1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 enum md_ro_state { 97 MD_RDWR, 98 MD_RDONLY, 99 MD_AUTO_READ, 100 MD_MAX_STATE 101 }; 102 103 static bool md_is_rdwr(struct mddev *mddev) 104 { 105 return (mddev->ro == MD_RDWR); 106 } 107 108 /* 109 * Default number of read corrections we'll attempt on an rdev 110 * before ejecting it from the array. We divide the read error 111 * count by 2 for every hour elapsed between read errors. 112 */ 113 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 114 /* Default safemode delay: 200 msec */ 115 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 116 /* 117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 118 * is 1000 KB/sec, so the extra system load does not show up that much. 119 * Increase it if you want to have more _guaranteed_ speed. Note that 120 * the RAID driver will use the maximum available bandwidth if the IO 121 * subsystem is idle. There is also an 'absolute maximum' reconstruction 122 * speed limit - in case reconstruction slows down your system despite 123 * idle IO detection. 124 * 125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 126 * or /sys/block/mdX/md/sync_speed_{min,max} 127 */ 128 129 static int sysctl_speed_limit_min = 1000; 130 static int sysctl_speed_limit_max = 200000; 131 static inline int speed_min(struct mddev *mddev) 132 { 133 return mddev->sync_speed_min ? 134 mddev->sync_speed_min : sysctl_speed_limit_min; 135 } 136 137 static inline int speed_max(struct mddev *mddev) 138 { 139 return mddev->sync_speed_max ? 140 mddev->sync_speed_max : sysctl_speed_limit_max; 141 } 142 143 static void rdev_uninit_serial(struct md_rdev *rdev) 144 { 145 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 146 return; 147 148 kvfree(rdev->serial); 149 rdev->serial = NULL; 150 } 151 152 static void rdevs_uninit_serial(struct mddev *mddev) 153 { 154 struct md_rdev *rdev; 155 156 rdev_for_each(rdev, mddev) 157 rdev_uninit_serial(rdev); 158 } 159 160 static int rdev_init_serial(struct md_rdev *rdev) 161 { 162 /* serial_nums equals with BARRIER_BUCKETS_NR */ 163 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 164 struct serial_in_rdev *serial = NULL; 165 166 if (test_bit(CollisionCheck, &rdev->flags)) 167 return 0; 168 169 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 170 GFP_KERNEL); 171 if (!serial) 172 return -ENOMEM; 173 174 for (i = 0; i < serial_nums; i++) { 175 struct serial_in_rdev *serial_tmp = &serial[i]; 176 177 spin_lock_init(&serial_tmp->serial_lock); 178 serial_tmp->serial_rb = RB_ROOT_CACHED; 179 init_waitqueue_head(&serial_tmp->serial_io_wait); 180 } 181 182 rdev->serial = serial; 183 set_bit(CollisionCheck, &rdev->flags); 184 185 return 0; 186 } 187 188 static int rdevs_init_serial(struct mddev *mddev) 189 { 190 struct md_rdev *rdev; 191 int ret = 0; 192 193 rdev_for_each(rdev, mddev) { 194 ret = rdev_init_serial(rdev); 195 if (ret) 196 break; 197 } 198 199 /* Free all resources if pool is not existed */ 200 if (ret && !mddev->serial_info_pool) 201 rdevs_uninit_serial(mddev); 202 203 return ret; 204 } 205 206 /* 207 * rdev needs to enable serial stuffs if it meets the conditions: 208 * 1. it is multi-queue device flaged with writemostly. 209 * 2. the write-behind mode is enabled. 210 */ 211 static int rdev_need_serial(struct md_rdev *rdev) 212 { 213 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 214 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 215 test_bit(WriteMostly, &rdev->flags)); 216 } 217 218 /* 219 * Init resource for rdev(s), then create serial_info_pool if: 220 * 1. rdev is the first device which return true from rdev_enable_serial. 221 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 222 */ 223 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 224 bool is_suspend) 225 { 226 int ret = 0; 227 228 if (rdev && !rdev_need_serial(rdev) && 229 !test_bit(CollisionCheck, &rdev->flags)) 230 return; 231 232 if (!is_suspend) 233 mddev_suspend(mddev); 234 235 if (!rdev) 236 ret = rdevs_init_serial(mddev); 237 else 238 ret = rdev_init_serial(rdev); 239 if (ret) 240 goto abort; 241 242 if (mddev->serial_info_pool == NULL) { 243 /* 244 * already in memalloc noio context by 245 * mddev_suspend() 246 */ 247 mddev->serial_info_pool = 248 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 249 sizeof(struct serial_info)); 250 if (!mddev->serial_info_pool) { 251 rdevs_uninit_serial(mddev); 252 pr_err("can't alloc memory pool for serialization\n"); 253 } 254 } 255 256 abort: 257 if (!is_suspend) 258 mddev_resume(mddev); 259 } 260 261 /* 262 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 263 * 1. rdev is the last device flaged with CollisionCheck. 264 * 2. when bitmap is destroyed while policy is not enabled. 265 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 266 */ 267 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 268 bool is_suspend) 269 { 270 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 271 return; 272 273 if (mddev->serial_info_pool) { 274 struct md_rdev *temp; 275 int num = 0; /* used to track if other rdevs need the pool */ 276 277 if (!is_suspend) 278 mddev_suspend(mddev); 279 rdev_for_each(temp, mddev) { 280 if (!rdev) { 281 if (!mddev->serialize_policy || 282 !rdev_need_serial(temp)) 283 rdev_uninit_serial(temp); 284 else 285 num++; 286 } else if (temp != rdev && 287 test_bit(CollisionCheck, &temp->flags)) 288 num++; 289 } 290 291 if (rdev) 292 rdev_uninit_serial(rdev); 293 294 if (num) 295 pr_info("The mempool could be used by other devices\n"); 296 else { 297 mempool_destroy(mddev->serial_info_pool); 298 mddev->serial_info_pool = NULL; 299 } 300 if (!is_suspend) 301 mddev_resume(mddev); 302 } 303 } 304 305 static struct ctl_table_header *raid_table_header; 306 307 static struct ctl_table raid_table[] = { 308 { 309 .procname = "speed_limit_min", 310 .data = &sysctl_speed_limit_min, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 { 316 .procname = "speed_limit_max", 317 .data = &sysctl_speed_limit_max, 318 .maxlen = sizeof(int), 319 .mode = S_IRUGO|S_IWUSR, 320 .proc_handler = proc_dointvec, 321 }, 322 { } 323 }; 324 325 static struct ctl_table raid_dir_table[] = { 326 { 327 .procname = "raid", 328 .maxlen = 0, 329 .mode = S_IRUGO|S_IXUGO, 330 .child = raid_table, 331 }, 332 { } 333 }; 334 335 static struct ctl_table raid_root_table[] = { 336 { 337 .procname = "dev", 338 .maxlen = 0, 339 .mode = 0555, 340 .child = raid_dir_table, 341 }, 342 { } 343 }; 344 345 static int start_readonly; 346 347 /* 348 * The original mechanism for creating an md device is to create 349 * a device node in /dev and to open it. This causes races with device-close. 350 * The preferred method is to write to the "new_array" module parameter. 351 * This can avoid races. 352 * Setting create_on_open to false disables the original mechanism 353 * so all the races disappear. 354 */ 355 static bool create_on_open = true; 356 357 /* 358 * We have a system wide 'event count' that is incremented 359 * on any 'interesting' event, and readers of /proc/mdstat 360 * can use 'poll' or 'select' to find out when the event 361 * count increases. 362 * 363 * Events are: 364 * start array, stop array, error, add device, remove device, 365 * start build, activate spare 366 */ 367 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 368 static atomic_t md_event_count; 369 void md_new_event(void) 370 { 371 atomic_inc(&md_event_count); 372 wake_up(&md_event_waiters); 373 } 374 EXPORT_SYMBOL_GPL(md_new_event); 375 376 /* 377 * Enables to iterate over all existing md arrays 378 * all_mddevs_lock protects this list. 379 */ 380 static LIST_HEAD(all_mddevs); 381 static DEFINE_SPINLOCK(all_mddevs_lock); 382 383 /* Rather than calling directly into the personality make_request function, 384 * IO requests come here first so that we can check if the device is 385 * being suspended pending a reconfiguration. 386 * We hold a refcount over the call to ->make_request. By the time that 387 * call has finished, the bio has been linked into some internal structure 388 * and so is visible to ->quiesce(), so we don't need the refcount any more. 389 */ 390 static bool is_suspended(struct mddev *mddev, struct bio *bio) 391 { 392 if (mddev->suspended) 393 return true; 394 if (bio_data_dir(bio) != WRITE) 395 return false; 396 if (mddev->suspend_lo >= mddev->suspend_hi) 397 return false; 398 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 399 return false; 400 if (bio_end_sector(bio) < mddev->suspend_lo) 401 return false; 402 return true; 403 } 404 405 void md_handle_request(struct mddev *mddev, struct bio *bio) 406 { 407 check_suspended: 408 rcu_read_lock(); 409 if (is_suspended(mddev, bio)) { 410 DEFINE_WAIT(__wait); 411 /* Bail out if REQ_NOWAIT is set for the bio */ 412 if (bio->bi_opf & REQ_NOWAIT) { 413 rcu_read_unlock(); 414 bio_wouldblock_error(bio); 415 return; 416 } 417 for (;;) { 418 prepare_to_wait(&mddev->sb_wait, &__wait, 419 TASK_UNINTERRUPTIBLE); 420 if (!is_suspended(mddev, bio)) 421 break; 422 rcu_read_unlock(); 423 schedule(); 424 rcu_read_lock(); 425 } 426 finish_wait(&mddev->sb_wait, &__wait); 427 } 428 atomic_inc(&mddev->active_io); 429 rcu_read_unlock(); 430 431 if (!mddev->pers->make_request(mddev, bio)) { 432 atomic_dec(&mddev->active_io); 433 wake_up(&mddev->sb_wait); 434 goto check_suspended; 435 } 436 437 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 438 wake_up(&mddev->sb_wait); 439 } 440 EXPORT_SYMBOL(md_handle_request); 441 442 static void md_submit_bio(struct bio *bio) 443 { 444 const int rw = bio_data_dir(bio); 445 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 446 447 if (mddev == NULL || mddev->pers == NULL) { 448 bio_io_error(bio); 449 return; 450 } 451 452 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 453 bio_io_error(bio); 454 return; 455 } 456 457 bio = bio_split_to_limits(bio); 458 if (!bio) 459 return; 460 461 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 462 if (bio_sectors(bio) != 0) 463 bio->bi_status = BLK_STS_IOERR; 464 bio_endio(bio); 465 return; 466 } 467 468 /* bio could be mergeable after passing to underlayer */ 469 bio->bi_opf &= ~REQ_NOMERGE; 470 471 md_handle_request(mddev, bio); 472 } 473 474 /* mddev_suspend makes sure no new requests are submitted 475 * to the device, and that any requests that have been submitted 476 * are completely handled. 477 * Once mddev_detach() is called and completes, the module will be 478 * completely unused. 479 */ 480 void mddev_suspend(struct mddev *mddev) 481 { 482 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 483 lockdep_assert_held(&mddev->reconfig_mutex); 484 if (mddev->suspended++) 485 return; 486 synchronize_rcu(); 487 wake_up(&mddev->sb_wait); 488 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 489 smp_mb__after_atomic(); 490 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 491 mddev->pers->quiesce(mddev, 1); 492 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 493 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 494 495 del_timer_sync(&mddev->safemode_timer); 496 /* restrict memory reclaim I/O during raid array is suspend */ 497 mddev->noio_flag = memalloc_noio_save(); 498 } 499 EXPORT_SYMBOL_GPL(mddev_suspend); 500 501 void mddev_resume(struct mddev *mddev) 502 { 503 /* entred the memalloc scope from mddev_suspend() */ 504 memalloc_noio_restore(mddev->noio_flag); 505 lockdep_assert_held(&mddev->reconfig_mutex); 506 if (--mddev->suspended) 507 return; 508 wake_up(&mddev->sb_wait); 509 mddev->pers->quiesce(mddev, 0); 510 511 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 512 md_wakeup_thread(mddev->thread); 513 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 514 } 515 EXPORT_SYMBOL_GPL(mddev_resume); 516 517 /* 518 * Generic flush handling for md 519 */ 520 521 static void md_end_flush(struct bio *bio) 522 { 523 struct md_rdev *rdev = bio->bi_private; 524 struct mddev *mddev = rdev->mddev; 525 526 bio_put(bio); 527 528 rdev_dec_pending(rdev, mddev); 529 530 if (atomic_dec_and_test(&mddev->flush_pending)) { 531 /* The pre-request flush has finished */ 532 queue_work(md_wq, &mddev->flush_work); 533 } 534 } 535 536 static void md_submit_flush_data(struct work_struct *ws); 537 538 static void submit_flushes(struct work_struct *ws) 539 { 540 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 541 struct md_rdev *rdev; 542 543 mddev->start_flush = ktime_get_boottime(); 544 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 545 atomic_set(&mddev->flush_pending, 1); 546 rcu_read_lock(); 547 rdev_for_each_rcu(rdev, mddev) 548 if (rdev->raid_disk >= 0 && 549 !test_bit(Faulty, &rdev->flags)) { 550 /* Take two references, one is dropped 551 * when request finishes, one after 552 * we reclaim rcu_read_lock 553 */ 554 struct bio *bi; 555 atomic_inc(&rdev->nr_pending); 556 atomic_inc(&rdev->nr_pending); 557 rcu_read_unlock(); 558 bi = bio_alloc_bioset(rdev->bdev, 0, 559 REQ_OP_WRITE | REQ_PREFLUSH, 560 GFP_NOIO, &mddev->bio_set); 561 bi->bi_end_io = md_end_flush; 562 bi->bi_private = rdev; 563 atomic_inc(&mddev->flush_pending); 564 submit_bio(bi); 565 rcu_read_lock(); 566 rdev_dec_pending(rdev, mddev); 567 } 568 rcu_read_unlock(); 569 if (atomic_dec_and_test(&mddev->flush_pending)) 570 queue_work(md_wq, &mddev->flush_work); 571 } 572 573 static void md_submit_flush_data(struct work_struct *ws) 574 { 575 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 576 struct bio *bio = mddev->flush_bio; 577 578 /* 579 * must reset flush_bio before calling into md_handle_request to avoid a 580 * deadlock, because other bios passed md_handle_request suspend check 581 * could wait for this and below md_handle_request could wait for those 582 * bios because of suspend check 583 */ 584 spin_lock_irq(&mddev->lock); 585 mddev->prev_flush_start = mddev->start_flush; 586 mddev->flush_bio = NULL; 587 spin_unlock_irq(&mddev->lock); 588 wake_up(&mddev->sb_wait); 589 590 if (bio->bi_iter.bi_size == 0) { 591 /* an empty barrier - all done */ 592 bio_endio(bio); 593 } else { 594 bio->bi_opf &= ~REQ_PREFLUSH; 595 md_handle_request(mddev, bio); 596 } 597 } 598 599 /* 600 * Manages consolidation of flushes and submitting any flushes needed for 601 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 602 * being finished in another context. Returns false if the flushing is 603 * complete but still needs the I/O portion of the bio to be processed. 604 */ 605 bool md_flush_request(struct mddev *mddev, struct bio *bio) 606 { 607 ktime_t req_start = ktime_get_boottime(); 608 spin_lock_irq(&mddev->lock); 609 /* flush requests wait until ongoing flush completes, 610 * hence coalescing all the pending requests. 611 */ 612 wait_event_lock_irq(mddev->sb_wait, 613 !mddev->flush_bio || 614 ktime_before(req_start, mddev->prev_flush_start), 615 mddev->lock); 616 /* new request after previous flush is completed */ 617 if (ktime_after(req_start, mddev->prev_flush_start)) { 618 WARN_ON(mddev->flush_bio); 619 mddev->flush_bio = bio; 620 bio = NULL; 621 } 622 spin_unlock_irq(&mddev->lock); 623 624 if (!bio) { 625 INIT_WORK(&mddev->flush_work, submit_flushes); 626 queue_work(md_wq, &mddev->flush_work); 627 } else { 628 /* flush was performed for some other bio while we waited. */ 629 if (bio->bi_iter.bi_size == 0) 630 /* an empty barrier - all done */ 631 bio_endio(bio); 632 else { 633 bio->bi_opf &= ~REQ_PREFLUSH; 634 return false; 635 } 636 } 637 return true; 638 } 639 EXPORT_SYMBOL(md_flush_request); 640 641 static inline struct mddev *mddev_get(struct mddev *mddev) 642 { 643 lockdep_assert_held(&all_mddevs_lock); 644 645 if (test_bit(MD_DELETED, &mddev->flags)) 646 return NULL; 647 atomic_inc(&mddev->active); 648 return mddev; 649 } 650 651 static void mddev_delayed_delete(struct work_struct *ws); 652 653 void mddev_put(struct mddev *mddev) 654 { 655 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 656 return; 657 if (!mddev->raid_disks && list_empty(&mddev->disks) && 658 mddev->ctime == 0 && !mddev->hold_active) { 659 /* Array is not configured at all, and not held active, 660 * so destroy it */ 661 set_bit(MD_DELETED, &mddev->flags); 662 663 /* 664 * Call queue_work inside the spinlock so that 665 * flush_workqueue() after mddev_find will succeed in waiting 666 * for the work to be done. 667 */ 668 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 669 queue_work(md_misc_wq, &mddev->del_work); 670 } 671 spin_unlock(&all_mddevs_lock); 672 } 673 674 static void md_safemode_timeout(struct timer_list *t); 675 676 void mddev_init(struct mddev *mddev) 677 { 678 mutex_init(&mddev->open_mutex); 679 mutex_init(&mddev->reconfig_mutex); 680 mutex_init(&mddev->bitmap_info.mutex); 681 INIT_LIST_HEAD(&mddev->disks); 682 INIT_LIST_HEAD(&mddev->all_mddevs); 683 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 684 atomic_set(&mddev->active, 1); 685 atomic_set(&mddev->openers, 0); 686 atomic_set(&mddev->active_io, 0); 687 spin_lock_init(&mddev->lock); 688 atomic_set(&mddev->flush_pending, 0); 689 init_waitqueue_head(&mddev->sb_wait); 690 init_waitqueue_head(&mddev->recovery_wait); 691 mddev->reshape_position = MaxSector; 692 mddev->reshape_backwards = 0; 693 mddev->last_sync_action = "none"; 694 mddev->resync_min = 0; 695 mddev->resync_max = MaxSector; 696 mddev->level = LEVEL_NONE; 697 } 698 EXPORT_SYMBOL_GPL(mddev_init); 699 700 static struct mddev *mddev_find_locked(dev_t unit) 701 { 702 struct mddev *mddev; 703 704 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 705 if (mddev->unit == unit) 706 return mddev; 707 708 return NULL; 709 } 710 711 /* find an unused unit number */ 712 static dev_t mddev_alloc_unit(void) 713 { 714 static int next_minor = 512; 715 int start = next_minor; 716 bool is_free = 0; 717 dev_t dev = 0; 718 719 while (!is_free) { 720 dev = MKDEV(MD_MAJOR, next_minor); 721 next_minor++; 722 if (next_minor > MINORMASK) 723 next_minor = 0; 724 if (next_minor == start) 725 return 0; /* Oh dear, all in use. */ 726 is_free = !mddev_find_locked(dev); 727 } 728 729 return dev; 730 } 731 732 static struct mddev *mddev_alloc(dev_t unit) 733 { 734 struct mddev *new; 735 int error; 736 737 if (unit && MAJOR(unit) != MD_MAJOR) 738 unit &= ~((1 << MdpMinorShift) - 1); 739 740 new = kzalloc(sizeof(*new), GFP_KERNEL); 741 if (!new) 742 return ERR_PTR(-ENOMEM); 743 mddev_init(new); 744 745 spin_lock(&all_mddevs_lock); 746 if (unit) { 747 error = -EEXIST; 748 if (mddev_find_locked(unit)) 749 goto out_free_new; 750 new->unit = unit; 751 if (MAJOR(unit) == MD_MAJOR) 752 new->md_minor = MINOR(unit); 753 else 754 new->md_minor = MINOR(unit) >> MdpMinorShift; 755 new->hold_active = UNTIL_IOCTL; 756 } else { 757 error = -ENODEV; 758 new->unit = mddev_alloc_unit(); 759 if (!new->unit) 760 goto out_free_new; 761 new->md_minor = MINOR(new->unit); 762 new->hold_active = UNTIL_STOP; 763 } 764 765 list_add(&new->all_mddevs, &all_mddevs); 766 spin_unlock(&all_mddevs_lock); 767 return new; 768 out_free_new: 769 spin_unlock(&all_mddevs_lock); 770 kfree(new); 771 return ERR_PTR(error); 772 } 773 774 static void mddev_free(struct mddev *mddev) 775 { 776 spin_lock(&all_mddevs_lock); 777 list_del(&mddev->all_mddevs); 778 spin_unlock(&all_mddevs_lock); 779 780 kfree(mddev); 781 } 782 783 static const struct attribute_group md_redundancy_group; 784 785 void mddev_unlock(struct mddev *mddev) 786 { 787 if (mddev->to_remove) { 788 /* These cannot be removed under reconfig_mutex as 789 * an access to the files will try to take reconfig_mutex 790 * while holding the file unremovable, which leads to 791 * a deadlock. 792 * So hold set sysfs_active while the remove in happeing, 793 * and anything else which might set ->to_remove or my 794 * otherwise change the sysfs namespace will fail with 795 * -EBUSY if sysfs_active is still set. 796 * We set sysfs_active under reconfig_mutex and elsewhere 797 * test it under the same mutex to ensure its correct value 798 * is seen. 799 */ 800 const struct attribute_group *to_remove = mddev->to_remove; 801 mddev->to_remove = NULL; 802 mddev->sysfs_active = 1; 803 mutex_unlock(&mddev->reconfig_mutex); 804 805 if (mddev->kobj.sd) { 806 if (to_remove != &md_redundancy_group) 807 sysfs_remove_group(&mddev->kobj, to_remove); 808 if (mddev->pers == NULL || 809 mddev->pers->sync_request == NULL) { 810 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 811 if (mddev->sysfs_action) 812 sysfs_put(mddev->sysfs_action); 813 if (mddev->sysfs_completed) 814 sysfs_put(mddev->sysfs_completed); 815 if (mddev->sysfs_degraded) 816 sysfs_put(mddev->sysfs_degraded); 817 mddev->sysfs_action = NULL; 818 mddev->sysfs_completed = NULL; 819 mddev->sysfs_degraded = NULL; 820 } 821 } 822 mddev->sysfs_active = 0; 823 } else 824 mutex_unlock(&mddev->reconfig_mutex); 825 826 /* As we've dropped the mutex we need a spinlock to 827 * make sure the thread doesn't disappear 828 */ 829 spin_lock(&pers_lock); 830 md_wakeup_thread(mddev->thread); 831 wake_up(&mddev->sb_wait); 832 spin_unlock(&pers_lock); 833 } 834 EXPORT_SYMBOL_GPL(mddev_unlock); 835 836 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 837 { 838 struct md_rdev *rdev; 839 840 rdev_for_each_rcu(rdev, mddev) 841 if (rdev->desc_nr == nr) 842 return rdev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 847 848 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 849 { 850 struct md_rdev *rdev; 851 852 rdev_for_each(rdev, mddev) 853 if (rdev->bdev->bd_dev == dev) 854 return rdev; 855 856 return NULL; 857 } 858 859 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 860 { 861 struct md_rdev *rdev; 862 863 rdev_for_each_rcu(rdev, mddev) 864 if (rdev->bdev->bd_dev == dev) 865 return rdev; 866 867 return NULL; 868 } 869 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 870 871 static struct md_personality *find_pers(int level, char *clevel) 872 { 873 struct md_personality *pers; 874 list_for_each_entry(pers, &pers_list, list) { 875 if (level != LEVEL_NONE && pers->level == level) 876 return pers; 877 if (strcmp(pers->name, clevel)==0) 878 return pers; 879 } 880 return NULL; 881 } 882 883 /* return the offset of the super block in 512byte sectors */ 884 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 885 { 886 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 887 } 888 889 static int alloc_disk_sb(struct md_rdev *rdev) 890 { 891 rdev->sb_page = alloc_page(GFP_KERNEL); 892 if (!rdev->sb_page) 893 return -ENOMEM; 894 return 0; 895 } 896 897 void md_rdev_clear(struct md_rdev *rdev) 898 { 899 if (rdev->sb_page) { 900 put_page(rdev->sb_page); 901 rdev->sb_loaded = 0; 902 rdev->sb_page = NULL; 903 rdev->sb_start = 0; 904 rdev->sectors = 0; 905 } 906 if (rdev->bb_page) { 907 put_page(rdev->bb_page); 908 rdev->bb_page = NULL; 909 } 910 badblocks_exit(&rdev->badblocks); 911 } 912 EXPORT_SYMBOL_GPL(md_rdev_clear); 913 914 static void super_written(struct bio *bio) 915 { 916 struct md_rdev *rdev = bio->bi_private; 917 struct mddev *mddev = rdev->mddev; 918 919 if (bio->bi_status) { 920 pr_err("md: %s gets error=%d\n", __func__, 921 blk_status_to_errno(bio->bi_status)); 922 md_error(mddev, rdev); 923 if (!test_bit(Faulty, &rdev->flags) 924 && (bio->bi_opf & MD_FAILFAST)) { 925 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 926 set_bit(LastDev, &rdev->flags); 927 } 928 } else 929 clear_bit(LastDev, &rdev->flags); 930 931 bio_put(bio); 932 933 rdev_dec_pending(rdev, mddev); 934 935 if (atomic_dec_and_test(&mddev->pending_writes)) 936 wake_up(&mddev->sb_wait); 937 } 938 939 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 940 sector_t sector, int size, struct page *page) 941 { 942 /* write first size bytes of page to sector of rdev 943 * Increment mddev->pending_writes before returning 944 * and decrement it on completion, waking up sb_wait 945 * if zero is reached. 946 * If an error occurred, call md_error 947 */ 948 struct bio *bio; 949 950 if (!page) 951 return; 952 953 if (test_bit(Faulty, &rdev->flags)) 954 return; 955 956 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 957 1, 958 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 959 GFP_NOIO, &mddev->sync_set); 960 961 atomic_inc(&rdev->nr_pending); 962 963 bio->bi_iter.bi_sector = sector; 964 bio_add_page(bio, page, size, 0); 965 bio->bi_private = rdev; 966 bio->bi_end_io = super_written; 967 968 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 969 test_bit(FailFast, &rdev->flags) && 970 !test_bit(LastDev, &rdev->flags)) 971 bio->bi_opf |= MD_FAILFAST; 972 973 atomic_inc(&mddev->pending_writes); 974 submit_bio(bio); 975 } 976 977 int md_super_wait(struct mddev *mddev) 978 { 979 /* wait for all superblock writes that were scheduled to complete */ 980 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 981 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 982 return -EAGAIN; 983 return 0; 984 } 985 986 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 987 struct page *page, blk_opf_t opf, bool metadata_op) 988 { 989 struct bio bio; 990 struct bio_vec bvec; 991 992 if (metadata_op && rdev->meta_bdev) 993 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 994 else 995 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 996 997 if (metadata_op) 998 bio.bi_iter.bi_sector = sector + rdev->sb_start; 999 else if (rdev->mddev->reshape_position != MaxSector && 1000 (rdev->mddev->reshape_backwards == 1001 (sector >= rdev->mddev->reshape_position))) 1002 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1003 else 1004 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1005 bio_add_page(&bio, page, size, 0); 1006 1007 submit_bio_wait(&bio); 1008 1009 return !bio.bi_status; 1010 } 1011 EXPORT_SYMBOL_GPL(sync_page_io); 1012 1013 static int read_disk_sb(struct md_rdev *rdev, int size) 1014 { 1015 if (rdev->sb_loaded) 1016 return 0; 1017 1018 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1019 goto fail; 1020 rdev->sb_loaded = 1; 1021 return 0; 1022 1023 fail: 1024 pr_err("md: disabled device %pg, could not read superblock.\n", 1025 rdev->bdev); 1026 return -EINVAL; 1027 } 1028 1029 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1030 { 1031 return sb1->set_uuid0 == sb2->set_uuid0 && 1032 sb1->set_uuid1 == sb2->set_uuid1 && 1033 sb1->set_uuid2 == sb2->set_uuid2 && 1034 sb1->set_uuid3 == sb2->set_uuid3; 1035 } 1036 1037 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1038 { 1039 int ret; 1040 mdp_super_t *tmp1, *tmp2; 1041 1042 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1043 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1044 1045 if (!tmp1 || !tmp2) { 1046 ret = 0; 1047 goto abort; 1048 } 1049 1050 *tmp1 = *sb1; 1051 *tmp2 = *sb2; 1052 1053 /* 1054 * nr_disks is not constant 1055 */ 1056 tmp1->nr_disks = 0; 1057 tmp2->nr_disks = 0; 1058 1059 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1060 abort: 1061 kfree(tmp1); 1062 kfree(tmp2); 1063 return ret; 1064 } 1065 1066 static u32 md_csum_fold(u32 csum) 1067 { 1068 csum = (csum & 0xffff) + (csum >> 16); 1069 return (csum & 0xffff) + (csum >> 16); 1070 } 1071 1072 static unsigned int calc_sb_csum(mdp_super_t *sb) 1073 { 1074 u64 newcsum = 0; 1075 u32 *sb32 = (u32*)sb; 1076 int i; 1077 unsigned int disk_csum, csum; 1078 1079 disk_csum = sb->sb_csum; 1080 sb->sb_csum = 0; 1081 1082 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1083 newcsum += sb32[i]; 1084 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1085 1086 #ifdef CONFIG_ALPHA 1087 /* This used to use csum_partial, which was wrong for several 1088 * reasons including that different results are returned on 1089 * different architectures. It isn't critical that we get exactly 1090 * the same return value as before (we always csum_fold before 1091 * testing, and that removes any differences). However as we 1092 * know that csum_partial always returned a 16bit value on 1093 * alphas, do a fold to maximise conformity to previous behaviour. 1094 */ 1095 sb->sb_csum = md_csum_fold(disk_csum); 1096 #else 1097 sb->sb_csum = disk_csum; 1098 #endif 1099 return csum; 1100 } 1101 1102 /* 1103 * Handle superblock details. 1104 * We want to be able to handle multiple superblock formats 1105 * so we have a common interface to them all, and an array of 1106 * different handlers. 1107 * We rely on user-space to write the initial superblock, and support 1108 * reading and updating of superblocks. 1109 * Interface methods are: 1110 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1111 * loads and validates a superblock on dev. 1112 * if refdev != NULL, compare superblocks on both devices 1113 * Return: 1114 * 0 - dev has a superblock that is compatible with refdev 1115 * 1 - dev has a superblock that is compatible and newer than refdev 1116 * so dev should be used as the refdev in future 1117 * -EINVAL superblock incompatible or invalid 1118 * -othererror e.g. -EIO 1119 * 1120 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1121 * Verify that dev is acceptable into mddev. 1122 * The first time, mddev->raid_disks will be 0, and data from 1123 * dev should be merged in. Subsequent calls check that dev 1124 * is new enough. Return 0 or -EINVAL 1125 * 1126 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1127 * Update the superblock for rdev with data in mddev 1128 * This does not write to disc. 1129 * 1130 */ 1131 1132 struct super_type { 1133 char *name; 1134 struct module *owner; 1135 int (*load_super)(struct md_rdev *rdev, 1136 struct md_rdev *refdev, 1137 int minor_version); 1138 int (*validate_super)(struct mddev *mddev, 1139 struct md_rdev *rdev); 1140 void (*sync_super)(struct mddev *mddev, 1141 struct md_rdev *rdev); 1142 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1143 sector_t num_sectors); 1144 int (*allow_new_offset)(struct md_rdev *rdev, 1145 unsigned long long new_offset); 1146 }; 1147 1148 /* 1149 * Check that the given mddev has no bitmap. 1150 * 1151 * This function is called from the run method of all personalities that do not 1152 * support bitmaps. It prints an error message and returns non-zero if mddev 1153 * has a bitmap. Otherwise, it returns 0. 1154 * 1155 */ 1156 int md_check_no_bitmap(struct mddev *mddev) 1157 { 1158 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1159 return 0; 1160 pr_warn("%s: bitmaps are not supported for %s\n", 1161 mdname(mddev), mddev->pers->name); 1162 return 1; 1163 } 1164 EXPORT_SYMBOL(md_check_no_bitmap); 1165 1166 /* 1167 * load_super for 0.90.0 1168 */ 1169 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1170 { 1171 mdp_super_t *sb; 1172 int ret; 1173 bool spare_disk = true; 1174 1175 /* 1176 * Calculate the position of the superblock (512byte sectors), 1177 * it's at the end of the disk. 1178 * 1179 * It also happens to be a multiple of 4Kb. 1180 */ 1181 rdev->sb_start = calc_dev_sboffset(rdev); 1182 1183 ret = read_disk_sb(rdev, MD_SB_BYTES); 1184 if (ret) 1185 return ret; 1186 1187 ret = -EINVAL; 1188 1189 sb = page_address(rdev->sb_page); 1190 1191 if (sb->md_magic != MD_SB_MAGIC) { 1192 pr_warn("md: invalid raid superblock magic on %pg\n", 1193 rdev->bdev); 1194 goto abort; 1195 } 1196 1197 if (sb->major_version != 0 || 1198 sb->minor_version < 90 || 1199 sb->minor_version > 91) { 1200 pr_warn("Bad version number %d.