         = mddev->level;
3940 	info.size          = mddev->size;
3941 	if (info.size != mddev->size) /* overflow */
3942 		info.size = -1;
3943 	info.nr_disks      = nr;
3944 	info.raid_disks    = mddev->raid_disks;
3945 	info.md_minor      = mddev->md_minor;
3946 	info.not_persistent= !mddev->persistent;
3947 
3948 	info.utime         = mddev->utime;
3949 	info.state         = 0;
3950 	if (mddev->in_sync)
3951 		info.state = (1<<MD_SB_CLEAN);
3952 	if (mddev->bitmap && mddev->bitmap_offset)
3953 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3954 	info.active_disks  = active;
3955 	info.working_disks = working;
3956 	info.failed_disks  = failed;
3957 	info.spare_disks   = spare;
3958 
3959 	info.layout        = mddev->layout;
3960 	info.chunk_size    = mddev->chunk_size;
3961 
3962 	if (copy_to_user(arg, &info, sizeof(info)))
3963 		return -EFAULT;
3964 
3965 	return 0;
3966 }
3967 
3968 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3969 {
3970 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3971 	char *ptr, *buf = NULL;
3972 	int err = -ENOMEM;
3973 
3974 	md_allow_write(mddev);
3975 
3976 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3977 	if (!file)
3978 		goto out;
3979 
3980 	/* bitmap disabled, zero the first byte and copy out */
3981 	if (!mddev->bitmap || !mddev->bitmap->file) {
3982 		file->pathname[0] = '\0';
3983 		goto copy_out;
3984 	}
3985 
3986 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3987 	if (!buf)
3988 		goto out;
3989 
3990 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3991 	if (!ptr)
3992 		goto out;
3993 
3994 	strcpy(file->pathname, ptr);
3995 
3996 copy_out:
3997 	err = 0;
3998 	if (copy_to_user(arg, file, sizeof(*file)))
3999 		err = -EFAULT;
4000 out:
4001 	kfree(buf);
4002 	kfree(file);
4003 	return err;
4004 }
4005 
4006 static int get_disk_info(mddev_t * mddev, void __user * arg)
4007 {
4008 	mdu_disk_info_t info;
4009 	unsigned int nr;
4010 	mdk_rdev_t *rdev;
4011 
4012 	if (copy_from_user(&info, arg, sizeof(info)))
4013 		return -EFAULT;
4014 
4015 	nr = info.number;
4016 
4017 	rdev = find_rdev_nr(mddev, nr);
4018 	if (rdev) {
4019 		info.major = MAJOR(rdev->bdev->bd_dev);
4020 		info.minor = MINOR(rdev->bdev->bd_dev);
4021 		info.raid_disk = rdev->raid_disk;
4022 		info.state = 0;
4023 		if (test_bit(Faulty, &rdev->flags))
4024 			info.state |= (1<<MD_DISK_FAULTY);
4025 		else if (test_bit(In_sync, &rdev->flags)) {
4026 			info.state |= (1<<MD_DISK_ACTIVE);
4027 			info.state |= (1<<MD_DISK_SYNC);
4028 		}
4029 		if (test_bit(WriteMostly, &rdev->flags))
4030 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4031 	} else {
4032 		info.major = info.minor = 0;
4033 		info.raid_disk = -1;
4034 		info.state = (1<<MD_DISK_REMOVED);
4035 	}
4036 
4037 	if (copy_to_user(arg, &info, sizeof(info)))
4038 		return -EFAULT;
4039 
4040 	return 0;
4041 }
4042 
4043 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4044 {
4045 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4046 	mdk_rdev_t *rdev;
4047 	dev_t dev = MKDEV(info->major,info->minor);
4048 
4049 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4050 		return -EOVERFLOW;
4051 
4052 	if (!mddev->raid_disks) {
4053 		int err;
4054 		/* expecting a device which has a superblock */
4055 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4056 		if (IS_ERR(rdev)) {
4057 			printk(KERN_WARNING
4058 				"md: md_import_device returned %ld\n",
4059 				PTR_ERR(rdev));
4060 			return PTR_ERR(rdev);
4061 		}
4062 		if (!list_empty(&mddev->disks)) {
4063 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4064 							mdk_rdev_t, same_set);
4065 			int err = super_types[mddev->major_version]
4066 				.load_super(rdev, rdev0, mddev->minor_version);
4067 			if (err < 0) {
4068 				printk(KERN_WARNING
4069 					"md: %s has different UUID to %s\n",
4070 					bdevname(rdev->bdev,b),
4071 					bdevname(rdev0->bdev,b2));
4072 				export_rdev(rdev);
4073 				return -EINVAL;
4074 			}
4075 		}
4076 		err = bind_rdev_to_array(rdev, mddev);
4077 		if (err)
4078 			export_rdev(rdev);
4079 		return err;
4080 	}
4081 
4082 	/*
4083 	 * add_new_disk can be used once the array is assembled
4084 	 * to add "hot spares".  They must already have a superblock
4085 	 * written
4086 	 */
4087 	if (mddev->pers) {
4088 		int err;
4089 		if (!mddev->pers->hot_add_disk) {
4090 			printk(KERN_WARNING
4091 				"%s: personality does not support diskops!\n",
4092 			       mdname(mddev));
4093 			return -EINVAL;
4094 		}
4095 		if (mddev->persistent)
4096 			rdev = md_import_device(dev, mddev->major_version,
4097 						mddev->minor_version);
4098 		else
4099 			rdev = md_import_device(dev, -1, -1);
4100 		if (IS_ERR(rdev)) {
4101 			printk(KERN_WARNING
4102 				"md: md_import_device returned %ld\n",
4103 				PTR_ERR(rdev));
4104 			return PTR_ERR(rdev);
4105 		}
4106 		/* set save_raid_disk if appropriate */
4107 		if (!mddev->persistent) {
4108 			if (info->state & (1<<MD_DISK_SYNC)  &&
4109 			    info->raid_disk < mddev->raid_disks)
4110 				rdev->raid_disk = info->raid_disk;
4111 			else
4112 				rdev->raid_disk = -1;
4113 		} else
4114 			super_types[mddev->major_version].
4115 				validate_super(mddev, rdev);
4116 		rdev->saved_raid_disk = rdev->raid_disk;
4117 
4118 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4119 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4120 			set_bit(WriteMostly, &rdev->flags);
4121 
4122 		rdev->raid_disk = -1;
4123 		err = bind_rdev_to_array(rdev, mddev);
4124 		if (!err && !mddev->pers->hot_remove_disk) {
4125 			/* If there is hot_add_disk but no hot_remove_disk
4126 			 * then added disks for geometry changes,
4127 			 * and should be added immediately.
4128 			 */
4129 			super_types[mddev->major_version].
4130 				validate_super(mddev, rdev);
4131 			err = mddev->pers->hot_add_disk(mddev, rdev);
4132 			if (err)
4133 				unbind_rdev_from_array(rdev);
4134 		}
4135 		if (err)
4136 			export_rdev(rdev);
4137 
4138 		md_update_sb(mddev, 1);
4139 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4140 		md_wakeup_thread(mddev->thread);
4141 		return err;
4142 	}
4143 
4144 	/* otherwise, add_new_disk is only allowed
4145 	 * for major_version==0 superblocks
4146 	 */
4147 	if (mddev->major_version != 0) {
4148 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4149 		       mdname(mddev));
4150 		return -EINVAL;
4151 	}
4152 
4153 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4154 		int err;
4155 		rdev = md_import_device (dev, -1, 0);
4156 		if (IS_ERR(rdev)) {
4157 			printk(KERN_WARNING
4158 				"md: error, md_import_device() returned %ld\n",
4159 				PTR_ERR(rdev));
4160 			return PTR_ERR(rdev);
4161 		}
4162 		rdev->desc_nr = info->number;
4163 		if (info->raid_disk < mddev->raid_disks)
4164 			rdev->raid_disk = info->raid_disk;
4165 		else
4166 			rdev->raid_disk = -1;
4167 
4168 		if (rdev->raid_disk < mddev->raid_disks)
4169 			if (info->state & (1<<MD_DISK_SYNC))
4170 				set_bit(In_sync, &rdev->flags);
4171 
4172 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4173 			set_bit(WriteMostly, &rdev->flags);
4174 
4175 		if (!mddev->persistent) {
4176 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4177 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4178 		} else
4179 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4180 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
4181 
4182 		err = bind_rdev_to_array(rdev, mddev);
4183 		if (err) {
4184 			export_rdev(rdev);
4185 			return err;
4186 		}
4187 	}
4188 
4189 	return 0;
4190 }
4191 
4192 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4193 {
4194 	char b[BDEVNAME_SIZE];
4195 	mdk_rdev_t *rdev;
4196 
4197 	if (!mddev->pers)
4198 		return -ENODEV;
4199 
4200 	rdev = find_rdev(mddev, dev);
4201 	if (!rdev)
4202 		return -ENXIO;
4203 
4204 	if (rdev->raid_disk >= 0)
4205 		goto busy;
4206 
4207 	kick_rdev_from_array(rdev);
4208 	md_update_sb(mddev, 1);
4209 	md_new_event(mddev);
4210 
4211 	return 0;
4212 busy:
4213 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4214 		bdevname(rdev->bdev,b), mdname(mddev));
4215 	return -EBUSY;
4216 }
4217 
4218 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4219 {
4220 	char b[BDEVNAME_SIZE];
4221 	int err;
4222 	unsigned int size;
4223 	mdk_rdev_t *rdev;
4224 
4225 	if (!mddev->pers)
4226 		return -ENODEV;
4227 
4228 	if (mddev->major_version != 0) {
4229 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4230 			" version-0 superblocks.\n",
4231 			mdname(mddev));
4232 		return -EINVAL;
4233 	}
4234 	if (!mddev->pers->hot_add_disk) {
4235 		printk(KERN_WARNING
4236 			"%s: personality does not support diskops!\n",
4237 			mdname(mddev));
4238 		return -EINVAL;
4239 	}
4240 
4241 	rdev = md_import_device (dev, -1, 0);
4242 	if (IS_ERR(rdev)) {
4243 		printk(KERN_WARNING
4244 			"md: error, md_import_device() returned %ld\n",
4245 			PTR_ERR(rdev));
4246 		return -EINVAL;
4247 	}
4248 
4249 	if (mddev->persistent)
4250 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4251 	else
4252 		rdev->sb_offset =
4253 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4254 
4255 	size = calc_dev_size(rdev, mddev->chunk_size);
4256 	rdev->size = size;
4257 
4258 	if (test_bit(Faulty, &rdev->flags)) {
4259 		printk(KERN_WARNING
4260 			"md: can not hot-add faulty %s disk to %s!\n",
4261 			bdevname(rdev->bdev,b), mdname(mddev));
4262 		err = -EINVAL;
4263 		goto abort_export;
4264 	}
4265 	clear_bit(In_sync, &rdev->flags);
4266 	rdev->desc_nr = -1;
4267 	rdev->saved_raid_disk = -1;
4268 	err = bind_rdev_to_array(rdev, mddev);
4269 	if (err)
4270 		goto abort_export;
4271 
4272 	/*
4273 	 * The rest should better be atomic, we can have disk failures
4274 	 * noticed in interrupt contexts ...
