xref: /linux/drivers/md/md.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/suspend.h>
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 static void md_print_devices(void);
75 
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77 
78 /*
79  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80  * is 1000 KB/sec, so the extra system load does not show up that much.
81  * Increase it if you want to have more _guaranteed_ speed. Note that
82  * the RAID driver will use the maximum available bandwidth if the IO
83  * subsystem is idle. There is also an 'absolute maximum' reconstruction
84  * speed limit - in case reconstruction slows down your system despite
85  * idle IO detection.
86  *
87  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88  * or /sys/block/mdX/md/sync_speed_{min,max}
89  */
90 
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 	return mddev->sync_speed_min ?
96 		mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98 
99 static inline int speed_max(mddev_t *mddev)
100 {
101 	return mddev->sync_speed_max ?
102 		mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104 
105 static struct ctl_table_header *raid_table_header;
106 
107 static ctl_table raid_table[] = {
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
110 		.procname	= "speed_limit_min",
111 		.data		= &sysctl_speed_limit_min,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{
117 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
118 		.procname	= "speed_limit_max",
119 		.data		= &sysctl_speed_limit_max,
120 		.maxlen		= sizeof(int),
121 		.mode		= S_IRUGO|S_IWUSR,
122 		.proc_handler	= &proc_dointvec,
123 	},
124 	{ .ctl_name = 0 }
125 };
126 
127 static ctl_table raid_dir_table[] = {
128 	{
129 		.ctl_name	= DEV_RAID,
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ .ctl_name = 0 }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.ctl_name	= CTL_DEV,
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{ .ctl_name = 0 }
147 };
148 
149 static struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /*
154  * We have a system wide 'event count' that is incremented
155  * on any 'interesting' event, and readers of /proc/mdstat
156  * can use 'poll' or 'select' to find out when the event
157  * count increases.
158  *
159  * Events are:
160  *  start array, stop array, error, add device, remove device,
161  *  start build, activate spare
162  */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 	atomic_inc(&md_event_count);
168 	wake_up(&md_event_waiters);
169 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172 
173 /* Alternate version that can be called from interrupts
174  * when calling sysfs_notify isn't needed.
175  */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 	atomic_inc(&md_event_count);
179 	wake_up(&md_event_waiters);
180 }
181 
182 /*
183  * Enables to iterate over all existing md arrays
184  * all_mddevs_lock protects this list.
185  */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188 
189 
190 /*
191  * iterates through all used mddevs in the system.
192  * We take care to grab the all_mddevs_lock whenever navigating
193  * the list, and to always hold a refcount when unlocked.
194  * Any code which breaks out of this loop while own
195  * a reference to the current mddev and must mddev_put it.
196  */
197 #define ITERATE_MDDEV(mddev,tmp)					\
198 									\
199 	for (({ spin_lock(&all_mddevs_lock); 				\
200 		tmp = all_mddevs.next;					\
201 		mddev = NULL;});					\
202 	     ({ if (tmp != &all_mddevs)					\
203 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 		spin_unlock(&all_mddevs_lock);				\
205 		if (mddev) mddev_put(mddev);				\
206 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
207 		tmp != &all_mddevs;});					\
208 	     ({ spin_lock(&all_mddevs_lock);				\
209 		tmp = tmp->next;})					\
210 		)
211 
212 
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 	bio_io_error(bio, bio->bi_size);
216 	return 0;
217 }
218 
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 	atomic_inc(&mddev->active);
222 	return mddev;
223 }
224 
225 static void mddev_put(mddev_t *mddev)
226 {
227 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 		return;
229 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 		list_del(&mddev->all_mddevs);
231 		spin_unlock(&all_mddevs_lock);
232 		blk_cleanup_queue(mddev->queue);
233 		kobject_unregister(&mddev->kobj);
234 	} else
235 		spin_unlock(&all_mddevs_lock);
236 }
237 
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 	mddev_t *mddev, *new = NULL;
241 
242  retry:
243 	spin_lock(&all_mddevs_lock);
244 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 		if (mddev->unit == unit) {
246 			mddev_get(mddev);
247 			spin_unlock(&all_mddevs_lock);
248 			kfree(new);
249 			return mddev;
250 		}
251 
252 	if (new) {
253 		list_add(&new->all_mddevs, &all_mddevs);
254 		spin_unlock(&all_mddevs_lock);
255 		return new;
256 	}
257 	spin_unlock(&all_mddevs_lock);
258 
259 	new = kzalloc(sizeof(*new), GFP_KERNEL);
260 	if (!new)
261 		return NULL;
262 
263 	new->unit = unit;
264 	if (MAJOR(unit) == MD_MAJOR)
265 		new->md_minor = MINOR(unit);
266 	else
267 		new->md_minor = MINOR(unit) >> MdpMinorShift;
268 
269 	mutex_init(&new->reconfig_mutex);
270 	INIT_LIST_HEAD(&new->disks);
271 	INIT_LIST_HEAD(&new->all_mddevs);
272 	init_timer(&new->safemode_timer);
273 	atomic_set(&new->active, 1);
274 	spin_lock_init(&new->write_lock);
275 	init_waitqueue_head(&new->sb_wait);
276 
277 	new->queue = blk_alloc_queue(GFP_KERNEL);
278 	if (!new->queue) {
279 		kfree(new);
280 		return NULL;
281 	}
282 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283 
284 	blk_queue_make_request(new->queue, md_fail_request);
285 
286 	goto retry;
287 }
288 
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293 
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 	return mutex_trylock(&mddev->reconfig_mutex);
297 }
298 
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 	mutex_unlock(&mddev->reconfig_mutex);
302 
303 	md_wakeup_thread(mddev->thread);
304 }
305 
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 	mdk_rdev_t * rdev;
309 	struct list_head *tmp;
310 
311 	ITERATE_RDEV(mddev,rdev,tmp) {
312 		if (rdev->desc_nr == nr)
313 			return rdev;
314 	}
315 	return NULL;
316 }
317 
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 	struct list_head *tmp;
321 	mdk_rdev_t *rdev;
322 
323 	ITERATE_RDEV(mddev,rdev,tmp) {
324 		if (rdev->bdev->bd_dev == dev)
325 			return rdev;
326 	}
327 	return NULL;
328 }
329 
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 	struct mdk_personality *pers;
333 	list_for_each_entry(pers, &pers_list, list) {
334 		if (level != LEVEL_NONE && pers->level == level)
335 			return pers;
336 		if (strcmp(pers->name, clevel)==0)
337 			return pers;
338 	}
339 	return NULL;
340 }
341 
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 	return MD_NEW_SIZE_BLOCKS(size);
346 }
347 
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 	sector_t size;
351 
352 	size = rdev->sb_offset;
353 
354 	if (chunk_size)
355 		size &= ~((sector_t)chunk_size/1024 - 1);
356 	return size;
357 }
358 
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 	if (rdev->sb_page)
362 		MD_BUG();
363 
364 	rdev->sb_page = alloc_page(GFP_KERNEL);
365 	if (!rdev->sb_page) {
366 		printk(KERN_ALERT "md: out of memory.\n");
367 		return -EINVAL;
368 	}
369 
370 	return 0;
371 }
372 
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 	if (rdev->sb_page) {
376 		put_page(rdev->sb_page);
377 		rdev->sb_loaded = 0;
378 		rdev->sb_page = NULL;
379 		rdev->sb_offset = 0;
380 		rdev->size = 0;
381 	}
382 }
383 
384 
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 	mdk_rdev_t *rdev = bio->bi_private;
388 	mddev_t *mddev = rdev->mddev;
389 	if (bio->bi_size)
390 		return 1;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
393 		md_error(mddev, rdev);
394 
395 	if (atomic_dec_and_test(&mddev->pending_writes))
396 		wake_up(&mddev->sb_wait);
397 	bio_put(bio);
398 	return 0;
399 }
400 
401 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
402 {
403 	struct bio *bio2 = bio->bi_private;
404 	mdk_rdev_t *rdev = bio2->bi_private;
405 	mddev_t *mddev = rdev->mddev;
406 	if (bio->bi_size)
407 		return 1;
408 
409 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
410 	    error == -EOPNOTSUPP) {
411 		unsigned long flags;
412 		/* barriers don't appear to be supported :-( */
413 		set_bit(BarriersNotsupp, &rdev->flags);
414 		mddev->barriers_work = 0;
415 		spin_lock_irqsave(&mddev->write_lock, flags);
416 		bio2->bi_next = mddev->biolist;
417 		mddev->biolist = bio2;
418 		spin_unlock_irqrestore(&mddev->write_lock, flags);
419 		wake_up(&mddev->sb_wait);
420 		bio_put(bio);
421 		return 0;
422 	}
423 	bio_put(bio2);
424 	bio->bi_private = rdev;
425 	return super_written(bio, bytes_done, error);
426 }
427 
428 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
429 		   sector_t sector, int size, struct page *page)
430 {
431 	/* write first size bytes of page to sector of rdev
432 	 * Increment mddev->pending_writes before returning
433 	 * and decrement it on completion, waking up sb_wait
434 	 * if zero is reached.
435 	 * If an error occurred, call md_error
436 	 *
437 	 * As we might need to resubmit the request if BIO_RW_BARRIER
438 	 * causes ENOTSUPP, we allocate a spare bio...
439 	 */
440 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
441 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
442 
443 	bio->bi_bdev = rdev->bdev;
444 	bio->bi_sector = sector;
445 	bio_add_page(bio, page, size, 0);
446 	bio->bi_private = rdev;
447 	bio->bi_end_io = super_written;
448 	bio->bi_rw = rw;
449 
450 	atomic_inc(&mddev->pending_writes);
451 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
452 		struct bio *rbio;
453 		rw |= (1<<BIO_RW_BARRIER);
454 		rbio = bio_clone(bio, GFP_NOIO);
455 		rbio->bi_private = bio;
456 		rbio->bi_end_io = super_written_barrier;
457 		submit_bio(rw, rbio);
458 	} else
459 		submit_bio(rw, bio);
460 }
461 
462 void md_super_wait(mddev_t *mddev)
463 {
464 	/* wait for all superblock writes that were scheduled to complete.