%d on %pg\n", 1201 sb->major_version, sb->minor_version, rdev->bdev); 1202 goto abort; 1203 } 1204 1205 if (sb->raid_disks <= 0) 1206 goto abort; 1207 1208 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1209 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1210 goto abort; 1211 } 1212 1213 rdev->preferred_minor = sb->md_minor; 1214 rdev->data_offset = 0; 1215 rdev->new_data_offset = 0; 1216 rdev->sb_size = MD_SB_BYTES; 1217 rdev->badblocks.shift = -1; 1218 1219 if (sb->level == LEVEL_MULTIPATH) 1220 rdev->desc_nr = -1; 1221 else 1222 rdev->desc_nr = sb->this_disk.number; 1223 1224 /* not spare disk, or LEVEL_MULTIPATH */ 1225 if (sb->level == LEVEL_MULTIPATH || 1226 (rdev->desc_nr >= 0 && 1227 rdev->desc_nr < MD_SB_DISKS && 1228 sb->disks[rdev->desc_nr].state & 1229 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1230 spare_disk = false; 1231 1232 if (!refdev) { 1233 if (!spare_disk) 1234 ret = 1; 1235 else 1236 ret = 0; 1237 } else { 1238 __u64 ev1, ev2; 1239 mdp_super_t *refsb = page_address(refdev->sb_page); 1240 if (!md_uuid_equal(refsb, sb)) { 1241 pr_warn("md: %pg has different UUID to %pg\n", 1242 rdev->bdev, refdev->bdev); 1243 goto abort; 1244 } 1245 if (!md_sb_equal(refsb, sb)) { 1246 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1247 rdev->bdev, refdev->bdev); 1248 goto abort; 1249 } 1250 ev1 = md_event(sb); 1251 ev2 = md_event(refsb); 1252 1253 if (!spare_disk && ev1 > ev2) 1254 ret = 1; 1255 else 1256 ret = 0; 1257 } 1258 rdev->sectors = rdev->sb_start; 1259 /* Limit to 4TB as metadata cannot record more than that. 1260 * (not needed for Linear and RAID0 as metadata doesn't 1261 * record this size) 1262 */ 1263 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1264 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1265 1266 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1267 /* "this cannot possibly happen" ... */ 1268 ret = -EINVAL; 1269 1270 abort: 1271 return ret; 1272 } 1273 1274 /* 1275 * validate_super for 0.90.0 1276 */ 1277 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1278 { 1279 mdp_disk_t *desc; 1280 mdp_super_t *sb = page_address(rdev->sb_page); 1281 __u64 ev1 = md_event(sb); 1282 1283 rdev->raid_disk = -1; 1284 clear_bit(Faulty, &rdev->flags); 1285 clear_bit(In_sync, &rdev->flags); 1286 clear_bit(Bitmap_sync, &rdev->flags); 1287 clear_bit(WriteMostly, &rdev->flags); 1288 1289 if (mddev->raid_disks == 0) { 1290 mddev->major_version = 0; 1291 mddev->minor_version = sb->minor_version; 1292 mddev->patch_version = sb->patch_version; 1293 mddev->external = 0; 1294 mddev->chunk_sectors = sb->chunk_size >> 9; 1295 mddev->ctime = sb->ctime; 1296 mddev->utime = sb->utime; 1297 mddev->level = sb->level; 1298 mddev->clevel[0] = 0; 1299 mddev->layout = sb->layout; 1300 mddev->raid_disks = sb->raid_disks; 1301 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1302 mddev->events = ev1; 1303 mddev->bitmap_info.offset = 0; 1304 mddev->bitmap_info.space = 0; 1305 /* bitmap can use 60 K after the 4K superblocks */ 1306 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1307 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1308 mddev->reshape_backwards = 0; 1309 1310 if (mddev->minor_version >= 91) { 1311 mddev->reshape_position = sb->reshape_position; 1312 mddev->delta_disks = sb->delta_disks; 1313 mddev->new_level = sb->new_level; 1314 mddev->new_layout = sb->new_layout; 1315 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1316 if (mddev->delta_disks < 0) 1317 mddev->reshape_backwards = 1; 1318 } else { 1319 mddev->reshape_position = MaxSector; 1320 mddev->delta_disks = 0; 1321 mddev->new_level = mddev->level; 1322 mddev->new_layout = mddev->layout; 1323 mddev->new_chunk_sectors = mddev->chunk_sectors; 1324 } 1325 if (mddev->level == 0) 1326 mddev->layout = -1; 1327 1328 if (sb->state & (1<<MD_SB_CLEAN)) 1329 mddev->recovery_cp = MaxSector; 1330 else { 1331 if (sb->events_hi == sb->cp_events_hi && 1332 sb->events_lo == sb->cp_events_lo) { 1333 mddev->recovery_cp = sb->recovery_cp; 1334 } else 1335 mddev->recovery_cp = 0; 1336 } 1337 1338 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1339 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1340 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1341 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1342 1343 mddev->max_disks = MD_SB_DISKS; 1344 1345 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1346 mddev->bitmap_info.file == NULL) { 1347 mddev->bitmap_info.offset = 1348 mddev->bitmap_info.default_offset; 1349 mddev->bitmap_info.space = 1350 mddev->bitmap_info.default_space; 1351 } 1352 1353 } else if (mddev->pers == NULL) { 1354 /* Insist on good event counter while assembling, except 1355 * for spares (which don't need an event count) */ 1356 ++ev1; 1357 if (sb->disks[rdev->desc_nr].state & ( 1358 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1359 if (ev1 < mddev->events) 1360 return -EINVAL; 1361 } else if (mddev->bitmap) { 1362 /* if adding to array with a bitmap, then we can accept an 1363 * older device ... but not too old. 1364 */ 1365 if (ev1 < mddev->bitmap->events_cleared) 1366 return 0; 1367 if (ev1 < mddev->events) 1368 set_bit(Bitmap_sync, &rdev->flags); 1369 } else { 1370 if (ev1 < mddev->events) 1371 /* just a hot-add of a new device, leave raid_disk at -1 */ 1372 return 0; 1373 } 1374 1375 if (mddev->level != LEVEL_MULTIPATH) { 1376 desc = sb->disks + rdev->desc_nr; 1377 1378 if (desc->state & (1<<MD_DISK_FAULTY)) 1379 set_bit(Faulty, &rdev->flags); 1380 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1381 desc->raid_disk < mddev->raid_disks */) { 1382 set_bit(In_sync, &rdev->flags); 1383 rdev->raid_disk = desc->raid_disk; 1384 rdev->saved_raid_disk = desc->raid_disk; 1385 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1386 /* active but not in sync implies recovery up to 1387 * reshape position. We don't know exactly where 1388 * that is, so set to zero for now */ 1389 if (mddev->minor_version >= 91) { 1390 rdev->recovery_offset = 0; 1391 rdev->raid_disk = desc->raid_disk; 1392 } 1393 } 1394 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1395 set_bit(WriteMostly, &rdev->flags); 1396 if (desc->state & (1<<MD_DISK_FAILFAST)) 1397 set_bit(FailFast, &rdev->flags); 1398 } else /* MULTIPATH are always insync */ 1399 set_bit(In_sync, &rdev->flags); 1400 return 0; 1401 } 1402 1403 /* 1404 * sync_super for 0.90.0 1405 */ 1406 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1407 { 1408 mdp_super_t *sb; 1409 struct md_rdev *rdev2; 1410 int next_spare = mddev->raid_disks; 1411 1412 /* make rdev->sb match mddev data.. 1413 * 1414 * 1/ zero out disks 1415 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1416 * 3/ any empty disks < next_spare become removed 1417 * 1418 * disks[0] gets initialised to REMOVED because 1419 * we cannot be sure from other fields if it has 1420 * been initialised or not. 1421 */ 1422 int i; 1423 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1424 1425 rdev->sb_size = MD_SB_BYTES; 1426 1427 sb = page_address(rdev->sb_page); 1428 1429 memset(sb, 0, sizeof(*sb)); 1430 1431 sb->md_magic = MD_SB_MAGIC; 1432 sb->major_version = mddev->major_version; 1433 sb->patch_version = mddev->patch_version; 1434 sb->gvalid_words = 0; /* ignored */ 1435 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1436 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1437 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1438 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1439 1440 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1441 sb->level = mddev->level; 1442 sb->size = mddev->dev_sectors / 2; 1443 sb->raid_disks = mddev->raid_disks; 1444 sb->md_minor = mddev->md_minor; 1445 sb->not_persistent = 0; 1446 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1447 sb->state = 0; 1448 sb->events_hi = (mddev->events>>32); 1449 sb->events_lo = (u32)mddev->events; 1450 1451 if (mddev->reshape_position == MaxSector) 1452 sb->minor_version = 90; 1453 else { 1454 sb->minor_version = 91; 1455 sb->reshape_position = mddev->reshape_position; 1456 sb->new_level = mddev->new_level; 1457 sb->delta_disks = mddev->delta_disks; 1458 sb->new_layout = mddev->new_layout; 1459 sb->new_chunk = mddev->new_chunk_sectors << 9; 1460 } 1461 mddev->minor_version = sb->minor_version; 1462 if (mddev->in_sync) 1463 { 1464 sb->recovery_cp = mddev->recovery_cp; 1465 sb->cp_events_hi = (mddev->events>>32); 1466 sb->cp_events_lo = (u32)mddev->events; 1467 if (mddev->recovery_cp == MaxSector) 1468 sb->state = (1<< MD_SB_CLEAN); 1469 } else 1470 sb->recovery_cp = 0; 1471 1472 sb->layout = mddev->layout; 1473 sb->chunk_size = mddev->chunk_sectors << 9; 1474 1475 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1476 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1477 1478 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1479 rdev_for_each(rdev2, mddev) { 1480 mdp_disk_t *d; 1481 int desc_nr; 1482 int is_active = test_bit(In_sync, &rdev2->flags); 1483 1484 if (rdev2->raid_disk >= 0 && 1485 sb->minor_version >= 91) 1486 /* we have nowhere to store the recovery_offset, 1487 * but if it is not below the reshape_position, 1488 * we can piggy-back on that. 1489 */ 1490 is_active = 1; 1491 if (rdev2->raid_disk < 0 || 1492 test_bit(Faulty, &rdev2->flags)) 1493 is_active = 0; 1494 if (is_active) 1495 desc_nr = rdev2->raid_disk; 1496 else 1497 desc_nr = next_spare++; 1498 rdev2->desc_nr = desc_nr; 1499 d = &sb->disks[rdev2->desc_nr]; 1500 nr_disks++; 1501 d->number = rdev2->desc_nr; 1502 d->major = MAJOR(rdev2->bdev->bd_dev); 1503 d->minor = MINOR(rdev2->bdev->bd_dev); 1504 if (is_active) 1505 d->raid_disk = rdev2->raid_disk; 1506 else 1507 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1508 if (test_bit(Faulty, &rdev2->flags)) 1509 d->state = (1<<MD_DISK_FAULTY); 1510 else if (is_active) { 1511 d->state = (1<<MD_DISK_ACTIVE); 1512 if (test_bit(In_sync, &rdev2->flags)) 1513 d->state |= (1<<MD_DISK_SYNC); 1514 active++; 1515 working++; 1516 } else { 1517 d->state = 0; 1518 spare++; 1519 working++; 1520 } 1521 if (test_bit(WriteMostly, &rdev2->flags)) 1522 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1523 if (test_bit(FailFast, &rdev2->flags)) 1524 d->state |= (1<<MD_DISK_FAILFAST); 1525 } 1526 /* now set the "removed" and "faulty" bits on any missing devices */ 1527 for (i=0 ; i < mddev->raid_disks ; i++) { 1528 mdp_disk_t *d = &sb->disks[i]; 1529 if (d->state == 0 && d->number == 0) { 1530 d->number = i; 1531 d->raid_disk = i; 1532 d->state = (1<<MD_DISK_REMOVED); 1533 d->state |= (1<<MD_DISK_FAULTY); 1534 failed++; 1535 } 1536 } 1537 sb->nr_disks = nr_disks; 1538 sb->active_disks = active; 1539 sb->working_disks = working; 1540 sb->failed_disks = failed; 1541 sb->spare_disks = spare; 1542 1543 sb->this_disk = sb->disks[rdev->desc_nr]; 1544 sb->sb_csum = calc_sb_csum(sb); 1545 } 1546 1547 /* 1548 * rdev_size_change for 0.90.0 1549 */ 1550 static unsigned long long 1551 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1552 { 1553 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1554 return 0; /* component must fit device */ 1555 if (rdev->mddev->bitmap_info.offset) 1556 return 0; /* can't move bitmap */ 1557 rdev->sb_start = calc_dev_sboffset(rdev); 1558 if (!num_sectors || num_sectors > rdev->sb_start) 1559 num_sectors = rdev->sb_start; 1560 /* Limit to 4TB as metadata cannot record more than that. 1561 * 4TB == 2^32 KB, or 2*2^32 sectors. 1562 */ 1563 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1564 num_sectors = (sector_t)(2ULL << 32) - 2; 1565 do { 1566 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1567 rdev->sb_page); 1568 } while (md_super_wait(rdev->mddev) < 0); 1569 return num_sectors; 1570 } 1571 1572 static int 1573 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1574 { 1575 /* non-zero offset changes not possible with v0.90 */ 1576 return new_offset == 0; 1577 } 1578 1579 /* 1580 * version 1 superblock 1581 */ 1582 1583 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1584 { 1585 __le32 disk_csum; 1586 u32 csum; 1587 unsigned long long newcsum; 1588 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1589 __le32 *isuper = (__le32*)sb; 1590 1591 disk_csum = sb->sb_csum; 1592 sb->sb_csum = 0; 1593 newcsum = 0; 1594 for (; size >= 4; size -= 4) 1595 newcsum += le32_to_cpu(*isuper++); 1596 1597 if (size == 2) 1598 newcsum += le16_to_cpu(*(__le16*) isuper); 1599 1600 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1601 sb->sb_csum = disk_csum; 1602 return cpu_to_le32(csum); 1603 } 1604 1605 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1606 { 1607 struct mdp_superblock_1 *sb; 1608 int ret; 1609 sector_t sb_start; 1610 sector_t sectors; 1611 int bmask; 1612 bool spare_disk = true; 1613 1614 /* 1615 * Calculate the position of the superblock in 512byte sectors. 1616 * It is always aligned to a 4K boundary and 1617 * depeding on minor_version, it can be: 1618 * 0: At least 8K, but less than 12K, from end of device 1619 * 1: At start of device 1620 * 2: 4K from start of device. 1621 */ 1622 switch(minor_version) { 1623 case 0: 1624 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1625 sb_start &= ~(sector_t)(4*2-1); 1626 break; 1627 case 1: 1628 sb_start = 0; 1629 break; 1630 case 2: 1631 sb_start = 8; 1632 break; 1633 default: 1634 return -EINVAL; 1635 } 1636 rdev->sb_start = sb_start; 1637 1638 /* superblock is rarely larger than 1K, but it can be larger, 1639 * and it is safe to read 4k, so we do that 1640 */ 1641 ret = read_disk_sb(rdev, 4096); 1642 if (ret) return ret; 1643 1644 sb = page_address(rdev->sb_page); 1645 1646 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1647 sb->major_version != cpu_to_le32(1) || 1648 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1649 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1650 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1651 return -EINVAL; 1652 1653 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1654 pr_warn("md: invalid superblock checksum on %pg\n", 1655 rdev->bdev); 1656 return -EINVAL; 1657 } 1658 if (le64_to_cpu(sb->data_size) < 10) { 1659 pr_warn("md: data_size too small on %pg\n", 1660 rdev->bdev); 1661 return -EINVAL; 1662 } 1663 if (sb->pad0 || 1664 sb->pad3[0] || 1665 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1666 /* Some padding is non-zero, might be a new feature */ 1667 return -EINVAL; 1668 1669 rdev->preferred_minor = 0xffff; 1670 rdev->data_offset = le64_to_cpu(sb->data_offset); 1671 rdev->new_data_offset = rdev->data_offset; 1672 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1673 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1674 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1675 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1676 1677 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1678 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1679 if (rdev->sb_size & bmask) 1680 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1681 1682 if (minor_version 1683 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1684 return -EINVAL; 1685 if (minor_version 1686 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1687 return -EINVAL; 1688 1689 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1690 rdev->desc_nr = -1; 1691 else 1692 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1693 1694 if (!rdev->bb_page) { 1695 rdev->bb_page = alloc_page(GFP_KERNEL); 1696 if (!rdev->bb_page) 1697 return -ENOMEM; 1698 } 1699 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1700 rdev->badblocks.count == 0) { 1701 /* need to load the bad block list. 1702 * Currently we limit it to one page. 1703 */ 1704 s32 offset; 1705 sector_t bb_sector; 1706 __le64 *bbp; 1707 int i; 1708 int sectors = le16_to_cpu(sb->bblog_size); 1709 if (sectors > (PAGE_SIZE / 512)) 1710 return -EINVAL; 1711 offset = le32_to_cpu(sb->bblog_offset); 1712 if (offset == 0) 1713 return -EINVAL; 1714 bb_sector = (long long)offset; 1715 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1716 rdev->bb_page, REQ_OP_READ, true)) 1717 return -EIO; 1718 bbp = (__le64 *)page_address(rdev->bb_page); 1719 rdev->badblocks.shift = sb->bblog_shift; 1720 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1721 u64 bb = le64_to_cpu(*bbp); 1722 int count = bb & (0x3ff); 1723 u64 sector = bb >> 10; 1724 sector <<= sb->bblog_shift; 1725 count <<= sb->bblog_shift; 1726 if (bb + 1 == 0) 1727 break; 1728 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1729 return -EINVAL; 1730 } 1731 } else if (sb->bblog_offset != 0) 1732 rdev->badblocks.shift = 0; 1733 1734 if ((le32_to_cpu(sb->feature_map) & 1735 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1736 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1737 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1738 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1739 } 1740 1741 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1742 sb->level != 0) 1743 return -EINVAL; 1744 1745 /* not spare disk, or LEVEL_MULTIPATH */ 1746 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1747 (rdev->desc_nr >= 0 && 1748 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1749 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1750 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1751 spare_disk = false; 1752 1753 if (!refdev) { 1754 if (!spare_disk) 1755 ret = 1; 1756 else 1757 ret = 0; 1758 } else { 1759 __u64 ev1, ev2; 1760 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1761 1762 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1763 sb->level != refsb->level || 1764 sb->layout != refsb->layout || 1765 sb->chunksize != refsb->chunksize) { 1766 pr_warn("md: %pg has strangely different superblock to %pg\n", 1767 rdev->bdev, 1768 refdev->bdev); 1769 return -EINVAL; 1770 } 1771 ev1 = le64_to_cpu(sb->events); 1772 ev2 = le64_to_cpu(refsb->events); 1773 1774 if (!spare_disk && ev1 > ev2) 1775 ret = 1; 1776 else 1777 ret = 0; 1778 } 1779 if (minor_version) 1780 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1781 else 1782 sectors = rdev->sb_start; 1783 if (sectors < le64_to_cpu(sb->data_size)) 1784 return -EINVAL; 1785 rdev->sectors = le64_to_cpu(sb->data_size); 1786 return ret; 1787 } 1788 1789 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1790 { 1791 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1792 __u64 ev1 = le64_to_cpu(sb->events); 1793 1794 rdev->raid_disk = -1; 1795 clear_bit(Faulty, &rdev->flags); 1796 clear_bit(In_sync, &rdev->flags); 1797 clear_bit(Bitmap_sync, &rdev->flags); 1798 clear_bit(WriteMostly, &rdev->flags); 1799 1800 if (mddev->raid_disks == 0) { 1801 mddev->major_version = 1; 1802 mddev->patch_version = 0; 1803 mddev->external = 0; 1804 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1805 mddev->ctime = le64_to_cpu(sb->ctime); 1806 mddev->utime = le64_to_cpu(sb->utime); 1807 mddev->level = le32_to_cpu(sb->level); 1808 mddev->clevel[0] = 0; 1809 mddev->layout = le32_to_cpu(sb->layout); 1810 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1811 mddev->dev_sectors = le64_to_cpu(sb->size); 1812 mddev->events = ev1; 1813 mddev->bitmap_info.offset = 0; 1814 mddev->bitmap_info.space = 0; 1815 /* Default location for bitmap is 1K after superblock 1816 * using 3K - total of 4K 1817 */ 1818 mddev->bitmap_info.default_offset = 1024 >> 9; 1819 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1820 mddev->reshape_backwards = 0; 1821 1822 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1823 memcpy(mddev->uuid, sb->set_uuid, 16); 1824 1825 mddev->max_disks = (4096-256)/2; 1826 1827 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1828 mddev->bitmap_info.file == NULL) { 1829 mddev->bitmap_info.offset = 1830 (__s32)le32_to_cpu(sb->bitmap_offset); 1831 /* Metadata doesn't record how much space is available. 1832 * For 1.0, we assume we can use up to the superblock 1833 * if before, else to 4K beyond superblock. 1834 * For others, assume no change is possible. 1835 */ 1836 if (mddev->minor_version > 0) 1837 mddev->bitmap_info.space = 0; 1838 else if (mddev->bitmap_info.offset > 0) 1839 mddev->bitmap_info.space = 1840 8 - mddev->bitmap_info.offset; 1841 else 1842 mddev->bitmap_info.space = 1843 -mddev->bitmap_info.offset; 1844 } 1845 1846 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1847 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1848 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1849 mddev->new_level = le32_to_cpu(sb->new_level); 1850 mddev->new_layout = le32_to_cpu(sb->new_layout); 1851 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1852 if (mddev->delta_disks < 0 || 1853 (mddev->delta_disks == 0 && 1854 (le32_to_cpu(sb->feature_map) 1855 & MD_FEATURE_RESHAPE_BACKWARDS))) 1856 mddev->reshape_backwards = 1; 1857 } else { 1858 mddev->reshape_position = MaxSector; 1859 mddev->delta_disks = 0; 1860 mddev->new_level = mddev->level; 1861 mddev->new_layout = mddev->layout; 1862 mddev->new_chunk_sectors = mddev->chunk_sectors; 1863 } 1864 1865 if (mddev->level == 0 && 1866 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1867 mddev->layout = -1; 1868 1869 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1870 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1871 1872 if (le32_to_cpu(sb->feature_map) & 1873 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1874 if (le32_to_cpu(sb->feature_map) & 1875 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1876 return -EINVAL; 1877 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1878 (le32_to_cpu(sb->feature_map) & 1879 MD_FEATURE_MULTIPLE_PPLS)) 1880 return -EINVAL; 1881 set_bit(MD_HAS_PPL, &mddev->flags); 1882 } 1883 } else if (mddev->pers == NULL) { 1884 /* Insist of good event counter while assembling, except for 1885 * spares (which don't need an event count) */ 1886 ++ev1; 1887 if (rdev->desc_nr >= 0 && 1888 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1889 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1890 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1891 if (ev1 < mddev->events) 1892 return -EINVAL; 1893 } else if (mddev->bitmap) { 1894 /* If adding to array with a bitmap, then we can accept an 1895 * older device, but not too old. 1896 */ 1897 if (ev1 < mddev->bitmap->events_cleared) 1898 return 0; 1899 if (ev1 < mddev->events) 1900 set_bit(Bitmap_sync, &rdev->flags); 1901 } else { 1902 if (ev1 < mddev->events) 1903 /* just a hot-add of a new device, leave raid_disk at -1 */ 1904 return 0; 1905 } 1906 if (mddev->level != LEVEL_MULTIPATH) { 1907 int role; 1908 if (rdev->desc_nr < 0 || 1909 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1910 role = MD_DISK_ROLE_SPARE; 1911 rdev->desc_nr = -1; 1912 } else 1913 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1914 switch(role) { 1915 case MD_DISK_ROLE_SPARE: /* spare */ 1916 break; 1917 case MD_DISK_ROLE_FAULTY: /* faulty */ 1918 set_bit(Faulty, &rdev->flags); 1919 break; 1920 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1921 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1922 /* journal device without journal feature */ 1923 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1924 return -EINVAL; 1925 } 1926 set_bit(Journal, &rdev->flags); 1927 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1928 rdev->raid_disk = 0; 1929 break; 1930 default: 1931 rdev->saved_raid_disk = role; 1932 if ((le32_to_cpu(sb->feature_map) & 1933 MD_FEATURE_RECOVERY_OFFSET)) { 1934 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1935 if (!(le32_to_cpu(sb->feature_map) & 1936 MD_FEATURE_RECOVERY_BITMAP)) 1937 rdev->saved_raid_disk = -1; 1938 } else { 1939 /* 1940 * If the array is FROZEN, then the device can't 1941 * be in_sync with rest of array. 1942 */ 1943 if (!test_bit(MD_RECOVERY_FROZEN, 1944 &mddev->recovery)) 1945 set_bit(In_sync, &rdev->flags); 1946 } 1947 rdev->raid_disk = role; 1948 break; 1949 } 1950 if (sb->devflags & WriteMostly1) 1951 set_bit(WriteMostly, &rdev->flags); 1952 if (sb->devflags & FailFast1) 1953 set_bit(FailFast, &rdev->flags); 1954 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1955 set_bit(Replacement, &rdev->flags); 1956 } else /* MULTIPATH are always insync */ 1957 set_bit(In_sync, &rdev->flags); 1958 1959 return 0; 1960 } 1961 1962 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1963 { 1964 struct mdp_superblock_1 *sb; 1965 struct md_rdev *rdev2; 1966 int max_dev, i; 1967 /* make rdev->sb match mddev and rdev data. */ 1968 1969 sb = page_address(rdev->sb_page); 1970 1971 sb->feature_map = 0; 1972 sb->pad0 = 0; 1973 sb->recovery_offset = cpu_to_le64(0); 1974 memset(sb->pad3, 0, sizeof(sb->pad3)); 1975 1976 sb->utime = cpu_to_le64((__u64)mddev->utime); 1977 sb->events = cpu_to_le64(mddev->events); 1978 if (mddev->in_sync) 1979 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1980 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1981 sb->resync_offset = cpu_to_le64(MaxSector); 1982 else 1983 sb->resync_offset = cpu_to_le64(0); 1984 1985 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1986 1987 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1988 sb->size = cpu_to_le64(mddev->dev_sectors); 1989 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1990 sb->level = cpu_to_le32(mddev->level); 1991 sb->layout = cpu_to_le32(mddev->layout); 1992 if (test_bit(FailFast, &rdev->flags)) 1993 sb->devflags |= FailFast1; 1994 else 1995 sb->devflags &= ~FailFast1; 1996 1997 if (test_bit(WriteMostly, &rdev->flags)) 1998 sb->devflags |= WriteMostly1; 1999 else 2000 sb->devflags &= ~WriteMostly1; 2001 sb->data_offset = cpu_to_le64(rdev->data_offset); 2002 sb->data_size = cpu_to_le64(rdev->sectors); 2003 2004 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2005 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2006 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2007 } 2008 2009 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2010 !test_bit(In_sync, &rdev->flags)) { 2011 sb->feature_map |= 2012 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2013 sb->recovery_offset = 2014 cpu_to_le64(rdev->recovery_offset); 2015 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2016 sb->feature_map |= 2017 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2018 } 2019 /* Note: recovery_offset and journal_tail share space */ 2020 if (test_bit(Journal, &rdev->flags)) 2021 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2022 if (test_bit(Replacement, &rdev->flags)) 2023 sb->feature_map |= 2024 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2025 2026 if (mddev->reshape_position != MaxSector) { 2027 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2028 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2029 sb->new_layout = cpu_to_le32(mddev->new_layout); 2030 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2031 sb->new_level = cpu_to_le32(mddev->new_level); 2032 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2033 if (mddev->delta_disks == 0 && 2034 mddev->reshape_backwards) 2035 sb->feature_map 2036 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2037 if (rdev->new_data_offset != rdev->data_offset) { 2038 sb->feature_map 2039 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2040 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2041 - rdev->data_offset)); 2042 } 2043 } 2044 2045 if (mddev_is_clustered(mddev)) 2046 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2047 2048 if (rdev->badblocks.count == 0) 2049 /* Nothing to do for bad blocks*/ ; 2050 else if (sb->bblog_offset == 0) 2051 /* Cannot record bad blocks on this device */ 2052 md_error(mddev, rdev); 2053 else { 2054 struct badblocks *bb = &rdev->badblocks; 2055 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2056 u64 *p = bb->page; 2057 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2058 if (bb->changed) { 2059 unsigned seq; 2060 2061 retry: 2062 seq = read_seqbegin(&bb->lock); 2063 2064 memset(bbp, 0xff, PAGE_SIZE); 2065 2066 for (i = 0 ; i < bb->count ; i++) { 2067 u64 internal_bb = p[i]; 2068 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2069 | BB_LEN(internal_bb)); 2070 bbp[i] = cpu_to_le64(store_bb); 2071 } 2072 bb->changed = 0; 2073 if (read_seqretry(&bb->lock, seq)) 2074 goto retry; 2075 2076 bb->sector = (rdev->sb_start + 2077 (int)le32_to_cpu(sb->bblog_offset)); 2078 bb->size = le16_to_cpu(sb->bblog_size); 2079 } 2080 } 2081 2082 max_dev = 0; 2083 rdev_for_each(rdev2, mddev) 2084 if (rdev2->desc_nr+1 > max_dev) 2085 max_dev = rdev2->desc_nr+1; 2086 2087 if (max_dev > le32_to_cpu(sb->max_dev)) { 2088 int bmask; 2089 sb->max_dev = cpu_to_le32(max_dev); 2090 rdev->sb_size = max_dev * 2 + 256; 2091 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2092 if (rdev->sb_size & bmask) 2093 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2094 } else 2095 max_dev = le32_to_cpu(sb->max_dev); 2096 2097 for (i=0; i<max_dev;i++) 2098 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2099 2100 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2101 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2102 2103 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2104 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2105 sb->feature_map |= 2106 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2107 else 2108 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2109 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2110 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2111 } 2112 2113 rdev_for_each(rdev2, mddev) { 2114 i = rdev2->desc_nr; 2115 if (test_bit(Faulty, &rdev2->flags)) 2116 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2117 else if (test_bit(In_sync, &rdev2->flags)) 2118 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2119 else if (test_bit(Journal, &rdev2->flags)) 2120 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2121 else if (rdev2->raid_disk >= 0) 2122 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2123 else 2124 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2125 } 2126 2127 sb->sb_csum = calc_sb_1_csum(sb); 2128 } 2129 2130 static sector_t super_1_choose_bm_space(sector_t dev_size) 2131 { 2132 sector_t bm_space; 2133 2134 /* if the device is bigger than 8Gig, save 64k for bitmap 2135 * usage, if bigger than 200Gig, save 128k 2136 */ 2137 if (dev_size < 64*2) 2138 bm_space = 0; 2139 else if (dev_size - 64*2 >= 200*1024*1024*2) 2140 bm_space = 128*2; 2141 else if (dev_size - 4*2 > 8*1024*1024*2) 2142 bm_space = 64*2; 2143 else 2144 bm_space = 4*2; 2145 return bm_space; 2146 } 2147 2148 static unsigned long long 2149 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2150 { 2151 struct mdp_superblock_1 *sb; 2152 sector_t max_sectors; 2153 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2154 return 0; /* component must fit device */ 2155 if (rdev->data_offset != rdev->new_data_offset) 2156 return 0; /* too confusing */ 2157 if (rdev->sb_start < rdev->data_offset) { 2158 /* minor versions 1 and 2; superblock before data */ 2159 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2160 if (!num_sectors || num_sectors > max_sectors) 2161 num_sectors = max_sectors; 2162 } else if (rdev->mddev->bitmap_info.offset) { 2163 /* minor version 0 with bitmap we can't move */ 2164 return 0; 2165 } else { 2166 /* minor version 0; superblock after data */ 2167 sector_t sb_start, bm_space; 2168 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2169 2170 /* 8K is for superblock */ 2171 sb_start = dev_size - 8*2; 2172 sb_start &= ~(sector_t)(4*2 - 1); 2173 2174 bm_space = super_1_choose_bm_space(dev_size); 2175 2176 /* Space that can be used to store date needs to decrease 2177 * superblock bitmap space and bad block space(4K) 2178 */ 2179 max_sectors = sb_start - bm_space - 4*2; 2180 2181 if (!num_sectors || num_sectors > max_sectors) 2182 num_sectors = max_sectors; 2183 rdev->sb_start = sb_start; 2184 } 2185 sb = page_address(rdev->sb_page); 2186 sb->data_size = cpu_to_le64(num_sectors); 2187 sb->super_offset = cpu_to_le64(rdev->sb_start); 2188 sb->sb_csum = calc_sb_1_csum(sb); 2189 do { 2190 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2191 rdev->sb_page); 2192 } while (md_super_wait(rdev->mddev) < 0); 2193 return num_sectors; 2194 2195 } 2196 2197 static int 2198 super_1_allow_new_offset(struct md_rdev *rdev, 2199 unsigned long long new_offset) 2200 { 2201 /* All necessary checks on new >= old have been done */ 2202 struct bitmap *bitmap; 2203 if (new_offset >= rdev->data_offset) 2204 return 1; 2205 2206 /* with 1.0 metadata, there is no metadata to tread on 2207 * so we can always move back */ 2208 if (rdev->mddev->minor_version == 0) 2209 return 1; 2210 2211 /* otherwise we must be sure not to step on 2212 * any metadata, so stay: 2213 * 36K beyond start of superblock 2214 * beyond end of badblocks 2215 * beyond write-intent bitmap 2216 */ 2217 if (rdev->sb_start + (32+4)*2 > new_offset) 2218 return 0; 2219 bitmap = rdev->mddev->bitmap; 2220 if (bitmap && !rdev->mddev->bitmap_info.file && 2221 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2222 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2223 return 0; 2224 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2225 return 0; 2226 2227 return 1; 2228 } 2229 2230 static struct super_type super_types[] = { 2231 [0] = { 2232 .name = "0.90.0", 2233 .owner = THIS_MODULE, 2234 .load_super = super_90_load, 2235 .validate_super = super_90_validate, 2236 .sync_super = super_90_sync, 2237 .rdev_size_change = super_90_rdev_size_change, 2238 .allow_new_offset = super_90_allow_new_offset, 2239 }, 2240 [1] = { 2241 .name = "md-1", 2242 .owner = THIS_MODULE, 2243 .load_super = super_1_load, 2244 .validate_super = super_1_validate, 2245 .sync_super = super_1_sync, 2246 .rdev_size_change = super_1_rdev_size_change, 2247 .allow_new_offset = super_1_allow_new_offset, 2248 }, 2249 }; 2250 2251 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2252 { 2253 if (mddev->sync_super) { 2254 mddev->sync_super(mddev, rdev); 2255 return; 2256 } 2257 2258 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2259 2260 super_types[mddev->major_version].sync_super(mddev, rdev); 2261 } 2262 2263 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2264 { 2265 struct md_rdev *rdev, *rdev2; 2266 2267 rcu_read_lock(); 2268 rdev_for_each_rcu(rdev, mddev1) { 2269 if (test_bit(Faulty, &rdev->flags) || 2270 test_bit(Journal, &rdev->flags) || 2271 rdev->raid_disk == -1) 2272 continue; 2273 rdev_for_each_rcu(rdev2, mddev2) { 2274 if (test_bit(Faulty, &rdev2->flags) || 2275 test_bit(Journal, &rdev2->flags) || 2276 rdev2->raid_disk == -1) 2277 continue; 2278 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2279 rcu_read_unlock(); 2280 return 1; 2281 } 2282 } 2283 } 2284 rcu_read_unlock(); 2285 return 0; 2286 } 2287 2288 static LIST_HEAD(pending_raid_disks); 2289 2290 /* 2291 * Try to register data integrity profile for an mddev 2292 * 2293 * This is called when an array is started and after a disk has been kicked 2294 * from the array. It only succeeds if all working and active component devices 2295 * are integrity capable with matching profiles. 2296 */ 2297 int md_integrity_register(struct mddev *mddev) 2298 { 2299 struct md_rdev *rdev, *reference = NULL; 2300 2301 if (list_empty(&mddev->disks)) 2302 return 0; /* nothing to do */ 2303 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2304 return 0; /* shouldn't register, or already is */ 2305 rdev_for_each(rdev, mddev) { 2306 /* skip spares and non-functional disks */ 2307 if (test_bit(Faulty, &rdev->flags)) 2308 continue; 2309 if (rdev->raid_disk < 0) 2310 continue; 2311 if (!reference) { 2312 /* Use the first rdev as the reference */ 2313 reference = rdev; 2314 continue; 2315 } 2316 /* does this rdev's profile match the reference profile? */ 2317 if (blk_integrity_compare(reference->bdev->bd_disk, 2318 rdev->bdev->bd_disk) < 0) 2319 return -EINVAL; 2320 } 2321 if (!reference || !bdev_get_integrity(reference->bdev)) 2322 return 0; 2323 /* 2324 * All component devices are integrity capable and have matching 2325 * profiles, register the common profile for the md device. 2326 */ 2327 blk_integrity_register(mddev->gendisk, 2328 bdev_get_integrity(reference->bdev)); 2329 2330 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2331 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2332 (mddev->level != 1 && mddev->level != 10 && 2333 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2334 /* 2335 * No need to handle the failure of bioset_integrity_create, 2336 * because the function is called by md_run() -> pers->run(), 2337 * md_run calls bioset_exit -> bioset_integrity_free in case 2338 * of failure case. 2339 */ 2340 pr_err("md: failed to create integrity pool for %s\n", 2341 mdname(mddev)); 2342 return -EINVAL; 2343 } 2344 return 0; 2345 } 2346 EXPORT_SYMBOL(md_integrity_register); 2347 2348 /* 2349 * Attempt to add an rdev, but only if it is consistent with the current 2350 * integrity profile 2351 */ 2352 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2353 { 2354 struct blk_integrity *bi_mddev; 2355 2356 if (!mddev->gendisk) 2357 return 0; 2358 2359 bi_mddev = blk_get_integrity(mddev->gendisk); 2360 2361 if (!bi_mddev) /* nothing to do */ 2362 return 0; 2363 2364 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2365 pr_err("%s: incompatible integrity profile for %pg\n", 2366 mdname(mddev), rdev->bdev); 2367 return -ENXIO; 2368 } 2369 2370 return 0; 2371 } 2372 EXPORT_SYMBOL(md_integrity_add_rdev); 2373 2374 static bool rdev_read_only(struct md_rdev *rdev) 2375 { 2376 return bdev_read_only(rdev->bdev) || 2377 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2378 } 2379 2380 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2381 { 2382 char b[BDEVNAME_SIZE]; 2383 int err; 2384 2385 /* prevent duplicates */ 2386 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2387 return -EEXIST; 2388 2389 if (rdev_read_only(rdev) && mddev->pers) 2390 return -EROFS; 2391 2392 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2393 if (!test_bit(Journal, &rdev->flags) && 2394 rdev->sectors && 2395 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2396 if (mddev->pers) { 2397 /* Cannot change size, so fail 2398 * If mddev->level <= 0, then we don't care 2399 * about aligning sizes (e.g. linear) 2400 */ 2401 if (mddev->level > 0) 2402 return -ENOSPC; 2403 } else 2404 mddev->dev_sectors = rdev->sectors; 2405 } 2406 2407 /* Verify rdev->desc_nr is unique. 2408 * If it is -1, assign a free number, else 2409 * check number is not in use 2410 */ 2411 rcu_read_lock(); 2412 if (rdev->desc_nr < 0) { 2413 int choice = 0; 2414 if (mddev->pers) 2415 choice = mddev->raid_disks; 2416 while (md_find_rdev_nr_rcu(mddev, choice)) 2417 choice++; 2418 rdev->desc_nr = choice; 2419 } else { 2420 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2421 rcu_read_unlock(); 2422 return -EBUSY; 2423 } 2424 } 2425 rcu_read_unlock(); 2426 if (!test_bit(Journal, &rdev->flags) && 2427 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2428 pr_warn("md: %s: array is limited to %d devices\n", 2429 mdname(mddev), mddev->max_disks); 2430 return -EBUSY; 2431 } 2432 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2433 strreplace(b, '/', '!'); 2434 2435 rdev->mddev = mddev; 2436 pr_debug("md: bind<%s>\n", b); 2437 2438 if (mddev->raid_disks) 2439 mddev_create_serial_pool(mddev, rdev, false); 2440 2441 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2442 goto fail; 2443 2444 /* failure here is OK */ 2445 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2446 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2447 rdev->sysfs_unack_badblocks = 2448 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2449 rdev->sysfs_badblocks = 2450 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2451 2452 list_add_rcu(&rdev->same_set, &mddev->disks); 2453 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2454 2455 /* May as well allow recovery to be retried once */ 2456 mddev->recovery_disabled++; 2457 2458 return 0; 2459 2460 fail: 2461 pr_warn("md: failed to register dev-%s for %s\n", 2462 b, mdname(mddev)); 2463 return err; 2464 } 2465 2466 static void rdev_delayed_delete(struct work_struct *ws) 2467 { 2468 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2469 kobject_del(&rdev->kobj); 2470 kobject_put(&rdev->kobj); 2471 } 2472 2473 void md_autodetect_dev(dev_t dev); 2474 2475 static void export_rdev(struct md_rdev *rdev) 2476 { 2477 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2478 md_rdev_clear(rdev); 2479 #ifndef MODULE 2480 if (test_bit(AutoDetected, &rdev->flags)) 2481 md_autodetect_dev(rdev->bdev->bd_dev); 2482 #endif 2483 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2484 rdev->bdev = NULL; 2485 kobject_put(&rdev->kobj); 2486 } 2487 2488 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2489 { 2490 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2491 list_del_rcu(&rdev->same_set); 2492 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2493 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2494 rdev->mddev = NULL; 2495 sysfs_remove_link(&rdev->kobj, "block"); 2496 sysfs_put(rdev->sysfs_state); 2497 sysfs_put(rdev->sysfs_unack_badblocks); 2498 sysfs_put(rdev->sysfs_badblocks); 2499 rdev->sysfs_state = NULL; 2500 rdev->sysfs_unack_badblocks = NULL; 2501 rdev->sysfs_badblocks = NULL; 2502 rdev->badblocks.count = 0; 2503 /* We need to delay this, otherwise we can deadlock when 2504 * writing to 'remove' to "dev/state". We also need 2505 * to delay it due to rcu usage. 