1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/badblocks.h> 38 #include <linux/sysctl.h> 39 #include <linux/seq_file.h> 40 #include <linux/fs.h> 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/module.h> 48 #include <linux/reboot.h> 49 #include <linux/file.h> 50 #include <linux/compat.h> 51 #include <linux/delay.h> 52 #include <linux/raid/md_p.h> 53 #include <linux/raid/md_u.h> 54 #include <linux/slab.h> 55 #include "md.h" 56 #include "bitmap.h" 57 #include "md-cluster.h" 58 59 #ifndef MODULE 60 static void autostart_arrays(int part); 61 #endif 62 63 /* pers_list is a list of registered personalities protected 64 * by pers_lock. 65 * pers_lock does extra service to protect accesses to 66 * mddev->thread when the mutex cannot be held. 67 */ 68 static LIST_HEAD(pers_list); 69 static DEFINE_SPINLOCK(pers_lock); 70 71 struct md_cluster_operations *md_cluster_ops; 72 EXPORT_SYMBOL(md_cluster_ops); 73 struct module *md_cluster_mod; 74 EXPORT_SYMBOL(md_cluster_mod); 75 76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 77 static struct workqueue_struct *md_wq; 78 static struct workqueue_struct *md_misc_wq; 79 80 static int remove_and_add_spares(struct mddev *mddev, 81 struct md_rdev *this); 82 static void mddev_detach(struct mddev *mddev); 83 84 /* 85 * Default number of read corrections we'll attempt on an rdev 86 * before ejecting it from the array. We divide the read error 87 * count by 2 for every hour elapsed between read errors. 88 */ 89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 90 /* 91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 92 * is 1000 KB/sec, so the extra system load does not show up that much. 93 * Increase it if you want to have more _guaranteed_ speed. Note that 94 * the RAID driver will use the maximum available bandwidth if the IO 95 * subsystem is idle. There is also an 'absolute maximum' reconstruction 96 * speed limit - in case reconstruction slows down your system despite 97 * idle IO detection. 98 * 99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 100 * or /sys/block/mdX/md/sync_speed_{min,max} 101 */ 102 103 static int sysctl_speed_limit_min = 1000; 104 static int sysctl_speed_limit_max = 200000; 105 static inline int speed_min(struct mddev *mddev) 106 { 107 return mddev->sync_speed_min ? 108 mddev->sync_speed_min : sysctl_speed_limit_min; 109 } 110 111 static inline int speed_max(struct mddev *mddev) 112 { 113 return mddev->sync_speed_max ? 114 mddev->sync_speed_max : sysctl_speed_limit_max; 115 } 116 117 static struct ctl_table_header *raid_table_header; 118 119 static struct ctl_table raid_table[] = { 120 { 121 .procname = "speed_limit_min", 122 .data = &sysctl_speed_limit_min, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { 128 .procname = "speed_limit_max", 129 .data = &sysctl_speed_limit_max, 130 .maxlen = sizeof(int), 131 .mode = S_IRUGO|S_IWUSR, 132 .proc_handler = proc_dointvec, 133 }, 134 { } 135 }; 136 137 static struct ctl_table raid_dir_table[] = { 138 { 139 .procname = "raid", 140 .maxlen = 0, 141 .mode = S_IRUGO|S_IXUGO, 142 .child = raid_table, 143 }, 144 { } 145 }; 146 147 static struct ctl_table raid_root_table[] = { 148 { 149 .procname = "dev", 150 .maxlen = 0, 151 .mode = 0555, 152 .child = raid_dir_table, 153 }, 154 { } 155 }; 156 157 static const struct block_device_operations md_fops; 158 159 static int start_readonly; 160 161 /* bio_clone_mddev 162 * like bio_clone, but with a local bio set 163 */ 164 165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 166 struct mddev *mddev) 167 { 168 struct bio *b; 169 170 if (!mddev || !mddev->bio_set) 171 return bio_alloc(gfp_mask, nr_iovecs); 172 173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 174 if (!b) 175 return NULL; 176 return b; 177 } 178 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 179 180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 181 struct mddev *mddev) 182 { 183 if (!mddev || !mddev->bio_set) 184 return bio_clone(bio, gfp_mask); 185 186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 187 } 188 EXPORT_SYMBOL_GPL(bio_clone_mddev); 189 190 /* 191 * We have a system wide 'event count' that is incremented 192 * on any 'interesting' event, and readers of /proc/mdstat 193 * can use 'poll' or 'select' to find out when the event 194 * count increases. 195 * 196 * Events are: 197 * start array, stop array, error, add device, remove device, 198 * start build, activate spare 199 */ 200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 201 static atomic_t md_event_count; 202 void md_new_event(struct mddev *mddev) 203 { 204 atomic_inc(&md_event_count); 205 wake_up(&md_event_waiters); 206 } 207 EXPORT_SYMBOL_GPL(md_new_event); 208 209 /* 210 * Enables to iterate over all existing md arrays 211 * all_mddevs_lock protects this list. 212 */ 213 static LIST_HEAD(all_mddevs); 214 static DEFINE_SPINLOCK(all_mddevs_lock); 215 216 /* 217 * iterates through all used mddevs in the system. 218 * We take care to grab the all_mddevs_lock whenever navigating 219 * the list, and to always hold a refcount when unlocked. 220 * Any code which breaks out of this loop while own 221 * a reference to the current mddev and must mddev_put it. 222 */ 223 #define for_each_mddev(_mddev,_tmp) \ 224 \ 225 for (({ spin_lock(&all_mddevs_lock); \ 226 _tmp = all_mddevs.next; \ 227 _mddev = NULL;}); \ 228 ({ if (_tmp != &all_mddevs) \ 229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 230 spin_unlock(&all_mddevs_lock); \ 231 if (_mddev) mddev_put(_mddev); \ 232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 233 _tmp != &all_mddevs;}); \ 234 ({ spin_lock(&all_mddevs_lock); \ 235 _tmp = _tmp->next;}) \ 236 ) 237 238 /* Rather than calling directly into the personality make_request function, 239 * IO requests come here first so that we can check if the device is 240 * being suspended pending a reconfiguration. 241 * We hold a refcount over the call to ->make_request. By the time that 242 * call has finished, the bio has been linked into some internal structure 243 * and so is visible to ->quiesce(), so we don't need the refcount any more. 244 */ 245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 246 { 247 const int rw = bio_data_dir(bio); 248 struct mddev *mddev = q->queuedata; 249 unsigned int sectors; 250 int cpu; 251 252 blk_queue_split(q, &bio, q->bio_split); 253 254 if (mddev == NULL || mddev->pers == NULL) { 255 bio_io_error(bio); 256 return BLK_QC_T_NONE; 257 } 258 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 259 if (bio_sectors(bio) != 0) 260 bio->bi_error = -EROFS; 261 bio_endio(bio); 262 return BLK_QC_T_NONE; 263 } 264 smp_rmb(); /* Ensure implications of 'active' are visible */ 265 rcu_read_lock(); 266 if (mddev->suspended) { 267 DEFINE_WAIT(__wait); 268 for (;;) { 269 prepare_to_wait(&mddev->sb_wait, &__wait, 270 TASK_UNINTERRUPTIBLE); 271 if (!mddev->suspended) 272 break; 273 rcu_read_unlock(); 274 schedule(); 275 rcu_read_lock(); 276 } 277 finish_wait(&mddev->sb_wait, &__wait); 278 } 279 atomic_inc(&mddev->active_io); 280 rcu_read_unlock(); 281 282 /* 283 * save the sectors now since our bio can 284 * go away inside make_request 285 */ 286 sectors = bio_sectors(bio); 287 /* bio could be mergeable after passing to underlayer */ 288 bio->bi_opf &= ~REQ_NOMERGE; 289 mddev->pers->make_request(mddev, bio); 290 291 cpu = part_stat_lock(); 292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 294 part_stat_unlock(); 295 296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 297 wake_up(&mddev->sb_wait); 298 299 return BLK_QC_T_NONE; 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once mddev_detach() is called and completes, the module will be 306 * completely unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 311 if (mddev->suspended++) 312 return; 313 synchronize_rcu(); 314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 315 mddev->pers->quiesce(mddev, 1); 316 317 del_timer_sync(&mddev->safemode_timer); 318 } 319 EXPORT_SYMBOL_GPL(mddev_suspend); 320 321 void mddev_resume(struct mddev *mddev) 322 { 323 if (--mddev->suspended) 324 return; 325 wake_up(&mddev->sb_wait); 326 mddev->pers->quiesce(mddev, 0); 327 328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 329 md_wakeup_thread(mddev->thread); 330 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 331 } 332 EXPORT_SYMBOL_GPL(mddev_resume); 333 334 int mddev_congested(struct mddev *mddev, int bits) 335 { 336 struct md_personality *pers = mddev->pers; 337 int ret = 0; 338 339 rcu_read_lock(); 340 if (mddev->suspended) 341 ret = 1; 342 else if (pers && pers->congested) 343 ret = pers->congested(mddev, bits); 344 rcu_read_unlock(); 345 return ret; 346 } 347 EXPORT_SYMBOL_GPL(mddev_congested); 348 static int md_congested(void *data, int bits) 349 { 350 struct mddev *mddev = data; 351 return mddev_congested(mddev, bits); 352 } 353 354 /* 355 * Generic flush handling for md 356 */ 357 358 static void md_end_flush(struct bio *bio) 359 { 360 struct md_rdev *rdev = bio->bi_private; 361 struct mddev *mddev = rdev->mddev; 362 363 rdev_dec_pending(rdev, mddev); 364 365 if (atomic_dec_and_test(&mddev->flush_pending)) { 366 /* The pre-request flush has finished */ 367 queue_work(md_wq, &mddev->flush_work); 368 } 369 bio_put(bio); 370 } 371 372 static void md_submit_flush_data(struct work_struct *ws); 373 374 static void submit_flushes(struct work_struct *ws) 375 { 376 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 377 struct md_rdev *rdev; 378 379 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 380 atomic_set(&mddev->flush_pending, 1); 381 rcu_read_lock(); 382 rdev_for_each_rcu(rdev, mddev) 383 if (rdev->raid_disk >= 0 && 384 !test_bit(Faulty, &rdev->flags)) { 385 /* Take two references, one is dropped 386 * when request finishes, one after 387 * we reclaim rcu_read_lock 388 */ 389 struct bio *bi; 390 atomic_inc(&rdev->nr_pending); 391 atomic_inc(&rdev->nr_pending); 392 rcu_read_unlock(); 393 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 394 bi->bi_end_io = md_end_flush; 395 bi->bi_private = rdev; 396 bi->bi_bdev = rdev->bdev; 397 bio_set_op_attrs(bi, REQ_OP_WRITE, WRITE_FLUSH); 398 atomic_inc(&mddev->flush_pending); 399 submit_bio(bi); 400 rcu_read_lock(); 401 rdev_dec_pending(rdev, mddev); 402 } 403 rcu_read_unlock(); 404 if (atomic_dec_and_test(&mddev->flush_pending)) 405 queue_work(md_wq, &mddev->flush_work); 406 } 407 408 static void md_submit_flush_data(struct work_struct *ws) 409 { 410 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 411 struct bio *bio = mddev->flush_bio; 412 413 if (bio->bi_iter.bi_size == 0) 414 /* an empty barrier - all done */ 415 bio_endio(bio); 416 else { 417 bio->bi_opf &= ~REQ_PREFLUSH; 418 mddev->pers->make_request(mddev, bio); 419 } 420 421 mddev->flush_bio = NULL; 422 wake_up(&mddev->sb_wait); 423 } 424 425 void md_flush_request(struct mddev *mddev, struct bio *bio) 426 { 427 spin_lock_irq(&mddev->lock); 428 wait_event_lock_irq(mddev->sb_wait, 429 !mddev->flush_bio, 430 mddev->lock); 431 mddev->flush_bio = bio; 432 spin_unlock_irq(&mddev->lock); 433 434 INIT_WORK(&mddev->flush_work, submit_flushes); 435 queue_work(md_wq, &mddev->flush_work); 436 } 437 EXPORT_SYMBOL(md_flush_request); 438 439 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 440 { 441 struct mddev *mddev = cb->data; 442 md_wakeup_thread(mddev->thread); 443 kfree(cb); 444 } 445 EXPORT_SYMBOL(md_unplug); 446 447 static inline struct mddev *mddev_get(struct mddev *mddev) 448 { 449 atomic_inc(&mddev->active); 450 return mddev; 451 } 452 453 static void mddev_delayed_delete(struct work_struct *ws); 454 455 static void mddev_put(struct mddev *mddev) 456 { 457 struct bio_set *bs = NULL; 458 459 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 460 return; 461 if (!mddev->raid_disks && list_empty(&mddev->disks) && 462 mddev->ctime == 0 && !mddev->hold_active) { 463 /* Array is not configured at all, and not held active, 464 * so destroy it */ 465 list_del_init(&mddev->all_mddevs); 466 bs = mddev->bio_set; 467 mddev->bio_set = NULL; 468 if (mddev->gendisk) { 469 /* We did a probe so need to clean up. Call 470 * queue_work inside the spinlock so that 471 * flush_workqueue() after mddev_find will 472 * succeed in waiting for the work to be done. 473 */ 474 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 475 queue_work(md_misc_wq, &mddev->del_work); 476 } else 477 kfree(mddev); 478 } 479 spin_unlock(&all_mddevs_lock); 480 if (bs) 481 bioset_free(bs); 482 } 483 484 static void md_safemode_timeout(unsigned long data); 485 486 void mddev_init(struct mddev *mddev) 487 { 488 mutex_init(&mddev->open_mutex); 489 mutex_init(&mddev->reconfig_mutex); 490 mutex_init(&mddev->bitmap_info.mutex); 491 INIT_LIST_HEAD(&mddev->disks); 492 INIT_LIST_HEAD(&mddev->all_mddevs); 493 setup_timer(&mddev->safemode_timer, md_safemode_timeout, 494 (unsigned long) mddev); 495 atomic_set(&mddev->active, 1); 496 atomic_set(&mddev->openers, 0); 497 atomic_set(&mddev->active_io, 0); 498 spin_lock_init(&mddev->lock); 499 atomic_set(&mddev->flush_pending, 0); 500 init_waitqueue_head(&mddev->sb_wait); 501 init_waitqueue_head(&mddev->recovery_wait); 502 mddev->reshape_position = MaxSector; 503 mddev->reshape_backwards = 0; 504 mddev->last_sync_action = "none"; 505 mddev->resync_min = 0; 506 mddev->resync_max = MaxSector; 507 mddev->level = LEVEL_NONE; 508 } 509 EXPORT_SYMBOL_GPL(mddev_init); 510 511 static struct mddev *mddev_find(dev_t unit) 512 { 513 struct mddev *mddev, *new = NULL; 514 515 if (unit && MAJOR(unit) != MD_MAJOR) 516 unit &= ~((1<<MdpMinorShift)-1); 517 518 retry: 519 spin_lock(&all_mddevs_lock); 520 521 if (unit) { 522 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 523 if (mddev->unit == unit) { 524 mddev_get(mddev); 525 spin_unlock(&all_mddevs_lock); 526 kfree(new); 527 return mddev; 528 } 529 530 if (new) { 531 list_add(&new->all_mddevs, &all_mddevs); 532 spin_unlock(&all_mddevs_lock); 533 new->hold_active = UNTIL_IOCTL; 534 return new; 535 } 536 } else if (new) { 537 /* find an unused unit number */ 538 static int next_minor = 512; 539 int start = next_minor; 540 int is_free = 0; 541 int dev = 0; 542 while (!is_free) { 543 dev = MKDEV(MD_MAJOR, next_minor); 544 next_minor++; 545 if (next_minor > MINORMASK) 546 next_minor = 0; 547 if (next_minor == start) { 548 /* Oh dear, all in use. */ 549 spin_unlock(&all_mddevs_lock); 550 kfree(new); 551 return NULL; 552 } 553 554 is_free = 1; 555 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 556 if (mddev->unit == dev) { 557 is_free = 0; 558 break; 559 } 560 } 561 new->unit = dev; 562 new->md_minor = MINOR(dev); 563 new->hold_active = UNTIL_STOP; 564 list_add(&new->all_mddevs, &all_mddevs); 565 spin_unlock(&all_mddevs_lock); 566 return new; 567 } 568 spin_unlock(&all_mddevs_lock); 569 570 new = kzalloc(sizeof(*new), GFP_KERNEL); 571 if (!new) 572 return NULL; 573 574 new->unit = unit; 575 if (MAJOR(unit) == MD_MAJOR) 576 new->md_minor = MINOR(unit); 577 else 578 new->md_minor = MINOR(unit) >> MdpMinorShift; 579 580 mddev_init(new); 581 582 goto retry; 583 } 584 585 static struct attribute_group md_redundancy_group; 586 587 void mddev_unlock(struct mddev *mddev) 588 { 589 if (mddev->to_remove) { 590 /* These cannot be removed under reconfig_mutex as 591 * an access to the files will try to take reconfig_mutex 592 * while holding the file unremovable, which leads to 593 * a deadlock. 594 * So hold set sysfs_active while the remove in happeing, 595 * and anything else which might set ->to_remove or my 596 * otherwise change the sysfs namespace will fail with 597 * -EBUSY if sysfs_active is still set. 598 * We set sysfs_active under reconfig_mutex and elsewhere 599 * test it under the same mutex to ensure its correct value 600 * is seen. 601 */ 602 struct attribute_group *to_remove = mddev->to_remove; 603 mddev->to_remove = NULL; 604 mddev->sysfs_active = 1; 605 mutex_unlock(&mddev->reconfig_mutex); 606 607 if (mddev->kobj.sd) { 608 if (to_remove != &md_redundancy_group) 609 sysfs_remove_group(&mddev->kobj, to_remove); 610 if (mddev->pers == NULL || 611 mddev->pers->sync_request == NULL) { 612 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 613 if (mddev->sysfs_action) 614 sysfs_put(mddev->sysfs_action); 615 mddev->sysfs_action = NULL; 616 } 617 } 618 mddev->sysfs_active = 0; 619 } else 620 mutex_unlock(&mddev->reconfig_mutex); 621 622 /* As we've dropped the mutex we need a spinlock to 623 * make sure the thread doesn't disappear 624 */ 625 spin_lock(&pers_lock); 626 md_wakeup_thread(mddev->thread); 627 spin_unlock(&pers_lock); 628 } 629 EXPORT_SYMBOL_GPL(mddev_unlock); 630 631 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 632 { 633 struct md_rdev *rdev; 634 635 rdev_for_each_rcu(rdev, mddev) 636 if (rdev->desc_nr == nr) 637 return rdev; 638 639 return NULL; 640 } 641 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 642 643 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 644 { 645 struct md_rdev *rdev; 646 647 rdev_for_each(rdev, mddev) 648 if (rdev->bdev->bd_dev == dev) 649 return rdev; 650 651 return NULL; 652 } 653 654 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 655 { 656 struct md_rdev *rdev; 657 658 rdev_for_each_rcu(rdev, mddev) 659 if (rdev->bdev->bd_dev == dev) 660 return rdev; 661 662 return NULL; 663 } 664 665 static struct md_personality *find_pers(int level, char *clevel) 666 { 667 struct md_personality *pers; 668 list_for_each_entry(pers, &pers_list, list) { 669 if (level != LEVEL_NONE && pers->level == level) 670 return pers; 671 if (strcmp(pers->name, clevel)==0) 672 return pers; 673 } 674 return NULL; 675 } 676 677 /* return the offset of the super block in 512byte sectors */ 678 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 679 { 680 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 681 return MD_NEW_SIZE_SECTORS(num_sectors); 682 } 683 684 static int alloc_disk_sb(struct md_rdev *rdev) 685 { 686 rdev->sb_page = alloc_page(GFP_KERNEL); 687 if (!rdev->sb_page) { 688 printk(KERN_ALERT "md: out of memory.\n"); 689 return -ENOMEM; 690 } 691 692 return 0; 693 } 694 695 void md_rdev_clear(struct md_rdev *rdev) 696 { 697 if (rdev->sb_page) { 698 put_page(rdev->sb_page); 699 rdev->sb_loaded = 0; 700 rdev->sb_page = NULL; 701 rdev->sb_start = 0; 702 rdev->sectors = 0; 703 } 704 if (rdev->bb_page) { 705 put_page(rdev->bb_page); 706 rdev->bb_page = NULL; 707 } 708 badblocks_exit(&rdev->badblocks); 709 } 710 EXPORT_SYMBOL_GPL(md_rdev_clear); 711 712 static void super_written(struct bio *bio) 713 { 714 struct md_rdev *rdev = bio->bi_private; 715 struct mddev *mddev = rdev->mddev; 716 717 if (bio->bi_error) { 718 printk("md: super_written gets error=%d\n", bio->bi_error); 719 md_error(mddev, rdev); 720 } 721 722 if (atomic_dec_and_test(&mddev->pending_writes)) 723 wake_up(&mddev->sb_wait); 724 rdev_dec_pending(rdev, mddev); 725 bio_put(bio); 726 } 727 728 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 729 sector_t sector, int size, struct page *page) 730 { 731 /* write first size bytes of page to sector of rdev 732 * Increment mddev->pending_writes before returning 733 * and decrement it on completion, waking up sb_wait 734 * if zero is reached. 735 * If an error occurred, call md_error 736 */ 737 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 738 739 atomic_inc(&rdev->nr_pending); 740 741 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 742 bio->bi_iter.bi_sector = sector; 743 bio_add_page(bio, page, size, 0); 744 bio->bi_private = rdev; 745 bio->bi_end_io = super_written; 746 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH_FUA); 747 748 atomic_inc(&mddev->pending_writes); 749 submit_bio(bio); 750 } 751 752 void md_super_wait(struct mddev *mddev) 753 { 754 /* wait for all superblock writes that were scheduled to complete */ 755 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 756 } 757 758 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 759 struct page *page, int op, int op_flags, bool metadata_op) 760 { 761 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 762 int ret; 763 764 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 765 rdev->meta_bdev : rdev->bdev; 766 bio_set_op_attrs(bio, op, op_flags); 767 if (metadata_op) 768 bio->bi_iter.bi_sector = sector + rdev->sb_start; 769 else if (rdev->mddev->reshape_position != MaxSector && 770 (rdev->mddev->reshape_backwards == 771 (sector >= rdev->mddev->reshape_position))) 772 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 773 else 774 bio->bi_iter.bi_sector = sector + rdev->data_offset; 775 bio_add_page(bio, page, size, 0); 776 777 submit_bio_wait(bio); 778 779 ret = !bio->bi_error; 780 bio_put(bio); 781 return ret; 782 } 783 EXPORT_SYMBOL_GPL(sync_page_io); 784 785 static int read_disk_sb(struct md_rdev *rdev, int size) 786 { 787 char b[BDEVNAME_SIZE]; 788 789 if (rdev->sb_loaded) 790 return 0; 791 792 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 793 goto fail; 794 rdev->sb_loaded = 1; 795 return 0; 796 797 fail: 798 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 799 bdevname(rdev->bdev,b)); 800 return -EINVAL; 801 } 802 803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 804 { 805 return sb1->set_uuid0 == sb2->set_uuid0 && 806 sb1->set_uuid1 == sb2->set_uuid1 && 807 sb1->set_uuid2 == sb2->set_uuid2 && 808 sb1->set_uuid3 == sb2->set_uuid3; 809 } 810 811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 812 { 813 int ret; 814 mdp_super_t *tmp1, *tmp2; 815 816 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 817 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 818 819 if (!tmp1 || !tmp2) { 820 ret = 0; 821 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 822 goto abort; 823 } 824 825 *tmp1 = *sb1; 826 *tmp2 = *sb2; 827 828 /* 829 * nr_disks is not constant 830 */ 831 tmp1->nr_disks = 0; 832 tmp2->nr_disks = 0; 833 834 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 835 abort: 836 kfree(tmp1); 837 kfree(tmp2); 838 return ret; 839 } 840 841 static u32 md_csum_fold(u32 csum) 842 { 843 csum = (csum & 0xffff) + (csum >> 16); 844 return (csum & 0xffff) + (csum >> 16); 845 } 846 847 static unsigned int calc_sb_csum(mdp_super_t *sb) 848 { 849 u64 newcsum = 0; 850 u32 *sb32 = (u32*)sb; 851 int i; 852 unsigned int disk_csum, csum; 853 854 disk_csum = sb->sb_csum; 855 sb->sb_csum = 0; 856 857 for (i = 0; i < MD_SB_BYTES/4 ; i++) 858 newcsum += sb32[i]; 859 csum = (newcsum & 0xffffffff) + (newcsum>>32); 860 861 #ifdef CONFIG_ALPHA 862 /* This used to use csum_partial, which was wrong for several 863 * reasons including that different results are returned on 864 * different architectures. It isn't critical that we get exactly 865 * the same return value as before (we always csum_fold before 866 * testing, and that removes any differences). However as we 867 * know that csum_partial always returned a 16bit value on 868 * alphas, do a fold to maximise conformity to previous behaviour. 869 */ 870 sb->sb_csum = md_csum_fold(disk_csum); 871 #else 872 sb->sb_csum = disk_csum; 873 #endif 874 return csum; 875 } 876 877 /* 878 * Handle superblock details. 879 * We want to be able to handle multiple superblock formats 880 * so we have a common interface to them all, and an array of 881 * different handlers. 882 * We rely on user-space to write the initial superblock, and support 883 * reading and updating of superblocks. 884 * Interface methods are: 885 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 886 * loads and validates a superblock on dev. 887 * if refdev != NULL, compare superblocks on both devices 888 * Return: 889 * 0 - dev has a superblock that is compatible with refdev 890 * 1 - dev has a superblock that is compatible and newer than refdev 891 * so dev should be used as the refdev in future 892 * -EINVAL superblock incompatible or invalid 893 * -othererror e.g. -EIO 894 * 895 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 896 * Verify that dev is acceptable into mddev. 897 * The first time, mddev->raid_disks will be 0, and data from 898 * dev should be merged in. Subsequent calls check that dev 899 * is new enough. Return 0 or -EINVAL 900 * 901 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 902 * Update the superblock for rdev with data in mddev 903 * This does not write to disc. 904 * 905 */ 906 907 struct super_type { 908 char *name; 909 struct module *owner; 910 int (*load_super)(struct md_rdev *rdev, 911 struct md_rdev *refdev, 912 int minor_version); 913 int (*validate_super)(struct mddev *mddev, 914 struct md_rdev *rdev); 915 void (*sync_super)(struct mddev *mddev, 916 struct md_rdev *rdev); 917 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 918 sector_t num_sectors); 919 int (*allow_new_offset)(struct md_rdev *rdev, 920 unsigned long long new_offset); 921 }; 922 923 /* 924 * Check that the given mddev has no bitmap. 925 * 926 * This function is called from the run method of all personalities that do not 927 * support bitmaps. It prints an error message and returns non-zero if mddev 928 * has a bitmap. Otherwise, it returns 0. 929 * 930 */ 931 int md_check_no_bitmap(struct mddev *mddev) 932 { 933 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 934 return 0; 935 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 936 mdname(mddev), mddev->pers->name); 937 return 1; 938 } 939 EXPORT_SYMBOL(md_check_no_bitmap); 940 941 /* 942 * load_super for 0.90.0 943 */ 944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 945 { 946 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 947 mdp_super_t *sb; 948 int ret; 949 950 /* 951 * Calculate the position of the superblock (512byte sectors), 952 * it's at the end of the disk. 953 * 954 * It also happens to be a multiple of 4Kb. 955 */ 956 rdev->sb_start = calc_dev_sboffset(rdev); 957 958 ret = read_disk_sb(rdev, MD_SB_BYTES); 959 if (ret) return ret; 960 961 ret = -EINVAL; 962 963 bdevname(rdev->bdev, b); 964 sb = page_address(rdev->sb_page); 965 966 if (sb->md_magic != MD_SB_MAGIC) { 967 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 968 b); 969 goto abort; 970 } 971 972 if (sb->major_version != 0 || 973 sb->minor_version < 90 || 974 sb->minor_version > 91) { 975 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 976 sb->major_version, sb->minor_version, 977 b); 978 goto abort; 979 } 980 981 if (sb->raid_disks <= 0) 982 goto abort; 983 984 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 985 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 986 b); 987 goto abort; 988 } 989 990 rdev->preferred_minor = sb->md_minor; 991 rdev->data_offset = 0; 992 rdev->new_data_offset = 0; 993 rdev->sb_size = MD_SB_BYTES; 994 rdev->badblocks.shift = -1; 995 996 if (sb->level == LEVEL_MULTIPATH) 997 rdev->desc_nr = -1; 998 else 999 rdev->desc_nr = sb->this_disk.number; 1000 1001 if (!refdev) { 1002 ret = 1; 1003 } else { 1004 __u64 ev1, ev2; 1005 mdp_super_t *refsb = page_address(refdev->sb_page); 1006 if (!uuid_equal(refsb, sb)) { 1007 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1008 b, bdevname(refdev->bdev,b2)); 1009 goto abort; 1010 } 1011 if (!sb_equal(refsb, sb)) { 1012 printk(KERN_WARNING "md: %s has same UUID" 1013 " but different superblock to %s\n", 1014 b, bdevname(refdev->bdev, b2)); 1015 goto abort; 1016 } 1017 ev1 = md_event(sb); 1018 ev2 = md_event(refsb); 1019 if (ev1 > ev2) 1020 ret = 1; 1021 else 1022 ret = 0; 1023 } 1024 rdev->sectors = rdev->sb_start; 1025 /* Limit to 4TB as metadata cannot record more than that. 1026 * (not needed for Linear and RAID0 as metadata doesn't 1027 * record this size) 1028 */ 1029 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1030 sb->level >= 1) 1031 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1032 1033 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1034 /* "this cannot possibly happen" ... */ 1035 ret = -EINVAL; 1036 1037 abort: 1038 return ret; 1039 } 1040 1041 /* 1042 * validate_super for 0.90.0 1043 */ 1044 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1045 { 1046 mdp_disk_t *desc; 1047 mdp_super_t *sb = page_address(rdev->sb_page); 1048 __u64 ev1 = md_event(sb); 1049 1050 rdev->raid_disk = -1; 1051 clear_bit(Faulty, &rdev->flags); 1052 clear_bit(In_sync, &rdev->flags); 1053 clear_bit(Bitmap_sync, &rdev->flags); 1054 clear_bit(WriteMostly, &rdev->flags); 1055 1056 if (mddev->raid_disks == 0) { 1057 mddev->major_version = 0; 1058 mddev->minor_version = sb->minor_version; 1059 mddev->patch_version = sb->patch_version; 1060 mddev->external = 0; 1061 mddev->chunk_sectors = sb->chunk_size >> 9; 1062 mddev->ctime = sb->ctime; 1063 mddev->utime = sb->utime; 1064 mddev->level = sb->level; 1065 mddev->clevel[0] = 0; 1066 mddev->layout = sb->layout; 1067 mddev->raid_disks = sb->raid_disks; 1068 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1069 mddev->events = ev1; 1070 mddev->bitmap_info.offset = 0; 1071 mddev->bitmap_info.space = 0; 1072 /* bitmap can use 60 K after the 4K superblocks */ 1073 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1074 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1075 mddev->reshape_backwards = 0; 1076 1077 if (mddev->minor_version >= 91) { 1078 mddev->reshape_position = sb->reshape_position; 1079 mddev->delta_disks = sb->delta_disks; 1080 mddev->new_level = sb->new_level; 1081 mddev->new_layout = sb->new_layout; 1082 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1083 if (mddev->delta_disks < 0) 1084 mddev->reshape_backwards = 1; 1085 } else { 1086 mddev->reshape_position = MaxSector; 1087 mddev->delta_disks = 0; 1088 mddev->new_level = mddev->level; 1089 mddev->new_layout = mddev->layout; 1090 mddev->new_chunk_sectors = mddev->chunk_sectors; 1091 } 1092 1093 if (sb->state & (1<<MD_SB_CLEAN)) 1094 mddev->recovery_cp = MaxSector; 1095 else { 1096 if (sb->events_hi == sb->cp_events_hi && 1097 sb->events_lo == sb->cp_events_lo) { 1098 mddev->recovery_cp = sb->recovery_cp; 1099 } else 1100 mddev->recovery_cp = 0; 1101 } 1102 1103 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1104 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1105 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1106 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1107 1108 mddev->max_disks = MD_SB_DISKS; 1109 1110 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1111 mddev->bitmap_info.file == NULL) { 1112 mddev->bitmap_info.offset = 1113 mddev->bitmap_info.default_offset; 1114 mddev->bitmap_info.space = 1115 mddev->bitmap_info.default_space; 1116 } 1117 1118 } else if (mddev->pers == NULL) { 1119 /* Insist on good event counter while assembling, except 1120 * for spares (which don't need an event count) */ 1121 ++ev1; 1122 if (sb->disks[rdev->desc_nr].state & ( 1123 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1124 if (ev1 < mddev->events) 1125 return -EINVAL; 1126 } else if (mddev->bitmap) { 1127 /* if adding to array with a bitmap, then we can accept an 1128 * older device ... but not too old. 1129 */ 1130 if (ev1 < mddev->bitmap->events_cleared) 1131 return 0; 1132 if (ev1 < mddev->events) 1133 set_bit(Bitmap_sync, &rdev->flags); 1134 } else { 1135 if (ev1 < mddev->events) 1136 /* just a hot-add of a new device, leave raid_disk at -1 */ 1137 return 0; 1138 } 1139 1140 if (mddev->level != LEVEL_MULTIPATH) { 1141 desc = sb->disks + rdev->desc_nr; 1142 1143 if (desc->state & (1<<MD_DISK_FAULTY)) 1144 set_bit(Faulty, &rdev->flags); 1145 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1146 desc->raid_disk < mddev->raid_disks */) { 1147 set_bit(In_sync, &rdev->flags); 1148 rdev->raid_disk = desc->raid_disk; 1149 rdev->saved_raid_disk = desc->raid_disk; 1150 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1151 /* active but not in sync implies recovery up to 1152 * reshape position. We don't know exactly where 1153 * that is, so set to zero for now */ 1154 if (mddev->minor_version >= 91) { 1155 rdev->recovery_offset = 0; 1156 rdev->raid_disk = desc->raid_disk; 1157 } 1158 } 1159 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1160 set_bit(WriteMostly, &rdev->flags); 1161 } else /* MULTIPATH are always insync */ 1162 set_bit(In_sync, &rdev->flags); 1163 return 0; 1164 } 1165 1166 /* 1167 * sync_super for 0.90.0 1168 */ 1169 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1170 { 1171 mdp_super_t *sb; 1172 struct md_rdev *rdev2; 1173 int next_spare = mddev->raid_disks; 1174 1175 /* make rdev->sb match mddev data.. 1176 * 1177 * 1/ zero out disks 1178 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1179 * 3/ any empty disks < next_spare become removed 1180 * 1181 * disks[0] gets initialised to REMOVED because 1182 * we cannot be sure from other fields if it has 1183 * been initialised or not. 1184 */ 1185 int i; 1186 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1187 1188 rdev->sb_size = MD_SB_BYTES; 1189 1190 sb = page_address(rdev->sb_page); 1191 1192 memset(sb, 0, sizeof(*sb)); 1193 1194 sb->md_magic = MD_SB_MAGIC; 1195 sb->major_version = mddev->major_version; 1196 sb->patch_version = mddev->patch_version; 1197 sb->gvalid_words = 0; /* ignored */ 1198 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1199 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1200 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1201 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1202 1203 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1204 sb->level = mddev->level; 1205 sb->size = mddev->dev_sectors / 2; 1206 sb->raid_disks = mddev->raid_disks; 1207 sb->md_minor = mddev->md_minor; 1208 sb->not_persistent = 0; 1209 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1210 sb->state = 0; 1211 sb->events_hi = (mddev->events>>32); 1212 sb->events_lo = (u32)mddev->events; 1213 1214 if (mddev->reshape_position == MaxSector) 1215 sb->minor_version = 90; 1216 else { 1217 sb->minor_version = 91; 1218 sb->reshape_position = mddev->reshape_position; 1219 sb->new_level = mddev->new_level; 1220 sb->delta_disks = mddev->delta_disks; 1221 sb->new_layout = mddev->new_layout; 1222 sb->new_chunk = mddev->new_chunk_sectors << 9; 1223 } 1224 mddev->minor_version = sb->minor_version; 1225 if (mddev->in_sync) 1226 { 1227 sb->recovery_cp = mddev->recovery_cp; 1228 sb->cp_events_hi = (mddev->events>>32); 1229 sb->cp_events_lo = (u32)mddev->events; 1230 if (mddev->recovery_cp == MaxSector) 1231 sb->state = (1<< MD_SB_CLEAN); 1232 } else 1233 sb->recovery_cp = 0; 1234 1235 sb->layout = mddev->layout; 1236 sb->chunk_size = mddev->chunk_sectors << 9; 1237 1238 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1239 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1240 1241 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1242 rdev_for_each(rdev2, mddev) { 1243 mdp_disk_t *d; 1244 int desc_nr; 1245 int is_active = test_bit(In_sync, &rdev2->flags); 1246 1247 if (rdev2->raid_disk >= 0 && 1248 sb->minor_version >= 91) 1249 /* we have nowhere to store the recovery_offset, 1250 * but if it is not below the reshape_position, 1251 * we can piggy-back on that. 1252 */ 1253 is_active = 1; 1254 if (rdev2->raid_disk < 0 || 1255 test_bit(Faulty, &rdev2->flags)) 1256 is_active = 0; 1257 if (is_active) 1258 desc_nr = rdev2->raid_disk; 1259 else 1260 desc_nr = next_spare++; 1261 rdev2->desc_nr = desc_nr; 1262 d = &sb->disks[rdev2->desc_nr]; 1263 nr_disks++; 1264 d->number = rdev2->desc_nr; 1265 d->major = MAJOR(rdev2->bdev->bd_dev); 1266 d->minor = MINOR(rdev2->bdev->bd_dev); 1267 if (is_active) 1268 d->raid_disk = rdev2->raid_disk; 1269 else 1270 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1271 if (test_bit(Faulty, &rdev2->flags)) 1272 d->state = (1<<MD_DISK_FAULTY); 1273 else if (is_active) { 1274 d->state = (1<<MD_DISK_ACTIVE); 1275 if (test_bit(In_sync, &rdev2->flags)) 1276 d->state |= (1<<MD_DISK_SYNC); 1277 active++; 1278 working++; 1279 } else { 1280 d->state = 0; 1281 spare++; 1282 working++; 1283 } 1284 if (test_bit(WriteMostly, &rdev2->flags)) 1285 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1286 } 1287 /* now set the "removed" and "faulty" bits on any missing devices */ 1288 for (i=0 ; i < mddev->raid_disks ; i++) { 1289 mdp_disk_t *d = &sb->disks[i]; 1290 if (d->state == 0 && d->number == 0) { 1291 d->number = i; 1292 d->raid_disk = i; 1293 d->state = (1<<MD_DISK_REMOVED); 1294 d->state |= (1<<MD_DISK_FAULTY); 1295 failed++; 1296 } 1297 } 1298 sb->nr_disks = nr_disks; 1299 sb->active_disks = active; 1300 sb->working_disks = working; 1301 sb->failed_disks = failed; 1302 sb->spare_disks = spare; 1303 1304 sb->this_disk = sb->disks[rdev->desc_nr]; 1305 sb->sb_csum = calc_sb_csum(sb); 1306 } 1307 1308 /* 1309 * rdev_size_change for 0.90.0 1310 */ 1311 static unsigned long long 1312 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1313 { 1314 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1315 return 0; /* component must fit device */ 1316 if (rdev->mddev->bitmap_info.offset) 1317 return 0; /* can't move bitmap */ 1318 rdev->sb_start = calc_dev_sboffset(rdev); 1319 if (!num_sectors || num_sectors > rdev->sb_start) 1320 num_sectors = rdev->sb_start; 1321 /* Limit to 4TB as metadata cannot record more than that. 1322 * 4TB == 2^32 KB, or 2*2^32 sectors. 