465 	 * if any had to be retried (due to BARRIER problems), retry them
466 	 */
467 	DEFINE_WAIT(wq);
468 	for(;;) {
469 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
470 		if (atomic_read(&mddev->pending_writes)==0)
471 			break;
472 		while (mddev->biolist) {
473 			struct bio *bio;
474 			spin_lock_irq(&mddev->write_lock);
475 			bio = mddev->biolist;
476 			mddev->biolist = bio->bi_next ;
477 			bio->bi_next = NULL;
478 			spin_unlock_irq(&mddev->write_lock);
479 			submit_bio(bio->bi_rw, bio);
480 		}
481 		schedule();
482 	}
483 	finish_wait(&mddev->sb_wait, &wq);
484 }
485 
486 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
487 {
488 	if (bio->bi_size)
489 		return 1;
490 
491 	complete((struct completion*)bio->bi_private);
492 	return 0;
493 }
494 
495 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
496 		   struct page *page, int rw)
497 {
498 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
499 	struct completion event;
500 	int ret;
501 
502 	rw |= (1 << BIO_RW_SYNC);
503 
504 	bio->bi_bdev = bdev;
505 	bio->bi_sector = sector;
506 	bio_add_page(bio, page, size, 0);
507 	init_completion(&event);
508 	bio->bi_private = &event;
509 	bio->bi_end_io = bi_complete;
510 	submit_bio(rw, bio);
511 	wait_for_completion(&event);
512 
513 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
514 	bio_put(bio);
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(sync_page_io);
518 
519 static int read_disk_sb(mdk_rdev_t * rdev, int size)
520 {
521 	char b[BDEVNAME_SIZE];
522 	if (!rdev->sb_page) {
523 		MD_BUG();
524 		return -EINVAL;
525 	}
526 	if (rdev->sb_loaded)
527 		return 0;
528 
529 
530 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
531 		goto fail;
532 	rdev->sb_loaded = 1;
533 	return 0;
534 
535 fail:
536 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
537 		bdevname(rdev->bdev,b));
538 	return -EINVAL;
539 }
540 
541 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
542 {
543 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
544 		(sb1->set_uuid1 == sb2->set_uuid1) &&
545 		(sb1->set_uuid2 == sb2->set_uuid2) &&
546 		(sb1->set_uuid3 == sb2->set_uuid3))
547 
548 		return 1;
549 
550 	return 0;
551 }
552 
553 
554 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
555 {
556 	int ret;
557 	mdp_super_t *tmp1, *tmp2;
558 
559 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
560 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
561 
562 	if (!tmp1 || !tmp2) {
563 		ret = 0;
564 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
565 		goto abort;
566 	}
567 
568 	*tmp1 = *sb1;
569 	*tmp2 = *sb2;
570 
571 	/*
572 	 * nr_disks is not constant
573 	 */
574 	tmp1->nr_disks = 0;
575 	tmp2->nr_disks = 0;
576 
577 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
578 		ret = 0;
579 	else
580 		ret = 1;
581 
582 abort:
583 	kfree(tmp1);
584 	kfree(tmp2);
585 	return ret;
586 }
587 
588 static unsigned int calc_sb_csum(mdp_super_t * sb)
589 {
590 	unsigned int disk_csum, csum;
591 
592 	disk_csum = sb->sb_csum;
593 	sb->sb_csum = 0;
594 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
595 	sb->sb_csum = disk_csum;
596 	return csum;
597 }
598 
599 
600 /*
601  * Handle superblock details.
602  * We want to be able to handle multiple superblock formats
603  * so we have a common interface to them all, and an array of
604  * different handlers.
605  * We rely on user-space to write the initial superblock, and support
606  * reading and updating of superblocks.
607  * Interface methods are:
608  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
609  *      loads and validates a superblock on dev.
610  *      if refdev != NULL, compare superblocks on both devices
611  *    Return:
612  *      0 - dev has a superblock that is compatible with refdev
613  *      1 - dev has a superblock that is compatible and newer than refdev
614  *          so dev should be used as the refdev in future
615  *     -EINVAL superblock incompatible or invalid
616  *     -othererror e.g. -EIO
617  *
618  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
619  *      Verify that dev is acceptable into mddev.
620  *       The first time, mddev->raid_disks will be 0, and data from
621  *       dev should be merged in.  Subsequent calls check that dev
622  *       is new enough.  Return 0 or -EINVAL
623  *
624  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
625  *     Update the superblock for rdev with data in mddev
626  *     This does not write to disc.
627  *
628  */
629 
630 struct super_type  {
631 	char 		*name;
632 	struct module	*owner;
633 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
634 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
635 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
636 };
637 
638 /*
639  * load_super for 0.90.0
640  */
641 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
642 {
643 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
644 	mdp_super_t *sb;
645 	int ret;
646 	sector_t sb_offset;
647 
648 	/*
649 	 * Calculate the position of the superblock,
650 	 * it's at the end of the disk.
651 	 *
652 	 * It also happens to be a multiple of 4Kb.
653 	 */
654 	sb_offset = calc_dev_sboffset(rdev->bdev);
655 	rdev->sb_offset = sb_offset;
656 
657 	ret = read_disk_sb(rdev, MD_SB_BYTES);
658 	if (ret) return ret;
659 
660 	ret = -EINVAL;
661 
662 	bdevname(rdev->bdev, b);
663 	sb = (mdp_super_t*)page_address(rdev->sb_page);
664 
665 	if (sb->md_magic != MD_SB_MAGIC) {
666 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
667 		       b);
668 		goto abort;
669 	}
670 
671 	if (sb->major_version != 0 ||
672 	    sb->minor_version < 90 ||
673 	    sb->minor_version > 91) {
674 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
675 			sb->major_version, sb->minor_version,
676 			b);
677 		goto abort;
678 	}
679 
680 	if (sb->raid_disks <= 0)
681 		goto abort;
682 
683 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
684 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
685 			b);
686 		goto abort;
687 	}
688 
689 	rdev->preferred_minor = sb->md_minor;
690 	rdev->data_offset = 0;
691 	rdev->sb_size = MD_SB_BYTES;
692 
693 	if (sb->level == LEVEL_MULTIPATH)
694 		rdev->desc_nr = -1;
695 	else
696 		rdev->desc_nr = sb->this_disk.number;
697 
698 	if (refdev == 0)
699 		ret = 1;
700 	else {
701 		__u64 ev1, ev2;
702 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
703 		if (!uuid_equal(refsb, sb)) {
704 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
705 				b, bdevname(refdev->bdev,b2));
706 			goto abort;
707 		}
708 		if (!sb_equal(refsb, sb)) {
709 			printk(KERN_WARNING "md: %s has same UUID"
710 			       " but different superblock to %s\n",
711 			       b, bdevname(refdev->bdev, b2));
712 			goto abort;
713 		}
714 		ev1 = md_event(sb);
715 		ev2 = md_event(refsb);
716 		if (ev1 > ev2)
717 			ret = 1;
718 		else
719 			ret = 0;
720 	}
721 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
722 
723 	if (rdev->size < sb->size && sb->level > 1)
724 		/* "this cannot possibly happen" ... */
725 		ret = -EINVAL;
726 
727  abort:
728 	return ret;
729 }
730 
731 /*
732  * validate_super for 0.90.0
733  */
734 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
735 {
736 	mdp_disk_t *desc;
737 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
738 	__u64 ev1 = md_event(sb);
739 
740 	rdev->raid_disk = -1;
741 	rdev->flags = 0;
742 	if (mddev->raid_disks == 0) {
743 		mddev->major_version = 0;
744 		mddev->minor_version = sb->minor_version;
745 		mddev->patch_version = sb->patch_version;
746 		mddev->persistent = ! sb->not_persistent;
747 		mddev->chunk_size = sb->chunk_size;
748 		mddev->ctime = sb->ctime;
749 		mddev->utime = sb->utime;
750 		mddev->level = sb->level;
751 		mddev->clevel[0] = 0;
752 		mddev->layout = sb->layout;
753 		mddev->raid_disks = sb->raid_disks;
754 		mddev->size = sb->size;
755 		mddev->events = ev1;
756 		mddev->bitmap_offset = 0;
757 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
758 
759 		if (mddev->minor_version >= 91) {
760 			mddev->reshape_position = sb->reshape_position;
761 			mddev->delta_disks = sb->delta_disks;
762 			mddev->new_level = sb->new_level;
763 			mddev->new_layout = sb->new_layout;
764 			mddev->new_chunk = sb->new_chunk;
765 		} else {
766 			mddev->reshape_position = MaxSector;
767 			mddev->delta_disks = 0;
768 			mddev->new_level = mddev->level;
769 			mddev->new_layout = mddev->layout;
770 			mddev->new_chunk = mddev->chunk_size;
771 		}
772 
773 		if (sb->state & (1<<MD_SB_CLEAN))
774 			mddev->recovery_cp = MaxSector;
775 		else {
776 			if (sb->events_hi == sb->cp_events_hi &&
777 				sb->events_lo == sb->cp_events_lo) {
778 				mddev->recovery_cp = sb->recovery_cp;
779 			} else
780 				mddev->recovery_cp = 0;
781 		}
782 
783 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
784 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
785 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
786 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
787 
788 		mddev->max_disks = MD_SB_DISKS;
789 
790 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
791 		    mddev->bitmap_file == NULL) {
792 			if (mddev->level != 1 && mddev->level != 4
793 			    && mddev->level != 5 && mddev->level != 6
794 			    && mddev->level != 10) {
795 				/* FIXME use a better test */
796 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
797 				return -EINVAL;
798 			}
799 			mddev->bitmap_offset = mddev->default_bitmap_offset;
800 		}
801 
802 	} else if (mddev->pers == NULL) {
803 		/* Insist on good event counter while assembling */
804 		++ev1;
805 		if (ev1 < mddev->events)
806 			return -EINVAL;
807 	} else if (mddev->bitmap) {
808 		/* if adding to array with a bitmap, then we can accept an
809 		 * older device ... but not too old.