4275 	 */
4276 
4277 	if (rdev->desc_nr == mddev->max_disks) {
4278 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4279 			mdname(mddev));
4280 		err = -EBUSY;
4281 		goto abort_unbind_export;
4282 	}
4283 
4284 	rdev->raid_disk = -1;
4285 
4286 	md_update_sb(mddev, 1);
4287 
4288 	/*
4289 	 * Kick recovery, maybe this spare has to be added to the
4290 	 * array immediately.
4291 	 */
4292 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4293 	md_wakeup_thread(mddev->thread);
4294 	md_new_event(mddev);
4295 	return 0;
4296 
4297 abort_unbind_export:
4298 	unbind_rdev_from_array(rdev);
4299 
4300 abort_export:
4301 	export_rdev(rdev);
4302 	return err;
4303 }
4304 
4305 static int set_bitmap_file(mddev_t *mddev, int fd)
4306 {
4307 	int err;
4308 
4309 	if (mddev->pers) {
4310 		if (!mddev->pers->quiesce)
4311 			return -EBUSY;
4312 		if (mddev->recovery || mddev->sync_thread)
4313 			return -EBUSY;
4314 		/* we should be able to change the bitmap.. */
4315 	}
4316 
4317 
4318 	if (fd >= 0) {
4319 		if (mddev->bitmap)
4320 			return -EEXIST; /* cannot add when bitmap is present */
4321 		mddev->bitmap_file = fget(fd);
4322 
4323 		if (mddev->bitmap_file == NULL) {
4324 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4325 			       mdname(mddev));
4326 			return -EBADF;
4327 		}
4328 
4329 		err = deny_bitmap_write_access(mddev->bitmap_file);
4330 		if (err) {
4331 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4332 			       mdname(mddev));
4333 			fput(mddev->bitmap_file);
4334 			mddev->bitmap_file = NULL;
4335 			return err;
4336 		}
4337 		mddev->bitmap_offset = 0; /* file overrides offset */
4338 	} else if (mddev->bitmap == NULL)
4339 		return -ENOENT; /* cannot remove what isn't there */
4340 	err = 0;
4341 	if (mddev->pers) {
4342 		mddev->pers->quiesce(mddev, 1);
4343 		if (fd >= 0)
4344 			err = bitmap_create(mddev);
4345 		if (fd < 0 || err) {
4346 			bitmap_destroy(mddev);
4347 			fd = -1; /* make sure to put the file */
4348 		}
4349 		mddev->pers->quiesce(mddev, 0);
4350 	}
4351 	if (fd < 0) {
4352 		if (mddev->bitmap_file) {
4353 			restore_bitmap_write_access(mddev->bitmap_file);
4354 			fput(mddev->bitmap_file);
4355 		}
4356 		mddev->bitmap_file = NULL;
4357 	}
4358 
4359 	return err;
4360 }
4361 
4362 /*
4363  * set_array_info is used two different ways
4364  * The original usage is when creating a new array.
4365  * In this usage, raid_disks is > 0 and it together with
4366  *  level, size, not_persistent,layout,chunksize determine the
4367  *  shape of the array.
4368  *  This will always create an array with a type-0.90.0 superblock.
4369  * The newer usage is when assembling an array.
4370  *  In this case raid_disks will be 0, and the major_version field is
4371  *  use to determine which style super-blocks are to be found on the devices.
4372  *  The minor and patch _version numbers are also kept incase the
4373  *  super_block handler wishes to interpret them.
4374  */
4375 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4376 {
4377 
4378 	if (info->raid_disks == 0) {
4379 		/* just setting version number for superblock loading */
4380 		if (info->major_version < 0 ||
4381 		    info->major_version >= ARRAY_SIZE(super_types) ||
4382 		    super_types[info->major_version].name == NULL) {
4383 			/* maybe try to auto-load a module? */
4384 			printk(KERN_INFO
4385 				"md: superblock version %d not known\n",
4386 				info->major_version);
4387 			return -EINVAL;
4388 		}
4389 		mddev->major_version = info->major_version;
4390 		mddev->minor_version = info->minor_version;
4391 		mddev->patch_version = info->patch_version;
4392 		mddev->persistent = !info->not_persistent;
4393 		return 0;
4394 	}
4395 	mddev->major_version = MD_MAJOR_VERSION;
4396 	mddev->minor_version = MD_MINOR_VERSION;
4397 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4398 	mddev->ctime         = get_seconds();
4399 
4400 	mddev->level         = info->level;
4401 	mddev->clevel[0]     = 0;
4402 	mddev->size          = info->size;
4403 	mddev->raid_disks    = info->raid_disks;
4404 	/* don't set md_minor, it is determined by which /dev/md* was
4405 	 * openned
4406 	 */
4407 	if (info->state & (1<<MD_SB_CLEAN))
4408 		mddev->recovery_cp = MaxSector;
4409 	else
4410 		mddev->recovery_cp = 0;
4411 	mddev->persistent    = ! info->not_persistent;
4412 	mddev->external	     = 0;
4413 
4414 	mddev->layout        = info->layout;
4415 	mddev->chunk_size    = info->chunk_size;
4416 
4417 	mddev->max_disks     = MD_SB_DISKS;
4418 
4419 	if (mddev->persistent)
4420 		mddev->flags         = 0;
4421 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4422 
4423 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4424 	mddev->bitmap_offset = 0;
4425 
4426 	mddev->reshape_position = MaxSector;
4427 
4428 	/*
4429 	 * Generate a 128 bit UUID
4430 	 */
4431 	get_random_bytes(mddev->uuid, 16);
4432 
4433 	mddev->new_level = mddev->level;
4434 	mddev->new_chunk = mddev->chunk_size;
4435 	mddev->new_layout = mddev->layout;
4436 	mddev->delta_disks = 0;
4437 
4438 	return 0;
4439 }
4440 
4441 static int update_size(mddev_t *mddev, unsigned long size)
4442 {
4443 	mdk_rdev_t * rdev;
4444 	int rv;
4445 	struct list_head *tmp;
4446 	int fit = (size == 0);
4447 
4448 	if (mddev->pers->resize == NULL)
4449 		return -EINVAL;
4450 	/* The "size" is the amount of each device that is used.
4451 	 * This can only make sense for arrays with redundancy.
4452 	 * linear and raid0 always use whatever space is available
4453 	 * We can only consider changing the size if no resync
4454 	 * or reconstruction is happening, and if the new size
4455 	 * is acceptable. It must fit before the sb_offset or,
4456 	 * if that is <data_offset, it must fit before the
4457 	 * size of each device.
4458 	 * If size is zero, we find the largest size that fits.