1323 */ 1324 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1325 rdev->mddev->level >= 1) 1326 num_sectors = (sector_t)(2ULL << 32) - 2; 1327 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1328 rdev->sb_page); 1329 md_super_wait(rdev->mddev); 1330 return num_sectors; 1331 } 1332 1333 static int 1334 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1335 { 1336 /* non-zero offset changes not possible with v0.90 */ 1337 return new_offset == 0; 1338 } 1339 1340 /* 1341 * version 1 superblock 1342 */ 1343 1344 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1345 { 1346 __le32 disk_csum; 1347 u32 csum; 1348 unsigned long long newcsum; 1349 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1350 __le32 *isuper = (__le32*)sb; 1351 1352 disk_csum = sb->sb_csum; 1353 sb->sb_csum = 0; 1354 newcsum = 0; 1355 for (; size >= 4; size -= 4) 1356 newcsum += le32_to_cpu(*isuper++); 1357 1358 if (size == 2) 1359 newcsum += le16_to_cpu(*(__le16*) isuper); 1360 1361 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1362 sb->sb_csum = disk_csum; 1363 return cpu_to_le32(csum); 1364 } 1365 1366 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1367 { 1368 struct mdp_superblock_1 *sb; 1369 int ret; 1370 sector_t sb_start; 1371 sector_t sectors; 1372 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1373 int bmask; 1374 1375 /* 1376 * Calculate the position of the superblock in 512byte sectors. 1377 * It is always aligned to a 4K boundary and 1378 * depeding on minor_version, it can be: 1379 * 0: At least 8K, but less than 12K, from end of device 1380 * 1: At start of device 1381 * 2: 4K from start of device. 1382 */ 1383 switch(minor_version) { 1384 case 0: 1385 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1386 sb_start -= 8*2; 1387 sb_start &= ~(sector_t)(4*2-1); 1388 break; 1389 case 1: 1390 sb_start = 0; 1391 break; 1392 case 2: 1393 sb_start = 8; 1394 break; 1395 default: 1396 return -EINVAL; 1397 } 1398 rdev->sb_start = sb_start; 1399 1400 /* superblock is rarely larger than 1K, but it can be larger, 1401 * and it is safe to read 4k, so we do that 1402 */ 1403 ret = read_disk_sb(rdev, 4096); 1404 if (ret) return ret; 1405 1406 sb = page_address(rdev->sb_page); 1407 1408 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1409 sb->major_version != cpu_to_le32(1) || 1410 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1411 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1412 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1413 return -EINVAL; 1414 1415 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1416 printk("md: invalid superblock checksum on %s\n", 1417 bdevname(rdev->bdev,b)); 1418 return -EINVAL; 1419 } 1420 if (le64_to_cpu(sb->data_size) < 10) { 1421 printk("md: data_size too small on %s\n", 1422 bdevname(rdev->bdev,b)); 1423 return -EINVAL; 1424 } 1425 if (sb->pad0 || 1426 sb->pad3[0] || 1427 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1428 /* Some padding is non-zero, might be a new feature */ 1429 return -EINVAL; 1430 1431 rdev->preferred_minor = 0xffff; 1432 rdev->data_offset = le64_to_cpu(sb->data_offset); 1433 rdev->new_data_offset = rdev->data_offset; 1434 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1435 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1436 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1437 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1438 1439 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1440 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1441 if (rdev->sb_size & bmask) 1442 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1443 1444 if (minor_version 1445 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1446 return -EINVAL; 1447 if (minor_version 1448 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1449 return -EINVAL; 1450 1451 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1452 rdev->desc_nr = -1; 1453 else 1454 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1455 1456 if (!rdev->bb_page) { 1457 rdev->bb_page = alloc_page(GFP_KERNEL); 1458 if (!rdev->bb_page) 1459 return -ENOMEM; 1460 } 1461 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1462 rdev->badblocks.count == 0) { 1463 /* need to load the bad block list. 1464 * Currently we limit it to one page. 1465 */ 1466 s32 offset; 1467 sector_t bb_sector; 1468 u64 *bbp; 1469 int i; 1470 int sectors = le16_to_cpu(sb->bblog_size); 1471 if (sectors > (PAGE_SIZE / 512)) 1472 return -EINVAL; 1473 offset = le32_to_cpu(sb->bblog_offset); 1474 if (offset == 0) 1475 return -EINVAL; 1476 bb_sector = (long long)offset; 1477 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1478 rdev->bb_page, REQ_OP_READ, 0, true)) 1479 return -EIO; 1480 bbp = (u64 *)page_address(rdev->bb_page); 1481 rdev->badblocks.shift = sb->bblog_shift; 1482 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1483 u64 bb = le64_to_cpu(*bbp); 1484 int count = bb & (0x3ff); 1485 u64 sector = bb >> 10; 1486 sector <<= sb->bblog_shift; 1487 count <<= sb->bblog_shift; 1488 if (bb + 1 == 0) 1489 break; 1490 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1491 return -EINVAL; 1492 } 1493 } else if (sb->bblog_offset != 0) 1494 rdev->badblocks.shift = 0; 1495 1496 if (!refdev) { 1497 ret = 1; 1498 } else { 1499 __u64 ev1, ev2; 1500 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1501 1502 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1503 sb->level != refsb->level || 1504 sb->layout != refsb->layout || 1505 sb->chunksize != refsb->chunksize) { 1506 printk(KERN_WARNING "md: %s has strangely different" 1507 " superblock to %s\n", 1508 bdevname(rdev->bdev,b), 1509 bdevname(refdev->bdev,b2)); 1510 return -EINVAL; 1511 } 1512 ev1 = le64_to_cpu(sb->events); 1513 ev2 = le64_to_cpu(refsb->events); 1514 1515 if (ev1 > ev2) 1516 ret = 1; 1517 else 1518 ret = 0; 1519 } 1520 if (minor_version) { 1521 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1522 sectors -= rdev->data_offset; 1523 } else 1524 sectors = rdev->sb_start; 1525 if (sectors < le64_to_cpu(sb->data_size)) 1526 return -EINVAL; 1527 rdev->sectors = le64_to_cpu(sb->data_size); 1528 return ret; 1529 } 1530 1531 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1532 { 1533 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1534 __u64 ev1 = le64_to_cpu(sb->events); 1535 1536 rdev->raid_disk = -1; 1537 clear_bit(Faulty, &rdev->flags); 1538 clear_bit(In_sync, &rdev->flags); 1539 clear_bit(Bitmap_sync, &rdev->flags); 1540 clear_bit(WriteMostly, &rdev->flags); 1541 1542 if (mddev->raid_disks == 0) { 1543 mddev->major_version = 1; 1544 mddev->patch_version = 0; 1545 mddev->external = 0; 1546 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1547 mddev->ctime = le64_to_cpu(sb->ctime); 1548 mddev->utime = le64_to_cpu(sb->utime); 1549 mddev->level = le32_to_cpu(sb->level); 1550 mddev->clevel[0] = 0; 1551 mddev->layout = le32_to_cpu(sb->layout); 1552 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1553 mddev->dev_sectors = le64_to_cpu(sb->size); 1554 mddev->events = ev1; 1555 mddev->bitmap_info.offset = 0; 1556 mddev->bitmap_info.space = 0; 1557 /* Default location for bitmap is 1K after superblock 1558 * using 3K - total of 4K 1559 */ 1560 mddev->bitmap_info.default_offset = 1024 >> 9; 1561 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1562 mddev->reshape_backwards = 0; 1563 1564 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1565 memcpy(mddev->uuid, sb->set_uuid, 16); 1566 1567 mddev->max_disks = (4096-256)/2; 1568 1569 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1570 mddev->bitmap_info.file == NULL) { 1571 mddev->bitmap_info.offset = 1572 (__s32)le32_to_cpu(sb->bitmap_offset); 1573 /* Metadata doesn't record how much space is available. 1574 * For 1.0, we assume we can use up to the superblock 1575 * if before, else to 4K beyond superblock. 1576 * For others, assume no change is possible. 1577 */ 1578 if (mddev->minor_version > 0) 1579 mddev->bitmap_info.space = 0; 1580 else if (mddev->bitmap_info.offset > 0) 1581 mddev->bitmap_info.space = 1582 8 - mddev->bitmap_info.offset; 1583 else 1584 mddev->bitmap_info.space = 1585 -mddev->bitmap_info.offset; 1586 } 1587 1588 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1589 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1590 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1591 mddev->new_level = le32_to_cpu(sb->new_level); 1592 mddev->new_layout = le32_to_cpu(sb->new_layout); 1593 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1594 if (mddev->delta_disks < 0 || 1595 (mddev->delta_disks == 0 && 1596 (le32_to_cpu(sb->feature_map) 1597 & MD_FEATURE_RESHAPE_BACKWARDS))) 1598 mddev->reshape_backwards = 1; 1599 } else { 1600 mddev->reshape_position = MaxSector; 1601 mddev->delta_disks = 0; 1602 mddev->new_level = mddev->level; 1603 mddev->new_layout = mddev->layout; 1604 mddev->new_chunk_sectors = mddev->chunk_sectors; 1605 } 1606 1607 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1608 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1609 } else if (mddev->pers == NULL) { 1610 /* Insist of good event counter while assembling, except for 1611 * spares (which don't need an event count) */ 1612 ++ev1; 1613 if (rdev->desc_nr >= 0 && 1614 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1615 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1616 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1617 if (ev1 < mddev->events) 1618 return -EINVAL; 1619 } else if (mddev->bitmap) { 1620 /* If adding to array with a bitmap, then we can accept an 1621 * older device, but not too old. 1622 */ 1623 if (ev1 < mddev->bitmap->events_cleared) 1624 return 0; 1625 if (ev1 < mddev->events) 1626 set_bit(Bitmap_sync, &rdev->flags); 1627 } else { 1628 if (ev1 < mddev->events) 1629 /* just a hot-add of a new device, leave raid_disk at -1 */ 1630 return 0; 1631 } 1632 if (mddev->level != LEVEL_MULTIPATH) { 1633 int role; 1634 if (rdev->desc_nr < 0 || 1635 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1636 role = MD_DISK_ROLE_SPARE; 1637 rdev->desc_nr = -1; 1638 } else 1639 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1640 switch(role) { 1641 case MD_DISK_ROLE_SPARE: /* spare */ 1642 break; 1643 case MD_DISK_ROLE_FAULTY: /* faulty */ 1644 set_bit(Faulty, &rdev->flags); 1645 break; 1646 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1647 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1648 /* journal device without journal feature */ 1649 printk(KERN_WARNING 1650 "md: journal device provided without journal feature, ignoring the device\n"); 1651 return -EINVAL; 1652 } 1653 set_bit(Journal, &rdev->flags); 1654 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1655 rdev->raid_disk = 0; 1656 break; 1657 default: 1658 rdev->saved_raid_disk = role; 1659 if ((le32_to_cpu(sb->feature_map) & 1660 MD_FEATURE_RECOVERY_OFFSET)) { 1661 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1662 if (!(le32_to_cpu(sb->feature_map) & 1663 MD_FEATURE_RECOVERY_BITMAP)) 1664 rdev->saved_raid_disk = -1; 1665 } else 1666 set_bit(In_sync, &rdev->flags); 1667 rdev->raid_disk = role; 1668 break; 1669 } 1670 if (sb->devflags & WriteMostly1) 1671 set_bit(WriteMostly, &rdev->flags); 1672 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1673 set_bit(Replacement, &rdev->flags); 1674 } else /* MULTIPATH are always insync */ 1675 set_bit(In_sync, &rdev->flags); 1676 1677 return 0; 1678 } 1679 1680 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1681 { 1682 struct mdp_superblock_1 *sb; 1683 struct md_rdev *rdev2; 1684 int max_dev, i; 1685 /* make rdev->sb match mddev and rdev data. */ 1686 1687 sb = page_address(rdev->sb_page); 1688 1689 sb->feature_map = 0; 1690 sb->pad0 = 0; 1691 sb->recovery_offset = cpu_to_le64(0); 1692 memset(sb->pad3, 0, sizeof(sb->pad3)); 1693 1694 sb->utime = cpu_to_le64((__u64)mddev->utime); 1695 sb->events = cpu_to_le64(mddev->events); 1696 if (mddev->in_sync) 1697 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1698 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1699 sb->resync_offset = cpu_to_le64(MaxSector); 1700 else 1701 sb->resync_offset = cpu_to_le64(0); 1702 1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1704 1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1706 sb->size = cpu_to_le64(mddev->dev_sectors); 1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1708 sb->level = cpu_to_le32(mddev->level); 1709 sb->layout = cpu_to_le32(mddev->layout); 1710 1711 if (test_bit(WriteMostly, &rdev->flags)) 1712 sb->devflags |= WriteMostly1; 1713 else 1714 sb->devflags &= ~WriteMostly1; 1715 sb->data_offset = cpu_to_le64(rdev->data_offset); 1716 sb->data_size = cpu_to_le64(rdev->sectors); 1717 1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1721 } 1722 1723 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1724 !test_bit(In_sync, &rdev->flags)) { 1725 sb->feature_map |= 1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1727 sb->recovery_offset = 1728 cpu_to_le64(rdev->recovery_offset); 1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1730 sb->feature_map |= 1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1732 } 1733 /* Note: recovery_offset and journal_tail share space */ 1734 if (test_bit(Journal, &rdev->flags)) 1735 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1736 if (test_bit(Replacement, &rdev->flags)) 1737 sb->feature_map |= 1738 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1739 1740 if (mddev->reshape_position != MaxSector) { 1741 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1742 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1743 sb->new_layout = cpu_to_le32(mddev->new_layout); 1744 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1745 sb->new_level = cpu_to_le32(mddev->new_level); 1746 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1747 if (mddev->delta_disks == 0 && 1748 mddev->reshape_backwards) 1749 sb->feature_map 1750 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1751 if (rdev->new_data_offset != rdev->data_offset) { 1752 sb->feature_map 1753 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1754 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1755 - rdev->data_offset)); 1756 } 1757 } 1758 1759 if (mddev_is_clustered(mddev)) 1760 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1761 1762 if (rdev->badblocks.count == 0) 1763 /* Nothing to do for bad blocks*/ ; 1764 else if (sb->bblog_offset == 0) 1765 /* Cannot record bad blocks on this device */ 1766 md_error(mddev, rdev); 1767 else { 1768 struct badblocks *bb = &rdev->badblocks; 1769 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1770 u64 *p = bb->page; 1771 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1772 if (bb->changed) { 1773 unsigned seq; 1774 1775 retry: 1776 seq = read_seqbegin(&bb->lock); 1777 1778 memset(bbp, 0xff, PAGE_SIZE); 1779 1780 for (i = 0 ; i < bb->count ; i++) { 1781 u64 internal_bb = p[i]; 1782 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1783 | BB_LEN(internal_bb)); 1784 bbp[i] = cpu_to_le64(store_bb); 1785 } 1786 bb->changed = 0; 1787 if (read_seqretry(&bb->lock, seq)) 1788 goto retry; 1789 1790 bb->sector = (rdev->sb_start + 1791 (int)le32_to_cpu(sb->bblog_offset)); 1792 bb->size = le16_to_cpu(sb->bblog_size); 1793 } 1794 } 1795 1796 max_dev = 0; 1797 rdev_for_each(rdev2, mddev) 1798 if (rdev2->desc_nr+1 > max_dev) 1799 max_dev = rdev2->desc_nr+1; 1800 1801 if (max_dev > le32_to_cpu(sb->max_dev)) { 1802 int bmask; 1803 sb->max_dev = cpu_to_le32(max_dev); 1804 rdev->sb_size = max_dev * 2 + 256; 1805 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1806 if (rdev->sb_size & bmask) 1807 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1808 } else 1809 max_dev = le32_to_cpu(sb->max_dev); 1810 1811 for (i=0; i<max_dev;i++) 1812 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1813 1814 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1815 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1816 1817 rdev_for_each(rdev2, mddev) { 1818 i = rdev2->desc_nr; 1819 if (test_bit(Faulty, &rdev2->flags)) 1820 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1821 else if (test_bit(In_sync, &rdev2->flags)) 1822 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1823 else if (test_bit(Journal, &rdev2->flags)) 1824 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1825 else if (rdev2->raid_disk >= 0) 1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1827 else 1828 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1829 } 1830 1831 sb->sb_csum = calc_sb_1_csum(sb); 1832 } 1833 1834 static unsigned long long 1835 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1836 { 1837 struct mdp_superblock_1 *sb; 1838 sector_t max_sectors; 1839 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1840 return 0; /* component must fit device */ 1841 if (rdev->data_offset != rdev->new_data_offset) 1842 return 0; /* too confusing */ 1843 if (rdev->sb_start < rdev->data_offset) { 1844 /* minor versions 1 and 2; superblock before data */ 1845 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1846 max_sectors -= rdev->data_offset; 1847 if (!num_sectors || num_sectors > max_sectors) 1848 num_sectors = max_sectors; 1849 } else if (rdev->mddev->bitmap_info.offset) { 1850 /* minor version 0 with bitmap we can't move */ 1851 return 0; 1852 } else { 1853 /* minor version 0; superblock after data */ 1854 sector_t sb_start; 1855 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1856 sb_start &= ~(sector_t)(4*2 - 1); 1857 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1858 if (!num_sectors || num_sectors > max_sectors) 1859 num_sectors = max_sectors; 1860 rdev->sb_start = sb_start; 1861 } 1862 sb = page_address(rdev->sb_page); 1863 sb->data_size = cpu_to_le64(num_sectors); 1864 sb->super_offset = rdev->sb_start; 1865 sb->sb_csum = calc_sb_1_csum(sb); 1866 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1867 rdev->sb_page); 1868 md_super_wait(rdev->mddev); 1869 return num_sectors; 1870 1871 } 1872 1873 static int 1874 super_1_allow_new_offset(struct md_rdev *rdev, 1875 unsigned long long new_offset) 1876 { 1877 /* All necessary checks on new >= old have been done */ 1878 struct bitmap *bitmap; 1879 if (new_offset >= rdev->data_offset) 1880 return 1; 1881 1882 /* with 1.0 metadata, there is no metadata to tread on 1883 * so we can always move back */ 1884 if (rdev->mddev->minor_version == 0) 1885 return 1; 1886 1887 /* otherwise we must be sure not to step on 1888 * any metadata, so stay: 1889 * 36K beyond start of superblock 1890 * beyond end of badblocks 1891 * beyond write-intent bitmap 1892 */ 1893 if (rdev->sb_start + (32+4)*2 > new_offset) 1894 return 0; 1895 bitmap = rdev->mddev->bitmap; 1896 if (bitmap && !rdev->mddev->bitmap_info.file && 1897 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1898 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1899 return 0; 1900 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1901 return 0; 1902 1903 return 1; 1904 } 1905 1906 static struct super_type super_types[] = { 1907 [0] = { 1908 .name = "0.90.0", 1909 .owner = THIS_MODULE, 1910 .load_super = super_90_load, 1911 .validate_super = super_90_validate, 1912 .sync_super = super_90_sync, 1913 .rdev_size_change = super_90_rdev_size_change, 1914 .allow_new_offset = super_90_allow_new_offset, 1915 }, 1916 [1] = { 1917 .name = "md-1", 1918 .owner = THIS_MODULE, 1919 .load_super = super_1_load, 1920 .validate_super = super_1_validate, 1921 .sync_super = super_1_sync, 1922 .rdev_size_change = super_1_rdev_size_change, 1923 .allow_new_offset = super_1_allow_new_offset, 1924 }, 1925 }; 1926 1927 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1928 { 1929 if (mddev->sync_super) { 1930 mddev->sync_super(mddev, rdev); 1931 return; 1932 } 1933 1934 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1935 1936 super_types[mddev->major_version].sync_super(mddev, rdev); 1937 } 1938 1939 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1940 { 1941 struct md_rdev *rdev, *rdev2; 1942 1943 rcu_read_lock(); 1944 rdev_for_each_rcu(rdev, mddev1) { 1945 if (test_bit(Faulty, &rdev->flags) || 1946 test_bit(Journal, &rdev->flags) || 1947 rdev->raid_disk == -1) 1948 continue; 1949 rdev_for_each_rcu(rdev2, mddev2) { 1950 if (test_bit(Faulty, &rdev2->flags) || 1951 test_bit(Journal, &rdev2->flags) || 1952 rdev2->raid_disk == -1) 1953 continue; 1954 if (rdev->bdev->bd_contains == 1955 rdev2->bdev->bd_contains) { 1956 rcu_read_unlock(); 1957 return 1; 1958 } 1959 } 1960 } 1961 rcu_read_unlock(); 1962 return 0; 1963 } 1964 1965 static LIST_HEAD(pending_raid_disks); 1966 1967 /* 1968 * Try to register data integrity profile for an mddev 1969 * 1970 * This is called when an array is started and after a disk has been kicked 1971 * from the array. It only succeeds if all working and active component devices 1972 * are integrity capable with matching profiles. 1973 */ 1974 int md_integrity_register(struct mddev *mddev) 1975 { 1976 struct md_rdev *rdev, *reference = NULL; 1977 1978 if (list_empty(&mddev->disks)) 1979 return 0; /* nothing to do */ 1980 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1981 return 0; /* shouldn't register, or already is */ 1982 rdev_for_each(rdev, mddev) { 1983 /* skip spares and non-functional disks */ 1984 if (test_bit(Faulty, &rdev->flags)) 1985 continue; 1986 if (rdev->raid_disk < 0) 1987 continue; 1988 if (!reference) { 1989 /* Use the first rdev as the reference */ 1990 reference = rdev; 1991 continue; 1992 } 1993 /* does this rdev's profile match the reference profile? */ 1994 if (blk_integrity_compare(reference->bdev->bd_disk, 1995 rdev->bdev->bd_disk) < 0) 1996 return -EINVAL; 1997 } 1998 if (!reference || !bdev_get_integrity(reference->bdev)) 1999 return 0; 2000 /* 2001 * All component devices are integrity capable and have matching 2002 * profiles, register the common profile for the md device. 2003 */ 2004 blk_integrity_register(mddev->gendisk, 2005 bdev_get_integrity(reference->bdev)); 2006 2007 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2008 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2009 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2010 mdname(mddev)); 2011 return -EINVAL; 2012 } 2013 return 0; 2014 } 2015 EXPORT_SYMBOL(md_integrity_register); 2016 2017 /* 2018 * Attempt to add an rdev, but only if it is consistent with the current 2019 * integrity profile 2020 */ 2021 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2022 { 2023 struct blk_integrity *bi_rdev; 2024 struct blk_integrity *bi_mddev; 2025 char name[BDEVNAME_SIZE]; 2026 2027 if (!mddev->gendisk) 2028 return 0; 2029 2030 bi_rdev = bdev_get_integrity(rdev->bdev); 2031 bi_mddev = blk_get_integrity(mddev->gendisk); 2032 2033 if (!bi_mddev) /* nothing to do */ 2034 return 0; 2035 2036 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2037 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n", 2038 mdname(mddev), bdevname(rdev->bdev, name)); 2039 return -ENXIO; 2040 } 2041 2042 return 0; 2043 } 2044 EXPORT_SYMBOL(md_integrity_add_rdev); 2045 2046 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2047 { 2048 char b[BDEVNAME_SIZE]; 2049 struct kobject *ko; 2050 int err; 2051 2052 /* prevent duplicates */ 2053 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2054 return -EEXIST; 2055 2056 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2057 if (!test_bit(Journal, &rdev->flags) && 2058 rdev->sectors && 2059 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2060 if (mddev->pers) { 2061 /* Cannot change size, so fail 2062 * If mddev->level <= 0, then we don't care 2063 * about aligning sizes (e.g. linear) 2064 */ 2065 if (mddev->level > 0) 2066 return -ENOSPC; 2067 } else 2068 mddev->dev_sectors = rdev->sectors; 2069 } 2070 2071 /* Verify rdev->desc_nr is unique. 2072 * If it is -1, assign a free number, else 2073 * check number is not in use 2074 */ 2075 rcu_read_lock(); 2076 if (rdev->desc_nr < 0) { 2077 int choice = 0; 2078 if (mddev->pers) 2079 choice = mddev->raid_disks; 2080 while (md_find_rdev_nr_rcu(mddev, choice)) 2081 choice++; 2082 rdev->desc_nr = choice; 2083 } else { 2084 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2085 rcu_read_unlock(); 2086 return -EBUSY; 2087 } 2088 } 2089 rcu_read_unlock(); 2090 if (!test_bit(Journal, &rdev->flags) && 2091 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2092 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2093 mdname(mddev), mddev->max_disks); 2094 return -EBUSY; 2095 } 2096 bdevname(rdev->bdev,b); 2097 strreplace(b, '/', '!'); 2098 2099 rdev->mddev = mddev; 2100 printk(KERN_INFO "md: bind<%s>\n", b); 2101 2102 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2103 goto fail; 2104 2105 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2106 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2107 /* failure here is OK */; 2108 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2109 2110 list_add_rcu(&rdev->same_set, &mddev->disks); 2111 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2112 2113 /* May as well allow recovery to be retried once */ 2114 mddev->recovery_disabled++; 2115 2116 return 0; 2117 2118 fail: 2119 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2120 b, mdname(mddev)); 2121 return err; 2122 } 2123 2124 static void md_delayed_delete(struct work_struct *ws) 2125 { 2126 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2127 kobject_del(&rdev->kobj); 2128 kobject_put(&rdev->kobj); 2129 } 2130 2131 static void unbind_rdev_from_array(struct md_rdev *rdev) 2132 { 2133 char b[BDEVNAME_SIZE]; 2134 2135 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2136 list_del_rcu(&rdev->same_set); 2137 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2138 rdev->mddev = NULL; 2139 sysfs_remove_link(&rdev->kobj, "block"); 2140 sysfs_put(rdev->sysfs_state); 2141 rdev->sysfs_state = NULL; 2142 rdev->badblocks.count = 0; 2143 /* We need to delay this, otherwise we can deadlock when 2144 * writing to 'remove' to "dev/state". We also need 2145 * to delay it due to rcu usage. 2146 */ 2147 synchronize_rcu(); 2148 INIT_WORK(&rdev->del_work, md_delayed_delete); 2149 kobject_get(&rdev->kobj); 2150 queue_work(md_misc_wq, &rdev->del_work); 2151 } 2152 2153 /* 2154 * prevent the device from being mounted, repartitioned or 2155 * otherwise reused by a RAID array (or any other kernel 2156 * subsystem), by bd_claiming the device. 2157 */ 2158 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2159 { 2160 int err = 0; 2161 struct block_device *bdev; 2162 char b[BDEVNAME_SIZE]; 2163 2164 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2165 shared ? (struct md_rdev *)lock_rdev : rdev); 2166 if (IS_ERR(bdev)) { 2167 printk(KERN_ERR "md: could not open %s.