810 		 */
811 		if (ev1 < mddev->bitmap->events_cleared)
812 			return 0;
813 	} else {
814 		if (ev1 < mddev->events)
815 			/* just a hot-add of a new device, leave raid_disk at -1 */
816 			return 0;
817 	}
818 
819 	if (mddev->level != LEVEL_MULTIPATH) {
820 		desc = sb->disks + rdev->desc_nr;
821 
822 		if (desc->state & (1<<MD_DISK_FAULTY))
823 			set_bit(Faulty, &rdev->flags);
824 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
825 			    desc->raid_disk < mddev->raid_disks */) {
826 			set_bit(In_sync, &rdev->flags);
827 			rdev->raid_disk = desc->raid_disk;
828 		}
829 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
830 			set_bit(WriteMostly, &rdev->flags);
831 	} else /* MULTIPATH are always insync */
832 		set_bit(In_sync, &rdev->flags);
833 	return 0;
834 }
835 
836 /*
837  * sync_super for 0.90.0
838  */
839 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
840 {
841 	mdp_super_t *sb;
842 	struct list_head *tmp;
843 	mdk_rdev_t *rdev2;
844 	int next_spare = mddev->raid_disks;
845 
846 
847 	/* make rdev->sb match mddev data..
848 	 *
849 	 * 1/ zero out disks
850 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
851 	 * 3/ any empty disks < next_spare become removed
852 	 *
853 	 * disks[0] gets initialised to REMOVED because
854 	 * we cannot be sure from other fields if it has
855 	 * been initialised or not.
856 	 */
857 	int i;
858 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
859 
860 	rdev->sb_size = MD_SB_BYTES;
861 
862 	sb = (mdp_super_t*)page_address(rdev->sb_page);
863 
864 	memset(sb, 0, sizeof(*sb));
865 
866 	sb->md_magic = MD_SB_MAGIC;
867 	sb->major_version = mddev->major_version;
868 	sb->patch_version = mddev->patch_version;
869 	sb->gvalid_words  = 0; /* ignored */
870 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
871 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
872 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
873 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
874 
875 	sb->ctime = mddev->ctime;
876 	sb->level = mddev->level;
877 	sb->size  = mddev->size;
878 	sb->raid_disks = mddev->raid_disks;
879 	sb->md_minor = mddev->md_minor;
880 	sb->not_persistent = !mddev->persistent;
881 	sb->utime = mddev->utime;
882 	sb->state = 0;
883 	sb->events_hi = (mddev->events>>32);
884 	sb->events_lo = (u32)mddev->events;
885 
886 	if (mddev->reshape_position == MaxSector)
887 		sb->minor_version = 90;
888 	else {
889 		sb->minor_version = 91;
890 		sb->reshape_position = mddev->reshape_position;
891 		sb->new_level = mddev->new_level;
892 		sb->delta_disks = mddev->delta_disks;
893 		sb->new_layout = mddev->new_layout;
894 		sb->new_chunk = mddev->new_chunk;
895 	}
896 	mddev->minor_version = sb->minor_version;
897 	if (mddev->in_sync)
898 	{
899 		sb->recovery_cp = mddev->recovery_cp;
900 		sb->cp_events_hi = (mddev->events>>32);
901 		sb->cp_events_lo = (u32)mddev->events;
902 		if (mddev->recovery_cp == MaxSector)
903 			sb->state = (1<< MD_SB_CLEAN);
904 	} else
905 		sb->recovery_cp = 0;
906 
907 	sb->layout = mddev->layout;
908 	sb->chunk_size = mddev->chunk_size;
909 
910 	if (mddev->bitmap && mddev->bitmap_file == NULL)
911 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
912 
913 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
914 	ITERATE_RDEV(mddev,rdev2,tmp) {
915 		mdp_disk_t *d;
916 		int desc_nr;
917 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
918 		    && !test_bit(Faulty, &rdev2->flags))
919 			desc_nr = rdev2->raid_disk;
920 		else
921 			desc_nr = next_spare++;
922 		rdev2->desc_nr = desc_nr;
923 		d = &sb->disks[rdev2->desc_nr];
924 		nr_disks++;
925 		d->number = rdev2->desc_nr;
926 		d->major = MAJOR(rdev2->bdev->bd_dev);
927 		d->minor = MINOR(rdev2->bdev->bd_dev);
928 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
929 		    && !test_bit(Faulty, &rdev2->flags))
930 			d->raid_disk = rdev2->raid_disk;
931 		else
932 			d->raid_disk = rdev2->desc_nr; /* compatibility */
933 		if (test_bit(Faulty, &rdev2->flags))
934 			d->state = (1<<MD_DISK_FAULTY);
935 		else if (test_bit(In_sync, &rdev2->flags)) {
936 			d->state = (1<<MD_DISK_ACTIVE);
937 			d->state |= (1<<MD_DISK_SYNC);
938 			active++;
939 			working++;
940 		} else {
941 			d->state = 0;
942 			spare++;
943 			working++;
944 		}
945 		if (test_bit(WriteMostly, &rdev2->flags))
946 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
947 	}
948 	/* now set the "removed" and "faulty" bits on any missing devices */
949 	for (i=0 ; i < mddev->raid_disks ; i++) {
950 		mdp_disk_t *d = &sb->disks[i];
951 		if (d->state == 0 && d->number == 0) {
952 			d->number = i;
953 			d->raid_disk = i;
954 			d->state = (1<<MD_DISK_REMOVED);
955 			d->state |= (1<<MD_DISK_FAULTY);
956 			failed++;
957 		}
958 	}
959 	sb->nr_disks = nr_disks;
960 	sb->active_disks = active;
961 	sb->working_disks = working;
962 	sb->failed_disks = failed;
963 	sb->spare_disks = spare;
964 
965 	sb->this_disk = sb->disks[rdev->desc_nr];
966 	sb->sb_csum = calc_sb_csum(sb);
967 }
968 
969 /*
970  * version 1 superblock
971  */
972 
973 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
974 {
975 	unsigned int disk_csum, csum;
976 	unsigned long long newcsum;
977 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
978 	unsigned int *isuper = (unsigned int*)sb;
979 	int i;
980 
981 	disk_csum = sb->sb_csum;
982 	sb->sb_csum = 0;
983 	newcsum = 0;
984 	for (i=0; size>=4; size -= 4 )
985 		newcsum += le32_to_cpu(*isuper++);
986 
987 	if (size == 2)
988 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
989 
990 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
991 	sb->sb_csum = disk_csum;
992 	return cpu_to_le32(csum);
993 }
994 
995 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
996 {
997 	struct mdp_superblock_1 *sb;
998 	int ret;
999 	sector_t sb_offset;
1000 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1001 	int bmask;
1002 
1003 	/*
1004 	 * Calculate the position of the superblock.
1005 	 * It is always aligned to a 4K boundary and
1006 	 * depeding on minor_version, it can be:
1007 	 * 0: At least 8K, but less than 12K, from end of device
1008 	 * 1: At start of device
1009 	 * 2: 4K from start of device.
1010 	 */
1011 	switch(minor_version) {
1012 	case 0:
1013 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1014 		sb_offset -= 8*2;
1015 		sb_offset &= ~(sector_t)(4*2-1);
1016 		/* convert from sectors to K */
1017 		sb_offset /= 2;
1018 		break;
1019 	case 1:
1020 		sb_offset = 0;
1021 		break;
1022 	case 2:
1023 		sb_offset = 4;
1024 		break;
1025 	default:
1026 		return -EINVAL;
1027 	}
1028 	rdev->sb_offset = sb_offset;
1029 
1030 	/* superblock is rarely larger than 1K, but it can be larger,
1031 	 * and it is safe to read 4k, so we do that
1032 	 */
1033 	ret = read_disk_sb(rdev, 4096);
1034 	if (ret) return ret;
1035 
1036 
1037 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1038 
1039 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1040 	    sb->major_version != cpu_to_le32(1) ||
1041 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1042 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1043 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1044 		return -EINVAL;
1045 
1046 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1047 		printk("md: invalid superblock checksum on %s\n",
1048 			bdevname(rdev->bdev,b));
1049 		return -EINVAL;
1050 	}
1051 	if (le64_to_cpu(sb->data_size) < 10) {
1052 		printk("md: data_size too small on %s\n",
1053 		       bdevname(rdev->bdev,b));
1054 		return -EINVAL;
1055 	}
1056 	rdev->preferred_minor = 0xffff;
1057 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1058 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1059 
1060 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1061 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1062 	if (rdev->sb_size & bmask)
1063 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1064 
1065 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1066 		rdev->desc_nr = -1;
1067 	else
1068 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1069 
1070 	if (refdev == 0)
1071 		ret = 1;
1072 	else {
1073 		__u64 ev1, ev2;
1074 		struct mdp_superblock_1 *refsb =
1075 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1076 
1077 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1078 		    sb->level != refsb->level ||
1079 		    sb->layout != refsb->layout ||
1080 		    sb->chunksize != refsb->chunksize) {
1081 			printk(KERN_WARNING "md: %s has strangely different"
1082 				" superblock to %s\n",
1083 				bdevname(rdev->bdev,b),
1084 				bdevname(refdev->bdev,b2));
1085 			return -EINVAL;
1086 		}
1087 		ev1 = le64_to_cpu(sb->events);
1088 		ev2 = le64_to_cpu(refsb->events);
1089 
1090 		if (ev1 > ev2)
1091 			ret = 1;
1092 		else
1093 			ret = 0;
1094 	}
1095 	if (minor_version)
1096 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1097 	else
1098 		rdev->size = rdev->sb_offset;
1099 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1100 		return -EINVAL;
1101 	rdev->size = le64_to_cpu(sb->data_size)/2;
1102 	if (le32_to_cpu(sb->chunksize))
1103 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1104 
1105 	if (le32_to_cpu(sb->size) > rdev->size*2)
1106 		return -EINVAL;
1107 	return ret;
1108 }
1109 
1110 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1111 {
1112 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1113 	__u64 ev1 = le64_to_cpu(sb->events);
1114 
1115 	rdev->raid_disk = -1;
1116 	rdev->flags = 0;
1117 	if (mddev->raid_disks == 0) {
1118 		mddev->major_version = 1;
1119 		mddev->patch_version = 0;
1120 		mddev->persistent = 1;
1121 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1122 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1123 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1124 		mddev->level = le32_to_cpu(sb->level);
1125 		mddev->clevel[0] = 0;
1126 		mddev->layout = le32_to_cpu(sb->layout);
1127 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1128 		mddev->size = le64_to_cpu(sb->size)/2;
1129 		mddev->events = ev1;
1130 		mddev->bitmap_offset = 0;
1131 		mddev->default_bitmap_offset = 1024 >> 9;
1132 
1133 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1134 		memcpy(mddev->uuid, sb->set_uuid, 16);
1135 
1136 		mddev->max_disks =  (4096-256)/2;
1137 
1138 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1139 		    mddev->bitmap_file == NULL ) {
1140 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1141 			    && mddev->level != 10) {
1142 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1143 				return -EINVAL;
1144 			}
1145 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1146 		}
1147 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1148 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1149 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1150 			mddev->new_level = le32_to_cpu(sb->new_level);
1151 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1152 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1153 		} else {
1154 			mddev->reshape_position = MaxSector;
1155 			mddev->delta_disks = 0;
1156 			mddev->new_level = mddev->level;
1157 			mddev->new_layout = mddev->layout;
1158 			mddev->new_chunk = mddev->chunk_size;
1159 		}
1160 
1161 	} else if (mddev->pers == NULL) {
1162 		/* Insist of good event counter while assembling */
1163 		++ev1;
1164 		if (ev1 < mddev->events)
1165 			return -EINVAL;
1166 	} else if (mddev->bitmap) {
1167 		/* If adding to array with a bitmap, then we can accept an
1168 		 * older device, but not too old.
