xref: /linux/drivers/md/md.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 #include <linux/mutex.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 /*
76  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
77  * is 1000 KB/sec, so the extra system load does not show up that much.
78  * Increase it if you want to have more _guaranteed_ speed. Note that
79  * the RAID driver will use the maximum available bandwidth if the IO
80  * subsystem is idle. There is also an 'absolute maximum' reconstruction
81  * speed limit - in case reconstruction slows down your system despite
82  * idle IO detection.
83  *
84  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
85  * or /sys/block/mdX/md/sync_speed_{min,max}
86  */
87 
88 static int sysctl_speed_limit_min = 1000;
89 static int sysctl_speed_limit_max = 200000;
90 static inline int speed_min(mddev_t *mddev)
91 {
92 	return mddev->sync_speed_min ?
93 		mddev->sync_speed_min : sysctl_speed_limit_min;
94 }
95 
96 static inline int speed_max(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_max ?
99 		mddev->sync_speed_max : sysctl_speed_limit_max;
100 }
101 
102 static struct ctl_table_header *raid_table_header;
103 
104 static ctl_table raid_table[] = {
105 	{
106 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
107 		.procname	= "speed_limit_min",
108 		.data		= &sysctl_speed_limit_min,
109 		.maxlen		= sizeof(int),
110 		.mode		= 0644,
111 		.proc_handler	= &proc_dointvec,
112 	},
113 	{
114 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
115 		.procname	= "speed_limit_max",
116 		.data		= &sysctl_speed_limit_max,
117 		.maxlen		= sizeof(int),
118 		.mode		= 0644,
119 		.proc_handler	= &proc_dointvec,
120 	},
121 	{ .ctl_name = 0 }
122 };
123 
124 static ctl_table raid_dir_table[] = {
125 	{
126 		.ctl_name	= DEV_RAID,
127 		.procname	= "raid",
128 		.maxlen		= 0,
129 		.mode		= 0555,
130 		.child		= raid_table,
131 	},
132 	{ .ctl_name = 0 }
133 };
134 
135 static ctl_table raid_root_table[] = {
136 	{
137 		.ctl_name	= CTL_DEV,
138 		.procname	= "dev",
139 		.maxlen		= 0,
140 		.mode		= 0555,
141 		.child		= raid_dir_table,
142 	},
143 	{ .ctl_name = 0 }
144 };
145 
146 static struct block_device_operations md_fops;
147 
148 static int start_readonly;
149 
150 /*
151  * We have a system wide 'event count' that is incremented
152  * on any 'interesting' event, and readers of /proc/mdstat
153  * can use 'poll' or 'select' to find out when the event
154  * count increases.
155  *
156  * Events are:
157  *  start array, stop array, error, add device, remove device,
158  *  start build, activate spare
159  */
160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
161 static atomic_t md_event_count;
162 void md_new_event(mddev_t *mddev)
163 {
164 	atomic_inc(&md_event_count);
165 	wake_up(&md_event_waiters);
166 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169 
170 /* Alternate version that can be called from interrupts
171  * when calling sysfs_notify isn't needed.
172  */
173 void md_new_event_inintr(mddev_t *mddev)
174 {
175 	atomic_inc(&md_event_count);
176 	wake_up(&md_event_waiters);
177 }
178 
179 /*
180  * Enables to iterate over all existing md arrays
181  * all_mddevs_lock protects this list.
182  */
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
185 
186 
187 /*
188  * iterates through all used mddevs in the system.
189  * We take care to grab the all_mddevs_lock whenever navigating
190  * the list, and to always hold a refcount when unlocked.
191  * Any code which breaks out of this loop while own
192  * a reference to the current mddev and must mddev_put it.
193  */
194 #define ITERATE_MDDEV(mddev,tmp)					\
195 									\
196 	for (({ spin_lock(&all_mddevs_lock); 				\
197 		tmp = all_mddevs.next;					\
198 		mddev = NULL;});					\
199 	     ({ if (tmp != &all_mddevs)					\
200 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 		spin_unlock(&all_mddevs_lock);				\
202 		if (mddev) mddev_put(mddev);				\
203 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
204 		tmp != &all_mddevs;});					\
205 	     ({ spin_lock(&all_mddevs_lock);				\
206 		tmp = tmp->next;})					\
207 		)
208 
209 
210 static int md_fail_request (request_queue_t *q, struct bio *bio)
211 {
212 	bio_io_error(bio, bio->bi_size);
213 	return 0;
214 }
215 
216 static inline mddev_t *mddev_get(mddev_t *mddev)
217 {
218 	atomic_inc(&mddev->active);
219 	return mddev;
220 }
221 
222 static void mddev_put(mddev_t *mddev)
223 {
224 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
225 		return;
226 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
227 		list_del(&mddev->all_mddevs);
228 		spin_unlock(&all_mddevs_lock);
229 		blk_cleanup_queue(mddev->queue);
230 		kobject_unregister(&mddev->kobj);
231 	} else
232 		spin_unlock(&all_mddevs_lock);
233 }
234 
235 static mddev_t * mddev_find(dev_t unit)
236 {
237 	mddev_t *mddev, *new = NULL;
238 
239  retry:
240 	spin_lock(&all_mddevs_lock);
241 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
242 		if (mddev->unit == unit) {
243 			mddev_get(mddev);
244 			spin_unlock(&all_mddevs_lock);
245 			kfree(new);
246 			return mddev;
247 		}
248 
249 	if (new) {
250 		list_add(&new->all_mddevs, &all_mddevs);
251 		spin_unlock(&all_mddevs_lock);
252 		return new;
253 	}
254 	spin_unlock(&all_mddevs_lock);
255 
256 	new = kzalloc(sizeof(*new), GFP_KERNEL);
257 	if (!new)
258 		return NULL;
259 
260 	new->unit = unit;
261 	if (MAJOR(unit) == MD_MAJOR)
262 		new->md_minor = MINOR(unit);
263 	else
264 		new->md_minor = MINOR(unit) >> MdpMinorShift;
265 
266 	mutex_init(&new->reconfig_mutex);
267 	INIT_LIST_HEAD(&new->disks);
268 	INIT_LIST_HEAD(&new->all_mddevs);
269 	init_timer(&new->safemode_timer);
270 	atomic_set(&new->active, 1);
271 	spin_lock_init(&new->write_lock);
272 	init_waitqueue_head(&new->sb_wait);
273 
274 	new->queue = blk_alloc_queue(GFP_KERNEL);
275 	if (!new->queue) {
276 		kfree(new);
277 		return NULL;
278 	}
279 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
280 
281 	blk_queue_make_request(new->queue, md_fail_request);
282 
283 	goto retry;
284 }
285 
286 static inline int mddev_lock(mddev_t * mddev)
287 {
288 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
289 }
290 
291 static inline int mddev_trylock(mddev_t * mddev)
292 {
293 	return mutex_trylock(&mddev->reconfig_mutex);
294 }
295 
296 static inline void mddev_unlock(mddev_t * mddev)
297 {
298 	mutex_unlock(&mddev->reconfig_mutex);
299 
300 	md_wakeup_thread(mddev->thread);
301 }
302 
303 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
304 {
305 	mdk_rdev_t * rdev;
306 	struct list_head *tmp;
307 
308 	ITERATE_RDEV(mddev,rdev,tmp) {
309 		if (rdev->desc_nr == nr)
310 			return rdev;
311 	}
312 	return NULL;
313 }
314 
315 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
316 {
317 	struct list_head *tmp;
318 	mdk_rdev_t *rdev;
319 
320 	ITERATE_RDEV(mddev,rdev,tmp) {
321 		if (rdev->bdev->bd_dev == dev)
322 			return rdev;
323 	}
324 	return NULL;
325 }
326 
327 static struct mdk_personality *find_pers(int level, char *clevel)
328 {
329 	struct mdk_personality *pers;
330 	list_for_each_entry(pers, &pers_list, list) {
331 		if (level != LEVEL_NONE && pers->level == level)
332 			return pers;
333 		if (strcmp(pers->name, clevel)==0)
334 			return pers;
335 	}
336 	return NULL;
337 }
338 
339 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
340 {
341 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
342 	return MD_NEW_SIZE_BLOCKS(size);
343 }
344 
345 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
346 {
347 	sector_t size;
348 
349 	size = rdev->sb_offset;
350 
351 	if (chunk_size)
352 		size &= ~((sector_t)chunk_size/1024 - 1);
353 	return size;
354 }
355 
356 static int alloc_disk_sb(mdk_rdev_t * rdev)
357 {
358 	if (rdev->sb_page)
359 		MD_BUG();
360 
361 	rdev->sb_page = alloc_page(GFP_KERNEL);
362 	if (!rdev->sb_page) {
363 		printk(KERN_ALERT "md: out of memory.\n");
364 		return -EINVAL;
365 	}
366 
367 	return 0;
368 }
369 
370 static void free_disk_sb(mdk_rdev_t * rdev)
371 {
372 	if (rdev->sb_page) {
373 		put_page(rdev->sb_page);
374 		rdev->sb_loaded = 0;
375 		rdev->sb_page = NULL;
376 		rdev->sb_offset = 0;
377 		rdev->size = 0;
378 	}
379 }
380 
381 
382 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
383 {
384 	mdk_rdev_t *rdev = bio->bi_private;
385 	mddev_t *mddev = rdev->mddev;
386 	if (bio->bi_size)
387 		return 1;
388 
389 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
390 		md_error(mddev, rdev);
391 
392 	if (atomic_dec_and_test(&mddev->pending_writes))
393 		wake_up(&mddev->sb_wait);
394 	bio_put(bio);
395 	return 0;
396 }
397 
398 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
399 {
400 	struct bio *bio2 = bio->bi_private;
401 	mdk_rdev_t *rdev = bio2->bi_private;
402 	mddev_t *mddev = rdev->mddev;
403 	if (bio->bi_size)
404 		return 1;
405 
406 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
407 	    error == -EOPNOTSUPP) {
408 		unsigned long flags;
409 		/* barriers don't appear to be supported :-( */
410 		set_bit(BarriersNotsupp, &rdev->flags);
411 		mddev->barriers_work = 0;
412 		spin_lock_irqsave(&mddev->write_lock, flags);
413 		bio2->bi_next = mddev->biolist;
414 		mddev->biolist = bio2;
415 		spin_unlock_irqrestore(&mddev->write_lock, flags);
416 		wake_up(&mddev->sb_wait);
417 		bio_put(bio);
418 		return 0;
419 	}
420 	bio_put(bio2);
421 	bio->bi_private = rdev;
422 	return super_written(bio, bytes_done, error);
423 }
424 
425 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
426 		   sector_t sector, int size, struct page *page)
427 {
428 	/* write first size bytes of page to sector of rdev
429 	 * Increment mddev->pending_writes before returning
430 	 * and decrement it on completion, waking up sb_wait
431 	 * if zero is reached.
432 	 * If an error occurred, call md_error
433 	 *
434 	 * As we might need to resubmit the request if BIO_RW_BARRIER
435 	 * causes ENOTSUPP, we allocate a spare bio...
436 	 */
437 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
438 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
439 
440 	bio->bi_bdev = rdev->bdev;
441 	bio->bi_sector = sector;
442 	bio_add_page(bio, page, size, 0);
443 	bio->bi_private = rdev;
444 	bio->bi_end_io = super_written;
445 	bio->bi_rw = rw;
446 
447 	atomic_inc(&mddev->pending_writes);
448 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
449 		struct bio *rbio;
450 		rw |= (1<<BIO_RW_BARRIER);
451 		rbio = bio_clone(bio, GFP_NOIO);
452 		rbio->bi_private = bio;
453 		rbio->bi_end_io = super_written_barrier;
454 		submit_bio(rw, rbio);
455 	} else
456 		submit_bio(rw, bio);
457 }
458 
459 void md_super_wait(mddev_t *mddev)
460 {
461 	/* wait for all superblock writes that were scheduled to complete.
462 	 * if any had to be retried (due to BARRIER problems), retry them
463 	 */
464 	DEFINE_WAIT(wq);
465 	for(;;) {
466 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
467 		if (atomic_read(&mddev->pending_writes)==0)
468 			break;
469 		while (mddev->biolist) {
470 			struct bio *bio;
471 			spin_lock_irq(&mddev->write_lock);
472 			bio = mddev->biolist;
473 			mddev->biolist = bio->bi_next ;
474 			bio->bi_next = NULL;
475 			spin_unlock_irq(&mddev->write_lock);
476 			submit_bio(bio->bi_rw, bio);
477 		}
478 		schedule();
479 	}
480 	finish_wait(&mddev->sb_wait, &wq);
481 }
482 
483 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
484 {
485 	if (bio->bi_size)
486 		return 1;
487 
488 	complete((struct completion*)bio->bi_private);
489 	return 0;
490 }
491 
492 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
493 		   struct page *page, int rw)
494 {
495 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
496 	struct completion event;
497 	int ret;
498 
499 	rw |= (1 << BIO_RW_SYNC);
500 
501 	bio->bi_bdev = bdev;
502 	bio->bi_sector = sector;
503 	bio_add_page(bio, page, size, 0);
504 	init_completion(&event);
505 	bio->bi_private = &event;
506 	bio->bi_end_io = bi_complete;
507 	submit_bio(rw, bio);
508 	wait_for_completion(&event);
509 
510 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
511 	bio_put(bio);
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(sync_page_io);
515 
516 static int read_disk_sb(mdk_rdev_t * rdev, int size)
517 {
518 	char b[BDEVNAME_SIZE];
519 	if (!rdev->sb_page) {
520 		MD_BUG();
521 		return -EINVAL;
522 	}
523 	if (rdev->sb_loaded)
524 		return 0;
525 
526 
527 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
528 		goto fail;
529 	rdev->sb_loaded = 1;
530 	return 0;
531 
532 fail:
533 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
534 		bdevname(rdev->bdev,b));
535 	return -EINVAL;
536 }
537 
538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
539 {
540 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
541 		(sb1->set_uuid1 == sb2->set_uuid1) &&
542 		(sb1->set_uuid2 == sb2->set_uuid2) &&
543 		(sb1->set_uuid3 == sb2->set_uuid3))
544 
545 		return 1;
546 
547 	return 0;
548 }
549 
550 
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
552 {
553 	int ret;
554 	mdp_super_t *tmp1, *tmp2;
555 
556 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
558 
559 	if (!tmp1 || !tmp2) {
560 		ret = 0;
561 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
562 		goto abort;
563 	}
564 
565 	*tmp1 = *sb1;
566 	*tmp2 = *sb2;
567 
568 	/*
569 	 * nr_disks is not constant
570 	 */
571 	tmp1->nr_disks = 0;
572 	tmp2->nr_disks = 0;
573 
574 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
575 		ret = 0;
576 	else
577 		ret = 1;
578 
579 abort:
580 	kfree(tmp1);
581 	kfree(tmp2);
582 	return ret;
583 }
584 
585 static unsigned int calc_sb_csum(mdp_super_t * sb)
586 {
587 	unsigned int disk_csum, csum;
588 
589 	disk_csum = sb->sb_csum;
590 	sb->sb_csum = 0;
591 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
592 	sb->sb_csum = disk_csum;
593 	return csum;
594 }
595 
596 
597 /*
598  * Handle superblock details.
599  * We want to be able to handle multiple superblock formats
600  * so we have a common interface to them all, and an array of
601  * different handlers.
602  * We rely on user-space to write the initial superblock, and support
603  * reading and updating of superblocks.
604  * Interface methods are:
605  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
606  *      loads and validates a superblock on dev.
607  *      if refdev != NULL, compare superblocks on both devices
608  *    Return:
609  *      0 - dev has a superblock that is compatible with refdev
610  *      1 - dev has a superblock that is compatible and newer than refdev
611  *          so dev should be used as the refdev in future
612  *     -EINVAL superblock incompatible or invalid
613  *     -othererror e.g. -EIO
614  *
615  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
616  *      Verify that dev is acceptable into mddev.
617  *       The first time, mddev->raid_disks will be 0, and data from
618  *       dev should be merged in.  Subsequent calls check that dev
619  *       is new enough.  Return 0 or -EINVAL
620  *
621  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
622  *     Update the superblock for rdev with data in mddev
623  *     This does not write to disc.
624  *
625  */
626 
627 struct super_type  {
628 	char 		*name;
629 	struct module	*owner;
630 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
631 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
632 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
633 };
634 
635 /*
636  * load_super for 0.90.0
637  */
638 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
639 {
640 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
641 	mdp_super_t *sb;
642 	int ret;
643 	sector_t sb_offset;
644 
645 	/*
646 	 * Calculate the position of the superblock,
647 	 * it's at the end of the disk.
648 	 *
649 	 * It also happens to be a multiple of 4Kb.
650 	 */
651 	sb_offset = calc_dev_sboffset(rdev->bdev);
652 	rdev->sb_offset = sb_offset;
653 
654 	ret = read_disk_sb(rdev, MD_SB_BYTES);
655 	if (ret) return ret;
656 
657 	ret = -EINVAL;
658 
659 	bdevname(rdev->bdev, b);
660 	sb = (mdp_super_t*)page_address(rdev->sb_page);
661 
662 	if (sb->md_magic != MD_SB_MAGIC) {
663 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
664 		       b);
665 		goto abort;
666 	}
667 
668 	if (sb->major_version != 0 ||
669 	    sb->minor_version < 90 ||
670 	    sb->minor_version > 91) {
671 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
672 			sb->major_version, sb->minor_version,
673 			b);
674 		goto abort;
675 	}
676 
677 	if (sb->raid_disks <= 0)
678 		goto abort;
679 
680 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
681 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
682 			b);
683 		goto abort;
684 	}
685 
686 	rdev->preferred_minor = sb->md_minor;
687 	rdev->data_offset = 0;
688 	rdev->sb_size = MD_SB_BYTES;
689 
690 	if (sb->level == LEVEL_MULTIPATH)
691 		rdev->desc_nr = -1;
692 	else
693 		rdev->desc_nr = sb->this_disk.number;
694 
695 	if (refdev == 0)
696 		ret = 1;
697 	else {
698 		__u64 ev1, ev2;
699 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
700 		if (!uuid_equal(refsb, sb)) {
701 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
702 				b, bdevname(refdev->bdev,b2));
703 			goto abort;
704 		}
705 		if (!sb_equal(refsb, sb)) {
706 			printk(KERN_WARNING "md: %s has same UUID"
707 			       " but different superblock to %s\n",
708 			       b, bdevname(refdev->bdev, b2));
709 			goto abort;
710 		}
711 		ev1 = md_event(sb);
712 		ev2 = md_event(refsb);
713 		if (ev1 > ev2)
714 			ret = 1;
715 		else
716 			ret = 0;
717 	}
718 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
719 
720 	if (rdev->size < sb->size && sb->level > 1)
721 		/* "this cannot possibly happen" ... */
722 		ret = -EINVAL;
723 
724  abort:
725 	return ret;
726 }
727 
728 /*
729  * validate_super for 0.90.0
730  */
731 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
732 {
733 	mdp_disk_t *desc;
734 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
735 
736 	rdev->raid_disk = -1;
737 	rdev->flags = 0;
738 	if (mddev->raid_disks == 0) {
739 		mddev->major_version = 0;
740 		mddev->minor_version = sb->minor_version;
741 		mddev->patch_version = sb->patch_version;
742 		mddev->persistent = ! sb->not_persistent;
743 		mddev->chunk_size = sb->chunk_size;
744 		mddev->ctime = sb->ctime;
745 		mddev->utime = sb->utime;
746 		mddev->level = sb->level;
747 		mddev->clevel[0] = 0;
748 		mddev->layout = sb->layout;
749 		mddev->raid_disks = sb->raid_disks;
750 		mddev->size = sb->size;
751 		mddev->events = md_event(sb);
752 		mddev->bitmap_offset = 0;
753 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
754 
755 		if (mddev->minor_version >= 91) {
756 			mddev->reshape_position = sb->reshape_position;
757 			mddev->delta_disks = sb->delta_disks;
758 			mddev->new_level = sb->new_level;
759 			mddev->new_layout = sb->new_layout;
760 			mddev->new_chunk = sb->new_chunk;
761 		} else {
762 			mddev->reshape_position = MaxSector;
763 			mddev->delta_disks = 0;
764 			mddev->new_level = mddev->level;
765 			mddev->new_layout = mddev->layout;
766 			mddev->new_chunk = mddev->chunk_size;
767 		}
768 
769 		if (sb->state & (1<<MD_SB_CLEAN))
770 			mddev->recovery_cp = MaxSector;
771 		else {
772 			if (sb->events_hi == sb->cp_events_hi &&
773 				sb->events_lo == sb->cp_events_lo) {
774 				mddev->recovery_cp = sb->recovery_cp;
775 			} else
776 				mddev->recovery_cp = 0;
777 		}
778 
779 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
780 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
781 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
782 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
783 
784 		mddev->max_disks = MD_SB_DISKS;
785 
786 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
787 		    mddev->bitmap_file == NULL) {
788 			if (mddev->level != 1 && mddev->level != 4
789 			    && mddev->level != 5 && mddev->level != 6
790 			    && mddev->level != 10) {
791 				/* FIXME use a better test */
792 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
793 				return -EINVAL;
794 			}
795 			mddev->bitmap_offset = mddev->default_bitmap_offset;
796 		}
797 
798 	} else if (mddev->pers == NULL) {
799 		/* Insist on good event counter while assembling */
800 		__u64 ev1 = md_event(sb);
801 		++ev1;
802 		if (ev1 < mddev->events)
803 			return -EINVAL;
804 	} else if (mddev->bitmap) {
805 		/* if adding to array with a bitmap, then we can accept an
806 		 * older device ... but not too old.