\n", 2168 __bdevname(dev, b)); 2169 return PTR_ERR(bdev); 2170 } 2171 rdev->bdev = bdev; 2172 return err; 2173 } 2174 2175 static void unlock_rdev(struct md_rdev *rdev) 2176 { 2177 struct block_device *bdev = rdev->bdev; 2178 rdev->bdev = NULL; 2179 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2180 } 2181 2182 void md_autodetect_dev(dev_t dev); 2183 2184 static void export_rdev(struct md_rdev *rdev) 2185 { 2186 char b[BDEVNAME_SIZE]; 2187 2188 printk(KERN_INFO "md: export_rdev(%s)\n", 2189 bdevname(rdev->bdev,b)); 2190 md_rdev_clear(rdev); 2191 #ifndef MODULE 2192 if (test_bit(AutoDetected, &rdev->flags)) 2193 md_autodetect_dev(rdev->bdev->bd_dev); 2194 #endif 2195 unlock_rdev(rdev); 2196 kobject_put(&rdev->kobj); 2197 } 2198 2199 void md_kick_rdev_from_array(struct md_rdev *rdev) 2200 { 2201 unbind_rdev_from_array(rdev); 2202 export_rdev(rdev); 2203 } 2204 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2205 2206 static void export_array(struct mddev *mddev) 2207 { 2208 struct md_rdev *rdev; 2209 2210 while (!list_empty(&mddev->disks)) { 2211 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2212 same_set); 2213 md_kick_rdev_from_array(rdev); 2214 } 2215 mddev->raid_disks = 0; 2216 mddev->major_version = 0; 2217 } 2218 2219 static void sync_sbs(struct mddev *mddev, int nospares) 2220 { 2221 /* Update each superblock (in-memory image), but 2222 * if we are allowed to, skip spares which already 2223 * have the right event counter, or have one earlier 2224 * (which would mean they aren't being marked as dirty 2225 * with the rest of the array) 2226 */ 2227 struct md_rdev *rdev; 2228 rdev_for_each(rdev, mddev) { 2229 if (rdev->sb_events == mddev->events || 2230 (nospares && 2231 rdev->raid_disk < 0 && 2232 rdev->sb_events+1 == mddev->events)) { 2233 /* Don't update this superblock */ 2234 rdev->sb_loaded = 2; 2235 } else { 2236 sync_super(mddev, rdev); 2237 rdev->sb_loaded = 1; 2238 } 2239 } 2240 } 2241 2242 static bool does_sb_need_changing(struct mddev *mddev) 2243 { 2244 struct md_rdev *rdev; 2245 struct mdp_superblock_1 *sb; 2246 int role; 2247 2248 /* Find a good rdev */ 2249 rdev_for_each(rdev, mddev) 2250 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2251 break; 2252 2253 /* No good device found. */ 2254 if (!rdev) 2255 return false; 2256 2257 sb = page_address(rdev->sb_page); 2258 /* Check if a device has become faulty or a spare become active */ 2259 rdev_for_each(rdev, mddev) { 2260 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2261 /* Device activated? */ 2262 if (role == 0xffff && rdev->raid_disk >=0 && 2263 !test_bit(Faulty, &rdev->flags)) 2264 return true; 2265 /* Device turned faulty? */ 2266 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2267 return true; 2268 } 2269 2270 /* Check if any mddev parameters have changed */ 2271 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2272 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2273 (mddev->layout != le64_to_cpu(sb->layout)) || 2274 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2275 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2276 return true; 2277 2278 return false; 2279 } 2280 2281 void md_update_sb(struct mddev *mddev, int force_change) 2282 { 2283 struct md_rdev *rdev; 2284 int sync_req; 2285 int nospares = 0; 2286 int any_badblocks_changed = 0; 2287 int ret = -1; 2288 2289 if (mddev->ro) { 2290 if (force_change) 2291 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2292 return; 2293 } 2294 2295 repeat: 2296 if (mddev_is_clustered(mddev)) { 2297 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2298 force_change = 1; 2299 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2300 nospares = 1; 2301 ret = md_cluster_ops->metadata_update_start(mddev); 2302 /* Has someone else has updated the sb */ 2303 if (!does_sb_need_changing(mddev)) { 2304 if (ret == 0) 2305 md_cluster_ops->metadata_update_cancel(mddev); 2306 bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING), 2307 BIT(MD_CHANGE_DEVS) | 2308 BIT(MD_CHANGE_CLEAN)); 2309 return; 2310 } 2311 } 2312 2313 /* First make sure individual recovery_offsets are correct */ 2314 rdev_for_each(rdev, mddev) { 2315 if (rdev->raid_disk >= 0 && 2316 mddev->delta_disks >= 0 && 2317 !test_bit(Journal, &rdev->flags) && 2318 !test_bit(In_sync, &rdev->flags) && 2319 mddev->curr_resync_completed > rdev->recovery_offset) 2320 rdev->recovery_offset = mddev->curr_resync_completed; 2321 2322 } 2323 if (!mddev->persistent) { 2324 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2325 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2326 if (!mddev->external) { 2327 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2328 rdev_for_each(rdev, mddev) { 2329 if (rdev->badblocks.changed) { 2330 rdev->badblocks.changed = 0; 2331 ack_all_badblocks(&rdev->badblocks); 2332 md_error(mddev, rdev); 2333 } 2334 clear_bit(Blocked, &rdev->flags); 2335 clear_bit(BlockedBadBlocks, &rdev->flags); 2336 wake_up(&rdev->blocked_wait); 2337 } 2338 } 2339 wake_up(&mddev->sb_wait); 2340 return; 2341 } 2342 2343 spin_lock(&mddev->lock); 2344 2345 mddev->utime = ktime_get_real_seconds(); 2346 2347 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2348 force_change = 1; 2349 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2350 /* just a clean<-> dirty transition, possibly leave spares alone, 2351 * though if events isn't the right even/odd, we will have to do 2352 * spares after all 2353 */ 2354 nospares = 1; 2355 if (force_change) 2356 nospares = 0; 2357 if (mddev->degraded) 2358 /* If the array is degraded, then skipping spares is both 2359 * dangerous and fairly pointless. 2360 * Dangerous because a device that was removed from the array 2361 * might have a event_count that still looks up-to-date, 2362 * so it can be re-added without a resync. 2363 * Pointless because if there are any spares to skip, 2364 * then a recovery will happen and soon that array won't 2365 * be degraded any more and the spare can go back to sleep then. 2366 */ 2367 nospares = 0; 2368 2369 sync_req = mddev->in_sync; 2370 2371 /* If this is just a dirty<->clean transition, and the array is clean 2372 * and 'events' is odd, we can roll back to the previous clean state */ 2373 if (nospares 2374 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2375 && mddev->can_decrease_events 2376 && mddev->events != 1) { 2377 mddev->events--; 2378 mddev->can_decrease_events = 0; 2379 } else { 2380 /* otherwise we have to go forward and ... */ 2381 mddev->events ++; 2382 mddev->can_decrease_events = nospares; 2383 } 2384 2385 /* 2386 * This 64-bit counter should never wrap. 2387 * Either we are in around ~1 trillion A.C., assuming 2388 * 1 reboot per second, or we have a bug... 2389 */ 2390 WARN_ON(mddev->events == 0); 2391 2392 rdev_for_each(rdev, mddev) { 2393 if (rdev->badblocks.changed) 2394 any_badblocks_changed++; 2395 if (test_bit(Faulty, &rdev->flags)) 2396 set_bit(FaultRecorded, &rdev->flags); 2397 } 2398 2399 sync_sbs(mddev, nospares); 2400 spin_unlock(&mddev->lock); 2401 2402 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2403 mdname(mddev), mddev->in_sync); 2404 2405 bitmap_update_sb(mddev->bitmap); 2406 rdev_for_each(rdev, mddev) { 2407 char b[BDEVNAME_SIZE]; 2408 2409 if (rdev->sb_loaded != 1) 2410 continue; /* no noise on spare devices */ 2411 2412 if (!test_bit(Faulty, &rdev->flags)) { 2413 md_super_write(mddev,rdev, 2414 rdev->sb_start, rdev->sb_size, 2415 rdev->sb_page); 2416 pr_debug("md: (write) %s's sb offset: %llu\n", 2417 bdevname(rdev->bdev, b), 2418 (unsigned long long)rdev->sb_start); 2419 rdev->sb_events = mddev->events; 2420 if (rdev->badblocks.size) { 2421 md_super_write(mddev, rdev, 2422 rdev->badblocks.sector, 2423 rdev->badblocks.size << 9, 2424 rdev->bb_page); 2425 rdev->badblocks.size = 0; 2426 } 2427 2428 } else 2429 pr_debug("md: %s (skipping faulty)\n", 2430 bdevname(rdev->bdev, b)); 2431 2432 if (mddev->level == LEVEL_MULTIPATH) 2433 /* only need to write one superblock... */ 2434 break; 2435 } 2436 md_super_wait(mddev); 2437 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2438 2439 if (mddev_is_clustered(mddev) && ret == 0) 2440 md_cluster_ops->metadata_update_finish(mddev); 2441 2442 if (mddev->in_sync != sync_req || 2443 !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING), 2444 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN))) 2445 /* have to write it out again */ 2446 goto repeat; 2447 wake_up(&mddev->sb_wait); 2448 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2449 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2450 2451 rdev_for_each(rdev, mddev) { 2452 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2453 clear_bit(Blocked, &rdev->flags); 2454 2455 if (any_badblocks_changed) 2456 ack_all_badblocks(&rdev->badblocks); 2457 clear_bit(BlockedBadBlocks, &rdev->flags); 2458 wake_up(&rdev->blocked_wait); 2459 } 2460 } 2461 EXPORT_SYMBOL(md_update_sb); 2462 2463 static int add_bound_rdev(struct md_rdev *rdev) 2464 { 2465 struct mddev *mddev = rdev->mddev; 2466 int err = 0; 2467 bool add_journal = test_bit(Journal, &rdev->flags); 2468 2469 if (!mddev->pers->hot_remove_disk || add_journal) { 2470 /* If there is hot_add_disk but no hot_remove_disk 2471 * then added disks for geometry changes, 2472 * and should be added immediately. 2473 */ 2474 super_types[mddev->major_version]. 2475 validate_super(mddev, rdev); 2476 if (add_journal) 2477 mddev_suspend(mddev); 2478 err = mddev->pers->hot_add_disk(mddev, rdev); 2479 if (add_journal) 2480 mddev_resume(mddev); 2481 if (err) { 2482 md_kick_rdev_from_array(rdev); 2483 return err; 2484 } 2485 } 2486 sysfs_notify_dirent_safe(rdev->sysfs_state); 2487 2488 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2489 if (mddev->degraded) 2490 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2492 md_new_event(mddev); 2493 md_wakeup_thread(mddev->thread); 2494 return 0; 2495 } 2496 2497 /* words written to sysfs files may, or may not, be \n terminated. 2498 * We want to accept with case. For this we use cmd_match. 2499 */ 2500 static int cmd_match(const char *cmd, const char *str) 2501 { 2502 /* See if cmd, written into a sysfs file, matches 2503 * str. They must either be the same, or cmd can 2504 * have a trailing newline 2505 */ 2506 while (*cmd && *str && *cmd == *str) { 2507 cmd++; 2508 str++; 2509 } 2510 if (*cmd == '\n') 2511 cmd++; 2512 if (*str || *cmd) 2513 return 0; 2514 return 1; 2515 } 2516 2517 struct rdev_sysfs_entry { 2518 struct attribute attr; 2519 ssize_t (*show)(struct md_rdev *, char *); 2520 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2521 }; 2522 2523 static ssize_t 2524 state_show(struct md_rdev *rdev, char *page) 2525 { 2526 char *sep = ""; 2527 size_t len = 0; 2528 unsigned long flags = ACCESS_ONCE(rdev->flags); 2529 2530 if (test_bit(Faulty, &flags) || 2531 rdev->badblocks.unacked_exist) { 2532 len+= sprintf(page+len, "%sfaulty",sep); 2533 sep = ","; 2534 } 2535 if (test_bit(In_sync, &flags)) { 2536 len += sprintf(page+len, "%sin_sync",sep); 2537 sep = ","; 2538 } 2539 if (test_bit(Journal, &flags)) { 2540 len += sprintf(page+len, "%sjournal",sep); 2541 sep = ","; 2542 } 2543 if (test_bit(WriteMostly, &flags)) { 2544 len += sprintf(page+len, "%swrite_mostly",sep); 2545 sep = ","; 2546 } 2547 if (test_bit(Blocked, &flags) || 2548 (rdev->badblocks.unacked_exist 2549 && !test_bit(Faulty, &flags))) { 2550 len += sprintf(page+len, "%sblocked", sep); 2551 sep = ","; 2552 } 2553 if (!test_bit(Faulty, &flags) && 2554 !test_bit(Journal, &flags) && 2555 !test_bit(In_sync, &flags)) { 2556 len += sprintf(page+len, "%sspare", sep); 2557 sep = ","; 2558 } 2559 if (test_bit(WriteErrorSeen, &flags)) { 2560 len += sprintf(page+len, "%swrite_error", sep); 2561 sep = ","; 2562 } 2563 if (test_bit(WantReplacement, &flags)) { 2564 len += sprintf(page+len, "%swant_replacement", sep); 2565 sep = ","; 2566 } 2567 if (test_bit(Replacement, &flags)) { 2568 len += sprintf(page+len, "%sreplacement", sep); 2569 sep = ","; 2570 } 2571 2572 return len+sprintf(page+len, "\n"); 2573 } 2574 2575 static ssize_t 2576 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2577 { 2578 /* can write 2579 * faulty - simulates an error 2580 * remove - disconnects the device 2581 * writemostly - sets write_mostly 2582 * -writemostly - clears write_mostly 2583 * blocked - sets the Blocked flags 2584 * -blocked - clears the Blocked and possibly simulates an error 2585 * insync - sets Insync providing device isn't active 2586 * -insync - clear Insync for a device with a slot assigned, 2587 * so that it gets rebuilt based on bitmap 2588 * write_error - sets WriteErrorSeen 2589 * -write_error - clears WriteErrorSeen 2590 */ 2591 int err = -EINVAL; 2592 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2593 md_error(rdev->mddev, rdev); 2594 if (test_bit(Faulty, &rdev->flags)) 2595 err = 0; 2596 else 2597 err = -EBUSY; 2598 } else if (cmd_match(buf, "remove")) { 2599 if (rdev->mddev->pers) { 2600 clear_bit(Blocked, &rdev->flags); 2601 remove_and_add_spares(rdev->mddev, rdev); 2602 } 2603 if (rdev->raid_disk >= 0) 2604 err = -EBUSY; 2605 else { 2606 struct mddev *mddev = rdev->mddev; 2607 err = 0; 2608 if (mddev_is_clustered(mddev)) 2609 err = md_cluster_ops->remove_disk(mddev, rdev); 2610 2611 if (err == 0) { 2612 md_kick_rdev_from_array(rdev); 2613 if (mddev->pers) 2614 md_update_sb(mddev, 1); 2615 md_new_event(mddev); 2616 } 2617 } 2618 } else if (cmd_match(buf, "writemostly")) { 2619 set_bit(WriteMostly, &rdev->flags); 2620 err = 0; 2621 } else if (cmd_match(buf, "-writemostly")) { 2622 clear_bit(WriteMostly, &rdev->flags); 2623 err = 0; 2624 } else if (cmd_match(buf, "blocked")) { 2625 set_bit(Blocked, &rdev->flags); 2626 err = 0; 2627 } else if (cmd_match(buf, "-blocked")) { 2628 if (!test_bit(Faulty, &rdev->flags) && 2629 rdev->badblocks.unacked_exist) { 2630 /* metadata handler doesn't understand badblocks, 2631 * so we need to fail the device 2632 */ 2633 md_error(rdev->mddev, rdev); 2634 } 2635 clear_bit(Blocked, &rdev->flags); 2636 clear_bit(BlockedBadBlocks, &rdev->flags); 2637 wake_up(&rdev->blocked_wait); 2638 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2639 md_wakeup_thread(rdev->mddev->thread); 2640 2641 err = 0; 2642 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2643 set_bit(In_sync, &rdev->flags); 2644 err = 0; 2645 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2646 !test_bit(Journal, &rdev->flags)) { 2647 if (rdev->mddev->pers == NULL) { 2648 clear_bit(In_sync, &rdev->flags); 2649 rdev->saved_raid_disk = rdev->raid_disk; 2650 rdev->raid_disk = -1; 2651 err = 0; 2652 } 2653 } else if (cmd_match(buf, "write_error")) { 2654 set_bit(WriteErrorSeen, &rdev->flags); 2655 err = 0; 2656 } else if (cmd_match(buf, "-write_error")) { 2657 clear_bit(WriteErrorSeen, &rdev->flags); 2658 err = 0; 2659 } else if (cmd_match(buf, "want_replacement")) { 2660 /* Any non-spare device that is not a replacement can 2661 * become want_replacement at any time, but we then need to 2662 * check if recovery is needed. 2663 */ 2664 if (rdev->raid_disk >= 0 && 2665 !test_bit(Journal, &rdev->flags) && 2666 !test_bit(Replacement, &rdev->flags)) 2667 set_bit(WantReplacement, &rdev->flags); 2668 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2669 md_wakeup_thread(rdev->mddev->thread); 2670 err = 0; 2671 } else if (cmd_match(buf, "-want_replacement")) { 2672 /* Clearing 'want_replacement' is always allowed. 2673 * Once replacements starts it is too late though. 2674 */ 2675 err = 0; 2676 clear_bit(WantReplacement, &rdev->flags); 2677 } else if (cmd_match(buf, "replacement")) { 2678 /* Can only set a device as a replacement when array has not 2679 * yet been started. Once running, replacement is automatic 2680 * from spares, or by assigning 'slot'. 2681 */ 2682 if (rdev->mddev->pers) 2683 err = -EBUSY; 2684 else { 2685 set_bit(Replacement, &rdev->flags); 2686 err = 0; 2687 } 2688 } else if (cmd_match(buf, "-replacement")) { 2689 /* Similarly, can only clear Replacement before start */ 2690 if (rdev->mddev->pers) 2691 err = -EBUSY; 2692 else { 2693 clear_bit(Replacement, &rdev->flags); 2694 err = 0; 2695 } 2696 } else if (cmd_match(buf, "re-add")) { 2697 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2698 /* clear_bit is performed _after_ all the devices 2699 * have their local Faulty bit cleared. If any writes 2700 * happen in the meantime in the local node, they 2701 * will land in the local bitmap, which will be synced 2702 * by this node eventually 2703 */ 2704 if (!mddev_is_clustered(rdev->mddev) || 2705 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2706 clear_bit(Faulty, &rdev->flags); 2707 err = add_bound_rdev(rdev); 2708 } 2709 } else 2710 err = -EBUSY; 2711 } 2712 if (!err) 2713 sysfs_notify_dirent_safe(rdev->sysfs_state); 2714 return err ? err : len; 2715 } 2716 static struct rdev_sysfs_entry rdev_state = 2717 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2718 2719 static ssize_t 2720 errors_show(struct md_rdev *rdev, char *page) 2721 { 2722 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2723 } 2724 2725 static ssize_t 2726 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2727 { 2728 unsigned int n; 2729 int rv; 2730 2731 rv = kstrtouint(buf, 10, &n); 2732 if (rv < 0) 2733 return rv; 2734 atomic_set(&rdev->corrected_errors, n); 2735 return len; 2736 } 2737 static struct rdev_sysfs_entry rdev_errors = 2738 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2739 2740 static ssize_t 2741 slot_show(struct md_rdev *rdev, char *page) 2742 { 2743 if (test_bit(Journal, &rdev->flags)) 2744 return sprintf(page, "journal\n"); 2745 else if (rdev->raid_disk < 0) 2746 return sprintf(page, "none\n"); 2747 else 2748 return sprintf(page, "%d\n", rdev->raid_disk); 2749 } 2750 2751 static ssize_t 2752 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2753 { 2754 int slot; 2755 int err; 2756 2757 if (test_bit(Journal, &rdev->flags)) 2758 return -EBUSY; 2759 if (strncmp(buf, "none", 4)==0) 2760 slot = -1; 2761 else { 2762 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2763 if (err < 0) 2764 return err; 2765 } 2766 if (rdev->mddev->pers && slot == -1) { 2767 /* Setting 'slot' on an active array requires also 2768 * updating the 'rd%d' link, and communicating 2769 * with the personality with ->hot_*_disk. 2770 * For now we only support removing 2771 * failed/spare devices. This normally happens automatically, 2772 * but not when the metadata is externally managed. 2773 */ 2774 if (rdev->raid_disk == -1) 2775 return -EEXIST; 2776 /* personality does all needed checks */ 2777 if (rdev->mddev->pers->hot_remove_disk == NULL) 2778 return -EINVAL; 2779 clear_bit(Blocked, &rdev->flags); 2780 remove_and_add_spares(rdev->mddev, rdev); 2781 if (rdev->raid_disk >= 0) 2782 return -EBUSY; 2783 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2784 md_wakeup_thread(rdev->mddev->thread); 2785 } else if (rdev->mddev->pers) { 2786 /* Activating a spare .. or possibly reactivating 2787 * if we ever get bitmaps working here. 2788 */ 2789 int err; 2790 2791 if (rdev->raid_disk != -1) 2792 return -EBUSY; 2793 2794 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2795 return -EBUSY; 2796 2797 if (rdev->mddev->pers->hot_add_disk == NULL) 2798 return -EINVAL; 2799 2800 if (slot >= rdev->mddev->raid_disks && 2801 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2802 return -ENOSPC; 2803 2804 rdev->raid_disk = slot; 2805 if (test_bit(In_sync, &rdev->flags)) 2806 rdev->saved_raid_disk = slot; 2807 else 2808 rdev->saved_raid_disk = -1; 2809 clear_bit(In_sync, &rdev->flags); 2810 clear_bit(Bitmap_sync, &rdev->flags); 2811 err = rdev->mddev->pers-> 2812 hot_add_disk(rdev->mddev, rdev); 2813 if (err) { 2814 rdev->raid_disk = -1; 2815 return err; 2816 } else 2817 sysfs_notify_dirent_safe(rdev->sysfs_state); 2818 if (sysfs_link_rdev(rdev->mddev, rdev)) 2819 /* failure here is OK */; 2820 /* don't wakeup anyone, leave that to userspace. */ 2821 } else { 2822 if (slot >= rdev->mddev->raid_disks && 2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2824 return -ENOSPC; 2825 rdev->raid_disk = slot; 2826 /* assume it is working */ 2827 clear_bit(Faulty, &rdev->flags); 2828 clear_bit(WriteMostly, &rdev->flags); 2829 set_bit(In_sync, &rdev->flags); 2830 sysfs_notify_dirent_safe(rdev->sysfs_state); 2831 } 2832 return len; 2833 } 2834 2835 static struct rdev_sysfs_entry rdev_slot = 2836 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2837 2838 static ssize_t 2839 offset_show(struct md_rdev *rdev, char *page) 2840 { 2841 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2842 } 2843 2844 static ssize_t 2845 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2846 { 2847 unsigned long long offset; 2848 if (kstrtoull(buf, 10, &offset) < 0) 2849 return -EINVAL; 2850 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2851 return -EBUSY; 2852 if (rdev->sectors && rdev->mddev->external) 2853 /* Must set offset before size, so overlap checks 2854 * can be sane */ 2855 return -EBUSY; 2856 rdev->data_offset = offset; 2857 rdev->new_data_offset = offset; 2858 return len; 2859 } 2860 2861 static struct rdev_sysfs_entry rdev_offset = 2862 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2863 2864 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2865 { 2866 return sprintf(page, "%llu\n", 2867 (unsigned long long)rdev->new_data_offset); 2868 } 2869 2870 static ssize_t new_offset_store(struct md_rdev *rdev, 2871 const char *buf, size_t len) 2872 { 2873 unsigned long long new_offset; 2874 struct mddev *mddev = rdev->mddev; 2875 2876 if (kstrtoull(buf, 10, &new_offset) < 0) 2877 return -EINVAL; 2878 2879 if (mddev->sync_thread || 2880 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2881 return -EBUSY; 2882 if (new_offset == rdev->data_offset) 2883 /* reset is always permitted */ 2884 ; 2885 else if (new_offset > rdev->data_offset) { 2886 /* must not push array size beyond rdev_sectors */ 2887 if (new_offset - rdev->data_offset 2888 + mddev->dev_sectors > rdev->sectors) 2889 return -E2BIG; 2890 } 2891 /* Metadata worries about other space details. */ 2892 2893 /* decreasing the offset is inconsistent with a backwards 2894 * reshape. 2895 */ 2896 if (new_offset < rdev->data_offset && 2897 mddev->reshape_backwards) 2898 return -EINVAL; 2899 /* Increasing offset is inconsistent with forwards 2900 * reshape. reshape_direction should be set to 2901 * 'backwards' first. 2902 */ 2903 if (new_offset > rdev->data_offset && 2904 !mddev->reshape_backwards) 2905 return -EINVAL; 2906 2907 if (mddev->pers && mddev->persistent && 2908 !super_types[mddev->major_version] 2909 .allow_new_offset(rdev, new_offset)) 2910 return -E2BIG; 2911 rdev->new_data_offset = new_offset; 2912 if (new_offset > rdev->data_offset) 2913 mddev->reshape_backwards = 1; 2914 else if (new_offset < rdev->data_offset) 2915 mddev->reshape_backwards = 0; 2916 2917 return len; 2918 } 2919 static struct rdev_sysfs_entry rdev_new_offset = 2920 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2921 2922 static ssize_t 2923 rdev_size_show(struct md_rdev *rdev, char *page) 2924 { 2925 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2926 } 2927 2928 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2929 { 2930 /* check if two start/length pairs overlap */ 2931 if (s1+l1 <= s2) 2932 return 0; 2933 if (s2+l2 <= s1) 2934 return 0; 2935 return 1; 2936 } 2937 2938 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2939 { 2940 unsigned long long blocks; 2941 sector_t new; 2942 2943 if (kstrtoull(buf, 10, &blocks) < 0) 2944 return -EINVAL; 2945 2946 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2947 return -EINVAL; /* sector conversion overflow */ 2948 2949 new = blocks * 2; 2950 if (new != blocks * 2) 2951 return -EINVAL; /* unsigned long long to sector_t overflow */ 2952 2953 *sectors = new; 2954 return 0; 2955 } 2956 2957 static ssize_t 2958 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2959 { 2960 struct mddev *my_mddev = rdev->mddev; 2961 sector_t oldsectors = rdev->sectors; 2962 sector_t sectors; 2963 2964 if (test_bit(Journal, &rdev->flags)) 2965 return -EBUSY; 2966 if (strict_blocks_to_sectors(buf, §ors) < 0) 2967 return -EINVAL; 2968 if (rdev->data_offset != rdev->new_data_offset) 2969 return -EINVAL; /* too confusing */ 2970 if (my_mddev->pers && rdev->raid_disk >= 0) { 2971 if (my_mddev->persistent) { 2972 sectors = super_types[my_mddev->major_version]. 2973 rdev_size_change(rdev, sectors); 2974 if (!sectors) 2975 return -EBUSY; 2976 } else if (!sectors) 2977 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2978 rdev->data_offset; 2979 if (!my_mddev->pers->resize) 2980 /* Cannot change size for RAID0 or Linear etc */ 2981 return -EINVAL; 2982 } 2983 if (sectors < my_mddev->dev_sectors) 2984 return -EINVAL; /* component must fit device */ 2985 2986 rdev->sectors = sectors; 2987 if (sectors > oldsectors && my_mddev->external) { 2988 /* Need to check that all other rdevs with the same 2989 * ->bdev do not overlap. 'rcu' is sufficient to walk 2990 * the rdev lists safely. 2991 * This check does not provide a hard guarantee, it 2992 * just helps avoid dangerous mistakes. 2993 */ 2994 struct mddev *mddev; 2995 int overlap = 0; 2996 struct list_head *tmp; 2997 2998 rcu_read_lock(); 2999 for_each_mddev(mddev, tmp) { 3000 struct md_rdev *rdev2; 3001 3002 rdev_for_each(rdev2, mddev) 3003 if (rdev->bdev == rdev2->bdev && 3004 rdev != rdev2 && 3005 overlaps(rdev->data_offset, rdev->sectors, 3006 rdev2->data_offset, 3007 rdev2->sectors)) { 3008 overlap = 1; 3009 break; 3010 } 3011 if (overlap) { 3012 mddev_put(mddev); 3013 break; 3014 } 3015 } 3016 rcu_read_unlock(); 3017 if (overlap) { 3018 /* Someone else could have slipped in a size 3019 * change here, but doing so is just silly. 3020 * We put oldsectors back because we *know* it is 3021 * safe, and trust userspace not to race with 3022 * itself 3023 */ 3024 rdev->sectors = oldsectors; 3025 return -EBUSY; 3026 } 3027 } 3028 return len; 3029 } 3030 3031 static struct rdev_sysfs_entry rdev_size = 3032 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3033 3034 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3035 { 3036 unsigned long long recovery_start = rdev->recovery_offset; 3037 3038 if (test_bit(In_sync, &rdev->flags) || 3039 recovery_start == MaxSector) 3040 return sprintf(page, "none\n"); 3041 3042 return sprintf(page, "%llu\n", recovery_start); 3043 } 3044 3045 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3046 { 3047 unsigned long long recovery_start; 3048 3049 if (cmd_match(buf, "none")) 3050 recovery_start = MaxSector; 3051 else if (kstrtoull(buf, 10, &recovery_start)) 3052 return -EINVAL; 3053 3054 if (rdev->mddev->pers && 3055 rdev->raid_disk >= 0) 3056 return -EBUSY; 3057 3058 rdev->recovery_offset = recovery_start; 3059 if (recovery_start == MaxSector) 3060 set_bit(In_sync, &rdev->flags); 3061 else 3062 clear_bit(In_sync, &rdev->flags); 3063 return len; 3064 } 3065 3066 static struct rdev_sysfs_entry rdev_recovery_start = 3067 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3068 3069 /* sysfs access to bad-blocks list. 3070 * We present two files. 3071 * 'bad-blocks' lists sector numbers and lengths of ranges that 3072 * are recorded as bad. The list is truncated to fit within 3073 * the one-page limit of sysfs. 3074 * Writing "sector length" to this file adds an acknowledged 3075 * bad block list. 3076 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3077 * been acknowledged. Writing to this file adds bad blocks 3078 * without acknowledging them. This is largely for testing. 3079 */ 3080 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3081 { 3082 return badblocks_show(&rdev->badblocks, page, 0); 3083 } 3084 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3085 { 3086 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3087 /* Maybe that ack was all we needed */ 3088 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3089 wake_up(&rdev->blocked_wait); 3090 return rv; 3091 } 3092 static struct rdev_sysfs_entry rdev_bad_blocks = 3093 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3094 3095 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3096 { 3097 return badblocks_show(&rdev->badblocks, page, 1); 3098 } 3099 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3100 { 3101 return badblocks_store(&rdev->badblocks, page, len, 1); 3102 } 3103 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3104 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3105 3106 static struct attribute *rdev_default_attrs[] = { 3107 &rdev_state.attr, 3108 &rdev_errors.attr, 3109 &rdev_slot.attr, 3110 &rdev_offset.attr, 3111 &rdev_new_offset.attr, 3112 &rdev_size.attr, 3113 &rdev_recovery_start.attr, 3114 &rdev_bad_blocks.attr, 3115 &rdev_unack_bad_blocks.attr, 3116 NULL, 3117 }; 3118 static ssize_t 3119 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3120 { 3121 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3122 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3123 3124 if (!entry->show) 3125 return -EIO; 3126 if (!rdev->mddev) 3127 return -EBUSY; 3128 return entry->show(rdev, page); 3129 } 3130 3131 static ssize_t 3132 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3133 const char *page, size_t length) 3134 { 3135 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3136 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3137 ssize_t rv; 3138 struct mddev *mddev = rdev->mddev; 3139 3140 if (!entry->store) 3141 return -EIO; 3142 if (!capable(CAP_SYS_ADMIN)) 3143 return -EACCES; 3144 rv = mddev ? mddev_lock(mddev): -EBUSY; 3145 if (!rv) { 3146 if (rdev->mddev == NULL) 3147 rv = -EBUSY; 3148 else 3149 rv = entry->store(rdev, page, length); 3150 mddev_unlock(mddev); 3151 } 3152 return rv; 3153 } 3154 3155 static void rdev_free(struct kobject *ko) 3156 { 3157 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3158 kfree(rdev); 3159 } 3160 static const struct sysfs_ops rdev_sysfs_ops = { 3161 .show = rdev_attr_show, 3162 .store = rdev_attr_store, 3163 }; 3164 static struct kobj_type rdev_ktype = { 3165 .release = rdev_free, 3166 .sysfs_ops = &rdev_sysfs_ops, 3167 .default_attrs = rdev_default_attrs, 3168 }; 3169 3170 int md_rdev_init(struct md_rdev *rdev) 3171 { 3172 rdev->desc_nr = -1; 3173 rdev->saved_raid_disk = -1; 3174 rdev->raid_disk = -1; 3175 rdev->flags = 0; 3176 rdev->data_offset = 0; 3177 rdev->new_data_offset = 0; 3178 rdev->sb_events = 0; 3179 rdev->last_read_error = 0; 3180 rdev->sb_loaded = 0; 3181 rdev->bb_page = NULL; 3182 atomic_set(&rdev->nr_pending, 0); 3183 atomic_set(&rdev->read_errors, 0); 3184 atomic_set(&rdev->corrected_errors, 0); 3185 3186 INIT_LIST_HEAD(&rdev->same_set); 3187 init_waitqueue_head(&rdev->blocked_wait); 3188 3189 /* Add space to store bad block list. 3190 * This reserves the space even on arrays where it cannot 3191 * be used - I wonder if that matters 3192 */ 3193 return badblocks_init(&rdev->badblocks, 0); 3194 } 3195 EXPORT_SYMBOL_GPL(md_rdev_init); 3196 /* 3197 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3198 * 3199 * mark the device faulty if: 3200 * 3201 * - the device is nonexistent (zero size) 3202 * - the device has no valid superblock 3203 * 3204 * a faulty rdev _never_ has rdev->sb set. 3205 */ 3206 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3207 { 3208 char b[BDEVNAME_SIZE]; 3209 int err; 3210 struct md_rdev *rdev; 3211 sector_t size; 3212 3213 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3214 if (!rdev) { 3215 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3216 return ERR_PTR(-ENOMEM); 3217 } 3218 3219 err = md_rdev_init(rdev); 3220 if (err) 3221 goto abort_free; 3222 err = alloc_disk_sb(rdev); 3223 if (err) 3224 goto abort_free; 3225 3226 err = lock_rdev(rdev, newdev, super_format == -2); 3227 if (err) 3228 goto abort_free; 3229 3230 kobject_init(&rdev->kobj, &rdev_ktype); 3231 3232 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3233 if (!size) { 3234 printk(KERN_WARNING 3235 "md: %s has zero or unknown size, marking faulty!\n", 3236 bdevname(rdev->bdev,b)); 3237 err = -EINVAL; 3238 goto abort_free; 3239 } 3240 3241 if (super_format >= 0) { 3242 err = super_types[super_format]. 3243 load_super(rdev, NULL, super_minor); 3244 if (err == -EINVAL) { 3245 printk(KERN_WARNING 3246 "md: %s does not have a valid v%d.%d " 3247 "superblock, not importing!\n", 3248 bdevname(rdev->bdev,b), 3249 super_format, super_minor); 3250 goto abort_free; 3251 } 3252 if (err < 0) { 3253 printk(KERN_WARNING 3254 "md: could not read %s's sb, not importing!\n", 3255 bdevname(rdev->bdev,b)); 3256 goto abort_free; 3257 } 3258 } 3259 3260 return rdev; 3261 3262 abort_free: 3263 if (rdev->bdev) 3264 unlock_rdev(rdev); 3265 md_rdev_clear(rdev); 3266 kfree(rdev); 3267 return ERR_PTR(err); 3268 } 3269 3270 /* 3271 * Check a full RAID array for plausibility 3272 */ 3273 3274 static void analyze_sbs(struct mddev *mddev) 3275 { 3276 int i; 3277 struct md_rdev *rdev, *freshest, *tmp; 3278 char b[BDEVNAME_SIZE]; 3279 3280 freshest = NULL; 3281 rdev_for_each_safe(rdev, tmp, mddev) 3282 switch (super_types[mddev->major_version]. 3283 load_super(rdev, freshest, mddev->minor_version)) { 3284 case 1: 3285 freshest = rdev; 3286 break; 3287 case 0: 3288 break; 3289 default: 3290 printk( KERN_ERR \ 3291 "md: fatal superblock inconsistency in %s" 3292 " -- removing from array\n", 3293 bdevname(rdev->bdev,b)); 3294 md_kick_rdev_from_array(rdev); 3295 } 3296 3297 super_types[mddev->major_version]. 