4459 	 */
4460 	if (mddev->sync_thread)
4461 		return -EBUSY;
4462 	rdev_for_each(rdev, tmp, mddev) {
4463 		sector_t avail;
4464 		avail = rdev->size * 2;
4465 
4466 		if (fit && (size == 0 || size > avail/2))
4467 			size = avail/2;
4468 		if (avail < ((sector_t)size << 1))
4469 			return -ENOSPC;
4470 	}
4471 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4472 	if (!rv) {
4473 		struct block_device *bdev;
4474 
4475 		bdev = bdget_disk(mddev->gendisk, 0);
4476 		if (bdev) {
4477 			mutex_lock(&bdev->bd_inode->i_mutex);
4478 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4479 			mutex_unlock(&bdev->bd_inode->i_mutex);
4480 			bdput(bdev);
4481 		}
4482 	}
4483 	return rv;
4484 }
4485 
4486 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4487 {
4488 	int rv;
4489 	/* change the number of raid disks */
4490 	if (mddev->pers->check_reshape == NULL)
4491 		return -EINVAL;
4492 	if (raid_disks <= 0 ||
4493 	    raid_disks >= mddev->max_disks)
4494 		return -EINVAL;
4495 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4496 		return -EBUSY;
4497 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4498 
4499 	rv = mddev->pers->check_reshape(mddev);
4500 	return rv;
4501 }
4502 
4503 
4504 /*
4505  * update_array_info is used to change the configuration of an
4506  * on-line array.
4507  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4508  * fields in the info are checked against the array.
4509  * Any differences that cannot be handled will cause an error.
4510  * Normally, only one change can be managed at a time.
4511  */
4512 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4513 {
4514 	int rv = 0;
4515 	int cnt = 0;
4516 	int state = 0;
4517 
4518 	/* calculate expected state,ignoring low bits */
4519 	if (mddev->bitmap && mddev->bitmap_offset)
4520 		state |= (1 << MD_SB_BITMAP_PRESENT);
4521 
4522 	if (mddev->major_version != info->major_version ||
4523 	    mddev->minor_version != info->minor_version ||
4524 /*	    mddev->patch_version != info->patch_version || */
4525 	    mddev->ctime         != info->ctime         ||
4526 	    mddev->level         != info->level         ||
4527 /*	    mddev->layout        != info->layout        || */
4528 	    !mddev->persistent	 != info->not_persistent||
4529 	    mddev->chunk_size    != info->chunk_size    ||
4530 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4531 	    ((state^info->state) & 0xfffffe00)
4532 		)
4533 		return -EINVAL;
4534 	/* Check there is only one change */
4535 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4536 	if (mddev->raid_disks != info->raid_disks) cnt++;
4537 	if (mddev->layout != info->layout) cnt++;
4538 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4539 	if (cnt == 0) return 0;
4540 	if (cnt > 1) return -EINVAL;
4541 
4542 	if (mddev->layout != info->layout) {
4543 		/* Change layout
4544 		 * we don't need to do anything at the md level, the
4545 		 * personality will take care of it all.
4546 		 */
4547 		if (mddev->pers->reconfig == NULL)
4548 			return -EINVAL;
4549 		else
4550 			return mddev->pers->reconfig(mddev, info->layout, -1);
4551 	}
4552 	if (info->size >= 0 && mddev->size != info->size)
4553 		rv = update_size(mddev, info->size);
4554 
4555 	if (mddev->raid_disks    != info->raid_disks)
4556 		rv = update_raid_disks(mddev, info->raid_disks);
4557 
4558 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4559 		if (mddev->pers->quiesce == NULL)
4560 			return -EINVAL;
4561 		if (mddev->recovery || mddev->sync_thread)
4562 			return -EBUSY;
4563 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4564 			/* add the bitmap */
4565 			if (mddev->bitmap)
4566 				return -EEXIST;
4567 			if (mddev->default_bitmap_offset == 0)
4568 				return -EINVAL;
4569 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4570 			mddev->pers->quiesce(mddev, 1);
4571 			rv = bitmap_create(mddev);
4572 			if (rv)
4573 				bitmap_destroy(mddev);
4574 			mddev->pers->quiesce(mddev, 0);
4575 		} else {
4576 			/* remove the bitmap */
4577 			if (!mddev->bitmap)
4578 				return -ENOENT;
4579 			if (mddev->bitmap->file)
4580 				return -EINVAL;
4581 			mddev->pers->quiesce(mddev, 1);
4582 			bitmap_destroy(mddev);
4583 			mddev->pers->quiesce(mddev, 0);
4584 			mddev->bitmap_offset = 0;
4585 		}
4586 	}
4587 	md_update_sb(mddev, 1);
4588 	return rv;
4589 }
4590 
4591 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4592 {
4593 	mdk_rdev_t *rdev;
4594 
4595 	if (mddev->pers == NULL)
4596 		return -ENODEV;
4597 
4598 	rdev = find_rdev(mddev, dev);
4599 	if (!rdev)
4600 		return -ENODEV;
4601 
4602 	md_error(mddev, rdev);
4603 	return 0;
4604 }
4605 
4606 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4607 {
4608 	mddev_t *mddev = bdev->bd_disk->private_data;
4609 
4610 	geo->heads = 2;
4611 	geo->sectors = 4;
4612 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4613 	return 0;
4614 }
4615 
4616 static int md_ioctl(struct inode *inode, struct file *file,
4617 			unsigned int cmd, unsigned long arg)
4618 {
4619 	int err = 0;
4620 	void __user *argp = (void __user *)arg;
4621 	mddev_t *mddev = NULL;
4622 
4623 	if (!capable(CAP_SYS_ADMIN))
4624 		return -EACCES;
4625 
4626 	/*
4627 	 * Commands dealing with the RAID driver but not any
4628 	 * particular array:
4629 	 */
4630 	switch (cmd)
4631 	{
4632 		case RAID_VERSION:
4633 			err = get_version(argp);
4634 			goto done;
4635 
4636 		case PRINT_RAID_DEBUG:
4637 			err = 0;
4638 			md_print_devices();
4639 			goto done;
4640 
4641 #ifndef MODULE
4642 		case RAID_AUTORUN:
4643 			err = 0;
4644 			autostart_arrays(arg);
4645 			goto done;
4646 #endif
4647 		default:;
4648 	}
4649 
4650 	/*
4651 	 * Commands creating/starting a new array:
4652 	 */
4653 
4654 	mddev = inode->i_bdev->bd_disk->private_data;
4655 
4656 	if (!mddev) {
4657 		BUG();
4658 		goto abort;
4659 	}
4660 
4661 	err = mddev_lock(mddev);
4662 	if (err) {
4663 		printk(KERN_INFO
4664 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4665 			err, cmd);
4666 		goto abort;
4667 	}
4668 
4669 	switch (cmd)
4670 	{
4671 		case SET_ARRAY_INFO:
4672 			{
4673 				mdu_array_info_t info;
4674 				if (!arg)
4675 					memset(&info, 0, sizeof(info));
4676 				else if (copy_from_user(&info, argp, sizeof(info))) {
4677 					err = -EFAULT;
4678 					goto abort_unlock;
4679 				}
4680 				if (mddev->pers) {
4681 					err = update_array_info(mddev, &info);
4682 					if (err) {
4683 						printk(KERN_WARNING "md: couldn't update"
4684 						       " array info. %d\n", err);
4685 						goto abort_unlock;
4686 					}
4687 					goto done_unlock;
4688 				}
4689 				if (!list_empty(&mddev->disks)) {
4690 					printk(KERN_WARNING
4691 					       "md: array %s already has disks!\n",
4692 					       mdname(mddev));
4693 					err = -EBUSY;
4694 					goto abort_unlock;
4695 				}
4696 				if (mddev->raid_disks) {
4697 					printk(KERN_WARNING
4698 					       "md: array %s already initialised!\n",
4699 					       mdname(mddev));
4700 					err = -EBUSY;
4701 					goto abort_unlock;
4702 				}
4703 				err = set_array_info(mddev, &info);
4704 				if (err) {
4705 					printk(KERN_WARNING "md: couldn't set"
4706 					       " array info. %d\n", err);
4707 					goto abort_unlock;
4708 				}
4709 			}
4710 			goto done_unlock;
4711 
4712 		default:;
4713 	}
4714 
4715 	/*
4716 	 * Commands querying/configuring an existing array:
4717 	 */
4718 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4719 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4720 	if ((!mddev->raid_disks && !mddev->external)
4721 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4722 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4723 	    && cmd != GET_BITMAP_FILE) {
4724 		err = -ENODEV;
4725 		goto abort_unlock;
4726 	}
4727 
4728 	/*
4729 	 * Commands even a read-only array can execute:
4730 	 */
4731 	switch (cmd)
4732 	{
4733 		case GET_ARRAY_INFO:
4734 			err = get_array_info(mddev, argp);
4735 			goto done_unlock;
4736 
4737 		case GET_BITMAP_FILE:
4738 			err = get_bitmap_file(mddev, argp);
4739 			goto done_unlock;
4740 
4741 		case GET_DISK_INFO:
4742 			err = get_disk_info(mddev, argp);
4743 			goto done_unlock;
4744 
4745 		case RESTART_ARRAY_RW:
4746 			err = restart_array(mddev);
4747 			goto done_unlock;
4748 
4749 		case STOP_ARRAY:
4750 			err = do_md_stop (mddev, 0);
4751 			goto done_unlock;
4752 
4753 		case STOP_ARRAY_RO:
4754 			err = do_md_stop (mddev, 1);
4755 			goto done_unlock;
4756 
4757 	/*
4758 	 * We have a problem here : there is no easy way to give a CHS
4759 	 * virtual geometry. We currently pretend that we have a 2 heads
4760 	 * 4 sectors (with a BIG number of cylinders...). This drives
4761 	 * dosfs just mad... ;-)
4762 	 */
4763 	}
4764 
4765 	/*
4766 	 * The remaining ioctls are changing the state of the
4767 	 * superblock, so we do not allow them on read-only arrays.