1169 		 */
1170 		if (ev1 < mddev->bitmap->events_cleared)
1171 			return 0;
1172 	} else {
1173 		if (ev1 < mddev->events)
1174 			/* just a hot-add of a new device, leave raid_disk at -1 */
1175 			return 0;
1176 	}
1177 	if (mddev->level != LEVEL_MULTIPATH) {
1178 		int role;
1179 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1180 		switch(role) {
1181 		case 0xffff: /* spare */
1182 			break;
1183 		case 0xfffe: /* faulty */
1184 			set_bit(Faulty, &rdev->flags);
1185 			break;
1186 		default:
1187 			if ((le32_to_cpu(sb->feature_map) &
1188 			     MD_FEATURE_RECOVERY_OFFSET))
1189 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1190 			else
1191 				set_bit(In_sync, &rdev->flags);
1192 			rdev->raid_disk = role;
1193 			break;
1194 		}
1195 		if (sb->devflags & WriteMostly1)
1196 			set_bit(WriteMostly, &rdev->flags);
1197 	} else /* MULTIPATH are always insync */
1198 		set_bit(In_sync, &rdev->flags);
1199 
1200 	return 0;
1201 }
1202 
1203 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1204 {
1205 	struct mdp_superblock_1 *sb;
1206 	struct list_head *tmp;
1207 	mdk_rdev_t *rdev2;
1208 	int max_dev, i;
1209 	/* make rdev->sb match mddev and rdev data. */
1210 
1211 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1212 
1213 	sb->feature_map = 0;
1214 	sb->pad0 = 0;
1215 	sb->recovery_offset = cpu_to_le64(0);
1216 	memset(sb->pad1, 0, sizeof(sb->pad1));
1217 	memset(sb->pad2, 0, sizeof(sb->pad2));
1218 	memset(sb->pad3, 0, sizeof(sb->pad3));
1219 
1220 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1221 	sb->events = cpu_to_le64(mddev->events);
1222 	if (mddev->in_sync)
1223 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1224 	else
1225 		sb->resync_offset = cpu_to_le64(0);
1226 
1227 	sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1228 
1229 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1230 	sb->size = cpu_to_le64(mddev->size<<1);
1231 
1232 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1233 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1234 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1235 	}
1236 
1237 	if (rdev->raid_disk >= 0 &&
1238 	    !test_bit(In_sync, &rdev->flags) &&
1239 	    rdev->recovery_offset > 0) {
1240 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1241 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1242 	}
1243 
1244 	if (mddev->reshape_position != MaxSector) {
1245 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1246 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1247 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1248 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1249 		sb->new_level = cpu_to_le32(mddev->new_level);
1250 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1251 	}
1252 
1253 	max_dev = 0;
1254 	ITERATE_RDEV(mddev,rdev2,tmp)
1255 		if (rdev2->desc_nr+1 > max_dev)
1256 			max_dev = rdev2->desc_nr+1;
1257 
1258 	sb->max_dev = cpu_to_le32(max_dev);
1259 	for (i=0; i<max_dev;i++)
1260 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1261 
1262 	ITERATE_RDEV(mddev,rdev2,tmp) {
1263 		i = rdev2->desc_nr;
1264 		if (test_bit(Faulty, &rdev2->flags))
1265 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266 		else if (test_bit(In_sync, &rdev2->flags))
1267 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1268 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1269 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1270 		else
1271 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1272 	}
1273 
1274 	sb->sb_csum = calc_sb_1_csum(sb);
1275 }
1276 
1277 
1278 static struct super_type super_types[] = {
1279 	[0] = {
1280 		.name	= "0.90.0",
1281 		.owner	= THIS_MODULE,
1282 		.load_super	= super_90_load,
1283 		.validate_super	= super_90_validate,
1284 		.sync_super	= super_90_sync,
1285 	},
1286 	[1] = {
1287 		.name	= "md-1",
1288 		.owner	= THIS_MODULE,
1289 		.load_super	= super_1_load,
1290 		.validate_super	= super_1_validate,
1291 		.sync_super	= super_1_sync,
1292 	},
1293 };
1294 
1295 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1296 {
1297 	struct list_head *tmp;
1298 	mdk_rdev_t *rdev;
1299 
1300 	ITERATE_RDEV(mddev,rdev,tmp)
1301 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1302 			return rdev;
1303 
1304 	return NULL;
1305 }
1306 
1307 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1308 {
1309 	struct list_head *tmp;
1310 	mdk_rdev_t *rdev;
1311 
1312 	ITERATE_RDEV(mddev1,rdev,tmp)
1313 		if (match_dev_unit(mddev2, rdev))
1314 			return 1;
1315 
1316 	return 0;
1317 }
1318 
1319 static LIST_HEAD(pending_raid_disks);
1320 
1321 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1322 {
1323 	mdk_rdev_t *same_pdev;
1324 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1325 	struct kobject *ko;
1326 	char *s;
1327 
1328 	if (rdev->mddev) {
1329 		MD_BUG();
1330 		return -EINVAL;
1331 	}
1332 	/* make sure rdev->size exceeds mddev->size */
1333 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1334 		if (mddev->pers)
1335 			/* Cannot change size, so fail */
1336 			return -ENOSPC;
1337 		else
1338 			mddev->size = rdev->size;
1339 	}
1340 	same_pdev = match_dev_unit(mddev, rdev);
1341 	if (same_pdev)
1342 		printk(KERN_WARNING
1343 			"%s: WARNING: %s appears to be on the same physical"
1344 	 		" disk as %s. True\n     protection against single-disk"
1345 			" failure might be compromised.\n",
1346 			mdname(mddev), bdevname(rdev->bdev,b),
1347 			bdevname(same_pdev->bdev,b2));
1348 
1349 	/* Verify rdev->desc_nr is unique.
1350 	 * If it is -1, assign a free number, else
1351 	 * check number is not in use
1352 	 */
1353 	if (rdev->desc_nr < 0) {
1354 		int choice = 0;
1355 		if (mddev->pers) choice = mddev->raid_disks;
1356 		while (find_rdev_nr(mddev, choice))
1357 			choice++;
1358 		rdev->desc_nr = choice;
1359 	} else {
1360 		if (find_rdev_nr(mddev, rdev->desc_nr))
1361 			return -EBUSY;
1362 	}
1363 	bdevname(rdev->bdev,b);
1364 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1365 		return -ENOMEM;
1366 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1367 		*s = '!';
1368 
1369 	list_add(&rdev->same_set, &mddev->disks);
1370 	rdev->mddev = mddev;
1371 	printk(KERN_INFO "md: bind<%s>\n", b);
1372 
1373 	rdev->kobj.parent = &mddev->kobj;
1374 	kobject_add(&rdev->kobj);
1375 
1376 	if (rdev->bdev->bd_part)
1377 		ko = &rdev->bdev->bd_part->kobj;
1378 	else
1379 		ko = &rdev->bdev->bd_disk->kobj;
1380 	sysfs_create_link(&rdev->kobj, ko, "block");
1381 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1382 	return 0;
1383 }
1384 
1385 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1386 {
1387 	char b[BDEVNAME_SIZE];
1388 	if (!rdev->mddev) {
1389 		MD_BUG();
1390 		return;
1391 	}
1392 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1393 	list_del_init(&rdev->same_set);
1394 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1395 	rdev->mddev = NULL;
1396 	sysfs_remove_link(&rdev->kobj, "block");
1397 	kobject_del(&rdev->kobj);
1398 }
1399 
1400 /*
1401  * prevent the device from being mounted, repartitioned or
1402  * otherwise reused by a RAID array (or any other kernel
1403  * subsystem), by bd_claiming the device.