3298 validate_super(mddev, freshest); 3299 3300 i = 0; 3301 rdev_for_each_safe(rdev, tmp, mddev) { 3302 if (mddev->max_disks && 3303 (rdev->desc_nr >= mddev->max_disks || 3304 i > mddev->max_disks)) { 3305 printk(KERN_WARNING 3306 "md: %s: %s: only %d devices permitted\n", 3307 mdname(mddev), bdevname(rdev->bdev, b), 3308 mddev->max_disks); 3309 md_kick_rdev_from_array(rdev); 3310 continue; 3311 } 3312 if (rdev != freshest) { 3313 if (super_types[mddev->major_version]. 3314 validate_super(mddev, rdev)) { 3315 printk(KERN_WARNING "md: kicking non-fresh %s" 3316 " from array!\n", 3317 bdevname(rdev->bdev,b)); 3318 md_kick_rdev_from_array(rdev); 3319 continue; 3320 } 3321 } 3322 if (mddev->level == LEVEL_MULTIPATH) { 3323 rdev->desc_nr = i++; 3324 rdev->raid_disk = rdev->desc_nr; 3325 set_bit(In_sync, &rdev->flags); 3326 } else if (rdev->raid_disk >= 3327 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3328 !test_bit(Journal, &rdev->flags)) { 3329 rdev->raid_disk = -1; 3330 clear_bit(In_sync, &rdev->flags); 3331 } 3332 } 3333 } 3334 3335 /* Read a fixed-point number. 3336 * Numbers in sysfs attributes should be in "standard" units where 3337 * possible, so time should be in seconds. 3338 * However we internally use a a much smaller unit such as 3339 * milliseconds or jiffies. 3340 * This function takes a decimal number with a possible fractional 3341 * component, and produces an integer which is the result of 3342 * multiplying that number by 10^'scale'. 3343 * all without any floating-point arithmetic. 3344 */ 3345 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3346 { 3347 unsigned long result = 0; 3348 long decimals = -1; 3349 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3350 if (*cp == '.') 3351 decimals = 0; 3352 else if (decimals < scale) { 3353 unsigned int value; 3354 value = *cp - '0'; 3355 result = result * 10 + value; 3356 if (decimals >= 0) 3357 decimals++; 3358 } 3359 cp++; 3360 } 3361 if (*cp == '\n') 3362 cp++; 3363 if (*cp) 3364 return -EINVAL; 3365 if (decimals < 0) 3366 decimals = 0; 3367 while (decimals < scale) { 3368 result *= 10; 3369 decimals ++; 3370 } 3371 *res = result; 3372 return 0; 3373 } 3374 3375 static ssize_t 3376 safe_delay_show(struct mddev *mddev, char *page) 3377 { 3378 int msec = (mddev->safemode_delay*1000)/HZ; 3379 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3380 } 3381 static ssize_t 3382 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3383 { 3384 unsigned long msec; 3385 3386 if (mddev_is_clustered(mddev)) { 3387 pr_info("md: Safemode is disabled for clustered mode\n"); 3388 return -EINVAL; 3389 } 3390 3391 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3392 return -EINVAL; 3393 if (msec == 0) 3394 mddev->safemode_delay = 0; 3395 else { 3396 unsigned long old_delay = mddev->safemode_delay; 3397 unsigned long new_delay = (msec*HZ)/1000; 3398 3399 if (new_delay == 0) 3400 new_delay = 1; 3401 mddev->safemode_delay = new_delay; 3402 if (new_delay < old_delay || old_delay == 0) 3403 mod_timer(&mddev->safemode_timer, jiffies+1); 3404 } 3405 return len; 3406 } 3407 static struct md_sysfs_entry md_safe_delay = 3408 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3409 3410 static ssize_t 3411 level_show(struct mddev *mddev, char *page) 3412 { 3413 struct md_personality *p; 3414 int ret; 3415 spin_lock(&mddev->lock); 3416 p = mddev->pers; 3417 if (p) 3418 ret = sprintf(page, "%s\n", p->name); 3419 else if (mddev->clevel[0]) 3420 ret = sprintf(page, "%s\n", mddev->clevel); 3421 else if (mddev->level != LEVEL_NONE) 3422 ret = sprintf(page, "%d\n", mddev->level); 3423 else 3424 ret = 0; 3425 spin_unlock(&mddev->lock); 3426 return ret; 3427 } 3428 3429 static ssize_t 3430 level_store(struct mddev *mddev, const char *buf, size_t len) 3431 { 3432 char clevel[16]; 3433 ssize_t rv; 3434 size_t slen = len; 3435 struct md_personality *pers, *oldpers; 3436 long level; 3437 void *priv, *oldpriv; 3438 struct md_rdev *rdev; 3439 3440 if (slen == 0 || slen >= sizeof(clevel)) 3441 return -EINVAL; 3442 3443 rv = mddev_lock(mddev); 3444 if (rv) 3445 return rv; 3446 3447 if (mddev->pers == NULL) { 3448 strncpy(mddev->clevel, buf, slen); 3449 if (mddev->clevel[slen-1] == '\n') 3450 slen--; 3451 mddev->clevel[slen] = 0; 3452 mddev->level = LEVEL_NONE; 3453 rv = len; 3454 goto out_unlock; 3455 } 3456 rv = -EROFS; 3457 if (mddev->ro) 3458 goto out_unlock; 3459 3460 /* request to change the personality. Need to ensure: 3461 * - array is not engaged in resync/recovery/reshape 3462 * - old personality can be suspended 3463 * - new personality will access other array. 3464 */ 3465 3466 rv = -EBUSY; 3467 if (mddev->sync_thread || 3468 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3469 mddev->reshape_position != MaxSector || 3470 mddev->sysfs_active) 3471 goto out_unlock; 3472 3473 rv = -EINVAL; 3474 if (!mddev->pers->quiesce) { 3475 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3476 mdname(mddev), mddev->pers->name); 3477 goto out_unlock; 3478 } 3479 3480 /* Now find the new personality */ 3481 strncpy(clevel, buf, slen); 3482 if (clevel[slen-1] == '\n') 3483 slen--; 3484 clevel[slen] = 0; 3485 if (kstrtol(clevel, 10, &level)) 3486 level = LEVEL_NONE; 3487 3488 if (request_module("md-%s", clevel) != 0) 3489 request_module("md-level-%s", clevel); 3490 spin_lock(&pers_lock); 3491 pers = find_pers(level, clevel); 3492 if (!pers || !try_module_get(pers->owner)) { 3493 spin_unlock(&pers_lock); 3494 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3495 rv = -EINVAL; 3496 goto out_unlock; 3497 } 3498 spin_unlock(&pers_lock); 3499 3500 if (pers == mddev->pers) { 3501 /* Nothing to do! */ 3502 module_put(pers->owner); 3503 rv = len; 3504 goto out_unlock; 3505 } 3506 if (!pers->takeover) { 3507 module_put(pers->owner); 3508 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3509 mdname(mddev), clevel); 3510 rv = -EINVAL; 3511 goto out_unlock; 3512 } 3513 3514 rdev_for_each(rdev, mddev) 3515 rdev->new_raid_disk = rdev->raid_disk; 3516 3517 /* ->takeover must set new_* and/or delta_disks 3518 * if it succeeds, and may set them when it fails. 3519 */ 3520 priv = pers->takeover(mddev); 3521 if (IS_ERR(priv)) { 3522 mddev->new_level = mddev->level; 3523 mddev->new_layout = mddev->layout; 3524 mddev->new_chunk_sectors = mddev->chunk_sectors; 3525 mddev->raid_disks -= mddev->delta_disks; 3526 mddev->delta_disks = 0; 3527 mddev->reshape_backwards = 0; 3528 module_put(pers->owner); 3529 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3530 mdname(mddev), clevel); 3531 rv = PTR_ERR(priv); 3532 goto out_unlock; 3533 } 3534 3535 /* Looks like we have a winner */ 3536 mddev_suspend(mddev); 3537 mddev_detach(mddev); 3538 3539 spin_lock(&mddev->lock); 3540 oldpers = mddev->pers; 3541 oldpriv = mddev->private; 3542 mddev->pers = pers; 3543 mddev->private = priv; 3544 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3545 mddev->level = mddev->new_level; 3546 mddev->layout = mddev->new_layout; 3547 mddev->chunk_sectors = mddev->new_chunk_sectors; 3548 mddev->delta_disks = 0; 3549 mddev->reshape_backwards = 0; 3550 mddev->degraded = 0; 3551 spin_unlock(&mddev->lock); 3552 3553 if (oldpers->sync_request == NULL && 3554 mddev->external) { 3555 /* We are converting from a no-redundancy array 3556 * to a redundancy array and metadata is managed 3557 * externally so we need to be sure that writes 3558 * won't block due to a need to transition 3559 * clean->dirty 3560 * until external management is started. 3561 */ 3562 mddev->in_sync = 0; 3563 mddev->safemode_delay = 0; 3564 mddev->safemode = 0; 3565 } 3566 3567 oldpers->free(mddev, oldpriv); 3568 3569 if (oldpers->sync_request == NULL && 3570 pers->sync_request != NULL) { 3571 /* need to add the md_redundancy_group */ 3572 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3573 printk(KERN_WARNING 3574 "md: cannot register extra attributes for %s\n", 3575 mdname(mddev)); 3576 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3577 } 3578 if (oldpers->sync_request != NULL && 3579 pers->sync_request == NULL) { 3580 /* need to remove the md_redundancy_group */ 3581 if (mddev->to_remove == NULL) 3582 mddev->to_remove = &md_redundancy_group; 3583 } 3584 3585 module_put(oldpers->owner); 3586 3587 rdev_for_each(rdev, mddev) { 3588 if (rdev->raid_disk < 0) 3589 continue; 3590 if (rdev->new_raid_disk >= mddev->raid_disks) 3591 rdev->new_raid_disk = -1; 3592 if (rdev->new_raid_disk == rdev->raid_disk) 3593 continue; 3594 sysfs_unlink_rdev(mddev, rdev); 3595 } 3596 rdev_for_each(rdev, mddev) { 3597 if (rdev->raid_disk < 0) 3598 continue; 3599 if (rdev->new_raid_disk == rdev->raid_disk) 3600 continue; 3601 rdev->raid_disk = rdev->new_raid_disk; 3602 if (rdev->raid_disk < 0) 3603 clear_bit(In_sync, &rdev->flags); 3604 else { 3605 if (sysfs_link_rdev(mddev, rdev)) 3606 printk(KERN_WARNING "md: cannot register rd%d" 3607 " for %s after level change\n", 3608 rdev->raid_disk, mdname(mddev)); 3609 } 3610 } 3611 3612 if (pers->sync_request == NULL) { 3613 /* this is now an array without redundancy, so 3614 * it must always be in_sync 3615 */ 3616 mddev->in_sync = 1; 3617 del_timer_sync(&mddev->safemode_timer); 3618 } 3619 blk_set_stacking_limits(&mddev->queue->limits); 3620 pers->run(mddev); 3621 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3622 mddev_resume(mddev); 3623 if (!mddev->thread) 3624 md_update_sb(mddev, 1); 3625 sysfs_notify(&mddev->kobj, NULL, "level"); 3626 md_new_event(mddev); 3627 rv = len; 3628 out_unlock: 3629 mddev_unlock(mddev); 3630 return rv; 3631 } 3632 3633 static struct md_sysfs_entry md_level = 3634 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3635 3636 static ssize_t 3637 layout_show(struct mddev *mddev, char *page) 3638 { 3639 /* just a number, not meaningful for all levels */ 3640 if (mddev->reshape_position != MaxSector && 3641 mddev->layout != mddev->new_layout) 3642 return sprintf(page, "%d (%d)\n", 3643 mddev->new_layout, mddev->layout); 3644 return sprintf(page, "%d\n", mddev->layout); 3645 } 3646 3647 static ssize_t 3648 layout_store(struct mddev *mddev, const char *buf, size_t len) 3649 { 3650 unsigned int n; 3651 int err; 3652 3653 err = kstrtouint(buf, 10, &n); 3654 if (err < 0) 3655 return err; 3656 err = mddev_lock(mddev); 3657 if (err) 3658 return err; 3659 3660 if (mddev->pers) { 3661 if (mddev->pers->check_reshape == NULL) 3662 err = -EBUSY; 3663 else if (mddev->ro) 3664 err = -EROFS; 3665 else { 3666 mddev->new_layout = n; 3667 err = mddev->pers->check_reshape(mddev); 3668 if (err) 3669 mddev->new_layout = mddev->layout; 3670 } 3671 } else { 3672 mddev->new_layout = n; 3673 if (mddev->reshape_position == MaxSector) 3674 mddev->layout = n; 3675 } 3676 mddev_unlock(mddev); 3677 return err ?: len; 3678 } 3679 static struct md_sysfs_entry md_layout = 3680 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3681 3682 static ssize_t 3683 raid_disks_show(struct mddev *mddev, char *page) 3684 { 3685 if (mddev->raid_disks == 0) 3686 return 0; 3687 if (mddev->reshape_position != MaxSector && 3688 mddev->delta_disks != 0) 3689 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3690 mddev->raid_disks - mddev->delta_disks); 3691 return sprintf(page, "%d\n", mddev->raid_disks); 3692 } 3693 3694 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3695 3696 static ssize_t 3697 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3698 { 3699 unsigned int n; 3700 int err; 3701 3702 err = kstrtouint(buf, 10, &n); 3703 if (err < 0) 3704 return err; 3705 3706 err = mddev_lock(mddev); 3707 if (err) 3708 return err; 3709 if (mddev->pers) 3710 err = update_raid_disks(mddev, n); 3711 else if (mddev->reshape_position != MaxSector) { 3712 struct md_rdev *rdev; 3713 int olddisks = mddev->raid_disks - mddev->delta_disks; 3714 3715 err = -EINVAL; 3716 rdev_for_each(rdev, mddev) { 3717 if (olddisks < n && 3718 rdev->data_offset < rdev->new_data_offset) 3719 goto out_unlock; 3720 if (olddisks > n && 3721 rdev->data_offset > rdev->new_data_offset) 3722 goto out_unlock; 3723 } 3724 err = 0; 3725 mddev->delta_disks = n - olddisks; 3726 mddev->raid_disks = n; 3727 mddev->reshape_backwards = (mddev->delta_disks < 0); 3728 } else 3729 mddev->raid_disks = n; 3730 out_unlock: 3731 mddev_unlock(mddev); 3732 return err ? err : len; 3733 } 3734 static struct md_sysfs_entry md_raid_disks = 3735 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3736 3737 static ssize_t 3738 chunk_size_show(struct mddev *mddev, char *page) 3739 { 3740 if (mddev->reshape_position != MaxSector && 3741 mddev->chunk_sectors != mddev->new_chunk_sectors) 3742 return sprintf(page, "%d (%d)\n", 3743 mddev->new_chunk_sectors << 9, 3744 mddev->chunk_sectors << 9); 3745 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3746 } 3747 3748 static ssize_t 3749 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3750 { 3751 unsigned long n; 3752 int err; 3753 3754 err = kstrtoul(buf, 10, &n); 3755 if (err < 0) 3756 return err; 3757 3758 err = mddev_lock(mddev); 3759 if (err) 3760 return err; 3761 if (mddev->pers) { 3762 if (mddev->pers->check_reshape == NULL) 3763 err = -EBUSY; 3764 else if (mddev->ro) 3765 err = -EROFS; 3766 else { 3767 mddev->new_chunk_sectors = n >> 9; 3768 err = mddev->pers->check_reshape(mddev); 3769 if (err) 3770 mddev->new_chunk_sectors = mddev->chunk_sectors; 3771 } 3772 } else { 3773 mddev->new_chunk_sectors = n >> 9; 3774 if (mddev->reshape_position == MaxSector) 3775 mddev->chunk_sectors = n >> 9; 3776 } 3777 mddev_unlock(mddev); 3778 return err ?: len; 3779 } 3780 static struct md_sysfs_entry md_chunk_size = 3781 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3782 3783 static ssize_t 3784 resync_start_show(struct mddev *mddev, char *page) 3785 { 3786 if (mddev->recovery_cp == MaxSector) 3787 return sprintf(page, "none\n"); 3788 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3789 } 3790 3791 static ssize_t 3792 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3793 { 3794 unsigned long long n; 3795 int err; 3796 3797 if (cmd_match(buf, "none")) 3798 n = MaxSector; 3799 else { 3800 err = kstrtoull(buf, 10, &n); 3801 if (err < 0) 3802 return err; 3803 if (n != (sector_t)n) 3804 return -EINVAL; 3805 } 3806 3807 err = mddev_lock(mddev); 3808 if (err) 3809 return err; 3810 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3811 err = -EBUSY; 3812 3813 if (!err) { 3814 mddev->recovery_cp = n; 3815 if (mddev->pers) 3816 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3817 } 3818 mddev_unlock(mddev); 3819 return err ?: len; 3820 } 3821 static struct md_sysfs_entry md_resync_start = 3822 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 3823 resync_start_show, resync_start_store); 3824 3825 /* 3826 * The array state can be: 3827 * 3828 * clear 3829 * No devices, no size, no level 3830 * Equivalent to STOP_ARRAY ioctl 3831 * inactive 3832 * May have some settings, but array is not active 3833 * all IO results in error 3834 * When written, doesn't tear down array, but just stops it 3835 * suspended (not supported yet) 3836 * All IO requests will block. The array can be reconfigured. 3837 * Writing this, if accepted, will block until array is quiescent 3838 * readonly 3839 * no resync can happen. no superblocks get written. 3840 * write requests fail 3841 * read-auto 3842 * like readonly, but behaves like 'clean' on a write request. 3843 * 3844 * clean - no pending writes, but otherwise active. 3845 * When written to inactive array, starts without resync 3846 * If a write request arrives then 3847 * if metadata is known, mark 'dirty' and switch to 'active'. 3848 * if not known, block and switch to write-pending 3849 * If written to an active array that has pending writes, then fails. 3850 * active 3851 * fully active: IO and resync can be happening. 3852 * When written to inactive array, starts with resync 3853 * 3854 * write-pending 3855 * clean, but writes are blocked waiting for 'active' to be written. 3856 * 3857 * active-idle 3858 * like active, but no writes have been seen for a while (100msec). 3859 * 3860 */ 3861 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3862 write_pending, active_idle, bad_word}; 3863 static char *array_states[] = { 3864 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3865 "write-pending", "active-idle", NULL }; 3866 3867 static int match_word(const char *word, char **list) 3868 { 3869 int n; 3870 for (n=0; list[n]; n++) 3871 if (cmd_match(word, list[n])) 3872 break; 3873 return n; 3874 } 3875 3876 static ssize_t 3877 array_state_show(struct mddev *mddev, char *page) 3878 { 3879 enum array_state st = inactive; 3880 3881 if (mddev->pers) 3882 switch(mddev->ro) { 3883 case 1: 3884 st = readonly; 3885 break; 3886 case 2: 3887 st = read_auto; 3888 break; 3889 case 0: 3890 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3891 st = write_pending; 3892 else if (mddev->in_sync) 3893 st = clean; 3894 else if (mddev->safemode) 3895 st = active_idle; 3896 else 3897 st = active; 3898 } 3899 else { 3900 if (list_empty(&mddev->disks) && 3901 mddev->raid_disks == 0 && 3902 mddev->dev_sectors == 0) 3903 st = clear; 3904 else 3905 st = inactive; 3906 } 3907 return sprintf(page, "%s\n", array_states[st]); 3908 } 3909 3910 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3911 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3912 static int do_md_run(struct mddev *mddev); 3913 static int restart_array(struct mddev *mddev); 3914 3915 static ssize_t 3916 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3917 { 3918 int err; 3919 enum array_state st = match_word(buf, array_states); 3920 3921 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3922 /* don't take reconfig_mutex when toggling between 3923 * clean and active 3924 */ 3925 spin_lock(&mddev->lock); 3926 if (st == active) { 3927 restart_array(mddev); 3928 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3929 wake_up(&mddev->sb_wait); 3930 err = 0; 3931 } else /* st == clean */ { 3932 restart_array(mddev); 3933 if (atomic_read(&mddev->writes_pending) == 0) { 3934 if (mddev->in_sync == 0) { 3935 mddev->in_sync = 1; 3936 if (mddev->safemode == 1) 3937 mddev->safemode = 0; 3938 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3939 } 3940 err = 0; 3941 } else 3942 err = -EBUSY; 3943 } 3944 if (!err) 3945 sysfs_notify_dirent_safe(mddev->sysfs_state); 3946 spin_unlock(&mddev->lock); 3947 return err ?: len; 3948 } 3949 err = mddev_lock(mddev); 3950 if (err) 3951 return err; 3952 err = -EINVAL; 3953 switch(st) { 3954 case bad_word: 3955 break; 3956 case clear: 3957 /* stopping an active array */ 3958 err = do_md_stop(mddev, 0, NULL); 3959 break; 3960 case inactive: 3961 /* stopping an active array */ 3962 if (mddev->pers) 3963 err = do_md_stop(mddev, 2, NULL); 3964 else 3965 err = 0; /* already inactive */ 3966 break; 3967 case suspended: 3968 break; /* not supported yet */ 3969 case readonly: 3970 if (mddev->pers) 3971 err = md_set_readonly(mddev, NULL); 3972 else { 3973 mddev->ro = 1; 3974 set_disk_ro(mddev->gendisk, 1); 3975 err = do_md_run(mddev); 3976 } 3977 break; 3978 case read_auto: 3979 if (mddev->pers) { 3980 if (mddev->ro == 0) 3981 err = md_set_readonly(mddev, NULL); 3982 else if (mddev->ro == 1) 3983 err = restart_array(mddev); 3984 if (err == 0) { 3985 mddev->ro = 2; 3986 set_disk_ro(mddev->gendisk, 0); 3987 } 3988 } else { 3989 mddev->ro = 2; 3990 err = do_md_run(mddev); 3991 } 3992 break; 3993 case clean: 3994 if (mddev->pers) { 3995 err = restart_array(mddev); 3996 if (err) 3997 break; 3998 spin_lock(&mddev->lock); 3999 if (atomic_read(&mddev->writes_pending) == 0) { 4000 if (mddev->in_sync == 0) { 4001 mddev->in_sync = 1; 4002 if (mddev->safemode == 1) 4003 mddev->safemode = 0; 4004 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 4005 } 4006 err = 0; 4007 } else 4008 err = -EBUSY; 4009 spin_unlock(&mddev->lock); 4010 } else 4011 err = -EINVAL; 4012 break; 4013 case active: 4014 if (mddev->pers) { 4015 err = restart_array(mddev); 4016 if (err) 4017 break; 4018 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 4019 wake_up(&mddev->sb_wait); 4020 err = 0; 4021 } else { 4022 mddev->ro = 0; 4023 set_disk_ro(mddev->gendisk, 0); 4024 err = do_md_run(mddev); 4025 } 4026 break; 4027 case write_pending: 4028 case active_idle: 4029 /* these cannot be set */ 4030 break; 4031 } 4032 4033 if (!err) { 4034 if (mddev->hold_active == UNTIL_IOCTL) 4035 mddev->hold_active = 0; 4036 sysfs_notify_dirent_safe(mddev->sysfs_state); 4037 } 4038 mddev_unlock(mddev); 4039 return err ?: len; 4040 } 4041 static struct md_sysfs_entry md_array_state = 4042 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4043 4044 static ssize_t 4045 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4046 return sprintf(page, "%d\n", 4047 atomic_read(&mddev->max_corr_read_errors)); 4048 } 4049 4050 static ssize_t 4051 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4052 { 4053 unsigned int n; 4054 int rv; 4055 4056 rv = kstrtouint(buf, 10, &n); 4057 if (rv < 0) 4058 return rv; 4059 atomic_set(&mddev->max_corr_read_errors, n); 4060 return len; 4061 } 4062 4063 static struct md_sysfs_entry max_corr_read_errors = 4064 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4065 max_corrected_read_errors_store); 4066 4067 static ssize_t 4068 null_show(struct mddev *mddev, char *page) 4069 { 4070 return -EINVAL; 4071 } 4072 4073 static ssize_t 4074 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4075 { 4076 /* buf must be %d:%d\n? giving major and minor numbers */ 4077 /* The new device is added to the array. 4078 * If the array has a persistent superblock, we read the 4079 * superblock to initialise info and check validity. 4080 * Otherwise, only checking done is that in bind_rdev_to_array, 4081 * which mainly checks size. 4082 */ 4083 char *e; 4084 int major = simple_strtoul(buf, &e, 10); 4085 int minor; 4086 dev_t dev; 4087 struct md_rdev *rdev; 4088 int err; 4089 4090 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4091 return -EINVAL; 4092 minor = simple_strtoul(e+1, &e, 10); 4093 if (*e && *e != '\n') 4094 return -EINVAL; 4095 dev = MKDEV(major, minor); 4096 if (major != MAJOR(dev) || 4097 minor != MINOR(dev)) 4098 return -EOVERFLOW; 4099 4100 flush_workqueue(md_misc_wq); 4101 4102 err = mddev_lock(mddev); 4103 if (err) 4104 return err; 4105 if (mddev->persistent) { 4106 rdev = md_import_device(dev, mddev->major_version, 4107 mddev->minor_version); 4108 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4109 struct md_rdev *rdev0 4110 = list_entry(mddev->disks.next, 4111 struct md_rdev, same_set); 4112 err = super_types[mddev->major_version] 4113 .load_super(rdev, rdev0, mddev->minor_version); 4114 if (err < 0) 4115 goto out; 4116 } 4117 } else if (mddev->external) 4118 rdev = md_import_device(dev, -2, -1); 4119 else 4120 rdev = md_import_device(dev, -1, -1); 4121 4122 if (IS_ERR(rdev)) { 4123 mddev_unlock(mddev); 4124 return PTR_ERR(rdev); 4125 } 4126 err = bind_rdev_to_array(rdev, mddev); 4127 out: 4128 if (err) 4129 export_rdev(rdev); 4130 mddev_unlock(mddev); 4131 return err ? err : len; 4132 } 4133 4134 static struct md_sysfs_entry md_new_device = 4135 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4136 4137 static ssize_t 4138 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4139 { 4140 char *end; 4141 unsigned long chunk, end_chunk; 4142 int err; 4143 4144 err = mddev_lock(mddev); 4145 if (err) 4146 return err; 4147 if (!mddev->bitmap) 4148 goto out; 4149 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4150 while (*buf) { 4151 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4152 if (buf == end) break; 4153 if (*end == '-') { /* range */ 4154 buf = end + 1; 4155 end_chunk = simple_strtoul(buf, &end, 0); 4156 if (buf == end) break; 4157 } 4158 if (*end && !isspace(*end)) break; 4159 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4160 buf = skip_spaces(end); 4161 } 4162 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4163 out: 4164 mddev_unlock(mddev); 4165 return len; 4166 } 4167 4168 static struct md_sysfs_entry md_bitmap = 4169 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4170 4171 static ssize_t 4172 size_show(struct mddev *mddev, char *page) 4173 { 4174 return sprintf(page, "%llu\n", 4175 (unsigned long long)mddev->dev_sectors / 2); 4176 } 4177 4178 static int update_size(struct mddev *mddev, sector_t num_sectors); 4179 4180 static ssize_t 4181 size_store(struct mddev *mddev, const char *buf, size_t len) 4182 { 4183 /* If array is inactive, we can reduce the component size, but 4184 * not increase it (except from 0). 4185 * If array is active, we can try an on-line resize 4186 */ 4187 sector_t sectors; 4188 int err = strict_blocks_to_sectors(buf, §ors); 4189 4190 if (err < 0) 4191 return err; 4192 err = mddev_lock(mddev); 4193 if (err) 4194 return err; 4195 if (mddev->pers) { 4196 err = update_size(mddev, sectors); 4197 if (err == 0) 4198 md_update_sb(mddev, 1); 4199 } else { 4200 if (mddev->dev_sectors == 0 || 4201 mddev->dev_sectors > sectors) 4202 mddev->dev_sectors = sectors; 4203 else 4204 err = -ENOSPC; 4205 } 4206 mddev_unlock(mddev); 4207 return err ? err : len; 4208 } 4209 4210 static struct md_sysfs_entry md_size = 4211 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4212 4213 /* Metadata version. 4214 * This is one of 4215 * 'none' for arrays with no metadata (good luck...) 4216 * 'external' for arrays with externally managed metadata, 4217 * or N.M for internally known formats 4218 */ 4219 static ssize_t 4220 metadata_show(struct mddev *mddev, char *page) 4221 { 4222 if (mddev->persistent) 4223 return sprintf(page, "%d.%d\n", 4224 mddev->major_version, mddev->minor_version); 4225 else if (mddev->external) 4226 return sprintf(page, "external:%s\n", mddev->metadata_type); 4227 else 4228 return sprintf(page, "none\n"); 4229 } 4230 4231 static ssize_t 4232 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4233 { 4234 int major, minor; 4235 char *e; 4236 int err; 4237 /* Changing the details of 'external' metadata is 4238 * always permitted. Otherwise there must be 4239 * no devices attached to the array. 4240 */ 4241 4242 err = mddev_lock(mddev); 4243 if (err) 4244 return err; 4245 err = -EBUSY; 4246 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4247 ; 4248 else if (!list_empty(&mddev->disks)) 4249 goto out_unlock; 4250 4251 err = 0; 4252 if (cmd_match(buf, "none")) { 4253 mddev->persistent = 0; 4254 mddev->external = 0; 4255 mddev->major_version = 0; 4256 mddev->minor_version = 90; 4257 goto out_unlock; 4258 } 4259 if (strncmp(buf, "external:", 9) == 0) { 4260 size_t namelen = len-9; 4261 if (namelen >= sizeof(mddev->metadata_type)) 4262 namelen = sizeof(mddev->metadata_type)-1; 4263 strncpy(mddev->metadata_type, buf+9, namelen); 4264 mddev->metadata_type[namelen] = 0; 4265 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4266 mddev->metadata_type[--namelen] = 0; 4267 mddev->persistent = 0; 4268 mddev->external = 1; 4269 mddev->major_version = 0; 4270 mddev->minor_version = 90; 4271 goto out_unlock; 4272 } 4273 major = simple_strtoul(buf, &e, 10); 4274 err = -EINVAL; 4275 if (e==buf || *e != '.') 4276 goto out_unlock; 4277 buf = e+1; 4278 minor = simple_strtoul(buf, &e, 10); 4279 if (e==buf || (*e && *e != '\n') ) 4280 goto out_unlock; 4281 err = -ENOENT; 4282 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4283 goto out_unlock; 4284 mddev->major_version = major; 4285 mddev->minor_version = minor; 4286 mddev->persistent = 1; 4287 mddev->external = 0; 4288 err = 0; 4289 out_unlock: 4290 mddev_unlock(mddev); 4291 return err ?: len; 4292 } 4293 4294 static struct md_sysfs_entry md_metadata = 4295 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4296 4297 static ssize_t 4298 action_show(struct mddev *mddev, char *page) 4299 { 4300 char *type = "idle"; 4301 unsigned long recovery = mddev->recovery; 4302 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4303 type = "frozen"; 4304 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4305 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4306 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4307 type = "reshape"; 4308 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4309 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4310 type = "resync"; 4311 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4312 type = "check"; 4313 else 4314 type = "repair"; 4315 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4316 type = "recover"; 4317 else if (mddev->reshape_position != MaxSector) 4318 type = "reshape"; 4319 } 4320 return sprintf(page, "%s\n", type); 4321 } 4322 4323 static ssize_t 4324 action_store(struct mddev *mddev, const char *page, size_t len) 4325 { 4326 if (!mddev->pers || !mddev->pers->sync_request) 4327 return -EINVAL; 4328 4329 4330 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4331 if (cmd_match(page, "frozen")) 4332 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4333 else 4334 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4335 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4336 mddev_lock(mddev) == 0) { 4337 flush_workqueue(md_misc_wq); 4338 if (mddev->sync_thread) { 4339 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4340 md_reap_sync_thread(mddev); 4341 } 4342 mddev_unlock(mddev); 4343 } 4344 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4345 return -EBUSY; 4346 else if (cmd_match(page, "resync")) 4347 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4348 else if (cmd_match(page, "recover")) { 4349 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4350 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4351 } else if (cmd_match(page, "reshape")) { 4352 int err; 4353 if (mddev->pers->start_reshape == NULL) 4354 return -EINVAL; 4355 err = mddev_lock(mddev); 4356 if (!err) { 4357 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4358 err = -EBUSY; 4359 else { 4360 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4361 err = mddev->pers->start_reshape(mddev); 4362 } 4363 mddev_unlock(mddev); 4364 } 4365 if (err) 4366 return err; 4367 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4368 } else { 4369 if (cmd_match(page, "check")) 4370 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4371 else if (!cmd_match(page, "repair")) 4372 return -EINVAL; 4373 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4374 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4375 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4376 } 4377 if (mddev->ro == 2) { 4378 /* A write to sync_action is enough to justify 4379 * canceling read-auto mode 4380 */ 4381 mddev->ro = 0; 4382 md_wakeup_thread(mddev->sync_thread); 4383 } 4384 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4385 md_wakeup_thread(mddev->thread); 4386 sysfs_notify_dirent_safe(mddev->sysfs_action); 4387 return len; 4388 } 4389 4390 static struct md_sysfs_entry md_scan_mode = 4391 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4392 4393 static ssize_t 4394 last_sync_action_show(struct mddev *mddev, char *page) 4395 { 4396 return sprintf(page, "%s\n", mddev->last_sync_action); 4397 } 4398 4399 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4400 4401 static ssize_t 4402 mismatch_cnt_show(struct mddev *mddev, char *page) 4403 { 4404 return sprintf(page, "%llu\n", 4405 (unsigned long long) 4406 atomic64_read(&mddev->resync_mismatches)); 4407 } 4408 4409 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4410 4411 static ssize_t 4412 sync_min_show(struct mddev *mddev, char *page) 4413 { 4414 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4415 mddev->sync_speed_min ? "local": "system"); 4416 } 4417 4418 static ssize_t 4419 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4420 { 4421 unsigned int min; 4422 int rv; 4423 4424 if (strncmp(buf, "system", 6)==0) { 4425 min = 0; 4426 } else { 4427 rv = kstrtouint(buf, 10, &min); 4428 if (rv < 0) 4429 return rv; 4430 if (min == 0) 4431 return -EINVAL; 4432 } 4433 mddev->sync_speed_min = min; 4434 return len; 4435 } 4436 4437 static struct md_sysfs_entry md_sync_min = 4438 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4439 4440 static ssize_t 4441 sync_max_show(struct mddev *mddev, char *page) 4442 { 4443 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4444 mddev->sync_speed_max ? "local": "system"); 4445 } 4446 4447 static ssize_t 4448 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4449 { 4450 unsigned int max; 4451 int rv; 4452 4453 if (strncmp(buf, "system", 