4768 	 * However non-MD ioctls (e.g. get-size) will still come through
4769 	 * here and hit the 'default' below, so only disallow
4770 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4771 	 */
4772 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4773 	    mddev->ro && mddev->pers) {
4774 		if (mddev->ro == 2) {
4775 			mddev->ro = 0;
4776 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4777 		md_wakeup_thread(mddev->thread);
4778 
4779 		} else {
4780 			err = -EROFS;
4781 			goto abort_unlock;
4782 		}
4783 	}
4784 
4785 	switch (cmd)
4786 	{
4787 		case ADD_NEW_DISK:
4788 		{
4789 			mdu_disk_info_t info;
4790 			if (copy_from_user(&info, argp, sizeof(info)))
4791 				err = -EFAULT;
4792 			else
4793 				err = add_new_disk(mddev, &info);
4794 			goto done_unlock;
4795 		}
4796 
4797 		case HOT_REMOVE_DISK:
4798 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4799 			goto done_unlock;
4800 
4801 		case HOT_ADD_DISK:
4802 			err = hot_add_disk(mddev, new_decode_dev(arg));
4803 			goto done_unlock;
4804 
4805 		case SET_DISK_FAULTY:
4806 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4807 			goto done_unlock;
4808 
4809 		case RUN_ARRAY:
4810 			err = do_md_run (mddev);
4811 			goto done_unlock;
4812 
4813 		case SET_BITMAP_FILE:
4814 			err = set_bitmap_file(mddev, (int)arg);
4815 			goto done_unlock;
4816 
4817 		default:
4818 			err = -EINVAL;
4819 			goto abort_unlock;
4820 	}
4821 
4822 done_unlock:
4823 abort_unlock:
4824 	mddev_unlock(mddev);
4825 
4826 	return err;
4827 done:
4828 	if (err)
4829 		MD_BUG();
4830 abort:
4831 	return err;
4832 }
4833 
4834 static int md_open(struct inode *inode, struct file *file)
4835 {
4836 	/*
4837 	 * Succeed if we can lock the mddev, which confirms that
4838 	 * it isn't being stopped right now.
4839 	 */
4840 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4841 	int err;
4842 
4843 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4844 		goto out;
4845 
4846 	err = 0;
4847 	mddev_get(mddev);
4848 	mddev_unlock(mddev);
4849 
4850 	check_disk_change(inode->i_bdev);
4851  out:
4852 	return err;
4853 }
4854 
4855 static int md_release(struct inode *inode, struct file * file)
4856 {
4857  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4858 
4859 	BUG_ON(!mddev);
4860 	mddev_put(mddev);
4861 
4862 	return 0;
4863 }
4864 
4865 static int md_media_changed(struct gendisk *disk)
4866 {
4867 	mddev_t *mddev = disk->private_data;
4868 
4869 	return mddev->changed;
4870 }
4871 
4872 static int md_revalidate(struct gendisk *disk)
4873 {
4874 	mddev_t *mddev = disk->private_data;
4875 
4876 	mddev->changed = 0;
4877 	return 0;
4878 }
4879 static struct block_device_operations md_fops =
4880 {
4881 	.owner		= THIS_MODULE,
4882 	.open		= md_open,
4883 	.release	= md_release,
4884 	.ioctl		= md_ioctl,
4885 	.getgeo		= md_getgeo,
4886 	.media_changed	= md_media_changed,
4887 	.revalidate_disk= md_revalidate,
4888 };
4889 
4890 static int md_thread(void * arg)
4891 {
4892 	mdk_thread_t *thread = arg;
4893 
4894 	/*
4895 	 * md_thread is a 'system-thread', it's priority should be very
4896 	 * high. We avoid resource deadlocks individually in each
4897 	 * raid personality. (RAID5 does preallocation) We also use RR and
4898 	 * the very same RT priority as kswapd, thus we will never get
4899 	 * into a priority inversion deadlock.
4900 	 *
4901 	 * we definitely have to have equal or higher priority than
4902 	 * bdflush, otherwise bdflush will deadlock if there are too
4903 	 * many dirty RAID5 blocks.
4904 	 */
4905 
4906 	allow_signal(SIGKILL);
4907 	while (!kthread_should_stop()) {
4908 
4909 		/* We need to wait INTERRUPTIBLE so that
4910 		 * we don't add to the load-average.
4911 		 * That means we need to be sure no signals are
4912 		 * pending
4913 		 */
4914 		if (signal_pending(current))
4915 			flush_signals(current);
4916 
4917 		wait_event_interruptible_timeout
4918 			(thread->wqueue,
4919 			 test_bit(THREAD_WAKEUP, &thread->flags)
4920 			 || kthread_should_stop(),
4921 			 thread->timeout);
4922 
4923 		clear_bit(THREAD_WAKEUP, &thread->flags);
4924 
4925 		thread->run(thread->mddev);
4926 	}
4927 
4928 	return 0;
4929 }
4930 
4931 void md_wakeup_thread(mdk_thread_t *thread)
4932 {
4933 	if (thread) {
4934 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4935 		set_bit(THREAD_WAKEUP, &thread->flags);
4936 		wake_up(&thread->wqueue);
4937 	}
4938 }
4939 
4940 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4941 				 const char *name)
4942 {
4943 	mdk_thread_t *thread;
4944 
4945 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4946 	if (!thread)
4947 		return NULL;
4948 
4949 	init_waitqueue_head(&thread->wqueue);
4950 
4951 	thread->run = run;
4952 	thread->mddev = mddev;
4953 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4954 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4955 	if (IS_ERR(thread->tsk)) {
4956 		kfree(thread);
4957 		return NULL;
4958 	}
4959 	return thread;
4960 }
4961 
4962 void md_unregister_thread(mdk_thread_t *thread)
4963 {
4964 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
4965 
4966 	kthread_stop(thread->tsk);
4967 	kfree(thread);
4968 }
4969 
4970 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4971 {
4972 	if (!mddev) {
4973 		MD_BUG();
4974 		return;
4975 	}
4976 
4977 	if (!rdev || test_bit(Faulty, &rdev->flags))
4978 		return;
4979 
4980 	if (mddev->external)
4981 		set_bit(Blocked, &rdev->flags);
4982 /*
4983 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4984 		mdname(mddev),
4985 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4986 		__builtin_return_address(0),__builtin_return_address(1),
4987 		__builtin_return_address(2),__builtin_return_address(3));
4988 */
4989 	if (!mddev->pers)
4990 		return;
4991 	if (!mddev->pers->error_handler)
4992 		return;
4993 	mddev->pers->error_handler(mddev,rdev);
4994 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4995 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4996 	md_wakeup_thread(mddev->thread);
4997 	md_new_event_inintr(mddev);
4998 }
4999 
5000 /* seq_file implementation /proc/mdstat */
5001 
5002 static void status_unused(struct seq_file *seq)
5003 {
5004 	int i = 0;
5005 	mdk_rdev_t *rdev;
5006 	struct list_head *tmp;
5007 
5008 	seq_printf(seq, "unused devices: ");
5009 
5010 	rdev_for_each_list(rdev, tmp, pending_raid_disks) {
5011 		char b[BDEVNAME_SIZE];
5012 		i++;
5013 		seq_printf(seq, "%s ",
5014 			      bdevname(rdev->bdev,b));
5015 	}
5016 	if (!i)
5017 		seq_printf(seq, "<none>");
5018 
5019 	seq_printf(seq, "\n");
5020 }
5021 
5022 
5023 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5024 {
5025 	sector_t max_blocks, resync, res;
5026 	unsigned long dt, db, rt;
5027 	int scale;
5028 	unsigned int per_milli;
5029 
5030 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5031 
5032 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5033 		max_blocks = mddev->resync_max_sectors >> 1;
5034 	else
5035 		max_blocks = mddev->size;
5036 
5037 	/*
5038 	 * Should not happen.
5039 	 */
5040 	if (!max_blocks) {
5041 		MD_BUG();
5042 		return;
5043 	}
5044 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5045 	 * in a sector_t, and (max_blocks>>scale) will fit in a
5046 	 * u32, as those are the requirements for sector_div.
5047 	 * Thus 'scale' must be at least 10
5048 	 */
5049 	scale = 10;
5050 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5051 		while ( max_blocks/2 > (1ULL<<(scale+32)))
5052 			scale++;
5053 	}
5054 	res = (resync>>scale)*1000;
5055 	sector_div(res, (u32)((max_blocks>>scale)+1));
5056 
5057 	per_milli = res;
5058 	{
5059 		int i, x = per_milli/50, y = 20-x;
5060 		seq_printf(seq, "[");
5061 		for (i = 0; i < x; i++)
5062 			seq_printf(seq, "=");
5063 		seq_printf(seq, ">");
5064 		for (i = 0; i < y; i++)
5065 			seq_printf(seq, ".");
5066 		seq_printf(seq, "] ");
5067 	}
5068 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5069 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5070 		    "reshape" :
5071 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5072 		     "check" :
5073 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5074 		      "resync" : "recovery"))),
5075 		   per_milli/10, per_milli % 10,
5076 		   (unsigned long long) resync,
5077 		   (unsigned long long) max_blocks);
5078 
5079 	/*
5080 	 * We do not want to overflow, so the order of operands and
5081 	 * the * 100 / 100 trick are important. We do a +1 to be
5082 	 * safe against division by zero. We only estimate anyway.