807 		 */
808 		__u64 ev1 = md_event(sb);
809 		if (ev1 < mddev->bitmap->events_cleared)
810 			return 0;
811 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
812 		return 0;
813 
814 	if (mddev->level != LEVEL_MULTIPATH) {
815 		desc = sb->disks + rdev->desc_nr;
816 
817 		if (desc->state & (1<<MD_DISK_FAULTY))
818 			set_bit(Faulty, &rdev->flags);
819 		else if (desc->state & (1<<MD_DISK_SYNC) &&
820 			 desc->raid_disk < mddev->raid_disks) {
821 			set_bit(In_sync, &rdev->flags);
822 			rdev->raid_disk = desc->raid_disk;
823 		}
824 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
825 			set_bit(WriteMostly, &rdev->flags);
826 	} else /* MULTIPATH are always insync */
827 		set_bit(In_sync, &rdev->flags);
828 	return 0;
829 }
830 
831 /*
832  * sync_super for 0.90.0
833  */
834 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
835 {
836 	mdp_super_t *sb;
837 	struct list_head *tmp;
838 	mdk_rdev_t *rdev2;
839 	int next_spare = mddev->raid_disks;
840 
841 
842 	/* make rdev->sb match mddev data..
843 	 *
844 	 * 1/ zero out disks
845 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
846 	 * 3/ any empty disks < next_spare become removed
847 	 *
848 	 * disks[0] gets initialised to REMOVED because
849 	 * we cannot be sure from other fields if it has
850 	 * been initialised or not.
851 	 */
852 	int i;
853 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
854 
855 	rdev->sb_size = MD_SB_BYTES;
856 
857 	sb = (mdp_super_t*)page_address(rdev->sb_page);
858 
859 	memset(sb, 0, sizeof(*sb));
860 
861 	sb->md_magic = MD_SB_MAGIC;
862 	sb->major_version = mddev->major_version;
863 	sb->patch_version = mddev->patch_version;
864 	sb->gvalid_words  = 0; /* ignored */
865 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
866 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
867 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
868 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
869 
870 	sb->ctime = mddev->ctime;
871 	sb->level = mddev->level;
872 	sb->size  = mddev->size;
873 	sb->raid_disks = mddev->raid_disks;
874 	sb->md_minor = mddev->md_minor;
875 	sb->not_persistent = !mddev->persistent;
876 	sb->utime = mddev->utime;
877 	sb->state = 0;
878 	sb->events_hi = (mddev->events>>32);
879 	sb->events_lo = (u32)mddev->events;
880 
881 	if (mddev->reshape_position == MaxSector)
882 		sb->minor_version = 90;
883 	else {
884 		sb->minor_version = 91;
885 		sb->reshape_position = mddev->reshape_position;
886 		sb->new_level = mddev->new_level;
887 		sb->delta_disks = mddev->delta_disks;
888 		sb->new_layout = mddev->new_layout;
889 		sb->new_chunk = mddev->new_chunk;
890 	}
891 	mddev->minor_version = sb->minor_version;
892 	if (mddev->in_sync)
893 	{
894 		sb->recovery_cp = mddev->recovery_cp;
895 		sb->cp_events_hi = (mddev->events>>32);
896 		sb->cp_events_lo = (u32)mddev->events;
897 		if (mddev->recovery_cp == MaxSector)
898 			sb->state = (1<< MD_SB_CLEAN);
899 	} else
900 		sb->recovery_cp = 0;
901 
902 	sb->layout = mddev->layout;
903 	sb->chunk_size = mddev->chunk_size;
904 
905 	if (mddev->bitmap && mddev->bitmap_file == NULL)
906 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
907 
908 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
909 	ITERATE_RDEV(mddev,rdev2,tmp) {
910 		mdp_disk_t *d;
911 		int desc_nr;
912 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
913 		    && !test_bit(Faulty, &rdev2->flags))
914 			desc_nr = rdev2->raid_disk;
915 		else
916 			desc_nr = next_spare++;
917 		rdev2->desc_nr = desc_nr;
918 		d = &sb->disks[rdev2->desc_nr];
919 		nr_disks++;
920 		d->number = rdev2->desc_nr;
921 		d->major = MAJOR(rdev2->bdev->bd_dev);
922 		d->minor = MINOR(rdev2->bdev->bd_dev);
923 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
924 		    && !test_bit(Faulty, &rdev2->flags))
925 			d->raid_disk = rdev2->raid_disk;
926 		else
927 			d->raid_disk = rdev2->desc_nr; /* compatibility */
928 		if (test_bit(Faulty, &rdev2->flags))
929 			d->state = (1<<MD_DISK_FAULTY);
930 		else if (test_bit(In_sync, &rdev2->flags)) {
931 			d->state = (1<<MD_DISK_ACTIVE);
932 			d->state |= (1<<MD_DISK_SYNC);
933 			active++;
934 			working++;
935 		} else {
936 			d->state = 0;
937 			spare++;
938 			working++;
939 		}
940 		if (test_bit(WriteMostly, &rdev2->flags))
941 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
942 	}
943 	/* now set the "removed" and "faulty" bits on any missing devices */
944 	for (i=0 ; i < mddev->raid_disks ; i++) {
945 		mdp_disk_t *d = &sb->disks[i];
946 		if (d->state == 0 && d->number == 0) {
947 			d->number = i;
948 			d->raid_disk = i;
949 			d->state = (1<<MD_DISK_REMOVED);
950 			d->state |= (1<<MD_DISK_FAULTY);
951 			failed++;
952 		}
953 	}
954 	sb->nr_disks = nr_disks;
955 	sb->active_disks = active;
956 	sb->working_disks = working;
957 	sb->failed_disks = failed;
958 	sb->spare_disks = spare;
959 
960 	sb->this_disk = sb->disks[rdev->desc_nr];
961 	sb->sb_csum = calc_sb_csum(sb);
962 }
963 
964 /*
965  * version 1 superblock
966  */
967 
968 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
969 {
970 	unsigned int disk_csum, csum;
971 	unsigned long long newcsum;
972 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
973 	unsigned int *isuper = (unsigned int*)sb;
974 	int i;
975 
976 	disk_csum = sb->sb_csum;
977 	sb->sb_csum = 0;
978 	newcsum = 0;
979 	for (i=0; size>=4; size -= 4 )
980 		newcsum += le32_to_cpu(*isuper++);
981 
982 	if (size == 2)
983 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
984 
985 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
986 	sb->sb_csum = disk_csum;
987 	return cpu_to_le32(csum);
988 }
989 
990 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
991 {
992 	struct mdp_superblock_1 *sb;
993 	int ret;
994 	sector_t sb_offset;
995 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
996 	int bmask;
997 
998 	/*
999 	 * Calculate the position of the superblock.
1000 	 * It is always aligned to a 4K boundary and
1001 	 * depeding on minor_version, it can be:
1002 	 * 0: At least 8K, but less than 12K, from end of device
1003 	 * 1: At start of device
1004 	 * 2: 4K from start of device.
1005 	 */
1006 	switch(minor_version) {
1007 	case 0:
1008 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1009 		sb_offset -= 8*2;
1010 		sb_offset &= ~(sector_t)(4*2-1);
1011 		/* convert from sectors to K */
1012 		sb_offset /= 2;
1013 		break;
1014 	case 1:
1015 		sb_offset = 0;
1016 		break;
1017 	case 2:
1018 		sb_offset = 4;
1019 		break;
1020 	default:
1021 		return -EINVAL;
1022 	}
1023 	rdev->sb_offset = sb_offset;
1024 
1025 	/* superblock is rarely larger than 1K, but it can be larger,
1026 	 * and it is safe to read 4k, so we do that
1027 	 */
1028 	ret = read_disk_sb(rdev, 4096);
1029 	if (ret) return ret;
1030 
1031 
1032 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1033 
1034 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1035 	    sb->major_version != cpu_to_le32(1) ||
1036 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1037 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1038 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1039 		return -EINVAL;
1040 
1041 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1042 		printk("md: invalid superblock checksum on %s\n",
1043 			bdevname(rdev->bdev,b));
1044 		return -EINVAL;
1045 	}
1046 	if (le64_to_cpu(sb->data_size) < 10) {
1047 		printk("md: data_size too small on %s\n",
1048 		       bdevname(rdev->bdev,b));
1049 		return -EINVAL;
1050 	}
1051 	rdev->preferred_minor = 0xffff;
1052 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1053 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1054 
1055 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1056 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1057 	if (rdev->sb_size & bmask)
1058 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1059 
1060 	if (refdev == 0)
1061 		ret = 1;
1062 	else {
1063 		__u64 ev1, ev2;
1064 		struct mdp_superblock_1 *refsb =
1065 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1066 
1067 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1068 		    sb->level != refsb->level ||
1069 		    sb->layout != refsb->layout ||
1070 		    sb->chunksize != refsb->chunksize) {
1071 			printk(KERN_WARNING "md: %s has strangely different"
1072 				" superblock to %s\n",
1073 				bdevname(rdev->bdev,b),
1074 				bdevname(refdev->bdev,b2));
1075 			return -EINVAL;
1076 		}
1077 		ev1 = le64_to_cpu(sb->events);
1078 		ev2 = le64_to_cpu(refsb->events);
1079 
1080 		if (ev1 > ev2)
1081 			ret = 1;
1082 		else
1083 			ret = 0;
1084 	}
1085 	if (minor_version)
1086 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1087 	else
1088 		rdev->size = rdev->sb_offset;
1089 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1090 		return -EINVAL;
1091 	rdev->size = le64_to_cpu(sb->data_size)/2;
1092 	if (le32_to_cpu(sb->chunksize))
1093 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1094 
1095 	if (le32_to_cpu(sb->size) > rdev->size*2)
1096 		return -EINVAL;
1097 	return ret;
1098 }
1099 
1100 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1101 {
1102 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1103 
1104 	rdev->raid_disk = -1;
1105 	rdev->flags = 0;
1106 	if (mddev->raid_disks == 0) {
1107 		mddev->major_version = 1;
1108 		mddev->patch_version = 0;
1109 		mddev->persistent = 1;
1110 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1111 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1112 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1113 		mddev->level = le32_to_cpu(sb->level);
1114 		mddev->clevel[0] = 0;
1115 		mddev->layout = le32_to_cpu(sb->layout);
1116 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1117 		mddev->size = le64_to_cpu(sb->size)/2;
1118 		mddev->events = le64_to_cpu(sb->events);
1119 		mddev->bitmap_offset = 0;
1120 		mddev->default_bitmap_offset = 1024 >> 9;
1121 
1122 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1123 		memcpy(mddev->uuid, sb->set_uuid, 16);
1124 
1125 		mddev->max_disks =  (4096-256)/2;
1126 
1127 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1128 		    mddev->bitmap_file == NULL ) {
1129 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1130 			    && mddev->level != 10) {
1131 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1132 				return -EINVAL;
1133 			}
1134 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1135 		}
1136 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1137 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1138 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1139 			mddev->new_level = le32_to_cpu(sb->new_level);
1140 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1141 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1142 		} else {
1143 			mddev->reshape_position = MaxSector;
1144 			mddev->delta_disks = 0;
1145 			mddev->new_level = mddev->level;
1146 			mddev->new_layout = mddev->layout;
1147 			mddev->new_chunk = mddev->chunk_size;
1148 		}
1149 
1150 	} else if (mddev->pers == NULL) {
1151 		/* Insist of good event counter while assembling */
1152 		__u64 ev1 = le64_to_cpu(sb->events);
1153 		++ev1;
1154 		if (ev1 < mddev->events)
1155 			return -EINVAL;
1156 	} else if (mddev->bitmap) {
1157 		/* If adding to array with a bitmap, then we can accept an
1158 		 * older device, but not too old.
1159 		 */
1160 		__u64 ev1 = le64_to_cpu(sb->events);
1161 		if (ev1 < mddev->bitmap->events_cleared)
1162 			return 0;
1163 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1164 		return 0;
1165 
1166 	if (mddev->level != LEVEL_MULTIPATH) {
1167 		int role;
1168 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1169 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1170 		switch(role) {
1171 		case 0xffff: /* spare */
1172 			break;
1173 		case 0xfffe: /* faulty */
1174 			set_bit(Faulty, &rdev->flags);
1175 			break;
1176 		default:
1177 			set_bit(In_sync, &rdev->flags);
1178 			rdev->raid_disk = role;
1179 			break;
1180 		}
1181 		if (sb->devflags & WriteMostly1)
1182 			set_bit(WriteMostly, &rdev->flags);
1183 	} else /* MULTIPATH are always insync */
1184 		set_bit(In_sync, &rdev->flags);
1185 
1186 	return 0;
1187 }
1188 
1189 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1190 {
1191 	struct mdp_superblock_1 *sb;
1192 	struct list_head *tmp;
1193 	mdk_rdev_t *rdev2;
1194 	int max_dev, i;
1195 	/* make rdev->sb match mddev and rdev data. */
1196 
1197 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1198 
1199 	sb->feature_map = 0;
1200 	sb->pad0 = 0;
1201 	memset(sb->pad1, 0, sizeof(sb->pad1));
1202 	memset(sb->pad2, 0, sizeof(sb->pad2));
1203 	memset(sb->pad3, 0, sizeof(sb->pad3));
1204 
1205 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1206 	sb->events = cpu_to_le64(mddev->events);
1207 	if (mddev->in_sync)
1208 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1209 	else
1210 		sb->resync_offset = cpu_to_le64(0);
1211 
1212 	sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1213 
1214 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1215 	sb->size = cpu_to_le64(mddev->size<<1);
1216 
1217 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1218 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1219 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1220 	}
1221 	if (mddev->reshape_position != MaxSector) {
1222 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1223 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1224 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1225 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1226 		sb->new_level = cpu_to_le32(mddev->new_level);
1227 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1228 	}
1229 
1230 	max_dev = 0;
1231 	ITERATE_RDEV(mddev,rdev2,tmp)
1232 		if (rdev2->desc_nr+1 > max_dev)
1233 			max_dev = rdev2->desc_nr+1;
1234 
1235 	sb->max_dev = cpu_to_le32(max_dev);
1236 	for (i=0; i<max_dev;i++)
1237 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1238 
1239 	ITERATE_RDEV(mddev,rdev2,tmp) {
1240 		i = rdev2->desc_nr;
1241 		if (test_bit(Faulty, &rdev2->flags))
1242 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1243 		else if (test_bit(In_sync, &rdev2->flags))
1244 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1245 		else
1246 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1247 	}
1248 
1249 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1250 	sb->sb_csum = calc_sb_1_csum(sb);
1251 }
1252 
1253 
1254 static struct super_type super_types[] = {
1255 	[0] = {
1256 		.name	= "0.90.0",
1257 		.owner	= THIS_MODULE,
1258 		.load_super	= super_90_load,
1259 		.validate_super	= super_90_validate,
1260 		.sync_super	= super_90_sync,
1261 	},
1262 	[1] = {
1263 		.name	= "md-1",
1264 		.owner	= THIS_MODULE,
1265 		.load_super	= super_1_load,
1266 		.validate_super	= super_1_validate,
1267 		.sync_super	= super_1_sync,
1268 	},
1269 };
1270 
1271 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1272 {
1273 	struct list_head *tmp;
1274 	mdk_rdev_t *rdev;
1275 
1276 	ITERATE_RDEV(mddev,rdev,tmp)
1277 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1278 			return rdev;
1279 
1280 	return NULL;
1281 }
1282 
1283 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1284 {
1285 	struct list_head *tmp;
1286 	mdk_rdev_t *rdev;
1287 
1288 	ITERATE_RDEV(mddev1,rdev,tmp)
1289 		if (match_dev_unit(mddev2, rdev))
1290 			return 1;
1291 
1292 	return 0;
1293 }
1294 
1295 static LIST_HEAD(pending_raid_disks);
1296 
1297 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1298 {
1299 	mdk_rdev_t *same_pdev;
1300 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1301 	struct kobject *ko;
1302 	char *s;
1303 
1304 	if (rdev->mddev) {
1305 		MD_BUG();
1306 		return -EINVAL;
1307 	}
1308 	/* make sure rdev->size exceeds mddev->size */
1309 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1310 		if (mddev->pers)
1311 			/* Cannot change size, so fail */
1312 			return -ENOSPC;
1313 		else
1314 			mddev->size = rdev->size;
1315 	}
1316 	same_pdev = match_dev_unit(mddev, rdev);
1317 	if (same_pdev)
1318 		printk(KERN_WARNING
1319 			"%s: WARNING: %s appears to be on the same physical"
1320 	 		" disk as %s. True\n     protection against single-disk"
1321 			" failure might be compromised.\n",
1322 			mdname(mddev), bdevname(rdev->bdev,b),
1323 			bdevname(same_pdev->bdev,b2));
1324 
1325 	/* Verify rdev->desc_nr is unique.
1326 	 * If it is -1, assign a free number, else
1327 	 * check number is not in use
1328 	 */
1329 	if (rdev->desc_nr < 0) {
1330 		int choice = 0;
1331 		if (mddev->pers) choice = mddev->raid_disks;
1332 		while (find_rdev_nr(mddev, choice))
1333 			choice++;
1334 		rdev->desc_nr = choice;
1335 	} else {
1336 		if (find_rdev_nr(mddev, rdev->desc_nr))
1337 			return -EBUSY;
1338 	}
1339 	bdevname(rdev->bdev,b);
1340 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1341 		return -ENOMEM;
1342 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1343 		*s = '!';
1344 
1345 	list_add(&rdev->same_set, &mddev->disks);
1346 	rdev->mddev = mddev;
1347 	printk(KERN_INFO "md: bind<%s>\n", b);
1348 
1349 	rdev->kobj.parent = &mddev->kobj;
1350 	kobject_add(&rdev->kobj);
1351 
1352 	if (rdev->bdev->bd_part)
1353 		ko = &rdev->bdev->bd_part->kobj;
1354 	else
1355 		ko = &rdev->bdev->bd_disk->kobj;
1356 	sysfs_create_link(&rdev->kobj, ko, "block");
1357 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1358 	return 0;
1359 }
1360 
1361 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1362 {
1363 	char b[BDEVNAME_SIZE];
1364 	if (!rdev->mddev) {
1365 		MD_BUG();
1366 		return;
1367 	}
1368 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1369 	list_del_init(&rdev->same_set);
1370 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1371 	rdev->mddev = NULL;
1372 	sysfs_remove_link(&rdev->kobj, "block");
1373 	kobject_del(&rdev->kobj);
1374 }
1375 
1376 /*
1377  * prevent the device from being mounted, repartitioned or
1378  * otherwise reused by a RAID array (or any other kernel
1379  * subsystem), by bd_claiming the device.