6)==0) { 4454 max = 0; 4455 } else { 4456 rv = kstrtouint(buf, 10, &max); 4457 if (rv < 0) 4458 return rv; 4459 if (max == 0) 4460 return -EINVAL; 4461 } 4462 mddev->sync_speed_max = max; 4463 return len; 4464 } 4465 4466 static struct md_sysfs_entry md_sync_max = 4467 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4468 4469 static ssize_t 4470 degraded_show(struct mddev *mddev, char *page) 4471 { 4472 return sprintf(page, "%d\n", mddev->degraded); 4473 } 4474 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4475 4476 static ssize_t 4477 sync_force_parallel_show(struct mddev *mddev, char *page) 4478 { 4479 return sprintf(page, "%d\n", mddev->parallel_resync); 4480 } 4481 4482 static ssize_t 4483 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4484 { 4485 long n; 4486 4487 if (kstrtol(buf, 10, &n)) 4488 return -EINVAL; 4489 4490 if (n != 0 && n != 1) 4491 return -EINVAL; 4492 4493 mddev->parallel_resync = n; 4494 4495 if (mddev->sync_thread) 4496 wake_up(&resync_wait); 4497 4498 return len; 4499 } 4500 4501 /* force parallel resync, even with shared block devices */ 4502 static struct md_sysfs_entry md_sync_force_parallel = 4503 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4504 sync_force_parallel_show, sync_force_parallel_store); 4505 4506 static ssize_t 4507 sync_speed_show(struct mddev *mddev, char *page) 4508 { 4509 unsigned long resync, dt, db; 4510 if (mddev->curr_resync == 0) 4511 return sprintf(page, "none\n"); 4512 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4513 dt = (jiffies - mddev->resync_mark) / HZ; 4514 if (!dt) dt++; 4515 db = resync - mddev->resync_mark_cnt; 4516 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4517 } 4518 4519 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4520 4521 static ssize_t 4522 sync_completed_show(struct mddev *mddev, char *page) 4523 { 4524 unsigned long long max_sectors, resync; 4525 4526 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4527 return sprintf(page, "none\n"); 4528 4529 if (mddev->curr_resync == 1 || 4530 mddev->curr_resync == 2) 4531 return sprintf(page, "delayed\n"); 4532 4533 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4534 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4535 max_sectors = mddev->resync_max_sectors; 4536 else 4537 max_sectors = mddev->dev_sectors; 4538 4539 resync = mddev->curr_resync_completed; 4540 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4541 } 4542 4543 static struct md_sysfs_entry md_sync_completed = 4544 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4545 4546 static ssize_t 4547 min_sync_show(struct mddev *mddev, char *page) 4548 { 4549 return sprintf(page, "%llu\n", 4550 (unsigned long long)mddev->resync_min); 4551 } 4552 static ssize_t 4553 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4554 { 4555 unsigned long long min; 4556 int err; 4557 4558 if (kstrtoull(buf, 10, &min)) 4559 return -EINVAL; 4560 4561 spin_lock(&mddev->lock); 4562 err = -EINVAL; 4563 if (min > mddev->resync_max) 4564 goto out_unlock; 4565 4566 err = -EBUSY; 4567 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4568 goto out_unlock; 4569 4570 /* Round down to multiple of 4K for safety */ 4571 mddev->resync_min = round_down(min, 8); 4572 err = 0; 4573 4574 out_unlock: 4575 spin_unlock(&mddev->lock); 4576 return err ?: len; 4577 } 4578 4579 static struct md_sysfs_entry md_min_sync = 4580 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4581 4582 static ssize_t 4583 max_sync_show(struct mddev *mddev, char *page) 4584 { 4585 if (mddev->resync_max == MaxSector) 4586 return sprintf(page, "max\n"); 4587 else 4588 return sprintf(page, "%llu\n", 4589 (unsigned long long)mddev->resync_max); 4590 } 4591 static ssize_t 4592 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4593 { 4594 int err; 4595 spin_lock(&mddev->lock); 4596 if (strncmp(buf, "max", 3) == 0) 4597 mddev->resync_max = MaxSector; 4598 else { 4599 unsigned long long max; 4600 int chunk; 4601 4602 err = -EINVAL; 4603 if (kstrtoull(buf, 10, &max)) 4604 goto out_unlock; 4605 if (max < mddev->resync_min) 4606 goto out_unlock; 4607 4608 err = -EBUSY; 4609 if (max < mddev->resync_max && 4610 mddev->ro == 0 && 4611 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4612 goto out_unlock; 4613 4614 /* Must be a multiple of chunk_size */ 4615 chunk = mddev->chunk_sectors; 4616 if (chunk) { 4617 sector_t temp = max; 4618 4619 err = -EINVAL; 4620 if (sector_div(temp, chunk)) 4621 goto out_unlock; 4622 } 4623 mddev->resync_max = max; 4624 } 4625 wake_up(&mddev->recovery_wait); 4626 err = 0; 4627 out_unlock: 4628 spin_unlock(&mddev->lock); 4629 return err ?: len; 4630 } 4631 4632 static struct md_sysfs_entry md_max_sync = 4633 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4634 4635 static ssize_t 4636 suspend_lo_show(struct mddev *mddev, char *page) 4637 { 4638 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4639 } 4640 4641 static ssize_t 4642 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4643 { 4644 unsigned long long old, new; 4645 int err; 4646 4647 err = kstrtoull(buf, 10, &new); 4648 if (err < 0) 4649 return err; 4650 if (new != (sector_t)new) 4651 return -EINVAL; 4652 4653 err = mddev_lock(mddev); 4654 if (err) 4655 return err; 4656 err = -EINVAL; 4657 if (mddev->pers == NULL || 4658 mddev->pers->quiesce == NULL) 4659 goto unlock; 4660 old = mddev->suspend_lo; 4661 mddev->suspend_lo = new; 4662 if (new >= old) 4663 /* Shrinking suspended region */ 4664 mddev->pers->quiesce(mddev, 2); 4665 else { 4666 /* Expanding suspended region - need to wait */ 4667 mddev->pers->quiesce(mddev, 1); 4668 mddev->pers->quiesce(mddev, 0); 4669 } 4670 err = 0; 4671 unlock: 4672 mddev_unlock(mddev); 4673 return err ?: len; 4674 } 4675 static struct md_sysfs_entry md_suspend_lo = 4676 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4677 4678 static ssize_t 4679 suspend_hi_show(struct mddev *mddev, char *page) 4680 { 4681 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4682 } 4683 4684 static ssize_t 4685 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4686 { 4687 unsigned long long old, new; 4688 int err; 4689 4690 err = kstrtoull(buf, 10, &new); 4691 if (err < 0) 4692 return err; 4693 if (new != (sector_t)new) 4694 return -EINVAL; 4695 4696 err = mddev_lock(mddev); 4697 if (err) 4698 return err; 4699 err = -EINVAL; 4700 if (mddev->pers == NULL || 4701 mddev->pers->quiesce == NULL) 4702 goto unlock; 4703 old = mddev->suspend_hi; 4704 mddev->suspend_hi = new; 4705 if (new <= old) 4706 /* Shrinking suspended region */ 4707 mddev->pers->quiesce(mddev, 2); 4708 else { 4709 /* Expanding suspended region - need to wait */ 4710 mddev->pers->quiesce(mddev, 1); 4711 mddev->pers->quiesce(mddev, 0); 4712 } 4713 err = 0; 4714 unlock: 4715 mddev_unlock(mddev); 4716 return err ?: len; 4717 } 4718 static struct md_sysfs_entry md_suspend_hi = 4719 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4720 4721 static ssize_t 4722 reshape_position_show(struct mddev *mddev, char *page) 4723 { 4724 if (mddev->reshape_position != MaxSector) 4725 return sprintf(page, "%llu\n", 4726 (unsigned long long)mddev->reshape_position); 4727 strcpy(page, "none\n"); 4728 return 5; 4729 } 4730 4731 static ssize_t 4732 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4733 { 4734 struct md_rdev *rdev; 4735 unsigned long long new; 4736 int err; 4737 4738 err = kstrtoull(buf, 10, &new); 4739 if (err < 0) 4740 return err; 4741 if (new != (sector_t)new) 4742 return -EINVAL; 4743 err = mddev_lock(mddev); 4744 if (err) 4745 return err; 4746 err = -EBUSY; 4747 if (mddev->pers) 4748 goto unlock; 4749 mddev->reshape_position = new; 4750 mddev->delta_disks = 0; 4751 mddev->reshape_backwards = 0; 4752 mddev->new_level = mddev->level; 4753 mddev->new_layout = mddev->layout; 4754 mddev->new_chunk_sectors = mddev->chunk_sectors; 4755 rdev_for_each(rdev, mddev) 4756 rdev->new_data_offset = rdev->data_offset; 4757 err = 0; 4758 unlock: 4759 mddev_unlock(mddev); 4760 return err ?: len; 4761 } 4762 4763 static struct md_sysfs_entry md_reshape_position = 4764 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4765 reshape_position_store); 4766 4767 static ssize_t 4768 reshape_direction_show(struct mddev *mddev, char *page) 4769 { 4770 return sprintf(page, "%s\n", 4771 mddev->reshape_backwards ? "backwards" : "forwards"); 4772 } 4773 4774 static ssize_t 4775 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4776 { 4777 int backwards = 0; 4778 int err; 4779 4780 if (cmd_match(buf, "forwards")) 4781 backwards = 0; 4782 else if (cmd_match(buf, "backwards")) 4783 backwards = 1; 4784 else 4785 return -EINVAL; 4786 if (mddev->reshape_backwards == backwards) 4787 return len; 4788 4789 err = mddev_lock(mddev); 4790 if (err) 4791 return err; 4792 /* check if we are allowed to change */ 4793 if (mddev->delta_disks) 4794 err = -EBUSY; 4795 else if (mddev->persistent && 4796 mddev->major_version == 0) 4797 err = -EINVAL; 4798 else 4799 mddev->reshape_backwards = backwards; 4800 mddev_unlock(mddev); 4801 return err ?: len; 4802 } 4803 4804 static struct md_sysfs_entry md_reshape_direction = 4805 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4806 reshape_direction_store); 4807 4808 static ssize_t 4809 array_size_show(struct mddev *mddev, char *page) 4810 { 4811 if (mddev->external_size) 4812 return sprintf(page, "%llu\n", 4813 (unsigned long long)mddev->array_sectors/2); 4814 else 4815 return sprintf(page, "default\n"); 4816 } 4817 4818 static ssize_t 4819 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4820 { 4821 sector_t sectors; 4822 int err; 4823 4824 err = mddev_lock(mddev); 4825 if (err) 4826 return err; 4827 4828 /* cluster raid doesn't support change array_sectors */ 4829 if (mddev_is_clustered(mddev)) 4830 return -EINVAL; 4831 4832 if (strncmp(buf, "default", 7) == 0) { 4833 if (mddev->pers) 4834 sectors = mddev->pers->size(mddev, 0, 0); 4835 else 4836 sectors = mddev->array_sectors; 4837 4838 mddev->external_size = 0; 4839 } else { 4840 if (strict_blocks_to_sectors(buf, §ors) < 0) 4841 err = -EINVAL; 4842 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4843 err = -E2BIG; 4844 else 4845 mddev->external_size = 1; 4846 } 4847 4848 if (!err) { 4849 mddev->array_sectors = sectors; 4850 if (mddev->pers) { 4851 set_capacity(mddev->gendisk, mddev->array_sectors); 4852 revalidate_disk(mddev->gendisk); 4853 } 4854 } 4855 mddev_unlock(mddev); 4856 return err ?: len; 4857 } 4858 4859 static struct md_sysfs_entry md_array_size = 4860 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4861 array_size_store); 4862 4863 static struct attribute *md_default_attrs[] = { 4864 &md_level.attr, 4865 &md_layout.attr, 4866 &md_raid_disks.attr, 4867 &md_chunk_size.attr, 4868 &md_size.attr, 4869 &md_resync_start.attr, 4870 &md_metadata.attr, 4871 &md_new_device.attr, 4872 &md_safe_delay.attr, 4873 &md_array_state.attr, 4874 &md_reshape_position.attr, 4875 &md_reshape_direction.attr, 4876 &md_array_size.attr, 4877 &max_corr_read_errors.attr, 4878 NULL, 4879 }; 4880 4881 static struct attribute *md_redundancy_attrs[] = { 4882 &md_scan_mode.attr, 4883 &md_last_scan_mode.attr, 4884 &md_mismatches.attr, 4885 &md_sync_min.attr, 4886 &md_sync_max.attr, 4887 &md_sync_speed.attr, 4888 &md_sync_force_parallel.attr, 4889 &md_sync_completed.attr, 4890 &md_min_sync.attr, 4891 &md_max_sync.attr, 4892 &md_suspend_lo.attr, 4893 &md_suspend_hi.attr, 4894 &md_bitmap.attr, 4895 &md_degraded.attr, 4896 NULL, 4897 }; 4898 static struct attribute_group md_redundancy_group = { 4899 .name = NULL, 4900 .attrs = md_redundancy_attrs, 4901 }; 4902 4903 static ssize_t 4904 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4905 { 4906 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4907 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4908 ssize_t rv; 4909 4910 if (!entry->show) 4911 return -EIO; 4912 spin_lock(&all_mddevs_lock); 4913 if (list_empty(&mddev->all_mddevs)) { 4914 spin_unlock(&all_mddevs_lock); 4915 return -EBUSY; 4916 } 4917 mddev_get(mddev); 4918 spin_unlock(&all_mddevs_lock); 4919 4920 rv = entry->show(mddev, page); 4921 mddev_put(mddev); 4922 return rv; 4923 } 4924 4925 static ssize_t 4926 md_attr_store(struct kobject *kobj, struct attribute *attr, 4927 const char *page, size_t length) 4928 { 4929 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4930 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4931 ssize_t rv; 4932 4933 if (!entry->store) 4934 return -EIO; 4935 if (!capable(CAP_SYS_ADMIN)) 4936 return -EACCES; 4937 spin_lock(&all_mddevs_lock); 4938 if (list_empty(&mddev->all_mddevs)) { 4939 spin_unlock(&all_mddevs_lock); 4940 return -EBUSY; 4941 } 4942 mddev_get(mddev); 4943 spin_unlock(&all_mddevs_lock); 4944 rv = entry->store(mddev, page, length); 4945 mddev_put(mddev); 4946 return rv; 4947 } 4948 4949 static void md_free(struct kobject *ko) 4950 { 4951 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4952 4953 if (mddev->sysfs_state) 4954 sysfs_put(mddev->sysfs_state); 4955 4956 if (mddev->queue) 4957 blk_cleanup_queue(mddev->queue); 4958 if (mddev->gendisk) { 4959 del_gendisk(mddev->gendisk); 4960 put_disk(mddev->gendisk); 4961 } 4962 4963 kfree(mddev); 4964 } 4965 4966 static const struct sysfs_ops md_sysfs_ops = { 4967 .show = md_attr_show, 4968 .store = md_attr_store, 4969 }; 4970 static struct kobj_type md_ktype = { 4971 .release = md_free, 4972 .sysfs_ops = &md_sysfs_ops, 4973 .default_attrs = md_default_attrs, 4974 }; 4975 4976 int mdp_major = 0; 4977 4978 static void mddev_delayed_delete(struct work_struct *ws) 4979 { 4980 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4981 4982 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4983 kobject_del(&mddev->kobj); 4984 kobject_put(&mddev->kobj); 4985 } 4986 4987 static int md_alloc(dev_t dev, char *name) 4988 { 4989 static DEFINE_MUTEX(disks_mutex); 4990 struct mddev *mddev = mddev_find(dev); 4991 struct gendisk *disk; 4992 int partitioned; 4993 int shift; 4994 int unit; 4995 int error; 4996 4997 if (!mddev) 4998 return -ENODEV; 4999 5000 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5001 shift = partitioned ? MdpMinorShift : 0; 5002 unit = MINOR(mddev->unit) >> shift; 5003 5004 /* wait for any previous instance of this device to be 5005 * completely removed (mddev_delayed_delete). 5006 */ 5007 flush_workqueue(md_misc_wq); 5008 5009 mutex_lock(&disks_mutex); 5010 error = -EEXIST; 5011 if (mddev->gendisk) 5012 goto abort; 5013 5014 if (name) { 5015 /* Need to ensure that 'name' is not a duplicate. 5016 */ 5017 struct mddev *mddev2; 5018 spin_lock(&all_mddevs_lock); 5019 5020 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5021 if (mddev2->gendisk && 5022 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5023 spin_unlock(&all_mddevs_lock); 5024 goto abort; 5025 } 5026 spin_unlock(&all_mddevs_lock); 5027 } 5028 5029 error = -ENOMEM; 5030 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5031 if (!mddev->queue) 5032 goto abort; 5033 mddev->queue->queuedata = mddev; 5034 5035 blk_queue_make_request(mddev->queue, md_make_request); 5036 blk_set_stacking_limits(&mddev->queue->limits); 5037 5038 disk = alloc_disk(1 << shift); 5039 if (!disk) { 5040 blk_cleanup_queue(mddev->queue); 5041 mddev->queue = NULL; 5042 goto abort; 5043 } 5044 disk->major = MAJOR(mddev->unit); 5045 disk->first_minor = unit << shift; 5046 if (name) 5047 strcpy(disk->disk_name, name); 5048 else if (partitioned) 5049 sprintf(disk->disk_name, "md_d%d", unit); 5050 else 5051 sprintf(disk->disk_name, "md%d", unit); 5052 disk->fops = &md_fops; 5053 disk->private_data = mddev; 5054 disk->queue = mddev->queue; 5055 blk_queue_write_cache(mddev->queue, true, true); 5056 /* Allow extended partitions. This makes the 5057 * 'mdp' device redundant, but we can't really 5058 * remove it now. 5059 */ 5060 disk->flags |= GENHD_FL_EXT_DEVT; 5061 mddev->gendisk = disk; 5062 /* As soon as we call add_disk(), another thread could get 5063 * through to md_open, so make sure it doesn't get too far 5064 */ 5065 mutex_lock(&mddev->open_mutex); 5066 add_disk(disk); 5067 5068 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5069 &disk_to_dev(disk)->kobj, "%s", "md"); 5070 if (error) { 5071 /* This isn't possible, but as kobject_init_and_add is marked 5072 * __must_check, we must do something with the result 5073 */ 5074 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 5075 disk->disk_name); 5076 error = 0; 5077 } 5078 if (mddev->kobj.sd && 5079 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5080 printk(KERN_DEBUG "pointless warning\n"); 5081 mutex_unlock(&mddev->open_mutex); 5082 abort: 5083 mutex_unlock(&disks_mutex); 5084 if (!error && mddev->kobj.sd) { 5085 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5086 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5087 } 5088 mddev_put(mddev); 5089 return error; 5090 } 5091 5092 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5093 { 5094 md_alloc(dev, NULL); 5095 return NULL; 5096 } 5097 5098 static int add_named_array(const char *val, struct kernel_param *kp) 5099 { 5100 /* val must be "md_*" where * is not all digits. 5101 * We allocate an array with a large free minor number, and 5102 * set the name to val. val must not already be an active name. 5103 */ 5104 int len = strlen(val); 5105 char buf[DISK_NAME_LEN]; 5106 5107 while (len && val[len-1] == '\n') 5108 len--; 5109 if (len >= DISK_NAME_LEN) 5110 return -E2BIG; 5111 strlcpy(buf, val, len+1); 5112 if (strncmp(buf, "md_", 3) != 0) 5113 return -EINVAL; 5114 return md_alloc(0, buf); 5115 } 5116 5117 static void md_safemode_timeout(unsigned long data) 5118 { 5119 struct mddev *mddev = (struct mddev *) data; 5120 5121 if (!atomic_read(&mddev->writes_pending)) { 5122 mddev->safemode = 1; 5123 if (mddev->external) 5124 sysfs_notify_dirent_safe(mddev->sysfs_state); 5125 } 5126 md_wakeup_thread(mddev->thread); 5127 } 5128 5129 static int start_dirty_degraded; 5130 5131 int md_run(struct mddev *mddev) 5132 { 5133 int err; 5134 struct md_rdev *rdev; 5135 struct md_personality *pers; 5136 5137 if (list_empty(&mddev->disks)) 5138 /* cannot run an array with no devices.. */ 5139 return -EINVAL; 5140 5141 if (mddev->pers) 5142 return -EBUSY; 5143 /* Cannot run until previous stop completes properly */ 5144 if (mddev->sysfs_active) 5145 return -EBUSY; 5146 5147 /* 5148 * Analyze all RAID superblock(s) 5149 */ 5150 if (!mddev->raid_disks) { 5151 if (!mddev->persistent) 5152 return -EINVAL; 5153 analyze_sbs(mddev); 5154 } 5155 5156 if (mddev->level != LEVEL_NONE) 5157 request_module("md-level-%d", mddev->level); 5158 else if (mddev->clevel[0]) 5159 request_module("md-%s", mddev->clevel); 5160 5161 /* 5162 * Drop all container device buffers, from now on 5163 * the only valid external interface is through the md 5164 * device. 5165 */ 5166 rdev_for_each(rdev, mddev) { 5167 if (test_bit(Faulty, &rdev->flags)) 5168 continue; 5169 sync_blockdev(rdev->bdev); 5170 invalidate_bdev(rdev->bdev); 5171 5172 /* perform some consistency tests on the device. 5173 * We don't want the data to overlap the metadata, 5174 * Internal Bitmap issues have been handled elsewhere. 5175 */ 5176 if (rdev->meta_bdev) { 5177 /* Nothing to check */; 5178 } else if (rdev->data_offset < rdev->sb_start) { 5179 if (mddev->dev_sectors && 5180 rdev->data_offset + mddev->dev_sectors 5181 > rdev->sb_start) { 5182 printk("md: %s: data overlaps metadata\n", 5183 mdname(mddev)); 5184 return -EINVAL; 5185 } 5186 } else { 5187 if (rdev->sb_start + rdev->sb_size/512 5188 > rdev->data_offset) { 5189 printk("md: %s: metadata overlaps data\n", 5190 mdname(mddev)); 5191 return -EINVAL; 5192 } 5193 } 5194 sysfs_notify_dirent_safe(rdev->sysfs_state); 5195 } 5196 5197 if (mddev->bio_set == NULL) 5198 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5199 5200 spin_lock(&pers_lock); 5201 pers = find_pers(mddev->level, mddev->clevel); 5202 if (!pers || !try_module_get(pers->owner)) { 5203 spin_unlock(&pers_lock); 5204 if (mddev->level != LEVEL_NONE) 5205 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5206 mddev->level); 5207 else 5208 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5209 mddev->clevel); 5210 return -EINVAL; 5211 } 5212 spin_unlock(&pers_lock); 5213 if (mddev->level != pers->level) { 5214 mddev->level = pers->level; 5215 mddev->new_level = pers->level; 5216 } 5217 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5218 5219 if (mddev->reshape_position != MaxSector && 5220 pers->start_reshape == NULL) { 5221 /* This personality cannot handle reshaping... */ 5222 module_put(pers->owner); 5223 return -EINVAL; 5224 } 5225 5226 if (pers->sync_request) { 5227 /* Warn if this is a potentially silly 5228 * configuration. 5229 */ 5230 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5231 struct md_rdev *rdev2; 5232 int warned = 0; 5233 5234 rdev_for_each(rdev, mddev) 5235 rdev_for_each(rdev2, mddev) { 5236 if (rdev < rdev2 && 5237 rdev->bdev->bd_contains == 5238 rdev2->bdev->bd_contains) { 5239 printk(KERN_WARNING 5240 "%s: WARNING: %s appears to be" 5241 " on the same physical disk as" 5242 " %s.\n", 5243 mdname(mddev), 5244 bdevname(rdev->bdev,b), 5245 bdevname(rdev2->bdev,b2)); 5246 warned = 1; 5247 } 5248 } 5249 5250 if (warned) 5251 printk(KERN_WARNING 5252 "True protection against single-disk" 5253 " failure might be compromised.\n"); 5254 } 5255 5256 mddev->recovery = 0; 5257 /* may be over-ridden by personality */ 5258 mddev->resync_max_sectors = mddev->dev_sectors; 5259 5260 mddev->ok_start_degraded = start_dirty_degraded; 5261 5262 if (start_readonly && mddev->ro == 0) 5263 mddev->ro = 2; /* read-only, but switch on first write */ 5264 5265 err = pers->run(mddev); 5266 if (err) 5267 printk(KERN_ERR "md: pers->run() failed ...\n"); 5268 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5269 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5270 " but 'external_size' not in effect?\n", __func__); 5271 printk(KERN_ERR 5272 "md: invalid array_size %llu > default size %llu\n", 5273 (unsigned long long)mddev->array_sectors / 2, 5274 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5275 err = -EINVAL; 5276 } 5277 if (err == 0 && pers->sync_request && 5278 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5279 struct bitmap *bitmap; 5280 5281 bitmap = bitmap_create(mddev, -1); 5282 if (IS_ERR(bitmap)) { 5283 err = PTR_ERR(bitmap); 5284 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5285 mdname(mddev), err); 5286 } else 5287 mddev->bitmap = bitmap; 5288 5289 } 5290 if (err) { 5291 mddev_detach(mddev); 5292 if (mddev->private) 5293 pers->free(mddev, mddev->private); 5294 mddev->private = NULL; 5295 module_put(pers->owner); 5296 bitmap_destroy(mddev); 5297 return err; 5298 } 5299 if (mddev->queue) { 5300 bool nonrot = true; 5301 5302 rdev_for_each(rdev, mddev) { 5303 if (rdev->raid_disk >= 0 && 5304 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5305 nonrot = false; 5306 break; 5307 } 5308 } 5309 if (mddev->degraded) 5310 nonrot = false; 5311 if (nonrot) 5312 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5313 else 5314 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5315 mddev->queue->backing_dev_info.congested_data = mddev; 5316 mddev->queue->backing_dev_info.congested_fn = md_congested; 5317 } 5318 if (pers->sync_request) { 5319 if (mddev->kobj.sd && 5320 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5321 printk(KERN_WARNING 5322 "md: cannot register extra attributes for %s\n", 5323 mdname(mddev)); 5324 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5325 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5326 mddev->ro = 0; 5327 5328 atomic_set(&mddev->writes_pending,0); 5329 atomic_set(&mddev->max_corr_read_errors, 5330 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5331 mddev->safemode = 0; 5332 if (mddev_is_clustered(mddev)) 5333 mddev->safemode_delay = 0; 5334 else 5335 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5336 mddev->in_sync = 1; 5337 smp_wmb(); 5338 spin_lock(&mddev->lock); 5339 mddev->pers = pers; 5340 spin_unlock(&mddev->lock); 5341 rdev_for_each(rdev, mddev) 5342 if (rdev->raid_disk >= 0) 5343 if (sysfs_link_rdev(mddev, rdev)) 5344 /* failure here is OK */; 5345 5346 if (mddev->degraded && !mddev->ro) 5347 /* This ensures that recovering status is reported immediately 5348 * via sysfs - until a lack of spares is confirmed. 5349 */ 5350 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5351 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5352 5353 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5354 md_update_sb(mddev, 0); 5355 5356 md_new_event(mddev); 5357 sysfs_notify_dirent_safe(mddev->sysfs_state); 5358 sysfs_notify_dirent_safe(mddev->sysfs_action); 5359 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5360 return 0; 5361 } 5362 EXPORT_SYMBOL_GPL(md_run); 5363 5364 static int do_md_run(struct mddev *mddev) 5365 { 5366 int err; 5367 5368 err = md_run(mddev); 5369 if (err) 5370 goto out; 5371 err = bitmap_load(mddev); 5372 if (err) { 5373 bitmap_destroy(mddev); 5374 goto out; 5375 } 5376 5377 if (mddev_is_clustered(mddev)) 5378 md_allow_write(mddev); 5379 5380 md_wakeup_thread(mddev->thread); 5381 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5382 5383 set_capacity(mddev->gendisk, mddev->array_sectors); 5384 revalidate_disk(mddev->gendisk); 5385 mddev->changed = 1; 5386 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5387 out: 5388 return err; 5389 } 5390 5391 static int restart_array(struct mddev *mddev) 5392 { 5393 struct gendisk *disk = mddev->gendisk; 5394 5395 /* Complain if it has no devices */ 5396 if (list_empty(&mddev->disks)) 5397 return -ENXIO; 5398 if (!mddev->pers) 5399 return -EINVAL; 5400 if (!mddev->ro) 5401 return -EBUSY; 5402 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5403 struct md_rdev *rdev; 5404 bool has_journal = false; 5405 5406 rcu_read_lock(); 5407 rdev_for_each_rcu(rdev, mddev) { 5408 if (test_bit(Journal, &rdev->flags) && 5409 !test_bit(Faulty, &rdev->flags)) { 5410 has_journal = true; 5411 break; 5412 } 5413 } 5414 rcu_read_unlock(); 5415 5416 /* Don't restart rw with journal missing/faulty */ 5417 if (!has_journal) 5418 return -EINVAL; 5419 } 5420 5421 mddev->safemode = 0; 5422 mddev->ro = 0; 5423 set_disk_ro(disk, 0); 5424 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5425 mdname(mddev)); 5426 /* Kick recovery or resync if necessary */ 5427 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5428 md_wakeup_thread(mddev->thread); 5429 md_wakeup_thread(mddev->sync_thread); 5430 sysfs_notify_dirent_safe(mddev->sysfs_state); 5431 return 0; 5432 } 5433 5434 static void md_clean(struct mddev *mddev) 5435 { 5436 mddev->array_sectors = 0; 5437 mddev->external_size = 0; 5438 mddev->dev_sectors = 0; 5439 mddev->raid_disks = 0; 5440 mddev->recovery_cp = 0; 5441 mddev->resync_min = 0; 5442 mddev->resync_max = MaxSector; 5443 mddev->reshape_position = MaxSector; 5444 mddev->external = 0; 5445 mddev->persistent = 0; 5446 mddev->level = LEVEL_NONE; 5447 mddev->clevel[0] = 0; 5448 mddev->flags = 0; 5449 mddev->ro = 0; 5450 mddev->metadata_type[0] = 0; 5451 mddev->chunk_sectors = 0; 5452 mddev->ctime = mddev->utime = 0; 5453 mddev->layout = 0; 5454 mddev->max_disks = 0; 5455 mddev->events = 0; 5456 mddev->can_decrease_events = 0; 5457 mddev->delta_disks = 0; 5458 mddev->reshape_backwards = 0; 5459 mddev->new_level = LEVEL_NONE; 5460 mddev->new_layout = 0; 5461 mddev->new_chunk_sectors = 0; 5462 mddev->curr_resync = 0; 5463 atomic64_set(&mddev->resync_mismatches, 0); 5464 mddev->suspend_lo = mddev->suspend_hi = 0; 5465 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5466 mddev->recovery = 0; 5467 mddev->in_sync = 0; 5468 mddev->changed = 0; 5469 mddev->degraded = 0; 5470 mddev->safemode = 0; 5471 mddev->private = NULL; 5472 mddev->cluster_info = NULL; 5473 mddev->bitmap_info.offset = 0; 5474 mddev->bitmap_info.default_offset = 0; 5475 mddev->bitmap_info.default_space = 0; 5476 mddev->bitmap_info.chunksize = 0; 5477 mddev->bitmap_info.daemon_sleep = 0; 5478 mddev->bitmap_info.max_write_behind = 0; 5479 mddev->bitmap_info.nodes = 0; 5480 } 5481 5482 static void __md_stop_writes(struct mddev *mddev) 5483 { 5484 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5485 flush_workqueue(md_misc_wq); 5486 if (mddev->sync_thread) { 5487 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5488 md_reap_sync_thread(mddev); 5489 } 5490 5491 del_timer_sync(&mddev->safemode_timer); 5492 5493 bitmap_flush(mddev); 5494 md_super_wait(mddev); 5495 5496 if (mddev->ro == 0 && 5497 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5498 (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5499 /* mark array as shutdown cleanly */ 5500 if (!mddev_is_clustered(mddev)) 5501 mddev->in_sync = 1; 5502 md_update_sb(mddev, 1); 5503 } 5504 } 5505 5506 void md_stop_writes(struct mddev *mddev) 5507 { 5508 mddev_lock_nointr(mddev); 5509 __md_stop_writes(mddev); 5510 mddev_unlock(mddev); 5511 } 5512 EXPORT_SYMBOL_GPL(md_stop_writes); 5513 5514 static void mddev_detach(struct mddev *mddev) 5515 { 5516 struct bitmap *bitmap = mddev->bitmap; 5517 /* wait for behind writes to complete */ 5518 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5519 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5520 mdname(mddev)); 5521 /* need to kick something here to make sure I/O goes? */ 5522 wait_event(bitmap->behind_wait, 5523 atomic_read(&bitmap->behind_writes) == 0); 5524 } 5525 if (mddev->pers && mddev->pers->quiesce) { 5526 mddev->pers->quiesce(mddev, 1); 5527 mddev->pers->quiesce(mddev, 0); 5528 } 5529 md_unregister_thread(&mddev->thread); 5530 if (mddev->queue) 5531 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5532 } 5533 5534 static void __md_stop(struct mddev *mddev) 5535 { 5536 struct md_personality *pers = mddev->pers; 5537 mddev_detach(mddev); 5538 /* Ensure ->event_work is done */ 5539 flush_workqueue(md_misc_wq); 5540 spin_lock(&mddev->lock); 5541 mddev->pers = NULL; 5542 spin_unlock(&mddev->lock); 5543 pers->free(mddev, mddev->private); 5544 mddev->private = NULL; 5545 if (pers->sync_request && mddev->to_remove == NULL) 5546 mddev->to_remove = &md_redundancy_group; 5547 module_put(pers->owner); 5548 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5549 } 5550 5551 void md_stop(struct mddev *mddev) 5552 { 5553 /* stop the array and free an attached data structures. 5554 * This is called from dm-raid 5555 */ 5556 __md_stop(mddev); 5557 bitmap_destroy(mddev); 5558 if (mddev->bio_set) 5559 bioset_free(mddev->bio_set); 5560 } 5561 5562 EXPORT_SYMBOL_GPL(md_stop); 5563 5564 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5565 { 5566 int err = 0; 5567 int did_freeze = 0; 5568 5569 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5570 did_freeze = 1; 5571 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5572 md_wakeup_thread(mddev->thread); 5573 } 5574 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5575 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5576 if (mddev->sync_thread) 5577 /* Thread might be blocked waiting for metadata update 5578 * which will now never happen */ 5579 wake_up_process(mddev->sync_thread->tsk); 5580 5581 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags)) 5582 return -EBUSY; 5583 mddev_unlock(mddev); 5584 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5585 &mddev->recovery)); 5586 wait_event(mddev->sb_wait, 5587 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5588 mddev_lock_nointr(mddev); 5589 5590 mutex_lock(&mddev->open_mutex); 5591 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5592 mddev->sync_thread || 5593 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5594 printk("md: %s still in use.