5083 	 *
5084 	 * dt: time from mark until now
5085 	 * db: blocks written from mark until now
5086 	 * rt: remaining time
5087 	 */
5088 	dt = ((jiffies - mddev->resync_mark) / HZ);
5089 	if (!dt) dt++;
5090 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5091 		- mddev->resync_mark_cnt;
5092 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5093 
5094 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5095 
5096 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5097 }
5098 
5099 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5100 {
5101 	struct list_head *tmp;
5102 	loff_t l = *pos;
5103 	mddev_t *mddev;
5104 
5105 	if (l >= 0x10000)
5106 		return NULL;
5107 	if (!l--)
5108 		/* header */
5109 		return (void*)1;
5110 
5111 	spin_lock(&all_mddevs_lock);
5112 	list_for_each(tmp,&all_mddevs)
5113 		if (!l--) {
5114 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5115 			mddev_get(mddev);
5116 			spin_unlock(&all_mddevs_lock);
5117 			return mddev;
5118 		}
5119 	spin_unlock(&all_mddevs_lock);
5120 	if (!l--)
5121 		return (void*)2;/* tail */
5122 	return NULL;
5123 }
5124 
5125 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5126 {
5127 	struct list_head *tmp;
5128 	mddev_t *next_mddev, *mddev = v;
5129 
5130 	++*pos;
5131 	if (v == (void*)2)
5132 		return NULL;
5133 
5134 	spin_lock(&all_mddevs_lock);
5135 	if (v == (void*)1)
5136 		tmp = all_mddevs.next;
5137 	else
5138 		tmp = mddev->all_mddevs.next;
5139 	if (tmp != &all_mddevs)
5140 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5141 	else {
5142 		next_mddev = (void*)2;
5143 		*pos = 0x10000;
5144 	}
5145 	spin_unlock(&all_mddevs_lock);
5146 
5147 	if (v != (void*)1)
5148 		mddev_put(mddev);
5149 	return next_mddev;
5150 
5151 }
5152 
5153 static void md_seq_stop(struct seq_file *seq, void *v)
5154 {
5155 	mddev_t *mddev = v;
5156 
5157 	if (mddev && v != (void*)1 && v != (void*)2)
5158 		mddev_put(mddev);
5159 }
5160 
5161 struct mdstat_info {
5162 	int event;
5163 };
5164 
5165 static int md_seq_show(struct seq_file *seq, void *v)
5166 {
5167 	mddev_t *mddev = v;
5168 	sector_t size;
5169 	struct list_head *tmp2;
5170 	mdk_rdev_t *rdev;
5171 	struct mdstat_info *mi = seq->private;
5172 	struct bitmap *bitmap;
5173 
5174 	if (v == (void*)1) {
5175 		struct mdk_personality *pers;
5176 		seq_printf(seq, "Personalities : ");
5177 		spin_lock(&pers_lock);
5178 		list_for_each_entry(pers, &pers_list, list)
5179 			seq_printf(seq, "[%s] ", pers->name);
5180 
5181 		spin_unlock(&pers_lock);
5182 		seq_printf(seq, "\n");
5183 		mi->event = atomic_read(&md_event_count);
5184 		return 0;
5185 	}
5186 	if (v == (void*)2) {
5187 		status_unused(seq);
5188 		return 0;
5189 	}
5190 
5191 	if (mddev_lock(mddev) < 0)
5192 		return -EINTR;
5193 
5194 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5195 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5196 						mddev->pers ? "" : "in");
5197 		if (mddev->pers) {
5198 			if (mddev->ro==1)
5199 				seq_printf(seq, " (read-only)");
5200 			if (mddev->ro==2)
5201 				seq_printf(seq, " (auto-read-only)");
5202 			seq_printf(seq, " %s", mddev->pers->name);
5203 		}
5204 
5205 		size = 0;
5206 		rdev_for_each(rdev, tmp2, mddev) {
5207 			char b[BDEVNAME_SIZE];
5208 			seq_printf(seq, " %s[%d]",
5209 				bdevname(rdev->bdev,b), rdev->desc_nr);
5210 			if (test_bit(WriteMostly, &rdev->flags))
5211 				seq_printf(seq, "(W)");
5212 			if (test_bit(Faulty, &rdev->flags)) {
5213 				seq_printf(seq, "(F)");
5214 				continue;
5215 			} else if (rdev->raid_disk < 0)
5216 				seq_printf(seq, "(S)"); /* spare */
5217 			size += rdev->size;
5218 		}
5219 
5220 		if (!list_empty(&mddev->disks)) {
5221 			if (mddev->pers)
5222 				seq_printf(seq, "\n      %llu blocks",
5223 					(unsigned long long)mddev->array_size);
5224 			else
5225 				seq_printf(seq, "\n      %llu blocks",
5226 					(unsigned long long)size);
5227 		}
5228 		if (mddev->persistent) {
5229 			if (mddev->major_version != 0 ||
5230 			    mddev->minor_version != 90) {
5231 				seq_printf(seq," super %d.%d",
5232 					   mddev->major_version,
5233 					   mddev->minor_version);
5234 			}
5235 		} else if (mddev->external)
5236 			seq_printf(seq, " super external:%s",
5237 				   mddev->metadata_type);
5238 		else
5239 			seq_printf(seq, " super non-persistent");
5240 
5241 		if (mddev->pers) {
5242 			mddev->pers->status (seq, mddev);
5243 	 		seq_printf(seq, "\n      ");
5244 			if (mddev->pers->sync_request) {
5245 				if (mddev->curr_resync > 2) {
5246 					status_resync (seq, mddev);
5247 					seq_printf(seq, "\n      ");
5248 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5249 					seq_printf(seq, "\tresync=DELAYED\n      ");
5250 				else if (mddev->recovery_cp < MaxSector)
5251 					seq_printf(seq, "\tresync=PENDING\n      ");
5252 			}
5253 		} else
5254 			seq_printf(seq, "\n       ");
5255 
5256 		if ((bitmap = mddev->bitmap)) {
5257 			unsigned long chunk_kb;
5258 			unsigned long flags;
5259 			spin_lock_irqsave(&bitmap->lock, flags);
5260 			chunk_kb = bitmap->chunksize >> 10;
5261 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5262 				"%lu%s chunk",
5263 				bitmap->pages - bitmap->missing_pages,
5264 				bitmap->pages,
5265 				(bitmap->pages - bitmap->missing_pages)
5266 					<< (PAGE_SHIFT - 10),
5267 				chunk_kb ? chunk_kb : bitmap->chunksize,
5268 				chunk_kb ? "KB" : "B");
5269 			if (bitmap->file) {
5270 				seq_printf(seq, ", file: ");
5271 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5272 			}
5273 
5274 			seq_printf(seq, "\n");
5275 			spin_unlock_irqrestore(&bitmap->lock, flags);
5276 		}
5277 
5278 		seq_printf(seq, "\n");
5279 	}
5280 	mddev_unlock(mddev);
5281 
5282 	return 0;
5283 }
5284 
5285 static struct seq_operations md_seq_ops = {
5286 	.start  = md_seq_start,
5287 	.next   = md_seq_next,
5288 	.stop   = md_seq_stop,
5289 	.show   = md_seq_show,
5290 };
5291 
5292 static int md_seq_open(struct inode *inode, struct file *file)
5293 {
5294 	int error;
5295 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5296 	if (mi == NULL)
5297 		return -ENOMEM;
5298 
5299 	error = seq_open(file, &md_seq_ops);
5300 	if (error)
5301 		kfree(mi);
5302 	else {
5303 		struct seq_file *p = file->private_data;
5304 		p->private = mi;
5305 		mi->event = atomic_read(&md_event_count);
5306 	}
5307 	return error;
5308 }
5309 
5310 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5311 {
5312 	struct seq_file *m = filp->private_data;
5313 	struct mdstat_info *mi = m->private;
5314 	int mask;
5315 
5316 	poll_wait(filp, &md_event_waiters, wait);
5317 
5318 	/* always allow read */
5319 	mask = POLLIN | POLLRDNORM;
5320 
5321 	if (mi->event != atomic_read(&md_event_count))
5322 		mask |= POLLERR | POLLPRI;
5323 	return mask;
5324 }
5325 
5326 static const struct file_operations md_seq_fops = {
5327 	.owner		= THIS_MODULE,
5328 	.open           = md_seq_open,
5329 	.read           = seq_read,
5330 	.llseek         = seq_lseek,
5331 	.release	= seq_release_private,
5332 	.poll		= mdstat_poll,
5333 };
5334 
5335 int register_md_personality(struct mdk_personality *p)
5336 {
5337 	spin_lock(&pers_lock);
5338 	list_add_tail(&p->list, &pers_list);
5339 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5340 	spin_unlock(&pers_lock);
5341 	return 0;
5342 }
5343 
5344 int unregister_md_personality(struct mdk_personality *p)
5345 {
5346 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5347 	spin_lock(&pers_lock);
5348 	list_del_init(&p->list);
5349 	spin_unlock(&pers_lock);
5350 	return 0;
5351 }
5352 
5353 static int is_mddev_idle(mddev_t *mddev)
5354 {
5355 	mdk_rdev_t * rdev;
5356 	struct list_head *tmp;
5357 	int idle;
5358 	long curr_events;
5359 
5360 	idle = 1;
5361 	rdev_for_each(rdev, tmp, mddev) {
5362 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5363 		curr_events = disk_stat_read(disk, sectors[0]) +
5364 				disk_stat_read(disk, sectors[1]) -
5365 				atomic_read(&disk->sync_io);
5366 		/* sync IO will cause sync_io to increase before the disk_stats
5367 		 * as sync_io is counted when a request starts, and
5368 		 * disk_stats is counted when it completes.