2506 */ 2507 synchronize_rcu(); 2508 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2509 kobject_get(&rdev->kobj); 2510 queue_work(md_rdev_misc_wq, &rdev->del_work); 2511 export_rdev(rdev); 2512 } 2513 2514 static void export_array(struct mddev *mddev) 2515 { 2516 struct md_rdev *rdev; 2517 2518 while (!list_empty(&mddev->disks)) { 2519 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2520 same_set); 2521 md_kick_rdev_from_array(rdev); 2522 } 2523 mddev->raid_disks = 0; 2524 mddev->major_version = 0; 2525 } 2526 2527 static bool set_in_sync(struct mddev *mddev) 2528 { 2529 lockdep_assert_held(&mddev->lock); 2530 if (!mddev->in_sync) { 2531 mddev->sync_checkers++; 2532 spin_unlock(&mddev->lock); 2533 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2534 spin_lock(&mddev->lock); 2535 if (!mddev->in_sync && 2536 percpu_ref_is_zero(&mddev->writes_pending)) { 2537 mddev->in_sync = 1; 2538 /* 2539 * Ensure ->in_sync is visible before we clear 2540 * ->sync_checkers. 2541 */ 2542 smp_mb(); 2543 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2544 sysfs_notify_dirent_safe(mddev->sysfs_state); 2545 } 2546 if (--mddev->sync_checkers == 0) 2547 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2548 } 2549 if (mddev->safemode == 1) 2550 mddev->safemode = 0; 2551 return mddev->in_sync; 2552 } 2553 2554 static void sync_sbs(struct mddev *mddev, int nospares) 2555 { 2556 /* Update each superblock (in-memory image), but 2557 * if we are allowed to, skip spares which already 2558 * have the right event counter, or have one earlier 2559 * (which would mean they aren't being marked as dirty 2560 * with the rest of the array) 2561 */ 2562 struct md_rdev *rdev; 2563 rdev_for_each(rdev, mddev) { 2564 if (rdev->sb_events == mddev->events || 2565 (nospares && 2566 rdev->raid_disk < 0 && 2567 rdev->sb_events+1 == mddev->events)) { 2568 /* Don't update this superblock */ 2569 rdev->sb_loaded = 2; 2570 } else { 2571 sync_super(mddev, rdev); 2572 rdev->sb_loaded = 1; 2573 } 2574 } 2575 } 2576 2577 static bool does_sb_need_changing(struct mddev *mddev) 2578 { 2579 struct md_rdev *rdev = NULL, *iter; 2580 struct mdp_superblock_1 *sb; 2581 int role; 2582 2583 /* Find a good rdev */ 2584 rdev_for_each(iter, mddev) 2585 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2586 rdev = iter; 2587 break; 2588 } 2589 2590 /* No good device found. */ 2591 if (!rdev) 2592 return false; 2593 2594 sb = page_address(rdev->sb_page); 2595 /* Check if a device has become faulty or a spare become active */ 2596 rdev_for_each(rdev, mddev) { 2597 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2598 /* Device activated? */ 2599 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2600 !test_bit(Faulty, &rdev->flags)) 2601 return true; 2602 /* Device turned faulty? */ 2603 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2604 return true; 2605 } 2606 2607 /* Check if any mddev parameters have changed */ 2608 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2609 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2610 (mddev->layout != le32_to_cpu(sb->layout)) || 2611 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2612 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2613 return true; 2614 2615 return false; 2616 } 2617 2618 void md_update_sb(struct mddev *mddev, int force_change) 2619 { 2620 struct md_rdev *rdev; 2621 int sync_req; 2622 int nospares = 0; 2623 int any_badblocks_changed = 0; 2624 int ret = -1; 2625 2626 if (!md_is_rdwr(mddev)) { 2627 if (force_change) 2628 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2629 return; 2630 } 2631 2632 repeat: 2633 if (mddev_is_clustered(mddev)) { 2634 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2635 force_change = 1; 2636 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2637 nospares = 1; 2638 ret = md_cluster_ops->metadata_update_start(mddev); 2639 /* Has someone else has updated the sb */ 2640 if (!does_sb_need_changing(mddev)) { 2641 if (ret == 0) 2642 md_cluster_ops->metadata_update_cancel(mddev); 2643 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2644 BIT(MD_SB_CHANGE_DEVS) | 2645 BIT(MD_SB_CHANGE_CLEAN)); 2646 return; 2647 } 2648 } 2649 2650 /* 2651 * First make sure individual recovery_offsets are correct 2652 * curr_resync_completed can only be used during recovery. 2653 * During reshape/resync it might use array-addresses rather 2654 * that device addresses. 2655 */ 2656 rdev_for_each(rdev, mddev) { 2657 if (rdev->raid_disk >= 0 && 2658 mddev->delta_disks >= 0 && 2659 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2660 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2661 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2662 !test_bit(Journal, &rdev->flags) && 2663 !test_bit(In_sync, &rdev->flags) && 2664 mddev->curr_resync_completed > rdev->recovery_offset) 2665 rdev->recovery_offset = mddev->curr_resync_completed; 2666 2667 } 2668 if (!mddev->persistent) { 2669 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2670 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2671 if (!mddev->external) { 2672 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2673 rdev_for_each(rdev, mddev) { 2674 if (rdev->badblocks.changed) { 2675 rdev->badblocks.changed = 0; 2676 ack_all_badblocks(&rdev->badblocks); 2677 md_error(mddev, rdev); 2678 } 2679 clear_bit(Blocked, &rdev->flags); 2680 clear_bit(BlockedBadBlocks, &rdev->flags); 2681 wake_up(&rdev->blocked_wait); 2682 } 2683 } 2684 wake_up(&mddev->sb_wait); 2685 return; 2686 } 2687 2688 spin_lock(&mddev->lock); 2689 2690 mddev->utime = ktime_get_real_seconds(); 2691 2692 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2693 force_change = 1; 2694 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2695 /* just a clean<-> dirty transition, possibly leave spares alone, 2696 * though if events isn't the right even/odd, we will have to do 2697 * spares after all 2698 */ 2699 nospares = 1; 2700 if (force_change) 2701 nospares = 0; 2702 if (mddev->degraded) 2703 /* If the array is degraded, then skipping spares is both 2704 * dangerous and fairly pointless. 2705 * Dangerous because a device that was removed from the array 2706 * might have a event_count that still looks up-to-date, 2707 * so it can be re-added without a resync. 2708 * Pointless because if there are any spares to skip, 2709 * then a recovery will happen and soon that array won't 2710 * be degraded any more and the spare can go back to sleep then. 2711 */ 2712 nospares = 0; 2713 2714 sync_req = mddev->in_sync; 2715 2716 /* If this is just a dirty<->clean transition, and the array is clean 2717 * and 'events' is odd, we can roll back to the previous clean state */ 2718 if (nospares 2719 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2720 && mddev->can_decrease_events 2721 && mddev->events != 1) { 2722 mddev->events--; 2723 mddev->can_decrease_events = 0; 2724 } else { 2725 /* otherwise we have to go forward and ... */ 2726 mddev->events ++; 2727 mddev->can_decrease_events = nospares; 2728 } 2729 2730 /* 2731 * This 64-bit counter should never wrap. 2732 * Either we are in around ~1 trillion A.C., assuming 2733 * 1 reboot per second, or we have a bug... 2734 */ 2735 WARN_ON(mddev->events == 0); 2736 2737 rdev_for_each(rdev, mddev) { 2738 if (rdev->badblocks.changed) 2739 any_badblocks_changed++; 2740 if (test_bit(Faulty, &rdev->flags)) 2741 set_bit(FaultRecorded, &rdev->flags); 2742 } 2743 2744 sync_sbs(mddev, nospares); 2745 spin_unlock(&mddev->lock); 2746 2747 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2748 mdname(mddev), mddev->in_sync); 2749 2750 if (mddev->queue) 2751 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2752 rewrite: 2753 md_bitmap_update_sb(mddev->bitmap); 2754 rdev_for_each(rdev, mddev) { 2755 if (rdev->sb_loaded != 1) 2756 continue; /* no noise on spare devices */ 2757 2758 if (!test_bit(Faulty, &rdev->flags)) { 2759 md_super_write(mddev,rdev, 2760 rdev->sb_start, rdev->sb_size, 2761 rdev->sb_page); 2762 pr_debug("md: (write) %pg's sb offset: %llu\n", 2763 rdev->bdev, 2764 (unsigned long long)rdev->sb_start); 2765 rdev->sb_events = mddev->events; 2766 if (rdev->badblocks.size) { 2767 md_super_write(mddev, rdev, 2768 rdev->badblocks.sector, 2769 rdev->badblocks.size << 9, 2770 rdev->bb_page); 2771 rdev->badblocks.size = 0; 2772 } 2773 2774 } else 2775 pr_debug("md: %pg (skipping faulty)\n", 2776 rdev->bdev); 2777 2778 if (mddev->level == LEVEL_MULTIPATH) 2779 /* only need to write one superblock... */ 2780 break; 2781 } 2782 if (md_super_wait(mddev) < 0) 2783 goto rewrite; 2784 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2785 2786 if (mddev_is_clustered(mddev) && ret == 0) 2787 md_cluster_ops->metadata_update_finish(mddev); 2788 2789 if (mddev->in_sync != sync_req || 2790 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2791 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2792 /* have to write it out again */ 2793 goto repeat; 2794 wake_up(&mddev->sb_wait); 2795 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2796 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2797 2798 rdev_for_each(rdev, mddev) { 2799 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2800 clear_bit(Blocked, &rdev->flags); 2801 2802 if (any_badblocks_changed) 2803 ack_all_badblocks(&rdev->badblocks); 2804 clear_bit(BlockedBadBlocks, &rdev->flags); 2805 wake_up(&rdev->blocked_wait); 2806 } 2807 } 2808 EXPORT_SYMBOL(md_update_sb); 2809 2810 static int add_bound_rdev(struct md_rdev *rdev) 2811 { 2812 struct mddev *mddev = rdev->mddev; 2813 int err = 0; 2814 bool add_journal = test_bit(Journal, &rdev->flags); 2815 2816 if (!mddev->pers->hot_remove_disk || add_journal) { 2817 /* If there is hot_add_disk but no hot_remove_disk 2818 * then added disks for geometry changes, 2819 * and should be added immediately. 2820 */ 2821 super_types[mddev->major_version]. 2822 validate_super(mddev, rdev); 2823 if (add_journal) 2824 mddev_suspend(mddev); 2825 err = mddev->pers->hot_add_disk(mddev, rdev); 2826 if (add_journal) 2827 mddev_resume(mddev); 2828 if (err) { 2829 md_kick_rdev_from_array(rdev); 2830 return err; 2831 } 2832 } 2833 sysfs_notify_dirent_safe(rdev->sysfs_state); 2834 2835 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2836 if (mddev->degraded) 2837 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2838 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2839 md_new_event(); 2840 md_wakeup_thread(mddev->thread); 2841 return 0; 2842 } 2843 2844 /* words written to sysfs files may, or may not, be \n terminated. 2845 * We want to accept with case. For this we use cmd_match. 2846 */ 2847 static int cmd_match(const char *cmd, const char *str) 2848 { 2849 /* See if cmd, written into a sysfs file, matches 2850 * str. They must either be the same, or cmd can 2851 * have a trailing newline 2852 */ 2853 while (*cmd && *str && *cmd == *str) { 2854 cmd++; 2855 str++; 2856 } 2857 if (*cmd == '\n') 2858 cmd++; 2859 if (*str || *cmd) 2860 return 0; 2861 return 1; 2862 } 2863 2864 struct rdev_sysfs_entry { 2865 struct attribute attr; 2866 ssize_t (*show)(struct md_rdev *, char *); 2867 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2868 }; 2869 2870 static ssize_t 2871 state_show(struct md_rdev *rdev, char *page) 2872 { 2873 char *sep = ","; 2874 size_t len = 0; 2875 unsigned long flags = READ_ONCE(rdev->flags); 2876 2877 if (test_bit(Faulty, &flags) || 2878 (!test_bit(ExternalBbl, &flags) && 2879 rdev->badblocks.unacked_exist)) 2880 len += sprintf(page+len, "faulty%s", sep); 2881 if (test_bit(In_sync, &flags)) 2882 len += sprintf(page+len, "in_sync%s", sep); 2883 if (test_bit(Journal, &flags)) 2884 len += sprintf(page+len, "journal%s", sep); 2885 if (test_bit(WriteMostly, &flags)) 2886 len += sprintf(page+len, "write_mostly%s", sep); 2887 if (test_bit(Blocked, &flags) || 2888 (rdev->badblocks.unacked_exist 2889 && !test_bit(Faulty, &flags))) 2890 len += sprintf(page+len, "blocked%s", sep); 2891 if (!test_bit(Faulty, &flags) && 2892 !test_bit(Journal, &flags) && 2893 !test_bit(In_sync, &flags)) 2894 len += sprintf(page+len, "spare%s", sep); 2895 if (test_bit(WriteErrorSeen, &flags)) 2896 len += sprintf(page+len, "write_error%s", sep); 2897 if (test_bit(WantReplacement, &flags)) 2898 len += sprintf(page+len, "want_replacement%s", sep); 2899 if (test_bit(Replacement, &flags)) 2900 len += sprintf(page+len, "replacement%s", sep); 2901 if (test_bit(ExternalBbl, &flags)) 2902 len += sprintf(page+len, "external_bbl%s", sep); 2903 if (test_bit(FailFast, &flags)) 2904 len += sprintf(page+len, "failfast%s", sep); 2905 2906 if (len) 2907 len -= strlen(sep); 2908 2909 return len+sprintf(page+len, "\n"); 2910 } 2911 2912 static ssize_t 2913 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2914 { 2915 /* can write 2916 * faulty - simulates an error 2917 * remove - disconnects the device 2918 * writemostly - sets write_mostly 2919 * -writemostly - clears write_mostly 2920 * blocked - sets the Blocked flags 2921 * -blocked - clears the Blocked and possibly simulates an error 2922 * insync - sets Insync providing device isn't active 2923 * -insync - clear Insync for a device with a slot assigned, 2924 * so that it gets rebuilt based on bitmap 2925 * write_error - sets WriteErrorSeen 2926 * -write_error - clears WriteErrorSeen 2927 * {,-}failfast - set/clear FailFast 2928 */ 2929 2930 struct mddev *mddev = rdev->mddev; 2931 int err = -EINVAL; 2932 bool need_update_sb = false; 2933 2934 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2935 md_error(rdev->mddev, rdev); 2936 2937 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2938 err = -EBUSY; 2939 else 2940 err = 0; 2941 } else if (cmd_match(buf, "remove")) { 2942 if (rdev->mddev->pers) { 2943 clear_bit(Blocked, &rdev->flags); 2944 remove_and_add_spares(rdev->mddev, rdev); 2945 } 2946 if (rdev->raid_disk >= 0) 2947 err = -EBUSY; 2948 else { 2949 err = 0; 2950 if (mddev_is_clustered(mddev)) 2951 err = md_cluster_ops->remove_disk(mddev, rdev); 2952 2953 if (err == 0) { 2954 md_kick_rdev_from_array(rdev); 2955 if (mddev->pers) { 2956 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2957 md_wakeup_thread(mddev->thread); 2958 } 2959 md_new_event(); 2960 } 2961 } 2962 } else if (cmd_match(buf, "writemostly")) { 2963 set_bit(WriteMostly, &rdev->flags); 2964 mddev_create_serial_pool(rdev->mddev, rdev, false); 2965 need_update_sb = true; 2966 err = 0; 2967 } else if (cmd_match(buf, "-writemostly")) { 2968 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2969 clear_bit(WriteMostly, &rdev->flags); 2970 need_update_sb = true; 2971 err = 0; 2972 } else if (cmd_match(buf, "blocked")) { 2973 set_bit(Blocked, &rdev->flags); 2974 err = 0; 2975 } else if (cmd_match(buf, "-blocked")) { 2976 if (!test_bit(Faulty, &rdev->flags) && 2977 !test_bit(ExternalBbl, &rdev->flags) && 2978 rdev->badblocks.unacked_exist) { 2979 /* metadata handler doesn't understand badblocks, 2980 * so we need to fail the device 2981 */ 2982 md_error(rdev->mddev, rdev); 2983 } 2984 clear_bit(Blocked, &rdev->flags); 2985 clear_bit(BlockedBadBlocks, &rdev->flags); 2986 wake_up(&rdev->blocked_wait); 2987 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2988 md_wakeup_thread(rdev->mddev->thread); 2989 2990 err = 0; 2991 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2992 set_bit(In_sync, &rdev->flags); 2993 err = 0; 2994 } else if (cmd_match(buf, "failfast")) { 2995 set_bit(FailFast, &rdev->flags); 2996 need_update_sb = true; 2997 err = 0; 2998 } else if (cmd_match(buf, "-failfast")) { 2999 clear_bit(FailFast, &rdev->flags); 3000 need_update_sb = true; 3001 err = 0; 3002 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3003 !test_bit(Journal, &rdev->flags)) { 3004 if (rdev->mddev->pers == NULL) { 3005 clear_bit(In_sync, &rdev->flags); 3006 rdev->saved_raid_disk = rdev->raid_disk; 3007 rdev->raid_disk = -1; 3008 err = 0; 3009 } 3010 } else if (cmd_match(buf, "write_error")) { 3011 set_bit(WriteErrorSeen, &rdev->flags); 3012 err = 0; 3013 } else if (cmd_match(buf, "-write_error")) { 3014 clear_bit(WriteErrorSeen, &rdev->flags); 3015 err = 0; 3016 } else if (cmd_match(buf, "want_replacement")) { 3017 /* Any non-spare device that is not a replacement can 3018 * become want_replacement at any time, but we then need to 3019 * check if recovery is needed. 3020 */ 3021 if (rdev->raid_disk >= 0 && 3022 !test_bit(Journal, &rdev->flags) && 3023 !test_bit(Replacement, &rdev->flags)) 3024 set_bit(WantReplacement, &rdev->flags); 3025 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3026 md_wakeup_thread(rdev->mddev->thread); 3027 err = 0; 3028 } else if (cmd_match(buf, "-want_replacement")) { 3029 /* Clearing 'want_replacement' is always allowed. 3030 * Once replacements starts it is too late though. 3031 */ 3032 err = 0; 3033 clear_bit(WantReplacement, &rdev->flags); 3034 } else if (cmd_match(buf, "replacement")) { 3035 /* Can only set a device as a replacement when array has not 3036 * yet been started. Once running, replacement is automatic 3037 * from spares, or by assigning 'slot'. 3038 */ 3039 if (rdev->mddev->pers) 3040 err = -EBUSY; 3041 else { 3042 set_bit(Replacement, &rdev->flags); 3043 err = 0; 3044 } 3045 } else if (cmd_match(buf, "-replacement")) { 3046 /* Similarly, can only clear Replacement before start */ 3047 if (rdev->mddev->pers) 3048 err = -EBUSY; 3049 else { 3050 clear_bit(Replacement, &rdev->flags); 3051 err = 0; 3052 } 3053 } else if (cmd_match(buf, "re-add")) { 3054 if (!rdev->mddev->pers) 3055 err = -EINVAL; 3056 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3057 rdev->saved_raid_disk >= 0) { 3058 /* clear_bit is performed _after_ all the devices 3059 * have their local Faulty bit cleared. If any writes 3060 * happen in the meantime in the local node, they 3061 * will land in the local bitmap, which will be synced 3062 * by this node eventually 3063 */ 3064 if (!mddev_is_clustered(rdev->mddev) || 3065 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3066 clear_bit(Faulty, &rdev->flags); 3067 err = add_bound_rdev(rdev); 3068 } 3069 } else 3070 err = -EBUSY; 3071 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3072 set_bit(ExternalBbl, &rdev->flags); 3073 rdev->badblocks.shift = 0; 3074 err = 0; 3075 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3076 clear_bit(ExternalBbl, &rdev->flags); 3077 err = 0; 3078 } 3079 if (need_update_sb) 3080 md_update_sb(mddev, 1); 3081 if (!err) 3082 sysfs_notify_dirent_safe(rdev->sysfs_state); 3083 return err ? err : len; 3084 } 3085 static struct rdev_sysfs_entry rdev_state = 3086 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3087 3088 static ssize_t 3089 errors_show(struct md_rdev *rdev, char *page) 3090 { 3091 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3092 } 3093 3094 static ssize_t 3095 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3096 { 3097 unsigned int n; 3098 int rv; 3099 3100 rv = kstrtouint(buf, 10, &n); 3101 if (rv < 0) 3102 return rv; 3103 atomic_set(&rdev->corrected_errors, n); 3104 return len; 3105 } 3106 static struct rdev_sysfs_entry rdev_errors = 3107 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3108 3109 static ssize_t 3110 slot_show(struct md_rdev *rdev, char *page) 3111 { 3112 if (test_bit(Journal, &rdev->flags)) 3113 return sprintf(page, "journal\n"); 3114 else if (rdev->raid_disk < 0) 3115 return sprintf(page, "none\n"); 3116 else 3117 return sprintf(page, "%d\n", rdev->raid_disk); 3118 } 3119 3120 static ssize_t 3121 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3122 { 3123 int slot; 3124 int err; 3125 3126 if (test_bit(Journal, &rdev->flags)) 3127 return -EBUSY; 3128 if (strncmp(buf, "none", 4)==0) 3129 slot = -1; 3130 else { 3131 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3132 if (err < 0) 3133 return err; 3134 } 3135 if (rdev->mddev->pers && slot == -1) { 3136 /* Setting 'slot' on an active array requires also 3137 * updating the 'rd%d' link, and communicating 3138 * with the personality with ->hot_*_disk. 3139 * For now we only support removing 3140 * failed/spare devices. This normally happens automatically, 3141 * but not when the metadata is externally managed. 3142 */ 3143 if (rdev->raid_disk == -1) 3144 return -EEXIST; 3145 /* personality does all needed checks */ 3146 if (rdev->mddev->pers->hot_remove_disk == NULL) 3147 return -EINVAL; 3148 clear_bit(Blocked, &rdev->flags); 3149 remove_and_add_spares(rdev->mddev, rdev); 3150 if (rdev->raid_disk >= 0) 3151 return -EBUSY; 3152 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3153 md_wakeup_thread(rdev->mddev->thread); 3154 } else if (rdev->mddev->pers) { 3155 /* Activating a spare .. or possibly reactivating 3156 * if we ever get bitmaps working here. 3157 */ 3158 int err; 3159 3160 if (rdev->raid_disk != -1) 3161 return -EBUSY; 3162 3163 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3164 return -EBUSY; 3165 3166 if (rdev->mddev->pers->hot_add_disk == NULL) 3167 return -EINVAL; 3168 3169 if (slot >= rdev->mddev->raid_disks && 3170 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3171 return -ENOSPC; 3172 3173 rdev->raid_disk = slot; 3174 if (test_bit(In_sync, &rdev->flags)) 3175 rdev->saved_raid_disk = slot; 3176 else 3177 rdev->saved_raid_disk = -1; 3178 clear_bit(In_sync, &rdev->flags); 3179 clear_bit(Bitmap_sync, &rdev->flags); 3180 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3181 if (err) { 3182 rdev->raid_disk = -1; 3183 return err; 3184 } else 3185 sysfs_notify_dirent_safe(rdev->sysfs_state); 3186 /* failure here is OK */; 3187 sysfs_link_rdev(rdev->mddev, rdev); 3188 /* don't wakeup anyone, leave that to userspace. */ 3189 } else { 3190 if (slot >= rdev->mddev->raid_disks && 3191 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3192 return -ENOSPC; 3193 rdev->raid_disk = slot; 3194 /* assume it is working */ 3195 clear_bit(Faulty, &rdev->flags); 3196 clear_bit(WriteMostly, &rdev->flags); 3197 set_bit(In_sync, &rdev->flags); 3198 sysfs_notify_dirent_safe(rdev->sysfs_state); 3199 } 3200 return len; 3201 } 3202 3203 static struct rdev_sysfs_entry rdev_slot = 3204 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3205 3206 static ssize_t 3207 offset_show(struct md_rdev *rdev, char *page) 3208 { 3209 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3210 } 3211 3212 static ssize_t 3213 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3214 { 3215 unsigned long long offset; 3216 if (kstrtoull(buf, 10, &offset) < 0) 3217 return -EINVAL; 3218 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3219 return -EBUSY; 3220 if (rdev->sectors && rdev->mddev->external) 3221 /* Must set offset before size, so overlap checks 3222 * can be sane */ 3223 return -EBUSY; 3224 rdev->data_offset = offset; 3225 rdev->new_data_offset = offset; 3226 return len; 3227 } 3228 3229 static struct rdev_sysfs_entry rdev_offset = 3230 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3231 3232 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3233 { 3234 return sprintf(page, "%llu\n", 3235 (unsigned long long)rdev->new_data_offset); 3236 } 3237 3238 static ssize_t new_offset_store(struct md_rdev *rdev, 3239 const char *buf, size_t len) 3240 { 3241 unsigned long long new_offset; 3242 struct mddev *mddev = rdev->mddev; 3243 3244 if (kstrtoull(buf, 10, &new_offset) < 0) 3245 return -EINVAL; 3246 3247 if (mddev->sync_thread || 3248 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3249 return -EBUSY; 3250 if (new_offset == rdev->data_offset) 3251 /* reset is always permitted */ 3252 ; 3253 else if (new_offset > rdev->data_offset) { 3254 /* must not push array size beyond rdev_sectors */ 3255 if (new_offset - rdev->data_offset 3256 + mddev->dev_sectors > rdev->sectors) 3257 return -E2BIG; 3258 } 3259 /* Metadata worries about other space details. */ 3260 3261 /* decreasing the offset is inconsistent with a backwards 3262 * reshape. 3263 */ 3264 if (new_offset < rdev->data_offset && 3265 mddev->reshape_backwards) 3266 return -EINVAL; 3267 /* Increasing offset is inconsistent with forwards 3268 * reshape. reshape_direction should be set to 3269 * 'backwards' first. 3270 */ 3271 if (new_offset > rdev->data_offset && 3272 !mddev->reshape_backwards) 3273 return -EINVAL; 3274 3275 if (mddev->pers && mddev->persistent && 3276 !super_types[mddev->major_version] 3277 .allow_new_offset(rdev, new_offset)) 3278 return -E2BIG; 3279 rdev->new_data_offset = new_offset; 3280 if (new_offset > rdev->data_offset) 3281 mddev->reshape_backwards = 1; 3282 else if (new_offset < rdev->data_offset) 3283 mddev->reshape_backwards = 0; 3284 3285 return len; 3286 } 3287 static struct rdev_sysfs_entry rdev_new_offset = 3288 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3289 3290 static ssize_t 3291 rdev_size_show(struct md_rdev *rdev, char *page) 3292 { 3293 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3294 } 3295 3296 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3297 { 3298 /* check if two start/length pairs overlap */ 3299 if (a->data_offset + a->sectors <= b->data_offset) 3300 return false; 3301 if (b->data_offset + b->sectors <= a->data_offset) 3302 return false; 3303 return true; 3304 } 3305 3306 static bool md_rdev_overlaps(struct md_rdev *rdev) 3307 { 3308 struct mddev *mddev; 3309 struct md_rdev *rdev2; 3310 3311 spin_lock(&all_mddevs_lock); 3312 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3313 if (test_bit(MD_DELETED, &mddev->flags)) 3314 continue; 3315 rdev_for_each(rdev2, mddev) { 3316 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3317 md_rdevs_overlap(rdev, rdev2)) { 3318 spin_unlock(&all_mddevs_lock); 3319 return true; 3320 } 3321 } 3322 } 3323 spin_unlock(&all_mddevs_lock); 3324 return false; 3325 } 3326 3327 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3328 { 3329 unsigned long long blocks; 3330 sector_t new; 3331 3332 if (kstrtoull(buf, 10, &blocks) < 0) 3333 return -EINVAL; 3334 3335 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3336 return -EINVAL; /* sector conversion overflow */ 3337 3338 new = blocks * 2; 3339 if (new != blocks * 2) 3340 return -EINVAL; /* unsigned long long to sector_t overflow */ 3341 3342 *sectors = new; 3343 return 0; 3344 } 3345 3346 static ssize_t 3347 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3348 { 3349 struct mddev *my_mddev = rdev->mddev; 3350 sector_t oldsectors = rdev->sectors; 3351 sector_t sectors; 3352 3353 if (test_bit(Journal, &rdev->flags)) 3354 return -EBUSY; 3355 if (strict_blocks_to_sectors(buf, §ors) < 0) 3356 return -EINVAL; 3357 if (rdev->data_offset != rdev->new_data_offset) 3358 return -EINVAL; /* too confusing */ 3359 if (my_mddev->pers && rdev->raid_disk >= 0) { 3360 if (my_mddev->persistent) { 3361 sectors = super_types[my_mddev->major_version]. 3362 rdev_size_change(rdev, sectors); 3363 if (!sectors) 3364 return -EBUSY; 3365 } else if (!sectors) 3366 sectors = bdev_nr_sectors(rdev->bdev) - 3367 rdev->data_offset; 3368 if (!my_mddev->pers->resize) 3369 /* Cannot change size for RAID0 or Linear etc */ 3370 return -EINVAL; 3371 } 3372 if (sectors < my_mddev->dev_sectors) 3373 return -EINVAL; /* component must fit device */ 3374 3375 rdev->sectors = sectors; 3376 3377 /* 3378 * Check that all other rdevs with the same bdev do not overlap. This 3379 * check does not provide a hard guarantee, it just helps avoid 3380 * dangerous mistakes. 3381 */ 3382 if (sectors > oldsectors && my_mddev->external && 3383 md_rdev_overlaps(rdev)) { 3384 /* 3385 * Someone else could have slipped in a size change here, but 3386 * doing so is just silly. We put oldsectors back because we 3387 * know it is safe, and trust userspace not to race with itself. 3388 */ 3389 rdev->sectors = oldsectors; 3390 return -EBUSY; 3391 } 3392 return len; 3393 } 3394 3395 static struct rdev_sysfs_entry rdev_size = 3396 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3397 3398 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3399 { 3400 unsigned long long recovery_start = rdev->recovery_offset; 3401 3402 if (test_bit(In_sync, &rdev->flags) || 3403 recovery_start == MaxSector) 3404 return sprintf(page, "none\n"); 3405 3406 return sprintf(page, "%llu\n", recovery_start); 3407 } 3408 3409 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3410 { 3411 unsigned long long recovery_start; 3412 3413 if (cmd_match(buf, "none")) 3414 recovery_start = MaxSector; 3415 else if (kstrtoull(buf, 10, &recovery_start)) 3416 return -EINVAL; 3417 3418 if (rdev->mddev->pers && 3419 rdev->raid_disk >= 0) 3420 return -EBUSY; 3421 3422 rdev->recovery_offset = recovery_start; 3423 if (recovery_start == MaxSector) 3424 set_bit(In_sync, &rdev->flags); 3425 else 3426 clear_bit(In_sync, &rdev->flags); 3427 return len; 3428 } 3429 3430 static struct rdev_sysfs_entry rdev_recovery_start = 3431 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3432 3433 /* sysfs access to bad-blocks list. 3434 * We present two files. 3435 * 'bad-blocks' lists sector numbers and lengths of ranges that 3436 * are recorded as bad. The list is truncated to fit within 3437 * the one-page limit of sysfs. 3438 * Writing "sector length" to this file adds an acknowledged 3439 * bad block list. 3440 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3441 * been acknowledged. Writing to this file adds bad blocks 3442 * without acknowledging them. This is largely for testing. 3443 */ 3444 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3445 { 3446 return badblocks_show(&rdev->badblocks, page, 0); 3447 } 3448 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3449 { 3450 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3451 /* Maybe that ack was all we needed */ 3452 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3453 wake_up(&rdev->blocked_wait); 3454 return rv; 3455 } 3456 static struct rdev_sysfs_entry rdev_bad_blocks = 3457 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3458 3459 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3460 { 3461 return badblocks_show(&rdev->badblocks, page, 1); 3462 } 3463 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3464 { 3465 return badblocks_store(&rdev->badblocks, page, len, 1); 3466 } 3467 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3468 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3469 3470 static ssize_t 3471 ppl_sector_show(struct md_rdev *rdev, char *page) 3472 { 3473 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3474 } 3475 3476 static ssize_t 3477 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3478 { 3479 unsigned long long sector; 3480 3481 if (kstrtoull(buf, 10, §or) < 0) 3482 return -EINVAL; 3483 if (sector != (sector_t)sector) 3484 return -EINVAL; 3485 3486 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3487 rdev->raid_disk >= 0) 3488 return -EBUSY; 3489 3490 if (rdev->mddev->persistent) { 3491 if (rdev->mddev->major_version == 0) 3492 return -EINVAL; 3493 if ((sector > rdev->sb_start && 3494 sector - rdev->sb_start > S16_MAX) || 3495 (sector < rdev->sb_start && 3496 rdev->sb_start - sector > -S16_MIN)) 3497 return -EINVAL; 3498 rdev->ppl.offset = sector - rdev->sb_start; 3499 } else if (!rdev->mddev->external) { 3500 return -EBUSY; 3501 } 3502 rdev->ppl.sector = sector; 3503 return len; 3504 } 3505 3506 static struct rdev_sysfs_entry rdev_ppl_sector = 3507 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3508 3509 static ssize_t 3510 ppl_size_show(struct md_rdev *rdev, char *page) 3511 { 3512 return sprintf(page, "%u\n", rdev->ppl.size); 3513 } 3514 3515 static ssize_t 3516 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3517 { 3518 unsigned int size; 3519 3520 if (kstrtouint(buf, 10, &size) < 0) 3521 return -EINVAL; 3522 3523 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3524 rdev->raid_disk >= 0) 3525 return -EBUSY; 3526 3527 if (rdev->mddev->persistent) { 3528 if (rdev->mddev->major_version == 0) 3529 return -EINVAL; 3530 if (size > U16_MAX) 3531 return -EINVAL; 3532 } else if (!rdev->mddev->external) { 3533 return -EBUSY; 3534 } 3535 rdev->ppl.size = size; 3536 return len; 3537 } 3538 3539 static struct rdev_sysfs_entry rdev_ppl_size = 3540 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3541 3542 static struct attribute *rdev_default_attrs[] = { 3543 &rdev_state.attr, 3544 &rdev_errors.attr, 3545 &rdev_slot.attr, 3546 &rdev_offset.attr, 3547 &rdev_new_offset.attr, 3548 &rdev_size.attr, 3549 &rdev_recovery_start.attr, 3550 &rdev_bad_blocks.attr, 3551 &rdev_unack_bad_blocks.attr, 3552 &rdev_ppl_sector.attr, 3553 &rdev_ppl_size.attr, 3554 NULL, 3555 }; 3556 ATTRIBUTE_GROUPS(rdev_default); 3557 static ssize_t 3558 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3559 { 3560 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3561 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3562 3563 if (!entry->show) 3564 return -EIO; 3565 if (!rdev->mddev) 3566 return -ENODEV; 3567 return entry->show(rdev, page); 3568 } 3569 3570 static ssize_t 3571 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3572 const char *page, size_t length) 3573 { 3574 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3575 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3576 ssize_t rv; 3577 struct mddev *mddev = rdev->mddev; 3578 3579 if (!entry->store) 3580 return -EIO; 3581 if (!capable(CAP_SYS_ADMIN)) 3582 return -EACCES; 3583 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3584 if (!rv) { 3585 if (rdev->mddev == NULL) 3586 rv = -ENODEV; 3587 else 3588 rv = entry->store(rdev, page, length); 3589 mddev_unlock(mddev); 3590 } 3591 return rv; 3592 } 3593 3594 static void rdev_free(struct kobject *ko) 3595 { 3596 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3597 kfree(rdev); 3598 } 3599 static const struct sysfs_ops rdev_sysfs_ops = { 3600 .show = rdev_attr_show, 3601 .store = rdev_attr_store, 3602 }; 3603 static struct kobj_type rdev_ktype = { 3604 .release = rdev_free, 3605 .sysfs_ops = &rdev_sysfs_ops, 3606 .default_groups = rdev_default_groups, 3607 }; 3608 3609 int md_rdev_init(struct md_rdev *rdev) 3610 { 3611 rdev->desc_nr = -1; 3612 rdev->saved_raid_disk = -1; 3613 rdev->raid_disk = -1; 3614 rdev->flags = 0; 3615 rdev->data_offset = 0; 3616 rdev->new_data_offset = 0; 3617 rdev->sb_events = 0; 3618 rdev->last_read_error = 0; 3619 rdev->sb_loaded = 0; 3620 rdev->bb_page = NULL; 3621 atomic_set(&rdev->nr_pending, 0); 3622 atomic_set(&rdev->read_errors, 0); 3623 atomic_set(&rdev->corrected_errors, 0); 3624 3625 INIT_LIST_HEAD(&rdev->same_set); 3626 init_waitqueue_head(&rdev->blocked_wait); 3627 3628 /* Add space to store bad block list. 3629 * This reserves the space even on arrays where it cannot 3630 * be used - I wonder if that matters 3631 */ 3632 return badblocks_init(&rdev->badblocks, 0); 3633 } 3634 EXPORT_SYMBOL_GPL(md_rdev_init); 3635 /* 3636 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3637 * 3638 * mark the device faulty if: 3639 * 3640 * - the device is nonexistent (zero size) 3641 * - the device has no valid superblock 3642 * 3643 * a faulty rdev _never_ has rdev->sb set. 3644 */ 3645 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3646 { 3647 static struct md_rdev claim_rdev; /* just for claiming the bdev */ 3648 struct md_rdev *rdev; 3649 sector_t size; 3650 int err; 3651 3652 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3653 if (!rdev) 3654 return ERR_PTR(-ENOMEM); 3655 3656 err = md_rdev_init(rdev); 3657 if (err) 3658 goto out_free_rdev; 3659 err = alloc_disk_sb(rdev); 3660 if (err) 3661 goto out_clear_rdev; 3662 3663 rdev->bdev = blkdev_get_by_dev(newdev, 3664 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 3665 super_format == -2 ? &claim_rdev : rdev); 3666 if (IS_ERR(rdev->bdev)) { 3667 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3668 MAJOR(newdev), MINOR(newdev)); 3669 err = PTR_ERR(rdev->bdev); 3670 goto out_clear_rdev; 3671 } 3672 3673 kobject_init(&rdev->kobj, &rdev_ktype); 3674 3675 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3676 if (!size) { 3677 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3678 rdev->bdev); 3679 err = -EINVAL; 3680 goto out_blkdev_put; 3681 } 3682 3683 if (super_format >= 0) { 3684 err = super_types[super_format]. 