1404  */
1405 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1406 {
1407 	int err = 0;
1408 	struct block_device *bdev;
1409 	char b[BDEVNAME_SIZE];
1410 
1411 	bdev = open_partition_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1412 	if (IS_ERR(bdev)) {
1413 		printk(KERN_ERR "md: could not open %s.\n",
1414 			__bdevname(dev, b));
1415 		return PTR_ERR(bdev);
1416 	}
1417 	err = bd_claim(bdev, rdev);
1418 	if (err) {
1419 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1420 			bdevname(bdev, b));
1421 		blkdev_put_partition(bdev);
1422 		return err;
1423 	}
1424 	rdev->bdev = bdev;
1425 	return err;
1426 }
1427 
1428 static void unlock_rdev(mdk_rdev_t *rdev)
1429 {
1430 	struct block_device *bdev = rdev->bdev;
1431 	rdev->bdev = NULL;
1432 	if (!bdev)
1433 		MD_BUG();
1434 	bd_release(bdev);
1435 	blkdev_put_partition(bdev);
1436 }
1437 
1438 void md_autodetect_dev(dev_t dev);
1439 
1440 static void export_rdev(mdk_rdev_t * rdev)
1441 {
1442 	char b[BDEVNAME_SIZE];
1443 	printk(KERN_INFO "md: export_rdev(%s)\n",
1444 		bdevname(rdev->bdev,b));
1445 	if (rdev->mddev)
1446 		MD_BUG();
1447 	free_disk_sb(rdev);
1448 	list_del_init(&rdev->same_set);
1449 #ifndef MODULE
1450 	md_autodetect_dev(rdev->bdev->bd_dev);
1451 #endif
1452 	unlock_rdev(rdev);
1453 	kobject_put(&rdev->kobj);
1454 }
1455 
1456 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1457 {
1458 	unbind_rdev_from_array(rdev);
1459 	export_rdev(rdev);
1460 }
1461 
1462 static void export_array(mddev_t *mddev)
1463 {
1464 	struct list_head *tmp;
1465 	mdk_rdev_t *rdev;
1466 
1467 	ITERATE_RDEV(mddev,rdev,tmp) {
1468 		if (!rdev->mddev) {
1469 			MD_BUG();
1470 			continue;
1471 		}
1472 		kick_rdev_from_array(rdev);
1473 	}
1474 	if (!list_empty(&mddev->disks))
1475 		MD_BUG();
1476 	mddev->raid_disks = 0;
1477 	mddev->major_version = 0;
1478 }
1479 
1480 static void print_desc(mdp_disk_t *desc)
1481 {
1482 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1483 		desc->major,desc->minor,desc->raid_disk,desc->state);
1484 }
1485 
1486 static void print_sb(mdp_super_t *sb)
1487 {
1488 	int i;
1489 
1490 	printk(KERN_INFO
1491 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1492 		sb->major_version, sb->minor_version, sb->patch_version,
1493 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1494 		sb->ctime);
1495 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1496 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1497 		sb->md_minor, sb->layout, sb->chunk_size);
1498 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1499 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1500 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1501 		sb->failed_disks, sb->spare_disks,
1502 		sb->sb_csum, (unsigned long)sb->events_lo);
1503 
1504 	printk(KERN_INFO);
1505 	for (i = 0; i < MD_SB_DISKS; i++) {
1506 		mdp_disk_t *desc;
1507 
1508 		desc = sb->disks + i;
1509 		if (desc->number || desc->major || desc->minor ||
1510 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1511 			printk("     D %2d: ", i);
1512 			print_desc(desc);
1513 		}
1514 	}
1515 	printk(KERN_INFO "md:     THIS: ");
1516 	print_desc(&sb->this_disk);
1517 
1518 }
1519 
1520 static void print_rdev(mdk_rdev_t *rdev)
1521 {
1522 	char b[BDEVNAME_SIZE];
1523 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1524 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1525 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1526 	        rdev->desc_nr);
1527 	if (rdev->sb_loaded) {
1528 		printk(KERN_INFO "md: rdev superblock:\n");
1529 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1530 	} else
1531 		printk(KERN_INFO "md: no rdev superblock!\n");
1532 }
1533 
1534 static void md_print_devices(void)
1535 {
1536 	struct list_head *tmp, *tmp2;
1537 	mdk_rdev_t *rdev;
1538 	mddev_t *mddev;
1539 	char b[BDEVNAME_SIZE];
1540 
1541 	printk("\n");
1542 	printk("md:	**********************************\n");
1543 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1544 	printk("md:	**********************************\n");
1545 	ITERATE_MDDEV(mddev,tmp) {
1546 
1547 		if (mddev->bitmap)
1548 			bitmap_print_sb(mddev->bitmap);
1549 		else
1550 			printk("%s: ", mdname(mddev));
1551 		ITERATE_RDEV(mddev,rdev,tmp2)
1552 			printk("<%s>", bdevname(rdev->bdev,b));
1553 		printk("\n");
1554 
1555 		ITERATE_RDEV(mddev,rdev,tmp2)
1556 			print_rdev(rdev);
1557 	}
1558 	printk("md:	**********************************\n");
1559 	printk("\n");
1560 }
1561 
1562 
1563 static void sync_sbs(mddev_t * mddev, int nospares)
1564 {
1565 	/* Update each superblock (in-memory image), but
1566 	 * if we are allowed to, skip spares which already
1567 	 * have the right event counter, or have one earlier
1568 	 * (which would mean they aren't being marked as dirty
1569 	 * with the rest of the array)
1570 	 */
1571 	mdk_rdev_t *rdev;
1572 	struct list_head *tmp;
1573 
1574 	ITERATE_RDEV(mddev,rdev,tmp) {
1575 		if (rdev->sb_events == mddev->events ||
1576 		    (nospares &&
1577 		     rdev->raid_disk < 0 &&
1578 		     (rdev->sb_events&1)==0 &&
1579 		     rdev->sb_events+1 == mddev->events)) {
1580 			/* Don't update this superblock */
1581 			rdev->sb_loaded = 2;
1582 		} else {
1583 			super_types[mddev->major_version].
1584 				sync_super(mddev, rdev);
1585 			rdev->sb_loaded = 1;
1586 		}
1587 	}
1588 }
1589 
1590 void md_update_sb(mddev_t * mddev)
1591 {
1592 	int err;
1593 	struct list_head *tmp;
1594 	mdk_rdev_t *rdev;
1595 	int sync_req;
1596 	int nospares = 0;
1597 
1598 repeat:
1599 	spin_lock_irq(&mddev->write_lock);
1600 
1601 	if (mddev->degraded && mddev->sb_dirty == 3)
1602 		/* If the array is degraded, then skipping spares is both
1603 		 * dangerous and fairly pointless.
1604 		 * Dangerous because a device that was removed from the array
1605 		 * might have a event_count that still looks up-to-date,
1606 		 * so it can be re-added without a resync.
1607 		 * Pointless because if there are any spares to skip,
1608 		 * then a recovery will happen and soon that array won't
1609 		 * be degraded any more and the spare can go back to sleep then.
1610 		 */
1611 		mddev->sb_dirty = 1;
1612 
1613 	sync_req = mddev->in_sync;
1614 	mddev->utime = get_seconds();
1615 	if (mddev->sb_dirty == 3)
1616 		/* just a clean<-> dirty transition, possibly leave spares alone,
1617 		 * though if events isn't the right even/odd, we will have to do
1618 		 * spares after all
1619 		 */
1620 		nospares = 1;
1621 
1622 	/* If this is just a dirty<->clean transition, and the array is clean
1623 	 * and 'events' is odd, we can roll back to the previous clean state */
1624 	if (mddev->sb_dirty == 3
1625 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1626 	    && (mddev->events & 1))
1627 		mddev->events--;
1628 	else {
1629 		/* otherwise we have to go forward and ... */
1630 		mddev->events ++;
1631 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1632 			/* .. if the array isn't clean, insist on an odd 'events' */
1633 			if ((mddev->events&1)==0) {
1634 				mddev->events++;
1635 				nospares = 0;
1636 			}
1637 		} else {
1638 			/* otherwise insist on an even 'events' (for clean states) */
1639 			if ((mddev->events&1)) {
1640 				mddev->events++;
1641 				nospares = 0;
1642 			}
1643 		}
1644 	}
1645 
1646 	if (!mddev->events) {
1647 		/*
1648 		 * oops, this 64-bit counter should never wrap.
1649 		 * Either we are in around ~1 trillion A.C., assuming
1650 		 * 1 reboot per second, or we have a bug:
1651 		 */
1652 		MD_BUG();
1653 		mddev->events --;
1654 	}
1655 	mddev->sb_dirty = 2;
1656 	sync_sbs(mddev, nospares);
1657 
1658 	/*
1659 	 * do not write anything to disk if using
1660 	 * nonpersistent superblocks
1661 	 */
1662 	if (!mddev->persistent) {
1663 		mddev->sb_dirty = 0;
1664 		spin_unlock_irq(&mddev->write_lock);
1665 		wake_up(&mddev->sb_wait);
1666 		return;
1667 	}
1668 	spin_unlock_irq(&mddev->write_lock);
1669 
1670 	dprintk(KERN_INFO
1671 		"md: updating %s RAID superblock on device (in sync %d)\n",
1672 		mdname(mddev),mddev->in_sync);
1673 
1674 	err = bitmap_update_sb(mddev->bitmap);
1675 	ITERATE_RDEV(mddev,rdev,tmp) {
1676 		char b[BDEVNAME_SIZE];
1677 		dprintk(KERN_INFO "md: ");
1678 		if (rdev->sb_loaded != 1)
1679 			continue; /* no noise on spare devices */
1680 		if (test_bit(Faulty, &rdev->flags))
1681 			dprintk("(skipping faulty ");
1682 
1683 		dprintk("%s ", bdevname(rdev->bdev,b));
1684 		if (!test_bit(Faulty, &rdev->flags)) {
1685 			md_super_write(mddev,rdev,
1686 				       rdev->sb_offset<<1, rdev->sb_size,
1687 				       rdev->sb_page);
1688 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1689 				bdevname(rdev->bdev,b),
1690 				(unsigned long long)rdev->sb_offset);
1691 			rdev->sb_events = mddev->events;
1692 
1693 		} else
1694 			dprintk(")\n");
1695 		if (mddev->level == LEVEL_MULTIPATH)
1696 			/* only need to write one superblock... */
1697 			break;
1698 	}
1699 	md_super_wait(mddev);
1700 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1701 
1702 	spin_lock_irq(&mddev->write_lock);
1703 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1704 		/* have to write it out again */
1705 		spin_unlock_irq(&mddev->write_lock);
1706 		goto repeat;
1707 	}
1708 	mddev->sb_dirty = 0;
1709 	spin_unlock_irq(&mddev->write_lock);
1710 	wake_up(&mddev->sb_wait);
1711 
1712 }
1713 EXPORT_SYMBOL_GPL(md_update_sb);
1714 
1715 /* words written to sysfs files may, or my not, be \n terminated.
1716  * We want to accept with case. For this we use cmd_match.