5369 		 * So resync activity will cause curr_events to be smaller than
5370 		 * when there was no such activity.
5371 		 * non-sync IO will cause disk_stat to increase without
5372 		 * increasing sync_io so curr_events will (eventually)
5373 		 * be larger than it was before.  Once it becomes
5374 		 * substantially larger, the test below will cause
5375 		 * the array to appear non-idle, and resync will slow
5376 		 * down.
5377 		 * If there is a lot of outstanding resync activity when
5378 		 * we set last_event to curr_events, then all that activity
5379 		 * completing might cause the array to appear non-idle
5380 		 * and resync will be slowed down even though there might
5381 		 * not have been non-resync activity.  This will only
5382 		 * happen once though.  'last_events' will soon reflect
5383 		 * the state where there is little or no outstanding
5384 		 * resync requests, and further resync activity will
5385 		 * always make curr_events less than last_events.
5386 		 *
5387 		 */
5388 		if (curr_events - rdev->last_events > 4096) {
5389 			rdev->last_events = curr_events;
5390 			idle = 0;
5391 		}
5392 	}
5393 	return idle;
5394 }
5395 
5396 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5397 {
5398 	/* another "blocks" (512byte) blocks have been synced */
5399 	atomic_sub(blocks, &mddev->recovery_active);
5400 	wake_up(&mddev->recovery_wait);
5401 	if (!ok) {
5402 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5403 		md_wakeup_thread(mddev->thread);
5404 		// stop recovery, signal do_sync ....
5405 	}
5406 }
5407 
5408 
5409 /* md_write_start(mddev, bi)
5410  * If we need to update some array metadata (e.g. 'active' flag
5411  * in superblock) before writing, schedule a superblock update
5412  * and wait for it to complete.
5413  */
5414 void md_write_start(mddev_t *mddev, struct bio *bi)
5415 {
5416 	if (bio_data_dir(bi) != WRITE)
5417 		return;
5418 
5419 	BUG_ON(mddev->ro == 1);
5420 	if (mddev->ro == 2) {
5421 		/* need to switch to read/write */
5422 		mddev->ro = 0;
5423 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5424 		md_wakeup_thread(mddev->thread);
5425 		md_wakeup_thread(mddev->sync_thread);
5426 	}
5427 	atomic_inc(&mddev->writes_pending);
5428 	if (mddev->safemode == 1)
5429 		mddev->safemode = 0;
5430 	if (mddev->in_sync) {
5431 		spin_lock_irq(&mddev->write_lock);
5432 		if (mddev->in_sync) {
5433 			mddev->in_sync = 0;
5434 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5435 			md_wakeup_thread(mddev->thread);
5436 		}
5437 		spin_unlock_irq(&mddev->write_lock);
5438 	}
5439 	wait_event(mddev->sb_wait, mddev->flags==0);
5440 }
5441 
5442 void md_write_end(mddev_t *mddev)
5443 {
5444 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5445 		if (mddev->safemode == 2)
5446 			md_wakeup_thread(mddev->thread);
5447 		else if (mddev->safemode_delay)
5448 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5449 	}
5450 }
5451 
5452 /* md_allow_write(mddev)
5453  * Calling this ensures that the array is marked 'active' so that writes
5454  * may proceed without blocking.  It is important to call this before
5455  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5456  * Must be called with mddev_lock held.
5457  */
5458 void md_allow_write(mddev_t *mddev)
5459 {
5460 	if (!mddev->pers)
5461 		return;
5462 	if (mddev->ro)
5463 		return;
5464 
5465 	spin_lock_irq(&mddev->write_lock);
5466 	if (mddev->in_sync) {
5467 		mddev->in_sync = 0;
5468 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5469 		if (mddev->safemode_delay &&
5470 		    mddev->safemode == 0)
5471 			mddev->safemode = 1;
5472 		spin_unlock_irq(&mddev->write_lock);
5473 		md_update_sb(mddev, 0);
5474 	} else
5475 		spin_unlock_irq(&mddev->write_lock);
5476 }
5477 EXPORT_SYMBOL_GPL(md_allow_write);
5478 
5479 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5480 
5481 #define SYNC_MARKS	10
5482 #define	SYNC_MARK_STEP	(3*HZ)
5483 void md_do_sync(mddev_t *mddev)
5484 {
5485 	mddev_t *mddev2;
5486 	unsigned int currspeed = 0,
5487 		 window;
5488 	sector_t max_sectors,j, io_sectors;
5489 	unsigned long mark[SYNC_MARKS];
5490 	sector_t mark_cnt[SYNC_MARKS];
5491 	int last_mark,m;
5492 	struct list_head *tmp;
5493 	sector_t last_check;
5494 	int skipped = 0;
5495 	struct list_head *rtmp;
5496 	mdk_rdev_t *rdev;
5497 	char *desc;
5498 
5499 	/* just incase thread restarts... */
5500 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5501 		return;
5502 	if (mddev->ro) /* never try to sync a read-only array */
5503 		return;
5504 
5505 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5506 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5507 			desc = "data-check";
5508 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5509 			desc = "requested-resync";
5510 		else
5511 			desc = "resync";
5512 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5513 		desc = "reshape";
5514 	else
5515 		desc = "recovery";
5516 
5517 	/* we overload curr_resync somewhat here.
5518 	 * 0 == not engaged in resync at all
5519 	 * 2 == checking that there is no conflict with another sync
5520 	 * 1 == like 2, but have yielded to allow conflicting resync to
5521 	 *		commense
5522 	 * other == active in resync - this many blocks
5523 	 *
5524 	 * Before starting a resync we must have set curr_resync to
5525 	 * 2, and then checked that every "conflicting" array has curr_resync
5526 	 * less than ours.  When we find one that is the same or higher
5527 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5528 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5529 	 * This will mean we have to start checking from the beginning again.
5530 	 *
5531 	 */
5532 
5533 	do {
5534 		mddev->curr_resync = 2;
5535 
5536 	try_again:
5537 		if (kthread_should_stop()) {
5538 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5539 			goto skip;
5540 		}
5541 		for_each_mddev(mddev2, tmp) {
5542 			if (mddev2 == mddev)
5543 				continue;
5544 			if (mddev2->curr_resync &&
5545 			    match_mddev_units(mddev,mddev2)) {
5546 				DEFINE_WAIT(wq);
5547 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5548 					/* arbitrarily yield */
5549 					mddev->curr_resync = 1;
5550 					wake_up(&resync_wait);
5551 				}
5552 				if (mddev > mddev2 && mddev->curr_resync == 1)
5553 					/* no need to wait here, we can wait the next
5554 					 * time 'round when curr_resync == 2
5555 					 */
5556 					continue;
5557 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5558 				if (!kthread_should_stop() &&
5559 				    mddev2->curr_resync >= mddev->curr_resync) {
5560 					printk(KERN_INFO "md: delaying %s of %s"
5561 					       " until %s has finished (they"
5562 					       " share one or more physical units)\n",
5563 					       desc, mdname(mddev), mdname(mddev2));
5564 					mddev_put(mddev2);
5565 					schedule();
5566 					finish_wait(&resync_wait, &wq);
5567 					goto try_again;
5568 				}
5569 				finish_wait(&resync_wait, &wq);
5570 			}
5571 		}
5572 	} while (mddev->curr_resync < 2);
5573 
5574 	j = 0;
5575 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5576 		/* resync follows the size requested by the personality,
5577 		 * which defaults to physical size, but can be virtual size
5578 		 */
5579 		max_sectors = mddev->resync_max_sectors;
5580 		mddev->resync_mismatches = 0;
5581 		/* we don't use the checkpoint if there's a bitmap */
5582 		if (!mddev->bitmap &&
5583 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5584 			j = mddev->recovery_cp;
5585 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5586 		max_sectors = mddev->size << 1;
5587 	else {
5588 		/* recovery follows the physical size of devices */
5589 		max_sectors = mddev->size << 1;
5590 		j = MaxSector;
5591 		rdev_for_each(rdev, rtmp, mddev)
5592 			if (rdev->raid_disk >= 0 &&
5593 			    !test_bit(Faulty, &rdev->flags) &&
5594 			    !test_bit(In_sync, &rdev->flags) &&
5595 			    rdev->recovery_offset < j)
5596 				j = rdev->recovery_offset;
5597 	}
5598 
5599 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5600 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5601 		" %d KB/sec/disk.\n", speed_min(mddev));
5602 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5603 	       "(but not more than %d KB/sec) for %s.\n",
5604 	       speed_max(mddev), desc);
5605 
5606 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5607 
5608 	io_sectors = 0;
5609 	for (m = 0; m < SYNC_MARKS; m++) {
5610 		mark[m] = jiffies;
5611 		mark_cnt[m] = io_sectors;
5612 	}
5613 	last_mark = 0;
5614 	mddev->resync_mark = mark[last_mark];
5615 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5616 
5617 	/*
5618 	 * Tune reconstruction:
5619 	 */
5620 	window = 32*(PAGE_SIZE/512);
5621 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5622 		window/2,(unsigned long long) max_sectors/2);
5623 
5624 	atomic_set(&mddev->recovery_active, 0);
5625 	init_waitqueue_head(&mddev->recovery_wait);
5626 	last_check = 0;
5627 
5628 	if (j>2) {
5629 		printk(KERN_INFO
5630 		       "md: resuming %s of %s from checkpoint.\n",
5631 		       desc, mdname(mddev));
5632 		mddev->curr_resync = j;
5633 	}
5634 
5635 	while (j < max_sectors) {
5636 		sector_t sectors;
5637 
5638 		skipped = 0;
5639 		if (j >= mddev->resync_max) {
5640 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5641 			wait_event(mddev->recovery_wait,
5642 				   mddev->resync_max > j
5643 				   || kthread_should_stop());
5644 		}
5645 		if (kthread_should_stop())
5646 			goto interrupted;
5647 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5648 						  currspeed < speed_min(mddev));
5649 		if (sectors == 0) {
5650 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5651 			goto out;
5652 		}
5653 
5654 		if (!skipped) { /* actual IO requested */
5655 			io_sectors += sectors;
5656 			atomic_add(sectors, &mddev->recovery_active);
5657 		}
5658 
5659 		j += sectors;
5660 		if (j>1) mddev->curr_resync = j;
5661 		mddev->curr_mark_cnt = io_sectors;
5662 		if (last_check == 0)
5663 			/* this is the earliers that rebuilt will be
5664 			 * visible in /proc/mdstat
5665 			 */
5666 			md_new_event(mddev);
5667 
5668 		if (last_check + window > io_sectors || j == max_sectors)
5669 			continue;
5670 
5671 		last_check = io_sectors;
5672 
5673 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5674 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5675 			break;
5676 
5677 	repeat:
5678 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5679 			/* step marks */
5680 			int next = (last_mark+1) % SYNC_MARKS;
5681 
5682 			mddev->resync_mark = mark[next];
5683 			mddev->resync_mark_cnt = mark_cnt[next];
5684 			mark[next] = jiffies;
5685 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5686 			last_mark = next;
5687 		}
5688 
5689 
5690 		if (kthread_should_stop())
5691 			goto interrupted;
5692 
5693 
5694 		/*
5695 		 * this loop exits only if either when we are slower than
5696 		 * the 'hard' speed limit, or the system was IO-idle for
5697 		 * a jiffy.