3685 load_super(rdev, NULL, super_minor); 3686 if (err == -EINVAL) { 3687 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3688 rdev->bdev, 3689 super_format, super_minor); 3690 goto out_blkdev_put; 3691 } 3692 if (err < 0) { 3693 pr_warn("md: could not read %pg's sb, not importing!\n", 3694 rdev->bdev); 3695 goto out_blkdev_put; 3696 } 3697 } 3698 3699 return rdev; 3700 3701 out_blkdev_put: 3702 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3703 out_clear_rdev: 3704 md_rdev_clear(rdev); 3705 out_free_rdev: 3706 kfree(rdev); 3707 return ERR_PTR(err); 3708 } 3709 3710 /* 3711 * Check a full RAID array for plausibility 3712 */ 3713 3714 static int analyze_sbs(struct mddev *mddev) 3715 { 3716 int i; 3717 struct md_rdev *rdev, *freshest, *tmp; 3718 3719 freshest = NULL; 3720 rdev_for_each_safe(rdev, tmp, mddev) 3721 switch (super_types[mddev->major_version]. 3722 load_super(rdev, freshest, mddev->minor_version)) { 3723 case 1: 3724 freshest = rdev; 3725 break; 3726 case 0: 3727 break; 3728 default: 3729 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3730 rdev->bdev); 3731 md_kick_rdev_from_array(rdev); 3732 } 3733 3734 /* Cannot find a valid fresh disk */ 3735 if (!freshest) { 3736 pr_warn("md: cannot find a valid disk\n"); 3737 return -EINVAL; 3738 } 3739 3740 super_types[mddev->major_version]. 3741 validate_super(mddev, freshest); 3742 3743 i = 0; 3744 rdev_for_each_safe(rdev, tmp, mddev) { 3745 if (mddev->max_disks && 3746 (rdev->desc_nr >= mddev->max_disks || 3747 i > mddev->max_disks)) { 3748 pr_warn("md: %s: %pg: only %d devices permitted\n", 3749 mdname(mddev), rdev->bdev, 3750 mddev->max_disks); 3751 md_kick_rdev_from_array(rdev); 3752 continue; 3753 } 3754 if (rdev != freshest) { 3755 if (super_types[mddev->major_version]. 3756 validate_super(mddev, rdev)) { 3757 pr_warn("md: kicking non-fresh %pg from array!\n", 3758 rdev->bdev); 3759 md_kick_rdev_from_array(rdev); 3760 continue; 3761 } 3762 } 3763 if (mddev->level == LEVEL_MULTIPATH) { 3764 rdev->desc_nr = i++; 3765 rdev->raid_disk = rdev->desc_nr; 3766 set_bit(In_sync, &rdev->flags); 3767 } else if (rdev->raid_disk >= 3768 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3769 !test_bit(Journal, &rdev->flags)) { 3770 rdev->raid_disk = -1; 3771 clear_bit(In_sync, &rdev->flags); 3772 } 3773 } 3774 3775 return 0; 3776 } 3777 3778 /* Read a fixed-point number. 3779 * Numbers in sysfs attributes should be in "standard" units where 3780 * possible, so time should be in seconds. 3781 * However we internally use a a much smaller unit such as 3782 * milliseconds or jiffies. 3783 * This function takes a decimal number with a possible fractional 3784 * component, and produces an integer which is the result of 3785 * multiplying that number by 10^'scale'. 3786 * all without any floating-point arithmetic. 3787 */ 3788 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3789 { 3790 unsigned long result = 0; 3791 long decimals = -1; 3792 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3793 if (*cp == '.') 3794 decimals = 0; 3795 else if (decimals < scale) { 3796 unsigned int value; 3797 value = *cp - '0'; 3798 result = result * 10 + value; 3799 if (decimals >= 0) 3800 decimals++; 3801 } 3802 cp++; 3803 } 3804 if (*cp == '\n') 3805 cp++; 3806 if (*cp) 3807 return -EINVAL; 3808 if (decimals < 0) 3809 decimals = 0; 3810 *res = result * int_pow(10, scale - decimals); 3811 return 0; 3812 } 3813 3814 static ssize_t 3815 safe_delay_show(struct mddev *mddev, char *page) 3816 { 3817 int msec = (mddev->safemode_delay*1000)/HZ; 3818 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3819 } 3820 static ssize_t 3821 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3822 { 3823 unsigned long msec; 3824 3825 if (mddev_is_clustered(mddev)) { 3826 pr_warn("md: Safemode is disabled for clustered mode\n"); 3827 return -EINVAL; 3828 } 3829 3830 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3831 return -EINVAL; 3832 if (msec == 0) 3833 mddev->safemode_delay = 0; 3834 else { 3835 unsigned long old_delay = mddev->safemode_delay; 3836 unsigned long new_delay = (msec*HZ)/1000; 3837 3838 if (new_delay == 0) 3839 new_delay = 1; 3840 mddev->safemode_delay = new_delay; 3841 if (new_delay < old_delay || old_delay == 0) 3842 mod_timer(&mddev->safemode_timer, jiffies+1); 3843 } 3844 return len; 3845 } 3846 static struct md_sysfs_entry md_safe_delay = 3847 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3848 3849 static ssize_t 3850 level_show(struct mddev *mddev, char *page) 3851 { 3852 struct md_personality *p; 3853 int ret; 3854 spin_lock(&mddev->lock); 3855 p = mddev->pers; 3856 if (p) 3857 ret = sprintf(page, "%s\n", p->name); 3858 else if (mddev->clevel[0]) 3859 ret = sprintf(page, "%s\n", mddev->clevel); 3860 else if (mddev->level != LEVEL_NONE) 3861 ret = sprintf(page, "%d\n", mddev->level); 3862 else 3863 ret = 0; 3864 spin_unlock(&mddev->lock); 3865 return ret; 3866 } 3867 3868 static ssize_t 3869 level_store(struct mddev *mddev, const char *buf, size_t len) 3870 { 3871 char clevel[16]; 3872 ssize_t rv; 3873 size_t slen = len; 3874 struct md_personality *pers, *oldpers; 3875 long level; 3876 void *priv, *oldpriv; 3877 struct md_rdev *rdev; 3878 3879 if (slen == 0 || slen >= sizeof(clevel)) 3880 return -EINVAL; 3881 3882 rv = mddev_lock(mddev); 3883 if (rv) 3884 return rv; 3885 3886 if (mddev->pers == NULL) { 3887 strncpy(mddev->clevel, buf, slen); 3888 if (mddev->clevel[slen-1] == '\n') 3889 slen--; 3890 mddev->clevel[slen] = 0; 3891 mddev->level = LEVEL_NONE; 3892 rv = len; 3893 goto out_unlock; 3894 } 3895 rv = -EROFS; 3896 if (!md_is_rdwr(mddev)) 3897 goto out_unlock; 3898 3899 /* request to change the personality. Need to ensure: 3900 * - array is not engaged in resync/recovery/reshape 3901 * - old personality can be suspended 3902 * - new personality will access other array. 3903 */ 3904 3905 rv = -EBUSY; 3906 if (mddev->sync_thread || 3907 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3908 mddev->reshape_position != MaxSector || 3909 mddev->sysfs_active) 3910 goto out_unlock; 3911 3912 rv = -EINVAL; 3913 if (!mddev->pers->quiesce) { 3914 pr_warn("md: %s: %s does not support online personality change\n", 3915 mdname(mddev), mddev->pers->name); 3916 goto out_unlock; 3917 } 3918 3919 /* Now find the new personality */ 3920 strncpy(clevel, buf, slen); 3921 if (clevel[slen-1] == '\n') 3922 slen--; 3923 clevel[slen] = 0; 3924 if (kstrtol(clevel, 10, &level)) 3925 level = LEVEL_NONE; 3926 3927 if (request_module("md-%s", clevel) != 0) 3928 request_module("md-level-%s", clevel); 3929 spin_lock(&pers_lock); 3930 pers = find_pers(level, clevel); 3931 if (!pers || !try_module_get(pers->owner)) { 3932 spin_unlock(&pers_lock); 3933 pr_warn("md: personality %s not loaded\n", clevel); 3934 rv = -EINVAL; 3935 goto out_unlock; 3936 } 3937 spin_unlock(&pers_lock); 3938 3939 if (pers == mddev->pers) { 3940 /* Nothing to do! */ 3941 module_put(pers->owner); 3942 rv = len; 3943 goto out_unlock; 3944 } 3945 if (!pers->takeover) { 3946 module_put(pers->owner); 3947 pr_warn("md: %s: %s does not support personality takeover\n", 3948 mdname(mddev), clevel); 3949 rv = -EINVAL; 3950 goto out_unlock; 3951 } 3952 3953 rdev_for_each(rdev, mddev) 3954 rdev->new_raid_disk = rdev->raid_disk; 3955 3956 /* ->takeover must set new_* and/or delta_disks 3957 * if it succeeds, and may set them when it fails. 3958 */ 3959 priv = pers->takeover(mddev); 3960 if (IS_ERR(priv)) { 3961 mddev->new_level = mddev->level; 3962 mddev->new_layout = mddev->layout; 3963 mddev->new_chunk_sectors = mddev->chunk_sectors; 3964 mddev->raid_disks -= mddev->delta_disks; 3965 mddev->delta_disks = 0; 3966 mddev->reshape_backwards = 0; 3967 module_put(pers->owner); 3968 pr_warn("md: %s: %s would not accept array\n", 3969 mdname(mddev), clevel); 3970 rv = PTR_ERR(priv); 3971 goto out_unlock; 3972 } 3973 3974 /* Looks like we have a winner */ 3975 mddev_suspend(mddev); 3976 mddev_detach(mddev); 3977 3978 spin_lock(&mddev->lock); 3979 oldpers = mddev->pers; 3980 oldpriv = mddev->private; 3981 mddev->pers = pers; 3982 mddev->private = priv; 3983 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3984 mddev->level = mddev->new_level; 3985 mddev->layout = mddev->new_layout; 3986 mddev->chunk_sectors = mddev->new_chunk_sectors; 3987 mddev->delta_disks = 0; 3988 mddev->reshape_backwards = 0; 3989 mddev->degraded = 0; 3990 spin_unlock(&mddev->lock); 3991 3992 if (oldpers->sync_request == NULL && 3993 mddev->external) { 3994 /* We are converting from a no-redundancy array 3995 * to a redundancy array and metadata is managed 3996 * externally so we need to be sure that writes 3997 * won't block due to a need to transition 3998 * clean->dirty 3999 * until external management is started. 4000 */ 4001 mddev->in_sync = 0; 4002 mddev->safemode_delay = 0; 4003 mddev->safemode = 0; 4004 } 4005 4006 oldpers->free(mddev, oldpriv); 4007 4008 if (oldpers->sync_request == NULL && 4009 pers->sync_request != NULL) { 4010 /* need to add the md_redundancy_group */ 4011 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4012 pr_warn("md: cannot register extra attributes for %s\n", 4013 mdname(mddev)); 4014 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4015 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4016 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4017 } 4018 if (oldpers->sync_request != NULL && 4019 pers->sync_request == NULL) { 4020 /* need to remove the md_redundancy_group */ 4021 if (mddev->to_remove == NULL) 4022 mddev->to_remove = &md_redundancy_group; 4023 } 4024 4025 module_put(oldpers->owner); 4026 4027 rdev_for_each(rdev, mddev) { 4028 if (rdev->raid_disk < 0) 4029 continue; 4030 if (rdev->new_raid_disk >= mddev->raid_disks) 4031 rdev->new_raid_disk = -1; 4032 if (rdev->new_raid_disk == rdev->raid_disk) 4033 continue; 4034 sysfs_unlink_rdev(mddev, rdev); 4035 } 4036 rdev_for_each(rdev, mddev) { 4037 if (rdev->raid_disk < 0) 4038 continue; 4039 if (rdev->new_raid_disk == rdev->raid_disk) 4040 continue; 4041 rdev->raid_disk = rdev->new_raid_disk; 4042 if (rdev->raid_disk < 0) 4043 clear_bit(In_sync, &rdev->flags); 4044 else { 4045 if (sysfs_link_rdev(mddev, rdev)) 4046 pr_warn("md: cannot register rd%d for %s after level change\n", 4047 rdev->raid_disk, mdname(mddev)); 4048 } 4049 } 4050 4051 if (pers->sync_request == NULL) { 4052 /* this is now an array without redundancy, so 4053 * it must always be in_sync 4054 */ 4055 mddev->in_sync = 1; 4056 del_timer_sync(&mddev->safemode_timer); 4057 } 4058 blk_set_stacking_limits(&mddev->queue->limits); 4059 pers->run(mddev); 4060 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4061 mddev_resume(mddev); 4062 if (!mddev->thread) 4063 md_update_sb(mddev, 1); 4064 sysfs_notify_dirent_safe(mddev->sysfs_level); 4065 md_new_event(); 4066 rv = len; 4067 out_unlock: 4068 mddev_unlock(mddev); 4069 return rv; 4070 } 4071 4072 static struct md_sysfs_entry md_level = 4073 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4074 4075 static ssize_t 4076 layout_show(struct mddev *mddev, char *page) 4077 { 4078 /* just a number, not meaningful for all levels */ 4079 if (mddev->reshape_position != MaxSector && 4080 mddev->layout != mddev->new_layout) 4081 return sprintf(page, "%d (%d)\n", 4082 mddev->new_layout, mddev->layout); 4083 return sprintf(page, "%d\n", mddev->layout); 4084 } 4085 4086 static ssize_t 4087 layout_store(struct mddev *mddev, const char *buf, size_t len) 4088 { 4089 unsigned int n; 4090 int err; 4091 4092 err = kstrtouint(buf, 10, &n); 4093 if (err < 0) 4094 return err; 4095 err = mddev_lock(mddev); 4096 if (err) 4097 return err; 4098 4099 if (mddev->pers) { 4100 if (mddev->pers->check_reshape == NULL) 4101 err = -EBUSY; 4102 else if (!md_is_rdwr(mddev)) 4103 err = -EROFS; 4104 else { 4105 mddev->new_layout = n; 4106 err = mddev->pers->check_reshape(mddev); 4107 if (err) 4108 mddev->new_layout = mddev->layout; 4109 } 4110 } else { 4111 mddev->new_layout = n; 4112 if (mddev->reshape_position == MaxSector) 4113 mddev->layout = n; 4114 } 4115 mddev_unlock(mddev); 4116 return err ?: len; 4117 } 4118 static struct md_sysfs_entry md_layout = 4119 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4120 4121 static ssize_t 4122 raid_disks_show(struct mddev *mddev, char *page) 4123 { 4124 if (mddev->raid_disks == 0) 4125 return 0; 4126 if (mddev->reshape_position != MaxSector && 4127 mddev->delta_disks != 0) 4128 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4129 mddev->raid_disks - mddev->delta_disks); 4130 return sprintf(page, "%d\n", mddev->raid_disks); 4131 } 4132 4133 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4134 4135 static ssize_t 4136 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4137 { 4138 unsigned int n; 4139 int err; 4140 4141 err = kstrtouint(buf, 10, &n); 4142 if (err < 0) 4143 return err; 4144 4145 err = mddev_lock(mddev); 4146 if (err) 4147 return err; 4148 if (mddev->pers) 4149 err = update_raid_disks(mddev, n); 4150 else if (mddev->reshape_position != MaxSector) { 4151 struct md_rdev *rdev; 4152 int olddisks = mddev->raid_disks - mddev->delta_disks; 4153 4154 err = -EINVAL; 4155 rdev_for_each(rdev, mddev) { 4156 if (olddisks < n && 4157 rdev->data_offset < rdev->new_data_offset) 4158 goto out_unlock; 4159 if (olddisks > n && 4160 rdev->data_offset > rdev->new_data_offset) 4161 goto out_unlock; 4162 } 4163 err = 0; 4164 mddev->delta_disks = n - olddisks; 4165 mddev->raid_disks = n; 4166 mddev->reshape_backwards = (mddev->delta_disks < 0); 4167 } else 4168 mddev->raid_disks = n; 4169 out_unlock: 4170 mddev_unlock(mddev); 4171 return err ? err : len; 4172 } 4173 static struct md_sysfs_entry md_raid_disks = 4174 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4175 4176 static ssize_t 4177 uuid_show(struct mddev *mddev, char *page) 4178 { 4179 return sprintf(page, "%pU\n", mddev->uuid); 4180 } 4181 static struct md_sysfs_entry md_uuid = 4182 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4183 4184 static ssize_t 4185 chunk_size_show(struct mddev *mddev, char *page) 4186 { 4187 if (mddev->reshape_position != MaxSector && 4188 mddev->chunk_sectors != mddev->new_chunk_sectors) 4189 return sprintf(page, "%d (%d)\n", 4190 mddev->new_chunk_sectors << 9, 4191 mddev->chunk_sectors << 9); 4192 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4193 } 4194 4195 static ssize_t 4196 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4197 { 4198 unsigned long n; 4199 int err; 4200 4201 err = kstrtoul(buf, 10, &n); 4202 if (err < 0) 4203 return err; 4204 4205 err = mddev_lock(mddev); 4206 if (err) 4207 return err; 4208 if (mddev->pers) { 4209 if (mddev->pers->check_reshape == NULL) 4210 err = -EBUSY; 4211 else if (!md_is_rdwr(mddev)) 4212 err = -EROFS; 4213 else { 4214 mddev->new_chunk_sectors = n >> 9; 4215 err = mddev->pers->check_reshape(mddev); 4216 if (err) 4217 mddev->new_chunk_sectors = mddev->chunk_sectors; 4218 } 4219 } else { 4220 mddev->new_chunk_sectors = n >> 9; 4221 if (mddev->reshape_position == MaxSector) 4222 mddev->chunk_sectors = n >> 9; 4223 } 4224 mddev_unlock(mddev); 4225 return err ?: len; 4226 } 4227 static struct md_sysfs_entry md_chunk_size = 4228 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4229 4230 static ssize_t 4231 resync_start_show(struct mddev *mddev, char *page) 4232 { 4233 if (mddev->recovery_cp == MaxSector) 4234 return sprintf(page, "none\n"); 4235 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4236 } 4237 4238 static ssize_t 4239 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4240 { 4241 unsigned long long n; 4242 int err; 4243 4244 if (cmd_match(buf, "none")) 4245 n = MaxSector; 4246 else { 4247 err = kstrtoull(buf, 10, &n); 4248 if (err < 0) 4249 return err; 4250 if (n != (sector_t)n) 4251 return -EINVAL; 4252 } 4253 4254 err = mddev_lock(mddev); 4255 if (err) 4256 return err; 4257 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4258 err = -EBUSY; 4259 4260 if (!err) { 4261 mddev->recovery_cp = n; 4262 if (mddev->pers) 4263 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4264 } 4265 mddev_unlock(mddev); 4266 return err ?: len; 4267 } 4268 static struct md_sysfs_entry md_resync_start = 4269 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4270 resync_start_show, resync_start_store); 4271 4272 /* 4273 * The array state can be: 4274 * 4275 * clear 4276 * No devices, no size, no level 4277 * Equivalent to STOP_ARRAY ioctl 4278 * inactive 4279 * May have some settings, but array is not active 4280 * all IO results in error 4281 * When written, doesn't tear down array, but just stops it 4282 * suspended (not supported yet) 4283 * All IO requests will block. The array can be reconfigured. 4284 * Writing this, if accepted, will block until array is quiescent 4285 * readonly 4286 * no resync can happen. no superblocks get written. 4287 * write requests fail 4288 * read-auto 4289 * like readonly, but behaves like 'clean' on a write request. 4290 * 4291 * clean - no pending writes, but otherwise active. 4292 * When written to inactive array, starts without resync 4293 * If a write request arrives then 4294 * if metadata is known, mark 'dirty' and switch to 'active'. 4295 * if not known, block and switch to write-pending 4296 * If written to an active array that has pending writes, then fails. 4297 * active 4298 * fully active: IO and resync can be happening. 4299 * When written to inactive array, starts with resync 4300 * 4301 * write-pending 4302 * clean, but writes are blocked waiting for 'active' to be written. 4303 * 4304 * active-idle 4305 * like active, but no writes have been seen for a while (100msec). 4306 * 4307 * broken 4308 * Array is failed. It's useful because mounted-arrays aren't stopped 4309 * when array is failed, so this state will at least alert the user that 4310 * something is wrong. 4311 */ 4312 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4313 write_pending, active_idle, broken, bad_word}; 4314 static char *array_states[] = { 4315 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4316 "write-pending", "active-idle", "broken", NULL }; 4317 4318 static int match_word(const char *word, char **list) 4319 { 4320 int n; 4321 for (n=0; list[n]; n++) 4322 if (cmd_match(word, list[n])) 4323 break; 4324 return n; 4325 } 4326 4327 static ssize_t 4328 array_state_show(struct mddev *mddev, char *page) 4329 { 4330 enum array_state st = inactive; 4331 4332 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4333 switch(mddev->ro) { 4334 case MD_RDONLY: 4335 st = readonly; 4336 break; 4337 case MD_AUTO_READ: 4338 st = read_auto; 4339 break; 4340 case MD_RDWR: 4341 spin_lock(&mddev->lock); 4342 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4343 st = write_pending; 4344 else if (mddev->in_sync) 4345 st = clean; 4346 else if (mddev->safemode) 4347 st = active_idle; 4348 else 4349 st = active; 4350 spin_unlock(&mddev->lock); 4351 } 4352 4353 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4354 st = broken; 4355 } else { 4356 if (list_empty(&mddev->disks) && 4357 mddev->raid_disks == 0 && 4358 mddev->dev_sectors == 0) 4359 st = clear; 4360 else 4361 st = inactive; 4362 } 4363 return sprintf(page, "%s\n", array_states[st]); 4364 } 4365 4366 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4367 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4368 static int restart_array(struct mddev *mddev); 4369 4370 static ssize_t 4371 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4372 { 4373 int err = 0; 4374 enum array_state st = match_word(buf, array_states); 4375 4376 if (mddev->pers && (st == active || st == clean) && 4377 mddev->ro != MD_RDONLY) { 4378 /* don't take reconfig_mutex when toggling between 4379 * clean and active 4380 */ 4381 spin_lock(&mddev->lock); 4382 if (st == active) { 4383 restart_array(mddev); 4384 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4385 md_wakeup_thread(mddev->thread); 4386 wake_up(&mddev->sb_wait); 4387 } else /* st == clean */ { 4388 restart_array(mddev); 4389 if (!set_in_sync(mddev)) 4390 err = -EBUSY; 4391 } 4392 if (!err) 4393 sysfs_notify_dirent_safe(mddev->sysfs_state); 4394 spin_unlock(&mddev->lock); 4395 return err ?: len; 4396 } 4397 err = mddev_lock(mddev); 4398 if (err) 4399 return err; 4400 err = -EINVAL; 4401 switch(st) { 4402 case bad_word: 4403 break; 4404 case clear: 4405 /* stopping an active array */ 4406 err = do_md_stop(mddev, 0, NULL); 4407 break; 4408 case inactive: 4409 /* stopping an active array */ 4410 if (mddev->pers) 4411 err = do_md_stop(mddev, 2, NULL); 4412 else 4413 err = 0; /* already inactive */ 4414 break; 4415 case suspended: 4416 break; /* not supported yet */ 4417 case readonly: 4418 if (mddev->pers) 4419 err = md_set_readonly(mddev, NULL); 4420 else { 4421 mddev->ro = MD_RDONLY; 4422 set_disk_ro(mddev->gendisk, 1); 4423 err = do_md_run(mddev); 4424 } 4425 break; 4426 case read_auto: 4427 if (mddev->pers) { 4428 if (md_is_rdwr(mddev)) 4429 err = md_set_readonly(mddev, NULL); 4430 else if (mddev->ro == MD_RDONLY) 4431 err = restart_array(mddev); 4432 if (err == 0) { 4433 mddev->ro = MD_AUTO_READ; 4434 set_disk_ro(mddev->gendisk, 0); 4435 } 4436 } else { 4437 mddev->ro = MD_AUTO_READ; 4438 err = do_md_run(mddev); 4439 } 4440 break; 4441 case clean: 4442 if (mddev->pers) { 4443 err = restart_array(mddev); 4444 if (err) 4445 break; 4446 spin_lock(&mddev->lock); 4447 if (!set_in_sync(mddev)) 4448 err = -EBUSY; 4449 spin_unlock(&mddev->lock); 4450 } else 4451 err = -EINVAL; 4452 break; 4453 case active: 4454 if (mddev->pers) { 4455 err = restart_array(mddev); 4456 if (err) 4457 break; 4458 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4459 wake_up(&mddev->sb_wait); 4460 err = 0; 4461 } else { 4462 mddev->ro = MD_RDWR; 4463 set_disk_ro(mddev->gendisk, 0); 4464 err = do_md_run(mddev); 4465 } 4466 break; 4467 case write_pending: 4468 case active_idle: 4469 case broken: 4470 /* these cannot be set */ 4471 break; 4472 } 4473 4474 if (!err) { 4475 if (mddev->hold_active == UNTIL_IOCTL) 4476 mddev->hold_active = 0; 4477 sysfs_notify_dirent_safe(mddev->sysfs_state); 4478 } 4479 mddev_unlock(mddev); 4480 return err ?: len; 4481 } 4482 static struct md_sysfs_entry md_array_state = 4483 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4484 4485 static ssize_t 4486 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4487 return sprintf(page, "%d\n", 4488 atomic_read(&mddev->max_corr_read_errors)); 4489 } 4490 4491 static ssize_t 4492 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4493 { 4494 unsigned int n; 4495 int rv; 4496 4497 rv = kstrtouint(buf, 10, &n); 4498 if (rv < 0) 4499 return rv; 4500 atomic_set(&mddev->max_corr_read_errors, n); 4501 return len; 4502 } 4503 4504 static struct md_sysfs_entry max_corr_read_errors = 4505 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4506 max_corrected_read_errors_store); 4507 4508 static ssize_t 4509 null_show(struct mddev *mddev, char *page) 4510 { 4511 return -EINVAL; 4512 } 4513 4514 /* need to ensure rdev_delayed_delete() has completed */ 4515 static void flush_rdev_wq(struct mddev *mddev) 4516 { 4517 struct md_rdev *rdev; 4518 4519 rcu_read_lock(); 4520 rdev_for_each_rcu(rdev, mddev) 4521 if (work_pending(&rdev->del_work)) { 4522 flush_workqueue(md_rdev_misc_wq); 4523 break; 4524 } 4525 rcu_read_unlock(); 4526 } 4527 4528 static ssize_t 4529 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4530 { 4531 /* buf must be %d:%d\n? giving major and minor numbers */ 4532 /* The new device is added to the array. 4533 * If the array has a persistent superblock, we read the 4534 * superblock to initialise info and check validity. 4535 * Otherwise, only checking done is that in bind_rdev_to_array, 4536 * which mainly checks size. 4537 */ 4538 char *e; 4539 int major = simple_strtoul(buf, &e, 10); 4540 int minor; 4541 dev_t dev; 4542 struct md_rdev *rdev; 4543 int err; 4544 4545 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4546 return -EINVAL; 4547 minor = simple_strtoul(e+1, &e, 10); 4548 if (*e && *e != '\n') 4549 return -EINVAL; 4550 dev = MKDEV(major, minor); 4551 if (major != MAJOR(dev) || 4552 minor != MINOR(dev)) 4553 return -EOVERFLOW; 4554 4555 flush_rdev_wq(mddev); 4556 err = mddev_lock(mddev); 4557 if (err) 4558 return err; 4559 if (mddev->persistent) { 4560 rdev = md_import_device(dev, mddev->major_version, 4561 mddev->minor_version); 4562 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4563 struct md_rdev *rdev0 4564 = list_entry(mddev->disks.next, 4565 struct md_rdev, same_set); 4566 err = super_types[mddev->major_version] 4567 .load_super(rdev, rdev0, mddev->minor_version); 4568 if (err < 0) 4569 goto out; 4570 } 4571 } else if (mddev->external) 4572 rdev = md_import_device(dev, -2, -1); 4573 else 4574 rdev = md_import_device(dev, -1, -1); 4575 4576 if (IS_ERR(rdev)) { 4577 mddev_unlock(mddev); 4578 return PTR_ERR(rdev); 4579 } 4580 err = bind_rdev_to_array(rdev, mddev); 4581 out: 4582 if (err) 4583 export_rdev(rdev); 4584 mddev_unlock(mddev); 4585 if (!err) 4586 md_new_event(); 4587 return err ? err : len; 4588 } 4589 4590 static struct md_sysfs_entry md_new_device = 4591 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4592 4593 static ssize_t 4594 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4595 { 4596 char *end; 4597 unsigned long chunk, end_chunk; 4598 int err; 4599 4600 err = mddev_lock(mddev); 4601 if (err) 4602 return err; 4603 if (!mddev->bitmap) 4604 goto out; 4605 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4606 while (*buf) { 4607 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4608 if (buf == end) break; 4609 if (*end == '-') { /* range */ 4610 buf = end + 1; 4611 end_chunk = simple_strtoul(buf, &end, 0); 4612 if (buf == end) break; 4613 } 4614 if (*end && !isspace(*end)) break; 4615 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4616 buf = skip_spaces(end); 4617 } 4618 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4619 out: 4620 mddev_unlock(mddev); 4621 return len; 4622 } 4623 4624 static struct md_sysfs_entry md_bitmap = 4625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4626 4627 static ssize_t 4628 size_show(struct mddev *mddev, char *page) 4629 { 4630 return sprintf(page, "%llu\n", 4631 (unsigned long long)mddev->dev_sectors / 2); 4632 } 4633 4634 static int update_size(struct mddev *mddev, sector_t num_sectors); 4635 4636 static ssize_t 4637 size_store(struct mddev *mddev, const char *buf, size_t len) 4638 { 4639 /* If array is inactive, we can reduce the component size, but 4640 * not increase it (except from 0). 4641 * If array is active, we can try an on-line resize 4642 */ 4643 sector_t sectors; 4644 int err = strict_blocks_to_sectors(buf, §ors); 4645 4646 if (err < 0) 4647 return err; 4648 err = mddev_lock(mddev); 4649 if (err) 4650 return err; 4651 if (mddev->pers) { 4652 err = update_size(mddev, sectors); 4653 if (err == 0) 4654 md_update_sb(mddev, 1); 4655 } else { 4656 if (mddev->dev_sectors == 0 || 4657 mddev->dev_sectors > sectors) 4658 mddev->dev_sectors = sectors; 4659 else 4660 err = -ENOSPC; 4661 } 4662 mddev_unlock(mddev); 4663 return err ? err : len; 4664 } 4665 4666 static struct md_sysfs_entry md_size = 4667 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4668 4669 /* Metadata version. 4670 * This is one of 4671 * 'none' for arrays with no metadata (good luck...) 4672 * 'external' for arrays with externally managed metadata, 4673 * or N.M for internally known formats 4674 */ 4675 static ssize_t 4676 metadata_show(struct mddev *mddev, char *page) 4677 { 4678 if (mddev->persistent) 4679 return sprintf(page, "%d.%d\n", 4680 mddev->major_version, mddev->minor_version); 4681 else if (mddev->external) 4682 return sprintf(page, "external:%s\n", mddev->metadata_type); 4683 else 4684 return sprintf(page, "none\n"); 4685 } 4686 4687 static ssize_t 4688 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4689 { 4690 int major, minor; 4691 char *e; 4692 int err; 4693 /* Changing the details of 'external' metadata is 4694 * always permitted. Otherwise there must be 4695 * no devices attached to the array. 4696 */ 4697 4698 err = mddev_lock(mddev); 4699 if (err) 4700 return err; 4701 err = -EBUSY; 4702 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4703 ; 4704 else if (!list_empty(&mddev->disks)) 4705 goto out_unlock; 4706 4707 err = 0; 4708 if (cmd_match(buf, "none")) { 4709 mddev->persistent = 0; 4710 mddev->external = 0; 4711 mddev->major_version = 0; 4712 mddev->minor_version = 90; 4713 goto out_unlock; 4714 } 4715 if (strncmp(buf, "external:", 9) == 0) { 4716 size_t namelen = len-9; 4717 if (namelen >= sizeof(mddev->metadata_type)) 4718 namelen = sizeof(mddev->metadata_type)-1; 4719 strncpy(mddev->metadata_type, buf+9, namelen); 4720 mddev->metadata_type[namelen] = 0; 4721 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4722 mddev->metadata_type[--namelen] = 0; 4723 mddev->persistent = 0; 4724 mddev->external = 1; 4725 mddev->major_version = 0; 4726 mddev->minor_version = 90; 4727 goto out_unlock; 4728 } 4729 major = simple_strtoul(buf, &e, 10); 4730 err = -EINVAL; 4731 if (e==buf || *e != '.') 4732 goto out_unlock; 4733 buf = e+1; 4734 minor = simple_strtoul(buf, &e, 10); 4735 if (e==buf || (*e && *e != '\n') ) 4736 goto out_unlock; 4737 err = -ENOENT; 4738 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4739 goto out_unlock; 4740 mddev->major_version = major; 4741 mddev->minor_version = minor; 4742 mddev->persistent = 1; 4743 mddev->external = 0; 4744 err = 0; 4745 out_unlock: 4746 mddev_unlock(mddev); 4747 return err ?: len; 4748 } 4749 4750 static struct md_sysfs_entry md_metadata = 4751 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4752 4753 static ssize_t 4754 action_show(struct mddev *mddev, char *page) 4755 { 4756 char *type = "idle"; 4757 unsigned long recovery = mddev->recovery; 4758 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4759 type = "frozen"; 4760 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4761 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4762 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4763 type = "reshape"; 4764 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4765 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4766 type = "resync"; 4767 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4768 type = "check"; 4769 else 4770 type = "repair"; 4771 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4772 type = "recover"; 4773 else if (mddev->reshape_position != MaxSector) 4774 type = "reshape"; 4775 } 4776 return sprintf(page, "%s\n", type); 4777 } 4778 4779 static ssize_t 4780 action_store(struct mddev *mddev, const char *page, size_t len) 4781 { 4782 if (!mddev->pers || !mddev->pers->sync_request) 4783 return -EINVAL; 4784 4785 4786 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4787 if (cmd_match(page, "frozen")) 4788 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4789 else 4790 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4791 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4792 mddev_lock(mddev) == 0) { 4793 if (work_pending(&mddev->del_work)) 4794 flush_workqueue(md_misc_wq); 4795 if (mddev->sync_thread) { 4796 sector_t save_rp = mddev->reshape_position; 4797 4798 mddev_unlock(mddev); 4799 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4800 md_unregister_thread(&mddev->sync_thread); 4801 mddev_lock_nointr(mddev); 4802 /* 4803 * set RECOVERY_INTR again and restore reshape 4804 * position in case others changed them after 4805 * got lock, eg, reshape_position_store and 4806 * md_check_recovery. 