1717  */
1718 static int cmd_match(const char *cmd, const char *str)
1719 {
1720 	/* See if cmd, written into a sysfs file, matches
1721 	 * str.  They must either be the same, or cmd can
1722 	 * have a trailing newline
1723 	 */
1724 	while (*cmd && *str && *cmd == *str) {
1725 		cmd++;
1726 		str++;
1727 	}
1728 	if (*cmd == '\n')
1729 		cmd++;
1730 	if (*str || *cmd)
1731 		return 0;
1732 	return 1;
1733 }
1734 
1735 struct rdev_sysfs_entry {
1736 	struct attribute attr;
1737 	ssize_t (*show)(mdk_rdev_t *, char *);
1738 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1739 };
1740 
1741 static ssize_t
1742 state_show(mdk_rdev_t *rdev, char *page)
1743 {
1744 	char *sep = "";
1745 	int len=0;
1746 
1747 	if (test_bit(Faulty, &rdev->flags)) {
1748 		len+= sprintf(page+len, "%sfaulty",sep);
1749 		sep = ",";
1750 	}
1751 	if (test_bit(In_sync, &rdev->flags)) {
1752 		len += sprintf(page+len, "%sin_sync",sep);
1753 		sep = ",";
1754 	}
1755 	if (test_bit(WriteMostly, &rdev->flags)) {
1756 		len += sprintf(page+len, "%swrite_mostly",sep);
1757 		sep = ",";
1758 	}
1759 	if (!test_bit(Faulty, &rdev->flags) &&
1760 	    !test_bit(In_sync, &rdev->flags)) {
1761 		len += sprintf(page+len, "%sspare", sep);
1762 		sep = ",";
1763 	}
1764 	return len+sprintf(page+len, "\n");
1765 }
1766 
1767 static ssize_t
1768 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1769 {
1770 	/* can write
1771 	 *  faulty  - simulates and error
1772 	 *  remove  - disconnects the device
1773 	 *  writemostly - sets write_mostly
1774 	 *  -writemostly - clears write_mostly
1775 	 */
1776 	int err = -EINVAL;
1777 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1778 		md_error(rdev->mddev, rdev);
1779 		err = 0;
1780 	} else if (cmd_match(buf, "remove")) {
1781 		if (rdev->raid_disk >= 0)
1782 			err = -EBUSY;
1783 		else {
1784 			mddev_t *mddev = rdev->mddev;
1785 			kick_rdev_from_array(rdev);
1786 			md_update_sb(mddev);
1787 			md_new_event(mddev);
1788 			err = 0;
1789 		}
1790 	} else if (cmd_match(buf, "writemostly")) {
1791 		set_bit(WriteMostly, &rdev->flags);
1792 		err = 0;
1793 	} else if (cmd_match(buf, "-writemostly")) {
1794 		clear_bit(WriteMostly, &rdev->flags);
1795 		err = 0;
1796 	}
1797 	return err ? err : len;
1798 }
1799 static struct rdev_sysfs_entry rdev_state =
1800 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1801 
1802 static ssize_t
1803 super_show(mdk_rdev_t *rdev, char *page)
1804 {
1805 	if (rdev->sb_loaded && rdev->sb_size) {
1806 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1807 		return rdev->sb_size;
1808 	} else
1809 		return 0;
1810 }
1811 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1812 
1813 static ssize_t
1814 errors_show(mdk_rdev_t *rdev, char *page)
1815 {
1816 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1817 }
1818 
1819 static ssize_t
1820 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1821 {
1822 	char *e;
1823 	unsigned long n = simple_strtoul(buf, &e, 10);
1824 	if (*buf && (*e == 0 || *e == '\n')) {
1825 		atomic_set(&rdev->corrected_errors, n);
1826 		return len;
1827 	}
1828 	return -EINVAL;
1829 }
1830 static struct rdev_sysfs_entry rdev_errors =
1831 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1832 
1833 static ssize_t
1834 slot_show(mdk_rdev_t *rdev, char *page)
1835 {
1836 	if (rdev->raid_disk < 0)
1837 		return sprintf(page, "none\n");
1838 	else
1839 		return sprintf(page, "%d\n", rdev->raid_disk);
1840 }
1841 
1842 static ssize_t
1843 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1844 {
1845 	char *e;
1846 	int slot = simple_strtoul(buf, &e, 10);
1847 	if (strncmp(buf, "none", 4)==0)
1848 		slot = -1;
1849 	else if (e==buf || (*e && *e!= '\n'))
1850 		return -EINVAL;
1851 	if (rdev->mddev->pers)
1852 		/* Cannot set slot in active array (yet) */
1853 		return -EBUSY;
1854 	if (slot >= rdev->mddev->raid_disks)
1855 		return -ENOSPC;
1856 	rdev->raid_disk = slot;
1857 	/* assume it is working */
1858 	rdev->flags = 0;
1859 	set_bit(In_sync, &rdev->flags);
1860 	return len;
1861 }
1862 
1863 
1864 static struct rdev_sysfs_entry rdev_slot =
1865 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1866 
1867 static ssize_t
1868 offset_show(mdk_rdev_t *rdev, char *page)
1869 {
1870 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1871 }
1872 
1873 static ssize_t
1874 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1875 {
1876 	char *e;
1877 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1878 	if (e==buf || (*e && *e != '\n'))
1879 		return -EINVAL;
1880 	if (rdev->mddev->pers)
1881 		return -EBUSY;
1882 	rdev->data_offset = offset;
1883 	return len;
1884 }
1885 
1886 static struct rdev_sysfs_entry rdev_offset =
1887 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1888 
1889 static ssize_t
1890 rdev_size_show(mdk_rdev_t *rdev, char *page)
1891 {
1892 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1893 }
1894 
1895 static ssize_t
1896 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1897 {
1898 	char *e;
1899 	unsigned long long size = simple_strtoull(buf, &e, 10);
1900 	if (e==buf || (*e && *e != '\n'))
1901 		return -EINVAL;
1902 	if (rdev->mddev->pers)
1903 		return -EBUSY;
1904 	rdev->size = size;
1905 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1906 		rdev->mddev->size = size;
1907 	return len;
1908 }
1909 
1910 static struct rdev_sysfs_entry rdev_size =
1911 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1912 
1913 static struct attribute *rdev_default_attrs[] = {
1914 	&rdev_state.attr,
1915 	&rdev_super.attr,
1916 	&rdev_errors.attr,
1917 	&rdev_slot.attr,
1918 	&rdev_offset.attr,
1919 	&rdev_size.attr,
1920 	NULL,
1921 };
1922 static ssize_t
1923 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1924 {
1925 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1926 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1927 
1928 	if (!entry->show)
1929 		return -EIO;
1930 	return entry->show(rdev, page);
1931 }
1932 
1933 static ssize_t
1934 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1935 	      const char *page, size_t length)
1936 {
1937 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1938 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1939 
1940 	if (!entry->store)
1941 		return -EIO;
1942 	if (!capable(CAP_SYS_ADMIN))
1943 		return -EACCES;
1944 	return entry->store(rdev, page, length);
1945 }
1946 
1947 static void rdev_free(struct kobject *ko)
1948 {
1949 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1950 	kfree(rdev);
1951 }
1952 static struct sysfs_ops rdev_sysfs_ops = {
1953 	.show		= rdev_attr_show,
1954 	.store		= rdev_attr_store,
1955 };
1956 static struct kobj_type rdev_ktype = {
1957 	.release	= rdev_free,
1958 	.sysfs_ops	= &rdev_sysfs_ops,
1959 	.default_attrs	= rdev_default_attrs,
1960 };
1961 
1962 /*
1963  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1964  *
1965  * mark the device faulty if:
1966  *
1967  *   - the device is nonexistent (zero size)
1968  *   - the device has no valid superblock
1969  *
1970  * a faulty rdev _never_ has rdev->sb set.
1971  */
1972 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1973 {
1974 	char b[BDEVNAME_SIZE];
1975 	int err;
1976 	mdk_rdev_t *rdev;
1977 	sector_t size;
1978 
1979 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1980 	if (!rdev) {
1981 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1982 		return ERR_PTR(-ENOMEM);
1983 	}
1984 
1985 	if ((err = alloc_disk_sb(rdev)))
1986 		goto abort_free;
1987 
1988 	err = lock_rdev(rdev, newdev);
1989 	if (err)
1990 		goto abort_free;
1991 
1992 	rdev->kobj.parent = NULL;
1993 	rdev->kobj.ktype = &rdev_ktype;
1994 	kobject_init(&rdev->kobj);
1995 
1996 	rdev->desc_nr = -1;
1997 	rdev->flags = 0;
1998 	rdev->data_offset = 0;
1999 	rdev->sb_events = 0;
2000 	atomic_set(&rdev->nr_pending, 0);
2001 	atomic_set(&rdev->read_errors, 0);
2002 	atomic_set(&rdev->corrected_errors, 0);
2003 
2004 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2005 	if (!size) {
2006 		printk(KERN_WARNING
2007 			"md: %s has zero or unknown size, marking faulty!\n",
2008 			bdevname(rdev->bdev,b));
2009 		err = -EINVAL;
2010 		goto abort_free;
2011 	}
2012 
2013 	if (super_format >= 0) {
2014 		err = super_types[super_format].
2015 			load_super(rdev, NULL, super_minor);
2016 		if (err == -EINVAL) {
2017 			printk(KERN_WARNING
2018 				"md: %s has invalid sb, not importing!\n",
2019 				bdevname(rdev->bdev,b));
2020 			goto abort_free;
2021 		}
2022 		if (err < 0) {
2023 			printk(KERN_WARNING
2024 				"md: could not read %s's sb, not importing!\n",
2025 				bdevname(rdev->bdev,b));
2026 			goto abort_free;
2027 		}
2028 	}
2029 	INIT_LIST_HEAD(&rdev->same_set);
2030 
2031 	return rdev;
2032 
2033 abort_free:
2034 	if (rdev->sb_page) {
2035 		if (rdev->bdev)
2036 			unlock_rdev(rdev);
2037 		free_disk_sb(rdev);
2038 	}
2039 	kfree(rdev);
2040 	return ERR_PTR(err);
2041 }
2042 
2043 /*
2044  * Check a full RAID array for plausibility
2045  */
2046 
2047 
2048 static void analyze_sbs(mddev_t * mddev)
2049 {
2050 	int i;
2051 	struct list_head *tmp;
2052 	mdk_rdev_t *rdev, *freshest;
2053 	char b[BDEVNAME_SIZE];
2054 
2055 	freshest = NULL;
2056 	ITERATE_RDEV(mddev,rdev,tmp)
2057 		switch (super_types[mddev->major_version].
2058 			load_super(rdev, freshest, mddev->minor_version)) {
2059 		case 1:
2060 			freshest = rdev;
2061 			break;
2062 		case 0:
2063 			break;
2064 		default:
2065 			printk( KERN_ERR \
2066 				"md: fatal superblock inconsistency in %s"
2067 				" -- removing from array\n",
2068 				bdevname(rdev->bdev,b));
2069 			kick_rdev_from_array(rdev);
2070 		}
2071 
2072 
2073 	super_types[mddev->major_version].
2074 		validate_super(mddev, freshest);
2075 
2076 	i = 0;
2077 	ITERATE_RDEV(mddev,rdev,tmp) {
2078 		if (rdev != freshest)
2079 			if (super_types[mddev->major_version].