1380  */
1381 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1382 {
1383 	int err = 0;
1384 	struct block_device *bdev;
1385 	char b[BDEVNAME_SIZE];
1386 
1387 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1388 	if (IS_ERR(bdev)) {
1389 		printk(KERN_ERR "md: could not open %s.\n",
1390 			__bdevname(dev, b));
1391 		return PTR_ERR(bdev);
1392 	}
1393 	err = bd_claim(bdev, rdev);
1394 	if (err) {
1395 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1396 			bdevname(bdev, b));
1397 		blkdev_put(bdev);
1398 		return err;
1399 	}
1400 	rdev->bdev = bdev;
1401 	return err;
1402 }
1403 
1404 static void unlock_rdev(mdk_rdev_t *rdev)
1405 {
1406 	struct block_device *bdev = rdev->bdev;
1407 	rdev->bdev = NULL;
1408 	if (!bdev)
1409 		MD_BUG();
1410 	bd_release(bdev);
1411 	blkdev_put(bdev);
1412 }
1413 
1414 void md_autodetect_dev(dev_t dev);
1415 
1416 static void export_rdev(mdk_rdev_t * rdev)
1417 {
1418 	char b[BDEVNAME_SIZE];
1419 	printk(KERN_INFO "md: export_rdev(%s)\n",
1420 		bdevname(rdev->bdev,b));
1421 	if (rdev->mddev)
1422 		MD_BUG();
1423 	free_disk_sb(rdev);
1424 	list_del_init(&rdev->same_set);
1425 #ifndef MODULE
1426 	md_autodetect_dev(rdev->bdev->bd_dev);
1427 #endif
1428 	unlock_rdev(rdev);
1429 	kobject_put(&rdev->kobj);
1430 }
1431 
1432 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1433 {
1434 	unbind_rdev_from_array(rdev);
1435 	export_rdev(rdev);
1436 }
1437 
1438 static void export_array(mddev_t *mddev)
1439 {
1440 	struct list_head *tmp;
1441 	mdk_rdev_t *rdev;
1442 
1443 	ITERATE_RDEV(mddev,rdev,tmp) {
1444 		if (!rdev->mddev) {
1445 			MD_BUG();
1446 			continue;
1447 		}
1448 		kick_rdev_from_array(rdev);
1449 	}
1450 	if (!list_empty(&mddev->disks))
1451 		MD_BUG();
1452 	mddev->raid_disks = 0;
1453 	mddev->major_version = 0;
1454 }
1455 
1456 static void print_desc(mdp_disk_t *desc)
1457 {
1458 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1459 		desc->major,desc->minor,desc->raid_disk,desc->state);
1460 }
1461 
1462 static void print_sb(mdp_super_t *sb)
1463 {
1464 	int i;
1465 
1466 	printk(KERN_INFO
1467 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1468 		sb->major_version, sb->minor_version, sb->patch_version,
1469 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1470 		sb->ctime);
1471 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1472 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1473 		sb->md_minor, sb->layout, sb->chunk_size);
1474 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1475 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1476 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1477 		sb->failed_disks, sb->spare_disks,
1478 		sb->sb_csum, (unsigned long)sb->events_lo);
1479 
1480 	printk(KERN_INFO);
1481 	for (i = 0; i < MD_SB_DISKS; i++) {
1482 		mdp_disk_t *desc;
1483 
1484 		desc = sb->disks + i;
1485 		if (desc->number || desc->major || desc->minor ||
1486 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1487 			printk("     D %2d: ", i);
1488 			print_desc(desc);
1489 		}
1490 	}
1491 	printk(KERN_INFO "md:     THIS: ");
1492 	print_desc(&sb->this_disk);
1493 
1494 }
1495 
1496 static void print_rdev(mdk_rdev_t *rdev)
1497 {
1498 	char b[BDEVNAME_SIZE];
1499 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1500 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1501 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1502 	        rdev->desc_nr);
1503 	if (rdev->sb_loaded) {
1504 		printk(KERN_INFO "md: rdev superblock:\n");
1505 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1506 	} else
1507 		printk(KERN_INFO "md: no rdev superblock!\n");
1508 }
1509 
1510 void md_print_devices(void)
1511 {
1512 	struct list_head *tmp, *tmp2;
1513 	mdk_rdev_t *rdev;
1514 	mddev_t *mddev;
1515 	char b[BDEVNAME_SIZE];
1516 
1517 	printk("\n");
1518 	printk("md:	**********************************\n");
1519 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1520 	printk("md:	**********************************\n");
1521 	ITERATE_MDDEV(mddev,tmp) {
1522 
1523 		if (mddev->bitmap)
1524 			bitmap_print_sb(mddev->bitmap);
1525 		else
1526 			printk("%s: ", mdname(mddev));
1527 		ITERATE_RDEV(mddev,rdev,tmp2)
1528 			printk("<%s>", bdevname(rdev->bdev,b));
1529 		printk("\n");
1530 
1531 		ITERATE_RDEV(mddev,rdev,tmp2)
1532 			print_rdev(rdev);
1533 	}
1534 	printk("md:	**********************************\n");
1535 	printk("\n");
1536 }
1537 
1538 
1539 static void sync_sbs(mddev_t * mddev)
1540 {
1541 	mdk_rdev_t *rdev;
1542 	struct list_head *tmp;
1543 
1544 	ITERATE_RDEV(mddev,rdev,tmp) {
1545 		super_types[mddev->major_version].
1546 			sync_super(mddev, rdev);
1547 		rdev->sb_loaded = 1;
1548 	}
1549 }
1550 
1551 void md_update_sb(mddev_t * mddev)
1552 {
1553 	int err;
1554 	struct list_head *tmp;
1555 	mdk_rdev_t *rdev;
1556 	int sync_req;
1557 
1558 repeat:
1559 	spin_lock_irq(&mddev->write_lock);
1560 	sync_req = mddev->in_sync;
1561 	mddev->utime = get_seconds();
1562 	mddev->events ++;
1563 
1564 	if (!mddev->events) {
1565 		/*
1566 		 * oops, this 64-bit counter should never wrap.
1567 		 * Either we are in around ~1 trillion A.C., assuming
1568 		 * 1 reboot per second, or we have a bug:
1569 		 */
1570 		MD_BUG();
1571 		mddev->events --;
1572 	}
1573 	mddev->sb_dirty = 2;
1574 	sync_sbs(mddev);
1575 
1576 	/*
1577 	 * do not write anything to disk if using
1578 	 * nonpersistent superblocks
1579 	 */
1580 	if (!mddev->persistent) {
1581 		mddev->sb_dirty = 0;
1582 		spin_unlock_irq(&mddev->write_lock);
1583 		wake_up(&mddev->sb_wait);
1584 		return;
1585 	}
1586 	spin_unlock_irq(&mddev->write_lock);
1587 
1588 	dprintk(KERN_INFO
1589 		"md: updating %s RAID superblock on device (in sync %d)\n",
1590 		mdname(mddev),mddev->in_sync);
1591 
1592 	err = bitmap_update_sb(mddev->bitmap);
1593 	ITERATE_RDEV(mddev,rdev,tmp) {
1594 		char b[BDEVNAME_SIZE];
1595 		dprintk(KERN_INFO "md: ");
1596 		if (test_bit(Faulty, &rdev->flags))
1597 			dprintk("(skipping faulty ");
1598 
1599 		dprintk("%s ", bdevname(rdev->bdev,b));
1600 		if (!test_bit(Faulty, &rdev->flags)) {
1601 			md_super_write(mddev,rdev,
1602 				       rdev->sb_offset<<1, rdev->sb_size,
1603 				       rdev->sb_page);
1604 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1605 				bdevname(rdev->bdev,b),
1606 				(unsigned long long)rdev->sb_offset);
1607 
1608 		} else
1609 			dprintk(")\n");
1610 		if (mddev->level == LEVEL_MULTIPATH)
1611 			/* only need to write one superblock... */
1612 			break;
1613 	}
1614 	md_super_wait(mddev);
1615 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1616 
1617 	spin_lock_irq(&mddev->write_lock);
1618 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1619 		/* have to write it out again */
1620 		spin_unlock_irq(&mddev->write_lock);
1621 		goto repeat;
1622 	}
1623 	mddev->sb_dirty = 0;
1624 	spin_unlock_irq(&mddev->write_lock);
1625 	wake_up(&mddev->sb_wait);
1626 
1627 }
1628 EXPORT_SYMBOL_GPL(md_update_sb);
1629 
1630 /* words written to sysfs files may, or my not, be \n terminated.
1631  * We want to accept with case. For this we use cmd_match.
1632  */
1633 static int cmd_match(const char *cmd, const char *str)
1634 {
1635 	/* See if cmd, written into a sysfs file, matches
1636 	 * str.  They must either be the same, or cmd can
1637 	 * have a trailing newline
1638 	 */
1639 	while (*cmd && *str && *cmd == *str) {
1640 		cmd++;
1641 		str++;
1642 	}
1643 	if (*cmd == '\n')
1644 		cmd++;
1645 	if (*str || *cmd)
1646 		return 0;
1647 	return 1;
1648 }
1649 
1650 struct rdev_sysfs_entry {
1651 	struct attribute attr;
1652 	ssize_t (*show)(mdk_rdev_t *, char *);
1653 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1654 };
1655 
1656 static ssize_t
1657 state_show(mdk_rdev_t *rdev, char *page)
1658 {
1659 	char *sep = "";
1660 	int len=0;
1661 
1662 	if (test_bit(Faulty, &rdev->flags)) {
1663 		len+= sprintf(page+len, "%sfaulty",sep);
1664 		sep = ",";
1665 	}
1666 	if (test_bit(In_sync, &rdev->flags)) {
1667 		len += sprintf(page+len, "%sin_sync",sep);
1668 		sep = ",";
1669 	}
1670 	if (!test_bit(Faulty, &rdev->flags) &&
1671 	    !test_bit(In_sync, &rdev->flags)) {
1672 		len += sprintf(page+len, "%sspare", sep);
1673 		sep = ",";
1674 	}
1675 	return len+sprintf(page+len, "\n");
1676 }
1677 
1678 static struct rdev_sysfs_entry
1679 rdev_state = __ATTR_RO(state);
1680 
1681 static ssize_t
1682 super_show(mdk_rdev_t *rdev, char *page)
1683 {
1684 	if (rdev->sb_loaded && rdev->sb_size) {
1685 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1686 		return rdev->sb_size;
1687 	} else
1688 		return 0;
1689 }
1690 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1691 
1692 static ssize_t
1693 errors_show(mdk_rdev_t *rdev, char *page)
1694 {
1695 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1696 }
1697 
1698 static ssize_t
1699 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1700 {
1701 	char *e;
1702 	unsigned long n = simple_strtoul(buf, &e, 10);
1703 	if (*buf && (*e == 0 || *e == '\n')) {
1704 		atomic_set(&rdev->corrected_errors, n);
1705 		return len;
1706 	}
1707 	return -EINVAL;
1708 }
1709 static struct rdev_sysfs_entry rdev_errors =
1710 __ATTR(errors, 0644, errors_show, errors_store);
1711 
1712 static ssize_t
1713 slot_show(mdk_rdev_t *rdev, char *page)
1714 {
1715 	if (rdev->raid_disk < 0)
1716 		return sprintf(page, "none\n");
1717 	else
1718 		return sprintf(page, "%d\n", rdev->raid_disk);
1719 }
1720 
1721 static ssize_t
1722 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1723 {
1724 	char *e;
1725 	int slot = simple_strtoul(buf, &e, 10);
1726 	if (strncmp(buf, "none", 4)==0)
1727 		slot = -1;
1728 	else if (e==buf || (*e && *e!= '\n'))
1729 		return -EINVAL;
1730 	if (rdev->mddev->pers)
1731 		/* Cannot set slot in active array (yet) */
1732 		return -EBUSY;
1733 	if (slot >= rdev->mddev->raid_disks)
1734 		return -ENOSPC;
1735 	rdev->raid_disk = slot;
1736 	/* assume it is working */
1737 	rdev->flags = 0;
1738 	set_bit(In_sync, &rdev->flags);
1739 	return len;
1740 }
1741 
1742 
1743 static struct rdev_sysfs_entry rdev_slot =
1744 __ATTR(slot, 0644, slot_show, slot_store);
1745 
1746 static ssize_t
1747 offset_show(mdk_rdev_t *rdev, char *page)
1748 {
1749 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1750 }
1751 
1752 static ssize_t
1753 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1754 {
1755 	char *e;
1756 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1757 	if (e==buf || (*e && *e != '\n'))
1758 		return -EINVAL;
1759 	if (rdev->mddev->pers)
1760 		return -EBUSY;
1761 	rdev->data_offset = offset;
1762 	return len;
1763 }
1764 
1765 static struct rdev_sysfs_entry rdev_offset =
1766 __ATTR(offset, 0644, offset_show, offset_store);
1767 
1768 static ssize_t
1769 rdev_size_show(mdk_rdev_t *rdev, char *page)
1770 {
1771 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1772 }
1773 
1774 static ssize_t
1775 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1776 {
1777 	char *e;
1778 	unsigned long long size = simple_strtoull(buf, &e, 10);
1779 	if (e==buf || (*e && *e != '\n'))
1780 		return -EINVAL;
1781 	if (rdev->mddev->pers)
1782 		return -EBUSY;
1783 	rdev->size = size;
1784 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1785 		rdev->mddev->size = size;
1786 	return len;
1787 }
1788 
1789 static struct rdev_sysfs_entry rdev_size =
1790 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1791 
1792 static struct attribute *rdev_default_attrs[] = {
1793 	&rdev_state.attr,
1794 	&rdev_super.attr,
1795 	&rdev_errors.attr,
1796 	&rdev_slot.attr,
1797 	&rdev_offset.attr,
1798 	&rdev_size.attr,
1799 	NULL,
1800 };
1801 static ssize_t
1802 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1803 {
1804 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1805 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1806 
1807 	if (!entry->show)
1808 		return -EIO;
1809 	return entry->show(rdev, page);
1810 }
1811 
1812 static ssize_t
1813 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1814 	      const char *page, size_t length)
1815 {
1816 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1817 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1818 
1819 	if (!entry->store)
1820 		return -EIO;
1821 	return entry->store(rdev, page, length);
1822 }
1823 
1824 static void rdev_free(struct kobject *ko)
1825 {
1826 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1827 	kfree(rdev);
1828 }
1829 static struct sysfs_ops rdev_sysfs_ops = {
1830 	.show		= rdev_attr_show,
1831 	.store		= rdev_attr_store,
1832 };
1833 static struct kobj_type rdev_ktype = {
1834 	.release	= rdev_free,
1835 	.sysfs_ops	= &rdev_sysfs_ops,
1836 	.default_attrs	= rdev_default_attrs,
1837 };
1838 
1839 /*
1840  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1841  *
1842  * mark the device faulty if:
1843  *
1844  *   - the device is nonexistent (zero size)
1845  *   - the device has no valid superblock
1846  *
1847  * a faulty rdev _never_ has rdev->sb set.
1848  */
1849 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1850 {
1851 	char b[BDEVNAME_SIZE];
1852 	int err;
1853 	mdk_rdev_t *rdev;
1854 	sector_t size;
1855 
1856 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1857 	if (!rdev) {
1858 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1859 		return ERR_PTR(-ENOMEM);
1860 	}
1861 
1862 	if ((err = alloc_disk_sb(rdev)))
1863 		goto abort_free;
1864 
1865 	err = lock_rdev(rdev, newdev);
1866 	if (err)
1867 		goto abort_free;
1868 
1869 	rdev->kobj.parent = NULL;
1870 	rdev->kobj.ktype = &rdev_ktype;
1871 	kobject_init(&rdev->kobj);
1872 
1873 	rdev->desc_nr = -1;
1874 	rdev->flags = 0;
1875 	rdev->data_offset = 0;
1876 	atomic_set(&rdev->nr_pending, 0);
1877 	atomic_set(&rdev->read_errors, 0);
1878 	atomic_set(&rdev->corrected_errors, 0);
1879 
1880 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1881 	if (!size) {
1882 		printk(KERN_WARNING
1883 			"md: %s has zero or unknown size, marking faulty!\n",
1884 			bdevname(rdev->bdev,b));
1885 		err = -EINVAL;
1886 		goto abort_free;
1887 	}
1888 
1889 	if (super_format >= 0) {
1890 		err = super_types[super_format].
1891 			load_super(rdev, NULL, super_minor);
1892 		if (err == -EINVAL) {
1893 			printk(KERN_WARNING
1894 				"md: %s has invalid sb, not importing!\n",
1895 				bdevname(rdev->bdev,b));
1896 			goto abort_free;
1897 		}
1898 		if (err < 0) {
1899 			printk(KERN_WARNING
1900 				"md: could not read %s's sb, not importing!\n",
1901 				bdevname(rdev->bdev,b));
1902 			goto abort_free;
1903 		}
1904 	}
1905 	INIT_LIST_HEAD(&rdev->same_set);
1906 
1907 	return rdev;
1908 
1909 abort_free:
1910 	if (rdev->sb_page) {
1911 		if (rdev->bdev)
1912 			unlock_rdev(rdev);
1913 		free_disk_sb(rdev);
1914 	}
1915 	kfree(rdev);
1916 	return ERR_PTR(err);
1917 }
1918 
1919 /*
1920  * Check a full RAID array for plausibility
1921  */
1922 
1923 
1924 static void analyze_sbs(mddev_t * mddev)
1925 {
1926 	int i;
1927 	struct list_head *tmp;
1928 	mdk_rdev_t *rdev, *freshest;
1929 	char b[BDEVNAME_SIZE];
1930 
1931 	freshest = NULL;
1932 	ITERATE_RDEV(mddev,rdev,tmp)
1933 		switch (super_types[mddev->major_version].
1934 			load_super(rdev, freshest, mddev->minor_version)) {
1935 		case 1:
1936 			freshest = rdev;
1937 			break;
1938 		case 0:
1939 			break;
1940 		default:
1941 			printk( KERN_ERR \
1942 				"md: fatal superblock inconsistency in %s"
1943 				" -- removing from array\n",
1944 				bdevname(rdev->bdev,b));
1945 			kick_rdev_from_array(rdev);
1946 		}
1947 
1948 
1949 	super_types[mddev->major_version].
1950 		validate_super(mddev, freshest);
1951 
1952 	i = 0;
1953 	ITERATE_RDEV(mddev,rdev,tmp) {
1954 		if (rdev != freshest)
1955 			if (super_types[mddev->major_version].
1956 			    validate_super(mddev, rdev)) {
1957 				printk(KERN_WARNING "md: kicking non-fresh %s"
1958 					" from array!\n",
1959 					bdevname(rdev->bdev,b));
1960 				kick_rdev_from_array(rdev);
1961 				continue;
1962 			}
1963 		if (mddev->level == LEVEL_MULTIPATH) {
1964 			rdev->desc_nr = i++;
1965 			rdev->raid_disk = rdev->desc_nr;
1966 			set_bit(In_sync, &rdev->flags);
1967 		}
1968 	}
1969 
1970 
1971 
1972 	if (mddev->recovery_cp != MaxSector &&
1973 	    mddev->level >= 1)
1974 		printk(KERN_ERR "md: %s: raid array is not clean"
1975 		       " -- starting background reconstruction\n",
1976 		       mdname(mddev));
1977 
1978 }
1979 
1980 static ssize_t
1981 level_show(mddev_t *mddev, char *page)
1982 {
1983 	struct mdk_personality *p = mddev->pers;
1984 	if (p)
1985 		return sprintf(page, "%s\n", p->name);
1986 	else if (mddev->clevel[0])
1987 		return sprintf(page, "%s\n", mddev->clevel);
1988 	else if (mddev->level != LEVEL_NONE)
1989 		return sprintf(page, "%d\n", mddev->level);
1990 	else
1991 		return 0;
1992 }
1993 
1994 static ssize_t
1995 level_store(mddev_t *mddev, const char *buf, size_t len)
1996 {
1997 	int rv = len;
1998 	if (mddev->pers)
1999 		return -EBUSY;
2000 	if (len == 0)
2001 		return 0;
2002 	if (len >= sizeof(mddev->clevel))
2003 		return -ENOSPC;
2004 	strncpy(mddev->clevel, buf, len);
2005 	if (mddev->clevel[len-1] == '\n')
2006 		len--;
2007 	mddev->clevel[len] = 0;
2008 	mddev->level = LEVEL_NONE;
2009 	return rv;
2010 }
2011 
2012 static struct md_sysfs_entry md_level =
2013 __ATTR(level, 0644, level_show, level_store);
2014 
2015 static ssize_t
2016 raid_disks_show(mddev_t *mddev, char *page)
2017 {
2018 	if (mddev->raid_disks == 0)
2019 		return 0;
2020 	return sprintf(page, "%d\n", mddev->raid_disks);
2021 }
2022 
2023 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2024 
2025 static ssize_t
2026 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2027 {
2028 	/* can only set raid_disks if array is not yet active */
2029 	char *e;
2030 	int rv = 0;
2031 	unsigned long n = simple_strtoul(buf, &e, 10);
2032 
2033 	if (!*buf || (*e && *e != '\n'))
2034 		return -EINVAL;
2035 
2036 	if (mddev->pers)
2037 		rv = update_raid_disks(mddev, n);
2038 	else
2039 		mddev->raid_disks = n;
2040 	return rv ? rv : len;
2041 }
2042 static struct md_sysfs_entry md_raid_disks =
2043 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2044 
2045 static ssize_t
2046 chunk_size_show(mddev_t *mddev, char *page)
2047 {
2048 	return sprintf(page, "%d\n", mddev->chunk_size);
2049 }
2050 
2051 static ssize_t
2052 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2053 {
2054 	/* can only set chunk_size if array is not yet active */
2055 	char *e;
2056 	unsigned long n = simple_strtoul(buf, &e, 10);
2057 
2058 	if (mddev->pers)
2059 		return -EBUSY;
2060 	if (!*buf || (*e && *e != '\n'))
2061 		return -EINVAL;
2062 
2063 	mddev->chunk_size = n;
2064 	return len;
2065 }
2066 static struct md_sysfs_entry md_chunk_size =
2067 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2068 
2069 static ssize_t
2070 null_show(mddev_t *mddev, char *page)
2071 {
2072 	return -EINVAL;
2073 }
2074 
2075 static ssize_t
2076 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2077 {
2078 	/* buf must be %d:%d\n? giving major and minor numbers */
2079 	/* The new device is added to the array.