4807 */ 4808 mddev->reshape_position = save_rp; 4809 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4810 md_reap_sync_thread(mddev); 4811 } 4812 mddev_unlock(mddev); 4813 } 4814 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4815 return -EBUSY; 4816 else if (cmd_match(page, "resync")) 4817 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4818 else if (cmd_match(page, "recover")) { 4819 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4820 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4821 } else if (cmd_match(page, "reshape")) { 4822 int err; 4823 if (mddev->pers->start_reshape == NULL) 4824 return -EINVAL; 4825 err = mddev_lock(mddev); 4826 if (!err) { 4827 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4828 err = -EBUSY; 4829 else { 4830 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4831 err = mddev->pers->start_reshape(mddev); 4832 } 4833 mddev_unlock(mddev); 4834 } 4835 if (err) 4836 return err; 4837 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4838 } else { 4839 if (cmd_match(page, "check")) 4840 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4841 else if (!cmd_match(page, "repair")) 4842 return -EINVAL; 4843 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4844 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4845 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4846 } 4847 if (mddev->ro == MD_AUTO_READ) { 4848 /* A write to sync_action is enough to justify 4849 * canceling read-auto mode 4850 */ 4851 mddev->ro = MD_RDWR; 4852 md_wakeup_thread(mddev->sync_thread); 4853 } 4854 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4855 md_wakeup_thread(mddev->thread); 4856 sysfs_notify_dirent_safe(mddev->sysfs_action); 4857 return len; 4858 } 4859 4860 static struct md_sysfs_entry md_scan_mode = 4861 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4862 4863 static ssize_t 4864 last_sync_action_show(struct mddev *mddev, char *page) 4865 { 4866 return sprintf(page, "%s\n", mddev->last_sync_action); 4867 } 4868 4869 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4870 4871 static ssize_t 4872 mismatch_cnt_show(struct mddev *mddev, char *page) 4873 { 4874 return sprintf(page, "%llu\n", 4875 (unsigned long long) 4876 atomic64_read(&mddev->resync_mismatches)); 4877 } 4878 4879 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4880 4881 static ssize_t 4882 sync_min_show(struct mddev *mddev, char *page) 4883 { 4884 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4885 mddev->sync_speed_min ? "local": "system"); 4886 } 4887 4888 static ssize_t 4889 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4890 { 4891 unsigned int min; 4892 int rv; 4893 4894 if (strncmp(buf, "system", 6)==0) { 4895 min = 0; 4896 } else { 4897 rv = kstrtouint(buf, 10, &min); 4898 if (rv < 0) 4899 return rv; 4900 if (min == 0) 4901 return -EINVAL; 4902 } 4903 mddev->sync_speed_min = min; 4904 return len; 4905 } 4906 4907 static struct md_sysfs_entry md_sync_min = 4908 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4909 4910 static ssize_t 4911 sync_max_show(struct mddev *mddev, char *page) 4912 { 4913 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4914 mddev->sync_speed_max ? "local": "system"); 4915 } 4916 4917 static ssize_t 4918 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4919 { 4920 unsigned int max; 4921 int rv; 4922 4923 if (strncmp(buf, "system", 6)==0) { 4924 max = 0; 4925 } else { 4926 rv = kstrtouint(buf, 10, &max); 4927 if (rv < 0) 4928 return rv; 4929 if (max == 0) 4930 return -EINVAL; 4931 } 4932 mddev->sync_speed_max = max; 4933 return len; 4934 } 4935 4936 static struct md_sysfs_entry md_sync_max = 4937 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4938 4939 static ssize_t 4940 degraded_show(struct mddev *mddev, char *page) 4941 { 4942 return sprintf(page, "%d\n", mddev->degraded); 4943 } 4944 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4945 4946 static ssize_t 4947 sync_force_parallel_show(struct mddev *mddev, char *page) 4948 { 4949 return sprintf(page, "%d\n", mddev->parallel_resync); 4950 } 4951 4952 static ssize_t 4953 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4954 { 4955 long n; 4956 4957 if (kstrtol(buf, 10, &n)) 4958 return -EINVAL; 4959 4960 if (n != 0 && n != 1) 4961 return -EINVAL; 4962 4963 mddev->parallel_resync = n; 4964 4965 if (mddev->sync_thread) 4966 wake_up(&resync_wait); 4967 4968 return len; 4969 } 4970 4971 /* force parallel resync, even with shared block devices */ 4972 static struct md_sysfs_entry md_sync_force_parallel = 4973 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4974 sync_force_parallel_show, sync_force_parallel_store); 4975 4976 static ssize_t 4977 sync_speed_show(struct mddev *mddev, char *page) 4978 { 4979 unsigned long resync, dt, db; 4980 if (mddev->curr_resync == MD_RESYNC_NONE) 4981 return sprintf(page, "none\n"); 4982 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4983 dt = (jiffies - mddev->resync_mark) / HZ; 4984 if (!dt) dt++; 4985 db = resync - mddev->resync_mark_cnt; 4986 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4987 } 4988 4989 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4990 4991 static ssize_t 4992 sync_completed_show(struct mddev *mddev, char *page) 4993 { 4994 unsigned long long max_sectors, resync; 4995 4996 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4997 return sprintf(page, "none\n"); 4998 4999 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5000 mddev->curr_resync == MD_RESYNC_DELAYED) 5001 return sprintf(page, "delayed\n"); 5002 5003 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5004 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5005 max_sectors = mddev->resync_max_sectors; 5006 else 5007 max_sectors = mddev->dev_sectors; 5008 5009 resync = mddev->curr_resync_completed; 5010 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5011 } 5012 5013 static struct md_sysfs_entry md_sync_completed = 5014 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5015 5016 static ssize_t 5017 min_sync_show(struct mddev *mddev, char *page) 5018 { 5019 return sprintf(page, "%llu\n", 5020 (unsigned long long)mddev->resync_min); 5021 } 5022 static ssize_t 5023 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5024 { 5025 unsigned long long min; 5026 int err; 5027 5028 if (kstrtoull(buf, 10, &min)) 5029 return -EINVAL; 5030 5031 spin_lock(&mddev->lock); 5032 err = -EINVAL; 5033 if (min > mddev->resync_max) 5034 goto out_unlock; 5035 5036 err = -EBUSY; 5037 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5038 goto out_unlock; 5039 5040 /* Round down to multiple of 4K for safety */ 5041 mddev->resync_min = round_down(min, 8); 5042 err = 0; 5043 5044 out_unlock: 5045 spin_unlock(&mddev->lock); 5046 return err ?: len; 5047 } 5048 5049 static struct md_sysfs_entry md_min_sync = 5050 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5051 5052 static ssize_t 5053 max_sync_show(struct mddev *mddev, char *page) 5054 { 5055 if (mddev->resync_max == MaxSector) 5056 return sprintf(page, "max\n"); 5057 else 5058 return sprintf(page, "%llu\n", 5059 (unsigned long long)mddev->resync_max); 5060 } 5061 static ssize_t 5062 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5063 { 5064 int err; 5065 spin_lock(&mddev->lock); 5066 if (strncmp(buf, "max", 3) == 0) 5067 mddev->resync_max = MaxSector; 5068 else { 5069 unsigned long long max; 5070 int chunk; 5071 5072 err = -EINVAL; 5073 if (kstrtoull(buf, 10, &max)) 5074 goto out_unlock; 5075 if (max < mddev->resync_min) 5076 goto out_unlock; 5077 5078 err = -EBUSY; 5079 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5080 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5081 goto out_unlock; 5082 5083 /* Must be a multiple of chunk_size */ 5084 chunk = mddev->chunk_sectors; 5085 if (chunk) { 5086 sector_t temp = max; 5087 5088 err = -EINVAL; 5089 if (sector_div(temp, chunk)) 5090 goto out_unlock; 5091 } 5092 mddev->resync_max = max; 5093 } 5094 wake_up(&mddev->recovery_wait); 5095 err = 0; 5096 out_unlock: 5097 spin_unlock(&mddev->lock); 5098 return err ?: len; 5099 } 5100 5101 static struct md_sysfs_entry md_max_sync = 5102 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5103 5104 static ssize_t 5105 suspend_lo_show(struct mddev *mddev, char *page) 5106 { 5107 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5108 } 5109 5110 static ssize_t 5111 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5112 { 5113 unsigned long long new; 5114 int err; 5115 5116 err = kstrtoull(buf, 10, &new); 5117 if (err < 0) 5118 return err; 5119 if (new != (sector_t)new) 5120 return -EINVAL; 5121 5122 err = mddev_lock(mddev); 5123 if (err) 5124 return err; 5125 err = -EINVAL; 5126 if (mddev->pers == NULL || 5127 mddev->pers->quiesce == NULL) 5128 goto unlock; 5129 mddev_suspend(mddev); 5130 mddev->suspend_lo = new; 5131 mddev_resume(mddev); 5132 5133 err = 0; 5134 unlock: 5135 mddev_unlock(mddev); 5136 return err ?: len; 5137 } 5138 static struct md_sysfs_entry md_suspend_lo = 5139 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5140 5141 static ssize_t 5142 suspend_hi_show(struct mddev *mddev, char *page) 5143 { 5144 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5145 } 5146 5147 static ssize_t 5148 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5149 { 5150 unsigned long long new; 5151 int err; 5152 5153 err = kstrtoull(buf, 10, &new); 5154 if (err < 0) 5155 return err; 5156 if (new != (sector_t)new) 5157 return -EINVAL; 5158 5159 err = mddev_lock(mddev); 5160 if (err) 5161 return err; 5162 err = -EINVAL; 5163 if (mddev->pers == NULL) 5164 goto unlock; 5165 5166 mddev_suspend(mddev); 5167 mddev->suspend_hi = new; 5168 mddev_resume(mddev); 5169 5170 err = 0; 5171 unlock: 5172 mddev_unlock(mddev); 5173 return err ?: len; 5174 } 5175 static struct md_sysfs_entry md_suspend_hi = 5176 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5177 5178 static ssize_t 5179 reshape_position_show(struct mddev *mddev, char *page) 5180 { 5181 if (mddev->reshape_position != MaxSector) 5182 return sprintf(page, "%llu\n", 5183 (unsigned long long)mddev->reshape_position); 5184 strcpy(page, "none\n"); 5185 return 5; 5186 } 5187 5188 static ssize_t 5189 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5190 { 5191 struct md_rdev *rdev; 5192 unsigned long long new; 5193 int err; 5194 5195 err = kstrtoull(buf, 10, &new); 5196 if (err < 0) 5197 return err; 5198 if (new != (sector_t)new) 5199 return -EINVAL; 5200 err = mddev_lock(mddev); 5201 if (err) 5202 return err; 5203 err = -EBUSY; 5204 if (mddev->pers) 5205 goto unlock; 5206 mddev->reshape_position = new; 5207 mddev->delta_disks = 0; 5208 mddev->reshape_backwards = 0; 5209 mddev->new_level = mddev->level; 5210 mddev->new_layout = mddev->layout; 5211 mddev->new_chunk_sectors = mddev->chunk_sectors; 5212 rdev_for_each(rdev, mddev) 5213 rdev->new_data_offset = rdev->data_offset; 5214 err = 0; 5215 unlock: 5216 mddev_unlock(mddev); 5217 return err ?: len; 5218 } 5219 5220 static struct md_sysfs_entry md_reshape_position = 5221 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5222 reshape_position_store); 5223 5224 static ssize_t 5225 reshape_direction_show(struct mddev *mddev, char *page) 5226 { 5227 return sprintf(page, "%s\n", 5228 mddev->reshape_backwards ? "backwards" : "forwards"); 5229 } 5230 5231 static ssize_t 5232 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5233 { 5234 int backwards = 0; 5235 int err; 5236 5237 if (cmd_match(buf, "forwards")) 5238 backwards = 0; 5239 else if (cmd_match(buf, "backwards")) 5240 backwards = 1; 5241 else 5242 return -EINVAL; 5243 if (mddev->reshape_backwards == backwards) 5244 return len; 5245 5246 err = mddev_lock(mddev); 5247 if (err) 5248 return err; 5249 /* check if we are allowed to change */ 5250 if (mddev->delta_disks) 5251 err = -EBUSY; 5252 else if (mddev->persistent && 5253 mddev->major_version == 0) 5254 err = -EINVAL; 5255 else 5256 mddev->reshape_backwards = backwards; 5257 mddev_unlock(mddev); 5258 return err ?: len; 5259 } 5260 5261 static struct md_sysfs_entry md_reshape_direction = 5262 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5263 reshape_direction_store); 5264 5265 static ssize_t 5266 array_size_show(struct mddev *mddev, char *page) 5267 { 5268 if (mddev->external_size) 5269 return sprintf(page, "%llu\n", 5270 (unsigned long long)mddev->array_sectors/2); 5271 else 5272 return sprintf(page, "default\n"); 5273 } 5274 5275 static ssize_t 5276 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5277 { 5278 sector_t sectors; 5279 int err; 5280 5281 err = mddev_lock(mddev); 5282 if (err) 5283 return err; 5284 5285 /* cluster raid doesn't support change array_sectors */ 5286 if (mddev_is_clustered(mddev)) { 5287 mddev_unlock(mddev); 5288 return -EINVAL; 5289 } 5290 5291 if (strncmp(buf, "default", 7) == 0) { 5292 if (mddev->pers) 5293 sectors = mddev->pers->size(mddev, 0, 0); 5294 else 5295 sectors = mddev->array_sectors; 5296 5297 mddev->external_size = 0; 5298 } else { 5299 if (strict_blocks_to_sectors(buf, §ors) < 0) 5300 err = -EINVAL; 5301 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5302 err = -E2BIG; 5303 else 5304 mddev->external_size = 1; 5305 } 5306 5307 if (!err) { 5308 mddev->array_sectors = sectors; 5309 if (mddev->pers) 5310 set_capacity_and_notify(mddev->gendisk, 5311 mddev->array_sectors); 5312 } 5313 mddev_unlock(mddev); 5314 return err ?: len; 5315 } 5316 5317 static struct md_sysfs_entry md_array_size = 5318 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5319 array_size_store); 5320 5321 static ssize_t 5322 consistency_policy_show(struct mddev *mddev, char *page) 5323 { 5324 int ret; 5325 5326 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5327 ret = sprintf(page, "journal\n"); 5328 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5329 ret = sprintf(page, "ppl\n"); 5330 } else if (mddev->bitmap) { 5331 ret = sprintf(page, "bitmap\n"); 5332 } else if (mddev->pers) { 5333 if (mddev->pers->sync_request) 5334 ret = sprintf(page, "resync\n"); 5335 else 5336 ret = sprintf(page, "none\n"); 5337 } else { 5338 ret = sprintf(page, "unknown\n"); 5339 } 5340 5341 return ret; 5342 } 5343 5344 static ssize_t 5345 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5346 { 5347 int err = 0; 5348 5349 if (mddev->pers) { 5350 if (mddev->pers->change_consistency_policy) 5351 err = mddev->pers->change_consistency_policy(mddev, buf); 5352 else 5353 err = -EBUSY; 5354 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5355 set_bit(MD_HAS_PPL, &mddev->flags); 5356 } else { 5357 err = -EINVAL; 5358 } 5359 5360 return err ? err : len; 5361 } 5362 5363 static struct md_sysfs_entry md_consistency_policy = 5364 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5365 consistency_policy_store); 5366 5367 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5368 { 5369 return sprintf(page, "%d\n", mddev->fail_last_dev); 5370 } 5371 5372 /* 5373 * Setting fail_last_dev to true to allow last device to be forcibly removed 5374 * from RAID1/RAID10. 5375 */ 5376 static ssize_t 5377 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5378 { 5379 int ret; 5380 bool value; 5381 5382 ret = kstrtobool(buf, &value); 5383 if (ret) 5384 return ret; 5385 5386 if (value != mddev->fail_last_dev) 5387 mddev->fail_last_dev = value; 5388 5389 return len; 5390 } 5391 static struct md_sysfs_entry md_fail_last_dev = 5392 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5393 fail_last_dev_store); 5394 5395 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5396 { 5397 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5398 return sprintf(page, "n/a\n"); 5399 else 5400 return sprintf(page, "%d\n", mddev->serialize_policy); 5401 } 5402 5403 /* 5404 * Setting serialize_policy to true to enforce write IO is not reordered 5405 * for raid1. 5406 */ 5407 static ssize_t 5408 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5409 { 5410 int err; 5411 bool value; 5412 5413 err = kstrtobool(buf, &value); 5414 if (err) 5415 return err; 5416 5417 if (value == mddev->serialize_policy) 5418 return len; 5419 5420 err = mddev_lock(mddev); 5421 if (err) 5422 return err; 5423 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5424 pr_err("md: serialize_policy is only effective for raid1\n"); 5425 err = -EINVAL; 5426 goto unlock; 5427 } 5428 5429 mddev_suspend(mddev); 5430 if (value) 5431 mddev_create_serial_pool(mddev, NULL, true); 5432 else 5433 mddev_destroy_serial_pool(mddev, NULL, true); 5434 mddev->serialize_policy = value; 5435 mddev_resume(mddev); 5436 unlock: 5437 mddev_unlock(mddev); 5438 return err ?: len; 5439 } 5440 5441 static struct md_sysfs_entry md_serialize_policy = 5442 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5443 serialize_policy_store); 5444 5445 5446 static struct attribute *md_default_attrs[] = { 5447 &md_level.attr, 5448 &md_layout.attr, 5449 &md_raid_disks.attr, 5450 &md_uuid.attr, 5451 &md_chunk_size.attr, 5452 &md_size.attr, 5453 &md_resync_start.attr, 5454 &md_metadata.attr, 5455 &md_new_device.attr, 5456 &md_safe_delay.attr, 5457 &md_array_state.attr, 5458 &md_reshape_position.attr, 5459 &md_reshape_direction.attr, 5460 &md_array_size.attr, 5461 &max_corr_read_errors.attr, 5462 &md_consistency_policy.attr, 5463 &md_fail_last_dev.attr, 5464 &md_serialize_policy.attr, 5465 NULL, 5466 }; 5467 5468 static const struct attribute_group md_default_group = { 5469 .attrs = md_default_attrs, 5470 }; 5471 5472 static struct attribute *md_redundancy_attrs[] = { 5473 &md_scan_mode.attr, 5474 &md_last_scan_mode.attr, 5475 &md_mismatches.attr, 5476 &md_sync_min.attr, 5477 &md_sync_max.attr, 5478 &md_sync_speed.attr, 5479 &md_sync_force_parallel.attr, 5480 &md_sync_completed.attr, 5481 &md_min_sync.attr, 5482 &md_max_sync.attr, 5483 &md_suspend_lo.attr, 5484 &md_suspend_hi.attr, 5485 &md_bitmap.attr, 5486 &md_degraded.attr, 5487 NULL, 5488 }; 5489 static const struct attribute_group md_redundancy_group = { 5490 .name = NULL, 5491 .attrs = md_redundancy_attrs, 5492 }; 5493 5494 static const struct attribute_group *md_attr_groups[] = { 5495 &md_default_group, 5496 &md_bitmap_group, 5497 NULL, 5498 }; 5499 5500 static ssize_t 5501 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5502 { 5503 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5504 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5505 ssize_t rv; 5506 5507 if (!entry->show) 5508 return -EIO; 5509 spin_lock(&all_mddevs_lock); 5510 if (!mddev_get(mddev)) { 5511 spin_unlock(&all_mddevs_lock); 5512 return -EBUSY; 5513 } 5514 spin_unlock(&all_mddevs_lock); 5515 5516 rv = entry->show(mddev, page); 5517 mddev_put(mddev); 5518 return rv; 5519 } 5520 5521 static ssize_t 5522 md_attr_store(struct kobject *kobj, struct attribute *attr, 5523 const char *page, size_t length) 5524 { 5525 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5526 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5527 ssize_t rv; 5528 5529 if (!entry->store) 5530 return -EIO; 5531 if (!capable(CAP_SYS_ADMIN)) 5532 return -EACCES; 5533 spin_lock(&all_mddevs_lock); 5534 if (!mddev_get(mddev)) { 5535 spin_unlock(&all_mddevs_lock); 5536 return -EBUSY; 5537 } 5538 spin_unlock(&all_mddevs_lock); 5539 rv = entry->store(mddev, page, length); 5540 mddev_put(mddev); 5541 return rv; 5542 } 5543 5544 static void md_kobj_release(struct kobject *ko) 5545 { 5546 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5547 5548 if (mddev->sysfs_state) 5549 sysfs_put(mddev->sysfs_state); 5550 if (mddev->sysfs_level) 5551 sysfs_put(mddev->sysfs_level); 5552 5553 del_gendisk(mddev->gendisk); 5554 put_disk(mddev->gendisk); 5555 } 5556 5557 static const struct sysfs_ops md_sysfs_ops = { 5558 .show = md_attr_show, 5559 .store = md_attr_store, 5560 }; 5561 static struct kobj_type md_ktype = { 5562 .release = md_kobj_release, 5563 .sysfs_ops = &md_sysfs_ops, 5564 .default_groups = md_attr_groups, 5565 }; 5566 5567 int mdp_major = 0; 5568 5569 static void mddev_delayed_delete(struct work_struct *ws) 5570 { 5571 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5572 5573 kobject_put(&mddev->kobj); 5574 } 5575 5576 static void no_op(struct percpu_ref *r) {} 5577 5578 int mddev_init_writes_pending(struct mddev *mddev) 5579 { 5580 if (mddev->writes_pending.percpu_count_ptr) 5581 return 0; 5582 if (percpu_ref_init(&mddev->writes_pending, no_op, 5583 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5584 return -ENOMEM; 5585 /* We want to start with the refcount at zero */ 5586 percpu_ref_put(&mddev->writes_pending); 5587 return 0; 5588 } 5589 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5590 5591 struct mddev *md_alloc(dev_t dev, char *name) 5592 { 5593 /* 5594 * If dev is zero, name is the name of a device to allocate with 5595 * an arbitrary minor number. It will be "md_???" 5596 * If dev is non-zero it must be a device number with a MAJOR of 5597 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5598 * the device is being created by opening a node in /dev. 5599 * If "name" is not NULL, the device is being created by 5600 * writing to /sys/module/md_mod/parameters/new_array. 5601 */ 5602 static DEFINE_MUTEX(disks_mutex); 5603 struct mddev *mddev; 5604 struct gendisk *disk; 5605 int partitioned; 5606 int shift; 5607 int unit; 5608 int error ; 5609 5610 /* 5611 * Wait for any previous instance of this device to be completely 5612 * removed (mddev_delayed_delete). 5613 */ 5614 flush_workqueue(md_misc_wq); 5615 flush_workqueue(md_rdev_misc_wq); 5616 5617 mutex_lock(&disks_mutex); 5618 mddev = mddev_alloc(dev); 5619 if (IS_ERR(mddev)) { 5620 error = PTR_ERR(mddev); 5621 goto out_unlock; 5622 } 5623 5624 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5625 shift = partitioned ? MdpMinorShift : 0; 5626 unit = MINOR(mddev->unit) >> shift; 5627 5628 if (name && !dev) { 5629 /* Need to ensure that 'name' is not a duplicate. 5630 */ 5631 struct mddev *mddev2; 5632 spin_lock(&all_mddevs_lock); 5633 5634 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5635 if (mddev2->gendisk && 5636 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5637 spin_unlock(&all_mddevs_lock); 5638 error = -EEXIST; 5639 goto out_free_mddev; 5640 } 5641 spin_unlock(&all_mddevs_lock); 5642 } 5643 if (name && dev) 5644 /* 5645 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5646 */ 5647 mddev->hold_active = UNTIL_STOP; 5648 5649 error = -ENOMEM; 5650 disk = blk_alloc_disk(NUMA_NO_NODE); 5651 if (!disk) 5652 goto out_free_mddev; 5653 5654 disk->major = MAJOR(mddev->unit); 5655 disk->first_minor = unit << shift; 5656 disk->minors = 1 << shift; 5657 if (name) 5658 strcpy(disk->disk_name, name); 5659 else if (partitioned) 5660 sprintf(disk->disk_name, "md_d%d", unit); 5661 else 5662 sprintf(disk->disk_name, "md%d", unit); 5663 disk->fops = &md_fops; 5664 disk->private_data = mddev; 5665 5666 mddev->queue = disk->queue; 5667 blk_set_stacking_limits(&mddev->queue->limits); 5668 blk_queue_write_cache(mddev->queue, true, true); 5669 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5670 mddev->gendisk = disk; 5671 error = add_disk(disk); 5672 if (error) 5673 goto out_put_disk; 5674 5675 kobject_init(&mddev->kobj, &md_ktype); 5676 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5677 if (error) { 5678 /* 5679 * The disk is already live at this point. Clear the hold flag 5680 * and let mddev_put take care of the deletion, as it isn't any 5681 * different from a normal close on last release now. 5682 */ 5683 mddev->hold_active = 0; 5684 mutex_unlock(&disks_mutex); 5685 mddev_put(mddev); 5686 return ERR_PTR(error); 5687 } 5688 5689 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5690 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5691 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5692 mutex_unlock(&disks_mutex); 5693 return mddev; 5694 5695 out_put_disk: 5696 put_disk(disk); 5697 out_free_mddev: 5698 mddev_free(mddev); 5699 out_unlock: 5700 mutex_unlock(&disks_mutex); 5701 return ERR_PTR(error); 5702 } 5703 5704 static int md_alloc_and_put(dev_t dev, char *name) 5705 { 5706 struct mddev *mddev = md_alloc(dev, name); 5707 5708 if (IS_ERR(mddev)) 5709 return PTR_ERR(mddev); 5710 mddev_put(mddev); 5711 return 0; 5712 } 5713 5714 static void md_probe(dev_t dev) 5715 { 5716 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5717 return; 5718 if (create_on_open) 5719 md_alloc_and_put(dev, NULL); 5720 } 5721 5722 static int add_named_array(const char *val, const struct kernel_param *kp) 5723 { 5724 /* 5725 * val must be "md_*" or "mdNNN". 5726 * For "md_*" we allocate an array with a large free minor number, and 5727 * set the name to val. val must not already be an active name. 5728 * For "mdNNN" we allocate an array with the minor number NNN 5729 * which must not already be in use. 5730 */ 5731 int len = strlen(val); 5732 char buf[DISK_NAME_LEN]; 5733 unsigned long devnum; 5734 5735 while (len && val[len-1] == '\n') 5736 len--; 5737 if (len >= DISK_NAME_LEN) 5738 return -E2BIG; 5739 strscpy(buf, val, len+1); 5740 if (strncmp(buf, "md_", 3) == 0) 5741 return md_alloc_and_put(0, buf); 5742 if (strncmp(buf, "md", 2) == 0 && 5743 isdigit(buf[2]) && 5744 kstrtoul(buf+2, 10, &devnum) == 0 && 5745 devnum <= MINORMASK) 5746 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5747 5748 return -EINVAL; 5749 } 5750 5751 static void md_safemode_timeout(struct timer_list *t) 5752 { 5753 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5754 5755 mddev->safemode = 1; 5756 if (mddev->external) 5757 sysfs_notify_dirent_safe(mddev->sysfs_state); 5758 5759 md_wakeup_thread(mddev->thread); 5760 } 5761 5762 static int start_dirty_degraded; 5763 5764 int md_run(struct mddev *mddev) 5765 { 5766 int err; 5767 struct md_rdev *rdev; 5768 struct md_personality *pers; 5769 bool nowait = true; 5770 5771 if (list_empty(&mddev->disks)) 5772 /* cannot run an array with no devices.. */ 5773 return -EINVAL; 5774 5775 if (mddev->pers) 5776 return -EBUSY; 5777 /* Cannot run until previous stop completes properly */ 5778 if (mddev->sysfs_active) 5779 return -EBUSY; 5780 5781 /* 5782 * Analyze all RAID superblock(s) 5783 */ 5784 if (!mddev->raid_disks) { 5785 if (!mddev->persistent) 5786 return -EINVAL; 5787 err = analyze_sbs(mddev); 5788 if (err) 5789 return -EINVAL; 5790 } 5791 5792 if (mddev->level != LEVEL_NONE) 5793 request_module("md-level-%d", mddev->level); 5794 else if (mddev->clevel[0]) 5795 request_module("md-%s", mddev->clevel); 5796 5797 /* 5798 * Drop all container device buffers, from now on 5799 * the only valid external interface is through the md 5800 * device. 5801 */ 5802 mddev->has_superblocks = false; 5803 rdev_for_each(rdev, mddev) { 5804 if (test_bit(Faulty, &rdev->flags)) 5805 continue; 5806 sync_blockdev(rdev->bdev); 5807 invalidate_bdev(rdev->bdev); 5808 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5809 mddev->ro = MD_RDONLY; 5810 if (mddev->gendisk) 5811 set_disk_ro(mddev->gendisk, 1); 5812 } 5813 5814 if (rdev->sb_page) 5815 mddev->has_superblocks = true; 5816 5817 /* perform some consistency tests on the device. 5818 * We don't want the data to overlap the metadata, 5819 * Internal Bitmap issues have been handled elsewhere. 5820 */ 5821 if (rdev->meta_bdev) { 5822 /* Nothing to check */; 5823 } else if (rdev->data_offset < rdev->sb_start) { 5824 if (mddev->dev_sectors && 5825 rdev->data_offset + mddev->dev_sectors 5826 > rdev->sb_start) { 5827 pr_warn("md: %s: data overlaps metadata\n", 5828 mdname(mddev)); 5829 return -EINVAL; 5830 } 5831 } else { 5832 if (rdev->sb_start + rdev->sb_size/512 5833 > rdev->data_offset) { 5834 pr_warn("md: %s: metadata overlaps data\n", 5835 mdname(mddev)); 5836 return -EINVAL; 5837 } 5838 } 5839 sysfs_notify_dirent_safe(rdev->sysfs_state); 5840 nowait = nowait && bdev_nowait(rdev->bdev); 5841 } 5842 5843 if (!bioset_initialized(&mddev->bio_set)) { 5844 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5845 if (err) 5846 return err; 5847 } 5848 if (!bioset_initialized(&mddev->sync_set)) { 5849 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5850 if (err) 5851 goto exit_bio_set; 5852 } 5853 5854 spin_lock(&pers_lock); 5855 pers = find_pers(mddev->level, mddev->clevel); 5856 if (!pers || !try_module_get(pers->owner)) { 5857 spin_unlock(&pers_lock); 5858 if (mddev->level != LEVEL_NONE) 5859 pr_warn("md: personality for level %d is not loaded!\n", 5860 mddev->level); 5861 else 5862 pr_warn("md: personality for level %s is not loaded!\n", 5863 mddev->clevel); 5864 err = -EINVAL; 5865 goto abort; 5866 } 5867 spin_unlock(&pers_lock); 5868 if (mddev->level != pers->level) { 5869 mddev->level = pers->level; 5870 mddev->new_level = pers->level; 5871 } 5872 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5873 5874 if (mddev->reshape_position != MaxSector && 5875 pers->start_reshape == NULL) { 5876 /* This personality cannot handle reshaping... */ 5877 module_put(pers->owner); 5878 err = -EINVAL; 5879 goto abort; 5880 } 5881 5882 if (pers->sync_request) { 5883 /* Warn if this is a potentially silly 5884 * configuration. 5885 */ 5886 struct md_rdev *rdev2; 5887 int warned = 0; 5888 5889 rdev_for_each(rdev, mddev) 5890 rdev_for_each(rdev2, mddev) { 5891 if (rdev < rdev2 && 5892 rdev->bdev->bd_disk == 5893 rdev2->bdev->bd_disk) { 5894 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5895 mdname(mddev), 5896 rdev->bdev, 5897 rdev2->bdev); 5898 warned = 1; 5899 } 5900 } 5901 5902 if (warned) 5903 pr_warn("True protection against single-disk failure might be compromised.\n"); 5904 } 5905 5906 mddev->recovery = 0; 5907 /* may be over-ridden by personality */ 5908 mddev->resync_max_sectors = mddev->dev_sectors; 5909 5910 mddev->ok_start_degraded = start_dirty_degraded; 5911 5912 if (start_readonly && md_is_rdwr(mddev)) 5913 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5914 5915 err = pers->run(mddev); 5916 if (err) 5917 pr_warn("md: pers->run() failed ...\n"); 5918 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5919 WARN_ONCE(!mddev->external_size, 5920 "%s: default size too small, but 'external_size' not in effect?\n", 5921 __func__); 5922 pr_warn("md: invalid array_size %llu > default size %llu\n", 5923 (unsigned long long)mddev->array_sectors / 2, 5924 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5925 err = -EINVAL; 5926 } 5927 if (err == 0 && pers->sync_request && 5928 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5929 struct bitmap *bitmap; 5930 5931 bitmap = md_bitmap_create(mddev, -1); 5932 if (IS_ERR(bitmap)) { 5933 err = PTR_ERR(bitmap); 5934 pr_warn("%s: failed to create bitmap (%d)\n", 5935 mdname(mddev), err); 5936 } else 5937 mddev->bitmap = bitmap; 5938 5939 } 5940 if (err) 5941 goto bitmap_abort; 5942 5943 if (mddev->bitmap_info.max_write_behind > 0) { 5944 bool create_pool = false; 5945 5946 rdev_for_each(rdev, mddev) { 5947 if (test_bit(WriteMostly, &rdev->flags) && 5948 rdev_init_serial(rdev)) 5949 create_pool = true; 5950 } 5951 if (create_pool && mddev->serial_info_pool == NULL) { 5952 mddev->serial_info_pool = 5953 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5954 sizeof(struct serial_info)); 5955 if (!mddev->serial_info_pool) { 5956 err = -ENOMEM; 5957 goto bitmap_abort; 5958 } 5959 } 5960 } 5961 5962 if (mddev->queue) { 5963 bool nonrot = true; 5964 5965 rdev_for_each(rdev, mddev) { 5966 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5967 nonrot = false; 5968 break; 5969 } 5970 } 5971 if (mddev->degraded) 5972 nonrot = false; 5973 if (nonrot) 5974 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5975 else 5976 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5977 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5978 5979 /* Set the NOWAIT flags if all underlying devices support it */ 5980 if (nowait) 5981 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5982 } 5983 if (pers->sync_request) { 5984 if (mddev->kobj.sd && 5985 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5986 pr_warn("md: cannot register extra attributes for %s\n", 5987 mdname(mddev)); 5988 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5989 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5990 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5991 } else if (mddev->ro == MD_AUTO_READ) 5992 mddev->ro = MD_RDWR; 5993 5994 atomic_set(&mddev->max_corr_read_errors, 5995 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5996 mddev->safemode = 0; 5997 if (mddev_is_clustered(mddev)) 5998 mddev->safemode_delay = 0; 5999 else 6000 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6001 mddev->in_sync = 1; 6002 smp_wmb(); 6003 spin_lock(&mddev->lock); 6004 mddev->pers = pers; 6005 spin_unlock(&mddev->lock); 6006 rdev_for_each(rdev, mddev) 6007 if (rdev->raid_disk >= 0) 6008 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6009 6010 if (mddev->degraded && md_is_rdwr(mddev)) 6011 /* This ensures that recovering status is reported immediately 6012 * via sysfs - until a lack of spares is confirmed. 6013 */ 6014 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6015 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6016 6017 if (mddev->sb_flags) 6018 md_update_sb(mddev, 0); 6019 6020 md_new_event(); 6021 return 0; 6022 6023 bitmap_abort: 6024 mddev_detach(mddev); 6025 if (mddev->private) 6026 pers->free(mddev, mddev->private); 6027 mddev->private = NULL; 6028 module_put(pers->owner); 6029 md_bitmap_destroy(mddev); 6030 abort: 6031 bioset_exit(&mddev->sync_set); 6032 exit_bio_set: 6033 bioset_exit(&mddev->bio_set); 6034 return err; 6035 } 6036 EXPORT_SYMBOL_GPL(md_run); 6037 6038 int do_md_run(struct mddev *mddev) 6039 { 6040 int err; 6041 6042 set_bit(MD_NOT_READY, &mddev->flags); 6043 err = md_run(mddev); 6044 if (err) 6045 goto out; 6046 err = md_bitmap_load(mddev); 6047 if (err) { 6048 md_bitmap_destroy(mddev); 6049 goto out; 6050 } 6051 6052 if (mddev_is_clustered(mddev)) 6053 md_allow_write(mddev); 6054 6055 /* run start up tasks that require md_thread */ 6056 md_start(mddev); 6057 6058 md_wakeup_thread(mddev->thread); 6059 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6060 6061 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6062 clear_bit(MD_NOT_READY, &mddev->flags); 6063 mddev->changed = 1; 6064 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6065 sysfs_notify_dirent_safe(mddev->sysfs_state); 6066 sysfs_notify_dirent_safe(mddev->sysfs_action); 6067 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6068 out: 6069 clear_bit(MD_NOT_READY, &mddev->flags); 6070 return err; 6071 } 6072 6073 int md_start(struct mddev *mddev) 6074 { 6075 int ret = 0; 6076 6077 if (mddev->pers->start) { 6078 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6079 md_wakeup_thread(mddev->thread); 6080 ret = mddev->pers->start(mddev); 6081 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6082 md_wakeup_thread(mddev->sync_thread); 6083 } 6084 return ret; 6085 } 6086 EXPORT_SYMBOL_GPL(md_start); 6087 6088 static int restart_array(struct mddev *mddev) 6089 { 6090 struct gendisk *disk = mddev->gendisk; 6091 struct md_rdev *rdev; 6092 bool has_journal = false; 6093 bool has_readonly = false; 6094 6095 /* Complain if it has no devices */ 6096 if (list_empty(&mddev->disks)) 6097 return -ENXIO; 6098 if (!mddev->pers) 6099 return -EINVAL; 6100 if (md_is_rdwr(mddev)) 6101 return -EBUSY; 6102 6103 rcu_read_lock(); 6104 rdev_for_each_rcu(rdev, mddev) { 6105 if (test_bit(Journal, &rdev->flags) && 6106 !test_bit(Faulty, &rdev->flags)) 6107 has_journal = true; 6108 if (rdev_read_only(rdev)) 6109 has_readonly = true; 6110 } 6111 rcu_read_unlock(); 6112 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6113 /* Don't restart rw with journal missing/faulty */ 6114 return -EINVAL; 6115 if (has_readonly) 6116 return -EROFS; 6117 6118 mddev->safemode = 0; 6119 mddev->ro = MD_RDWR; 6120 set_disk_ro(disk, 0); 6121 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6122 /* Kick recovery or resync if necessary */ 6123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6124 md_wakeup_thread(mddev->thread); 6125 md_wakeup_thread(mddev->sync_thread); 6126 sysfs_notify_dirent_safe(mddev->sysfs_state); 6127 return 0; 6128 } 6129 6130 static void md_clean(struct mddev *mddev) 6131 { 6132 mddev->array_sectors = 0; 6133 mddev->external_size = 0; 6134 mddev->dev_sectors = 0; 6135 mddev->raid_disks = 0; 6136 mddev->recovery_cp = 0; 6137 mddev->resync_min = 0; 6138 mddev->resync_max = MaxSector; 6139 mddev->reshape_position = MaxSector; 6140 mddev->external = 0; 6141 mddev->persistent = 0; 6142 mddev->level = LEVEL_NONE; 6143 mddev->clevel[0] = 0; 6144 mddev->flags = 0; 6145 mddev->sb_flags = 0; 6146 mddev->ro = MD_RDWR; 6147 mddev->metadata_type[0] = 0; 6148 mddev->chunk_sectors = 0; 6149 mddev->ctime = mddev->utime = 0; 6150 mddev->layout = 0; 6151 mddev->max_disks = 0; 6152 mddev->events = 0; 6153 mddev->can_decrease_events = 0; 6154 mddev->delta_disks = 0; 6155 mddev->reshape_backwards = 0; 6156 mddev->new_level = LEVEL_NONE; 6157 mddev->new_layout = 0; 6158 mddev->new_chunk_sectors = 0; 6159 mddev->curr_resync = 0; 6160 atomic64_set(&mddev->resync_mismatches, 0); 6161 mddev->suspend_lo = mddev->suspend_hi = 0; 6162 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6163 mddev->recovery = 0; 6164 mddev->in_sync = 0; 6165 mddev->changed = 0; 6166 mddev->degraded = 0; 6167 mddev->safemode = 0; 6168 mddev->private = NULL; 6169 mddev->cluster_info = NULL; 6170 mddev->bitmap_info.offset = 0; 6171 mddev->bitmap_info.default_offset = 0; 6172 mddev->bitmap_info.default_space = 0; 6173 mddev->bitmap_info.chunksize = 0; 6174 mddev->bitmap_info.daemon_sleep = 0; 6175 mddev->bitmap_info.max_write_behind = 0; 6176 mddev->bitmap_info.nodes = 0; 6177 } 6178 6179 static void __md_stop_writes(struct mddev *mddev) 6180 { 6181 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6182 if (work_pending(&mddev->del_work)) 6183 flush_workqueue(md_misc_wq); 6184 if (mddev->sync_thread) { 6185 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6186 md_unregister_thread(&mddev->sync_thread); 6187 md_reap_sync_thread(mddev); 6188 } 6189 6190 del_timer_sync(&mddev->safemode_timer); 6191 6192 if (mddev->pers && mddev->pers->quiesce) { 6193 mddev->pers->quiesce(mddev, 1); 6194 mddev->pers->quiesce(mddev, 0); 6195 } 6196 md_bitmap_flush(mddev); 6197 6198 if (md_is_rdwr(mddev) && 6199 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6200 mddev->sb_flags)) { 6201 /* mark array as shutdown cleanly */ 6202 if (!mddev_is_clustered(mddev)) 6203 mddev->in_sync = 1; 6204 md_update_sb(mddev, 1); 6205 } 6206 /* disable policy to guarantee rdevs free resources for serialization */ 6207 mddev->serialize_policy = 0; 6208 mddev_destroy_serial_pool(mddev, NULL, true); 6209 } 6210 6211 void md_stop_writes(struct mddev *mddev) 6212 { 6213 mddev_lock_nointr(mddev); 6214 __md_stop_writes(mddev); 6215 mddev_unlock(mddev); 6216 } 6217 EXPORT_SYMBOL_GPL(md_stop_writes); 6218 6219 static void mddev_detach(struct mddev *mddev) 6220 { 6221 md_bitmap_wait_behind_writes(mddev); 6222 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6223 mddev->pers->quiesce(mddev, 1); 6224 mddev->pers->quiesce(mddev, 0); 6225 } 6226 md_unregister_thread(&mddev->thread); 6227 if (mddev->queue) 6228 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6229 } 6230 6231 static void __md_stop(struct mddev *mddev) 6232 { 6233 struct md_personality *pers = mddev->pers; 6234 md_bitmap_destroy(mddev); 6235 mddev_detach(mddev); 6236 /* Ensure ->event_work is done */ 6237 if (mddev->event_work.func) 6238 flush_workqueue(md_misc_wq); 6239 spin_lock(&mddev->lock); 6240 mddev->pers = NULL; 6241 spin_unlock(&mddev->lock); 6242 if (mddev->private) 6243 pers->free(mddev, mddev->private); 6244 mddev->private = NULL; 6245 if (pers->sync_request && mddev->to_remove == NULL) 6246 mddev->to_remove = &md_redundancy_group; 6247 module_put(pers->owner); 6248 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6249 } 6250 6251 void md_stop(struct mddev *mddev) 6252 { 6253 /* stop the array and free an attached data structures. 6254 * This is called from dm-raid 6255 */ 6256 __md_stop_writes(mddev); 6257 __md_stop(mddev); 6258 bioset_exit(&mddev->bio_set); 6259 bioset_exit(&mddev->sync_set); 6260 } 6261 6262 EXPORT_SYMBOL_GPL(md_stop); 6263 6264 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6265 { 6266 int err = 0; 6267 int did_freeze = 0; 6268 6269 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6270 did_freeze = 1; 6271 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6272 md_wakeup_thread(mddev->thread); 6273 } 6274 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6275 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6276 if (mddev->sync_thread) 6277 /* Thread might be blocked waiting for metadata update 6278 * which will now never happen */ 6279 wake_up_process(mddev->sync_thread->tsk); 6280 6281 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6282 return -EBUSY; 6283 mddev_unlock(mddev); 6284 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6285 &mddev->recovery)); 6286 wait_event(mddev->sb_wait, 6287 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6288 mddev_lock_nointr(mddev); 6289 6290 mutex_lock(&mddev->open_mutex); 6291 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6292 mddev->sync_thread || 6293 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6294 pr_warn("md: %s still in use.