2080 			    validate_super(mddev, rdev)) {
2081 				printk(KERN_WARNING "md: kicking non-fresh %s"
2082 					" from array!\n",
2083 					bdevname(rdev->bdev,b));
2084 				kick_rdev_from_array(rdev);
2085 				continue;
2086 			}
2087 		if (mddev->level == LEVEL_MULTIPATH) {
2088 			rdev->desc_nr = i++;
2089 			rdev->raid_disk = rdev->desc_nr;
2090 			set_bit(In_sync, &rdev->flags);
2091 		}
2092 	}
2093 
2094 
2095 
2096 	if (mddev->recovery_cp != MaxSector &&
2097 	    mddev->level >= 1)
2098 		printk(KERN_ERR "md: %s: raid array is not clean"
2099 		       " -- starting background reconstruction\n",
2100 		       mdname(mddev));
2101 
2102 }
2103 
2104 static ssize_t
2105 safe_delay_show(mddev_t *mddev, char *page)
2106 {
2107 	int msec = (mddev->safemode_delay*1000)/HZ;
2108 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2109 }
2110 static ssize_t
2111 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2112 {
2113 	int scale=1;
2114 	int dot=0;
2115 	int i;
2116 	unsigned long msec;
2117 	char buf[30];
2118 	char *e;
2119 	/* remove a period, and count digits after it */
2120 	if (len >= sizeof(buf))
2121 		return -EINVAL;
2122 	strlcpy(buf, cbuf, len);
2123 	buf[len] = 0;
2124 	for (i=0; i<len; i++) {
2125 		if (dot) {
2126 			if (isdigit(buf[i])) {
2127 				buf[i-1] = buf[i];
2128 				scale *= 10;
2129 			}
2130 			buf[i] = 0;
2131 		} else if (buf[i] == '.') {
2132 			dot=1;
2133 			buf[i] = 0;
2134 		}
2135 	}
2136 	msec = simple_strtoul(buf, &e, 10);
2137 	if (e == buf || (*e && *e != '\n'))
2138 		return -EINVAL;
2139 	msec = (msec * 1000) / scale;
2140 	if (msec == 0)
2141 		mddev->safemode_delay = 0;
2142 	else {
2143 		mddev->safemode_delay = (msec*HZ)/1000;
2144 		if (mddev->safemode_delay == 0)
2145 			mddev->safemode_delay = 1;
2146 	}
2147 	return len;
2148 }
2149 static struct md_sysfs_entry md_safe_delay =
2150 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2151 
2152 static ssize_t
2153 level_show(mddev_t *mddev, char *page)
2154 {
2155 	struct mdk_personality *p = mddev->pers;
2156 	if (p)
2157 		return sprintf(page, "%s\n", p->name);
2158 	else if (mddev->clevel[0])
2159 		return sprintf(page, "%s\n", mddev->clevel);
2160 	else if (mddev->level != LEVEL_NONE)
2161 		return sprintf(page, "%d\n", mddev->level);
2162 	else
2163 		return 0;
2164 }
2165 
2166 static ssize_t
2167 level_store(mddev_t *mddev, const char *buf, size_t len)
2168 {
2169 	int rv = len;
2170 	if (mddev->pers)
2171 		return -EBUSY;
2172 	if (len == 0)
2173 		return 0;
2174 	if (len >= sizeof(mddev->clevel))
2175 		return -ENOSPC;
2176 	strncpy(mddev->clevel, buf, len);
2177 	if (mddev->clevel[len-1] == '\n')
2178 		len--;
2179 	mddev->clevel[len] = 0;
2180 	mddev->level = LEVEL_NONE;
2181 	return rv;
2182 }
2183 
2184 static struct md_sysfs_entry md_level =
2185 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2186 
2187 
2188 static ssize_t
2189 layout_show(mddev_t *mddev, char *page)
2190 {
2191 	/* just a number, not meaningful for all levels */
2192 	return sprintf(page, "%d\n", mddev->layout);
2193 }
2194 
2195 static ssize_t
2196 layout_store(mddev_t *mddev, const char *buf, size_t len)
2197 {
2198 	char *e;
2199 	unsigned long n = simple_strtoul(buf, &e, 10);
2200 	if (mddev->pers)
2201 		return -EBUSY;
2202 
2203 	if (!*buf || (*e && *e != '\n'))
2204 		return -EINVAL;
2205 
2206 	mddev->layout = n;
2207 	return len;
2208 }
2209 static struct md_sysfs_entry md_layout =
2210 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2211 
2212 
2213 static ssize_t
2214 raid_disks_show(mddev_t *mddev, char *page)
2215 {
2216 	if (mddev->raid_disks == 0)
2217 		return 0;
2218 	return sprintf(page, "%d\n", mddev->raid_disks);
2219 }
2220 
2221 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2222 
2223 static ssize_t
2224 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2225 {
2226 	/* can only set raid_disks if array is not yet active */
2227 	char *e;
2228 	int rv = 0;
2229 	unsigned long n = simple_strtoul(buf, &e, 10);
2230 
2231 	if (!*buf || (*e && *e != '\n'))
2232 		return -EINVAL;
2233 
2234 	if (mddev->pers)
2235 		rv = update_raid_disks(mddev, n);
2236 	else
2237 		mddev->raid_disks = n;
2238 	return rv ? rv : len;
2239 }
2240 static struct md_sysfs_entry md_raid_disks =
2241 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2242 
2243 static ssize_t
2244 chunk_size_show(mddev_t *mddev, char *page)
2245 {
2246 	return sprintf(page, "%d\n", mddev->chunk_size);
2247 }
2248 
2249 static ssize_t
2250 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2251 {
2252 	/* can only set chunk_size if array is not yet active */
2253 	char *e;
2254 	unsigned long n = simple_strtoul(buf, &e, 10);
2255 
2256 	if (mddev->pers)
2257 		return -EBUSY;
2258 	if (!*buf || (*e && *e != '\n'))
2259 		return -EINVAL;
2260 
2261 	mddev->chunk_size = n;
2262 	return len;
2263 }
2264 static struct md_sysfs_entry md_chunk_size =
2265 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2266 
2267 static ssize_t
2268 resync_start_show(mddev_t *mddev, char *page)
2269 {
2270 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2271 }
2272 
2273 static ssize_t
2274 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2275 {
2276 	/* can only set chunk_size if array is not yet active */
2277 	char *e;
2278 	unsigned long long n = simple_strtoull(buf, &e, 10);
2279 
2280 	if (mddev->pers)
2281 		return -EBUSY;
2282 	if (!*buf || (*e && *e != '\n'))
2283 		return -EINVAL;
2284 
2285 	mddev->recovery_cp = n;
2286 	return len;
2287 }
2288 static struct md_sysfs_entry md_resync_start =
2289 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2290 
2291 /*
2292  * The array state can be:
2293  *
2294  * clear
2295  *     No devices, no size, no level
2296  *     Equivalent to STOP_ARRAY ioctl
2297  * inactive
2298  *     May have some settings, but array is not active
2299  *        all IO results in error
2300  *     When written, doesn't tear down array, but just stops it
2301  * suspended (not supported yet)
2302  *     All IO requests will block. The array can be reconfigured.
2303  *     Writing this, if accepted, will block until array is quiessent
2304  * readonly
2305  *     no resync can happen.  no superblocks get written.
2306  *     write requests fail
2307  * read-auto
2308  *     like readonly, but behaves like 'clean' on a write request.
2309  *
2310  * clean - no pending writes, but otherwise active.
2311  *     When written to inactive array, starts without resync
2312  *     If a write request arrives then
2313  *       if metadata is known, mark 'dirty' and switch to 'active'.
2314  *       if not known, block and switch to write-pending
2315  *     If written to an active array that has pending writes, then fails.
2316  * active
2317  *     fully active: IO and resync can be happening.
2318  *     When written to inactive array, starts with resync
2319  *
2320  * write-pending
2321  *     clean, but writes are blocked waiting for 'active' to be written.
2322  *
2323  * active-idle
2324  *     like active, but no writes have been seen for a while (100msec).