2080 	 * If the array has a persistent superblock, we read the
2081 	 * superblock to initialise info and check validity.
2082 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2083 	 * which mainly checks size.
2084 	 */
2085 	char *e;
2086 	int major = simple_strtoul(buf, &e, 10);
2087 	int minor;
2088 	dev_t dev;
2089 	mdk_rdev_t *rdev;
2090 	int err;
2091 
2092 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2093 		return -EINVAL;
2094 	minor = simple_strtoul(e+1, &e, 10);
2095 	if (*e && *e != '\n')
2096 		return -EINVAL;
2097 	dev = MKDEV(major, minor);
2098 	if (major != MAJOR(dev) ||
2099 	    minor != MINOR(dev))
2100 		return -EOVERFLOW;
2101 
2102 
2103 	if (mddev->persistent) {
2104 		rdev = md_import_device(dev, mddev->major_version,
2105 					mddev->minor_version);
2106 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2107 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2108 						       mdk_rdev_t, same_set);
2109 			err = super_types[mddev->major_version]
2110 				.load_super(rdev, rdev0, mddev->minor_version);
2111 			if (err < 0)
2112 				goto out;
2113 		}
2114 	} else
2115 		rdev = md_import_device(dev, -1, -1);
2116 
2117 	if (IS_ERR(rdev))
2118 		return PTR_ERR(rdev);
2119 	err = bind_rdev_to_array(rdev, mddev);
2120  out:
2121 	if (err)
2122 		export_rdev(rdev);
2123 	return err ? err : len;
2124 }
2125 
2126 static struct md_sysfs_entry md_new_device =
2127 __ATTR(new_dev, 0200, null_show, new_dev_store);
2128 
2129 static ssize_t
2130 size_show(mddev_t *mddev, char *page)
2131 {
2132 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2133 }
2134 
2135 static int update_size(mddev_t *mddev, unsigned long size);
2136 
2137 static ssize_t
2138 size_store(mddev_t *mddev, const char *buf, size_t len)
2139 {
2140 	/* If array is inactive, we can reduce the component size, but
2141 	 * not increase it (except from 0).
2142 	 * If array is active, we can try an on-line resize
2143 	 */
2144 	char *e;
2145 	int err = 0;
2146 	unsigned long long size = simple_strtoull(buf, &e, 10);
2147 	if (!*buf || *buf == '\n' ||
2148 	    (*e && *e != '\n'))
2149 		return -EINVAL;
2150 
2151 	if (mddev->pers) {
2152 		err = update_size(mddev, size);
2153 		md_update_sb(mddev);
2154 	} else {
2155 		if (mddev->size == 0 ||
2156 		    mddev->size > size)
2157 			mddev->size = size;
2158 		else
2159 			err = -ENOSPC;
2160 	}
2161 	return err ? err : len;
2162 }
2163 
2164 static struct md_sysfs_entry md_size =
2165 __ATTR(component_size, 0644, size_show, size_store);
2166 
2167 
2168 /* Metdata version.
2169  * This is either 'none' for arrays with externally managed metadata,
2170  * or N.M for internally known formats
2171  */
2172 static ssize_t
2173 metadata_show(mddev_t *mddev, char *page)
2174 {
2175 	if (mddev->persistent)
2176 		return sprintf(page, "%d.%d\n",
2177 			       mddev->major_version, mddev->minor_version);
2178 	else
2179 		return sprintf(page, "none\n");
2180 }
2181 
2182 static ssize_t
2183 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2184 {
2185 	int major, minor;
2186 	char *e;
2187 	if (!list_empty(&mddev->disks))
2188 		return -EBUSY;
2189 
2190 	if (cmd_match(buf, "none")) {
2191 		mddev->persistent = 0;
2192 		mddev->major_version = 0;
2193 		mddev->minor_version = 90;
2194 		return len;
2195 	}
2196 	major = simple_strtoul(buf, &e, 10);
2197 	if (e==buf || *e != '.')
2198 		return -EINVAL;
2199 	buf = e+1;
2200 	minor = simple_strtoul(buf, &e, 10);
2201 	if (e==buf || *e != '\n')
2202 		return -EINVAL;
2203 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2204 	    super_types[major].name == NULL)
2205 		return -ENOENT;
2206 	mddev->major_version = major;
2207 	mddev->minor_version = minor;
2208 	mddev->persistent = 1;
2209 	return len;
2210 }
2211 
2212 static struct md_sysfs_entry md_metadata =
2213 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2214 
2215 static ssize_t
2216 action_show(mddev_t *mddev, char *page)
2217 {
2218 	char *type = "idle";
2219 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2220 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2221 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2222 			type = "reshape";
2223 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2224 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2225 				type = "resync";
2226 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2227 				type = "check";
2228 			else
2229 				type = "repair";
2230 		} else
2231 			type = "recover";
2232 	}
2233 	return sprintf(page, "%s\n", type);
2234 }
2235 
2236 static ssize_t
2237 action_store(mddev_t *mddev, const char *page, size_t len)
2238 {
2239 	if (!mddev->pers || !mddev->pers->sync_request)
2240 		return -EINVAL;
2241 
2242 	if (cmd_match(page, "idle")) {
2243 		if (mddev->sync_thread) {
2244 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2245 			md_unregister_thread(mddev->sync_thread);
2246 			mddev->sync_thread = NULL;
2247 			mddev->recovery = 0;
2248 		}
2249 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2250 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2251 		return -EBUSY;
2252 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2253 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2254 	else if (cmd_match(page, "reshape")) {
2255 		int err;
2256 		if (mddev->pers->start_reshape == NULL)
2257 			return -EINVAL;
2258 		err = mddev->pers->start_reshape(mddev);
2259 		if (err)
2260 			return err;
2261 	} else {
2262 		if (cmd_match(page, "check"))
2263 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2264 		else if (!cmd_match(page, "repair"))
2265 			return -EINVAL;
2266 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2267 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2268 	}
2269 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2270 	md_wakeup_thread(mddev->thread);
2271 	return len;
2272 }
2273 
2274 static ssize_t
2275 mismatch_cnt_show(mddev_t *mddev, char *page)
2276 {
2277 	return sprintf(page, "%llu\n",
2278 		       (unsigned long long) mddev->resync_mismatches);
2279 }
2280 
2281 static struct md_sysfs_entry
2282 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2283 
2284 
2285 static struct md_sysfs_entry
2286 md_mismatches = __ATTR_RO(mismatch_cnt);
2287 
2288 static ssize_t
2289 sync_min_show(mddev_t *mddev, char *page)
2290 {
2291 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2292 		       mddev->sync_speed_min ? "local": "system");
2293 }
2294 
2295 static ssize_t
2296 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2297 {
2298 	int min;
2299 	char *e;
2300 	if (strncmp(buf, "system", 6)==0) {
2301 		mddev->sync_speed_min = 0;
2302 		return len;
2303 	}
2304 	min = simple_strtoul(buf, &e, 10);
2305 	if (buf == e || (*e && *e != '\n') || min <= 0)
2306 		return -EINVAL;
2307 	mddev->sync_speed_min = min;
2308 	return len;
2309 }
2310 
2311 static struct md_sysfs_entry md_sync_min =
2312 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2313 
2314 static ssize_t
2315 sync_max_show(mddev_t *mddev, char *page)
2316 {
2317 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2318 		       mddev->sync_speed_max ? "local": "system");
2319 }
2320 
2321 static ssize_t
2322 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2323 {
2324 	int max;
2325 	char *e;
2326 	if (strncmp(buf, "system", 6)==0) {
2327 		mddev->sync_speed_max = 0;
2328 		return len;
2329 	}
2330 	max = simple_strtoul(buf, &e, 10);
2331 	if (buf == e || (*e && *e != '\n') || max <= 0)
2332 		return -EINVAL;
2333 	mddev->sync_speed_max = max;
2334 	return len;
2335 }
2336 
2337 static struct md_sysfs_entry md_sync_max =
2338 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2339 
2340 
2341 static ssize_t
2342 sync_speed_show(mddev_t *mddev, char *page)
2343 {
2344 	unsigned long resync, dt, db;
2345 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2346 	dt = ((jiffies - mddev->resync_mark) / HZ);
2347 	if (!dt) dt++;
2348 	db = resync - (mddev->resync_mark_cnt);
2349 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2350 }
2351 
2352 static struct md_sysfs_entry
2353 md_sync_speed = __ATTR_RO(sync_speed);
2354 
2355 static ssize_t
2356 sync_completed_show(mddev_t *mddev, char *page)
2357 {
2358 	unsigned long max_blocks, resync;
2359 
2360 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2361 		max_blocks = mddev->resync_max_sectors;
2362 	else
2363 		max_blocks = mddev->size << 1;
2364 
2365 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2366 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2367 }
2368 
2369 static struct md_sysfs_entry
2370 md_sync_completed = __ATTR_RO(sync_completed);
2371 
2372 static ssize_t
2373 suspend_lo_show(mddev_t *mddev, char *page)
2374 {
2375 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2376 }
2377 
2378 static ssize_t
2379 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2380 {
2381 	char *e;
2382 	unsigned long long new = simple_strtoull(buf, &e, 10);
2383 
2384 	if (mddev->pers->quiesce == NULL)
2385 		return -EINVAL;
2386 	if (buf == e || (*e && *e != '\n'))
2387 		return -EINVAL;
2388 	if (new >= mddev->suspend_hi ||
2389 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2390 		mddev->suspend_lo = new;
2391 		mddev->pers->quiesce(mddev, 2);
2392 		return len;
2393 	} else
2394 		return -EINVAL;
2395 }
2396 static struct md_sysfs_entry md_suspend_lo =
2397 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2398 
2399 
2400 static ssize_t
2401 suspend_hi_show(mddev_t *mddev, char *page)
2402 {
2403 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2404 }
2405 
2406 static ssize_t
2407 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2408 {
2409 	char *e;
2410 	unsigned long long new = simple_strtoull(buf, &e, 10);
2411 
2412 	if (mddev->pers->quiesce == NULL)
2413 		return -EINVAL;
2414 	if (buf == e || (*e && *e != '\n'))
2415 		return -EINVAL;
2416 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2417 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2418 		mddev->suspend_hi = new;
2419 		mddev->pers->quiesce(mddev, 1);
2420 		mddev->pers->quiesce(mddev, 0);
2421 		return len;
2422 	} else
2423 		return -EINVAL;
2424 }
2425 static struct md_sysfs_entry md_suspend_hi =
2426 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2427 
2428 
2429 static struct attribute *md_default_attrs[] = {
2430 	&md_level.attr,
2431 	&md_raid_disks.attr,
2432 	&md_chunk_size.attr,
2433 	&md_size.attr,
2434 	&md_metadata.attr,
2435 	&md_new_device.attr,
2436 	NULL,
2437 };
2438 
2439 static struct attribute *md_redundancy_attrs[] = {
2440 	&md_scan_mode.attr,
2441 	&md_mismatches.attr,
2442 	&md_sync_min.attr,
2443 	&md_sync_max.attr,
2444 	&md_sync_speed.attr,
2445 	&md_sync_completed.attr,
2446 	&md_suspend_lo.attr,
2447 	&md_suspend_hi.attr,
2448 	NULL,
2449 };
2450 static struct attribute_group md_redundancy_group = {
2451 	.name = NULL,
2452 	.attrs = md_redundancy_attrs,
2453 };
2454 
2455 
2456 static ssize_t
2457 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2458 {
2459 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2460 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2461 	ssize_t rv;
2462 
2463 	if (!entry->show)
2464 		return -EIO;
2465 	rv = mddev_lock(mddev);
2466 	if (!rv) {
2467 		rv = entry->show(mddev, page);
2468 		mddev_unlock(mddev);
2469 	}
2470 	return rv;
2471 }
2472 
2473 static ssize_t
2474 md_attr_store(struct kobject *kobj, struct attribute *attr,
2475 	      const char *page, size_t length)
2476 {
2477 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2478 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2479 	ssize_t rv;
2480 
2481 	if (!entry->store)
2482 		return -EIO;
2483 	rv = mddev_lock(mddev);
2484 	if (!rv) {
2485 		rv = entry->store(mddev, page, length);
2486 		mddev_unlock(mddev);
2487 	}
2488 	return rv;
2489 }
2490 
2491 static void md_free(struct kobject *ko)
2492 {
2493 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2494 	kfree(mddev);
2495 }
2496 
2497 static struct sysfs_ops md_sysfs_ops = {
2498 	.show	= md_attr_show,
2499 	.store	= md_attr_store,
2500 };
2501 static struct kobj_type md_ktype = {
2502 	.release	= md_free,
2503 	.sysfs_ops	= &md_sysfs_ops,
2504 	.default_attrs	= md_default_attrs,
2505 };
2506 
2507 int mdp_major = 0;
2508 
2509 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2510 {
2511 	static DEFINE_MUTEX(disks_mutex);
2512 	mddev_t *mddev = mddev_find(dev);
2513 	struct gendisk *disk;
2514 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2515 	int shift = partitioned ? MdpMinorShift : 0;
2516 	int unit = MINOR(dev) >> shift;
2517 
2518 	if (!mddev)
2519 		return NULL;
2520 
2521 	mutex_lock(&disks_mutex);
2522 	if (mddev->gendisk) {
2523 		mutex_unlock(&disks_mutex);
2524 		mddev_put(mddev);
2525 		return NULL;
2526 	}
2527 	disk = alloc_disk(1 << shift);
2528 	if (!disk) {
2529 		mutex_unlock(&disks_mutex);
2530 		mddev_put(mddev);
2531 		return NULL;
2532 	}
2533 	disk->major = MAJOR(dev);
2534 	disk->first_minor = unit << shift;
2535 	if (partitioned) {
2536 		sprintf(disk->disk_name, "md_d%d", unit);
2537 		sprintf(disk->devfs_name, "md/d%d", unit);
2538 	} else {
2539 		sprintf(disk->disk_name, "md%d", unit);
2540 		sprintf(disk->devfs_name, "md/%d", unit);
2541 	}
2542 	disk->fops = &md_fops;
2543 	disk->private_data = mddev;
2544 	disk->queue = mddev->queue;
2545 	add_disk(disk);
2546 	mddev->gendisk = disk;
2547 	mutex_unlock(&disks_mutex);
2548 	mddev->kobj.parent = &disk->kobj;
2549 	mddev->kobj.k_name = NULL;
2550 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2551 	mddev->kobj.ktype = &md_ktype;
2552 	kobject_register(&mddev->kobj);
2553 	return NULL;
2554 }
2555 
2556 void md_wakeup_thread(mdk_thread_t *thread);
2557 
2558 static void md_safemode_timeout(unsigned long data)
2559 {
2560 	mddev_t *mddev = (mddev_t *) data;
2561 
2562 	mddev->safemode = 1;
2563 	md_wakeup_thread(mddev->thread);
2564 }
2565 
2566 static int start_dirty_degraded;
2567 
2568 static int do_md_run(mddev_t * mddev)
2569 {
2570 	int err;
2571 	int chunk_size;
2572 	struct list_head *tmp;
2573 	mdk_rdev_t *rdev;
2574 	struct gendisk *disk;
2575 	struct mdk_personality *pers;
2576 	char b[BDEVNAME_SIZE];
2577 
2578 	if (list_empty(&mddev->disks))
2579 		/* cannot run an array with no devices.. */
2580 		return -EINVAL;
2581 
2582 	if (mddev->pers)
2583 		return -EBUSY;
2584 
2585 	/*
2586 	 * Analyze all RAID superblock(s)
2587 	 */
2588 	if (!mddev->raid_disks)
2589 		analyze_sbs(mddev);
2590 
2591 	chunk_size = mddev->chunk_size;
2592 
2593 	if (chunk_size) {
2594 		if (chunk_size > MAX_CHUNK_SIZE) {
2595 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2596 				chunk_size, MAX_CHUNK_SIZE);
2597 			return -EINVAL;
2598 		}
2599 		/*
2600 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2601 		 */
2602 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2603 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2604 			return -EINVAL;
2605 		}
2606 		if (chunk_size < PAGE_SIZE) {
2607 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2608 				chunk_size, PAGE_SIZE);
2609 			return -EINVAL;
2610 		}
2611 
2612 		/* devices must have minimum size of one chunk */
2613 		ITERATE_RDEV(mddev,rdev,tmp) {
2614 			if (test_bit(Faulty, &rdev->flags))
2615 				continue;
2616 			if (rdev->size < chunk_size / 1024) {
2617 				printk(KERN_WARNING
2618 					"md: Dev %s smaller than chunk_size:"
2619 					" %lluk < %dk\n",
2620 					bdevname(rdev->bdev,b),
2621 					(unsigned long long)rdev->size,
2622 					chunk_size / 1024);
2623 				return -EINVAL;
2624 			}
2625 		}
2626 	}
2627 
2628 #ifdef CONFIG_KMOD
2629 	if (mddev->level != LEVEL_NONE)
2630 		request_module("md-level-%d", mddev->level);
2631 	else if (mddev->clevel[0])
2632 		request_module("md-%s", mddev->clevel);
2633 #endif
2634 
2635 	/*
2636 	 * Drop all container device buffers, from now on
2637 	 * the only valid external interface is through the md
2638 	 * device.
2639 	 * Also find largest hardsector size
2640 	 */
2641 	ITERATE_RDEV(mddev,rdev,tmp) {
2642 		if (test_bit(Faulty, &rdev->flags))
2643 			continue;
2644 		sync_blockdev(rdev->bdev);
2645 		invalidate_bdev(rdev->bdev, 0);
2646 	}
2647 
2648 	md_probe(mddev->unit, NULL, NULL);
2649 	disk = mddev->gendisk;
2650 	if (!disk)
2651 		return -ENOMEM;
2652 
2653 	spin_lock(&pers_lock);
2654 	pers = find_pers(mddev->level, mddev->clevel);
2655 	if (!pers || !try_module_get(pers->owner)) {
2656 		spin_unlock(&pers_lock);
2657 		if (mddev->level != LEVEL_NONE)
2658 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2659 			       mddev->level);
2660 		else
2661 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2662 			       mddev->clevel);
2663 		return -EINVAL;
2664 	}
2665 	mddev->pers = pers;
2666 	spin_unlock(&pers_lock);
2667 	mddev->level = pers->level;
2668 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2669 
2670 	if (mddev->reshape_position != MaxSector &&
2671 	    pers->start_reshape == NULL) {
2672 		/* This personality cannot handle reshaping... */
2673 		mddev->pers = NULL;
2674 		module_put(pers->owner);
2675 		return -EINVAL;
2676 	}
2677 
2678 	mddev->recovery = 0;
2679 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2680 	mddev->barriers_work = 1;
2681 	mddev->ok_start_degraded = start_dirty_degraded;
2682 
2683 	if (start_readonly)
2684 		mddev->ro = 2; /* read-only, but switch on first write */
2685 
2686 	err = mddev->pers->run(mddev);
2687 	if (!err && mddev->pers->sync_request) {
2688 		err = bitmap_create(mddev);
2689 		if (err) {
2690 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2691 			       mdname(mddev), err);
2692 			mddev->pers->stop(mddev);
2693 		}
2694 	}
2695 	if (err) {
2696 		printk(KERN_ERR "md: pers->run() failed ...\n");
2697 		module_put(mddev->pers->owner);
2698 		mddev->pers = NULL;
2699 		bitmap_destroy(mddev);
2700 		return err;
2701 	}
2702 	if (mddev->pers->sync_request)
2703 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2704 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2705 		mddev->ro = 0;
2706 
2707  	atomic_set(&mddev->writes_pending,0);
2708 	mddev->safemode = 0;
2709 	mddev->safemode_timer.function = md_safemode_timeout;
2710 	mddev->safemode_timer.data = (unsigned long) mddev;
2711 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2712 	mddev->in_sync = 1;
2713 
2714 	ITERATE_RDEV(mddev,rdev,tmp)
2715 		if (rdev->raid_disk >= 0) {
2716 			char nm[20];
2717 			sprintf(nm, "rd%d", rdev->raid_disk);
2718 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2719 		}
2720 
2721 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2722 	md_wakeup_thread(mddev->thread);
2723 
2724 	if (mddev->sb_dirty)
2725 		md_update_sb(mddev);
2726 
2727 	set_capacity(disk, mddev->array_size<<1);
2728 
2729 	/* If we call blk_queue_make_request here, it will
2730 	 * re-initialise max_sectors etc which may have been
2731 	 * refined inside -> run.  So just set the bits we need to set.