5698 		 * the system might be non-idle CPU-wise, but we only care
5699 		 * about not overloading the IO subsystem. (things like an
5700 		 * e2fsck being done on the RAID array should execute fast)
5701 		 */
5702 		blk_unplug(mddev->queue);
5703 		cond_resched();
5704 
5705 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5706 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5707 
5708 		if (currspeed > speed_min(mddev)) {
5709 			if ((currspeed > speed_max(mddev)) ||
5710 					!is_mddev_idle(mddev)) {
5711 				msleep(500);
5712 				goto repeat;
5713 			}
5714 		}
5715 	}
5716 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5717 	/*
5718 	 * this also signals 'finished resyncing' to md_stop
5719 	 */
5720  out:
5721 	blk_unplug(mddev->queue);
5722 
5723 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5724 
5725 	/* tell personality that we are finished */
5726 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5727 
5728 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5729 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5730 	    mddev->curr_resync > 2) {
5731 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5732 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5733 				if (mddev->curr_resync >= mddev->recovery_cp) {
5734 					printk(KERN_INFO
5735 					       "md: checkpointing %s of %s.\n",
5736 					       desc, mdname(mddev));
5737 					mddev->recovery_cp = mddev->curr_resync;
5738 				}
5739 			} else
5740 				mddev->recovery_cp = MaxSector;
5741 		} else {
5742 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5743 				mddev->curr_resync = MaxSector;
5744 			rdev_for_each(rdev, rtmp, mddev)
5745 				if (rdev->raid_disk >= 0 &&
5746 				    !test_bit(Faulty, &rdev->flags) &&
5747 				    !test_bit(In_sync, &rdev->flags) &&
5748 				    rdev->recovery_offset < mddev->curr_resync)
5749 					rdev->recovery_offset = mddev->curr_resync;
5750 		}
5751 	}
5752 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5753 
5754  skip:
5755 	mddev->curr_resync = 0;
5756 	mddev->resync_max = MaxSector;
5757 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5758 	wake_up(&resync_wait);
5759 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5760 	md_wakeup_thread(mddev->thread);
5761 	return;
5762 
5763  interrupted:
5764 	/*
5765 	 * got a signal, exit.
5766 	 */
5767 	printk(KERN_INFO
5768 	       "md: md_do_sync() got signal ... exiting\n");
5769 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5770 	goto out;
5771 
5772 }
5773 EXPORT_SYMBOL_GPL(md_do_sync);
5774 
5775 
5776 static int remove_and_add_spares(mddev_t *mddev)
5777 {
5778 	mdk_rdev_t *rdev;
5779 	struct list_head *rtmp;
5780 	int spares = 0;
5781 
5782 	rdev_for_each(rdev, rtmp, mddev)
5783 		if (rdev->raid_disk >= 0 &&
5784 		    !test_bit(Blocked, &rdev->flags) &&
5785 		    (test_bit(Faulty, &rdev->flags) ||
5786 		     ! test_bit(In_sync, &rdev->flags)) &&
5787 		    atomic_read(&rdev->nr_pending)==0) {
5788 			if (mddev->pers->hot_remove_disk(
5789 				    mddev, rdev->raid_disk)==0) {
5790 				char nm[20];
5791 				sprintf(nm,"rd%d", rdev->raid_disk);
5792 				sysfs_remove_link(&mddev->kobj, nm);
5793 				rdev->raid_disk = -1;
5794 			}
5795 		}
5796 
5797 	if (mddev->degraded) {
5798 		rdev_for_each(rdev, rtmp, mddev)
5799 			if (rdev->raid_disk < 0
5800 			    && !test_bit(Faulty, &rdev->flags)) {
5801 				rdev->recovery_offset = 0;
5802 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5803 					char nm[20];
5804 					sprintf(nm, "rd%d", rdev->raid_disk);
5805 					if (sysfs_create_link(&mddev->kobj,
5806 							      &rdev->kobj, nm))
5807 						printk(KERN_WARNING
5808 						       "md: cannot register "
5809 						       "%s for %s\n",
5810 						       nm, mdname(mddev));
5811 					spares++;
5812 					md_new_event(mddev);
5813 				} else
5814 					break;
5815 			}
5816 	}
5817 	return spares;
5818 }
5819 /*
5820  * This routine is regularly called by all per-raid-array threads to
5821  * deal with generic issues like resync and super-block update.
5822  * Raid personalities that don't have a thread (linear/raid0) do not
5823  * need this as they never do any recovery or update the superblock.
5824  *
5825  * It does not do any resync itself, but rather "forks" off other threads
5826  * to do that as needed.
5827  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5828  * "->recovery" and create a thread at ->sync_thread.
5829  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5830  * and wakeups up this thread which will reap the thread and finish up.
5831  * This thread also removes any faulty devices (with nr_pending == 0).
5832  *
5833  * The overall approach is:
5834  *  1/ if the superblock needs updating, update it.
5835  *  2/ If a recovery thread is running, don't do anything else.
5836  *  3/ If recovery has finished, clean up, possibly marking spares active.
5837  *  4/ If there are any faulty devices, remove them.
5838  *  5/ If array is degraded, try to add spares devices
5839  *  6/ If array has spares or is not in-sync, start a resync thread.