\n",mdname(mddev)); 5595 if (did_freeze) { 5596 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5598 md_wakeup_thread(mddev->thread); 5599 } 5600 err = -EBUSY; 5601 goto out; 5602 } 5603 if (mddev->pers) { 5604 __md_stop_writes(mddev); 5605 5606 err = -ENXIO; 5607 if (mddev->ro==1) 5608 goto out; 5609 mddev->ro = 1; 5610 set_disk_ro(mddev->gendisk, 1); 5611 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5612 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5613 md_wakeup_thread(mddev->thread); 5614 sysfs_notify_dirent_safe(mddev->sysfs_state); 5615 err = 0; 5616 } 5617 out: 5618 mutex_unlock(&mddev->open_mutex); 5619 return err; 5620 } 5621 5622 /* mode: 5623 * 0 - completely stop and dis-assemble array 5624 * 2 - stop but do not disassemble array 5625 */ 5626 static int do_md_stop(struct mddev *mddev, int mode, 5627 struct block_device *bdev) 5628 { 5629 struct gendisk *disk = mddev->gendisk; 5630 struct md_rdev *rdev; 5631 int did_freeze = 0; 5632 5633 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5634 did_freeze = 1; 5635 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5636 md_wakeup_thread(mddev->thread); 5637 } 5638 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5639 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5640 if (mddev->sync_thread) 5641 /* Thread might be blocked waiting for metadata update 5642 * which will now never happen */ 5643 wake_up_process(mddev->sync_thread->tsk); 5644 5645 mddev_unlock(mddev); 5646 wait_event(resync_wait, (mddev->sync_thread == NULL && 5647 !test_bit(MD_RECOVERY_RUNNING, 5648 &mddev->recovery))); 5649 mddev_lock_nointr(mddev); 5650 5651 mutex_lock(&mddev->open_mutex); 5652 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5653 mddev->sysfs_active || 5654 mddev->sync_thread || 5655 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5656 printk("md: %s still in use.\n",mdname(mddev)); 5657 mutex_unlock(&mddev->open_mutex); 5658 if (did_freeze) { 5659 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5661 md_wakeup_thread(mddev->thread); 5662 } 5663 return -EBUSY; 5664 } 5665 if (mddev->pers) { 5666 if (mddev->ro) 5667 set_disk_ro(disk, 0); 5668 5669 __md_stop_writes(mddev); 5670 __md_stop(mddev); 5671 mddev->queue->backing_dev_info.congested_fn = NULL; 5672 5673 /* tell userspace to handle 'inactive' */ 5674 sysfs_notify_dirent_safe(mddev->sysfs_state); 5675 5676 rdev_for_each(rdev, mddev) 5677 if (rdev->raid_disk >= 0) 5678 sysfs_unlink_rdev(mddev, rdev); 5679 5680 set_capacity(disk, 0); 5681 mutex_unlock(&mddev->open_mutex); 5682 mddev->changed = 1; 5683 revalidate_disk(disk); 5684 5685 if (mddev->ro) 5686 mddev->ro = 0; 5687 } else 5688 mutex_unlock(&mddev->open_mutex); 5689 /* 5690 * Free resources if final stop 5691 */ 5692 if (mode == 0) { 5693 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5694 5695 bitmap_destroy(mddev); 5696 if (mddev->bitmap_info.file) { 5697 struct file *f = mddev->bitmap_info.file; 5698 spin_lock(&mddev->lock); 5699 mddev->bitmap_info.file = NULL; 5700 spin_unlock(&mddev->lock); 5701 fput(f); 5702 } 5703 mddev->bitmap_info.offset = 0; 5704 5705 export_array(mddev); 5706 5707 md_clean(mddev); 5708 if (mddev->hold_active == UNTIL_STOP) 5709 mddev->hold_active = 0; 5710 } 5711 md_new_event(mddev); 5712 sysfs_notify_dirent_safe(mddev->sysfs_state); 5713 return 0; 5714 } 5715 5716 #ifndef MODULE 5717 static void autorun_array(struct mddev *mddev) 5718 { 5719 struct md_rdev *rdev; 5720 int err; 5721 5722 if (list_empty(&mddev->disks)) 5723 return; 5724 5725 printk(KERN_INFO "md: running: "); 5726 5727 rdev_for_each(rdev, mddev) { 5728 char b[BDEVNAME_SIZE]; 5729 printk("<%s>", bdevname(rdev->bdev,b)); 5730 } 5731 printk("\n"); 5732 5733 err = do_md_run(mddev); 5734 if (err) { 5735 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5736 do_md_stop(mddev, 0, NULL); 5737 } 5738 } 5739 5740 /* 5741 * lets try to run arrays based on all disks that have arrived 5742 * until now. (those are in pending_raid_disks) 5743 * 5744 * the method: pick the first pending disk, collect all disks with 5745 * the same UUID, remove all from the pending list and put them into 5746 * the 'same_array' list. Then order this list based on superblock 5747 * update time (freshest comes first), kick out 'old' disks and 5748 * compare superblocks. If everything's fine then run it. 5749 * 5750 * If "unit" is allocated, then bump its reference count 5751 */ 5752 static void autorun_devices(int part) 5753 { 5754 struct md_rdev *rdev0, *rdev, *tmp; 5755 struct mddev *mddev; 5756 char b[BDEVNAME_SIZE]; 5757 5758 printk(KERN_INFO "md: autorun ...\n"); 5759 while (!list_empty(&pending_raid_disks)) { 5760 int unit; 5761 dev_t dev; 5762 LIST_HEAD(candidates); 5763 rdev0 = list_entry(pending_raid_disks.next, 5764 struct md_rdev, same_set); 5765 5766 printk(KERN_INFO "md: considering %s ...\n", 5767 bdevname(rdev0->bdev,b)); 5768 INIT_LIST_HEAD(&candidates); 5769 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5770 if (super_90_load(rdev, rdev0, 0) >= 0) { 5771 printk(KERN_INFO "md: adding %s ...\n", 5772 bdevname(rdev->bdev,b)); 5773 list_move(&rdev->same_set, &candidates); 5774 } 5775 /* 5776 * now we have a set of devices, with all of them having 5777 * mostly sane superblocks. It's time to allocate the 5778 * mddev. 5779 */ 5780 if (part) { 5781 dev = MKDEV(mdp_major, 5782 rdev0->preferred_minor << MdpMinorShift); 5783 unit = MINOR(dev) >> MdpMinorShift; 5784 } else { 5785 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5786 unit = MINOR(dev); 5787 } 5788 if (rdev0->preferred_minor != unit) { 5789 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5790 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5791 break; 5792 } 5793 5794 md_probe(dev, NULL, NULL); 5795 mddev = mddev_find(dev); 5796 if (!mddev || !mddev->gendisk) { 5797 if (mddev) 5798 mddev_put(mddev); 5799 printk(KERN_ERR 5800 "md: cannot allocate memory for md drive.\n"); 5801 break; 5802 } 5803 if (mddev_lock(mddev)) 5804 printk(KERN_WARNING "md: %s locked, cannot run\n", 5805 mdname(mddev)); 5806 else if (mddev->raid_disks || mddev->major_version 5807 || !list_empty(&mddev->disks)) { 5808 printk(KERN_WARNING 5809 "md: %s already running, cannot run %s\n", 5810 mdname(mddev), bdevname(rdev0->bdev,b)); 5811 mddev_unlock(mddev); 5812 } else { 5813 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5814 mddev->persistent = 1; 5815 rdev_for_each_list(rdev, tmp, &candidates) { 5816 list_del_init(&rdev->same_set); 5817 if (bind_rdev_to_array(rdev, mddev)) 5818 export_rdev(rdev); 5819 } 5820 autorun_array(mddev); 5821 mddev_unlock(mddev); 5822 } 5823 /* on success, candidates will be empty, on error 5824 * it won't... 5825 */ 5826 rdev_for_each_list(rdev, tmp, &candidates) { 5827 list_del_init(&rdev->same_set); 5828 export_rdev(rdev); 5829 } 5830 mddev_put(mddev); 5831 } 5832 printk(KERN_INFO "md: ... autorun DONE.\n"); 5833 } 5834 #endif /* !MODULE */ 5835 5836 static int get_version(void __user *arg) 5837 { 5838 mdu_version_t ver; 5839 5840 ver.major = MD_MAJOR_VERSION; 5841 ver.minor = MD_MINOR_VERSION; 5842 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5843 5844 if (copy_to_user(arg, &ver, sizeof(ver))) 5845 return -EFAULT; 5846 5847 return 0; 5848 } 5849 5850 static int get_array_info(struct mddev *mddev, void __user *arg) 5851 { 5852 mdu_array_info_t info; 5853 int nr,working,insync,failed,spare; 5854 struct md_rdev *rdev; 5855 5856 nr = working = insync = failed = spare = 0; 5857 rcu_read_lock(); 5858 rdev_for_each_rcu(rdev, mddev) { 5859 nr++; 5860 if (test_bit(Faulty, &rdev->flags)) 5861 failed++; 5862 else { 5863 working++; 5864 if (test_bit(In_sync, &rdev->flags)) 5865 insync++; 5866 else if (test_bit(Journal, &rdev->flags)) 5867 /* TODO: add journal count to md_u.h */ 5868 ; 5869 else 5870 spare++; 5871 } 5872 } 5873 rcu_read_unlock(); 5874 5875 info.major_version = mddev->major_version; 5876 info.minor_version = mddev->minor_version; 5877 info.patch_version = MD_PATCHLEVEL_VERSION; 5878 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 5879 info.level = mddev->level; 5880 info.size = mddev->dev_sectors / 2; 5881 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5882 info.size = -1; 5883 info.nr_disks = nr; 5884 info.raid_disks = mddev->raid_disks; 5885 info.md_minor = mddev->md_minor; 5886 info.not_persistent= !mddev->persistent; 5887 5888 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 5889 info.state = 0; 5890 if (mddev->in_sync) 5891 info.state = (1<<MD_SB_CLEAN); 5892 if (mddev->bitmap && mddev->bitmap_info.offset) 5893 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5894 if (mddev_is_clustered(mddev)) 5895 info.state |= (1<<MD_SB_CLUSTERED); 5896 info.active_disks = insync; 5897 info.working_disks = working; 5898 info.failed_disks = failed; 5899 info.spare_disks = spare; 5900 5901 info.layout = mddev->layout; 5902 info.chunk_size = mddev->chunk_sectors << 9; 5903 5904 if (copy_to_user(arg, &info, sizeof(info))) 5905 return -EFAULT; 5906 5907 return 0; 5908 } 5909 5910 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5911 { 5912 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5913 char *ptr; 5914 int err; 5915 5916 file = kzalloc(sizeof(*file), GFP_NOIO); 5917 if (!file) 5918 return -ENOMEM; 5919 5920 err = 0; 5921 spin_lock(&mddev->lock); 5922 /* bitmap enabled */ 5923 if (mddev->bitmap_info.file) { 5924 ptr = file_path(mddev->bitmap_info.file, file->pathname, 5925 sizeof(file->pathname)); 5926 if (IS_ERR(ptr)) 5927 err = PTR_ERR(ptr); 5928 else 5929 memmove(file->pathname, ptr, 5930 sizeof(file->pathname)-(ptr-file->pathname)); 5931 } 5932 spin_unlock(&mddev->lock); 5933 5934 if (err == 0 && 5935 copy_to_user(arg, file, sizeof(*file))) 5936 err = -EFAULT; 5937 5938 kfree(file); 5939 return err; 5940 } 5941 5942 static int get_disk_info(struct mddev *mddev, void __user * arg) 5943 { 5944 mdu_disk_info_t info; 5945 struct md_rdev *rdev; 5946 5947 if (copy_from_user(&info, arg, sizeof(info))) 5948 return -EFAULT; 5949 5950 rcu_read_lock(); 5951 rdev = md_find_rdev_nr_rcu(mddev, info.number); 5952 if (rdev) { 5953 info.major = MAJOR(rdev->bdev->bd_dev); 5954 info.minor = MINOR(rdev->bdev->bd_dev); 5955 info.raid_disk = rdev->raid_disk; 5956 info.state = 0; 5957 if (test_bit(Faulty, &rdev->flags)) 5958 info.state |= (1<<MD_DISK_FAULTY); 5959 else if (test_bit(In_sync, &rdev->flags)) { 5960 info.state |= (1<<MD_DISK_ACTIVE); 5961 info.state |= (1<<MD_DISK_SYNC); 5962 } 5963 if (test_bit(Journal, &rdev->flags)) 5964 info.state |= (1<<MD_DISK_JOURNAL); 5965 if (test_bit(WriteMostly, &rdev->flags)) 5966 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5967 } else { 5968 info.major = info.minor = 0; 5969 info.raid_disk = -1; 5970 info.state = (1<<MD_DISK_REMOVED); 5971 } 5972 rcu_read_unlock(); 5973 5974 if (copy_to_user(arg, &info, sizeof(info))) 5975 return -EFAULT; 5976 5977 return 0; 5978 } 5979 5980 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5981 { 5982 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5983 struct md_rdev *rdev; 5984 dev_t dev = MKDEV(info->major,info->minor); 5985 5986 if (mddev_is_clustered(mddev) && 5987 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 5988 pr_err("%s: Cannot add to clustered mddev.\n", 5989 mdname(mddev)); 5990 return -EINVAL; 5991 } 5992 5993 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5994 return -EOVERFLOW; 5995 5996 if (!mddev->raid_disks) { 5997 int err; 5998 /* expecting a device which has a superblock */ 5999 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6000 if (IS_ERR(rdev)) { 6001 printk(KERN_WARNING 6002 "md: md_import_device returned %ld\n", 6003 PTR_ERR(rdev)); 6004 return PTR_ERR(rdev); 6005 } 6006 if (!list_empty(&mddev->disks)) { 6007 struct md_rdev *rdev0 6008 = list_entry(mddev->disks.next, 6009 struct md_rdev, same_set); 6010 err = super_types[mddev->major_version] 6011 .load_super(rdev, rdev0, mddev->minor_version); 6012 if (err < 0) { 6013 printk(KERN_WARNING 6014 "md: %s has different UUID to %s\n", 6015 bdevname(rdev->bdev,b), 6016 bdevname(rdev0->bdev,b2)); 6017 export_rdev(rdev); 6018 return -EINVAL; 6019 } 6020 } 6021 err = bind_rdev_to_array(rdev, mddev); 6022 if (err) 6023 export_rdev(rdev); 6024 return err; 6025 } 6026 6027 /* 6028 * add_new_disk can be used once the array is assembled 6029 * to add "hot spares". They must already have a superblock 6030 * written 6031 */ 6032 if (mddev->pers) { 6033 int err; 6034 if (!mddev->pers->hot_add_disk) { 6035 printk(KERN_WARNING 6036 "%s: personality does not support diskops!\n", 6037 mdname(mddev)); 6038 return -EINVAL; 6039 } 6040 if (mddev->persistent) 6041 rdev = md_import_device(dev, mddev->major_version, 6042 mddev->minor_version); 6043 else 6044 rdev = md_import_device(dev, -1, -1); 6045 if (IS_ERR(rdev)) { 6046 printk(KERN_WARNING 6047 "md: md_import_device returned %ld\n", 6048 PTR_ERR(rdev)); 6049 return PTR_ERR(rdev); 6050 } 6051 /* set saved_raid_disk if appropriate */ 6052 if (!mddev->persistent) { 6053 if (info->state & (1<<MD_DISK_SYNC) && 6054 info->raid_disk < mddev->raid_disks) { 6055 rdev->raid_disk = info->raid_disk; 6056 set_bit(In_sync, &rdev->flags); 6057 clear_bit(Bitmap_sync, &rdev->flags); 6058 } else 6059 rdev->raid_disk = -1; 6060 rdev->saved_raid_disk = rdev->raid_disk; 6061 } else 6062 super_types[mddev->major_version]. 6063 validate_super(mddev, rdev); 6064 if ((info->state & (1<<MD_DISK_SYNC)) && 6065 rdev->raid_disk != info->raid_disk) { 6066 /* This was a hot-add request, but events doesn't 6067 * match, so reject it. 6068 */ 6069 export_rdev(rdev); 6070 return -EINVAL; 6071 } 6072 6073 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6074 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6075 set_bit(WriteMostly, &rdev->flags); 6076 else 6077 clear_bit(WriteMostly, &rdev->flags); 6078 6079 if (info->state & (1<<MD_DISK_JOURNAL)) { 6080 struct md_rdev *rdev2; 6081 bool has_journal = false; 6082 6083 /* make sure no existing journal disk */ 6084 rdev_for_each(rdev2, mddev) { 6085 if (test_bit(Journal, &rdev2->flags)) { 6086 has_journal = true; 6087 break; 6088 } 6089 } 6090 if (has_journal) { 6091 export_rdev(rdev); 6092 return -EBUSY; 6093 } 6094 set_bit(Journal, &rdev->flags); 6095 } 6096 /* 6097 * check whether the device shows up in other nodes 6098 */ 6099 if (mddev_is_clustered(mddev)) { 6100 if (info->state & (1 << MD_DISK_CANDIDATE)) 6101 set_bit(Candidate, &rdev->flags); 6102 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6103 /* --add initiated by this node */ 6104 err = md_cluster_ops->add_new_disk(mddev, rdev); 6105 if (err) { 6106 export_rdev(rdev); 6107 return err; 6108 } 6109 } 6110 } 6111 6112 rdev->raid_disk = -1; 6113 err = bind_rdev_to_array(rdev, mddev); 6114 6115 if (err) 6116 export_rdev(rdev); 6117 6118 if (mddev_is_clustered(mddev)) { 6119 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6120 if (!err) { 6121 err = md_cluster_ops->new_disk_ack(mddev, 6122 err == 0); 6123 if (err) 6124 md_kick_rdev_from_array(rdev); 6125 } 6126 } else { 6127 if (err) 6128 md_cluster_ops->add_new_disk_cancel(mddev); 6129 else 6130 err = add_bound_rdev(rdev); 6131 } 6132 6133 } else if (!err) 6134 err = add_bound_rdev(rdev); 6135 6136 return err; 6137 } 6138 6139 /* otherwise, add_new_disk is only allowed 6140 * for major_version==0 superblocks 6141 */ 6142 if (mddev->major_version != 0) { 6143 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 6144 mdname(mddev)); 6145 return -EINVAL; 6146 } 6147 6148 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6149 int err; 6150 rdev = md_import_device(dev, -1, 0); 6151 if (IS_ERR(rdev)) { 6152 printk(KERN_WARNING 6153 "md: error, md_import_device() returned %ld\n", 6154 PTR_ERR(rdev)); 6155 return PTR_ERR(rdev); 6156 } 6157 rdev->desc_nr = info->number; 6158 if (info->raid_disk < mddev->raid_disks) 6159 rdev->raid_disk = info->raid_disk; 6160 else 6161 rdev->raid_disk = -1; 6162 6163 if (rdev->raid_disk < mddev->raid_disks) 6164 if (info->state & (1<<MD_DISK_SYNC)) 6165 set_bit(In_sync, &rdev->flags); 6166 6167 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6168 set_bit(WriteMostly, &rdev->flags); 6169 6170 if (!mddev->persistent) { 6171 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 6172 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6173 } else 6174 rdev->sb_start = calc_dev_sboffset(rdev); 6175 rdev->sectors = rdev->sb_start; 6176 6177 err = bind_rdev_to_array(rdev, mddev); 6178 if (err) { 6179 export_rdev(rdev); 6180 return err; 6181 } 6182 } 6183 6184 return 0; 6185 } 6186 6187 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6188 { 6189 char b[BDEVNAME_SIZE]; 6190 struct md_rdev *rdev; 6191 6192 rdev = find_rdev(mddev, dev); 6193 if (!rdev) 6194 return -ENXIO; 6195 6196 if (rdev->raid_disk < 0) 6197 goto kick_rdev; 6198 6199 clear_bit(Blocked, &rdev->flags); 6200 remove_and_add_spares(mddev, rdev); 6201 6202 if (rdev->raid_disk >= 0) 6203 goto busy; 6204 6205 kick_rdev: 6206 if (mddev_is_clustered(mddev)) 6207 md_cluster_ops->remove_disk(mddev, rdev); 6208 6209 md_kick_rdev_from_array(rdev); 6210 md_update_sb(mddev, 1); 6211 md_new_event(mddev); 6212 6213 return 0; 6214 busy: 6215 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 6216 bdevname(rdev->bdev,b), mdname(mddev)); 6217 return -EBUSY; 6218 } 6219 6220 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6221 { 6222 char b[BDEVNAME_SIZE]; 6223 int err; 6224 struct md_rdev *rdev; 6225 6226 if (!mddev->pers) 6227 return -ENODEV; 6228 6229 if (mddev->major_version != 0) { 6230 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 6231 " version-0 superblocks.\n", 6232 mdname(mddev)); 6233 return -EINVAL; 6234 } 6235 if (!mddev->pers->hot_add_disk) { 6236 printk(KERN_WARNING 6237 "%s: personality does not support diskops!\n", 6238 mdname(mddev)); 6239 return -EINVAL; 6240 } 6241 6242 rdev = md_import_device(dev, -1, 0); 6243 if (IS_ERR(rdev)) { 6244 printk(KERN_WARNING 6245 "md: error, md_import_device() returned %ld\n", 6246 PTR_ERR(rdev)); 6247 return -EINVAL; 6248 } 6249 6250 if (mddev->persistent) 6251 rdev->sb_start = calc_dev_sboffset(rdev); 6252 else 6253 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6254 6255 rdev->sectors = rdev->sb_start; 6256 6257 if (test_bit(Faulty, &rdev->flags)) { 6258 printk(KERN_WARNING 6259 "md: can not hot-add faulty %s disk to %s!\n", 6260 bdevname(rdev->bdev,b), mdname(mddev)); 6261 err = -EINVAL; 6262 goto abort_export; 6263 } 6264 6265 clear_bit(In_sync, &rdev->flags); 6266 rdev->desc_nr = -1; 6267 rdev->saved_raid_disk = -1; 6268 err = bind_rdev_to_array(rdev, mddev); 6269 if (err) 6270 goto abort_export; 6271 6272 /* 6273 * The rest should better be atomic, we can have disk failures 6274 * noticed in interrupt contexts ... 6275 */ 6276 6277 rdev->raid_disk = -1; 6278 6279 md_update_sb(mddev, 1); 6280 /* 6281 * Kick recovery, maybe this spare has to be added to the 6282 * array immediately. 6283 */ 6284 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6285 md_wakeup_thread(mddev->thread); 6286 md_new_event(mddev); 6287 return 0; 6288 6289 abort_export: 6290 export_rdev(rdev); 6291 return err; 6292 } 6293 6294 static int set_bitmap_file(struct mddev *mddev, int fd) 6295 { 6296 int err = 0; 6297 6298 if (mddev->pers) { 6299 if (!mddev->pers->quiesce || !mddev->thread) 6300 return -EBUSY; 6301 if (mddev->recovery || mddev->sync_thread) 6302 return -EBUSY; 6303 /* we should be able to change the bitmap.. */ 6304 } 6305 6306 if (fd >= 0) { 6307 struct inode *inode; 6308 struct file *f; 6309 6310 if (mddev->bitmap || mddev->bitmap_info.file) 6311 return -EEXIST; /* cannot add when bitmap is present */ 6312 f = fget(fd); 6313 6314 if (f == NULL) { 6315 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6316 mdname(mddev)); 6317 return -EBADF; 6318 } 6319 6320 inode = f->f_mapping->host; 6321 if (!S_ISREG(inode->i_mode)) { 6322 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6323 mdname(mddev)); 6324 err = -EBADF; 6325 } else if (!(f->f_mode & FMODE_WRITE)) { 6326 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6327 mdname(mddev)); 6328 err = -EBADF; 6329 } else if (atomic_read(&inode->i_writecount) != 1) { 6330 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6331 mdname(mddev)); 6332 err = -EBUSY; 6333 } 6334 if (err) { 6335 fput(f); 6336 return err; 6337 } 6338 mddev->bitmap_info.file = f; 6339 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6340 } else if (mddev->bitmap == NULL) 6341 return -ENOENT; /* cannot remove what isn't there */ 6342 err = 0; 6343 if (mddev->pers) { 6344 mddev->pers->quiesce(mddev, 1); 6345 if (fd >= 0) { 6346 struct bitmap *bitmap; 6347 6348 bitmap = bitmap_create(mddev, -1); 6349 if (!IS_ERR(bitmap)) { 6350 mddev->bitmap = bitmap; 6351 err = bitmap_load(mddev); 6352 } else 6353 err = PTR_ERR(bitmap); 6354 } 6355 if (fd < 0 || err) { 6356 bitmap_destroy(mddev); 6357 fd = -1; /* make sure to put the file */ 6358 } 6359 mddev->pers->quiesce(mddev, 0); 6360 } 6361 if (fd < 0) { 6362 struct file *f = mddev->bitmap_info.file; 6363 if (f) { 6364 spin_lock(&mddev->lock); 6365 mddev->bitmap_info.file = NULL; 6366 spin_unlock(&mddev->lock); 6367 fput(f); 6368 } 6369 } 6370 6371 return err; 6372 } 6373 6374 /* 6375 * set_array_info is used two different ways 6376 * The original usage is when creating a new array. 6377 * In this usage, raid_disks is > 0 and it together with 6378 * level, size, not_persistent,layout,chunksize determine the 6379 * shape of the array. 6380 * This will always create an array with a type-0.90.0 superblock. 6381 * The newer usage is when assembling an array. 6382 * In this case raid_disks will be 0, and the major_version field is 6383 * use to determine which style super-blocks are to be found on the devices. 6384 * The minor and patch _version numbers are also kept incase the 6385 * super_block handler wishes to interpret them. 6386 */ 6387 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6388 { 6389 6390 if (info->raid_disks == 0) { 6391 /* just setting version number for superblock loading */ 6392 if (info->major_version < 0 || 6393 info->major_version >= ARRAY_SIZE(super_types) || 6394 super_types[info->major_version].name == NULL) { 6395 /* maybe try to auto-load a module? */ 6396 printk(KERN_INFO 6397 "md: superblock version %d not known\n", 6398 info->major_version); 6399 return -EINVAL; 6400 } 6401 mddev->major_version = info->major_version; 6402 mddev->minor_version = info->minor_version; 6403 mddev->patch_version = info->patch_version; 6404 mddev->persistent = !info->not_persistent; 6405 /* ensure mddev_put doesn't delete this now that there 6406 * is some minimal configuration. 6407 */ 6408 mddev->ctime = ktime_get_real_seconds(); 6409 return 0; 6410 } 6411 mddev->major_version = MD_MAJOR_VERSION; 6412 mddev->minor_version = MD_MINOR_VERSION; 6413 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6414 mddev->ctime = ktime_get_real_seconds(); 6415 6416 mddev->level = info->level; 6417 mddev->clevel[0] = 0; 6418 mddev->dev_sectors = 2 * (sector_t)info->size; 6419 mddev->raid_disks = info->raid_disks; 6420 /* don't set md_minor, it is determined by which /dev/md* was 6421 * openned 6422 */ 6423 if (info->state & (1<<MD_SB_CLEAN)) 6424 mddev->recovery_cp = MaxSector; 6425 else 6426 mddev->recovery_cp = 0; 6427 mddev->persistent = ! info->not_persistent; 6428 mddev->external = 0; 6429 6430 mddev->layout = info->layout; 6431 mddev->chunk_sectors = info->chunk_size >> 9; 6432 6433 mddev->max_disks = MD_SB_DISKS; 6434 6435 if (mddev->persistent) 6436 mddev->flags = 0; 6437 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6438 6439 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6440 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6441 mddev->bitmap_info.offset = 0; 6442 6443 mddev->reshape_position = MaxSector; 6444 6445 /* 6446 * Generate a 128 bit UUID 6447 */ 6448 get_random_bytes(mddev->uuid, 16); 6449 6450 mddev->new_level = mddev->level; 6451 mddev->new_chunk_sectors = mddev->chunk_sectors; 6452 mddev->new_layout = mddev->layout; 6453 mddev->delta_disks = 0; 6454 mddev->reshape_backwards = 0; 6455 6456 return 0; 6457 } 6458 6459 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6460 { 6461 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6462 6463 if (mddev->external_size) 6464 return; 6465 6466 mddev->array_sectors = array_sectors; 6467 } 6468 EXPORT_SYMBOL(md_set_array_sectors); 6469 6470 static int update_size(struct mddev *mddev, sector_t num_sectors) 6471 { 6472 struct md_rdev *rdev; 6473 int rv; 6474 int fit = (num_sectors == 0); 6475 6476 /* cluster raid doesn't support update size */ 6477 if (mddev_is_clustered(mddev)) 6478 return -EINVAL; 6479 6480 if (mddev->pers->resize == NULL) 6481 return -EINVAL; 6482 /* The "num_sectors" is the number of sectors of each device that 6483 * is used. This can only make sense for arrays with redundancy. 6484 * linear and raid0 always use whatever space is available. We can only 6485 * consider changing this number if no resync or reconstruction is 6486 * happening, and if the new size is acceptable. It must fit before the 6487 * sb_start or, if that is <data_offset, it must fit before the size 6488 * of each device. If num_sectors is zero, we find the largest size 6489 * that fits. 6490 */ 6491 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6492 mddev->sync_thread) 6493 return -EBUSY; 6494 if (mddev->ro) 6495 return -EROFS; 6496 6497 rdev_for_each(rdev, mddev) { 6498 sector_t avail = rdev->sectors; 6499 6500 if (fit && (num_sectors == 0 || num_sectors > avail)) 6501 num_sectors = avail; 6502 if (avail < num_sectors) 6503 return -ENOSPC; 6504 } 6505 rv = mddev->pers->resize(mddev, num_sectors); 6506 if (!rv) 6507 revalidate_disk(mddev->gendisk); 6508 return rv; 6509 } 6510 6511 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6512 { 6513 int rv; 6514 struct md_rdev *rdev; 6515 /* change the number of raid disks */ 6516 if (mddev->pers->check_reshape == NULL) 6517 return -EINVAL; 6518 if (mddev->ro) 6519 return -EROFS; 6520 if (raid_disks <= 0 || 6521 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6522 return -EINVAL; 6523 if (mddev->sync_thread || 6524 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6525 mddev->reshape_position != MaxSector) 6526 return -EBUSY; 6527 6528 rdev_for_each(rdev, mddev) { 6529 if (mddev->raid_disks < raid_disks && 6530 rdev->data_offset < rdev->new_data_offset) 6531 return -EINVAL; 6532 if (mddev->raid_disks > raid_disks && 6533 rdev->data_offset > rdev->new_data_offset) 6534 return -EINVAL; 6535 } 6536 6537 mddev->delta_disks = raid_disks - mddev->raid_disks; 6538 if (mddev->delta_disks < 0) 6539 mddev->reshape_backwards = 1; 6540 else if (mddev->delta_disks > 0) 6541 mddev->reshape_backwards = 0; 6542 6543 rv = mddev->pers->check_reshape(mddev); 6544 if (rv < 0) { 6545 mddev->delta_disks = 0; 6546 mddev->reshape_backwards = 0; 6547 } 6548 return rv; 6549 } 6550 6551 /* 6552 * update_array_info is used to change the configuration of an 6553 * on-line array. 6554 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6555 * fields in the info are checked against the array. 6556 * Any differences that cannot be handled will cause an error. 6557 * Normally, only one change can be managed at a time. 6558 */ 6559 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6560 { 6561 int rv = 0; 6562 int cnt = 0; 6563 int state = 0; 6564 6565 /* calculate expected state,ignoring low bits */ 6566 if (mddev->bitmap && mddev->bitmap_info.offset) 6567 state |= (1 << MD_SB_BITMAP_PRESENT); 6568 6569 if (mddev->major_version != info->major_version || 6570 mddev->minor_version != info->minor_version || 6571 /* mddev->patch_version != info->patch_version || */ 6572 mddev->ctime != info->ctime || 6573 mddev->level != info->level || 6574 /* mddev->layout != info->layout || */ 6575 mddev->persistent != !info->not_persistent || 6576 mddev->chunk_sectors != info->chunk_size >> 9 || 6577 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6578 ((state^info->state) & 0xfffffe00) 6579 ) 6580 return -EINVAL; 6581 /* Check there is only one change */ 6582 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6583 cnt++; 6584 if (mddev->raid_disks != info->raid_disks) 6585 cnt++; 6586 if (mddev->layout != info->layout) 6587 cnt++; 6588 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6589 cnt++; 6590 if (cnt == 0) 6591 return 0; 6592 if (cnt > 1) 6593 return -EINVAL; 6594 6595 if (mddev->layout != info->layout) { 6596 /* Change layout 6597 * we don't need to do anything at the md level, the 6598 * personality will take care of it all. 6599 */ 6600 if (mddev->pers->check_reshape == NULL) 6601 return -EINVAL; 6602 else { 6603 mddev->new_layout = info->layout; 6604 rv = mddev->pers->check_reshape(mddev); 6605 if (rv) 6606 mddev->new_layout = mddev->layout; 6607 return rv; 6608 } 6609 } 6610 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6611 rv = update_size(mddev, (sector_t)info->size * 2); 6612 6613 if (mddev->raid_disks != info->raid_disks) 6614 rv = update_raid_disks(mddev, info->raid_disks); 6615 6616 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6617 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6618 rv = -EINVAL; 6619 goto err; 6620 } 6621 if (mddev->recovery || mddev->sync_thread) { 6622 rv = -EBUSY; 6623 goto err; 6624 } 6625 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6626 struct bitmap *bitmap; 6627 /* add the bitmap */ 6628 if (mddev->bitmap) { 6629 rv = -EEXIST; 6630 goto err; 6631 } 6632 if (mddev->bitmap_info.default_offset == 0) { 6633 rv = -EINVAL; 6634 goto err; 6635 } 6636 mddev->bitmap_info.offset = 6637 mddev->bitmap_info.default_offset; 6638 mddev->bitmap_info.space = 6639 mddev->bitmap_info.default_space; 6640 mddev->pers->quiesce(mddev, 1); 6641 bitmap = bitmap_create(mddev, -1); 6642 if (!IS_ERR(bitmap)) { 6643 mddev->bitmap = bitmap; 6644 rv = bitmap_load(mddev); 6645 } else 6646 rv = PTR_ERR(bitmap); 6647 if (rv) 6648 bitmap_destroy(mddev); 6649 mddev->pers->quiesce(mddev, 0); 6650 } else { 6651 /* remove the bitmap */ 6652 if (!mddev->bitmap) { 6653 rv = -ENOENT; 6654 goto err; 6655 } 6656 if (mddev->bitmap->storage.file) { 6657 rv = -EINVAL; 6658 goto err; 6659 } 6660 if (mddev->bitmap_info.nodes) { 6661 /* hold PW on all the bitmap lock */ 6662 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6663 printk("md: can't change bitmap to none since the" 6664 " array is in use by more than one node\n"); 6665 rv = -EPERM; 6666 md_cluster_ops->unlock_all_bitmaps(mddev); 6667 goto err; 6668 } 6669 6670 mddev->bitmap_info.nodes = 0; 6671 md_cluster_ops->leave(mddev); 6672 } 6673 mddev->pers->quiesce(mddev, 1); 6674 bitmap_destroy(mddev); 6675 mddev->pers->quiesce(mddev, 0); 6676 mddev->bitmap_info.offset = 0; 6677 } 6678 } 6679 md_update_sb(mddev, 1); 6680 return rv; 6681 err: 6682 return rv; 6683 } 6684 6685 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6686 { 6687 struct md_rdev *rdev; 6688 int err = 0; 6689 6690 if (mddev->pers == NULL) 6691 return -ENODEV; 6692 6693 rcu_read_lock(); 6694 rdev = find_rdev_rcu(mddev, dev); 6695 if (!rdev) 6696 err = -ENODEV; 6697 else { 6698 md_error(mddev, rdev); 6699 if (!test_bit(Faulty, &rdev->flags)) 6700 err = -EBUSY; 6701 } 6702 rcu_read_unlock(); 6703 return err; 6704 } 6705 6706 /* 6707 * We have a problem here : there is no easy way to give a CHS 6708 * virtual geometry. We currently pretend that we have a 2 heads 6709 * 4 sectors (with a BIG number of cylinders...). This drives 6710 * dosfs just mad... ;-) 6711 */ 6712 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6713 { 6714 struct mddev *mddev = bdev->bd_disk->private_data; 6715 6716 geo->heads = 2; 6717 geo->sectors = 4; 6718 geo->cylinders = mddev->array_sectors / 8; 6719 return 0; 6720 } 6721 6722 static inline bool md_ioctl_valid(unsigned int cmd) 6723 { 6724 switch (cmd) { 6725 case ADD_NEW_DISK: 6726 case BLKROSET: 6727 case GET_ARRAY_INFO: 6728 case GET_BITMAP_FILE: 6729 case GET_DISK_INFO: 6730 case HOT_ADD_DISK: 6731 case HOT_REMOVE_DISK: 6732 case RAID_AUTORUN: 6733 case RAID_VERSION: 6734 case RESTART_ARRAY_RW: 6735 case RUN_ARRAY: 6736 case SET_ARRAY_INFO: 6737 case SET_BITMAP_FILE: 6738 case SET_DISK_FAULTY: 6739 case STOP_ARRAY: 6740 case STOP_ARRAY_RO: 6741 case CLUSTERED_DISK_NACK: 6742 return true; 6743 default: 6744 return false; 6745 } 6746 } 6747 6748 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6749 unsigned int cmd, unsigned long arg) 6750 { 6751 int err = 0; 6752 void __user *argp = (void __user *)arg; 6753 struct mddev *mddev = NULL; 6754 int ro; 6755 6756 if (!md_ioctl_valid(cmd)) 6757 return -ENOTTY; 6758 6759 switch (cmd) { 6760 case RAID_VERSION: 6761 case GET_ARRAY_INFO: 6762 case GET_DISK_INFO: 6763 break; 6764 default: 6765 if (!capable(CAP_SYS_ADMIN)) 6766 return -EACCES; 6767 } 6768 6769 /* 6770 * Commands dealing with the RAID driver but not any 6771 * particular array: 6772 */ 6773 switch (cmd) { 6774 case RAID_VERSION: 6775 err = get_version(argp); 6776 goto out; 6777 6778 #ifndef MODULE 6779 case RAID_AUTORUN: 6780 err = 0; 6781 autostart_arrays(arg); 6782 goto out; 6783 #endif 6784 default:; 6785 } 6786 6787 /* 6788 * Commands creating/starting a new array: 6789 */ 6790 6791 mddev = bdev->bd_disk->private_data; 6792 6793 if (!mddev) { 6794 BUG(); 6795 goto out; 6796 } 6797 6798 /* Some actions do not requires the mutex */ 6799 switch (cmd) { 6800 case GET_ARRAY_INFO: 6801 if (!mddev->raid_disks && !mddev->external) 6802 err = -ENODEV; 6803 else 6804 err = get_array_info(mddev, argp); 6805 goto out; 6806 6807 case GET_DISK_INFO: 6808 if (!mddev->raid_disks && !mddev->external) 6809 err = -ENODEV; 6810 else 6811 err = get_disk_info(mddev, argp); 6812 goto out; 6813 6814 case SET_DISK_FAULTY: 6815 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6816 goto out; 6817 6818 case GET_BITMAP_FILE: 6819 err = get_bitmap_file(mddev, argp); 6820 goto out; 6821 6822 } 6823 6824 if (cmd == ADD_NEW_DISK) 6825 /* need to ensure md_delayed_delete() has completed */ 6826 flush_workqueue(md_misc_wq); 6827 6828 if (cmd == HOT_REMOVE_DISK) 6829 /* need to ensure recovery thread has run */ 6830 wait_event_interruptible_timeout(mddev->sb_wait, 6831 !test_bit(MD_RECOVERY_NEEDED, 6832 &mddev->flags), 6833 msecs_to_jiffies(5000)); 6834 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6835 /* Need to flush page cache, and ensure no-one else opens 6836 * and writes 6837 */ 6838 mutex_lock(&mddev->open_mutex); 6839 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6840 mutex_unlock(&mddev->open_mutex); 6841 err = -EBUSY; 6842 goto out; 6843 } 6844 set_bit(MD_CLOSING, &mddev->flags); 6845 mutex_unlock(&mddev->open_mutex); 6846 sync_blockdev(bdev); 6847 } 6848 err = mddev_lock(mddev); 6849 if (err) { 6850 printk(KERN_INFO 6851 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6852 err, cmd); 6853 goto out; 6854 } 6855 6856 if (cmd == SET_ARRAY_INFO) { 6857 mdu_array_info_t info; 6858 if (!arg) 6859 memset(&info, 0, sizeof(info)); 6860 else if (copy_from_user(&info, argp, sizeof(info))) { 6861 err = -EFAULT; 6862 goto unlock; 6863 } 6864 if (mddev->pers) { 6865 err = update_array_info(mddev, &info); 6866 if (err) { 6867 printk(KERN_WARNING "md: couldn't update" 6868 " array info. %d\n", err); 6869 goto unlock; 6870 } 6871 goto unlock; 6872 } 6873 if (!list_empty(&mddev->disks)) { 6874 printk(KERN_WARNING 6875 "md: array %s already has disks!