2732 	 * Most initialisation happended when we called
2733 	 * blk_queue_make_request(..., md_fail_request)
2734 	 * earlier.
2735 	 */
2736 	mddev->queue->queuedata = mddev;
2737 	mddev->queue->make_request_fn = mddev->pers->make_request;
2738 
2739 	mddev->changed = 1;
2740 	md_new_event(mddev);
2741 	return 0;
2742 }
2743 
2744 static int restart_array(mddev_t *mddev)
2745 {
2746 	struct gendisk *disk = mddev->gendisk;
2747 	int err;
2748 
2749 	/*
2750 	 * Complain if it has no devices
2751 	 */
2752 	err = -ENXIO;
2753 	if (list_empty(&mddev->disks))
2754 		goto out;
2755 
2756 	if (mddev->pers) {
2757 		err = -EBUSY;
2758 		if (!mddev->ro)
2759 			goto out;
2760 
2761 		mddev->safemode = 0;
2762 		mddev->ro = 0;
2763 		set_disk_ro(disk, 0);
2764 
2765 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2766 			mdname(mddev));
2767 		/*
2768 		 * Kick recovery or resync if necessary
2769 		 */
2770 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2771 		md_wakeup_thread(mddev->thread);
2772 		err = 0;
2773 	} else {
2774 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2775 			mdname(mddev));
2776 		err = -EINVAL;
2777 	}
2778 
2779 out:
2780 	return err;
2781 }
2782 
2783 static int do_md_stop(mddev_t * mddev, int ro)
2784 {
2785 	int err = 0;
2786 	struct gendisk *disk = mddev->gendisk;
2787 
2788 	if (mddev->pers) {
2789 		if (atomic_read(&mddev->active)>2) {
2790 			printk("md: %s still in use.\n",mdname(mddev));
2791 			return -EBUSY;
2792 		}
2793 
2794 		if (mddev->sync_thread) {
2795 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2796 			md_unregister_thread(mddev->sync_thread);
2797 			mddev->sync_thread = NULL;
2798 		}
2799 
2800 		del_timer_sync(&mddev->safemode_timer);
2801 
2802 		invalidate_partition(disk, 0);
2803 
2804 		if (ro) {
2805 			err  = -ENXIO;
2806 			if (mddev->ro==1)
2807 				goto out;
2808 			mddev->ro = 1;
2809 		} else {
2810 			bitmap_flush(mddev);
2811 			md_super_wait(mddev);
2812 			if (mddev->ro)
2813 				set_disk_ro(disk, 0);
2814 			blk_queue_make_request(mddev->queue, md_fail_request);
2815 			mddev->pers->stop(mddev);
2816 			if (mddev->pers->sync_request)
2817 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2818 
2819 			module_put(mddev->pers->owner);
2820 			mddev->pers = NULL;
2821 			if (mddev->ro)
2822 				mddev->ro = 0;
2823 		}
2824 		if (!mddev->in_sync) {
2825 			/* mark array as shutdown cleanly */
2826 			mddev->in_sync = 1;
2827 			md_update_sb(mddev);
2828 		}
2829 		if (ro)
2830 			set_disk_ro(disk, 1);
2831 	}
2832 
2833 	/*
2834 	 * Free resources if final stop
2835 	 */
2836 	if (!ro) {
2837 		mdk_rdev_t *rdev;
2838 		struct list_head *tmp;
2839 		struct gendisk *disk;
2840 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2841 
2842 		bitmap_destroy(mddev);
2843 		if (mddev->bitmap_file) {
2844 			atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2845 			fput(mddev->bitmap_file);
2846 			mddev->bitmap_file = NULL;
2847 		}
2848 		mddev->bitmap_offset = 0;
2849 
2850 		ITERATE_RDEV(mddev,rdev,tmp)
2851 			if (rdev->raid_disk >= 0) {
2852 				char nm[20];
2853 				sprintf(nm, "rd%d", rdev->raid_disk);
2854 				sysfs_remove_link(&mddev->kobj, nm);
2855 			}
2856 
2857 		export_array(mddev);
2858 
2859 		mddev->array_size = 0;
2860 		disk = mddev->gendisk;
2861 		if (disk)
2862 			set_capacity(disk, 0);
2863 		mddev->changed = 1;
2864 	} else
2865 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2866 			mdname(mddev));
2867 	err = 0;
2868 	md_new_event(mddev);
2869 out:
2870 	return err;
2871 }
2872 
2873 static void autorun_array(mddev_t *mddev)
2874 {
2875 	mdk_rdev_t *rdev;
2876 	struct list_head *tmp;
2877 	int err;
2878 
2879 	if (list_empty(&mddev->disks))
2880 		return;
2881 
2882 	printk(KERN_INFO "md: running: ");
2883 
2884 	ITERATE_RDEV(mddev,rdev,tmp) {
2885 		char b[BDEVNAME_SIZE];
2886 		printk("<%s>", bdevname(rdev->bdev,b));
2887 	}
2888 	printk("\n");
2889 
2890 	err = do_md_run (mddev);
2891 	if (err) {
2892 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2893 		do_md_stop (mddev, 0);
2894 	}
2895 }
2896 
2897 /*
2898  * lets try to run arrays based on all disks that have arrived
2899  * until now. (those are in pending_raid_disks)
2900  *
2901  * the method: pick the first pending disk, collect all disks with
2902  * the same UUID, remove all from the pending list and put them into
2903  * the 'same_array' list. Then order this list based on superblock
2904  * update time (freshest comes first), kick out 'old' disks and
2905  * compare superblocks. If everything's fine then run it.
2906  *
2907  * If "unit" is allocated, then bump its reference count
2908  */
2909 static void autorun_devices(int part)
2910 {
2911 	struct list_head *tmp;
2912 	mdk_rdev_t *rdev0, *rdev;
2913 	mddev_t *mddev;
2914 	char b[BDEVNAME_SIZE];
2915 
2916 	printk(KERN_INFO "md: autorun ...\n");
2917 	while (!list_empty(&pending_raid_disks)) {
2918 		dev_t dev;
2919 		LIST_HEAD(candidates);
2920 		rdev0 = list_entry(pending_raid_disks.next,
2921 					 mdk_rdev_t, same_set);
2922 
2923 		printk(KERN_INFO "md: considering %s ...\n",
2924 			bdevname(rdev0->bdev,b));
2925 		INIT_LIST_HEAD(&candidates);
2926 		ITERATE_RDEV_PENDING(rdev,tmp)
2927 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2928 				printk(KERN_INFO "md:  adding %s ...\n",
2929 					bdevname(rdev->bdev,b));
2930 				list_move(&rdev->same_set, &candidates);
2931 			}
2932 		/*
2933 		 * now we have a set of devices, with all of them having
2934 		 * mostly sane superblocks. It's time to allocate the
2935 		 * mddev.
2936 		 */
2937 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2938 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2939 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2940 			break;
2941 		}
2942 		if (part)
2943 			dev = MKDEV(mdp_major,
2944 				    rdev0->preferred_minor << MdpMinorShift);
2945 		else
2946 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2947 
2948 		md_probe(dev, NULL, NULL);
2949 		mddev = mddev_find(dev);
2950 		if (!mddev) {
2951 			printk(KERN_ERR
2952 				"md: cannot allocate memory for md drive.\n");
2953 			break;
2954 		}
2955 		if (mddev_lock(mddev))
2956 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2957 			       mdname(mddev));
2958 		else if (mddev->raid_disks || mddev->major_version
2959 			 || !list_empty(&mddev->disks)) {
2960 			printk(KERN_WARNING
2961 				"md: %s already running, cannot run %s\n",
2962 				mdname(mddev), bdevname(rdev0->bdev,b));
2963 			mddev_unlock(mddev);
2964 		} else {
2965 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2966 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2967 				list_del_init(&rdev->same_set);
2968 				if (bind_rdev_to_array(rdev, mddev))
2969 					export_rdev(rdev);
2970 			}
2971 			autorun_array(mddev);
2972 			mddev_unlock(mddev);
2973 		}
2974 		/* on success, candidates will be empty, on error
2975 		 * it won't...
2976 		 */
2977 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2978 			export_rdev(rdev);
2979 		mddev_put(mddev);
2980 	}
2981 	printk(KERN_INFO "md: ... autorun DONE.\n");
2982 }
2983 
2984 /*
2985  * import RAID devices based on one partition
2986  * if possible, the array gets run as well.
2987  */
2988 
2989 static int autostart_array(dev_t startdev)
2990 {
2991 	char b[BDEVNAME_SIZE];
2992 	int err = -EINVAL, i;
2993 	mdp_super_t *sb = NULL;
2994 	mdk_rdev_t *start_rdev = NULL, *rdev;
2995 
2996 	start_rdev = md_import_device(startdev, 0, 0);
2997 	if (IS_ERR(start_rdev))
2998 		return err;
2999 
3000 
3001 	/* NOTE: this can only work for 0.90.0 superblocks */
3002 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3003 	if (sb->major_version != 0 ||
3004 	    sb->minor_version != 90 ) {
3005 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3006 		export_rdev(start_rdev);
3007 		return err;
3008 	}
3009 
3010 	if (test_bit(Faulty, &start_rdev->flags)) {
3011 		printk(KERN_WARNING
3012 			"md: can not autostart based on faulty %s!\n",
3013 			bdevname(start_rdev->bdev,b));
3014 		export_rdev(start_rdev);
3015 		return err;
3016 	}
3017 	list_add(&start_rdev->same_set, &pending_raid_disks);
3018 
3019 	for (i = 0; i < MD_SB_DISKS; i++) {
3020 		mdp_disk_t *desc = sb->disks + i;
3021 		dev_t dev = MKDEV(desc->major, desc->minor);
3022 
3023 		if (!dev)
3024 			continue;
3025 		if (dev == startdev)
3026 			continue;
3027 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3028 			continue;
3029 		rdev = md_import_device(dev, 0, 0);
3030 		if (IS_ERR(rdev))
3031 			continue;
3032 
3033 		list_add(&rdev->same_set, &pending_raid_disks);
3034 	}
3035 
3036 	/*
3037 	 * possibly return codes
3038 	 */
3039 	autorun_devices(0);
3040 	return 0;
3041 
3042 }
3043 
3044 
3045 static int get_version(void __user * arg)
3046 {
3047 	mdu_version_t ver;
3048 
3049 	ver.major = MD_MAJOR_VERSION;
3050 	ver.minor = MD_MINOR_VERSION;
3051 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3052 
3053 	if (copy_to_user(arg, &ver, sizeof(ver)))
3054 		return -EFAULT;
3055 
3056 	return 0;
3057 }
3058 
3059 static int get_array_info(mddev_t * mddev, void __user * arg)
3060 {
3061 	mdu_array_info_t info;
3062 	int nr,working,active,failed,spare;
3063 	mdk_rdev_t *rdev;
3064 	struct list_head *tmp;
3065 
3066 	nr=working=active=failed=spare=0;
3067 	ITERATE_RDEV(mddev,rdev,tmp) {
3068 		nr++;
3069 		if (test_bit(Faulty, &rdev->flags))
3070 			failed++;
3071 		else {
3072 			working++;
3073 			if (test_bit(In_sync, &rdev->flags))
3074 				active++;
3075 			else
3076 				spare++;
3077 		}
3078 	}
3079 
3080 	info.major_version = mddev->major_version;
3081 	info.minor_version = mddev->minor_version;
3082 	info.patch_version = MD_PATCHLEVEL_VERSION;
3083 	info.ctime         = mddev->ctime;
3084 	info.level         = mddev->level;
3085 	info.size          = mddev->size;
3086 	if (info.size != mddev->size) /* overflow */
3087 		info.size = -1;
3088 	info.nr_disks      = nr;
3089 	info.raid_disks    = mddev->raid_disks;
3090 	info.md_minor      = mddev->md_minor;
3091 	info.not_persistent= !mddev->persistent;
3092 
3093 	info.utime         = mddev->utime;
3094 	info.state         = 0;
3095 	if (mddev->in_sync)
3096 		info.state = (1<<MD_SB_CLEAN);
3097 	if (mddev->bitmap && mddev->bitmap_offset)
3098 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3099 	info.active_disks  = active;
3100 	info.working_disks = working;
3101 	info.failed_disks  = failed;
3102 	info.spare_disks   = spare;
3103 
3104 	info.layout        = mddev->layout;
3105 	info.chunk_size    = mddev->chunk_size;
3106 
3107 	if (copy_to_user(arg, &info, sizeof(info)))
3108 		return -EFAULT;
3109 
3110 	return 0;
3111 }
3112 
3113 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3114 {
3115 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3116 	char *ptr, *buf = NULL;
3117 	int err = -ENOMEM;
3118 
3119 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3120 	if (!file)
3121 		goto out;
3122 
3123 	/* bitmap disabled, zero the first byte and copy out */
3124 	if (!mddev->bitmap || !mddev->bitmap->file) {
3125 		file->pathname[0] = '\0';
3126 		goto copy_out;
3127 	}
3128 
3129 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3130 	if (!buf)
3131 		goto out;
3132 
3133 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3134 	if (!ptr)
3135 		goto out;
3136 
3137 	strcpy(file->pathname, ptr);
3138 
3139 copy_out:
3140 	err = 0;
3141 	if (copy_to_user(arg, file, sizeof(*file)))
3142 		err = -EFAULT;
3143 out:
3144 	kfree(buf);
3145 	kfree(file);
3146 	return err;
3147 }
3148 
3149 static int get_disk_info(mddev_t * mddev, void __user * arg)
3150 {
3151 	mdu_disk_info_t info;
3152 	unsigned int nr;
3153 	mdk_rdev_t *rdev;
3154 
3155 	if (copy_from_user(&info, arg, sizeof(info)))
3156 		return -EFAULT;
3157 
3158 	nr = info.number;
3159 
3160 	rdev = find_rdev_nr(mddev, nr);
3161 	if (rdev) {
3162 		info.major = MAJOR(rdev->bdev->bd_dev);
3163 		info.minor = MINOR(rdev->bdev->bd_dev);
3164 		info.raid_disk = rdev->raid_disk;
3165 		info.state = 0;
3166 		if (test_bit(Faulty, &rdev->flags))
3167 			info.state |= (1<<MD_DISK_FAULTY);
3168 		else if (test_bit(In_sync, &rdev->flags)) {
3169 			info.state |= (1<<MD_DISK_ACTIVE);
3170 			info.state |= (1<<MD_DISK_SYNC);
3171 		}
3172 		if (test_bit(WriteMostly, &rdev->flags))
3173 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3174 	} else {
3175 		info.major = info.minor = 0;
3176 		info.raid_disk = -1;
3177 		info.state = (1<<MD_DISK_REMOVED);
3178 	}
3179 
3180 	if (copy_to_user(arg, &info, sizeof(info)))
3181 		return -EFAULT;
3182 
3183 	return 0;
3184 }
3185 
3186 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3187 {
3188 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3189 	mdk_rdev_t *rdev;
3190 	dev_t dev = MKDEV(info->major,info->minor);
3191 
3192 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3193 		return -EOVERFLOW;
3194 
3195 	if (!mddev->raid_disks) {
3196 		int err;
3197 		/* expecting a device which has a superblock */
3198 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3199 		if (IS_ERR(rdev)) {
3200 			printk(KERN_WARNING
3201 				"md: md_import_device returned %ld\n",
3202 				PTR_ERR(rdev));
3203 			return PTR_ERR(rdev);
3204 		}
3205 		if (!list_empty(&mddev->disks)) {
3206 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3207 							mdk_rdev_t, same_set);
3208 			int err = super_types[mddev->major_version]
3209 				.load_super(rdev, rdev0, mddev->minor_version);
3210 			if (err < 0) {
3211 				printk(KERN_WARNING
3212 					"md: %s has different UUID to %s\n",
3213 					bdevname(rdev->bdev,b),
3214 					bdevname(rdev0->bdev,b2));
3215 				export_rdev(rdev);
3216 				return -EINVAL;
3217 			}
3218 		}
3219 		err = bind_rdev_to_array(rdev, mddev);
3220 		if (err)
3221 			export_rdev(rdev);
3222 		return err;
3223 	}
3224 
3225 	/*
3226 	 * add_new_disk can be used once the array is assembled
3227 	 * to add "hot spares".  They must already have a superblock
3228 	 * written
3229 	 */
3230 	if (mddev->pers) {
3231 		int err;
3232 		if (!mddev->pers->hot_add_disk) {
3233 			printk(KERN_WARNING
3234 				"%s: personality does not support diskops!\n",
3235 			       mdname(mddev));
3236 			return -EINVAL;
3237 		}
3238 		if (mddev->persistent)
3239 			rdev = md_import_device(dev, mddev->major_version,
3240 						mddev->minor_version);
3241 		else
3242 			rdev = md_import_device(dev, -1, -1);
3243 		if (IS_ERR(rdev)) {
3244 			printk(KERN_WARNING
3245 				"md: md_import_device returned %ld\n",
3246 				PTR_ERR(rdev));
3247 			return PTR_ERR(rdev);
3248 		}
3249 		/* set save_raid_disk if appropriate */
3250 		if (!mddev->persistent) {
3251 			if (info->state & (1<<MD_DISK_SYNC)  &&
3252 			    info->raid_disk < mddev->raid_disks)
3253 				rdev->raid_disk = info->raid_disk;
3254 			else
3255 				rdev->raid_disk = -1;
3256 		} else
3257 			super_types[mddev->major_version].