5840  */
5841 void md_check_recovery(mddev_t *mddev)
5842 {
5843 	mdk_rdev_t *rdev;
5844 	struct list_head *rtmp;
5845 
5846 
5847 	if (mddev->bitmap)
5848 		bitmap_daemon_work(mddev->bitmap);
5849 
5850 	if (mddev->ro)
5851 		return;
5852 
5853 	if (signal_pending(current)) {
5854 		if (mddev->pers->sync_request && !mddev->external) {
5855 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5856 			       mdname(mddev));
5857 			mddev->safemode = 2;
5858 		}
5859 		flush_signals(current);
5860 	}
5861 
5862 	if ( ! (
5863 		(mddev->flags && !mddev->external) ||
5864 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5865 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5866 		(mddev->external == 0 && mddev->safemode == 1) ||
5867 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5868 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5869 		))
5870 		return;
5871 
5872 	if (mddev_trylock(mddev)) {
5873 		int spares = 0;
5874 
5875 		if (!mddev->external) {
5876 			spin_lock_irq(&mddev->write_lock);
5877 			if (mddev->safemode &&
5878 			    !atomic_read(&mddev->writes_pending) &&
5879 			    !mddev->in_sync &&
5880 			    mddev->recovery_cp == MaxSector) {
5881 				mddev->in_sync = 1;
5882 				if (mddev->persistent)
5883 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5884 			}
5885 			if (mddev->safemode == 1)
5886 				mddev->safemode = 0;
5887 			spin_unlock_irq(&mddev->write_lock);
5888 		}
5889 
5890 		if (mddev->flags)
5891 			md_update_sb(mddev, 0);
5892 
5893 
5894 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5895 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5896 			/* resync/recovery still happening */
5897 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5898 			goto unlock;
5899 		}
5900 		if (mddev->sync_thread) {
5901 			/* resync has finished, collect result */
5902 			md_unregister_thread(mddev->sync_thread);
5903 			mddev->sync_thread = NULL;
5904 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5905 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5906 				/* success...*/
5907 				/* activate any spares */
5908 				mddev->pers->spare_active(mddev);
5909 			}
5910 			md_update_sb(mddev, 1);
5911 
5912 			/* if array is no-longer degraded, then any saved_raid_disk
5913 			 * information must be scrapped
5914 			 */
5915 			if (!mddev->degraded)
5916 				rdev_for_each(rdev, rtmp, mddev)
5917 					rdev->saved_raid_disk = -1;
5918 
5919 			mddev->recovery = 0;
5920 			/* flag recovery needed just to double check */
5921 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5922 			md_new_event(mddev);
5923 			goto unlock;
5924 		}
5925 		/* Clear some bits that don't mean anything, but
5926 		 * might be left set
5927 		 */
5928 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5929 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5930 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5931 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5932 
5933 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5934 			goto unlock;
5935 		/* no recovery is running.
5936 		 * remove any failed drives, then
5937 		 * add spares if possible.
5938 		 * Spare are also removed and re-added, to allow
5939 		 * the personality to fail the re-add.
5940 		 */
5941 
5942 		if (mddev->reshape_position != MaxSector) {
5943 			if (mddev->pers->check_reshape(mddev) != 0)
5944 				/* Cannot proceed */
5945 				goto unlock;
5946 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5947 		} else if ((spares = remove_and_add_spares(mddev))) {
5948 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5949 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5950 		} else if (mddev->recovery_cp < MaxSector) {
5951 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5952 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5953 			/* nothing to be done ... */
5954 			goto unlock;
5955 
5956 		if (mddev->pers->sync_request) {
5957 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5958 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5959 				/* We are adding a device or devices to an array
5960 				 * which has the bitmap stored on all devices.
5961 				 * So make sure all bitmap pages get written
5962 				 */
5963 				bitmap_write_all(mddev->bitmap);
5964 			}
5965 			mddev->sync_thread = md_register_thread(md_do_sync,
5966 								mddev,
5967 								"%s_resync");
5968 			if (!mddev->sync_thread) {
5969 				printk(KERN_ERR "%s: could not start resync"
5970 					" thread...\n",
5971 					mdname(mddev));
5972 				/* leave the spares where they are, it shouldn't hurt */
5973 				mddev->recovery = 0;
5974 			} else
5975 				md_wakeup_thread(mddev->sync_thread);
5976 			md_new_event(mddev);
5977 		}
5978 	unlock:
5979 		mddev_unlock(mddev);
5980 	}
5981 }
5982 
5983 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
5984 {
5985 	sysfs_notify(&rdev->kobj, NULL, "state");
5986 	wait_event_timeout(rdev->blocked_wait,
5987 			   !test_bit(Blocked, &rdev->flags),
5988 			   msecs_to_jiffies(5000));
5989 	rdev_dec_pending(rdev, mddev);
5990 }
5991 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
5992 
5993 static int md_notify_reboot(struct notifier_block *this,
5994 			    unsigned long code, void *x)
5995 {
5996 	struct list_head *tmp;
5997 	mddev_t *mddev;
5998 
5999 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6000 
6001 		printk(KERN_INFO "md: stopping all md devices.\n");
6002 
6003 		for_each_mddev(mddev, tmp)
6004 			if (mddev_trylock(mddev)) {
6005 				do_md_stop (mddev, 1);
6006 				mddev_unlock(mddev);
6007 			}
6008 		/*
6009 		 * certain more exotic SCSI devices are known to be
6010 		 * volatile wrt too early system reboots. While the
6011 		 * right place to handle this issue is the given
6012 		 * driver, we do want to have a safe RAID driver ...
6013 		 */
6014 		mdelay(1000*1);
6015 	}
6016 	return NOTIFY_DONE;
6017 }
6018 
6019 static struct notifier_block md_notifier = {
6020 	.notifier_call	= md_notify_reboot,
6021 	.next		= NULL,
6022 	.priority	= INT_MAX, /* before any real devices */
6023 };
6024 
6025 static void md_geninit(void)
6026 {
6027 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6028 
6029 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6030 }
6031 
6032 static int __init md_init(void)
6033 {
6034 	if (register_blkdev(MAJOR_NR, "md"))
6035 		return -1;
6036 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6037 		unregister_blkdev(MAJOR_NR, "md");
6038 		return -1;
6039 	}
6040 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6041 			    md_probe, NULL, NULL);
6042 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6043 			    md_probe, NULL, NULL);
6044 
6045 	register_reboot_notifier(&md_notifier);
6046 	raid_table_header = register_sysctl_table(raid_root_table);
6047 
6048 	md_geninit();
6049 	return (0);
6050 }
6051 
6052 
6053 #ifndef MODULE
6054 
6055 /*
6056  * Searches all registered partitions for autorun RAID arrays
6057  * at boot time.
6058  */
6059 
6060 static LIST_HEAD(all_detected_devices);
6061 struct detected_devices_node {
6062 	struct list_head list;
6063 	dev_t dev;
6064 };
6065 
6066 void md_autodetect_dev(dev_t dev)
6067 {
6068 	struct detected_devices_node *node_detected_dev;
6069 
6070 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6071 	if (node_detected_dev) {
6072 		node_detected_dev->dev = dev;
6073 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6074 	} else {
6075 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6076 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6077 	}
6078 }
6079 
6080 
6081 static void autostart_arrays(int part)
6082 {
6083 	mdk_rdev_t *rdev;
6084 	struct detected_devices_node *node_detected_dev;
6085 	dev_t dev;
6086 	int i_scanned, i_passed;
6087 
6088 	i_scanned = 0;
6089 	i_passed = 0;
6090 
6091 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6092 
6093 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6094 		i_scanned++;
6095 		node_detected_dev = list_entry(all_detected_devices.next,
6096 					struct detected_devices_node, list);
6097 		list_del(&node_detected_dev->list);
6098 		dev = node_detected_dev->dev;
6099 		kfree(node_detected_dev);
6100 		rdev = md_import_device(dev,0, 90);
6101 		if (IS_ERR(rdev))
6102 			continue;
6103 
6104 		if (test_bit(Faulty, &rdev->flags)) {
6105 			MD_BUG();
6106 			continue;
6107 		}
6108 		set_bit(AutoDetected, &rdev->flags);
6109 		list_add(&rdev->same_set, &pending_raid_disks);
6110 		i_passed++;
6111 	}
6112 
6113 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6114 						i_scanned, i_passed);
6115 
6116 	autorun_devices(part);
6117 }
6118 
6119 #endif /* !MODULE */
6120 
6121 static __exit void md_exit(void)
6122 {
6123 	mddev_t *mddev;
6124 	struct list_head *tmp;
6125 
6126 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6127 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6128 
6129 	unregister_blkdev(MAJOR_NR,"md");
6130 	unregister_blkdev(mdp_major, "mdp");
6131 	unregister_reboot_notifier(&md_notifier);
6132 	unregister_sysctl_table(raid_table_header);
6133 	remove_proc_entry("mdstat", NULL);
6134 	for_each_mddev(mddev, tmp) {
6135 		struct gendisk *disk = mddev->gendisk;
6136 		if (!disk)
6137 			continue;
6138 		export_array(mddev);
6139 		del_gendisk(disk);
6140 		put_disk(disk);
6141 		mddev->gendisk = NULL;
6142 		mddev_put(mddev);
6143 	}
6144 }
6145 
6146 subsys_initcall(md_init);
6147 module_exit(md_exit)
6148 
6149 static int get_ro(char *buffer, struct kernel_param *kp)
6150 {
6151 	return sprintf(buffer, "%d", start_readonly);
6152 }
6153 static int set_ro(const char *val, struct kernel_param *kp)
6154 {
6155 	char *e;
6156 	int num = simple_strtoul(val, &e, 10);
6157 	if (*val && (*e == '\0' || *e == '\n')) {
6158 		start_readonly = num;
6159 		return 0;
6160 	}
6161 	return -EINVAL;
6162 }
6163 
6164 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6165 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6166 
6167 
6168 EXPORT_SYMBOL(register_md_personality);
6169 EXPORT_SYMBOL(unregister_md_personality);
6170 EXPORT_SYMBOL(md_error);
6171 EXPORT_SYMBOL(md_done_sync);
6172 EXPORT_SYMBOL(md_write_start);
6173 EXPORT_SYMBOL(md_write_end);
6174 EXPORT_SYMBOL(md_register_thread);
6175 EXPORT_SYMBOL(md_unregister_thread);
6176 EXPORT_SYMBOL(md_wakeup_thread);
6177 EXPORT_SYMBOL(md_check_recovery);
6178 MODULE_LICENSE("GPL");
6179 MODULE_ALIAS("md");
6180 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6181