\n", 6876 mdname(mddev)); 6877 err = -EBUSY; 6878 goto unlock; 6879 } 6880 if (mddev->raid_disks) { 6881 printk(KERN_WARNING 6882 "md: array %s already initialised!\n", 6883 mdname(mddev)); 6884 err = -EBUSY; 6885 goto unlock; 6886 } 6887 err = set_array_info(mddev, &info); 6888 if (err) { 6889 printk(KERN_WARNING "md: couldn't set" 6890 " array info. %d\n", err); 6891 goto unlock; 6892 } 6893 goto unlock; 6894 } 6895 6896 /* 6897 * Commands querying/configuring an existing array: 6898 */ 6899 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6900 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6901 if ((!mddev->raid_disks && !mddev->external) 6902 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6903 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6904 && cmd != GET_BITMAP_FILE) { 6905 err = -ENODEV; 6906 goto unlock; 6907 } 6908 6909 /* 6910 * Commands even a read-only array can execute: 6911 */ 6912 switch (cmd) { 6913 case RESTART_ARRAY_RW: 6914 err = restart_array(mddev); 6915 goto unlock; 6916 6917 case STOP_ARRAY: 6918 err = do_md_stop(mddev, 0, bdev); 6919 goto unlock; 6920 6921 case STOP_ARRAY_RO: 6922 err = md_set_readonly(mddev, bdev); 6923 goto unlock; 6924 6925 case HOT_REMOVE_DISK: 6926 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6927 goto unlock; 6928 6929 case ADD_NEW_DISK: 6930 /* We can support ADD_NEW_DISK on read-only arrays 6931 * only if we are re-adding a preexisting device. 6932 * So require mddev->pers and MD_DISK_SYNC. 6933 */ 6934 if (mddev->pers) { 6935 mdu_disk_info_t info; 6936 if (copy_from_user(&info, argp, sizeof(info))) 6937 err = -EFAULT; 6938 else if (!(info.state & (1<<MD_DISK_SYNC))) 6939 /* Need to clear read-only for this */ 6940 break; 6941 else 6942 err = add_new_disk(mddev, &info); 6943 goto unlock; 6944 } 6945 break; 6946 6947 case BLKROSET: 6948 if (get_user(ro, (int __user *)(arg))) { 6949 err = -EFAULT; 6950 goto unlock; 6951 } 6952 err = -EINVAL; 6953 6954 /* if the bdev is going readonly the value of mddev->ro 6955 * does not matter, no writes are coming 6956 */ 6957 if (ro) 6958 goto unlock; 6959 6960 /* are we are already prepared for writes? */ 6961 if (mddev->ro != 1) 6962 goto unlock; 6963 6964 /* transitioning to readauto need only happen for 6965 * arrays that call md_write_start 6966 */ 6967 if (mddev->pers) { 6968 err = restart_array(mddev); 6969 if (err == 0) { 6970 mddev->ro = 2; 6971 set_disk_ro(mddev->gendisk, 0); 6972 } 6973 } 6974 goto unlock; 6975 } 6976 6977 /* 6978 * The remaining ioctls are changing the state of the 6979 * superblock, so we do not allow them on read-only arrays. 6980 */ 6981 if (mddev->ro && mddev->pers) { 6982 if (mddev->ro == 2) { 6983 mddev->ro = 0; 6984 sysfs_notify_dirent_safe(mddev->sysfs_state); 6985 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6986 /* mddev_unlock will wake thread */ 6987 /* If a device failed while we were read-only, we 6988 * need to make sure the metadata is updated now. 6989 */ 6990 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6991 mddev_unlock(mddev); 6992 wait_event(mddev->sb_wait, 6993 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6994 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6995 mddev_lock_nointr(mddev); 6996 } 6997 } else { 6998 err = -EROFS; 6999 goto unlock; 7000 } 7001 } 7002 7003 switch (cmd) { 7004 case ADD_NEW_DISK: 7005 { 7006 mdu_disk_info_t info; 7007 if (copy_from_user(&info, argp, sizeof(info))) 7008 err = -EFAULT; 7009 else 7010 err = add_new_disk(mddev, &info); 7011 goto unlock; 7012 } 7013 7014 case CLUSTERED_DISK_NACK: 7015 if (mddev_is_clustered(mddev)) 7016 md_cluster_ops->new_disk_ack(mddev, false); 7017 else 7018 err = -EINVAL; 7019 goto unlock; 7020 7021 case HOT_ADD_DISK: 7022 err = hot_add_disk(mddev, new_decode_dev(arg)); 7023 goto unlock; 7024 7025 case RUN_ARRAY: 7026 err = do_md_run(mddev); 7027 goto unlock; 7028 7029 case SET_BITMAP_FILE: 7030 err = set_bitmap_file(mddev, (int)arg); 7031 goto unlock; 7032 7033 default: 7034 err = -EINVAL; 7035 goto unlock; 7036 } 7037 7038 unlock: 7039 if (mddev->hold_active == UNTIL_IOCTL && 7040 err != -EINVAL) 7041 mddev->hold_active = 0; 7042 mddev_unlock(mddev); 7043 out: 7044 return err; 7045 } 7046 #ifdef CONFIG_COMPAT 7047 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7048 unsigned int cmd, unsigned long arg) 7049 { 7050 switch (cmd) { 7051 case HOT_REMOVE_DISK: 7052 case HOT_ADD_DISK: 7053 case SET_DISK_FAULTY: 7054 case SET_BITMAP_FILE: 7055 /* These take in integer arg, do not convert */ 7056 break; 7057 default: 7058 arg = (unsigned long)compat_ptr(arg); 7059 break; 7060 } 7061 7062 return md_ioctl(bdev, mode, cmd, arg); 7063 } 7064 #endif /* CONFIG_COMPAT */ 7065 7066 static int md_open(struct block_device *bdev, fmode_t mode) 7067 { 7068 /* 7069 * Succeed if we can lock the mddev, which confirms that 7070 * it isn't being stopped right now. 7071 */ 7072 struct mddev *mddev = mddev_find(bdev->bd_dev); 7073 int err; 7074 7075 if (!mddev) 7076 return -ENODEV; 7077 7078 if (mddev->gendisk != bdev->bd_disk) { 7079 /* we are racing with mddev_put which is discarding this 7080 * bd_disk. 7081 */ 7082 mddev_put(mddev); 7083 /* Wait until bdev->bd_disk is definitely gone */ 7084 flush_workqueue(md_misc_wq); 7085 /* Then retry the open from the top */ 7086 return -ERESTARTSYS; 7087 } 7088 BUG_ON(mddev != bdev->bd_disk->private_data); 7089 7090 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7091 goto out; 7092 7093 if (test_bit(MD_CLOSING, &mddev->flags)) { 7094 mutex_unlock(&mddev->open_mutex); 7095 return -ENODEV; 7096 } 7097 7098 err = 0; 7099 atomic_inc(&mddev->openers); 7100 mutex_unlock(&mddev->open_mutex); 7101 7102 check_disk_change(bdev); 7103 out: 7104 return err; 7105 } 7106 7107 static void md_release(struct gendisk *disk, fmode_t mode) 7108 { 7109 struct mddev *mddev = disk->private_data; 7110 7111 BUG_ON(!mddev); 7112 atomic_dec(&mddev->openers); 7113 mddev_put(mddev); 7114 } 7115 7116 static int md_media_changed(struct gendisk *disk) 7117 { 7118 struct mddev *mddev = disk->private_data; 7119 7120 return mddev->changed; 7121 } 7122 7123 static int md_revalidate(struct gendisk *disk) 7124 { 7125 struct mddev *mddev = disk->private_data; 7126 7127 mddev->changed = 0; 7128 return 0; 7129 } 7130 static const struct block_device_operations md_fops = 7131 { 7132 .owner = THIS_MODULE, 7133 .open = md_open, 7134 .release = md_release, 7135 .ioctl = md_ioctl, 7136 #ifdef CONFIG_COMPAT 7137 .compat_ioctl = md_compat_ioctl, 7138 #endif 7139 .getgeo = md_getgeo, 7140 .media_changed = md_media_changed, 7141 .revalidate_disk= md_revalidate, 7142 }; 7143 7144 static int md_thread(void *arg) 7145 { 7146 struct md_thread *thread = arg; 7147 7148 /* 7149 * md_thread is a 'system-thread', it's priority should be very 7150 * high. We avoid resource deadlocks individually in each 7151 * raid personality. (RAID5 does preallocation) We also use RR and 7152 * the very same RT priority as kswapd, thus we will never get 7153 * into a priority inversion deadlock. 7154 * 7155 * we definitely have to have equal or higher priority than 7156 * bdflush, otherwise bdflush will deadlock if there are too 7157 * many dirty RAID5 blocks. 7158 */ 7159 7160 allow_signal(SIGKILL); 7161 while (!kthread_should_stop()) { 7162 7163 /* We need to wait INTERRUPTIBLE so that 7164 * we don't add to the load-average. 7165 * That means we need to be sure no signals are 7166 * pending 7167 */ 7168 if (signal_pending(current)) 7169 flush_signals(current); 7170 7171 wait_event_interruptible_timeout 7172 (thread->wqueue, 7173 test_bit(THREAD_WAKEUP, &thread->flags) 7174 || kthread_should_stop(), 7175 thread->timeout); 7176 7177 clear_bit(THREAD_WAKEUP, &thread->flags); 7178 if (!kthread_should_stop()) 7179 thread->run(thread); 7180 } 7181 7182 return 0; 7183 } 7184 7185 void md_wakeup_thread(struct md_thread *thread) 7186 { 7187 if (thread) { 7188 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7189 set_bit(THREAD_WAKEUP, &thread->flags); 7190 wake_up(&thread->wqueue); 7191 } 7192 } 7193 EXPORT_SYMBOL(md_wakeup_thread); 7194 7195 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7196 struct mddev *mddev, const char *name) 7197 { 7198 struct md_thread *thread; 7199 7200 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7201 if (!thread) 7202 return NULL; 7203 7204 init_waitqueue_head(&thread->wqueue); 7205 7206 thread->run = run; 7207 thread->mddev = mddev; 7208 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7209 thread->tsk = kthread_run(md_thread, thread, 7210 "%s_%s", 7211 mdname(thread->mddev), 7212 name); 7213 if (IS_ERR(thread->tsk)) { 7214 kfree(thread); 7215 return NULL; 7216 } 7217 return thread; 7218 } 7219 EXPORT_SYMBOL(md_register_thread); 7220 7221 void md_unregister_thread(struct md_thread **threadp) 7222 { 7223 struct md_thread *thread = *threadp; 7224 if (!thread) 7225 return; 7226 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7227 /* Locking ensures that mddev_unlock does not wake_up a 7228 * non-existent thread 7229 */ 7230 spin_lock(&pers_lock); 7231 *threadp = NULL; 7232 spin_unlock(&pers_lock); 7233 7234 kthread_stop(thread->tsk); 7235 kfree(thread); 7236 } 7237 EXPORT_SYMBOL(md_unregister_thread); 7238 7239 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7240 { 7241 if (!rdev || test_bit(Faulty, &rdev->flags)) 7242 return; 7243 7244 if (!mddev->pers || !mddev->pers->error_handler) 7245 return; 7246 mddev->pers->error_handler(mddev,rdev); 7247 if (mddev->degraded) 7248 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7249 sysfs_notify_dirent_safe(rdev->sysfs_state); 7250 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7252 md_wakeup_thread(mddev->thread); 7253 if (mddev->event_work.func) 7254 queue_work(md_misc_wq, &mddev->event_work); 7255 md_new_event(mddev); 7256 } 7257 EXPORT_SYMBOL(md_error); 7258 7259 /* seq_file implementation /proc/mdstat */ 7260 7261 static void status_unused(struct seq_file *seq) 7262 { 7263 int i = 0; 7264 struct md_rdev *rdev; 7265 7266 seq_printf(seq, "unused devices: "); 7267 7268 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7269 char b[BDEVNAME_SIZE]; 7270 i++; 7271 seq_printf(seq, "%s ", 7272 bdevname(rdev->bdev,b)); 7273 } 7274 if (!i) 7275 seq_printf(seq, "<none>"); 7276 7277 seq_printf(seq, "\n"); 7278 } 7279 7280 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7281 { 7282 sector_t max_sectors, resync, res; 7283 unsigned long dt, db; 7284 sector_t rt; 7285 int scale; 7286 unsigned int per_milli; 7287 7288 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7289 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7290 max_sectors = mddev->resync_max_sectors; 7291 else 7292 max_sectors = mddev->dev_sectors; 7293 7294 resync = mddev->curr_resync; 7295 if (resync <= 3) { 7296 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7297 /* Still cleaning up */ 7298 resync = max_sectors; 7299 } else 7300 resync -= atomic_read(&mddev->recovery_active); 7301 7302 if (resync == 0) { 7303 if (mddev->recovery_cp < MaxSector) { 7304 seq_printf(seq, "\tresync=PENDING"); 7305 return 1; 7306 } 7307 return 0; 7308 } 7309 if (resync < 3) { 7310 seq_printf(seq, "\tresync=DELAYED"); 7311 return 1; 7312 } 7313 7314 WARN_ON(max_sectors == 0); 7315 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7316 * in a sector_t, and (max_sectors>>scale) will fit in a 7317 * u32, as those are the requirements for sector_div. 7318 * Thus 'scale' must be at least 10 7319 */ 7320 scale = 10; 7321 if (sizeof(sector_t) > sizeof(unsigned long)) { 7322 while ( max_sectors/2 > (1ULL<<(scale+32))) 7323 scale++; 7324 } 7325 res = (resync>>scale)*1000; 7326 sector_div(res, (u32)((max_sectors>>scale)+1)); 7327 7328 per_milli = res; 7329 { 7330 int i, x = per_milli/50, y = 20-x; 7331 seq_printf(seq, "["); 7332 for (i = 0; i < x; i++) 7333 seq_printf(seq, "="); 7334 seq_printf(seq, ">"); 7335 for (i = 0; i < y; i++) 7336 seq_printf(seq, "."); 7337 seq_printf(seq, "] "); 7338 } 7339 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7340 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7341 "reshape" : 7342 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7343 "check" : 7344 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7345 "resync" : "recovery"))), 7346 per_milli/10, per_milli % 10, 7347 (unsigned long long) resync/2, 7348 (unsigned long long) max_sectors/2); 7349 7350 /* 7351 * dt: time from mark until now 7352 * db: blocks written from mark until now 7353 * rt: remaining time 7354 * 7355 * rt is a sector_t, so could be 32bit or 64bit. 7356 * So we divide before multiply in case it is 32bit and close 7357 * to the limit. 7358 * We scale the divisor (db) by 32 to avoid losing precision 7359 * near the end of resync when the number of remaining sectors 7360 * is close to 'db'. 7361 * We then divide rt by 32 after multiplying by db to compensate. 7362 * The '+1' avoids division by zero if db is very small. 7363 */ 7364 dt = ((jiffies - mddev->resync_mark) / HZ); 7365 if (!dt) dt++; 7366 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7367 - mddev->resync_mark_cnt; 7368 7369 rt = max_sectors - resync; /* number of remaining sectors */ 7370 sector_div(rt, db/32+1); 7371 rt *= dt; 7372 rt >>= 5; 7373 7374 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7375 ((unsigned long)rt % 60)/6); 7376 7377 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7378 return 1; 7379 } 7380 7381 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7382 { 7383 struct list_head *tmp; 7384 loff_t l = *pos; 7385 struct mddev *mddev; 7386 7387 if (l >= 0x10000) 7388 return NULL; 7389 if (!l--) 7390 /* header */ 7391 return (void*)1; 7392 7393 spin_lock(&all_mddevs_lock); 7394 list_for_each(tmp,&all_mddevs) 7395 if (!l--) { 7396 mddev = list_entry(tmp, struct mddev, all_mddevs); 7397 mddev_get(mddev); 7398 spin_unlock(&all_mddevs_lock); 7399 return mddev; 7400 } 7401 spin_unlock(&all_mddevs_lock); 7402 if (!l--) 7403 return (void*)2;/* tail */ 7404 return NULL; 7405 } 7406 7407 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7408 { 7409 struct list_head *tmp; 7410 struct mddev *next_mddev, *mddev = v; 7411 7412 ++*pos; 7413 if (v == (void*)2) 7414 return NULL; 7415 7416 spin_lock(&all_mddevs_lock); 7417 if (v == (void*)1) 7418 tmp = all_mddevs.next; 7419 else 7420 tmp = mddev->all_mddevs.next; 7421 if (tmp != &all_mddevs) 7422 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7423 else { 7424 next_mddev = (void*)2; 7425 *pos = 0x10000; 7426 } 7427 spin_unlock(&all_mddevs_lock); 7428 7429 if (v != (void*)1) 7430 mddev_put(mddev); 7431 return next_mddev; 7432 7433 } 7434 7435 static void md_seq_stop(struct seq_file *seq, void *v) 7436 { 7437 struct mddev *mddev = v; 7438 7439 if (mddev && v != (void*)1 && v != (void*)2) 7440 mddev_put(mddev); 7441 } 7442 7443 static int md_seq_show(struct seq_file *seq, void *v) 7444 { 7445 struct mddev *mddev = v; 7446 sector_t sectors; 7447 struct md_rdev *rdev; 7448 7449 if (v == (void*)1) { 7450 struct md_personality *pers; 7451 seq_printf(seq, "Personalities : "); 7452 spin_lock(&pers_lock); 7453 list_for_each_entry(pers, &pers_list, list) 7454 seq_printf(seq, "[%s] ", pers->name); 7455 7456 spin_unlock(&pers_lock); 7457 seq_printf(seq, "\n"); 7458 seq->poll_event = atomic_read(&md_event_count); 7459 return 0; 7460 } 7461 if (v == (void*)2) { 7462 status_unused(seq); 7463 return 0; 7464 } 7465 7466 spin_lock(&mddev->lock); 7467 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7468 seq_printf(seq, "%s : %sactive", mdname(mddev), 7469 mddev->pers ? "" : "in"); 7470 if (mddev->pers) { 7471 if (mddev->ro==1) 7472 seq_printf(seq, " (read-only)"); 7473 if (mddev->ro==2) 7474 seq_printf(seq, " (auto-read-only)"); 7475 seq_printf(seq, " %s", mddev->pers->name); 7476 } 7477 7478 sectors = 0; 7479 rcu_read_lock(); 7480 rdev_for_each_rcu(rdev, mddev) { 7481 char b[BDEVNAME_SIZE]; 7482 seq_printf(seq, " %s[%d]", 7483 bdevname(rdev->bdev,b), rdev->desc_nr); 7484 if (test_bit(WriteMostly, &rdev->flags)) 7485 seq_printf(seq, "(W)"); 7486 if (test_bit(Journal, &rdev->flags)) 7487 seq_printf(seq, "(J)"); 7488 if (test_bit(Faulty, &rdev->flags)) { 7489 seq_printf(seq, "(F)"); 7490 continue; 7491 } 7492 if (rdev->raid_disk < 0) 7493 seq_printf(seq, "(S)"); /* spare */ 7494 if (test_bit(Replacement, &rdev->flags)) 7495 seq_printf(seq, "(R)"); 7496 sectors += rdev->sectors; 7497 } 7498 rcu_read_unlock(); 7499 7500 if (!list_empty(&mddev->disks)) { 7501 if (mddev->pers) 7502 seq_printf(seq, "\n %llu blocks", 7503 (unsigned long long) 7504 mddev->array_sectors / 2); 7505 else 7506 seq_printf(seq, "\n %llu blocks", 7507 (unsigned long long)sectors / 2); 7508 } 7509 if (mddev->persistent) { 7510 if (mddev->major_version != 0 || 7511 mddev->minor_version != 90) { 7512 seq_printf(seq," super %d.%d", 7513 mddev->major_version, 7514 mddev->minor_version); 7515 } 7516 } else if (mddev->external) 7517 seq_printf(seq, " super external:%s", 7518 mddev->metadata_type); 7519 else 7520 seq_printf(seq, " super non-persistent"); 7521 7522 if (mddev->pers) { 7523 mddev->pers->status(seq, mddev); 7524 seq_printf(seq, "\n "); 7525 if (mddev->pers->sync_request) { 7526 if (status_resync(seq, mddev)) 7527 seq_printf(seq, "\n "); 7528 } 7529 } else 7530 seq_printf(seq, "\n "); 7531 7532 bitmap_status(seq, mddev->bitmap); 7533 7534 seq_printf(seq, "\n"); 7535 } 7536 spin_unlock(&mddev->lock); 7537 7538 return 0; 7539 } 7540 7541 static const struct seq_operations md_seq_ops = { 7542 .start = md_seq_start, 7543 .next = md_seq_next, 7544 .stop = md_seq_stop, 7545 .show = md_seq_show, 7546 }; 7547 7548 static int md_seq_open(struct inode *inode, struct file *file) 7549 { 7550 struct seq_file *seq; 7551 int error; 7552 7553 error = seq_open(file, &md_seq_ops); 7554 if (error) 7555 return error; 7556 7557 seq = file->private_data; 7558 seq->poll_event = atomic_read(&md_event_count); 7559 return error; 7560 } 7561 7562 static int md_unloading; 7563 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7564 { 7565 struct seq_file *seq = filp->private_data; 7566 int mask; 7567 7568 if (md_unloading) 7569 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7570 poll_wait(filp, &md_event_waiters, wait); 7571 7572 /* always allow read */ 7573 mask = POLLIN | POLLRDNORM; 7574 7575 if (seq->poll_event != atomic_read(&md_event_count)) 7576 mask |= POLLERR | POLLPRI; 7577 return mask; 7578 } 7579 7580 static const struct file_operations md_seq_fops = { 7581 .owner = THIS_MODULE, 7582 .open = md_seq_open, 7583 .read = seq_read, 7584 .llseek = seq_lseek, 7585 .release = seq_release_private, 7586 .poll = mdstat_poll, 7587 }; 7588 7589 int register_md_personality(struct md_personality *p) 7590 { 7591 printk(KERN_INFO "md: %s personality registered for level %d\n", 7592 p->name, p->level); 7593 spin_lock(&pers_lock); 7594 list_add_tail(&p->list, &pers_list); 7595 spin_unlock(&pers_lock); 7596 return 0; 7597 } 7598 EXPORT_SYMBOL(register_md_personality); 7599 7600 int unregister_md_personality(struct md_personality *p) 7601 { 7602 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7603 spin_lock(&pers_lock); 7604 list_del_init(&p->list); 7605 spin_unlock(&pers_lock); 7606 return 0; 7607 } 7608 EXPORT_SYMBOL(unregister_md_personality); 7609 7610 int register_md_cluster_operations(struct md_cluster_operations *ops, 7611 struct module *module) 7612 { 7613 int ret = 0; 7614 spin_lock(&pers_lock); 7615 if (md_cluster_ops != NULL) 7616 ret = -EALREADY; 7617 else { 7618 md_cluster_ops = ops; 7619 md_cluster_mod = module; 7620 } 7621 spin_unlock(&pers_lock); 7622 return ret; 7623 } 7624 EXPORT_SYMBOL(register_md_cluster_operations); 7625 7626 int unregister_md_cluster_operations(void) 7627 { 7628 spin_lock(&pers_lock); 7629 md_cluster_ops = NULL; 7630 spin_unlock(&pers_lock); 7631 return 0; 7632 } 7633 EXPORT_SYMBOL(unregister_md_cluster_operations); 7634 7635 int md_setup_cluster(struct mddev *mddev, int nodes) 7636 { 7637 if (!md_cluster_ops) 7638 request_module("md-cluster"); 7639 spin_lock(&pers_lock); 7640 /* ensure module won't be unloaded */ 7641 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7642 pr_err("can't find md-cluster module or get it's reference.\n"); 7643 spin_unlock(&pers_lock); 7644 return -ENOENT; 7645 } 7646 spin_unlock(&pers_lock); 7647 7648 return md_cluster_ops->join(mddev, nodes); 7649 } 7650 7651 void md_cluster_stop(struct mddev *mddev) 7652 { 7653 if (!md_cluster_ops) 7654 return; 7655 md_cluster_ops->leave(mddev); 7656 module_put(md_cluster_mod); 7657 } 7658 7659 static int is_mddev_idle(struct mddev *mddev, int init) 7660 { 7661 struct md_rdev *rdev; 7662 int idle; 7663 int curr_events; 7664 7665 idle = 1; 7666 rcu_read_lock(); 7667 rdev_for_each_rcu(rdev, mddev) { 7668 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7669 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7670 (int)part_stat_read(&disk->part0, sectors[1]) - 7671 atomic_read(&disk->sync_io); 7672 /* sync IO will cause sync_io to increase before the disk_stats 7673 * as sync_io is counted when a request starts, and 7674 * disk_stats is counted when it completes. 7675 * So resync activity will cause curr_events to be smaller than 7676 * when there was no such activity. 7677 * non-sync IO will cause disk_stat to increase without 7678 * increasing sync_io so curr_events will (eventually) 7679 * be larger than it was before. Once it becomes 7680 * substantially larger, the test below will cause 7681 * the array to appear non-idle, and resync will slow 7682 * down. 7683 * If there is a lot of outstanding resync activity when 7684 * we set last_event to curr_events, then all that activity 7685 * completing might cause the array to appear non-idle 7686 * and resync will be slowed down even though there might 7687 * not have been non-resync activity. This will only 7688 * happen once though. 'last_events' will soon reflect 7689 * the state where there is little or no outstanding 7690 * resync requests, and further resync activity will 7691 * always make curr_events less than last_events. 7692 * 7693 */ 7694 if (init || curr_events - rdev->last_events > 64) { 7695 rdev->last_events = curr_events; 7696 idle = 0; 7697 } 7698 } 7699 rcu_read_unlock(); 7700 return idle; 7701 } 7702 7703 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7704 { 7705 /* another "blocks" (512byte) blocks have been synced */ 7706 atomic_sub(blocks, &mddev->recovery_active); 7707 wake_up(&mddev->recovery_wait); 7708 if (!ok) { 7709 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7710 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7711 md_wakeup_thread(mddev->thread); 7712 // stop recovery, signal do_sync .... 7713 } 7714 } 7715 EXPORT_SYMBOL(md_done_sync); 7716 7717 /* md_write_start(mddev, bi) 7718 * If we need to update some array metadata (e.g. 'active' flag 7719 * in superblock) before writing, schedule a superblock update 7720 * and wait for it to complete. 7721 */ 7722 void md_write_start(struct mddev *mddev, struct bio *bi) 7723 { 7724 int did_change = 0; 7725 if (bio_data_dir(bi) != WRITE) 7726 return; 7727 7728 BUG_ON(mddev->ro == 1); 7729 if (mddev->ro == 2) { 7730 /* need to switch to read/write */ 7731 mddev->ro = 0; 7732 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7733 md_wakeup_thread(mddev->thread); 7734 md_wakeup_thread(mddev->sync_thread); 7735 did_change = 1; 7736 } 7737 atomic_inc(&mddev->writes_pending); 7738 if (mddev->safemode == 1) 7739 mddev->safemode = 0; 7740 if (mddev->in_sync) { 7741 spin_lock(&mddev->lock); 7742 if (mddev->in_sync) { 7743 mddev->in_sync = 0; 7744 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7745 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7746 md_wakeup_thread(mddev->thread); 7747 did_change = 1; 7748 } 7749 spin_unlock(&mddev->lock); 7750 } 7751 if (did_change) 7752 sysfs_notify_dirent_safe(mddev->sysfs_state); 7753 wait_event(mddev->sb_wait, 7754 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7755 } 7756 EXPORT_SYMBOL(md_write_start); 7757 7758 void md_write_end(struct mddev *mddev) 7759 { 7760 if (atomic_dec_and_test(&mddev->writes_pending)) { 7761 if (mddev->safemode == 2) 7762 md_wakeup_thread(mddev->thread); 7763 else if (mddev->safemode_delay) 7764 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7765 } 7766 } 7767 EXPORT_SYMBOL(md_write_end); 7768 7769 /* md_allow_write(mddev) 7770 * Calling this ensures that the array is marked 'active' so that writes 7771 * may proceed without blocking. It is important to call this before 7772 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7773 * Must be called with mddev_lock held. 7774 * 7775 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock 7776 * is dropped, so return -EAGAIN after notifying userspace. 7777 */ 7778 int md_allow_write(struct mddev *mddev) 7779 { 7780 if (!mddev->pers) 7781 return 0; 7782 if (mddev->ro) 7783 return 0; 7784 if (!mddev->pers->sync_request) 7785 return 0; 7786 7787 spin_lock(&mddev->lock); 7788 if (mddev->in_sync) { 7789 mddev->in_sync = 0; 7790 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7791 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7792 if (mddev->safemode_delay && 7793 mddev->safemode == 0) 7794 mddev->safemode = 1; 7795 spin_unlock(&mddev->lock); 7796 md_update_sb(mddev, 0); 7797 sysfs_notify_dirent_safe(mddev->sysfs_state); 7798 } else 7799 spin_unlock(&mddev->lock); 7800 7801 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7802 return -EAGAIN; 7803 else 7804 return 0; 7805 } 7806 EXPORT_SYMBOL_GPL(md_allow_write); 7807 7808 #define SYNC_MARKS 10 7809 #define SYNC_MARK_STEP (3*HZ) 7810 #define UPDATE_FREQUENCY (5*60*HZ) 7811 void md_do_sync(struct md_thread *thread) 7812 { 7813 struct mddev *mddev = thread->mddev; 7814 struct mddev *mddev2; 7815 unsigned int currspeed = 0, 7816 window; 7817 sector_t max_sectors,j, io_sectors, recovery_done; 7818 unsigned long mark[SYNC_MARKS]; 7819 unsigned long update_time; 7820 sector_t mark_cnt[SYNC_MARKS]; 7821 int last_mark,m; 7822 struct list_head *tmp; 7823 sector_t last_check; 7824 int skipped = 0; 7825 struct md_rdev *rdev; 7826 char *desc, *action = NULL; 7827 struct blk_plug plug; 7828 int ret; 7829 7830 /* just incase thread restarts... */ 7831 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7832 return; 7833 if (mddev->ro) {/* never try to sync a read-only array */ 7834 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7835 return; 7836 } 7837 7838 if (mddev_is_clustered(mddev)) { 7839 ret = md_cluster_ops->resync_start(mddev); 7840 if (ret) 7841 goto skip; 7842 7843 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 7844 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7845 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 7846 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 7847 && ((unsigned long long)mddev->curr_resync_completed 7848 < (unsigned long long)mddev->resync_max_sectors)) 7849 goto skip; 7850 } 7851 7852 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7853 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7854 desc = "data-check"; 7855 action = "check"; 7856 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7857 desc = "requested-resync"; 7858 action = "repair"; 7859 } else 7860 desc = "resync"; 7861 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7862 desc = "reshape"; 7863 else 7864 desc = "recovery"; 7865 7866 mddev->last_sync_action = action ?: desc; 7867 7868 /* we overload curr_resync somewhat here. 7869 * 0 == not engaged in resync at all 7870 * 2 == checking that there is no conflict with another sync 7871 * 1 == like 2, but have yielded to allow conflicting resync to 7872 * commense 7873 * other == active in resync - this many blocks 7874 * 7875 * Before starting a resync we must have set curr_resync to 7876 * 2, and then checked that every "conflicting" array has curr_resync 7877 * less than ours. When we find one that is the same or higher 7878 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7879 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7880 * This will mean we have to start checking from the beginning again. 7881 * 7882 */ 7883 7884 do { 7885 int mddev2_minor = -1; 7886 mddev->curr_resync = 2; 7887 7888 try_again: 7889 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7890 goto skip; 7891 for_each_mddev(mddev2, tmp) { 7892 if (mddev2 == mddev) 7893 continue; 7894 if (!mddev->parallel_resync 7895 && mddev2->curr_resync 7896 && match_mddev_units(mddev, mddev2)) { 7897 DEFINE_WAIT(wq); 7898 if (mddev < mddev2 && mddev->curr_resync == 2) { 7899 /* arbitrarily yield */ 7900 mddev->curr_resync = 1; 7901 wake_up(&resync_wait); 7902 } 7903 if (mddev > mddev2 && mddev->curr_resync == 1) 7904 /* no need to wait here, we can wait the next 7905 * time 'round when curr_resync == 2 7906 */ 7907 continue; 7908 /* We need to wait 'interruptible' so as not to 7909 * contribute to the load average, and not to 7910 * be caught by 'softlockup' 7911 */ 7912 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7913 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7914 mddev2->curr_resync >= mddev->curr_resync) { 7915 if (mddev2_minor != mddev2->md_minor) { 7916 mddev2_minor = mddev2->md_minor; 7917 printk(KERN_INFO "md: delaying %s of %s" 7918 " until %s has finished (they" 7919 " share one or more physical units)\n", 7920 desc, mdname(mddev), 7921 mdname(mddev2)); 7922 } 7923 mddev_put(mddev2); 7924 if (signal_pending(current)) 7925 flush_signals(current); 7926 schedule(); 7927 finish_wait(&resync_wait, &wq); 7928 goto try_again; 7929 } 7930 finish_wait(&resync_wait, &wq); 7931 } 7932 } 7933 } while (mddev->curr_resync < 2); 7934 7935 j = 0; 7936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7937 /* resync follows the size requested by the personality, 7938 * which defaults to physical size, but can be virtual size 7939 */ 7940 max_sectors = mddev->resync_max_sectors; 7941 atomic64_set(&mddev->resync_mismatches, 0); 7942 /* we don't use the checkpoint if there's a bitmap */ 7943 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7944 j = mddev->resync_min; 7945 else if (!mddev->bitmap) 7946 j = mddev->recovery_cp; 7947 7948 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7949 max_sectors = mddev->resync_max_sectors; 7950 else { 7951 /* recovery follows the physical size of devices */ 7952 max_sectors = mddev->dev_sectors; 7953 j = MaxSector; 7954 rcu_read_lock(); 7955 rdev_for_each_rcu(rdev, mddev) 7956 if (rdev->raid_disk >= 0 && 7957 !test_bit(Journal, &rdev->flags) && 7958 !test_bit(Faulty, &rdev->flags) && 7959 !test_bit(In_sync, &rdev->flags) && 7960 rdev->recovery_offset < j) 7961 j = rdev->recovery_offset; 7962 rcu_read_unlock(); 7963 7964 /* If there is a bitmap, we need to make sure all 7965 * writes that started before we added a spare 7966 * complete before we start doing a recovery. 