\n",mdname(mddev)); 6295 if (did_freeze) { 6296 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6297 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6298 md_wakeup_thread(mddev->thread); 6299 } 6300 err = -EBUSY; 6301 goto out; 6302 } 6303 if (mddev->pers) { 6304 __md_stop_writes(mddev); 6305 6306 err = -ENXIO; 6307 if (mddev->ro == MD_RDONLY) 6308 goto out; 6309 mddev->ro = MD_RDONLY; 6310 set_disk_ro(mddev->gendisk, 1); 6311 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6312 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6313 md_wakeup_thread(mddev->thread); 6314 sysfs_notify_dirent_safe(mddev->sysfs_state); 6315 err = 0; 6316 } 6317 out: 6318 mutex_unlock(&mddev->open_mutex); 6319 return err; 6320 } 6321 6322 /* mode: 6323 * 0 - completely stop and dis-assemble array 6324 * 2 - stop but do not disassemble array 6325 */ 6326 static int do_md_stop(struct mddev *mddev, int mode, 6327 struct block_device *bdev) 6328 { 6329 struct gendisk *disk = mddev->gendisk; 6330 struct md_rdev *rdev; 6331 int did_freeze = 0; 6332 6333 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6334 did_freeze = 1; 6335 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6336 md_wakeup_thread(mddev->thread); 6337 } 6338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6339 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6340 if (mddev->sync_thread) 6341 /* Thread might be blocked waiting for metadata update 6342 * which will now never happen */ 6343 wake_up_process(mddev->sync_thread->tsk); 6344 6345 mddev_unlock(mddev); 6346 wait_event(resync_wait, (mddev->sync_thread == NULL && 6347 !test_bit(MD_RECOVERY_RUNNING, 6348 &mddev->recovery))); 6349 mddev_lock_nointr(mddev); 6350 6351 mutex_lock(&mddev->open_mutex); 6352 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6353 mddev->sysfs_active || 6354 mddev->sync_thread || 6355 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6356 pr_warn("md: %s still in use.\n",mdname(mddev)); 6357 mutex_unlock(&mddev->open_mutex); 6358 if (did_freeze) { 6359 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6360 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6361 md_wakeup_thread(mddev->thread); 6362 } 6363 return -EBUSY; 6364 } 6365 if (mddev->pers) { 6366 if (!md_is_rdwr(mddev)) 6367 set_disk_ro(disk, 0); 6368 6369 __md_stop_writes(mddev); 6370 __md_stop(mddev); 6371 6372 /* tell userspace to handle 'inactive' */ 6373 sysfs_notify_dirent_safe(mddev->sysfs_state); 6374 6375 rdev_for_each(rdev, mddev) 6376 if (rdev->raid_disk >= 0) 6377 sysfs_unlink_rdev(mddev, rdev); 6378 6379 set_capacity_and_notify(disk, 0); 6380 mutex_unlock(&mddev->open_mutex); 6381 mddev->changed = 1; 6382 6383 if (!md_is_rdwr(mddev)) 6384 mddev->ro = MD_RDWR; 6385 } else 6386 mutex_unlock(&mddev->open_mutex); 6387 /* 6388 * Free resources if final stop 6389 */ 6390 if (mode == 0) { 6391 pr_info("md: %s stopped.\n", mdname(mddev)); 6392 6393 if (mddev->bitmap_info.file) { 6394 struct file *f = mddev->bitmap_info.file; 6395 spin_lock(&mddev->lock); 6396 mddev->bitmap_info.file = NULL; 6397 spin_unlock(&mddev->lock); 6398 fput(f); 6399 } 6400 mddev->bitmap_info.offset = 0; 6401 6402 export_array(mddev); 6403 6404 md_clean(mddev); 6405 if (mddev->hold_active == UNTIL_STOP) 6406 mddev->hold_active = 0; 6407 } 6408 md_new_event(); 6409 sysfs_notify_dirent_safe(mddev->sysfs_state); 6410 return 0; 6411 } 6412 6413 #ifndef MODULE 6414 static void autorun_array(struct mddev *mddev) 6415 { 6416 struct md_rdev *rdev; 6417 int err; 6418 6419 if (list_empty(&mddev->disks)) 6420 return; 6421 6422 pr_info("md: running: "); 6423 6424 rdev_for_each(rdev, mddev) { 6425 pr_cont("<%pg>", rdev->bdev); 6426 } 6427 pr_cont("\n"); 6428 6429 err = do_md_run(mddev); 6430 if (err) { 6431 pr_warn("md: do_md_run() returned %d\n", err); 6432 do_md_stop(mddev, 0, NULL); 6433 } 6434 } 6435 6436 /* 6437 * lets try to run arrays based on all disks that have arrived 6438 * until now. (those are in pending_raid_disks) 6439 * 6440 * the method: pick the first pending disk, collect all disks with 6441 * the same UUID, remove all from the pending list and put them into 6442 * the 'same_array' list. Then order this list based on superblock 6443 * update time (freshest comes first), kick out 'old' disks and 6444 * compare superblocks. If everything's fine then run it. 6445 * 6446 * If "unit" is allocated, then bump its reference count 6447 */ 6448 static void autorun_devices(int part) 6449 { 6450 struct md_rdev *rdev0, *rdev, *tmp; 6451 struct mddev *mddev; 6452 6453 pr_info("md: autorun ...\n"); 6454 while (!list_empty(&pending_raid_disks)) { 6455 int unit; 6456 dev_t dev; 6457 LIST_HEAD(candidates); 6458 rdev0 = list_entry(pending_raid_disks.next, 6459 struct md_rdev, same_set); 6460 6461 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6462 INIT_LIST_HEAD(&candidates); 6463 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6464 if (super_90_load(rdev, rdev0, 0) >= 0) { 6465 pr_debug("md: adding %pg ...\n", 6466 rdev->bdev); 6467 list_move(&rdev->same_set, &candidates); 6468 } 6469 /* 6470 * now we have a set of devices, with all of them having 6471 * mostly sane superblocks. It's time to allocate the 6472 * mddev. 6473 */ 6474 if (part) { 6475 dev = MKDEV(mdp_major, 6476 rdev0->preferred_minor << MdpMinorShift); 6477 unit = MINOR(dev) >> MdpMinorShift; 6478 } else { 6479 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6480 unit = MINOR(dev); 6481 } 6482 if (rdev0->preferred_minor != unit) { 6483 pr_warn("md: unit number in %pg is bad: %d\n", 6484 rdev0->bdev, rdev0->preferred_minor); 6485 break; 6486 } 6487 6488 mddev = md_alloc(dev, NULL); 6489 if (IS_ERR(mddev)) 6490 break; 6491 6492 if (mddev_lock(mddev)) 6493 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6494 else if (mddev->raid_disks || mddev->major_version 6495 || !list_empty(&mddev->disks)) { 6496 pr_warn("md: %s already running, cannot run %pg\n", 6497 mdname(mddev), rdev0->bdev); 6498 mddev_unlock(mddev); 6499 } else { 6500 pr_debug("md: created %s\n", mdname(mddev)); 6501 mddev->persistent = 1; 6502 rdev_for_each_list(rdev, tmp, &candidates) { 6503 list_del_init(&rdev->same_set); 6504 if (bind_rdev_to_array(rdev, mddev)) 6505 export_rdev(rdev); 6506 } 6507 autorun_array(mddev); 6508 mddev_unlock(mddev); 6509 } 6510 /* on success, candidates will be empty, on error 6511 * it won't... 6512 */ 6513 rdev_for_each_list(rdev, tmp, &candidates) { 6514 list_del_init(&rdev->same_set); 6515 export_rdev(rdev); 6516 } 6517 mddev_put(mddev); 6518 } 6519 pr_info("md: ... autorun DONE.\n"); 6520 } 6521 #endif /* !MODULE */ 6522 6523 static int get_version(void __user *arg) 6524 { 6525 mdu_version_t ver; 6526 6527 ver.major = MD_MAJOR_VERSION; 6528 ver.minor = MD_MINOR_VERSION; 6529 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6530 6531 if (copy_to_user(arg, &ver, sizeof(ver))) 6532 return -EFAULT; 6533 6534 return 0; 6535 } 6536 6537 static int get_array_info(struct mddev *mddev, void __user *arg) 6538 { 6539 mdu_array_info_t info; 6540 int nr,working,insync,failed,spare; 6541 struct md_rdev *rdev; 6542 6543 nr = working = insync = failed = spare = 0; 6544 rcu_read_lock(); 6545 rdev_for_each_rcu(rdev, mddev) { 6546 nr++; 6547 if (test_bit(Faulty, &rdev->flags)) 6548 failed++; 6549 else { 6550 working++; 6551 if (test_bit(In_sync, &rdev->flags)) 6552 insync++; 6553 else if (test_bit(Journal, &rdev->flags)) 6554 /* TODO: add journal count to md_u.h */ 6555 ; 6556 else 6557 spare++; 6558 } 6559 } 6560 rcu_read_unlock(); 6561 6562 info.major_version = mddev->major_version; 6563 info.minor_version = mddev->minor_version; 6564 info.patch_version = MD_PATCHLEVEL_VERSION; 6565 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6566 info.level = mddev->level; 6567 info.size = mddev->dev_sectors / 2; 6568 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6569 info.size = -1; 6570 info.nr_disks = nr; 6571 info.raid_disks = mddev->raid_disks; 6572 info.md_minor = mddev->md_minor; 6573 info.not_persistent= !mddev->persistent; 6574 6575 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6576 info.state = 0; 6577 if (mddev->in_sync) 6578 info.state = (1<<MD_SB_CLEAN); 6579 if (mddev->bitmap && mddev->bitmap_info.offset) 6580 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6581 if (mddev_is_clustered(mddev)) 6582 info.state |= (1<<MD_SB_CLUSTERED); 6583 info.active_disks = insync; 6584 info.working_disks = working; 6585 info.failed_disks = failed; 6586 info.spare_disks = spare; 6587 6588 info.layout = mddev->layout; 6589 info.chunk_size = mddev->chunk_sectors << 9; 6590 6591 if (copy_to_user(arg, &info, sizeof(info))) 6592 return -EFAULT; 6593 6594 return 0; 6595 } 6596 6597 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6598 { 6599 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6600 char *ptr; 6601 int err; 6602 6603 file = kzalloc(sizeof(*file), GFP_NOIO); 6604 if (!file) 6605 return -ENOMEM; 6606 6607 err = 0; 6608 spin_lock(&mddev->lock); 6609 /* bitmap enabled */ 6610 if (mddev->bitmap_info.file) { 6611 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6612 sizeof(file->pathname)); 6613 if (IS_ERR(ptr)) 6614 err = PTR_ERR(ptr); 6615 else 6616 memmove(file->pathname, ptr, 6617 sizeof(file->pathname)-(ptr-file->pathname)); 6618 } 6619 spin_unlock(&mddev->lock); 6620 6621 if (err == 0 && 6622 copy_to_user(arg, file, sizeof(*file))) 6623 err = -EFAULT; 6624 6625 kfree(file); 6626 return err; 6627 } 6628 6629 static int get_disk_info(struct mddev *mddev, void __user * arg) 6630 { 6631 mdu_disk_info_t info; 6632 struct md_rdev *rdev; 6633 6634 if (copy_from_user(&info, arg, sizeof(info))) 6635 return -EFAULT; 6636 6637 rcu_read_lock(); 6638 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6639 if (rdev) { 6640 info.major = MAJOR(rdev->bdev->bd_dev); 6641 info.minor = MINOR(rdev->bdev->bd_dev); 6642 info.raid_disk = rdev->raid_disk; 6643 info.state = 0; 6644 if (test_bit(Faulty, &rdev->flags)) 6645 info.state |= (1<<MD_DISK_FAULTY); 6646 else if (test_bit(In_sync, &rdev->flags)) { 6647 info.state |= (1<<MD_DISK_ACTIVE); 6648 info.state |= (1<<MD_DISK_SYNC); 6649 } 6650 if (test_bit(Journal, &rdev->flags)) 6651 info.state |= (1<<MD_DISK_JOURNAL); 6652 if (test_bit(WriteMostly, &rdev->flags)) 6653 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6654 if (test_bit(FailFast, &rdev->flags)) 6655 info.state |= (1<<MD_DISK_FAILFAST); 6656 } else { 6657 info.major = info.minor = 0; 6658 info.raid_disk = -1; 6659 info.state = (1<<MD_DISK_REMOVED); 6660 } 6661 rcu_read_unlock(); 6662 6663 if (copy_to_user(arg, &info, sizeof(info))) 6664 return -EFAULT; 6665 6666 return 0; 6667 } 6668 6669 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6670 { 6671 struct md_rdev *rdev; 6672 dev_t dev = MKDEV(info->major,info->minor); 6673 6674 if (mddev_is_clustered(mddev) && 6675 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6676 pr_warn("%s: Cannot add to clustered mddev.\n", 6677 mdname(mddev)); 6678 return -EINVAL; 6679 } 6680 6681 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6682 return -EOVERFLOW; 6683 6684 if (!mddev->raid_disks) { 6685 int err; 6686 /* expecting a device which has a superblock */ 6687 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6688 if (IS_ERR(rdev)) { 6689 pr_warn("md: md_import_device returned %ld\n", 6690 PTR_ERR(rdev)); 6691 return PTR_ERR(rdev); 6692 } 6693 if (!list_empty(&mddev->disks)) { 6694 struct md_rdev *rdev0 6695 = list_entry(mddev->disks.next, 6696 struct md_rdev, same_set); 6697 err = super_types[mddev->major_version] 6698 .load_super(rdev, rdev0, mddev->minor_version); 6699 if (err < 0) { 6700 pr_warn("md: %pg has different UUID to %pg\n", 6701 rdev->bdev, 6702 rdev0->bdev); 6703 export_rdev(rdev); 6704 return -EINVAL; 6705 } 6706 } 6707 err = bind_rdev_to_array(rdev, mddev); 6708 if (err) 6709 export_rdev(rdev); 6710 return err; 6711 } 6712 6713 /* 6714 * md_add_new_disk can be used once the array is assembled 6715 * to add "hot spares". They must already have a superblock 6716 * written 6717 */ 6718 if (mddev->pers) { 6719 int err; 6720 if (!mddev->pers->hot_add_disk) { 6721 pr_warn("%s: personality does not support diskops!\n", 6722 mdname(mddev)); 6723 return -EINVAL; 6724 } 6725 if (mddev->persistent) 6726 rdev = md_import_device(dev, mddev->major_version, 6727 mddev->minor_version); 6728 else 6729 rdev = md_import_device(dev, -1, -1); 6730 if (IS_ERR(rdev)) { 6731 pr_warn("md: md_import_device returned %ld\n", 6732 PTR_ERR(rdev)); 6733 return PTR_ERR(rdev); 6734 } 6735 /* set saved_raid_disk if appropriate */ 6736 if (!mddev->persistent) { 6737 if (info->state & (1<<MD_DISK_SYNC) && 6738 info->raid_disk < mddev->raid_disks) { 6739 rdev->raid_disk = info->raid_disk; 6740 set_bit(In_sync, &rdev->flags); 6741 clear_bit(Bitmap_sync, &rdev->flags); 6742 } else 6743 rdev->raid_disk = -1; 6744 rdev->saved_raid_disk = rdev->raid_disk; 6745 } else 6746 super_types[mddev->major_version]. 6747 validate_super(mddev, rdev); 6748 if ((info->state & (1<<MD_DISK_SYNC)) && 6749 rdev->raid_disk != info->raid_disk) { 6750 /* This was a hot-add request, but events doesn't 6751 * match, so reject it. 6752 */ 6753 export_rdev(rdev); 6754 return -EINVAL; 6755 } 6756 6757 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6758 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6759 set_bit(WriteMostly, &rdev->flags); 6760 else 6761 clear_bit(WriteMostly, &rdev->flags); 6762 if (info->state & (1<<MD_DISK_FAILFAST)) 6763 set_bit(FailFast, &rdev->flags); 6764 else 6765 clear_bit(FailFast, &rdev->flags); 6766 6767 if (info->state & (1<<MD_DISK_JOURNAL)) { 6768 struct md_rdev *rdev2; 6769 bool has_journal = false; 6770 6771 /* make sure no existing journal disk */ 6772 rdev_for_each(rdev2, mddev) { 6773 if (test_bit(Journal, &rdev2->flags)) { 6774 has_journal = true; 6775 break; 6776 } 6777 } 6778 if (has_journal || mddev->bitmap) { 6779 export_rdev(rdev); 6780 return -EBUSY; 6781 } 6782 set_bit(Journal, &rdev->flags); 6783 } 6784 /* 6785 * check whether the device shows up in other nodes 6786 */ 6787 if (mddev_is_clustered(mddev)) { 6788 if (info->state & (1 << MD_DISK_CANDIDATE)) 6789 set_bit(Candidate, &rdev->flags); 6790 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6791 /* --add initiated by this node */ 6792 err = md_cluster_ops->add_new_disk(mddev, rdev); 6793 if (err) { 6794 export_rdev(rdev); 6795 return err; 6796 } 6797 } 6798 } 6799 6800 rdev->raid_disk = -1; 6801 err = bind_rdev_to_array(rdev, mddev); 6802 6803 if (err) 6804 export_rdev(rdev); 6805 6806 if (mddev_is_clustered(mddev)) { 6807 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6808 if (!err) { 6809 err = md_cluster_ops->new_disk_ack(mddev, 6810 err == 0); 6811 if (err) 6812 md_kick_rdev_from_array(rdev); 6813 } 6814 } else { 6815 if (err) 6816 md_cluster_ops->add_new_disk_cancel(mddev); 6817 else 6818 err = add_bound_rdev(rdev); 6819 } 6820 6821 } else if (!err) 6822 err = add_bound_rdev(rdev); 6823 6824 return err; 6825 } 6826 6827 /* otherwise, md_add_new_disk is only allowed 6828 * for major_version==0 superblocks 6829 */ 6830 if (mddev->major_version != 0) { 6831 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6832 return -EINVAL; 6833 } 6834 6835 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6836 int err; 6837 rdev = md_import_device(dev, -1, 0); 6838 if (IS_ERR(rdev)) { 6839 pr_warn("md: error, md_import_device() returned %ld\n", 6840 PTR_ERR(rdev)); 6841 return PTR_ERR(rdev); 6842 } 6843 rdev->desc_nr = info->number; 6844 if (info->raid_disk < mddev->raid_disks) 6845 rdev->raid_disk = info->raid_disk; 6846 else 6847 rdev->raid_disk = -1; 6848 6849 if (rdev->raid_disk < mddev->raid_disks) 6850 if (info->state & (1<<MD_DISK_SYNC)) 6851 set_bit(In_sync, &rdev->flags); 6852 6853 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6854 set_bit(WriteMostly, &rdev->flags); 6855 if (info->state & (1<<MD_DISK_FAILFAST)) 6856 set_bit(FailFast, &rdev->flags); 6857 6858 if (!mddev->persistent) { 6859 pr_debug("md: nonpersistent superblock ...\n"); 6860 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6861 } else 6862 rdev->sb_start = calc_dev_sboffset(rdev); 6863 rdev->sectors = rdev->sb_start; 6864 6865 err = bind_rdev_to_array(rdev, mddev); 6866 if (err) { 6867 export_rdev(rdev); 6868 return err; 6869 } 6870 } 6871 6872 return 0; 6873 } 6874 6875 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6876 { 6877 struct md_rdev *rdev; 6878 6879 if (!mddev->pers) 6880 return -ENODEV; 6881 6882 rdev = find_rdev(mddev, dev); 6883 if (!rdev) 6884 return -ENXIO; 6885 6886 if (rdev->raid_disk < 0) 6887 goto kick_rdev; 6888 6889 clear_bit(Blocked, &rdev->flags); 6890 remove_and_add_spares(mddev, rdev); 6891 6892 if (rdev->raid_disk >= 0) 6893 goto busy; 6894 6895 kick_rdev: 6896 if (mddev_is_clustered(mddev)) { 6897 if (md_cluster_ops->remove_disk(mddev, rdev)) 6898 goto busy; 6899 } 6900 6901 md_kick_rdev_from_array(rdev); 6902 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6903 if (mddev->thread) 6904 md_wakeup_thread(mddev->thread); 6905 else 6906 md_update_sb(mddev, 1); 6907 md_new_event(); 6908 6909 return 0; 6910 busy: 6911 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6912 rdev->bdev, mdname(mddev)); 6913 return -EBUSY; 6914 } 6915 6916 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6917 { 6918 int err; 6919 struct md_rdev *rdev; 6920 6921 if (!mddev->pers) 6922 return -ENODEV; 6923 6924 if (mddev->major_version != 0) { 6925 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6926 mdname(mddev)); 6927 return -EINVAL; 6928 } 6929 if (!mddev->pers->hot_add_disk) { 6930 pr_warn("%s: personality does not support diskops!\n", 6931 mdname(mddev)); 6932 return -EINVAL; 6933 } 6934 6935 rdev = md_import_device(dev, -1, 0); 6936 if (IS_ERR(rdev)) { 6937 pr_warn("md: error, md_import_device() returned %ld\n", 6938 PTR_ERR(rdev)); 6939 return -EINVAL; 6940 } 6941 6942 if (mddev->persistent) 6943 rdev->sb_start = calc_dev_sboffset(rdev); 6944 else 6945 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6946 6947 rdev->sectors = rdev->sb_start; 6948 6949 if (test_bit(Faulty, &rdev->flags)) { 6950 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6951 rdev->bdev, mdname(mddev)); 6952 err = -EINVAL; 6953 goto abort_export; 6954 } 6955 6956 clear_bit(In_sync, &rdev->flags); 6957 rdev->desc_nr = -1; 6958 rdev->saved_raid_disk = -1; 6959 err = bind_rdev_to_array(rdev, mddev); 6960 if (err) 6961 goto abort_export; 6962 6963 /* 6964 * The rest should better be atomic, we can have disk failures 6965 * noticed in interrupt contexts ... 6966 */ 6967 6968 rdev->raid_disk = -1; 6969 6970 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6971 if (!mddev->thread) 6972 md_update_sb(mddev, 1); 6973 /* 6974 * If the new disk does not support REQ_NOWAIT, 6975 * disable on the whole MD. 6976 */ 6977 if (!bdev_nowait(rdev->bdev)) { 6978 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6979 mdname(mddev), rdev->bdev); 6980 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6981 } 6982 /* 6983 * Kick recovery, maybe this spare has to be added to the 6984 * array immediately. 6985 */ 6986 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6987 md_wakeup_thread(mddev->thread); 6988 md_new_event(); 6989 return 0; 6990 6991 abort_export: 6992 export_rdev(rdev); 6993 return err; 6994 } 6995 6996 static int set_bitmap_file(struct mddev *mddev, int fd) 6997 { 6998 int err = 0; 6999 7000 if (mddev->pers) { 7001 if (!mddev->pers->quiesce || !mddev->thread) 7002 return -EBUSY; 7003 if (mddev->recovery || mddev->sync_thread) 7004 return -EBUSY; 7005 /* we should be able to change the bitmap.. */ 7006 } 7007 7008 if (fd >= 0) { 7009 struct inode *inode; 7010 struct file *f; 7011 7012 if (mddev->bitmap || mddev->bitmap_info.file) 7013 return -EEXIST; /* cannot add when bitmap is present */ 7014 f = fget(fd); 7015 7016 if (f == NULL) { 7017 pr_warn("%s: error: failed to get bitmap file\n", 7018 mdname(mddev)); 7019 return -EBADF; 7020 } 7021 7022 inode = f->f_mapping->host; 7023 if (!S_ISREG(inode->i_mode)) { 7024 pr_warn("%s: error: bitmap file must be a regular file\n", 7025 mdname(mddev)); 7026 err = -EBADF; 7027 } else if (!(f->f_mode & FMODE_WRITE)) { 7028 pr_warn("%s: error: bitmap file must open for write\n", 7029 mdname(mddev)); 7030 err = -EBADF; 7031 } else if (atomic_read(&inode->i_writecount) != 1) { 7032 pr_warn("%s: error: bitmap file is already in use\n", 7033 mdname(mddev)); 7034 err = -EBUSY; 7035 } 7036 if (err) { 7037 fput(f); 7038 return err; 7039 } 7040 mddev->bitmap_info.file = f; 7041 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7042 } else if (mddev->bitmap == NULL) 7043 return -ENOENT; /* cannot remove what isn't there */ 7044 err = 0; 7045 if (mddev->pers) { 7046 if (fd >= 0) { 7047 struct bitmap *bitmap; 7048 7049 bitmap = md_bitmap_create(mddev, -1); 7050 mddev_suspend(mddev); 7051 if (!IS_ERR(bitmap)) { 7052 mddev->bitmap = bitmap; 7053 err = md_bitmap_load(mddev); 7054 } else 7055 err = PTR_ERR(bitmap); 7056 if (err) { 7057 md_bitmap_destroy(mddev); 7058 fd = -1; 7059 } 7060 mddev_resume(mddev); 7061 } else if (fd < 0) { 7062 mddev_suspend(mddev); 7063 md_bitmap_destroy(mddev); 7064 mddev_resume(mddev); 7065 } 7066 } 7067 if (fd < 0) { 7068 struct file *f = mddev->bitmap_info.file; 7069 if (f) { 7070 spin_lock(&mddev->lock); 7071 mddev->bitmap_info.file = NULL; 7072 spin_unlock(&mddev->lock); 7073 fput(f); 7074 } 7075 } 7076 7077 return err; 7078 } 7079 7080 /* 7081 * md_set_array_info is used two different ways 7082 * The original usage is when creating a new array. 7083 * In this usage, raid_disks is > 0 and it together with 7084 * level, size, not_persistent,layout,chunksize determine the 7085 * shape of the array. 7086 * This will always create an array with a type-0.90.0 superblock. 7087 * The newer usage is when assembling an array. 7088 * In this case raid_disks will be 0, and the major_version field is 7089 * use to determine which style super-blocks are to be found on the devices. 7090 * The minor and patch _version numbers are also kept incase the 7091 * super_block handler wishes to interpret them. 7092 */ 7093 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7094 { 7095 if (info->raid_disks == 0) { 7096 /* just setting version number for superblock loading */ 7097 if (info->major_version < 0 || 7098 info->major_version >= ARRAY_SIZE(super_types) || 7099 super_types[info->major_version].name == NULL) { 7100 /* maybe try to auto-load a module? */ 7101 pr_warn("md: superblock version %d not known\n", 7102 info->major_version); 7103 return -EINVAL; 7104 } 7105 mddev->major_version = info->major_version; 7106 mddev->minor_version = info->minor_version; 7107 mddev->patch_version = info->patch_version; 7108 mddev->persistent = !info->not_persistent; 7109 /* ensure mddev_put doesn't delete this now that there 7110 * is some minimal configuration. 7111 */ 7112 mddev->ctime = ktime_get_real_seconds(); 7113 return 0; 7114 } 7115 mddev->major_version = MD_MAJOR_VERSION; 7116 mddev->minor_version = MD_MINOR_VERSION; 7117 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7118 mddev->ctime = ktime_get_real_seconds(); 7119 7120 mddev->level = info->level; 7121 mddev->clevel[0] = 0; 7122 mddev->dev_sectors = 2 * (sector_t)info->size; 7123 mddev->raid_disks = info->raid_disks; 7124 /* don't set md_minor, it is determined by which /dev/md* was 7125 * openned 7126 */ 7127 if (info->state & (1<<MD_SB_CLEAN)) 7128 mddev->recovery_cp = MaxSector; 7129 else 7130 mddev->recovery_cp = 0; 7131 mddev->persistent = ! info->not_persistent; 7132 mddev->external = 0; 7133 7134 mddev->layout = info->layout; 7135 if (mddev->level == 0) 7136 /* Cannot trust RAID0 layout info here */ 7137 mddev->layout = -1; 7138 mddev->chunk_sectors = info->chunk_size >> 9; 7139 7140 if (mddev->persistent) { 7141 mddev->max_disks = MD_SB_DISKS; 7142 mddev->flags = 0; 7143 mddev->sb_flags = 0; 7144 } 7145 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7146 7147 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7148 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7149 mddev->bitmap_info.offset = 0; 7150 7151 mddev->reshape_position = MaxSector; 7152 7153 /* 7154 * Generate a 128 bit UUID 7155 */ 7156 get_random_bytes(mddev->uuid, 16); 7157 7158 mddev->new_level = mddev->level; 7159 mddev->new_chunk_sectors = mddev->chunk_sectors; 7160 mddev->new_layout = mddev->layout; 7161 mddev->delta_disks = 0; 7162 mddev->reshape_backwards = 0; 7163 7164 return 0; 7165 } 7166 7167 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7168 { 7169 lockdep_assert_held(&mddev->reconfig_mutex); 7170 7171 if (mddev->external_size) 7172 return; 7173 7174 mddev->array_sectors = array_sectors; 7175 } 7176 EXPORT_SYMBOL(md_set_array_sectors); 7177 7178 static int update_size(struct mddev *mddev, sector_t num_sectors) 7179 { 7180 struct md_rdev *rdev; 7181 int rv; 7182 int fit = (num_sectors == 0); 7183 sector_t old_dev_sectors = mddev->dev_sectors; 7184 7185 if (mddev->pers->resize == NULL) 7186 return -EINVAL; 7187 /* The "num_sectors" is the number of sectors of each device that 7188 * is used. This can only make sense for arrays with redundancy. 7189 * linear and raid0 always use whatever space is available. We can only 7190 * consider changing this number if no resync or reconstruction is 7191 * happening, and if the new size is acceptable. It must fit before the 7192 * sb_start or, if that is <data_offset, it must fit before the size 7193 * of each device. If num_sectors is zero, we find the largest size 7194 * that fits. 7195 */ 7196 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7197 mddev->sync_thread) 7198 return -EBUSY; 7199 if (!md_is_rdwr(mddev)) 7200 return -EROFS; 7201 7202 rdev_for_each(rdev, mddev) { 7203 sector_t avail = rdev->sectors; 7204 7205 if (fit && (num_sectors == 0 || num_sectors > avail)) 7206 num_sectors = avail; 7207 if (avail < num_sectors) 7208 return -ENOSPC; 7209 } 7210 rv = mddev->pers->resize(mddev, num_sectors); 7211 if (!rv) { 7212 if (mddev_is_clustered(mddev)) 7213 md_cluster_ops->update_size(mddev, old_dev_sectors); 7214 else if (mddev->queue) { 7215 set_capacity_and_notify(mddev->gendisk, 7216 mddev->array_sectors); 7217 } 7218 } 7219 return rv; 7220 } 7221 7222 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7223 { 7224 int rv; 7225 struct md_rdev *rdev; 7226 /* change the number of raid disks */ 7227 if (mddev->pers->check_reshape == NULL) 7228 return -EINVAL; 7229 if (!md_is_rdwr(mddev)) 7230 return -EROFS; 7231 if (raid_disks <= 0 || 7232 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7233 return -EINVAL; 7234 if (mddev->sync_thread || 7235 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7236 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7237 mddev->reshape_position != MaxSector) 7238 return -EBUSY; 7239 7240 rdev_for_each(rdev, mddev) { 7241 if (mddev->raid_disks < raid_disks && 7242 rdev->data_offset < rdev->new_data_offset) 7243 return -EINVAL; 7244 if (mddev->raid_disks > raid_disks && 7245 rdev->data_offset > rdev->new_data_offset) 7246 return -EINVAL; 7247 } 7248 7249 mddev->delta_disks = raid_disks - mddev->raid_disks; 7250 if (mddev->delta_disks < 0) 7251 mddev->reshape_backwards = 1; 7252 else if (mddev->delta_disks > 0) 7253 mddev->reshape_backwards = 0; 7254 7255 rv = mddev->pers->check_reshape(mddev); 7256 if (rv < 0) { 7257 mddev->delta_disks = 0; 7258 mddev->reshape_backwards = 0; 7259 } 7260 return rv; 7261 } 7262 7263 /* 7264 * update_array_info is used to change the configuration of an 7265 * on-line array. 7266 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7267 * fields in the info are checked against the array. 7268 * Any differences that cannot be handled will cause an error. 7269 * Normally, only one change can be managed at a time. 7270 */ 7271 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7272 { 7273 int rv = 0; 7274 int cnt = 0; 7275 int state = 0; 7276 7277 /* calculate expected state,ignoring low bits */ 7278 if (mddev->bitmap && mddev->bitmap_info.offset) 7279 state |= (1 << MD_SB_BITMAP_PRESENT); 7280 7281 if (mddev->major_version != info->major_version || 7282 mddev->minor_version != info->minor_version || 7283 /* mddev->patch_version != info->patch_version || */ 7284 mddev->ctime != info->ctime || 7285 mddev->level != info->level || 7286 /* mddev->layout != info->layout || */ 7287 mddev->persistent != !info->not_persistent || 7288 mddev->chunk_sectors != info->chunk_size >> 9 || 7289 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7290 ((state^info->state) & 0xfffffe00) 7291 ) 7292 return -EINVAL; 7293 /* Check there is only one change */ 7294 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7295 cnt++; 7296 if (mddev->raid_disks != info->raid_disks) 7297 cnt++; 7298 if (mddev->layout != info->layout) 7299 cnt++; 7300 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7301 cnt++; 7302 if (cnt == 0) 7303 return 0; 7304 if (cnt > 1) 7305 return -EINVAL; 7306 7307 if (mddev->layout != info->layout) { 7308 /* Change layout 7309 * we don't need to do anything at the md level, the 7310 * personality will take care of it all. 7311 */ 7312 if (mddev->pers->check_reshape == NULL) 7313 return -EINVAL; 7314 else { 7315 mddev->new_layout = info->layout; 7316 rv = mddev->pers->check_reshape(mddev); 7317 if (rv) 7318 mddev->new_layout = mddev->layout; 7319 return rv; 7320 } 7321 } 7322 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7323 rv = update_size(mddev, (sector_t)info->size * 2); 7324 7325 if (mddev->raid_disks != info->raid_disks) 7326 rv = update_raid_disks(mddev, info->raid_disks); 7327 7328 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7329 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7330 rv = -EINVAL; 7331 goto err; 7332 } 7333 if (mddev->recovery || mddev->sync_thread) { 7334 rv = -EBUSY; 7335 goto err; 7336 } 7337 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7338 struct bitmap *bitmap; 7339 /* add the bitmap */ 7340 if (mddev->bitmap) { 7341 rv = -EEXIST; 7342 goto err; 7343 } 7344 if (mddev->bitmap_info.default_offset == 0) { 7345 rv = -EINVAL; 7346 goto err; 7347 } 7348 mddev->bitmap_info.offset = 7349 mddev->bitmap_info.default_offset; 7350 mddev->bitmap_info.space = 7351 mddev->bitmap_info.default_space; 7352 bitmap = md_bitmap_create(mddev, -1); 7353 mddev_suspend(mddev); 7354 if (!IS_ERR(bitmap)) { 7355 mddev->bitmap = bitmap; 7356 rv = md_bitmap_load(mddev); 7357 } else 7358 rv = PTR_ERR(bitmap); 7359 if (rv) 7360 md_bitmap_destroy(mddev); 7361 mddev_resume(mddev); 7362 } else { 7363 /* remove the bitmap */ 7364 if (!mddev->bitmap) { 7365 rv = -ENOENT; 7366 goto err; 7367 } 7368 if (mddev->bitmap->storage.file) { 7369 rv = -EINVAL; 7370 goto err; 7371 } 7372 if (mddev->bitmap_info.nodes) { 7373 /* hold PW on all the bitmap lock */ 7374 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7375 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7376 rv = -EPERM; 7377 md_cluster_ops->unlock_all_bitmaps(mddev); 7378 goto err; 7379 } 7380 7381 mddev->bitmap_info.nodes = 0; 7382 md_cluster_ops->leave(mddev); 7383 module_put(md_cluster_mod); 7384 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7385 } 7386 mddev_suspend(mddev); 7387 md_bitmap_destroy(mddev); 7388 mddev_resume(mddev); 7389 mddev->bitmap_info.offset = 0; 7390 } 7391 } 7392 md_update_sb(mddev, 1); 7393 return rv; 7394 err: 7395 return rv; 7396 } 7397 7398 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7399 { 7400 struct md_rdev *rdev; 7401 int err = 0; 7402 7403 if (mddev->pers == NULL) 7404 return -ENODEV; 7405 7406 rcu_read_lock(); 7407 rdev = md_find_rdev_rcu(mddev, dev); 7408 if (!rdev) 7409 err = -ENODEV; 7410 else { 7411 md_error(mddev, rdev); 7412 if (test_bit(MD_BROKEN, &mddev->flags)) 7413 err = -EBUSY; 7414 } 7415 rcu_read_unlock(); 7416 return err; 7417 } 7418 7419 /* 7420 * We have a problem here : there is no easy way to give a CHS 7421 * virtual geometry. We currently pretend that we have a 2 heads 7422 * 4 sectors (with a BIG number of cylinders...). This drives 7423 * dosfs just mad... ;-) 7424 */ 7425 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7426 { 7427 struct mddev *mddev = bdev->bd_disk->private_data; 7428 7429 geo->heads = 2; 7430 geo->sectors = 4; 7431 geo->cylinders = mddev->array_sectors / 8; 7432 return 0; 7433 } 7434 7435 static inline bool md_ioctl_valid(unsigned int cmd) 7436 { 7437 switch (cmd) { 7438 case ADD_NEW_DISK: 7439 case GET_ARRAY_INFO: 7440 case GET_BITMAP_FILE: 7441 case GET_DISK_INFO: 7442 case HOT_ADD_DISK: 7443 case HOT_REMOVE_DISK: 7444 case RAID_VERSION: 7445 case RESTART_ARRAY_RW: 7446 case RUN_ARRAY: 7447 case SET_ARRAY_INFO: 7448 case SET_BITMAP_FILE: 7449 case SET_DISK_FAULTY: 7450 case STOP_ARRAY: 7451 case STOP_ARRAY_RO: 7452 case CLUSTERED_DISK_NACK: 7453 return true; 7454 default: 7455 return false; 7456 } 7457 } 7458 7459 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7460 { 7461 mdu_array_info_t info; 7462 int err; 7463 7464 if (!argp) 7465 memset(&info, 0, sizeof(info)); 7466 else if (copy_from_user(&info, argp, sizeof(info))) 7467 return -EFAULT; 7468 7469 if (mddev->pers) { 7470 err = update_array_info(mddev, &info); 7471 if (err) 7472 pr_warn("md: couldn't update array info. %d\n", err); 7473 return err; 7474 } 7475 7476 if (!list_empty(&mddev->disks)) { 7477 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7478 return -EBUSY; 7479 } 7480 7481 if (mddev->raid_disks) { 7482 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7483 return -EBUSY; 7484 } 7485 7486 err = md_set_array_info(mddev, &info); 7487 if (err) 7488 pr_warn("md: couldn't set array info. %d\n", err); 7489 7490 return err; 7491 } 7492 7493 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7494 unsigned int cmd, unsigned long arg) 7495 { 7496 int err = 0; 7497 void __user *argp = (void __user *)arg; 7498 struct mddev *mddev = NULL; 7499 bool did_set_md_closing = false; 7500 7501 if (!md_ioctl_valid(cmd)) 7502 return -ENOTTY; 7503 7504 switch (cmd) { 7505 case RAID_VERSION: 7506 case GET_ARRAY_INFO: 7507 case GET_DISK_INFO: 7508 break; 7509 default: 7510 if (!capable(CAP_SYS_ADMIN)) 7511 return -EACCES; 7512 } 7513 7514 /* 7515 * Commands dealing with the RAID driver but not any 7516 * particular array: 7517 */ 7518 switch (cmd) { 7519 case RAID_VERSION: 7520 err = get_version(argp); 7521 goto out; 7522 default:; 7523 } 7524 7525 /* 7526 * Commands creating/starting a new array: 7527 */ 7528 7529 mddev = bdev->bd_disk->private_data; 7530 7531 if (!mddev) { 7532 BUG(); 7533 goto out; 7534 } 7535 7536 /* Some actions do not requires the mutex */ 7537 switch (cmd) { 7538 case GET_ARRAY_INFO: 7539 if (!mddev->raid_disks && !mddev->external) 7540 err = -ENODEV; 7541 else 7542 err = get_array_info(mddev, argp); 7543 goto out; 7544 7545 case GET_DISK_INFO: 7546 if (!mddev->raid_disks && !mddev->external) 7547 err = -ENODEV; 7548 else 7549 err = get_disk_info(mddev, argp); 7550 goto out; 7551 7552 case SET_DISK_FAULTY: 7553 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7554 goto out; 7555 7556 case GET_BITMAP_FILE: 7557 err = get_bitmap_file(mddev, argp); 7558 goto out; 7559 7560 } 7561 7562 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7563 flush_rdev_wq(mddev); 7564 7565 if (cmd == HOT_REMOVE_DISK) 7566 /* need to ensure recovery thread has run */ 7567 wait_event_interruptible_timeout(mddev->sb_wait, 7568 !test_bit(MD_RECOVERY_NEEDED, 7569 &mddev->recovery), 7570 msecs_to_jiffies(5000)); 7571 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7572 /* Need to flush page cache, and ensure no-one else opens 7573 * and writes 7574 */ 7575 mutex_lock(&mddev->open_mutex); 7576 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7577 mutex_unlock(&mddev->open_mutex); 7578 err = -EBUSY; 7579 goto out; 7580 } 7581 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7582 mutex_unlock(&mddev->open_mutex); 7583 err = -EBUSY; 7584 goto out; 7585 } 7586 did_set_md_closing = true; 7587 mutex_unlock(&mddev->open_mutex); 7588 sync_blockdev(bdev); 7589 } 7590 err = mddev_lock(mddev); 7591 if (err) { 7592 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7593 err, cmd); 7594 goto out; 7595 } 7596 7597 if (cmd == SET_ARRAY_INFO) { 7598 err = __md_set_array_info(mddev, argp); 7599 goto unlock; 7600 } 7601 7602 /* 7603 * Commands querying/configuring an existing array: 7604 */ 7605 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7606 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7607 if ((!mddev->raid_disks && !mddev->external) 7608 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7609 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7610 && cmd != GET_BITMAP_FILE) { 7611 err = -ENODEV; 7612 goto unlock; 7613 } 7614 7615 /* 7616 * Commands even a read-only array can execute: 7617 */ 7618 switch (cmd) { 7619 case RESTART_ARRAY_RW: 7620 err = restart_array(mddev); 7621 goto unlock; 7622 7623 case STOP_ARRAY: 7624 err = do_md_stop(mddev, 0, bdev); 7625 goto unlock; 7626 7627 case STOP_ARRAY_RO: 7628 err = md_set_readonly(mddev, bdev); 7629 goto unlock; 7630 7631 case HOT_REMOVE_DISK: 7632 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7633 goto unlock; 7634 7635 case ADD_NEW_DISK: 7636 /* We can support ADD_NEW_DISK on read-only arrays 7637 * only if we are re-adding a preexisting device. 