3258 				validate_super(mddev, rdev);
3259 		rdev->saved_raid_disk = rdev->raid_disk;
3260 
3261 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3262 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3263 			set_bit(WriteMostly, &rdev->flags);
3264 
3265 		rdev->raid_disk = -1;
3266 		err = bind_rdev_to_array(rdev, mddev);
3267 		if (err)
3268 			export_rdev(rdev);
3269 
3270 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3271 		md_wakeup_thread(mddev->thread);
3272 		return err;
3273 	}
3274 
3275 	/* otherwise, add_new_disk is only allowed
3276 	 * for major_version==0 superblocks
3277 	 */
3278 	if (mddev->major_version != 0) {
3279 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3280 		       mdname(mddev));
3281 		return -EINVAL;
3282 	}
3283 
3284 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3285 		int err;
3286 		rdev = md_import_device (dev, -1, 0);
3287 		if (IS_ERR(rdev)) {
3288 			printk(KERN_WARNING
3289 				"md: error, md_import_device() returned %ld\n",
3290 				PTR_ERR(rdev));
3291 			return PTR_ERR(rdev);
3292 		}
3293 		rdev->desc_nr = info->number;
3294 		if (info->raid_disk < mddev->raid_disks)
3295 			rdev->raid_disk = info->raid_disk;
3296 		else
3297 			rdev->raid_disk = -1;
3298 
3299 		rdev->flags = 0;
3300 
3301 		if (rdev->raid_disk < mddev->raid_disks)
3302 			if (info->state & (1<<MD_DISK_SYNC))
3303 				set_bit(In_sync, &rdev->flags);
3304 
3305 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3306 			set_bit(WriteMostly, &rdev->flags);
3307 
3308 		if (!mddev->persistent) {
3309 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3310 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3311 		} else
3312 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3313 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3314 
3315 		err = bind_rdev_to_array(rdev, mddev);
3316 		if (err) {
3317 			export_rdev(rdev);
3318 			return err;
3319 		}
3320 	}
3321 
3322 	return 0;
3323 }
3324 
3325 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3326 {
3327 	char b[BDEVNAME_SIZE];
3328 	mdk_rdev_t *rdev;
3329 
3330 	if (!mddev->pers)
3331 		return -ENODEV;
3332 
3333 	rdev = find_rdev(mddev, dev);
3334 	if (!rdev)
3335 		return -ENXIO;
3336 
3337 	if (rdev->raid_disk >= 0)
3338 		goto busy;
3339 
3340 	kick_rdev_from_array(rdev);
3341 	md_update_sb(mddev);
3342 	md_new_event(mddev);
3343 
3344 	return 0;
3345 busy:
3346 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3347 		bdevname(rdev->bdev,b), mdname(mddev));
3348 	return -EBUSY;
3349 }
3350 
3351 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3352 {
3353 	char b[BDEVNAME_SIZE];
3354 	int err;
3355 	unsigned int size;
3356 	mdk_rdev_t *rdev;
3357 
3358 	if (!mddev->pers)
3359 		return -ENODEV;
3360 
3361 	if (mddev->major_version != 0) {
3362 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3363 			" version-0 superblocks.\n",
3364 			mdname(mddev));
3365 		return -EINVAL;
3366 	}
3367 	if (!mddev->pers->hot_add_disk) {
3368 		printk(KERN_WARNING
3369 			"%s: personality does not support diskops!\n",
3370 			mdname(mddev));
3371 		return -EINVAL;
3372 	}
3373 
3374 	rdev = md_import_device (dev, -1, 0);
3375 	if (IS_ERR(rdev)) {
3376 		printk(KERN_WARNING
3377 			"md: error, md_import_device() returned %ld\n",
3378 			PTR_ERR(rdev));
3379 		return -EINVAL;
3380 	}
3381 
3382 	if (mddev->persistent)
3383 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3384 	else
3385 		rdev->sb_offset =
3386 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3387 
3388 	size = calc_dev_size(rdev, mddev->chunk_size);
3389 	rdev->size = size;
3390 
3391 	if (test_bit(Faulty, &rdev->flags)) {
3392 		printk(KERN_WARNING
3393 			"md: can not hot-add faulty %s disk to %s!\n",
3394 			bdevname(rdev->bdev,b), mdname(mddev));
3395 		err = -EINVAL;
3396 		goto abort_export;
3397 	}
3398 	clear_bit(In_sync, &rdev->flags);
3399 	rdev->desc_nr = -1;
3400 	err = bind_rdev_to_array(rdev, mddev);
3401 	if (err)
3402 		goto abort_export;
3403 
3404 	/*
3405 	 * The rest should better be atomic, we can have disk failures
3406 	 * noticed in interrupt contexts ...
3407 	 */
3408 
3409 	if (rdev->desc_nr == mddev->max_disks) {
3410 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3411 			mdname(mddev));
3412 		err = -EBUSY;
3413 		goto abort_unbind_export;
3414 	}
3415 
3416 	rdev->raid_disk = -1;
3417 
3418 	md_update_sb(mddev);
3419 
3420 	/*
3421 	 * Kick recovery, maybe this spare has to be added to the
3422 	 * array immediately.
3423 	 */
3424 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3425 	md_wakeup_thread(mddev->thread);
3426 	md_new_event(mddev);
3427 	return 0;
3428 
3429 abort_unbind_export:
3430 	unbind_rdev_from_array(rdev);
3431 
3432 abort_export:
3433 	export_rdev(rdev);
3434 	return err;
3435 }
3436 
3437 /* similar to deny_write_access, but accounts for our holding a reference
3438  * to the file ourselves */
3439 static int deny_bitmap_write_access(struct file * file)
3440 {
3441 	struct inode *inode = file->f_mapping->host;
3442 
3443 	spin_lock(&inode->i_lock);
3444 	if (atomic_read(&inode->i_writecount) > 1) {
3445 		spin_unlock(&inode->i_lock);
3446 		return -ETXTBSY;
3447 	}
3448 	atomic_set(&inode->i_writecount, -1);
3449 	spin_unlock(&inode->i_lock);
3450 
3451 	return 0;
3452 }
3453 
3454 static int set_bitmap_file(mddev_t *mddev, int fd)
3455 {
3456 	int err;
3457 
3458 	if (mddev->pers) {
3459 		if (!mddev->pers->quiesce)
3460 			return -EBUSY;
3461 		if (mddev->recovery || mddev->sync_thread)
3462 			return -EBUSY;
3463 		/* we should be able to change the bitmap.. */
3464 	}
3465 
3466 
3467 	if (fd >= 0) {
3468 		if (mddev->bitmap)
3469 			return -EEXIST; /* cannot add when bitmap is present */
3470 		mddev->bitmap_file = fget(fd);
3471 
3472 		if (mddev->bitmap_file == NULL) {
3473 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3474 			       mdname(mddev));
3475 			return -EBADF;
3476 		}
3477 
3478 		err = deny_bitmap_write_access(mddev->bitmap_file);
3479 		if (err) {
3480 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3481 			       mdname(mddev));
3482 			fput(mddev->bitmap_file);
3483 			mddev->bitmap_file = NULL;
3484 			return err;
3485 		}
3486 		mddev->bitmap_offset = 0; /* file overrides offset */
3487 	} else if (mddev->bitmap == NULL)
3488 		return -ENOENT; /* cannot remove what isn't there */
3489 	err = 0;
3490 	if (mddev->pers) {
3491 		mddev->pers->quiesce(mddev, 1);
3492 		if (fd >= 0)
3493 			err = bitmap_create(mddev);
3494 		if (fd < 0 || err)
3495 			bitmap_destroy(mddev);
3496 		mddev->pers->quiesce(mddev, 0);
3497 	} else if (fd < 0) {
3498 		if (mddev->bitmap_file)
3499 			fput(mddev->bitmap_file);
3500 		mddev->bitmap_file = NULL;
3501 	}
3502 
3503 	return err;
3504 }
3505 
3506 /*
3507  * set_array_info is used two different ways
3508  * The original usage is when creating a new array.
3509  * In this usage, raid_disks is > 0 and it together with
3510  *  level, size, not_persistent,layout,chunksize determine the
3511  *  shape of the array.
3512  *  This will always create an array with a type-0.90.0 superblock.
3513  * The newer usage is when assembling an array.
3514  *  In this case raid_disks will be 0, and the major_version field is
3515  *  use to determine which style super-blocks are to be found on the devices.
3516  *  The minor and patch _version numbers are also kept incase the
3517  *  super_block handler wishes to interpret them.
3518  */
3519 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3520 {
3521 
3522 	if (info->raid_disks == 0) {
3523 		/* just setting version number for superblock loading */
3524 		if (info->major_version < 0 ||
3525 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3526 		    super_types[info->major_version].name == NULL) {
3527 			/* maybe try to auto-load a module? */
3528 			printk(KERN_INFO
3529 				"md: superblock version %d not known\n",
3530 				info->major_version);
3531 			return -EINVAL;
3532 		}
3533 		mddev->major_version = info->major_version;
3534 		mddev->minor_version = info->minor_version;
3535 		mddev->patch_version = info->patch_version;
3536 		return 0;
3537 	}
3538 	mddev->major_version = MD_MAJOR_VERSION;
3539 	mddev->minor_version = MD_MINOR_VERSION;
3540 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3541 	mddev->ctime         = get_seconds();
3542 
3543 	mddev->level         = info->level;
3544 	mddev->clevel[0]     = 0;
3545 	mddev->size          = info->size;
3546 	mddev->raid_disks    = info->raid_disks;
3547 	/* don't set md_minor, it is determined by which /dev/md* was
3548 	 * openned
3549 	 */
3550 	if (info->state & (1<<MD_SB_CLEAN))
3551 		mddev->recovery_cp = MaxSector;
3552 	else
3553 		mddev->recovery_cp = 0;
3554 	mddev->persistent    = ! info->not_persistent;
3555 
3556 	mddev->layout        = info->layout;
3557 	mddev->chunk_size    = info->chunk_size;
3558 
3559 	mddev->max_disks     = MD_SB_DISKS;
3560 
3561 	mddev->sb_dirty      = 1;
3562 
3563 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3564 	mddev->bitmap_offset = 0;
3565 
3566 	mddev->reshape_position = MaxSector;
3567 
3568 	/*
3569 	 * Generate a 128 bit UUID
3570 	 */
3571 	get_random_bytes(mddev->uuid, 16);
3572 
3573 	mddev->new_level = mddev->level;
3574 	mddev->new_chunk = mddev->chunk_size;
3575 	mddev->new_layout = mddev->layout;
3576 	mddev->delta_disks = 0;
3577 
3578 	return 0;
3579 }
3580 
3581 static int update_size(mddev_t *mddev, unsigned long size)
3582 {
3583 	mdk_rdev_t * rdev;
3584 	int rv;
3585 	struct list_head *tmp;
3586 	int fit = (size == 0);
3587 
3588 	if (mddev->pers->resize == NULL)
3589 		return -EINVAL;
3590 	/* The "size" is the amount of each device that is used.
3591 	 * This can only make sense for arrays with redundancy.
3592 	 * linear and raid0 always use whatever space is available
3593 	 * We can only consider changing the size if no resync
3594 	 * or reconstruction is happening, and if the new size
3595 	 * is acceptable. It must fit before the sb_offset or,
3596 	 * if that is <data_offset, it must fit before the
3597 	 * size of each device.
3598 	 * If size is zero, we find the largest size that fits.
3599 	 */
3600 	if (mddev->sync_thread)
3601 		return -EBUSY;
3602 	ITERATE_RDEV(mddev,rdev,tmp) {
3603 		sector_t avail;
3604 		if (rdev->sb_offset > rdev->data_offset)
3605 			avail = (rdev->sb_offset*2) - rdev->data_offset;
3606 		else
3607 			avail = get_capacity(rdev->bdev->bd_disk)
3608 				- rdev->data_offset;
3609 		if (fit && (size == 0 || size > avail/2))
3610 			size = avail/2;
3611 		if (avail < ((sector_t)size << 1))
3612 			return -ENOSPC;
3613 	}
3614 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
3615 	if (!rv) {
3616 		struct block_device *bdev;
3617 
3618 		bdev = bdget_disk(mddev->gendisk, 0);
3619 		if (bdev) {
3620 			mutex_lock(&bdev->bd_inode->i_mutex);
3621 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
3622 			mutex_unlock(&bdev->bd_inode->i_mutex);
3623 			bdput(bdev);
3624 		}
3625 	}
3626 	return rv;
3627 }
3628 
3629 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3630 {
3631 	int rv;
3632 	/* change the number of raid disks */
3633 	if (mddev->pers->check_reshape == NULL)
3634 		return -EINVAL;
3635 	if (raid_disks <= 0 ||
3636 	    raid_disks >= mddev->max_disks)
3637 		return -EINVAL;
3638 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
3639 		return -EBUSY;
3640 	mddev->delta_disks = raid_disks - mddev->raid_disks;
3641 
3642 	rv = mddev->pers->check_reshape(mddev);
3643 	return rv;
3644 }
3645 
3646 
3647 /*
3648  * update_array_info is used to change the configuration of an
3649  * on-line array.
3650  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3651  * fields in the info are checked against the array.
3652  * Any differences that cannot be handled will cause an error.
3653  * Normally, only one change can be managed at a time.
3654  */
3655 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3656 {
3657 	int rv = 0;
3658 	int cnt = 0;
3659 	int state = 0;
3660 
3661 	/* calculate expected state,ignoring low bits */
3662 	if (mddev->bitmap && mddev->bitmap_offset)
3663 		state |= (1 << MD_SB_BITMAP_PRESENT);
3664 
3665 	if (mddev->major_version != info->major_version ||
3666 	    mddev->minor_version != info->minor_version ||
3667 /*	    mddev->patch_version != info->patch_version || */
3668 	    mddev->ctime         != info->ctime         ||
3669 	    mddev->level         != info->level         ||
3670 /*	    mddev->layout        != info->layout        || */
3671 	    !mddev->persistent	 != info->not_persistent||
3672 	    mddev->chunk_size    != info->chunk_size    ||
3673 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3674 	    ((state^info->state) & 0xfffffe00)
3675 		)
3676 		return -EINVAL;
3677 	/* Check there is only one change */
3678 	if (info->size >= 0 && mddev->size != info->size) cnt++;
3679 	if (mddev->raid_disks != info->raid_disks) cnt++;
3680 	if (mddev->layout != info->layout) cnt++;
3681 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3682 	if (cnt == 0) return 0;
3683 	if (cnt > 1) return -EINVAL;
3684 
3685 	if (mddev->layout != info->layout) {
3686 		/* Change layout
3687 		 * we don't need to do anything at the md level, the
3688 		 * personality will take care of it all.
3689 		 */
3690 		if (mddev->pers->reconfig == NULL)
3691 			return -EINVAL;
3692 		else
3693 			return mddev->pers->reconfig(mddev, info->layout, -1);
3694 	}
3695 	if (info->size >= 0 && mddev->size != info->size)
3696 		rv = update_size(mddev, info->size);
3697 
3698 	if (mddev->raid_disks    != info->raid_disks)
3699 		rv = update_raid_disks(mddev, info->raid_disks);
3700 
3701 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3702 		if (mddev->pers->quiesce == NULL)
3703 			return -EINVAL;
3704 		if (mddev->recovery || mddev->sync_thread)
3705 			return -EBUSY;
3706 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3707 			/* add the bitmap */
3708 			if (mddev->bitmap)
3709 				return -EEXIST;
3710 			if (mddev->default_bitmap_offset == 0)
3711 				return -EINVAL;
3712 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3713 			mddev->pers->quiesce(mddev, 1);
3714 			rv = bitmap_create(mddev);
3715 			if (rv)
3716 				bitmap_destroy(mddev);
3717 			mddev->pers->quiesce(mddev, 0);
3718 		} else {
3719 			/* remove the bitmap */
3720 			if (!mddev->bitmap)
3721 				return -ENOENT;
3722 			if (mddev->bitmap->file)
3723 				return -EINVAL;
3724 			mddev->pers->quiesce(mddev, 1);
3725 			bitmap_destroy(mddev);
3726 			mddev->pers->quiesce(mddev, 0);
3727 			mddev->bitmap_offset = 0;
3728 		}
3729 	}
3730 	md_update_sb(mddev);
3731 	return rv;
3732 }
3733 
3734 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3735 {
3736 	mdk_rdev_t *rdev;
3737 
3738 	if (mddev->pers == NULL)
3739 		return -ENODEV;
3740 
3741 	rdev = find_rdev(mddev, dev);
3742 	if (!rdev)
3743 		return -ENODEV;
3744 
3745 	md_error(mddev, rdev);
3746 	return 0;
3747 }
3748 
3749 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3750 {
3751 	mddev_t *mddev = bdev->bd_disk->private_data;
3752 
3753 	geo->heads = 2;
3754 	geo->sectors = 4;
3755 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
3756 	return 0;
3757 }
3758 
3759 static int md_ioctl(struct inode *inode, struct file *file,
3760 			unsigned int cmd, unsigned long arg)
3761 {
3762 	int err = 0;
3763 	void __user *argp = (void __user *)arg;
3764 	mddev_t *mddev = NULL;
3765 
3766 	if (!capable(CAP_SYS_ADMIN))
3767 		return -EACCES;
3768 
3769 	/*
3770 	 * Commands dealing with the RAID driver but not any
3771 	 * particular array:
3772 	 */
3773 	switch (cmd)
3774 	{
3775 		case RAID_VERSION:
3776 			err = get_version(argp);
3777 			goto done;
3778 
3779 		case PRINT_RAID_DEBUG:
3780 			err = 0;
3781 			md_print_devices();
3782 			goto done;
3783 
3784 #ifndef MODULE
3785 		case RAID_AUTORUN:
3786 			err = 0;
3787 			autostart_arrays(arg);
3788 			goto done;
3789 #endif
3790 		default:;
3791 	}
3792 
3793 	/*
3794 	 * Commands creating/starting a new array:
3795 	 */
3796 
3797 	mddev = inode->i_bdev->bd_disk->private_data;
3798 
3799 	if (!mddev) {
3800 		BUG();
3801 		goto abort;
3802 	}
3803 
3804 
3805 	if (cmd == START_ARRAY) {
3806 		/* START_ARRAY doesn't need to lock the array as autostart_array
3807 		 * does the locking, and it could even be a different array
3808 		 */
3809 		static int cnt = 3;
3810 		if (cnt > 0 ) {
3811 			printk(KERN_WARNING
3812 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3813 			       "This will not be supported beyond July 2006\n",
3814 			       current->comm, current->pid);
3815 			cnt--;
3816 		}
3817 		err = autostart_array(new_decode_dev(arg));
3818 		if (err) {
3819 			printk(KERN_WARNING "md: autostart failed!\n");
3820 			goto abort;
3821 		}
3822 		goto done;
3823 	}
3824 
3825 	err = mddev_lock(mddev);
3826 	if (err) {
3827 		printk(KERN_INFO
3828 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3829 			err, cmd);
3830 		goto abort;
3831 	}
3832 
3833 	switch (cmd)
3834 	{
3835 		case SET_ARRAY_INFO:
3836 			{
3837 				mdu_array_info_t info;
3838 				if (!arg)
3839 					memset(&info, 0, sizeof(info));
3840 				else if (copy_from_user(&info, argp, sizeof(info))) {
3841 					err = -EFAULT;
3842 					goto abort_unlock;
3843 				}
3844 				if (mddev->pers) {
3845 					err = update_array_info(mddev, &info);
3846 					if (err) {
3847 						printk(KERN_WARNING "md: couldn't update"
3848 						       " array info. %d\n", err);
3849 						goto abort_unlock;
3850 					}
3851 					goto done_unlock;
3852 				}
3853 				if (!list_empty(&mddev->disks)) {
3854 					printk(KERN_WARNING
3855 					       "md: array %s already has disks!\n",
3856 					       mdname(mddev));
3857 					err = -EBUSY;
3858 					goto abort_unlock;
3859 				}
3860 				if (mddev->raid_disks) {
3861 					printk(KERN_WARNING
3862 					       "md: array %s already initialised!\n",
3863 					       mdname(mddev));
3864 					err = -EBUSY;
3865 					goto abort_unlock;
3866 				}
3867 				err = set_array_info(mddev, &info);
3868 				if (err) {
3869 					printk(KERN_WARNING "md: couldn't set"
3870 					       " array info. %d\n", err);
3871 					goto abort_unlock;
3872 				}
3873 			}
3874 			goto done_unlock;
3875 
3876 		default:;
3877 	}
3878 
3879 	/*
3880 	 * Commands querying/configuring an existing array:
3881 	 */
3882 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3883 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3884 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3885 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3886 		err = -ENODEV;
3887 		goto abort_unlock;
3888 	}
3889 
3890 	/*
3891 	 * Commands even a read-only array can execute:
3892 	 */
3893 	switch (cmd)
3894 	{
3895 		case GET_ARRAY_INFO:
3896 			err = get_array_info(mddev, argp);
3897 			goto done_unlock;
3898 
3899 		case GET_BITMAP_FILE:
3900 			err = get_bitmap_file(mddev, argp);
3901 			goto done_unlock;
3902 
3903 		case GET_DISK_INFO:
3904 			err = get_disk_info(mddev, argp);
3905 			goto done_unlock;
3906 
3907 		case RESTART_ARRAY_RW:
3908 			err = restart_array(mddev);
3909 			goto done_unlock;
3910 
3911 		case STOP_ARRAY:
3912 			err = do_md_stop (mddev, 0);
3913 			goto done_unlock;
3914 
3915 		case STOP_ARRAY_RO:
3916 			err = do_md_stop (mddev, 1);
3917 			goto done_unlock;
3918 
3919 	/*
3920 	 * We have a problem here : there is no easy way to give a CHS
3921 	 * virtual geometry. We currently pretend that we have a 2 heads
3922 	 * 4 sectors (with a BIG number of cylinders...). This drives
3923 	 * dosfs just mad... ;-)
3924 	 */
3925 	}
3926 
3927 	/*
3928 	 * The remaining ioctls are changing the state of the
3929 	 * superblock, so we do not allow them on read-only arrays.