7967 * Otherwise the write might complete and (via 7968 * bitmap_endwrite) set a bit in the bitmap after the 7969 * recovery has checked that bit and skipped that 7970 * region. 7971 */ 7972 if (mddev->bitmap) { 7973 mddev->pers->quiesce(mddev, 1); 7974 mddev->pers->quiesce(mddev, 0); 7975 } 7976 } 7977 7978 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7979 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7980 " %d KB/sec/disk.\n", speed_min(mddev)); 7981 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7982 "(but not more than %d KB/sec) for %s.\n", 7983 speed_max(mddev), desc); 7984 7985 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7986 7987 io_sectors = 0; 7988 for (m = 0; m < SYNC_MARKS; m++) { 7989 mark[m] = jiffies; 7990 mark_cnt[m] = io_sectors; 7991 } 7992 last_mark = 0; 7993 mddev->resync_mark = mark[last_mark]; 7994 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7995 7996 /* 7997 * Tune reconstruction: 7998 */ 7999 window = 32*(PAGE_SIZE/512); 8000 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 8001 window/2, (unsigned long long)max_sectors/2); 8002 8003 atomic_set(&mddev->recovery_active, 0); 8004 last_check = 0; 8005 8006 if (j>2) { 8007 printk(KERN_INFO 8008 "md: resuming %s of %s from checkpoint.\n", 8009 desc, mdname(mddev)); 8010 mddev->curr_resync = j; 8011 } else 8012 mddev->curr_resync = 3; /* no longer delayed */ 8013 mddev->curr_resync_completed = j; 8014 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8015 md_new_event(mddev); 8016 update_time = jiffies; 8017 8018 blk_start_plug(&plug); 8019 while (j < max_sectors) { 8020 sector_t sectors; 8021 8022 skipped = 0; 8023 8024 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8025 ((mddev->curr_resync > mddev->curr_resync_completed && 8026 (mddev->curr_resync - mddev->curr_resync_completed) 8027 > (max_sectors >> 4)) || 8028 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8029 (j - mddev->curr_resync_completed)*2 8030 >= mddev->resync_max - mddev->curr_resync_completed || 8031 mddev->curr_resync_completed > mddev->resync_max 8032 )) { 8033 /* time to update curr_resync_completed */ 8034 wait_event(mddev->recovery_wait, 8035 atomic_read(&mddev->recovery_active) == 0); 8036 mddev->curr_resync_completed = j; 8037 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8038 j > mddev->recovery_cp) 8039 mddev->recovery_cp = j; 8040 update_time = jiffies; 8041 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8042 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8043 } 8044 8045 while (j >= mddev->resync_max && 8046 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8047 /* As this condition is controlled by user-space, 8048 * we can block indefinitely, so use '_interruptible' 8049 * to avoid triggering warnings. 8050 */ 8051 flush_signals(current); /* just in case */ 8052 wait_event_interruptible(mddev->recovery_wait, 8053 mddev->resync_max > j 8054 || test_bit(MD_RECOVERY_INTR, 8055 &mddev->recovery)); 8056 } 8057 8058 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8059 break; 8060 8061 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8062 if (sectors == 0) { 8063 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8064 break; 8065 } 8066 8067 if (!skipped) { /* actual IO requested */ 8068 io_sectors += sectors; 8069 atomic_add(sectors, &mddev->recovery_active); 8070 } 8071 8072 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8073 break; 8074 8075 j += sectors; 8076 if (j > max_sectors) 8077 /* when skipping, extra large numbers can be returned. */ 8078 j = max_sectors; 8079 if (j > 2) 8080 mddev->curr_resync = j; 8081 mddev->curr_mark_cnt = io_sectors; 8082 if (last_check == 0) 8083 /* this is the earliest that rebuild will be 8084 * visible in /proc/mdstat 8085 */ 8086 md_new_event(mddev); 8087 8088 if (last_check + window > io_sectors || j == max_sectors) 8089 continue; 8090 8091 last_check = io_sectors; 8092 repeat: 8093 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8094 /* step marks */ 8095 int next = (last_mark+1) % SYNC_MARKS; 8096 8097 mddev->resync_mark = mark[next]; 8098 mddev->resync_mark_cnt = mark_cnt[next]; 8099 mark[next] = jiffies; 8100 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8101 last_mark = next; 8102 } 8103 8104 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8105 break; 8106 8107 /* 8108 * this loop exits only if either when we are slower than 8109 * the 'hard' speed limit, or the system was IO-idle for 8110 * a jiffy. 8111 * the system might be non-idle CPU-wise, but we only care 8112 * about not overloading the IO subsystem. (things like an 8113 * e2fsck being done on the RAID array should execute fast) 8114 */ 8115 cond_resched(); 8116 8117 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8118 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8119 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8120 8121 if (currspeed > speed_min(mddev)) { 8122 if (currspeed > speed_max(mddev)) { 8123 msleep(500); 8124 goto repeat; 8125 } 8126 if (!is_mddev_idle(mddev, 0)) { 8127 /* 8128 * Give other IO more of a chance. 8129 * The faster the devices, the less we wait. 8130 */ 8131 wait_event(mddev->recovery_wait, 8132 !atomic_read(&mddev->recovery_active)); 8133 } 8134 } 8135 } 8136 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 8137 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8138 ? "interrupted" : "done"); 8139 /* 8140 * this also signals 'finished resyncing' to md_stop 8141 */ 8142 blk_finish_plug(&plug); 8143 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8144 8145 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8146 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8147 mddev->curr_resync > 3) { 8148 mddev->curr_resync_completed = mddev->curr_resync; 8149 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8150 } 8151 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8152 8153 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8154 mddev->curr_resync > 3) { 8155 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8156 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8157 if (mddev->curr_resync >= mddev->recovery_cp) { 8158 printk(KERN_INFO 8159 "md: checkpointing %s of %s.\n", 8160 desc, mdname(mddev)); 8161 if (test_bit(MD_RECOVERY_ERROR, 8162 &mddev->recovery)) 8163 mddev->recovery_cp = 8164 mddev->curr_resync_completed; 8165 else 8166 mddev->recovery_cp = 8167 mddev->curr_resync; 8168 } 8169 } else 8170 mddev->recovery_cp = MaxSector; 8171 } else { 8172 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8173 mddev->curr_resync = MaxSector; 8174 rcu_read_lock(); 8175 rdev_for_each_rcu(rdev, mddev) 8176 if (rdev->raid_disk >= 0 && 8177 mddev->delta_disks >= 0 && 8178 !test_bit(Journal, &rdev->flags) && 8179 !test_bit(Faulty, &rdev->flags) && 8180 !test_bit(In_sync, &rdev->flags) && 8181 rdev->recovery_offset < mddev->curr_resync) 8182 rdev->recovery_offset = mddev->curr_resync; 8183 rcu_read_unlock(); 8184 } 8185 } 8186 skip: 8187 /* set CHANGE_PENDING here since maybe another update is needed, 8188 * so other nodes are informed. It should be harmless for normal 8189 * raid */ 8190 set_mask_bits(&mddev->flags, 0, 8191 BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS)); 8192 8193 spin_lock(&mddev->lock); 8194 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8195 /* We completed so min/max setting can be forgotten if used. */ 8196 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8197 mddev->resync_min = 0; 8198 mddev->resync_max = MaxSector; 8199 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8200 mddev->resync_min = mddev->curr_resync_completed; 8201 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8202 mddev->curr_resync = 0; 8203 spin_unlock(&mddev->lock); 8204 8205 wake_up(&resync_wait); 8206 md_wakeup_thread(mddev->thread); 8207 return; 8208 } 8209 EXPORT_SYMBOL_GPL(md_do_sync); 8210 8211 static int remove_and_add_spares(struct mddev *mddev, 8212 struct md_rdev *this) 8213 { 8214 struct md_rdev *rdev; 8215 int spares = 0; 8216 int removed = 0; 8217 bool remove_some = false; 8218 8219 rdev_for_each(rdev, mddev) { 8220 if ((this == NULL || rdev == this) && 8221 rdev->raid_disk >= 0 && 8222 !test_bit(Blocked, &rdev->flags) && 8223 test_bit(Faulty, &rdev->flags) && 8224 atomic_read(&rdev->nr_pending)==0) { 8225 /* Faulty non-Blocked devices with nr_pending == 0 8226 * never get nr_pending incremented, 8227 * never get Faulty cleared, and never get Blocked set. 8228 * So we can synchronize_rcu now rather than once per device 8229 */ 8230 remove_some = true; 8231 set_bit(RemoveSynchronized, &rdev->flags); 8232 } 8233 } 8234 8235 if (remove_some) 8236 synchronize_rcu(); 8237 rdev_for_each(rdev, mddev) { 8238 if ((this == NULL || rdev == this) && 8239 rdev->raid_disk >= 0 && 8240 !test_bit(Blocked, &rdev->flags) && 8241 ((test_bit(RemoveSynchronized, &rdev->flags) || 8242 (!test_bit(In_sync, &rdev->flags) && 8243 !test_bit(Journal, &rdev->flags))) && 8244 atomic_read(&rdev->nr_pending)==0)) { 8245 if (mddev->pers->hot_remove_disk( 8246 mddev, rdev) == 0) { 8247 sysfs_unlink_rdev(mddev, rdev); 8248 rdev->raid_disk = -1; 8249 removed++; 8250 } 8251 } 8252 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8253 clear_bit(RemoveSynchronized, &rdev->flags); 8254 } 8255 8256 if (removed && mddev->kobj.sd) 8257 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8258 8259 if (this && removed) 8260 goto no_add; 8261 8262 rdev_for_each(rdev, mddev) { 8263 if (this && this != rdev) 8264 continue; 8265 if (test_bit(Candidate, &rdev->flags)) 8266 continue; 8267 if (rdev->raid_disk >= 0 && 8268 !test_bit(In_sync, &rdev->flags) && 8269 !test_bit(Journal, &rdev->flags) && 8270 !test_bit(Faulty, &rdev->flags)) 8271 spares++; 8272 if (rdev->raid_disk >= 0) 8273 continue; 8274 if (test_bit(Faulty, &rdev->flags)) 8275 continue; 8276 if (!test_bit(Journal, &rdev->flags)) { 8277 if (mddev->ro && 8278 ! (rdev->saved_raid_disk >= 0 && 8279 !test_bit(Bitmap_sync, &rdev->flags))) 8280 continue; 8281 8282 rdev->recovery_offset = 0; 8283 } 8284 if (mddev->pers-> 8285 hot_add_disk(mddev, rdev) == 0) { 8286 if (sysfs_link_rdev(mddev, rdev)) 8287 /* failure here is OK */; 8288 if (!test_bit(Journal, &rdev->flags)) 8289 spares++; 8290 md_new_event(mddev); 8291 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8292 } 8293 } 8294 no_add: 8295 if (removed) 8296 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8297 return spares; 8298 } 8299 8300 static void md_start_sync(struct work_struct *ws) 8301 { 8302 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8303 8304 mddev->sync_thread = md_register_thread(md_do_sync, 8305 mddev, 8306 "resync"); 8307 if (!mddev->sync_thread) { 8308 printk(KERN_ERR "%s: could not start resync thread...\n", 8309 mdname(mddev)); 8310 /* leave the spares where they are, it shouldn't hurt */ 8311 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8312 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8313 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8314 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8315 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8316 wake_up(&resync_wait); 8317 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8318 &mddev->recovery)) 8319 if (mddev->sysfs_action) 8320 sysfs_notify_dirent_safe(mddev->sysfs_action); 8321 } else 8322 md_wakeup_thread(mddev->sync_thread); 8323 sysfs_notify_dirent_safe(mddev->sysfs_action); 8324 md_new_event(mddev); 8325 } 8326 8327 /* 8328 * This routine is regularly called by all per-raid-array threads to 8329 * deal with generic issues like resync and super-block update. 8330 * Raid personalities that don't have a thread (linear/raid0) do not 8331 * need this as they never do any recovery or update the superblock. 8332 * 8333 * It does not do any resync itself, but rather "forks" off other threads 8334 * to do that as needed. 8335 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8336 * "->recovery" and create a thread at ->sync_thread. 8337 * When the thread finishes it sets MD_RECOVERY_DONE 8338 * and wakeups up this thread which will reap the thread and finish up. 8339 * This thread also removes any faulty devices (with nr_pending == 0). 8340 * 8341 * The overall approach is: 8342 * 1/ if the superblock needs updating, update it. 8343 * 2/ If a recovery thread is running, don't do anything else. 8344 * 3/ If recovery has finished, clean up, possibly marking spares active. 8345 * 4/ If there are any faulty devices, remove them. 8346 * 5/ If array is degraded, try to add spares devices 8347 * 6/ If array has spares or is not in-sync, start a resync thread. 8348 */ 8349 void md_check_recovery(struct mddev *mddev) 8350 { 8351 if (mddev->suspended) 8352 return; 8353 8354 if (mddev->bitmap) 8355 bitmap_daemon_work(mddev); 8356 8357 if (signal_pending(current)) { 8358 if (mddev->pers->sync_request && !mddev->external) { 8359 printk(KERN_INFO "md: %s in immediate safe mode\n", 8360 mdname(mddev)); 8361 mddev->safemode = 2; 8362 } 8363 flush_signals(current); 8364 } 8365 8366 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8367 return; 8368 if ( ! ( 8369 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 8370 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8371 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8372 test_bit(MD_RELOAD_SB, &mddev->flags) || 8373 (mddev->external == 0 && mddev->safemode == 1) || 8374 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 8375 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8376 )) 8377 return; 8378 8379 if (mddev_trylock(mddev)) { 8380 int spares = 0; 8381 8382 if (mddev->ro) { 8383 struct md_rdev *rdev; 8384 if (!mddev->external && mddev->in_sync) 8385 /* 'Blocked' flag not needed as failed devices 8386 * will be recorded if array switched to read/write. 8387 * Leaving it set will prevent the device 8388 * from being removed. 8389 */ 8390 rdev_for_each(rdev, mddev) 8391 clear_bit(Blocked, &rdev->flags); 8392 /* On a read-only array we can: 8393 * - remove failed devices 8394 * - add already-in_sync devices if the array itself 8395 * is in-sync. 8396 * As we only add devices that are already in-sync, 8397 * we can activate the spares immediately. 8398 */ 8399 remove_and_add_spares(mddev, NULL); 8400 /* There is no thread, but we need to call 8401 * ->spare_active and clear saved_raid_disk 8402 */ 8403 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8404 md_reap_sync_thread(mddev); 8405 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8406 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8407 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 8408 goto unlock; 8409 } 8410 8411 if (mddev_is_clustered(mddev)) { 8412 struct md_rdev *rdev; 8413 /* kick the device if another node issued a 8414 * remove disk. 8415 */ 8416 rdev_for_each(rdev, mddev) { 8417 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8418 rdev->raid_disk < 0) 8419 md_kick_rdev_from_array(rdev); 8420 } 8421 8422 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags)) 8423 md_reload_sb(mddev, mddev->good_device_nr); 8424 } 8425 8426 if (!mddev->external) { 8427 int did_change = 0; 8428 spin_lock(&mddev->lock); 8429 if (mddev->safemode && 8430 !atomic_read(&mddev->writes_pending) && 8431 !mddev->in_sync && 8432 mddev->recovery_cp == MaxSector) { 8433 mddev->in_sync = 1; 8434 did_change = 1; 8435 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8436 } 8437 if (mddev->safemode == 1) 8438 mddev->safemode = 0; 8439 spin_unlock(&mddev->lock); 8440 if (did_change) 8441 sysfs_notify_dirent_safe(mddev->sysfs_state); 8442 } 8443 8444 if (mddev->flags & MD_UPDATE_SB_FLAGS) 8445 md_update_sb(mddev, 0); 8446 8447 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8448 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8449 /* resync/recovery still happening */ 8450 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8451 goto unlock; 8452 } 8453 if (mddev->sync_thread) { 8454 md_reap_sync_thread(mddev); 8455 goto unlock; 8456 } 8457 /* Set RUNNING before clearing NEEDED to avoid 8458 * any transients in the value of "sync_action". 8459 */ 8460 mddev->curr_resync_completed = 0; 8461 spin_lock(&mddev->lock); 8462 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8463 spin_unlock(&mddev->lock); 8464 /* Clear some bits that don't mean anything, but 8465 * might be left set 8466 */ 8467 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8468 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8469 8470 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8471 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8472 goto not_running; 8473 /* no recovery is running. 8474 * remove any failed drives, then 8475 * add spares if possible. 8476 * Spares are also removed and re-added, to allow 8477 * the personality to fail the re-add. 8478 */ 8479 8480 if (mddev->reshape_position != MaxSector) { 8481 if (mddev->pers->check_reshape == NULL || 8482 mddev->pers->check_reshape(mddev) != 0) 8483 /* Cannot proceed */ 8484 goto not_running; 8485 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8486 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8487 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8488 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8489 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8490 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8491 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8492 } else if (mddev->recovery_cp < MaxSector) { 8493 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8494 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8495 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8496 /* nothing to be done ... */ 8497 goto not_running; 8498 8499 if (mddev->pers->sync_request) { 8500 if (spares) { 8501 /* We are adding a device or devices to an array 8502 * which has the bitmap stored on all devices. 8503 * So make sure all bitmap pages get written 8504 */ 8505 bitmap_write_all(mddev->bitmap); 8506 } 8507 INIT_WORK(&mddev->del_work, md_start_sync); 8508 queue_work(md_misc_wq, &mddev->del_work); 8509 goto unlock; 8510 } 8511 not_running: 8512 if (!mddev->sync_thread) { 8513 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8514 wake_up(&resync_wait); 8515 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8516 &mddev->recovery)) 8517 if (mddev->sysfs_action) 8518 sysfs_notify_dirent_safe(mddev->sysfs_action); 8519 } 8520 unlock: 8521 wake_up(&mddev->sb_wait); 8522 mddev_unlock(mddev); 8523 } 8524 } 8525 EXPORT_SYMBOL(md_check_recovery); 8526 8527 void md_reap_sync_thread(struct mddev *mddev) 8528 { 8529 struct md_rdev *rdev; 8530 8531 /* resync has finished, collect result */ 8532 md_unregister_thread(&mddev->sync_thread); 8533 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8534 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8535 /* success...*/ 8536 /* activate any spares */ 8537 if (mddev->pers->spare_active(mddev)) { 8538 sysfs_notify(&mddev->kobj, NULL, 8539 "degraded"); 8540 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8541 } 8542 } 8543 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8544 mddev->pers->finish_reshape) 8545 mddev->pers->finish_reshape(mddev); 8546 8547 /* If array is no-longer degraded, then any saved_raid_disk 8548 * information must be scrapped. 8549 */ 8550 if (!mddev->degraded) 8551 rdev_for_each(rdev, mddev) 8552 rdev->saved_raid_disk = -1; 8553 8554 md_update_sb(mddev, 1); 8555 /* MD_CHANGE_PENDING should be cleared by md_update_sb, so we can 8556 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8557 * clustered raid */ 8558 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8559 md_cluster_ops->resync_finish(mddev); 8560 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8561 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8562 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8563 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8564 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8565 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8566 wake_up(&resync_wait); 8567 /* flag recovery needed just to double check */ 8568 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8569 sysfs_notify_dirent_safe(mddev->sysfs_action); 8570 md_new_event(mddev); 8571 if (mddev->event_work.func) 8572 queue_work(md_misc_wq, &mddev->event_work); 8573 } 8574 EXPORT_SYMBOL(md_reap_sync_thread); 8575 8576 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8577 { 8578 sysfs_notify_dirent_safe(rdev->sysfs_state); 8579 wait_event_timeout(rdev->blocked_wait, 8580 !test_bit(Blocked, &rdev->flags) && 8581 !test_bit(BlockedBadBlocks, &rdev->flags), 8582 msecs_to_jiffies(5000)); 8583 rdev_dec_pending(rdev, mddev); 8584 } 8585 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8586 8587 void md_finish_reshape(struct mddev *mddev) 8588 { 8589 /* called be personality module when reshape completes. */ 8590 struct md_rdev *rdev; 8591 8592 rdev_for_each(rdev, mddev) { 8593 if (rdev->data_offset > rdev->new_data_offset) 8594 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8595 else 8596 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8597 rdev->data_offset = rdev->new_data_offset; 8598 } 8599 } 8600 EXPORT_SYMBOL(md_finish_reshape); 8601 8602 /* Bad block management */ 8603 8604 /* Returns 1 on success, 0 on failure */ 8605 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8606 int is_new) 8607 { 8608 struct mddev *mddev = rdev->mddev; 8609 int rv; 8610 if (is_new) 8611 s += rdev->new_data_offset; 8612 else 8613 s += rdev->data_offset; 8614 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8615 if (rv == 0) { 8616 /* Make sure they get written out promptly */ 8617 sysfs_notify_dirent_safe(rdev->sysfs_state); 8618 set_mask_bits(&mddev->flags, 0, 8619 BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING)); 8620 md_wakeup_thread(rdev->mddev->thread); 8621 return 1; 8622 } else 8623 return 0; 8624 } 8625 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8626 8627 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8628 int is_new) 8629 { 8630 if (is_new) 8631 s += rdev->new_data_offset; 8632 else 8633 s += rdev->data_offset; 8634 return badblocks_clear(&rdev->badblocks, 8635 s, sectors); 8636 } 8637 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8638 8639 static int md_notify_reboot(struct notifier_block *this, 8640 unsigned long code, void *x) 8641 { 8642 struct list_head *tmp; 8643 struct mddev *mddev; 8644 int need_delay = 0; 8645 8646 for_each_mddev(mddev, tmp) { 8647 if (mddev_trylock(mddev)) { 8648 if (mddev->pers) 8649 __md_stop_writes(mddev); 8650 if (mddev->persistent) 8651 mddev->safemode = 2; 8652 mddev_unlock(mddev); 8653 } 8654 need_delay = 1; 8655 } 8656 /* 8657 * certain more exotic SCSI devices are known to be 8658 * volatile wrt too early system reboots. While the 8659 * right place to handle this issue is the given 8660 * driver, we do want to have a safe RAID driver ... 8661 */ 8662 if (need_delay) 8663 mdelay(1000*1); 8664 8665 return NOTIFY_DONE; 8666 } 8667 8668 static struct notifier_block md_notifier = { 8669 .notifier_call = md_notify_reboot, 8670 .next = NULL, 8671 .priority = INT_MAX, /* before any real devices */ 8672 }; 8673 8674 static void md_geninit(void) 8675 { 8676 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8677 8678 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8679 } 8680 8681 static int __init md_init(void) 8682 { 8683 int ret = -ENOMEM; 8684 8685 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8686 if (!md_wq) 8687 goto err_wq; 8688 8689 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8690 if (!md_misc_wq) 8691 goto err_misc_wq; 8692 8693 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8694 goto err_md; 8695 8696 if ((ret = register_blkdev(0, "mdp")) < 0) 8697 goto err_mdp; 8698 mdp_major = ret; 8699 8700 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 8701 md_probe, NULL, NULL); 8702 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8703 md_probe, NULL, NULL); 8704 8705 register_reboot_notifier(&md_notifier); 8706 raid_table_header = register_sysctl_table(raid_root_table); 8707 8708 md_geninit(); 8709 return 0; 8710 8711 err_mdp: 8712 unregister_blkdev(MD_MAJOR, "md"); 8713 err_md: 8714 destroy_workqueue(md_misc_wq); 8715 err_misc_wq: 8716 destroy_workqueue(md_wq); 8717 err_wq: 8718 return ret; 8719 } 8720 8721 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 8722 { 8723 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 8724 struct md_rdev *rdev2; 8725 int role, ret; 8726 char b[BDEVNAME_SIZE]; 8727 8728 /* Check for change of roles in the active devices */ 8729 rdev_for_each(rdev2, mddev) { 8730 if (test_bit(Faulty, &rdev2->flags)) 8731 continue; 8732 8733 /* Check if the roles changed */ 8734 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 8735 8736 if (test_bit(Candidate, &rdev2->flags)) { 8737 if (role == 0xfffe) { 8738 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 8739 md_kick_rdev_from_array(rdev2); 8740 continue; 8741 } 8742 else 8743 clear_bit(Candidate, &rdev2->flags); 8744 } 8745 8746 if (role != rdev2->raid_disk) { 8747 /* got activated */ 8748 if (rdev2->raid_disk == -1 && role != 0xffff) { 8749 rdev2->saved_raid_disk = role; 8750 ret = remove_and_add_spares(mddev, rdev2); 8751 pr_info("Activated spare: %s\n", 8752 bdevname(rdev2->bdev,b)); 8753 /* wakeup mddev->thread here, so array could 8754 * perform resync with the new activated disk */ 8755 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8756 md_wakeup_thread(mddev->thread); 8757 8758 } 8759 /* device faulty 8760 * We just want to do the minimum to mark the disk 8761 * as faulty. The recovery is performed by the 8762 * one who initiated the error. 8763 */ 8764 if ((role == 0xfffe) || (role == 0xfffd)) { 8765 md_error(mddev, rdev2); 8766 clear_bit(Blocked, &rdev2->flags); 8767 } 8768 } 8769 } 8770 8771 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 8772 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 8773 8774 /* Finally set the event to be up to date */ 8775 mddev->events = le64_to_cpu(sb->events); 8776 } 8777 8778 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 8779 { 8780 int err; 8781 struct page *swapout = rdev->sb_page; 8782 struct mdp_superblock_1 *sb; 8783 8784 /* Store the sb page of the rdev in the swapout temporary 8785 * variable in case we err in the future 8786 */ 8787 rdev->sb_page = NULL; 8788 alloc_disk_sb(rdev); 8789 ClearPageUptodate(rdev->sb_page); 8790 rdev->sb_loaded = 0; 8791 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version); 8792 8793 if (err < 0) { 8794 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 8795 __func__, __LINE__, rdev->desc_nr, err); 8796 put_page(rdev->sb_page); 8797 rdev->sb_page = swapout; 8798 rdev->sb_loaded = 1; 8799 return err; 8800 } 8801 8802 sb = page_address(rdev->sb_page); 8803 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 8804 * is not set 8805 */ 8806 8807 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 8808 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 8809 8810 /* The other node finished recovery, call spare_active to set 8811 * device In_sync and mddev->degraded 8812 */ 8813 if (rdev->recovery_offset == MaxSector && 8814 !test_bit(In_sync, &rdev->flags) && 8815 mddev->pers->spare_active(mddev)) 8816 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8817 8818 put_page(swapout); 8819 return 0; 8820 } 8821 8822 void md_reload_sb(struct mddev *mddev, int nr) 8823 { 8824 struct md_rdev *rdev; 8825 int err; 8826 8827 /* Find the rdev */ 8828 rdev_for_each_rcu(rdev, mddev) { 8829 if (rdev->desc_nr == nr) 8830 break; 8831 } 8832 8833 if (!rdev || rdev->desc_nr != nr) { 8834 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 8835 return; 8836 } 8837 8838 err = read_rdev(mddev, rdev); 8839 if (err < 0) 8840 return; 8841 8842 check_sb_changes(mddev, rdev); 8843 8844 /* Read all rdev's to update recovery_offset */ 8845 rdev_for_each_rcu(rdev, mddev) 8846 read_rdev(mddev, rdev); 8847 } 8848 EXPORT_SYMBOL(md_reload_sb); 8849 8850 #ifndef MODULE 8851 8852 /* 8853 * Searches all registered partitions for autorun RAID arrays 8854 * at boot time. 8855 */ 8856 8857 static DEFINE_MUTEX(detected_devices_mutex); 8858 static LIST_HEAD(all_detected_devices); 8859 struct detected_devices_node { 8860 struct list_head list; 8861 dev_t dev; 8862 }; 8863 8864 void md_autodetect_dev(dev_t dev) 8865 { 8866 struct detected_devices_node *node_detected_dev; 8867 8868 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8869 if (node_detected_dev) { 8870 node_detected_dev->dev = dev; 8871 mutex_lock(&detected_devices_mutex); 8872 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8873 mutex_unlock(&detected_devices_mutex); 8874 } else { 8875 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8876 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8877 } 8878 } 8879 8880 static void autostart_arrays(int part) 8881 { 8882 struct md_rdev *rdev; 8883 struct detected_devices_node *node_detected_dev; 8884 dev_t dev; 8885 int i_scanned, i_passed; 8886 8887 i_scanned = 0; 8888 i_passed = 0; 8889 8890 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8891 8892 mutex_lock(&detected_devices_mutex); 8893 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8894 i_scanned++; 8895 node_detected_dev = list_entry(all_detected_devices.next, 8896 struct detected_devices_node, list); 8897 list_del(&node_detected_dev->list); 8898 dev = node_detected_dev->dev; 8899 kfree(node_detected_dev); 8900 mutex_unlock(&detected_devices_mutex); 8901 rdev = md_import_device(dev,0, 90); 8902 mutex_lock(&detected_devices_mutex); 8903 if (IS_ERR(rdev)) 8904 continue; 8905 8906 if (test_bit(Faulty, &rdev->flags)) 8907 continue; 8908 8909 set_bit(AutoDetected, &rdev->flags); 8910 list_add(&rdev->same_set, &pending_raid_disks); 8911 i_passed++; 8912 } 8913 mutex_unlock(&detected_devices_mutex); 8914 8915 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8916 i_scanned, i_passed); 8917 8918 autorun_devices(part); 8919 } 8920 8921 #endif /* !MODULE */ 8922 8923 static __exit void md_exit(void) 8924 { 8925 struct mddev *mddev; 8926 struct list_head *tmp; 8927 int delay = 1; 8928 8929 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 8930 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8931 8932 unregister_blkdev(MD_MAJOR,"md"); 8933 unregister_blkdev(mdp_major, "mdp"); 8934 unregister_reboot_notifier(&md_notifier); 8935 unregister_sysctl_table(raid_table_header); 8936 8937 /* We cannot unload the modules while some process is 8938 * waiting for us in select() or poll() - wake them up 8939 */ 8940 md_unloading = 1; 8941 while (waitqueue_active(&md_event_waiters)) { 8942 /* not safe to leave yet */ 8943 wake_up(&md_event_waiters); 8944 msleep(delay); 8945 delay += delay; 8946 } 8947 remove_proc_entry("mdstat", NULL); 8948 8949 for_each_mddev(mddev, tmp) { 8950 export_array(mddev); 8951 mddev->hold_active = 0; 8952 } 8953 destroy_workqueue(md_misc_wq); 8954 destroy_workqueue(md_wq); 8955 } 8956 8957 subsys_initcall(md_init); 8958 module_exit(md_exit) 8959 8960 static int get_ro(char *buffer, struct kernel_param *kp) 8961 { 8962 return sprintf(buffer, "%d", start_readonly); 8963 } 8964 static int set_ro(const char *val, struct kernel_param *kp) 8965 { 8966 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 8967 } 8968 8969 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8970 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8971 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8972 8973 MODULE_LICENSE("GPL"); 8974 MODULE_DESCRIPTION("MD RAID framework"); 8975 MODULE_ALIAS("md"); 8976 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8977