7638 * So require mddev->pers and MD_DISK_SYNC. 7639 */ 7640 if (mddev->pers) { 7641 mdu_disk_info_t info; 7642 if (copy_from_user(&info, argp, sizeof(info))) 7643 err = -EFAULT; 7644 else if (!(info.state & (1<<MD_DISK_SYNC))) 7645 /* Need to clear read-only for this */ 7646 break; 7647 else 7648 err = md_add_new_disk(mddev, &info); 7649 goto unlock; 7650 } 7651 break; 7652 } 7653 7654 /* 7655 * The remaining ioctls are changing the state of the 7656 * superblock, so we do not allow them on read-only arrays. 7657 */ 7658 if (!md_is_rdwr(mddev) && mddev->pers) { 7659 if (mddev->ro != MD_AUTO_READ) { 7660 err = -EROFS; 7661 goto unlock; 7662 } 7663 mddev->ro = MD_RDWR; 7664 sysfs_notify_dirent_safe(mddev->sysfs_state); 7665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7666 /* mddev_unlock will wake thread */ 7667 /* If a device failed while we were read-only, we 7668 * need to make sure the metadata is updated now. 7669 */ 7670 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7671 mddev_unlock(mddev); 7672 wait_event(mddev->sb_wait, 7673 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7674 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7675 mddev_lock_nointr(mddev); 7676 } 7677 } 7678 7679 switch (cmd) { 7680 case ADD_NEW_DISK: 7681 { 7682 mdu_disk_info_t info; 7683 if (copy_from_user(&info, argp, sizeof(info))) 7684 err = -EFAULT; 7685 else 7686 err = md_add_new_disk(mddev, &info); 7687 goto unlock; 7688 } 7689 7690 case CLUSTERED_DISK_NACK: 7691 if (mddev_is_clustered(mddev)) 7692 md_cluster_ops->new_disk_ack(mddev, false); 7693 else 7694 err = -EINVAL; 7695 goto unlock; 7696 7697 case HOT_ADD_DISK: 7698 err = hot_add_disk(mddev, new_decode_dev(arg)); 7699 goto unlock; 7700 7701 case RUN_ARRAY: 7702 err = do_md_run(mddev); 7703 goto unlock; 7704 7705 case SET_BITMAP_FILE: 7706 err = set_bitmap_file(mddev, (int)arg); 7707 goto unlock; 7708 7709 default: 7710 err = -EINVAL; 7711 goto unlock; 7712 } 7713 7714 unlock: 7715 if (mddev->hold_active == UNTIL_IOCTL && 7716 err != -EINVAL) 7717 mddev->hold_active = 0; 7718 mddev_unlock(mddev); 7719 out: 7720 if(did_set_md_closing) 7721 clear_bit(MD_CLOSING, &mddev->flags); 7722 return err; 7723 } 7724 #ifdef CONFIG_COMPAT 7725 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7726 unsigned int cmd, unsigned long arg) 7727 { 7728 switch (cmd) { 7729 case HOT_REMOVE_DISK: 7730 case HOT_ADD_DISK: 7731 case SET_DISK_FAULTY: 7732 case SET_BITMAP_FILE: 7733 /* These take in integer arg, do not convert */ 7734 break; 7735 default: 7736 arg = (unsigned long)compat_ptr(arg); 7737 break; 7738 } 7739 7740 return md_ioctl(bdev, mode, cmd, arg); 7741 } 7742 #endif /* CONFIG_COMPAT */ 7743 7744 static int md_set_read_only(struct block_device *bdev, bool ro) 7745 { 7746 struct mddev *mddev = bdev->bd_disk->private_data; 7747 int err; 7748 7749 err = mddev_lock(mddev); 7750 if (err) 7751 return err; 7752 7753 if (!mddev->raid_disks && !mddev->external) { 7754 err = -ENODEV; 7755 goto out_unlock; 7756 } 7757 7758 /* 7759 * Transitioning to read-auto need only happen for arrays that call 7760 * md_write_start and which are not ready for writes yet. 7761 */ 7762 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7763 err = restart_array(mddev); 7764 if (err) 7765 goto out_unlock; 7766 mddev->ro = MD_AUTO_READ; 7767 } 7768 7769 out_unlock: 7770 mddev_unlock(mddev); 7771 return err; 7772 } 7773 7774 static int md_open(struct block_device *bdev, fmode_t mode) 7775 { 7776 struct mddev *mddev; 7777 int err; 7778 7779 spin_lock(&all_mddevs_lock); 7780 mddev = mddev_get(bdev->bd_disk->private_data); 7781 spin_unlock(&all_mddevs_lock); 7782 if (!mddev) 7783 return -ENODEV; 7784 7785 err = mutex_lock_interruptible(&mddev->open_mutex); 7786 if (err) 7787 goto out; 7788 7789 err = -ENODEV; 7790 if (test_bit(MD_CLOSING, &mddev->flags)) 7791 goto out_unlock; 7792 7793 atomic_inc(&mddev->openers); 7794 mutex_unlock(&mddev->open_mutex); 7795 7796 bdev_check_media_change(bdev); 7797 return 0; 7798 7799 out_unlock: 7800 mutex_unlock(&mddev->open_mutex); 7801 out: 7802 mddev_put(mddev); 7803 return err; 7804 } 7805 7806 static void md_release(struct gendisk *disk, fmode_t mode) 7807 { 7808 struct mddev *mddev = disk->private_data; 7809 7810 BUG_ON(!mddev); 7811 atomic_dec(&mddev->openers); 7812 mddev_put(mddev); 7813 } 7814 7815 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7816 { 7817 struct mddev *mddev = disk->private_data; 7818 unsigned int ret = 0; 7819 7820 if (mddev->changed) 7821 ret = DISK_EVENT_MEDIA_CHANGE; 7822 mddev->changed = 0; 7823 return ret; 7824 } 7825 7826 static void md_free_disk(struct gendisk *disk) 7827 { 7828 struct mddev *mddev = disk->private_data; 7829 7830 percpu_ref_exit(&mddev->writes_pending); 7831 bioset_exit(&mddev->bio_set); 7832 bioset_exit(&mddev->sync_set); 7833 7834 mddev_free(mddev); 7835 } 7836 7837 const struct block_device_operations md_fops = 7838 { 7839 .owner = THIS_MODULE, 7840 .submit_bio = md_submit_bio, 7841 .open = md_open, 7842 .release = md_release, 7843 .ioctl = md_ioctl, 7844 #ifdef CONFIG_COMPAT 7845 .compat_ioctl = md_compat_ioctl, 7846 #endif 7847 .getgeo = md_getgeo, 7848 .check_events = md_check_events, 7849 .set_read_only = md_set_read_only, 7850 .free_disk = md_free_disk, 7851 }; 7852 7853 static int md_thread(void *arg) 7854 { 7855 struct md_thread *thread = arg; 7856 7857 /* 7858 * md_thread is a 'system-thread', it's priority should be very 7859 * high. We avoid resource deadlocks individually in each 7860 * raid personality. (RAID5 does preallocation) We also use RR and 7861 * the very same RT priority as kswapd, thus we will never get 7862 * into a priority inversion deadlock. 7863 * 7864 * we definitely have to have equal or higher priority than 7865 * bdflush, otherwise bdflush will deadlock if there are too 7866 * many dirty RAID5 blocks. 7867 */ 7868 7869 allow_signal(SIGKILL); 7870 while (!kthread_should_stop()) { 7871 7872 /* We need to wait INTERRUPTIBLE so that 7873 * we don't add to the load-average. 7874 * That means we need to be sure no signals are 7875 * pending 7876 */ 7877 if (signal_pending(current)) 7878 flush_signals(current); 7879 7880 wait_event_interruptible_timeout 7881 (thread->wqueue, 7882 test_bit(THREAD_WAKEUP, &thread->flags) 7883 || kthread_should_stop() || kthread_should_park(), 7884 thread->timeout); 7885 7886 clear_bit(THREAD_WAKEUP, &thread->flags); 7887 if (kthread_should_park()) 7888 kthread_parkme(); 7889 if (!kthread_should_stop()) 7890 thread->run(thread); 7891 } 7892 7893 return 0; 7894 } 7895 7896 void md_wakeup_thread(struct md_thread *thread) 7897 { 7898 if (thread) { 7899 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7900 set_bit(THREAD_WAKEUP, &thread->flags); 7901 wake_up(&thread->wqueue); 7902 } 7903 } 7904 EXPORT_SYMBOL(md_wakeup_thread); 7905 7906 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7907 struct mddev *mddev, const char *name) 7908 { 7909 struct md_thread *thread; 7910 7911 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7912 if (!thread) 7913 return NULL; 7914 7915 init_waitqueue_head(&thread->wqueue); 7916 7917 thread->run = run; 7918 thread->mddev = mddev; 7919 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7920 thread->tsk = kthread_run(md_thread, thread, 7921 "%s_%s", 7922 mdname(thread->mddev), 7923 name); 7924 if (IS_ERR(thread->tsk)) { 7925 kfree(thread); 7926 return NULL; 7927 } 7928 return thread; 7929 } 7930 EXPORT_SYMBOL(md_register_thread); 7931 7932 void md_unregister_thread(struct md_thread **threadp) 7933 { 7934 struct md_thread *thread; 7935 7936 /* 7937 * Locking ensures that mddev_unlock does not wake_up a 7938 * non-existent thread 7939 */ 7940 spin_lock(&pers_lock); 7941 thread = *threadp; 7942 if (!thread) { 7943 spin_unlock(&pers_lock); 7944 return; 7945 } 7946 *threadp = NULL; 7947 spin_unlock(&pers_lock); 7948 7949 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7950 kthread_stop(thread->tsk); 7951 kfree(thread); 7952 } 7953 EXPORT_SYMBOL(md_unregister_thread); 7954 7955 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7956 { 7957 if (!rdev || test_bit(Faulty, &rdev->flags)) 7958 return; 7959 7960 if (!mddev->pers || !mddev->pers->error_handler) 7961 return; 7962 mddev->pers->error_handler(mddev, rdev); 7963 7964 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7965 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7966 sysfs_notify_dirent_safe(rdev->sysfs_state); 7967 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7968 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7969 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7970 md_wakeup_thread(mddev->thread); 7971 } 7972 if (mddev->event_work.func) 7973 queue_work(md_misc_wq, &mddev->event_work); 7974 md_new_event(); 7975 } 7976 EXPORT_SYMBOL(md_error); 7977 7978 /* seq_file implementation /proc/mdstat */ 7979 7980 static void status_unused(struct seq_file *seq) 7981 { 7982 int i = 0; 7983 struct md_rdev *rdev; 7984 7985 seq_printf(seq, "unused devices: "); 7986 7987 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7988 i++; 7989 seq_printf(seq, "%pg ", rdev->bdev); 7990 } 7991 if (!i) 7992 seq_printf(seq, "<none>"); 7993 7994 seq_printf(seq, "\n"); 7995 } 7996 7997 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7998 { 7999 sector_t max_sectors, resync, res; 8000 unsigned long dt, db = 0; 8001 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8002 int scale, recovery_active; 8003 unsigned int per_milli; 8004 8005 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8006 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8007 max_sectors = mddev->resync_max_sectors; 8008 else 8009 max_sectors = mddev->dev_sectors; 8010 8011 resync = mddev->curr_resync; 8012 if (resync < MD_RESYNC_ACTIVE) { 8013 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8014 /* Still cleaning up */ 8015 resync = max_sectors; 8016 } else if (resync > max_sectors) { 8017 resync = max_sectors; 8018 } else { 8019 resync -= atomic_read(&mddev->recovery_active); 8020 if (resync < MD_RESYNC_ACTIVE) { 8021 /* 8022 * Resync has started, but the subtraction has 8023 * yielded one of the special values. Force it 8024 * to active to ensure the status reports an 8025 * active resync. 8026 */ 8027 resync = MD_RESYNC_ACTIVE; 8028 } 8029 } 8030 8031 if (resync == MD_RESYNC_NONE) { 8032 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8033 struct md_rdev *rdev; 8034 8035 rdev_for_each(rdev, mddev) 8036 if (rdev->raid_disk >= 0 && 8037 !test_bit(Faulty, &rdev->flags) && 8038 rdev->recovery_offset != MaxSector && 8039 rdev->recovery_offset) { 8040 seq_printf(seq, "\trecover=REMOTE"); 8041 return 1; 8042 } 8043 if (mddev->reshape_position != MaxSector) 8044 seq_printf(seq, "\treshape=REMOTE"); 8045 else 8046 seq_printf(seq, "\tresync=REMOTE"); 8047 return 1; 8048 } 8049 if (mddev->recovery_cp < MaxSector) { 8050 seq_printf(seq, "\tresync=PENDING"); 8051 return 1; 8052 } 8053 return 0; 8054 } 8055 if (resync < MD_RESYNC_ACTIVE) { 8056 seq_printf(seq, "\tresync=DELAYED"); 8057 return 1; 8058 } 8059 8060 WARN_ON(max_sectors == 0); 8061 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8062 * in a sector_t, and (max_sectors>>scale) will fit in a 8063 * u32, as those are the requirements for sector_div. 8064 * Thus 'scale' must be at least 10 8065 */ 8066 scale = 10; 8067 if (sizeof(sector_t) > sizeof(unsigned long)) { 8068 while ( max_sectors/2 > (1ULL<<(scale+32))) 8069 scale++; 8070 } 8071 res = (resync>>scale)*1000; 8072 sector_div(res, (u32)((max_sectors>>scale)+1)); 8073 8074 per_milli = res; 8075 { 8076 int i, x = per_milli/50, y = 20-x; 8077 seq_printf(seq, "["); 8078 for (i = 0; i < x; i++) 8079 seq_printf(seq, "="); 8080 seq_printf(seq, ">"); 8081 for (i = 0; i < y; i++) 8082 seq_printf(seq, "."); 8083 seq_printf(seq, "] "); 8084 } 8085 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8086 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8087 "reshape" : 8088 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8089 "check" : 8090 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8091 "resync" : "recovery"))), 8092 per_milli/10, per_milli % 10, 8093 (unsigned long long) resync/2, 8094 (unsigned long long) max_sectors/2); 8095 8096 /* 8097 * dt: time from mark until now 8098 * db: blocks written from mark until now 8099 * rt: remaining time 8100 * 8101 * rt is a sector_t, which is always 64bit now. We are keeping 8102 * the original algorithm, but it is not really necessary. 8103 * 8104 * Original algorithm: 8105 * So we divide before multiply in case it is 32bit and close 8106 * to the limit. 8107 * We scale the divisor (db) by 32 to avoid losing precision 8108 * near the end of resync when the number of remaining sectors 8109 * is close to 'db'. 8110 * We then divide rt by 32 after multiplying by db to compensate. 8111 * The '+1' avoids division by zero if db is very small. 8112 */ 8113 dt = ((jiffies - mddev->resync_mark) / HZ); 8114 if (!dt) dt++; 8115 8116 curr_mark_cnt = mddev->curr_mark_cnt; 8117 recovery_active = atomic_read(&mddev->recovery_active); 8118 resync_mark_cnt = mddev->resync_mark_cnt; 8119 8120 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8121 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8122 8123 rt = max_sectors - resync; /* number of remaining sectors */ 8124 rt = div64_u64(rt, db/32+1); 8125 rt *= dt; 8126 rt >>= 5; 8127 8128 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8129 ((unsigned long)rt % 60)/6); 8130 8131 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8132 return 1; 8133 } 8134 8135 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8136 { 8137 struct list_head *tmp; 8138 loff_t l = *pos; 8139 struct mddev *mddev; 8140 8141 if (l == 0x10000) { 8142 ++*pos; 8143 return (void *)2; 8144 } 8145 if (l > 0x10000) 8146 return NULL; 8147 if (!l--) 8148 /* header */ 8149 return (void*)1; 8150 8151 spin_lock(&all_mddevs_lock); 8152 list_for_each(tmp,&all_mddevs) 8153 if (!l--) { 8154 mddev = list_entry(tmp, struct mddev, all_mddevs); 8155 if (!mddev_get(mddev)) 8156 continue; 8157 spin_unlock(&all_mddevs_lock); 8158 return mddev; 8159 } 8160 spin_unlock(&all_mddevs_lock); 8161 if (!l--) 8162 return (void*)2;/* tail */ 8163 return NULL; 8164 } 8165 8166 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8167 { 8168 struct list_head *tmp; 8169 struct mddev *next_mddev, *mddev = v; 8170 struct mddev *to_put = NULL; 8171 8172 ++*pos; 8173 if (v == (void*)2) 8174 return NULL; 8175 8176 spin_lock(&all_mddevs_lock); 8177 if (v == (void*)1) { 8178 tmp = all_mddevs.next; 8179 } else { 8180 to_put = mddev; 8181 tmp = mddev->all_mddevs.next; 8182 } 8183 8184 for (;;) { 8185 if (tmp == &all_mddevs) { 8186 next_mddev = (void*)2; 8187 *pos = 0x10000; 8188 break; 8189 } 8190 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8191 if (mddev_get(next_mddev)) 8192 break; 8193 mddev = next_mddev; 8194 tmp = mddev->all_mddevs.next; 8195 } 8196 spin_unlock(&all_mddevs_lock); 8197 8198 if (to_put) 8199 mddev_put(mddev); 8200 return next_mddev; 8201 8202 } 8203 8204 static void md_seq_stop(struct seq_file *seq, void *v) 8205 { 8206 struct mddev *mddev = v; 8207 8208 if (mddev && v != (void*)1 && v != (void*)2) 8209 mddev_put(mddev); 8210 } 8211 8212 static int md_seq_show(struct seq_file *seq, void *v) 8213 { 8214 struct mddev *mddev = v; 8215 sector_t sectors; 8216 struct md_rdev *rdev; 8217 8218 if (v == (void*)1) { 8219 struct md_personality *pers; 8220 seq_printf(seq, "Personalities : "); 8221 spin_lock(&pers_lock); 8222 list_for_each_entry(pers, &pers_list, list) 8223 seq_printf(seq, "[%s] ", pers->name); 8224 8225 spin_unlock(&pers_lock); 8226 seq_printf(seq, "\n"); 8227 seq->poll_event = atomic_read(&md_event_count); 8228 return 0; 8229 } 8230 if (v == (void*)2) { 8231 status_unused(seq); 8232 return 0; 8233 } 8234 8235 spin_lock(&mddev->lock); 8236 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8237 seq_printf(seq, "%s : %sactive", mdname(mddev), 8238 mddev->pers ? "" : "in"); 8239 if (mddev->pers) { 8240 if (mddev->ro == MD_RDONLY) 8241 seq_printf(seq, " (read-only)"); 8242 if (mddev->ro == MD_AUTO_READ) 8243 seq_printf(seq, " (auto-read-only)"); 8244 seq_printf(seq, " %s", mddev->pers->name); 8245 } 8246 8247 sectors = 0; 8248 rcu_read_lock(); 8249 rdev_for_each_rcu(rdev, mddev) { 8250 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8251 8252 if (test_bit(WriteMostly, &rdev->flags)) 8253 seq_printf(seq, "(W)"); 8254 if (test_bit(Journal, &rdev->flags)) 8255 seq_printf(seq, "(J)"); 8256 if (test_bit(Faulty, &rdev->flags)) { 8257 seq_printf(seq, "(F)"); 8258 continue; 8259 } 8260 if (rdev->raid_disk < 0) 8261 seq_printf(seq, "(S)"); /* spare */ 8262 if (test_bit(Replacement, &rdev->flags)) 8263 seq_printf(seq, "(R)"); 8264 sectors += rdev->sectors; 8265 } 8266 rcu_read_unlock(); 8267 8268 if (!list_empty(&mddev->disks)) { 8269 if (mddev->pers) 8270 seq_printf(seq, "\n %llu blocks", 8271 (unsigned long long) 8272 mddev->array_sectors / 2); 8273 else 8274 seq_printf(seq, "\n %llu blocks", 8275 (unsigned long long)sectors / 2); 8276 } 8277 if (mddev->persistent) { 8278 if (mddev->major_version != 0 || 8279 mddev->minor_version != 90) { 8280 seq_printf(seq," super %d.%d", 8281 mddev->major_version, 8282 mddev->minor_version); 8283 } 8284 } else if (mddev->external) 8285 seq_printf(seq, " super external:%s", 8286 mddev->metadata_type); 8287 else 8288 seq_printf(seq, " super non-persistent"); 8289 8290 if (mddev->pers) { 8291 mddev->pers->status(seq, mddev); 8292 seq_printf(seq, "\n "); 8293 if (mddev->pers->sync_request) { 8294 if (status_resync(seq, mddev)) 8295 seq_printf(seq, "\n "); 8296 } 8297 } else 8298 seq_printf(seq, "\n "); 8299 8300 md_bitmap_status(seq, mddev->bitmap); 8301 8302 seq_printf(seq, "\n"); 8303 } 8304 spin_unlock(&mddev->lock); 8305 8306 return 0; 8307 } 8308 8309 static const struct seq_operations md_seq_ops = { 8310 .start = md_seq_start, 8311 .next = md_seq_next, 8312 .stop = md_seq_stop, 8313 .show = md_seq_show, 8314 }; 8315 8316 static int md_seq_open(struct inode *inode, struct file *file) 8317 { 8318 struct seq_file *seq; 8319 int error; 8320 8321 error = seq_open(file, &md_seq_ops); 8322 if (error) 8323 return error; 8324 8325 seq = file->private_data; 8326 seq->poll_event = atomic_read(&md_event_count); 8327 return error; 8328 } 8329 8330 static int md_unloading; 8331 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8332 { 8333 struct seq_file *seq = filp->private_data; 8334 __poll_t mask; 8335 8336 if (md_unloading) 8337 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8338 poll_wait(filp, &md_event_waiters, wait); 8339 8340 /* always allow read */ 8341 mask = EPOLLIN | EPOLLRDNORM; 8342 8343 if (seq->poll_event != atomic_read(&md_event_count)) 8344 mask |= EPOLLERR | EPOLLPRI; 8345 return mask; 8346 } 8347 8348 static const struct proc_ops mdstat_proc_ops = { 8349 .proc_open = md_seq_open, 8350 .proc_read = seq_read, 8351 .proc_lseek = seq_lseek, 8352 .proc_release = seq_release, 8353 .proc_poll = mdstat_poll, 8354 }; 8355 8356 int register_md_personality(struct md_personality *p) 8357 { 8358 pr_debug("md: %s personality registered for level %d\n", 8359 p->name, p->level); 8360 spin_lock(&pers_lock); 8361 list_add_tail(&p->list, &pers_list); 8362 spin_unlock(&pers_lock); 8363 return 0; 8364 } 8365 EXPORT_SYMBOL(register_md_personality); 8366 8367 int unregister_md_personality(struct md_personality *p) 8368 { 8369 pr_debug("md: %s personality unregistered\n", p->name); 8370 spin_lock(&pers_lock); 8371 list_del_init(&p->list); 8372 spin_unlock(&pers_lock); 8373 return 0; 8374 } 8375 EXPORT_SYMBOL(unregister_md_personality); 8376 8377 int register_md_cluster_operations(struct md_cluster_operations *ops, 8378 struct module *module) 8379 { 8380 int ret = 0; 8381 spin_lock(&pers_lock); 8382 if (md_cluster_ops != NULL) 8383 ret = -EALREADY; 8384 else { 8385 md_cluster_ops = ops; 8386 md_cluster_mod = module; 8387 } 8388 spin_unlock(&pers_lock); 8389 return ret; 8390 } 8391 EXPORT_SYMBOL(register_md_cluster_operations); 8392 8393 int unregister_md_cluster_operations(void) 8394 { 8395 spin_lock(&pers_lock); 8396 md_cluster_ops = NULL; 8397 spin_unlock(&pers_lock); 8398 return 0; 8399 } 8400 EXPORT_SYMBOL(unregister_md_cluster_operations); 8401 8402 int md_setup_cluster(struct mddev *mddev, int nodes) 8403 { 8404 int ret; 8405 if (!md_cluster_ops) 8406 request_module("md-cluster"); 8407 spin_lock(&pers_lock); 8408 /* ensure module won't be unloaded */ 8409 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8410 pr_warn("can't find md-cluster module or get its reference.\n"); 8411 spin_unlock(&pers_lock); 8412 return -ENOENT; 8413 } 8414 spin_unlock(&pers_lock); 8415 8416 ret = md_cluster_ops->join(mddev, nodes); 8417 if (!ret) 8418 mddev->safemode_delay = 0; 8419 return ret; 8420 } 8421 8422 void md_cluster_stop(struct mddev *mddev) 8423 { 8424 if (!md_cluster_ops) 8425 return; 8426 md_cluster_ops->leave(mddev); 8427 module_put(md_cluster_mod); 8428 } 8429 8430 static int is_mddev_idle(struct mddev *mddev, int init) 8431 { 8432 struct md_rdev *rdev; 8433 int idle; 8434 int curr_events; 8435 8436 idle = 1; 8437 rcu_read_lock(); 8438 rdev_for_each_rcu(rdev, mddev) { 8439 struct gendisk *disk = rdev->bdev->bd_disk; 8440 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8441 atomic_read(&disk->sync_io); 8442 /* sync IO will cause sync_io to increase before the disk_stats 8443 * as sync_io is counted when a request starts, and 8444 * disk_stats is counted when it completes. 8445 * So resync activity will cause curr_events to be smaller than 8446 * when there was no such activity. 8447 * non-sync IO will cause disk_stat to increase without 8448 * increasing sync_io so curr_events will (eventually) 8449 * be larger than it was before. Once it becomes 8450 * substantially larger, the test below will cause 8451 * the array to appear non-idle, and resync will slow 8452 * down. 8453 * If there is a lot of outstanding resync activity when 8454 * we set last_event to curr_events, then all that activity 8455 * completing might cause the array to appear non-idle 8456 * and resync will be slowed down even though there might 8457 * not have been non-resync activity. This will only 8458 * happen once though. 'last_events' will soon reflect 8459 * the state where there is little or no outstanding 8460 * resync requests, and further resync activity will 8461 * always make curr_events less than last_events. 8462 * 8463 */ 8464 if (init || curr_events - rdev->last_events > 64) { 8465 rdev->last_events = curr_events; 8466 idle = 0; 8467 } 8468 } 8469 rcu_read_unlock(); 8470 return idle; 8471 } 8472 8473 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8474 { 8475 /* another "blocks" (512byte) blocks have been synced */ 8476 atomic_sub(blocks, &mddev->recovery_active); 8477 wake_up(&mddev->recovery_wait); 8478 if (!ok) { 8479 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8480 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8481 md_wakeup_thread(mddev->thread); 8482 // stop recovery, signal do_sync .... 8483 } 8484 } 8485 EXPORT_SYMBOL(md_done_sync); 8486 8487 /* md_write_start(mddev, bi) 8488 * If we need to update some array metadata (e.g. 'active' flag 8489 * in superblock) before writing, schedule a superblock update 8490 * and wait for it to complete. 8491 * A return value of 'false' means that the write wasn't recorded 8492 * and cannot proceed as the array is being suspend. 8493 */ 8494 bool md_write_start(struct mddev *mddev, struct bio *bi) 8495 { 8496 int did_change = 0; 8497 8498 if (bio_data_dir(bi) != WRITE) 8499 return true; 8500 8501 BUG_ON(mddev->ro == MD_RDONLY); 8502 if (mddev->ro == MD_AUTO_READ) { 8503 /* need to switch to read/write */ 8504 mddev->ro = MD_RDWR; 8505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8506 md_wakeup_thread(mddev->thread); 8507 md_wakeup_thread(mddev->sync_thread); 8508 did_change = 1; 8509 } 8510 rcu_read_lock(); 8511 percpu_ref_get(&mddev->writes_pending); 8512 smp_mb(); /* Match smp_mb in set_in_sync() */ 8513 if (mddev->safemode == 1) 8514 mddev->safemode = 0; 8515 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8516 if (mddev->in_sync || mddev->sync_checkers) { 8517 spin_lock(&mddev->lock); 8518 if (mddev->in_sync) { 8519 mddev->in_sync = 0; 8520 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8521 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8522 md_wakeup_thread(mddev->thread); 8523 did_change = 1; 8524 } 8525 spin_unlock(&mddev->lock); 8526 } 8527 rcu_read_unlock(); 8528 if (did_change) 8529 sysfs_notify_dirent_safe(mddev->sysfs_state); 8530 if (!mddev->has_superblocks) 8531 return true; 8532 wait_event(mddev->sb_wait, 8533 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8534 mddev->suspended); 8535 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8536 percpu_ref_put(&mddev->writes_pending); 8537 return false; 8538 } 8539 return true; 8540 } 8541 EXPORT_SYMBOL(md_write_start); 8542 8543 /* md_write_inc can only be called when md_write_start() has 8544 * already been called at least once of the current request. 8545 * It increments the counter and is useful when a single request 8546 * is split into several parts. Each part causes an increment and 8547 * so needs a matching md_write_end(). 8548 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8549 * a spinlocked region. 8550 */ 8551 void md_write_inc(struct mddev *mddev, struct bio *bi) 8552 { 8553 if (bio_data_dir(bi) != WRITE) 8554 return; 8555 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8556 percpu_ref_get(&mddev->writes_pending); 8557 } 8558 EXPORT_SYMBOL(md_write_inc); 8559 8560 void md_write_end(struct mddev *mddev) 8561 { 8562 percpu_ref_put(&mddev->writes_pending); 8563 8564 if (mddev->safemode == 2) 8565 md_wakeup_thread(mddev->thread); 8566 else if (mddev->safemode_delay) 8567 /* The roundup() ensures this only performs locking once 8568 * every ->safemode_delay jiffies 8569 */ 8570 mod_timer(&mddev->safemode_timer, 8571 roundup(jiffies, mddev->safemode_delay) + 8572 mddev->safemode_delay); 8573 } 8574 8575 EXPORT_SYMBOL(md_write_end); 8576 8577 /* This is used by raid0 and raid10 */ 8578 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8579 struct bio *bio, sector_t start, sector_t size) 8580 { 8581 struct bio *discard_bio = NULL; 8582 8583 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8584 &discard_bio) || !discard_bio) 8585 return; 8586 8587 bio_chain(discard_bio, bio); 8588 bio_clone_blkg_association(discard_bio, bio); 8589 if (mddev->gendisk) 8590 trace_block_bio_remap(discard_bio, 8591 disk_devt(mddev->gendisk), 8592 bio->bi_iter.bi_sector); 8593 submit_bio_noacct(discard_bio); 8594 } 8595 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8596 8597 int acct_bioset_init(struct mddev *mddev) 8598 { 8599 int err = 0; 8600 8601 if (!bioset_initialized(&mddev->io_acct_set)) 8602 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8603 offsetof(struct md_io_acct, bio_clone), 0); 8604 return err; 8605 } 8606 EXPORT_SYMBOL_GPL(acct_bioset_init); 8607 8608 void acct_bioset_exit(struct mddev *mddev) 8609 { 8610 bioset_exit(&mddev->io_acct_set); 8611 } 8612 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8613 8614 static void md_end_io_acct(struct bio *bio) 8615 { 8616 struct md_io_acct *md_io_acct = bio->bi_private; 8617 struct bio *orig_bio = md_io_acct->orig_bio; 8618 8619 orig_bio->bi_status = bio->bi_status; 8620 8621 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8622 bio_put(bio); 8623 bio_endio(orig_bio); 8624 } 8625 8626 /* 8627 * Used by personalities that don't already clone the bio and thus can't 8628 * easily add the timestamp to their extended bio structure. 8629 */ 8630 void md_account_bio(struct mddev *mddev, struct bio **bio) 8631 { 8632 struct block_device *bdev = (*bio)->bi_bdev; 8633 struct md_io_acct *md_io_acct; 8634 struct bio *clone; 8635 8636 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8637 return; 8638 8639 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8640 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8641 md_io_acct->orig_bio = *bio; 8642 md_io_acct->start_time = bio_start_io_acct(*bio); 8643 8644 clone->bi_end_io = md_end_io_acct; 8645 clone->bi_private = md_io_acct; 8646 *bio = clone; 8647 } 8648 EXPORT_SYMBOL_GPL(md_account_bio); 8649 8650 /* md_allow_write(mddev) 8651 * Calling this ensures that the array is marked 'active' so that writes 8652 * may proceed without blocking. It is important to call this before 8653 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8654 * Must be called with mddev_lock held. 8655 */ 8656 void md_allow_write(struct mddev *mddev) 8657 { 8658 if (!mddev->pers) 8659 return; 8660 if (!md_is_rdwr(mddev)) 8661 return; 8662 if (!mddev->pers->sync_request) 8663 return; 8664 8665 spin_lock(&mddev->lock); 8666 if (mddev->in_sync) { 8667 mddev->in_sync = 0; 8668 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8669 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8670 if (mddev->safemode_delay && 8671 mddev->safemode == 0) 8672 mddev->safemode = 1; 8673 spin_unlock(&mddev->lock); 8674 md_update_sb(mddev, 0); 8675 sysfs_notify_dirent_safe(mddev->sysfs_state); 8676 /* wait for the dirty state to be recorded in the metadata */ 8677 wait_event(mddev->sb_wait, 8678 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8679 } else 8680 spin_unlock(&mddev->lock); 8681 } 8682 EXPORT_SYMBOL_GPL(md_allow_write); 8683 8684 #define SYNC_MARKS 10 8685 #define SYNC_MARK_STEP (3*HZ) 8686 #define UPDATE_FREQUENCY (5*60*HZ) 8687 void md_do_sync(struct md_thread *thread) 8688 { 8689 struct mddev *mddev = thread->mddev; 8690 struct mddev *mddev2; 8691 unsigned int currspeed = 0, window; 8692 sector_t max_sectors,j, io_sectors, recovery_done; 8693 unsigned long mark[SYNC_MARKS]; 8694 unsigned long update_time; 8695 sector_t mark_cnt[SYNC_MARKS]; 8696 int last_mark,m; 8697 sector_t last_check; 8698 int skipped = 0; 8699 struct md_rdev *rdev; 8700 char *desc, *action = NULL; 8701 struct blk_plug plug; 8702 int ret; 8703 8704 /* just incase thread restarts... */ 8705 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8706 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8707 return; 8708 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8709 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8710 return; 8711 } 8712 8713 if (mddev_is_clustered(mddev)) { 8714 ret = md_cluster_ops->resync_start(mddev); 8715 if (ret) 8716 goto skip; 8717 8718 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8719 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8720 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8721 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8722 && ((unsigned long long)mddev->curr_resync_completed 8723 < (unsigned long long)mddev->resync_max_sectors)) 8724 goto skip; 8725 } 8726 8727 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8728 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8729 desc = "data-check"; 8730 action = "check"; 8731 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8732 desc = "requested-resync"; 8733 action = "repair"; 8734 } else 8735 desc = "resync"; 8736 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8737 desc = "reshape"; 8738 else 8739 desc = "recovery"; 8740 8741 mddev->last_sync_action = action ?: desc; 8742 8743 /* 8744 * Before starting a resync we must have set curr_resync to 8745 * 2, and then checked that every "conflicting" array has curr_resync 8746 * less than ours. When we find one that is the same or higher 8747 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8748 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8749 * This will mean we have to start checking from the beginning again. 8750 * 8751 */ 8752 8753 do { 8754 int mddev2_minor = -1; 8755 mddev->curr_resync = MD_RESYNC_DELAYED; 8756 8757 try_again: 8758 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8759 goto skip; 8760 spin_lock(&all_mddevs_lock); 8761 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8762 if (test_bit(MD_DELETED, &mddev2->flags)) 8763 continue; 8764 if (mddev2 == mddev) 8765 continue; 8766 if (!mddev->parallel_resync 8767 && mddev2->curr_resync 8768 && match_mddev_units(mddev, mddev2)) { 8769 DEFINE_WAIT(wq); 8770 if (mddev < mddev2 && 8771 mddev->curr_resync == MD_RESYNC_DELAYED) { 8772 /* arbitrarily yield */ 8773 mddev->curr_resync = MD_RESYNC_YIELDED; 8774 wake_up(&resync_wait); 8775 } 8776 if (mddev > mddev2 && 8777 mddev->curr_resync == MD_RESYNC_YIELDED) 8778 /* no need to wait here, we can wait the next 8779 * time 'round when curr_resync == 2 8780 */ 8781 continue; 8782 /* We need to wait 'interruptible' so as not to 8783 * contribute to the load average, and not to 8784 * be caught by 'softlockup' 8785 */ 8786 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8787 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8788 mddev2->curr_resync >= mddev->curr_resync) { 8789 if (mddev2_minor != mddev2->md_minor) { 8790 mddev2_minor = mddev2->md_minor; 8791 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8792 desc, mdname(mddev), 8793 mdname(mddev2)); 8794 } 8795 spin_unlock(&all_mddevs_lock); 8796 8797 if (signal_pending(current)) 8798 flush_signals(current); 8799 schedule(); 8800 finish_wait(&resync_wait, &wq); 8801 goto try_again; 8802 } 8803 finish_wait(&resync_wait, &wq); 8804 } 8805 } 8806 spin_unlock(&all_mddevs_lock); 8807 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8808 8809 j = 0; 8810 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8811 /* resync follows the size requested by the personality, 8812 * which defaults to physical size, but can be virtual size 8813 */ 8814 max_sectors = mddev->resync_max_sectors; 8815 atomic64_set(&mddev->resync_mismatches, 0); 8816 /* we don't use the checkpoint if there's a bitmap */ 8817 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8818 j = mddev->resync_min; 8819 else if (!mddev->bitmap) 8820 j = mddev->recovery_cp; 8821 8822 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8823 max_sectors = mddev->resync_max_sectors; 8824 /* 8825 * If the original node aborts reshaping then we continue the 8826 * reshaping, so set j again to avoid restart reshape from the 8827 * first beginning 8828 */ 8829 if (mddev_is_clustered(mddev) && 8830 mddev->reshape_position != MaxSector) 8831 j = mddev->reshape_position; 8832 } else { 8833 /* recovery follows the physical size of devices */ 8834 max_sectors = mddev->dev_sectors; 8835 j = MaxSector; 8836 rcu_read_lock(); 8837 rdev_for_each_rcu(rdev, mddev) 8838 if (rdev->raid_disk >= 0 && 8839 !test_bit(Journal, &rdev->flags) && 8840 !test_bit(Faulty, &rdev->flags) && 8841 !test_bit(In_sync, &rdev->flags) && 8842 rdev->recovery_offset < j) 8843 j = rdev->recovery_offset; 8844 rcu_read_unlock(); 8845 8846 /* If there is a bitmap, we need to make sure all 8847 * writes that started before we added a spare 8848 * complete before we start doing a recovery. 