3930 	 * However non-MD ioctls (e.g. get-size) will still come through
3931 	 * here and hit the 'default' below, so only disallow
3932 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3933 	 */
3934 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3935 	    mddev->ro && mddev->pers) {
3936 		if (mddev->ro == 2) {
3937 			mddev->ro = 0;
3938 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3939 		md_wakeup_thread(mddev->thread);
3940 
3941 		} else {
3942 			err = -EROFS;
3943 			goto abort_unlock;
3944 		}
3945 	}
3946 
3947 	switch (cmd)
3948 	{
3949 		case ADD_NEW_DISK:
3950 		{
3951 			mdu_disk_info_t info;
3952 			if (copy_from_user(&info, argp, sizeof(info)))
3953 				err = -EFAULT;
3954 			else
3955 				err = add_new_disk(mddev, &info);
3956 			goto done_unlock;
3957 		}
3958 
3959 		case HOT_REMOVE_DISK:
3960 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3961 			goto done_unlock;
3962 
3963 		case HOT_ADD_DISK:
3964 			err = hot_add_disk(mddev, new_decode_dev(arg));
3965 			goto done_unlock;
3966 
3967 		case SET_DISK_FAULTY:
3968 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3969 			goto done_unlock;
3970 
3971 		case RUN_ARRAY:
3972 			err = do_md_run (mddev);
3973 			goto done_unlock;
3974 
3975 		case SET_BITMAP_FILE:
3976 			err = set_bitmap_file(mddev, (int)arg);
3977 			goto done_unlock;
3978 
3979 		default:
3980 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3981 				printk(KERN_WARNING "md: %s(pid %d) used"
3982 					" obsolete MD ioctl, upgrade your"
3983 					" software to use new ictls.\n",
3984 					current->comm, current->pid);
3985 			err = -EINVAL;
3986 			goto abort_unlock;
3987 	}
3988 
3989 done_unlock:
3990 abort_unlock:
3991 	mddev_unlock(mddev);
3992 
3993 	return err;
3994 done:
3995 	if (err)
3996 		MD_BUG();
3997 abort:
3998 	return err;
3999 }
4000 
4001 static int md_open(struct inode *inode, struct file *file)
4002 {
4003 	/*
4004 	 * Succeed if we can lock the mddev, which confirms that
4005 	 * it isn't being stopped right now.
4006 	 */
4007 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4008 	int err;
4009 
4010 	if ((err = mddev_lock(mddev)))
4011 		goto out;
4012 
4013 	err = 0;
4014 	mddev_get(mddev);
4015 	mddev_unlock(mddev);
4016 
4017 	check_disk_change(inode->i_bdev);
4018  out:
4019 	return err;
4020 }
4021 
4022 static int md_release(struct inode *inode, struct file * file)
4023 {
4024  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4025 
4026 	if (!mddev)
4027 		BUG();
4028 	mddev_put(mddev);
4029 
4030 	return 0;
4031 }
4032 
4033 static int md_media_changed(struct gendisk *disk)
4034 {
4035 	mddev_t *mddev = disk->private_data;
4036 
4037 	return mddev->changed;
4038 }
4039 
4040 static int md_revalidate(struct gendisk *disk)
4041 {
4042 	mddev_t *mddev = disk->private_data;
4043 
4044 	mddev->changed = 0;
4045 	return 0;
4046 }
4047 static struct block_device_operations md_fops =
4048 {
4049 	.owner		= THIS_MODULE,
4050 	.open		= md_open,
4051 	.release	= md_release,
4052 	.ioctl		= md_ioctl,
4053 	.getgeo		= md_getgeo,
4054 	.media_changed	= md_media_changed,
4055 	.revalidate_disk= md_revalidate,
4056 };
4057 
4058 static int md_thread(void * arg)
4059 {
4060 	mdk_thread_t *thread = arg;
4061 
4062 	/*
4063 	 * md_thread is a 'system-thread', it's priority should be very
4064 	 * high. We avoid resource deadlocks individually in each
4065 	 * raid personality. (RAID5 does preallocation) We also use RR and
4066 	 * the very same RT priority as kswapd, thus we will never get
4067 	 * into a priority inversion deadlock.
4068 	 *
4069 	 * we definitely have to have equal or higher priority than
4070 	 * bdflush, otherwise bdflush will deadlock if there are too
4071 	 * many dirty RAID5 blocks.
4072 	 */
4073 
4074 	allow_signal(SIGKILL);
4075 	while (!kthread_should_stop()) {
4076 
4077 		/* We need to wait INTERRUPTIBLE so that
4078 		 * we don't add to the load-average.
4079 		 * That means we need to be sure no signals are
4080 		 * pending
4081 		 */
4082 		if (signal_pending(current))
4083 			flush_signals(current);
4084 
4085 		wait_event_interruptible_timeout
4086 			(thread->wqueue,
4087 			 test_bit(THREAD_WAKEUP, &thread->flags)
4088 			 || kthread_should_stop(),
4089 			 thread->timeout);
4090 		try_to_freeze();
4091 
4092 		clear_bit(THREAD_WAKEUP, &thread->flags);
4093 
4094 		thread->run(thread->mddev);
4095 	}
4096 
4097 	return 0;
4098 }
4099 
4100 void md_wakeup_thread(mdk_thread_t *thread)
4101 {
4102 	if (thread) {
4103 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4104 		set_bit(THREAD_WAKEUP, &thread->flags);
4105 		wake_up(&thread->wqueue);
4106 	}
4107 }
4108 
4109 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4110 				 const char *name)
4111 {
4112 	mdk_thread_t *thread;
4113 
4114 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4115 	if (!thread)
4116 		return NULL;
4117 
4118 	init_waitqueue_head(&thread->wqueue);
4119 
4120 	thread->run = run;
4121 	thread->mddev = mddev;
4122 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4123 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4124 	if (IS_ERR(thread->tsk)) {
4125 		kfree(thread);
4126 		return NULL;
4127 	}
4128 	return thread;
4129 }
4130 
4131 void md_unregister_thread(mdk_thread_t *thread)
4132 {
4133 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4134 
4135 	kthread_stop(thread->tsk);
4136 	kfree(thread);
4137 }
4138 
4139 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4140 {
4141 	if (!mddev) {
4142 		MD_BUG();
4143 		return;
4144 	}
4145 
4146 	if (!rdev || test_bit(Faulty, &rdev->flags))
4147 		return;
4148 /*
4149 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4150 		mdname(mddev),
4151 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4152 		__builtin_return_address(0),__builtin_return_address(1),
4153 		__builtin_return_address(2),__builtin_return_address(3));
4154 */
4155 	if (!mddev->pers->error_handler)
4156 		return;
4157 	mddev->pers->error_handler(mddev,rdev);
4158 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4159 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4160 	md_wakeup_thread(mddev->thread);
4161 	md_new_event_inintr(mddev);
4162 }
4163 
4164 /* seq_file implementation /proc/mdstat */
4165 
4166 static void status_unused(struct seq_file *seq)
4167 {
4168 	int i = 0;
4169 	mdk_rdev_t *rdev;
4170 	struct list_head *tmp;
4171 
4172 	seq_printf(seq, "unused devices: ");
4173 
4174 	ITERATE_RDEV_PENDING(rdev,tmp) {
4175 		char b[BDEVNAME_SIZE];
4176 		i++;
4177 		seq_printf(seq, "%s ",
4178 			      bdevname(rdev->bdev,b));
4179 	}
4180 	if (!i)
4181 		seq_printf(seq, "<none>");
4182 
4183 	seq_printf(seq, "\n");
4184 }
4185 
4186 
4187 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4188 {
4189 	sector_t max_blocks, resync, res;
4190 	unsigned long dt, db, rt;
4191 	int scale;
4192 	unsigned int per_milli;
4193 
4194 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4195 
4196 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4197 		max_blocks = mddev->resync_max_sectors >> 1;
4198 	else
4199 		max_blocks = mddev->size;
4200 
4201 	/*
4202 	 * Should not happen.
4203 	 */
4204 	if (!max_blocks) {
4205 		MD_BUG();
4206 		return;
4207 	}
4208 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4209 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4210 	 * u32, as those are the requirements for sector_div.
4211 	 * Thus 'scale' must be at least 10
4212 	 */
4213 	scale = 10;
4214 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4215 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4216 			scale++;
4217 	}
4218 	res = (resync>>scale)*1000;
4219 	sector_div(res, (u32)((max_blocks>>scale)+1));
4220 
4221 	per_milli = res;
4222 	{
4223 		int i, x = per_milli/50, y = 20-x;
4224 		seq_printf(seq, "[");
4225 		for (i = 0; i < x; i++)
4226 			seq_printf(seq, "=");
4227 		seq_printf(seq, ">");
4228 		for (i = 0; i < y; i++)
4229 			seq_printf(seq, ".");
4230 		seq_printf(seq, "] ");
4231 	}
4232 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4233 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4234 		    "reshape" :
4235 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4236 		       "resync" : "recovery")),
4237 		      per_milli/10, per_milli % 10,
4238 		   (unsigned long long) resync,
4239 		   (unsigned long long) max_blocks);
4240 
4241 	/*
4242 	 * We do not want to overflow, so the order of operands and
4243 	 * the * 100 / 100 trick are important. We do a +1 to be
4244 	 * safe against division by zero. We only estimate anyway.
4245 	 *
4246 	 * dt: time from mark until now
4247 	 * db: blocks written from mark until now
4248 	 * rt: remaining time
4249 	 */
4250 	dt = ((jiffies - mddev->resync_mark) / HZ);
4251 	if (!dt) dt++;
4252 	db = resync - (mddev->resync_mark_cnt/2);
4253 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
4254 
4255 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4256 
4257 	seq_printf(seq, " speed=%ldK/sec", db/dt);
4258 }
4259 
4260 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4261 {
4262 	struct list_head *tmp;
4263 	loff_t l = *pos;
4264 	mddev_t *mddev;
4265 
4266 	if (l >= 0x10000)
4267 		return NULL;
4268 	if (!l--)
4269 		/* header */
4270 		return (void*)1;
4271 
4272 	spin_lock(&all_mddevs_lock);
4273 	list_for_each(tmp,&all_mddevs)
4274 		if (!l--) {
4275 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4276 			mddev_get(mddev);
4277 			spin_unlock(&all_mddevs_lock);
4278 			return mddev;
4279 		}
4280 	spin_unlock(&all_mddevs_lock);
4281 	if (!l--)
4282 		return (void*)2;/* tail */
4283 	return NULL;
4284 }
4285 
4286 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4287 {
4288 	struct list_head *tmp;
4289 	mddev_t *next_mddev, *mddev = v;
4290 
4291 	++*pos;
4292 	if (v == (void*)2)
4293 		return NULL;
4294 
4295 	spin_lock(&all_mddevs_lock);
4296 	if (v == (void*)1)
4297 		tmp = all_mddevs.next;
4298 	else
4299 		tmp = mddev->all_mddevs.next;
4300 	if (tmp != &all_mddevs)
4301 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4302 	else {
4303 		next_mddev = (void*)2;
4304 		*pos = 0x10000;
4305 	}
4306 	spin_unlock(&all_mddevs_lock);
4307 
4308 	if (v != (void*)1)
4309 		mddev_put(mddev);
4310 	return next_mddev;
4311 
4312 }
4313 
4314 static void md_seq_stop(struct seq_file *seq, void *v)
4315 {
4316 	mddev_t *mddev = v;
4317 
4318 	if (mddev && v != (void*)1 && v != (void*)2)
4319 		mddev_put(mddev);
4320 }
4321 
4322 struct mdstat_info {
4323 	int event;
4324 };
4325 
4326 static int md_seq_show(struct seq_file *seq, void *v)
4327 {
4328 	mddev_t *mddev = v;
4329 	sector_t size;
4330 	struct list_head *tmp2;
4331 	mdk_rdev_t *rdev;
4332 	struct mdstat_info *mi = seq->private;
4333 	struct bitmap *bitmap;
4334 
4335 	if (v == (void*)1) {
4336 		struct mdk_personality *pers;
4337 		seq_printf(seq, "Personalities : ");
4338 		spin_lock(&pers_lock);
4339 		list_for_each_entry(pers, &pers_list, list)
4340 			seq_printf(seq, "[%s] ", pers->name);
4341 
4342 		spin_unlock(&pers_lock);
4343 		seq_printf(seq, "\n");
4344 		mi->event = atomic_read(&md_event_count);
4345 		return 0;
4346 	}
4347 	if (v == (void*)2) {
4348 		status_unused(seq);
4349 		return 0;
4350 	}
4351 
4352 	if (mddev_lock(mddev) < 0)
4353 		return -EINTR;
4354 
4355 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4356 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4357 						mddev->pers ? "" : "in");
4358 		if (mddev->pers) {
4359 			if (mddev->ro==1)
4360 				seq_printf(seq, " (read-only)");
4361 			if (mddev->ro==2)
4362 				seq_printf(seq, "(auto-read-only)");
4363 			seq_printf(seq, " %s", mddev->pers->name);
4364 		}
4365 
4366 		size = 0;
4367 		ITERATE_RDEV(mddev,rdev,tmp2) {
4368 			char b[BDEVNAME_SIZE];
4369 			seq_printf(seq, " %s[%d]",
4370 				bdevname(rdev->bdev,b), rdev->desc_nr);
4371 			if (test_bit(WriteMostly, &rdev->flags))
4372 				seq_printf(seq, "(W)");
4373 			if (test_bit(Faulty, &rdev->flags)) {
4374 				seq_printf(seq, "(F)");
4375 				continue;
4376 			} else if (rdev->raid_disk < 0)
4377 				seq_printf(seq, "(S)"); /* spare */
4378 			size += rdev->size;
4379 		}
4380 
4381 		if (!list_empty(&mddev->disks)) {
4382 			if (mddev->pers)
4383 				seq_printf(seq, "\n      %llu blocks",
4384 					(unsigned long long)mddev->array_size);
4385 			else
4386 				seq_printf(seq, "\n      %llu blocks",
4387 					(unsigned long long)size);
4388 		}
4389 		if (mddev->persistent) {
4390 			if (mddev->major_version != 0 ||
4391 			    mddev->minor_version != 90) {
4392 				seq_printf(seq," super %d.%d",
4393 					   mddev->major_version,
4394 					   mddev->minor_version);
4395 			}
4396 		} else
4397 			seq_printf(seq, " super non-persistent");
4398 
4399 		if (mddev->pers) {
4400 			mddev->pers->status (seq, mddev);
4401 	 		seq_printf(seq, "\n      ");
4402 			if (mddev->pers->sync_request) {
4403 				if (mddev->curr_resync > 2) {
4404 					status_resync (seq, mddev);
4405 					seq_printf(seq, "\n      ");
4406 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4407 					seq_printf(seq, "\tresync=DELAYED\n      ");
4408 				else if (mddev->recovery_cp < MaxSector)
4409 					seq_printf(seq, "\tresync=PENDING\n      ");
4410 			}
4411 		} else
4412 			seq_printf(seq, "\n       ");
4413 
4414 		if ((bitmap = mddev->bitmap)) {
4415 			unsigned long chunk_kb;
4416 			unsigned long flags;
4417 			spin_lock_irqsave(&bitmap->lock, flags);
4418 			chunk_kb = bitmap->chunksize >> 10;
4419 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4420 				"%lu%s chunk",
4421 				bitmap->pages - bitmap->missing_pages,
4422 				bitmap->pages,
4423 				(bitmap->pages - bitmap->missing_pages)
4424 					<< (PAGE_SHIFT - 10),
4425 				chunk_kb ? chunk_kb : bitmap->chunksize,
4426 				chunk_kb ? "KB" : "B");
4427 			if (bitmap->file) {
4428 				seq_printf(seq, ", file: ");
4429 				seq_path(seq, bitmap->file->f_vfsmnt,
4430 					 bitmap->file->f_dentry," \t\n");
4431 			}
4432 
4433 			seq_printf(seq, "\n");
4434 			spin_unlock_irqrestore(&bitmap->lock, flags);
4435 		}
4436 
4437 		seq_printf(seq, "\n");
4438 	}
4439 	mddev_unlock(mddev);
4440 
4441 	return 0;
4442 }
4443 
4444 static struct seq_operations md_seq_ops = {
4445 	.start  = md_seq_start,
4446 	.next   = md_seq_next,
4447 	.stop   = md_seq_stop,
4448 	.show   = md_seq_show,
4449 };
4450 
4451 static int md_seq_open(struct inode *inode, struct file *file)
4452 {
4453 	int error;
4454 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4455 	if (mi == NULL)
4456 		return -ENOMEM;
4457 
4458 	error = seq_open(file, &md_seq_ops);
4459 	if (error)
4460 		kfree(mi);
4461 	else {
4462 		struct seq_file *p = file->private_data;
4463 		p->private = mi;
4464 		mi->event = atomic_read(&md_event_count);
4465 	}
4466 	return error;
4467 }
4468 
4469 static int md_seq_release(struct inode *inode, struct file *file)
4470 {
4471 	struct seq_file *m = file->private_data;
4472 	struct mdstat_info *mi = m->private;
4473 	m->private = NULL;
4474 	kfree(mi);
4475 	return seq_release(inode, file);
4476 }
4477 
4478 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4479 {
4480 	struct seq_file *m = filp->private_data;
4481 	struct mdstat_info *mi = m->private;
4482 	int mask;
4483 
4484 	poll_wait(filp, &md_event_waiters, wait);
4485 
4486 	/* always allow read */
4487 	mask = POLLIN | POLLRDNORM;
4488 
4489 	if (mi->event != atomic_read(&md_event_count))
4490 		mask |= POLLERR | POLLPRI;
4491 	return mask;
4492 }
4493 
4494 static struct file_operations md_seq_fops = {
4495 	.open           = md_seq_open,
4496 	.read           = seq_read,
4497 	.llseek         = seq_lseek,
4498 	.release	= md_seq_release,
4499 	.poll		= mdstat_poll,
4500 };
4501 
4502 int register_md_personality(struct mdk_personality *p)
4503 {
4504 	spin_lock(&pers_lock);
4505 	list_add_tail(&p->list, &pers_list);
4506 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4507 	spin_unlock(&pers_lock);
4508 	return 0;
4509 }
4510 
4511 int unregister_md_personality(struct mdk_personality *p)
4512 {
4513 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4514 	spin_lock(&pers_lock);
4515 	list_del_init(&p->list);
4516 	spin_unlock(&pers_lock);
4517 	return 0;
4518 }
4519 
4520 static int is_mddev_idle(mddev_t *mddev)
4521 {
4522 	mdk_rdev_t * rdev;
4523 	struct list_head *tmp;
4524 	int idle;
4525 	unsigned long curr_events;
4526 
4527 	idle = 1;
4528 	ITERATE_RDEV(mddev,rdev,tmp) {
4529 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4530 		curr_events = disk_stat_read(disk, sectors[0]) +
4531 				disk_stat_read(disk, sectors[1]) -
4532 				atomic_read(&disk->sync_io);
4533 		/* The difference between curr_events and last_events
4534 		 * will be affected by any new non-sync IO (making
4535 		 * curr_events bigger) and any difference in the amount of
4536 		 * in-flight syncio (making current_events bigger or smaller)
4537 		 * The amount in-flight is currently limited to
4538 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4539 		 * which is at most 4096 sectors.
4540 		 * These numbers are fairly fragile and should be made
4541 		 * more robust, probably by enforcing the
4542 		 * 'window size' that md_do_sync sort-of uses.
4543 		 *
4544 		 * Note: the following is an unsigned comparison.
4545 		 */
4546 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4547 			rdev->last_events = curr_events;
4548 			idle = 0;
4549 		}
4550 	}
4551 	return idle;
4552 }
4553 
4554 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4555 {
4556 	/* another "blocks" (512byte) blocks have been synced */
4557 	atomic_sub(blocks, &mddev->recovery_active);
4558 	wake_up(&mddev->recovery_wait);
4559 	if (!ok) {
4560 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4561 		md_wakeup_thread(mddev->thread);
4562 		// stop recovery, signal do_sync ....
4563 	}
4564 }
4565 
4566 
4567 /* md_write_start(mddev, bi)
4568  * If we need to update some array metadata (e.g. 'active' flag
4569  * in superblock) before writing, schedule a superblock update
4570  * and wait for it to complete.