8849 * Otherwise the write might complete and (via 8850 * bitmap_endwrite) set a bit in the bitmap after the 8851 * recovery has checked that bit and skipped that 8852 * region. 8853 */ 8854 if (mddev->bitmap) { 8855 mddev->pers->quiesce(mddev, 1); 8856 mddev->pers->quiesce(mddev, 0); 8857 } 8858 } 8859 8860 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8861 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8862 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8863 speed_max(mddev), desc); 8864 8865 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8866 8867 io_sectors = 0; 8868 for (m = 0; m < SYNC_MARKS; m++) { 8869 mark[m] = jiffies; 8870 mark_cnt[m] = io_sectors; 8871 } 8872 last_mark = 0; 8873 mddev->resync_mark = mark[last_mark]; 8874 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8875 8876 /* 8877 * Tune reconstruction: 8878 */ 8879 window = 32 * (PAGE_SIZE / 512); 8880 pr_debug("md: using %dk window, over a total of %lluk.\n", 8881 window/2, (unsigned long long)max_sectors/2); 8882 8883 atomic_set(&mddev->recovery_active, 0); 8884 last_check = 0; 8885 8886 if (j>2) { 8887 pr_debug("md: resuming %s of %s from checkpoint.\n", 8888 desc, mdname(mddev)); 8889 mddev->curr_resync = j; 8890 } else 8891 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8892 mddev->curr_resync_completed = j; 8893 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8894 md_new_event(); 8895 update_time = jiffies; 8896 8897 blk_start_plug(&plug); 8898 while (j < max_sectors) { 8899 sector_t sectors; 8900 8901 skipped = 0; 8902 8903 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8904 ((mddev->curr_resync > mddev->curr_resync_completed && 8905 (mddev->curr_resync - mddev->curr_resync_completed) 8906 > (max_sectors >> 4)) || 8907 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8908 (j - mddev->curr_resync_completed)*2 8909 >= mddev->resync_max - mddev->curr_resync_completed || 8910 mddev->curr_resync_completed > mddev->resync_max 8911 )) { 8912 /* time to update curr_resync_completed */ 8913 wait_event(mddev->recovery_wait, 8914 atomic_read(&mddev->recovery_active) == 0); 8915 mddev->curr_resync_completed = j; 8916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8917 j > mddev->recovery_cp) 8918 mddev->recovery_cp = j; 8919 update_time = jiffies; 8920 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8921 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8922 } 8923 8924 while (j >= mddev->resync_max && 8925 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8926 /* As this condition is controlled by user-space, 8927 * we can block indefinitely, so use '_interruptible' 8928 * to avoid triggering warnings. 8929 */ 8930 flush_signals(current); /* just in case */ 8931 wait_event_interruptible(mddev->recovery_wait, 8932 mddev->resync_max > j 8933 || test_bit(MD_RECOVERY_INTR, 8934 &mddev->recovery)); 8935 } 8936 8937 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8938 break; 8939 8940 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8941 if (sectors == 0) { 8942 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8943 break; 8944 } 8945 8946 if (!skipped) { /* actual IO requested */ 8947 io_sectors += sectors; 8948 atomic_add(sectors, &mddev->recovery_active); 8949 } 8950 8951 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8952 break; 8953 8954 j += sectors; 8955 if (j > max_sectors) 8956 /* when skipping, extra large numbers can be returned. */ 8957 j = max_sectors; 8958 if (j > 2) 8959 mddev->curr_resync = j; 8960 mddev->curr_mark_cnt = io_sectors; 8961 if (last_check == 0) 8962 /* this is the earliest that rebuild will be 8963 * visible in /proc/mdstat 8964 */ 8965 md_new_event(); 8966 8967 if (last_check + window > io_sectors || j == max_sectors) 8968 continue; 8969 8970 last_check = io_sectors; 8971 repeat: 8972 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8973 /* step marks */ 8974 int next = (last_mark+1) % SYNC_MARKS; 8975 8976 mddev->resync_mark = mark[next]; 8977 mddev->resync_mark_cnt = mark_cnt[next]; 8978 mark[next] = jiffies; 8979 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8980 last_mark = next; 8981 } 8982 8983 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8984 break; 8985 8986 /* 8987 * this loop exits only if either when we are slower than 8988 * the 'hard' speed limit, or the system was IO-idle for 8989 * a jiffy. 8990 * the system might be non-idle CPU-wise, but we only care 8991 * about not overloading the IO subsystem. (things like an 8992 * e2fsck being done on the RAID array should execute fast) 8993 */ 8994 cond_resched(); 8995 8996 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8997 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8998 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8999 9000 if (currspeed > speed_min(mddev)) { 9001 if (currspeed > speed_max(mddev)) { 9002 msleep(500); 9003 goto repeat; 9004 } 9005 if (!is_mddev_idle(mddev, 0)) { 9006 /* 9007 * Give other IO more of a chance. 9008 * The faster the devices, the less we wait. 9009 */ 9010 wait_event(mddev->recovery_wait, 9011 !atomic_read(&mddev->recovery_active)); 9012 } 9013 } 9014 } 9015 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9016 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9017 ? "interrupted" : "done"); 9018 /* 9019 * this also signals 'finished resyncing' to md_stop 9020 */ 9021 blk_finish_plug(&plug); 9022 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9023 9024 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9025 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9026 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9027 mddev->curr_resync_completed = mddev->curr_resync; 9028 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9029 } 9030 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9031 9032 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9033 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9034 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9035 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9036 if (mddev->curr_resync >= mddev->recovery_cp) { 9037 pr_debug("md: checkpointing %s of %s.\n", 9038 desc, mdname(mddev)); 9039 if (test_bit(MD_RECOVERY_ERROR, 9040 &mddev->recovery)) 9041 mddev->recovery_cp = 9042 mddev->curr_resync_completed; 9043 else 9044 mddev->recovery_cp = 9045 mddev->curr_resync; 9046 } 9047 } else 9048 mddev->recovery_cp = MaxSector; 9049 } else { 9050 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9051 mddev->curr_resync = MaxSector; 9052 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9053 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9054 rcu_read_lock(); 9055 rdev_for_each_rcu(rdev, mddev) 9056 if (rdev->raid_disk >= 0 && 9057 mddev->delta_disks >= 0 && 9058 !test_bit(Journal, &rdev->flags) && 9059 !test_bit(Faulty, &rdev->flags) && 9060 !test_bit(In_sync, &rdev->flags) && 9061 rdev->recovery_offset < mddev->curr_resync) 9062 rdev->recovery_offset = mddev->curr_resync; 9063 rcu_read_unlock(); 9064 } 9065 } 9066 } 9067 skip: 9068 /* set CHANGE_PENDING here since maybe another update is needed, 9069 * so other nodes are informed. It should be harmless for normal 9070 * raid */ 9071 set_mask_bits(&mddev->sb_flags, 0, 9072 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9073 9074 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9075 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9076 mddev->delta_disks > 0 && 9077 mddev->pers->finish_reshape && 9078 mddev->pers->size && 9079 mddev->queue) { 9080 mddev_lock_nointr(mddev); 9081 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9082 mddev_unlock(mddev); 9083 if (!mddev_is_clustered(mddev)) 9084 set_capacity_and_notify(mddev->gendisk, 9085 mddev->array_sectors); 9086 } 9087 9088 spin_lock(&mddev->lock); 9089 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9090 /* We completed so min/max setting can be forgotten if used. */ 9091 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9092 mddev->resync_min = 0; 9093 mddev->resync_max = MaxSector; 9094 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9095 mddev->resync_min = mddev->curr_resync_completed; 9096 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9097 mddev->curr_resync = MD_RESYNC_NONE; 9098 spin_unlock(&mddev->lock); 9099 9100 wake_up(&resync_wait); 9101 md_wakeup_thread(mddev->thread); 9102 return; 9103 } 9104 EXPORT_SYMBOL_GPL(md_do_sync); 9105 9106 static int remove_and_add_spares(struct mddev *mddev, 9107 struct md_rdev *this) 9108 { 9109 struct md_rdev *rdev; 9110 int spares = 0; 9111 int removed = 0; 9112 bool remove_some = false; 9113 9114 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9115 /* Mustn't remove devices when resync thread is running */ 9116 return 0; 9117 9118 rdev_for_each(rdev, mddev) { 9119 if ((this == NULL || rdev == this) && 9120 rdev->raid_disk >= 0 && 9121 !test_bit(Blocked, &rdev->flags) && 9122 test_bit(Faulty, &rdev->flags) && 9123 atomic_read(&rdev->nr_pending)==0) { 9124 /* Faulty non-Blocked devices with nr_pending == 0 9125 * never get nr_pending incremented, 9126 * never get Faulty cleared, and never get Blocked set. 9127 * So we can synchronize_rcu now rather than once per device 9128 */ 9129 remove_some = true; 9130 set_bit(RemoveSynchronized, &rdev->flags); 9131 } 9132 } 9133 9134 if (remove_some) 9135 synchronize_rcu(); 9136 rdev_for_each(rdev, mddev) { 9137 if ((this == NULL || rdev == this) && 9138 rdev->raid_disk >= 0 && 9139 !test_bit(Blocked, &rdev->flags) && 9140 ((test_bit(RemoveSynchronized, &rdev->flags) || 9141 (!test_bit(In_sync, &rdev->flags) && 9142 !test_bit(Journal, &rdev->flags))) && 9143 atomic_read(&rdev->nr_pending)==0)) { 9144 if (mddev->pers->hot_remove_disk( 9145 mddev, rdev) == 0) { 9146 sysfs_unlink_rdev(mddev, rdev); 9147 rdev->saved_raid_disk = rdev->raid_disk; 9148 rdev->raid_disk = -1; 9149 removed++; 9150 } 9151 } 9152 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9153 clear_bit(RemoveSynchronized, &rdev->flags); 9154 } 9155 9156 if (removed && mddev->kobj.sd) 9157 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9158 9159 if (this && removed) 9160 goto no_add; 9161 9162 rdev_for_each(rdev, mddev) { 9163 if (this && this != rdev) 9164 continue; 9165 if (test_bit(Candidate, &rdev->flags)) 9166 continue; 9167 if (rdev->raid_disk >= 0 && 9168 !test_bit(In_sync, &rdev->flags) && 9169 !test_bit(Journal, &rdev->flags) && 9170 !test_bit(Faulty, &rdev->flags)) 9171 spares++; 9172 if (rdev->raid_disk >= 0) 9173 continue; 9174 if (test_bit(Faulty, &rdev->flags)) 9175 continue; 9176 if (!test_bit(Journal, &rdev->flags)) { 9177 if (!md_is_rdwr(mddev) && 9178 !(rdev->saved_raid_disk >= 0 && 9179 !test_bit(Bitmap_sync, &rdev->flags))) 9180 continue; 9181 9182 rdev->recovery_offset = 0; 9183 } 9184 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9185 /* failure here is OK */ 9186 sysfs_link_rdev(mddev, rdev); 9187 if (!test_bit(Journal, &rdev->flags)) 9188 spares++; 9189 md_new_event(); 9190 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9191 } 9192 } 9193 no_add: 9194 if (removed) 9195 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9196 return spares; 9197 } 9198 9199 static void md_start_sync(struct work_struct *ws) 9200 { 9201 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9202 9203 mddev->sync_thread = md_register_thread(md_do_sync, 9204 mddev, 9205 "resync"); 9206 if (!mddev->sync_thread) { 9207 pr_warn("%s: could not start resync thread...\n", 9208 mdname(mddev)); 9209 /* leave the spares where they are, it shouldn't hurt */ 9210 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9211 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9212 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9213 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9214 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9215 wake_up(&resync_wait); 9216 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9217 &mddev->recovery)) 9218 if (mddev->sysfs_action) 9219 sysfs_notify_dirent_safe(mddev->sysfs_action); 9220 } else 9221 md_wakeup_thread(mddev->sync_thread); 9222 sysfs_notify_dirent_safe(mddev->sysfs_action); 9223 md_new_event(); 9224 } 9225 9226 /* 9227 * This routine is regularly called by all per-raid-array threads to 9228 * deal with generic issues like resync and super-block update. 9229 * Raid personalities that don't have a thread (linear/raid0) do not 9230 * need this as they never do any recovery or update the superblock. 9231 * 9232 * It does not do any resync itself, but rather "forks" off other threads 9233 * to do that as needed. 9234 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9235 * "->recovery" and create a thread at ->sync_thread. 9236 * When the thread finishes it sets MD_RECOVERY_DONE 9237 * and wakeups up this thread which will reap the thread and finish up. 9238 * This thread also removes any faulty devices (with nr_pending == 0). 9239 * 9240 * The overall approach is: 9241 * 1/ if the superblock needs updating, update it. 9242 * 2/ If a recovery thread is running, don't do anything else. 9243 * 3/ If recovery has finished, clean up, possibly marking spares active. 9244 * 4/ If there are any faulty devices, remove them. 9245 * 5/ If array is degraded, try to add spares devices 9246 * 6/ If array has spares or is not in-sync, start a resync thread. 9247 */ 9248 void md_check_recovery(struct mddev *mddev) 9249 { 9250 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9251 /* Write superblock - thread that called mddev_suspend() 9252 * holds reconfig_mutex for us. 9253 */ 9254 set_bit(MD_UPDATING_SB, &mddev->flags); 9255 smp_mb__after_atomic(); 9256 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9257 md_update_sb(mddev, 0); 9258 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9259 wake_up(&mddev->sb_wait); 9260 } 9261 9262 if (mddev->suspended) 9263 return; 9264 9265 if (mddev->bitmap) 9266 md_bitmap_daemon_work(mddev); 9267 9268 if (signal_pending(current)) { 9269 if (mddev->pers->sync_request && !mddev->external) { 9270 pr_debug("md: %s in immediate safe mode\n", 9271 mdname(mddev)); 9272 mddev->safemode = 2; 9273 } 9274 flush_signals(current); 9275 } 9276 9277 if (!md_is_rdwr(mddev) && 9278 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9279 return; 9280 if ( ! ( 9281 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9282 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9283 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9284 (mddev->external == 0 && mddev->safemode == 1) || 9285 (mddev->safemode == 2 9286 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9287 )) 9288 return; 9289 9290 if (mddev_trylock(mddev)) { 9291 int spares = 0; 9292 bool try_set_sync = mddev->safemode != 0; 9293 9294 if (!mddev->external && mddev->safemode == 1) 9295 mddev->safemode = 0; 9296 9297 if (!md_is_rdwr(mddev)) { 9298 struct md_rdev *rdev; 9299 if (!mddev->external && mddev->in_sync) 9300 /* 'Blocked' flag not needed as failed devices 9301 * will be recorded if array switched to read/write. 9302 * Leaving it set will prevent the device 9303 * from being removed. 9304 */ 9305 rdev_for_each(rdev, mddev) 9306 clear_bit(Blocked, &rdev->flags); 9307 /* On a read-only array we can: 9308 * - remove failed devices 9309 * - add already-in_sync devices if the array itself 9310 * is in-sync. 9311 * As we only add devices that are already in-sync, 9312 * we can activate the spares immediately. 9313 */ 9314 remove_and_add_spares(mddev, NULL); 9315 /* There is no thread, but we need to call 9316 * ->spare_active and clear saved_raid_disk 9317 */ 9318 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9319 md_unregister_thread(&mddev->sync_thread); 9320 md_reap_sync_thread(mddev); 9321 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9322 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9323 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9324 goto unlock; 9325 } 9326 9327 if (mddev_is_clustered(mddev)) { 9328 struct md_rdev *rdev, *tmp; 9329 /* kick the device if another node issued a 9330 * remove disk. 9331 */ 9332 rdev_for_each_safe(rdev, tmp, mddev) { 9333 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9334 rdev->raid_disk < 0) 9335 md_kick_rdev_from_array(rdev); 9336 } 9337 } 9338 9339 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9340 spin_lock(&mddev->lock); 9341 set_in_sync(mddev); 9342 spin_unlock(&mddev->lock); 9343 } 9344 9345 if (mddev->sb_flags) 9346 md_update_sb(mddev, 0); 9347 9348 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9349 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9350 /* resync/recovery still happening */ 9351 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9352 goto unlock; 9353 } 9354 if (mddev->sync_thread) { 9355 md_unregister_thread(&mddev->sync_thread); 9356 md_reap_sync_thread(mddev); 9357 goto unlock; 9358 } 9359 /* Set RUNNING before clearing NEEDED to avoid 9360 * any transients in the value of "sync_action". 9361 */ 9362 mddev->curr_resync_completed = 0; 9363 spin_lock(&mddev->lock); 9364 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9365 spin_unlock(&mddev->lock); 9366 /* Clear some bits that don't mean anything, but 9367 * might be left set 9368 */ 9369 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9370 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9371 9372 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9373 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9374 goto not_running; 9375 /* no recovery is running. 9376 * remove any failed drives, then 9377 * add spares if possible. 9378 * Spares are also removed and re-added, to allow 9379 * the personality to fail the re-add. 9380 */ 9381 9382 if (mddev->reshape_position != MaxSector) { 9383 if (mddev->pers->check_reshape == NULL || 9384 mddev->pers->check_reshape(mddev) != 0) 9385 /* Cannot proceed */ 9386 goto not_running; 9387 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9388 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9389 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9390 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9391 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9392 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9393 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9394 } else if (mddev->recovery_cp < MaxSector) { 9395 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9396 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9397 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9398 /* nothing to be done ... */ 9399 goto not_running; 9400 9401 if (mddev->pers->sync_request) { 9402 if (spares) { 9403 /* We are adding a device or devices to an array 9404 * which has the bitmap stored on all devices. 9405 * So make sure all bitmap pages get written 9406 */ 9407 md_bitmap_write_all(mddev->bitmap); 9408 } 9409 INIT_WORK(&mddev->del_work, md_start_sync); 9410 queue_work(md_misc_wq, &mddev->del_work); 9411 goto unlock; 9412 } 9413 not_running: 9414 if (!mddev->sync_thread) { 9415 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9416 wake_up(&resync_wait); 9417 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9418 &mddev->recovery)) 9419 if (mddev->sysfs_action) 9420 sysfs_notify_dirent_safe(mddev->sysfs_action); 9421 } 9422 unlock: 9423 wake_up(&mddev->sb_wait); 9424 mddev_unlock(mddev); 9425 } 9426 } 9427 EXPORT_SYMBOL(md_check_recovery); 9428 9429 void md_reap_sync_thread(struct mddev *mddev) 9430 { 9431 struct md_rdev *rdev; 9432 sector_t old_dev_sectors = mddev->dev_sectors; 9433 bool is_reshaped = false; 9434 9435 /* sync_thread should be unregistered, collect result */ 9436 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9437 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9438 mddev->degraded != mddev->raid_disks) { 9439 /* success...*/ 9440 /* activate any spares */ 9441 if (mddev->pers->spare_active(mddev)) { 9442 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9443 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9444 } 9445 } 9446 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9447 mddev->pers->finish_reshape) { 9448 mddev->pers->finish_reshape(mddev); 9449 if (mddev_is_clustered(mddev)) 9450 is_reshaped = true; 9451 } 9452 9453 /* If array is no-longer degraded, then any saved_raid_disk 9454 * information must be scrapped. 9455 */ 9456 if (!mddev->degraded) 9457 rdev_for_each(rdev, mddev) 9458 rdev->saved_raid_disk = -1; 9459 9460 md_update_sb(mddev, 1); 9461 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9462 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9463 * clustered raid */ 9464 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9465 md_cluster_ops->resync_finish(mddev); 9466 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9467 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9468 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9469 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9470 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9471 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9472 /* 9473 * We call md_cluster_ops->update_size here because sync_size could 9474 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9475 * so it is time to update size across cluster. 9476 */ 9477 if (mddev_is_clustered(mddev) && is_reshaped 9478 && !test_bit(MD_CLOSING, &mddev->flags)) 9479 md_cluster_ops->update_size(mddev, old_dev_sectors); 9480 wake_up(&resync_wait); 9481 /* flag recovery needed just to double check */ 9482 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9483 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9484 sysfs_notify_dirent_safe(mddev->sysfs_action); 9485 md_new_event(); 9486 if (mddev->event_work.func) 9487 queue_work(md_misc_wq, &mddev->event_work); 9488 } 9489 EXPORT_SYMBOL(md_reap_sync_thread); 9490 9491 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9492 { 9493 sysfs_notify_dirent_safe(rdev->sysfs_state); 9494 wait_event_timeout(rdev->blocked_wait, 9495 !test_bit(Blocked, &rdev->flags) && 9496 !test_bit(BlockedBadBlocks, &rdev->flags), 9497 msecs_to_jiffies(5000)); 9498 rdev_dec_pending(rdev, mddev); 9499 } 9500 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9501 9502 void md_finish_reshape(struct mddev *mddev) 9503 { 9504 /* called be personality module when reshape completes. */ 9505 struct md_rdev *rdev; 9506 9507 rdev_for_each(rdev, mddev) { 9508 if (rdev->data_offset > rdev->new_data_offset) 9509 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9510 else 9511 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9512 rdev->data_offset = rdev->new_data_offset; 9513 } 9514 } 9515 EXPORT_SYMBOL(md_finish_reshape); 9516 9517 /* Bad block management */ 9518 9519 /* Returns 1 on success, 0 on failure */ 9520 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9521 int is_new) 9522 { 9523 struct mddev *mddev = rdev->mddev; 9524 int rv; 9525 if (is_new) 9526 s += rdev->new_data_offset; 9527 else 9528 s += rdev->data_offset; 9529 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9530 if (rv == 0) { 9531 /* Make sure they get written out promptly */ 9532 if (test_bit(ExternalBbl, &rdev->flags)) 9533 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9534 sysfs_notify_dirent_safe(rdev->sysfs_state); 9535 set_mask_bits(&mddev->sb_flags, 0, 9536 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9537 md_wakeup_thread(rdev->mddev->thread); 9538 return 1; 9539 } else 9540 return 0; 9541 } 9542 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9543 9544 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9545 int is_new) 9546 { 9547 int rv; 9548 if (is_new) 9549 s += rdev->new_data_offset; 9550 else 9551 s += rdev->data_offset; 9552 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9553 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9554 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9555 return rv; 9556 } 9557 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9558 9559 static int md_notify_reboot(struct notifier_block *this, 9560 unsigned long code, void *x) 9561 { 9562 struct mddev *mddev, *n; 9563 int need_delay = 0; 9564 9565 spin_lock(&all_mddevs_lock); 9566 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9567 if (!mddev_get(mddev)) 9568 continue; 9569 spin_unlock(&all_mddevs_lock); 9570 if (mddev_trylock(mddev)) { 9571 if (mddev->pers) 9572 __md_stop_writes(mddev); 9573 if (mddev->persistent) 9574 mddev->safemode = 2; 9575 mddev_unlock(mddev); 9576 } 9577 need_delay = 1; 9578 mddev_put(mddev); 9579 spin_lock(&all_mddevs_lock); 9580 } 9581 spin_unlock(&all_mddevs_lock); 9582 9583 /* 9584 * certain more exotic SCSI devices are known to be 9585 * volatile wrt too early system reboots. While the 9586 * right place to handle this issue is the given 9587 * driver, we do want to have a safe RAID driver ... 9588 */ 9589 if (need_delay) 9590 msleep(1000); 9591 9592 return NOTIFY_DONE; 9593 } 9594 9595 static struct notifier_block md_notifier = { 9596 .notifier_call = md_notify_reboot, 9597 .next = NULL, 9598 .priority = INT_MAX, /* before any real devices */ 9599 }; 9600 9601 static void md_geninit(void) 9602 { 9603 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9604 9605 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9606 } 9607 9608 static int __init md_init(void) 9609 { 9610 int ret = -ENOMEM; 9611 9612 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9613 if (!md_wq) 9614 goto err_wq; 9615 9616 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9617 if (!md_misc_wq) 9618 goto err_misc_wq; 9619 9620 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9621 if (!md_rdev_misc_wq) 9622 goto err_rdev_misc_wq; 9623 9624 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9625 if (ret < 0) 9626 goto err_md; 9627 9628 ret = __register_blkdev(0, "mdp", md_probe); 9629 if (ret < 0) 9630 goto err_mdp; 9631 mdp_major = ret; 9632 9633 register_reboot_notifier(&md_notifier); 9634 raid_table_header = register_sysctl_table(raid_root_table); 9635 9636 md_geninit(); 9637 return 0; 9638 9639 err_mdp: 9640 unregister_blkdev(MD_MAJOR, "md"); 9641 err_md: 9642 destroy_workqueue(md_rdev_misc_wq); 9643 err_rdev_misc_wq: 9644 destroy_workqueue(md_misc_wq); 9645 err_misc_wq: 9646 destroy_workqueue(md_wq); 9647 err_wq: 9648 return ret; 9649 } 9650 9651 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9652 { 9653 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9654 struct md_rdev *rdev2, *tmp; 9655 int role, ret; 9656 9657 /* 9658 * If size is changed in another node then we need to 9659 * do resize as well. 9660 */ 9661 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9662 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9663 if (ret) 9664 pr_info("md-cluster: resize failed\n"); 9665 else 9666 md_bitmap_update_sb(mddev->bitmap); 9667 } 9668 9669 /* Check for change of roles in the active devices */ 9670 rdev_for_each_safe(rdev2, tmp, mddev) { 9671 if (test_bit(Faulty, &rdev2->flags)) 9672 continue; 9673 9674 /* Check if the roles changed */ 9675 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9676 9677 if (test_bit(Candidate, &rdev2->flags)) { 9678 if (role == MD_DISK_ROLE_FAULTY) { 9679 pr_info("md: Removing Candidate device %pg because add failed\n", 9680 rdev2->bdev); 9681 md_kick_rdev_from_array(rdev2); 9682 continue; 9683 } 9684 else 9685 clear_bit(Candidate, &rdev2->flags); 9686 } 9687 9688 if (role != rdev2->raid_disk) { 9689 /* 9690 * got activated except reshape is happening. 9691 */ 9692 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9693 !(le32_to_cpu(sb->feature_map) & 9694 MD_FEATURE_RESHAPE_ACTIVE)) { 9695 rdev2->saved_raid_disk = role; 9696 ret = remove_and_add_spares(mddev, rdev2); 9697 pr_info("Activated spare: %pg\n", 9698 rdev2->bdev); 9699 /* wakeup mddev->thread here, so array could 9700 * perform resync with the new activated disk */ 9701 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9702 md_wakeup_thread(mddev->thread); 9703 } 9704 /* device faulty 9705 * We just want to do the minimum to mark the disk 9706 * as faulty. The recovery is performed by the 9707 * one who initiated the error. 9708 */ 9709 if (role == MD_DISK_ROLE_FAULTY || 9710 role == MD_DISK_ROLE_JOURNAL) { 9711 md_error(mddev, rdev2); 9712 clear_bit(Blocked, &rdev2->flags); 9713 } 9714 } 9715 } 9716 9717 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9718 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9719 if (ret) 9720 pr_warn("md: updating array disks failed. %d\n", ret); 9721 } 9722 9723 /* 9724 * Since mddev->delta_disks has already updated in update_raid_disks, 9725 * so it is time to check reshape. 9726 */ 9727 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9728 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9729 /* 9730 * reshape is happening in the remote node, we need to 9731 * update reshape_position and call start_reshape. 9732 */ 9733 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9734 if (mddev->pers->update_reshape_pos) 9735 mddev->pers->update_reshape_pos(mddev); 9736 if (mddev->pers->start_reshape) 9737 mddev->pers->start_reshape(mddev); 9738 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9739 mddev->reshape_position != MaxSector && 9740 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9741 /* reshape is just done in another node. */ 9742 mddev->reshape_position = MaxSector; 9743 if (mddev->pers->update_reshape_pos) 9744 mddev->pers->update_reshape_pos(mddev); 9745 } 9746 9747 /* Finally set the event to be up to date */ 9748 mddev->events = le64_to_cpu(sb->events); 9749 } 9750 9751 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9752 { 9753 int err; 9754 struct page *swapout = rdev->sb_page; 9755 struct mdp_superblock_1 *sb; 9756 9757 /* Store the sb page of the rdev in the swapout temporary 9758 * variable in case we err in the future 9759 */ 9760 rdev->sb_page = NULL; 9761 err = alloc_disk_sb(rdev); 9762 if (err == 0) { 9763 ClearPageUptodate(rdev->sb_page); 9764 rdev->sb_loaded = 0; 9765 err = super_types[mddev->major_version]. 9766 load_super(rdev, NULL, mddev->minor_version); 9767 } 9768 if (err < 0) { 9769 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9770 __func__, __LINE__, rdev->desc_nr, err); 9771 if (rdev->sb_page) 9772 put_page(rdev->sb_page); 9773 rdev->sb_page = swapout; 9774 rdev->sb_loaded = 1; 9775 return err; 9776 } 9777 9778 sb = page_address(rdev->sb_page); 9779 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9780 * is not set 9781 */ 9782 9783 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9784 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9785 9786 /* The other node finished recovery, call spare_active to set 9787 * device In_sync and mddev->degraded 9788 */ 9789 if (rdev->recovery_offset == MaxSector && 9790 !test_bit(In_sync, &rdev->flags) && 9791 mddev->pers->spare_active(mddev)) 9792 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9793 9794 put_page(swapout); 9795 return 0; 9796 } 9797 9798 void md_reload_sb(struct mddev *mddev, int nr) 9799 { 9800 struct md_rdev *rdev = NULL, *iter; 9801 int err; 9802 9803 /* Find the rdev */ 9804 rdev_for_each_rcu(iter, mddev) { 9805 if (iter->desc_nr == nr) { 9806 rdev = iter; 9807 break; 9808 } 9809 } 9810 9811 if (!rdev) { 9812 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9813 return; 9814 } 9815 9816 err = read_rdev(mddev, rdev); 9817 if (err < 0) 9818 return; 9819 9820 check_sb_changes(mddev, rdev); 9821 9822 /* Read all rdev's to update recovery_offset */ 9823 rdev_for_each_rcu(rdev, mddev) { 9824 if (!test_bit(Faulty, &rdev->flags)) 9825 read_rdev(mddev, rdev); 9826 } 9827 } 9828 EXPORT_SYMBOL(md_reload_sb); 9829 9830 #ifndef MODULE 9831 9832 /* 9833 * Searches all registered partitions for autorun RAID arrays 9834 * at boot time. 9835 */ 9836 9837 static DEFINE_MUTEX(detected_devices_mutex); 9838 static LIST_HEAD(all_detected_devices); 9839 struct detected_devices_node { 9840 struct list_head list; 9841 dev_t dev; 9842 }; 9843 9844 void md_autodetect_dev(dev_t dev) 9845 { 9846 struct detected_devices_node *node_detected_dev; 9847 9848 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9849 if (node_detected_dev) { 9850 node_detected_dev->dev = dev; 9851 mutex_lock(&detected_devices_mutex); 9852 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9853 mutex_unlock(&detected_devices_mutex); 9854 } 9855 } 9856 9857 void md_autostart_arrays(int part) 9858 { 9859 struct md_rdev *rdev; 9860 struct detected_devices_node *node_detected_dev; 9861 dev_t dev; 9862 int i_scanned, i_passed; 9863 9864 i_scanned = 0; 9865 i_passed = 0; 9866 9867 pr_info("md: Autodetecting RAID arrays.\n"); 9868 9869 mutex_lock(&detected_devices_mutex); 9870 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9871 i_scanned++; 9872 node_detected_dev = list_entry(all_detected_devices.next, 9873 struct detected_devices_node, list); 9874 list_del(&node_detected_dev->list); 9875 dev = node_detected_dev->dev; 9876 kfree(node_detected_dev); 9877 mutex_unlock(&detected_devices_mutex); 9878 rdev = md_import_device(dev,0, 90); 9879 mutex_lock(&detected_devices_mutex); 9880 if (IS_ERR(rdev)) 9881 continue; 9882 9883 if (test_bit(Faulty, &rdev->flags)) 9884 continue; 9885 9886 set_bit(AutoDetected, &rdev->flags); 9887 list_add(&rdev->same_set, &pending_raid_disks); 9888 i_passed++; 9889 } 9890 mutex_unlock(&detected_devices_mutex); 9891 9892 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9893 9894 autorun_devices(part); 9895 } 9896 9897 #endif /* !MODULE */ 9898 9899 static __exit void md_exit(void) 9900 { 9901 struct mddev *mddev, *n; 9902 int delay = 1; 9903 9904 unregister_blkdev(MD_MAJOR,"md"); 9905 unregister_blkdev(mdp_major, "mdp"); 9906 unregister_reboot_notifier(&md_notifier); 9907 unregister_sysctl_table(raid_table_header); 9908 9909 /* We cannot unload the modules while some process is 9910 * waiting for us in select() or poll() - wake them up 9911 */ 9912 md_unloading = 1; 9913 while (waitqueue_active(&md_event_waiters)) { 9914 /* not safe to leave yet */ 9915 wake_up(&md_event_waiters); 9916 msleep(delay); 9917 delay += delay; 9918 } 9919 remove_proc_entry("mdstat", NULL); 9920 9921 spin_lock(&all_mddevs_lock); 9922 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9923 if (!mddev_get(mddev)) 9924 continue; 9925 spin_unlock(&all_mddevs_lock); 9926 export_array(mddev); 9927 mddev->ctime = 0; 9928 mddev->hold_active = 0; 9929 /* 9930 * As the mddev is now fully clear, mddev_put will schedule 9931 * the mddev for destruction by a workqueue, and the 9932 * destroy_workqueue() below will wait for that to complete. 9933 */ 9934 mddev_put(mddev); 9935 spin_lock(&all_mddevs_lock); 9936 } 9937 spin_unlock(&all_mddevs_lock); 9938 9939 destroy_workqueue(md_rdev_misc_wq); 9940 destroy_workqueue(md_misc_wq); 9941 destroy_workqueue(md_wq); 9942 } 9943 9944 subsys_initcall(md_init); 9945 module_exit(md_exit) 9946 9947 static int get_ro(char *buffer, const struct kernel_param *kp) 9948 { 9949 return sprintf(buffer, "%d\n", start_readonly); 9950 } 9951 static int set_ro(const char *val, const struct kernel_param *kp) 9952 { 9953 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9954 } 9955 9956 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9957 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9958 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9959 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9960 9961 MODULE_LICENSE("GPL"); 9962 MODULE_DESCRIPTION("MD RAID framework"); 9963 MODULE_ALIAS("md"); 9964 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9965