4571  */
4572 void md_write_start(mddev_t *mddev, struct bio *bi)
4573 {
4574 	if (bio_data_dir(bi) != WRITE)
4575 		return;
4576 
4577 	BUG_ON(mddev->ro == 1);
4578 	if (mddev->ro == 2) {
4579 		/* need to switch to read/write */
4580 		mddev->ro = 0;
4581 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4582 		md_wakeup_thread(mddev->thread);
4583 	}
4584 	atomic_inc(&mddev->writes_pending);
4585 	if (mddev->in_sync) {
4586 		spin_lock_irq(&mddev->write_lock);
4587 		if (mddev->in_sync) {
4588 			mddev->in_sync = 0;
4589 			mddev->sb_dirty = 1;
4590 			md_wakeup_thread(mddev->thread);
4591 		}
4592 		spin_unlock_irq(&mddev->write_lock);
4593 	}
4594 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4595 }
4596 
4597 void md_write_end(mddev_t *mddev)
4598 {
4599 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4600 		if (mddev->safemode == 2)
4601 			md_wakeup_thread(mddev->thread);
4602 		else
4603 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4604 	}
4605 }
4606 
4607 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4608 
4609 #define SYNC_MARKS	10
4610 #define	SYNC_MARK_STEP	(3*HZ)
4611 void md_do_sync(mddev_t *mddev)
4612 {
4613 	mddev_t *mddev2;
4614 	unsigned int currspeed = 0,
4615 		 window;
4616 	sector_t max_sectors,j, io_sectors;
4617 	unsigned long mark[SYNC_MARKS];
4618 	sector_t mark_cnt[SYNC_MARKS];
4619 	int last_mark,m;
4620 	struct list_head *tmp;
4621 	sector_t last_check;
4622 	int skipped = 0;
4623 
4624 	/* just incase thread restarts... */
4625 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4626 		return;
4627 
4628 	/* we overload curr_resync somewhat here.
4629 	 * 0 == not engaged in resync at all
4630 	 * 2 == checking that there is no conflict with another sync
4631 	 * 1 == like 2, but have yielded to allow conflicting resync to
4632 	 *		commense
4633 	 * other == active in resync - this many blocks
4634 	 *
4635 	 * Before starting a resync we must have set curr_resync to
4636 	 * 2, and then checked that every "conflicting" array has curr_resync
4637 	 * less than ours.  When we find one that is the same or higher
4638 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4639 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4640 	 * This will mean we have to start checking from the beginning again.
4641 	 *
4642 	 */
4643 
4644 	do {
4645 		mddev->curr_resync = 2;
4646 
4647 	try_again:
4648 		if (kthread_should_stop()) {
4649 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4650 			goto skip;
4651 		}
4652 		ITERATE_MDDEV(mddev2,tmp) {
4653 			if (mddev2 == mddev)
4654 				continue;
4655 			if (mddev2->curr_resync &&
4656 			    match_mddev_units(mddev,mddev2)) {
4657 				DEFINE_WAIT(wq);
4658 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4659 					/* arbitrarily yield */
4660 					mddev->curr_resync = 1;
4661 					wake_up(&resync_wait);
4662 				}
4663 				if (mddev > mddev2 && mddev->curr_resync == 1)
4664 					/* no need to wait here, we can wait the next
4665 					 * time 'round when curr_resync == 2
4666 					 */
4667 					continue;
4668 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4669 				if (!kthread_should_stop() &&
4670 				    mddev2->curr_resync >= mddev->curr_resync) {
4671 					printk(KERN_INFO "md: delaying resync of %s"
4672 					       " until %s has finished resync (they"
4673 					       " share one or more physical units)\n",
4674 					       mdname(mddev), mdname(mddev2));
4675 					mddev_put(mddev2);
4676 					schedule();
4677 					finish_wait(&resync_wait, &wq);
4678 					goto try_again;
4679 				}
4680 				finish_wait(&resync_wait, &wq);
4681 			}
4682 		}
4683 	} while (mddev->curr_resync < 2);
4684 
4685 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4686 		/* resync follows the size requested by the personality,
4687 		 * which defaults to physical size, but can be virtual size
4688 		 */
4689 		max_sectors = mddev->resync_max_sectors;
4690 		mddev->resync_mismatches = 0;
4691 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4692 		max_sectors = mddev->size << 1;
4693 	else
4694 		/* recovery follows the physical size of devices */
4695 		max_sectors = mddev->size << 1;
4696 
4697 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4698 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4699 		" %d KB/sec/disc.\n", speed_min(mddev));
4700 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4701 	       "(but not more than %d KB/sec) for reconstruction.\n",
4702 	       speed_max(mddev));
4703 
4704 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4705 	/* we don't use the checkpoint if there's a bitmap */
4706 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4707 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4708 		j = mddev->recovery_cp;
4709 	else
4710 		j = 0;
4711 	io_sectors = 0;
4712 	for (m = 0; m < SYNC_MARKS; m++) {
4713 		mark[m] = jiffies;
4714 		mark_cnt[m] = io_sectors;
4715 	}
4716 	last_mark = 0;
4717 	mddev->resync_mark = mark[last_mark];
4718 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4719 
4720 	/*
4721 	 * Tune reconstruction:
4722 	 */
4723 	window = 32*(PAGE_SIZE/512);
4724 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4725 		window/2,(unsigned long long) max_sectors/2);
4726 
4727 	atomic_set(&mddev->recovery_active, 0);
4728 	init_waitqueue_head(&mddev->recovery_wait);
4729 	last_check = 0;
4730 
4731 	if (j>2) {
4732 		printk(KERN_INFO
4733 			"md: resuming recovery of %s from checkpoint.\n",
4734 			mdname(mddev));
4735 		mddev->curr_resync = j;
4736 	}
4737 
4738 	while (j < max_sectors) {
4739 		sector_t sectors;
4740 
4741 		skipped = 0;
4742 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4743 					    currspeed < speed_min(mddev));
4744 		if (sectors == 0) {
4745 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4746 			goto out;
4747 		}
4748 
4749 		if (!skipped) { /* actual IO requested */
4750 			io_sectors += sectors;
4751 			atomic_add(sectors, &mddev->recovery_active);
4752 		}
4753 
4754 		j += sectors;
4755 		if (j>1) mddev->curr_resync = j;
4756 		if (last_check == 0)
4757 			/* this is the earliers that rebuilt will be
4758 			 * visible in /proc/mdstat
4759 			 */
4760 			md_new_event(mddev);
4761 
4762 		if (last_check + window > io_sectors || j == max_sectors)
4763 			continue;
4764 
4765 		last_check = io_sectors;
4766 
4767 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4768 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4769 			break;
4770 
4771 	repeat:
4772 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4773 			/* step marks */
4774 			int next = (last_mark+1) % SYNC_MARKS;
4775 
4776 			mddev->resync_mark = mark[next];
4777 			mddev->resync_mark_cnt = mark_cnt[next];
4778 			mark[next] = jiffies;
4779 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4780 			last_mark = next;
4781 		}
4782 
4783 
4784 		if (kthread_should_stop()) {
4785 			/*
4786 			 * got a signal, exit.
4787 			 */
4788 			printk(KERN_INFO
4789 				"md: md_do_sync() got signal ... exiting\n");
4790 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4791 			goto out;
4792 		}
4793 
4794 		/*
4795 		 * this loop exits only if either when we are slower than
4796 		 * the 'hard' speed limit, or the system was IO-idle for
4797 		 * a jiffy.
4798 		 * the system might be non-idle CPU-wise, but we only care
4799 		 * about not overloading the IO subsystem. (things like an
4800 		 * e2fsck being done on the RAID array should execute fast)
4801 		 */
4802 		mddev->queue->unplug_fn(mddev->queue);
4803 		cond_resched();
4804 
4805 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4806 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4807 
4808 		if (currspeed > speed_min(mddev)) {
4809 			if ((currspeed > speed_max(mddev)) ||
4810 					!is_mddev_idle(mddev)) {
4811 				msleep(500);
4812 				goto repeat;
4813 			}
4814 		}
4815 	}
4816 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4817 	/*
4818 	 * this also signals 'finished resyncing' to md_stop
4819 	 */
4820  out:
4821 	mddev->queue->unplug_fn(mddev->queue);
4822 
4823 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4824 
4825 	/* tell personality that we are finished */
4826 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4827 
4828 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4829 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
4830 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
4831 	    mddev->curr_resync > 2 &&
4832 	    mddev->curr_resync >= mddev->recovery_cp) {
4833 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4834 			printk(KERN_INFO
4835 				"md: checkpointing recovery of %s.\n",
4836 				mdname(mddev));
4837 			mddev->recovery_cp = mddev->curr_resync;
4838 		} else
4839 			mddev->recovery_cp = MaxSector;
4840 	}
4841 
4842  skip:
4843 	mddev->curr_resync = 0;
4844 	wake_up(&resync_wait);
4845 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4846 	md_wakeup_thread(mddev->thread);
4847 }
4848 EXPORT_SYMBOL_GPL(md_do_sync);
4849 
4850 
4851 /*
4852  * This routine is regularly called by all per-raid-array threads to
4853  * deal with generic issues like resync and super-block update.
4854  * Raid personalities that don't have a thread (linear/raid0) do not
4855  * need this as they never do any recovery or update the superblock.
4856  *
4857  * It does not do any resync itself, but rather "forks" off other threads
4858  * to do that as needed.
4859  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4860  * "->recovery" and create a thread at ->sync_thread.
4861  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4862  * and wakeups up this thread which will reap the thread and finish up.
4863  * This thread also removes any faulty devices (with nr_pending == 0).
4864  *
4865  * The overall approach is:
4866  *  1/ if the superblock needs updating, update it.
4867  *  2/ If a recovery thread is running, don't do anything else.
4868  *  3/ If recovery has finished, clean up, possibly marking spares active.
4869  *  4/ If there are any faulty devices, remove them.
4870  *  5/ If array is degraded, try to add spares devices
4871  *  6/ If array has spares or is not in-sync, start a resync thread.
4872  */
4873 void md_check_recovery(mddev_t *mddev)
4874 {
4875 	mdk_rdev_t *rdev;
4876 	struct list_head *rtmp;
4877 
4878 
4879 	if (mddev->bitmap)
4880 		bitmap_daemon_work(mddev->bitmap);
4881 
4882 	if (mddev->ro)
4883 		return;
4884 
4885 	if (signal_pending(current)) {
4886 		if (mddev->pers->sync_request) {
4887 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4888 			       mdname(mddev));
4889 			mddev->safemode = 2;
4890 		}
4891 		flush_signals(current);
4892 	}
4893 
4894 	if ( ! (
4895 		mddev->sb_dirty ||
4896 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4897 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4898 		(mddev->safemode == 1) ||
4899 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4900 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4901 		))
4902 		return;
4903 
4904 	if (mddev_trylock(mddev)) {
4905 		int spares =0;
4906 
4907 		spin_lock_irq(&mddev->write_lock);
4908 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4909 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4910 			mddev->in_sync = 1;
4911 			mddev->sb_dirty = 1;
4912 		}
4913 		if (mddev->safemode == 1)
4914 			mddev->safemode = 0;
4915 		spin_unlock_irq(&mddev->write_lock);
4916 
4917 		if (mddev->sb_dirty)
4918 			md_update_sb(mddev);
4919 
4920 
4921 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4922 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4923 			/* resync/recovery still happening */
4924 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4925 			goto unlock;
4926 		}
4927 		if (mddev->sync_thread) {
4928 			/* resync has finished, collect result */
4929 			md_unregister_thread(mddev->sync_thread);
4930 			mddev->sync_thread = NULL;
4931 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4932 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4933 				/* success...*/
4934 				/* activate any spares */
4935 				mddev->pers->spare_active(mddev);
4936 			}
4937 			md_update_sb(mddev);
4938 
4939 			/* if array is no-longer degraded, then any saved_raid_disk
4940 			 * information must be scrapped
4941 			 */
4942 			if (!mddev->degraded)
4943 				ITERATE_RDEV(mddev,rdev,rtmp)
4944 					rdev->saved_raid_disk = -1;
4945 
4946 			mddev->recovery = 0;
4947 			/* flag recovery needed just to double check */
4948 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4949 			md_new_event(mddev);
4950 			goto unlock;
4951 		}
4952 		/* Clear some bits that don't mean anything, but
4953 		 * might be left set
4954 		 */
4955 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4956 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4957 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4958 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4959 
4960 		/* no recovery is running.
4961 		 * remove any failed drives, then
4962 		 * add spares if possible.
4963 		 * Spare are also removed and re-added, to allow
4964 		 * the personality to fail the re-add.
4965 		 */
4966 		ITERATE_RDEV(mddev,rdev,rtmp)
4967 			if (rdev->raid_disk >= 0 &&
4968 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4969 			    atomic_read(&rdev->nr_pending)==0) {
4970 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4971 					char nm[20];
4972 					sprintf(nm,"rd%d", rdev->raid_disk);
4973 					sysfs_remove_link(&mddev->kobj, nm);
4974 					rdev->raid_disk = -1;
4975 				}
4976 			}
4977 
4978 		if (mddev->degraded) {
4979 			ITERATE_RDEV(mddev,rdev,rtmp)
4980 				if (rdev->raid_disk < 0
4981 				    && !test_bit(Faulty, &rdev->flags)) {
4982 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4983 						char nm[20];
4984 						sprintf(nm, "rd%d", rdev->raid_disk);
4985 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4986 						spares++;
4987 						md_new_event(mddev);
4988 					} else
4989 						break;
4990 				}
4991 		}
4992 
4993 		if (spares) {
4994 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4995 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4996 		} else if (mddev->recovery_cp < MaxSector) {
4997 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4998 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4999 			/* nothing to be done ... */
5000 			goto unlock;
5001 
5002 		if (mddev->pers->sync_request) {
5003 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5004 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5005 				/* We are adding a device or devices to an array
5006 				 * which has the bitmap stored on all devices.
5007 				 * So make sure all bitmap pages get written
5008 				 */
5009 				bitmap_write_all(mddev->bitmap);
5010 			}
5011 			mddev->sync_thread = md_register_thread(md_do_sync,
5012 								mddev,
5013 								"%s_resync");
5014 			if (!mddev->sync_thread) {
5015 				printk(KERN_ERR "%s: could not start resync"
5016 					" thread...\n",
5017 					mdname(mddev));
5018 				/* leave the spares where they are, it shouldn't hurt */
5019 				mddev->recovery = 0;
5020 			} else
5021 				md_wakeup_thread(mddev->sync_thread);
5022 			md_new_event(mddev);
5023 		}
5024 	unlock:
5025 		mddev_unlock(mddev);
5026 	}
5027 }
5028 
5029 static int md_notify_reboot(struct notifier_block *this,
5030 			    unsigned long code, void *x)
5031 {
5032 	struct list_head *tmp;
5033 	mddev_t *mddev;
5034 
5035 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5036 
5037 		printk(KERN_INFO "md: stopping all md devices.\n");
5038 
5039 		ITERATE_MDDEV(mddev,tmp)
5040 			if (mddev_trylock(mddev)) {
5041 				do_md_stop (mddev, 1);
5042 				mddev_unlock(mddev);
5043 			}
5044 		/*
5045 		 * certain more exotic SCSI devices are known to be
5046 		 * volatile wrt too early system reboots. While the
5047 		 * right place to handle this issue is the given
5048 		 * driver, we do want to have a safe RAID driver ...
5049 		 */
5050 		mdelay(1000*1);
5051 	}
5052 	return NOTIFY_DONE;
5053 }
5054 
5055 static struct notifier_block md_notifier = {
5056 	.notifier_call	= md_notify_reboot,
5057 	.next		= NULL,
5058 	.priority	= INT_MAX, /* before any real devices */
5059 };
5060 
5061 static void md_geninit(void)
5062 {
5063 	struct proc_dir_entry *p;
5064 
5065 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5066 
5067 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5068 	if (p)
5069 		p->proc_fops = &md_seq_fops;
5070 }
5071 
5072 static int __init md_init(void)
5073 {
5074 	int minor;
5075 
5076 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5077 			" MD_SB_DISKS=%d\n",
5078 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
5079 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5080 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5081 			BITMAP_MINOR);
5082 
5083 	if (register_blkdev(MAJOR_NR, "md"))
5084 		return -1;
5085 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5086 		unregister_blkdev(MAJOR_NR, "md");
5087 		return -1;
5088 	}
5089 	devfs_mk_dir("md");
5090 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5091 				md_probe, NULL, NULL);
5092 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5093 			    md_probe, NULL, NULL);
5094 
5095 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
5096 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
5097 				S_IFBLK|S_IRUSR|S_IWUSR,
5098 				"md/%d", minor);
5099 
5100 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
5101 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
5102 			      S_IFBLK|S_IRUSR|S_IWUSR,
5103 			      "md/mdp%d", minor);
5104 
5105 
5106 	register_reboot_notifier(&md_notifier);
5107 	raid_table_header = register_sysctl_table(raid_root_table, 1);
5108 
5109 	md_geninit();
5110 	return (0);
5111 }
5112 
5113 
5114 #ifndef MODULE
5115 
5116 /*
5117  * Searches all registered partitions for autorun RAID arrays
5118  * at boot time.
5119  */
5120 static dev_t detected_devices[128];
5121 static int dev_cnt;
5122 
5123 void md_autodetect_dev(dev_t dev)
5124 {
5125 	if (dev_cnt >= 0 && dev_cnt < 127)
5126 		detected_devices[dev_cnt++] = dev;
5127 }
5128 
5129 
5130 static void autostart_arrays(int part)
5131 {
5132 	mdk_rdev_t *rdev;
5133 	int i;
5134 
5135 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5136 
5137 	for (i = 0; i < dev_cnt; i++) {
5138 		dev_t dev = detected_devices[i];
5139 
5140 		rdev = md_import_device(dev,0, 0);
5141 		if (IS_ERR(rdev))
5142 			continue;
5143 
5144 		if (test_bit(Faulty, &rdev->flags)) {
5145 			MD_BUG();
5146 			continue;
5147 		}
5148 		list_add(&rdev->same_set, &pending_raid_disks);
5149 	}
5150 	dev_cnt = 0;
5151 
5152 	autorun_devices(part);
5153 }
5154 
5155 #endif
5156 
5157 static __exit void md_exit(void)
5158 {
5159 	mddev_t *mddev;
5160 	struct list_head *tmp;
5161 	int i;
5162 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5163 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5164 	for (i=0; i < MAX_MD_DEVS; i++)
5165 		devfs_remove("md/%d", i);
5166 	for (i=0; i < MAX_MD_DEVS; i++)
5167 		devfs_remove("md/d%d", i);
5168 
5169 	devfs_remove("md");
5170 
5171 	unregister_blkdev(MAJOR_NR,"md");
5172 	unregister_blkdev(mdp_major, "mdp");
5173 	unregister_reboot_notifier(&md_notifier);
5174 	unregister_sysctl_table(raid_table_header);
5175 	remove_proc_entry("mdstat", NULL);
5176 	ITERATE_MDDEV(mddev,tmp) {
5177 		struct gendisk *disk = mddev->gendisk;
5178 		if (!disk)
5179 			continue;
5180 		export_array(mddev);
5181 		del_gendisk(disk);
5182 		put_disk(disk);
5183 		mddev->gendisk = NULL;
5184 		mddev_put(mddev);
5185 	}
5186 }
5187 
5188 module_init(md_init)
5189 module_exit(md_exit)
5190 
5191 static int get_ro(char *buffer, struct kernel_param *kp)
5192 {
5193 	return sprintf(buffer, "%d", start_readonly);
5194 }
5195 static int set_ro(const char *val, struct kernel_param *kp)
5196 {
5197 	char *e;
5198 	int num = simple_strtoul(val, &e, 10);
5199 	if (*val && (*e == '\0' || *e == '\n')) {
5200 		start_readonly = num;
5201 		return 0;
5202 	}
5203 	return -EINVAL;
5204 }
5205 
5206 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5207 module_param(start_dirty_degraded, int, 0644);
5208 
5209 
5210 EXPORT_SYMBOL(register_md_personality);
5211 EXPORT_SYMBOL(unregister_md_personality);
5212 EXPORT_SYMBOL(md_error);
5213 EXPORT_SYMBOL(md_done_sync);
5214 EXPORT_SYMBOL(md_write_start);
5215 EXPORT_SYMBOL(md_write_end);
5216 EXPORT_SYMBOL(md_register_thread);
5217 EXPORT_SYMBOL(md_unregister_thread);
5218 EXPORT_SYMBOL(md_wakeup_thread);
5219 EXPORT_SYMBOL(md_print_devices);
5220 EXPORT_SYMBOL(md_check_recovery);
5221 MODULE_LICENSE("GPL");
5222 MODULE_ALIAS("md");
5223 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5224