2325  *
2326  */
2327 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2328 		   write_pending, active_idle, bad_word};
2329 static char *array_states[] = {
2330 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2331 	"write-pending", "active-idle", NULL };
2332 
2333 static int match_word(const char *word, char **list)
2334 {
2335 	int n;
2336 	for (n=0; list[n]; n++)
2337 		if (cmd_match(word, list[n]))
2338 			break;
2339 	return n;
2340 }
2341 
2342 static ssize_t
2343 array_state_show(mddev_t *mddev, char *page)
2344 {
2345 	enum array_state st = inactive;
2346 
2347 	if (mddev->pers)
2348 		switch(mddev->ro) {
2349 		case 1:
2350 			st = readonly;
2351 			break;
2352 		case 2:
2353 			st = read_auto;
2354 			break;
2355 		case 0:
2356 			if (mddev->in_sync)
2357 				st = clean;
2358 			else if (mddev->safemode)
2359 				st = active_idle;
2360 			else
2361 				st = active;
2362 		}
2363 	else {
2364 		if (list_empty(&mddev->disks) &&
2365 		    mddev->raid_disks == 0 &&
2366 		    mddev->size == 0)
2367 			st = clear;
2368 		else
2369 			st = inactive;
2370 	}
2371 	return sprintf(page, "%s\n", array_states[st]);
2372 }
2373 
2374 static int do_md_stop(mddev_t * mddev, int ro);
2375 static int do_md_run(mddev_t * mddev);
2376 static int restart_array(mddev_t *mddev);
2377 
2378 static ssize_t
2379 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2380 {
2381 	int err = -EINVAL;
2382 	enum array_state st = match_word(buf, array_states);
2383 	switch(st) {
2384 	case bad_word:
2385 		break;
2386 	case clear:
2387 		/* stopping an active array */
2388 		if (mddev->pers) {
2389 			if (atomic_read(&mddev->active) > 1)
2390 				return -EBUSY;
2391 			err = do_md_stop(mddev, 0);
2392 		}
2393 		break;
2394 	case inactive:
2395 		/* stopping an active array */
2396 		if (mddev->pers) {
2397 			if (atomic_read(&mddev->active) > 1)
2398 				return -EBUSY;
2399 			err = do_md_stop(mddev, 2);
2400 		}
2401 		break;
2402 	case suspended:
2403 		break; /* not supported yet */
2404 	case readonly:
2405 		if (mddev->pers)
2406 			err = do_md_stop(mddev, 1);
2407 		else {
2408 			mddev->ro = 1;
2409 			err = do_md_run(mddev);
2410 		}
2411 		break;
2412 	case read_auto:
2413 		/* stopping an active array */
2414 		if (mddev->pers) {
2415 			err = do_md_stop(mddev, 1);
2416 			if (err == 0)
2417 				mddev->ro = 2; /* FIXME mark devices writable */
2418 		} else {
2419 			mddev->ro = 2;
2420 			err = do_md_run(mddev);
2421 		}
2422 		break;
2423 	case clean:
2424 		if (mddev->pers) {
2425 			restart_array(mddev);
2426 			spin_lock_irq(&mddev->write_lock);
2427 			if (atomic_read(&mddev->writes_pending) == 0) {
2428 				mddev->in_sync = 1;
2429 				mddev->sb_dirty = 1;
2430 			}
2431 			spin_unlock_irq(&mddev->write_lock);
2432 		} else {
2433 			mddev->ro = 0;
2434 			mddev->recovery_cp = MaxSector;
2435 			err = do_md_run(mddev);
2436 		}
2437 		break;
2438 	case active:
2439 		if (mddev->pers) {
2440 			restart_array(mddev);
2441 			mddev->sb_dirty = 0;
2442 			wake_up(&mddev->sb_wait);
2443 			err = 0;
2444 		} else {
2445 			mddev->ro = 0;
2446 			err = do_md_run(mddev);
2447 		}
2448 		break;
2449 	case write_pending:
2450 	case active_idle:
2451 		/* these cannot be set */
2452 		break;
2453 	}
2454 	if (err)
2455 		return err;
2456 	else
2457 		return len;
2458 }
2459 static struct md_sysfs_entry md_array_state =
2460 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2461 
2462 static ssize_t
2463 null_show(mddev_t *mddev, char *page)
2464 {
2465 	return -EINVAL;
2466 }
2467 
2468 static ssize_t
2469 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2470 {
2471 	/* buf must be %d:%d\n? giving major and minor numbers */
2472 	/* The new device is added to the array.
2473 	 * If the array has a persistent superblock, we read the
2474 	 * superblock to initialise info and check validity.
2475 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2476 	 * which mainly checks size.
2477 	 */
2478 	char *e;
2479 	int major = simple_strtoul(buf, &e, 10);
2480 	int minor;
2481 	dev_t dev;
2482 	mdk_rdev_t *rdev;
2483 	int err;
2484 
2485 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2486 		return -EINVAL;
2487 	minor = simple_strtoul(e+1, &e, 10);
2488 	if (*e && *e != '\n')
2489 		return -EINVAL;
2490 	dev = MKDEV(major, minor);
2491 	if (major != MAJOR(dev) ||
2492 	    minor != MINOR(dev))
2493 		return -EOVERFLOW;
2494 
2495 
2496 	if (mddev->persistent) {
2497 		rdev = md_import_device(dev, mddev->major_version,
2498 					mddev->minor_version);
2499 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2500 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2501 						       mdk_rdev_t, same_set);
2502 			err = super_types[mddev->major_version]
2503 				.load_super(rdev, rdev0, mddev->minor_version);
2504 			if (err < 0)
2505 				goto out;
2506 		}
2507 	} else
2508 		rdev = md_import_device(dev, -1, -1);
2509 
2510 	if (IS_ERR(rdev))
2511 		return PTR_ERR(rdev);
2512 	err = bind_rdev_to_array(rdev, mddev);
2513  out:
2514 	if (err)
2515 		export_rdev(rdev);
2516 	return err ? err : len;
2517 }
2518 
2519 static struct md_sysfs_entry md_new_device =
2520 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2521 
2522 static ssize_t
2523 size_show(mddev_t *mddev, char *page)
2524 {
2525 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2526 }
2527 
2528 static int update_size(mddev_t *mddev, unsigned long size);
2529 
2530 static ssize_t
2531 size_store(mddev_t *mddev, const char *buf, size_t len)
2532 {
2533 	/* If array is inactive, we can reduce the component size, but
2534 	 * not increase it (except from 0).
2535 	 * If array is active, we can try an on-line resize
2536 	 */
2537 	char *e;
2538 	int err = 0;
2539 	unsigned long long size = simple_strtoull(buf, &e, 10);
2540 	if (!*buf || *buf == '\n' ||
2541 	    (*e && *e != '\n'))
2542 		return -EINVAL;
2543 
2544 	if (mddev->pers) {
2545 		err = update_size(mddev, size);
2546 		md_update_sb(mddev);
2547 	} else {
2548 		if (mddev->size == 0 ||
2549 		    mddev->size > size)
2550 			mddev->size = size;
2551 		else
2552 			err = -ENOSPC;
2553 	}
2554 	return err ? err : len;
2555 }
2556 
2557 static struct md_sysfs_entry md_size =
2558 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2559 
2560 
2561 /* Metdata version.
2562  * This is either 'none' for arrays with externally managed metadata,
2563  * or N.M for internally known formats
2564  */
2565 static ssize_t
2566 metadata_show(mddev_t *mddev, char *page)
2567 {
2568 	if (mddev->persistent)
2569 		return sprintf(page, "%d.%d\n",
2570 			       mddev->major_version, mddev->minor_version);
2571 	else
2572 		return sprintf(page, "none\n");
2573 }
2574 
2575 static ssize_t
2576 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2577 {
2578 	int major, minor;
2579 	char *e;
2580 	if (!list_empty(&mddev->disks))
2581 		return -EBUSY;
2582 
2583 	if (cmd_match(buf, "none")) {
2584 		mddev->persistent = 0;
2585 		mddev->major_version = 0;
2586 		mddev->minor_version = 90;
2587 		return len;
2588 	}
2589 	major = simple_strtoul(buf, &e, 10);
2590 	if (e==buf || *e != '.')
2591 		return -EINVAL;
2592 	buf = e+1;
2593 	minor = simple_strtoul(buf, &e, 10);
2594 	if (e==buf || *e != '\n')
2595 		return -EINVAL;
2596 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2597 	    super_types[major].name == NULL)
2598 		return -ENOENT;
2599 	mddev->major_version = major;
2600 	mddev->minor_version = minor;
2601 	mddev->persistent = 1;
2602 	return len;
2603 }
2604 
2605 static struct md_sysfs_entry md_metadata =
2606 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2607 
2608 static ssize_t
2609 action_show(mddev_t *mddev, char *page)
2610 {
2611 	char *type = "idle";
2612 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2613 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2614 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2615 			type = "reshape";
2616 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2617 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2618 				type = "resync";
2619 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2620 				type = "check";
2621 			else
2622 				type = "repair";
2623 		} else
2624 			type = "recover";
2625 	}
2626 	return sprintf(page, "%s\n", type);
2627 }
2628 
2629 static ssize_t
2630 action_store(mddev_t *mddev, const char *page, size_t len)
2631 {
2632 	if (!mddev->pers || !mddev->pers->sync_request)
2633 		return -EINVAL;
2634 
2635 	if (cmd_match(page, "idle")) {
2636 		if (mddev->sync_thread) {
2637 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2638 			md_unregister_thread(mddev->sync_thread);
2639 			mddev->sync_thread = NULL;
2640 			mddev->recovery = 0;
2641 		}
2642 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2643 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2644 		return -EBUSY;
2645 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2646 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2647 	else if (cmd_match(page, "reshape")) {
2648 		int err;
2649 		if (mddev->pers->start_reshape == NULL)
2650 			return -EINVAL;
2651 		err = mddev->pers->start_reshape(mddev);
2652 		if (err)
2653 			return err;
2654 	} else {
2655 		if (cmd_match(page, "check"))
2656 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2657 		else if (!cmd_match(page, "repair"))
2658 			return -EINVAL;
2659 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2660 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2661 	}
2662 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2663 	md_wakeup_thread(mddev->thread);
2664 	return len;
2665 }
2666 
2667 static ssize_t
2668 mismatch_cnt_show(mddev_t *mddev, char *page)
2669 {
2670 	return sprintf(page, "%llu\n",
2671 		       (unsigned long long) mddev->resync_mismatches);
2672 }
2673 
2674 static struct md_sysfs_entry md_scan_mode =
2675 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2676 
2677 
2678 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2679 
2680 static ssize_t
2681 sync_min_show(mddev_t *mddev, char *page)
2682 {
2683 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2684 		       mddev->sync_speed_min ? "local": "system");
2685 }
2686 
2687 static ssize_t
2688 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2689 {
2690 	int min;
2691 	char *e;
2692 	if (strncmp(buf, "system", 6)==0) {
2693 		mddev->sync_speed_min = 0;
2694 		return len;
2695 	}
2696 	min = simple_strtoul(buf, &e, 10);
2697 	if (buf == e || (*e && *e != '\n') || min <= 0)
2698 		return -EINVAL;
2699 	mddev->sync_speed_min = min;
2700 	return len;
2701 }
2702 
2703 static struct md_sysfs_entry md_sync_min =
2704 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2705 
2706 static ssize_t
2707 sync_max_show(mddev_t *mddev, char *page)
2708 {
2709 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2710 		       mddev->sync_speed_max ? "local": "system");
2711 }
2712 
2713 static ssize_t
2714 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2715 {
2716 	int max;
2717 	char *e;
2718 	if (strncmp(buf, "system", 6)==0) {
2719 		mddev->sync_speed_max = 0;
2720 		return len;
2721 	}
2722 	max = simple_strtoul(buf, &e, 10);
2723 	if (buf == e || (*e && *e != '\n') || max <= 0)
2724 		return -EINVAL;
2725 	mddev->sync_speed_max = max;
2726 	return len;
2727 }
2728 
2729 static struct md_sysfs_entry md_sync_max =
2730 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2731 
2732 
2733 static ssize_t
2734 sync_speed_show(mddev_t *mddev, char *page)
2735 {
2736 	unsigned long resync, dt, db;
2737 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2738 	dt = ((jiffies - mddev->resync_mark) / HZ);
2739 	if (!dt) dt++;
2740 	db = resync - (mddev->resync_mark_cnt);
2741 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2742 }
2743 
2744 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2745 
2746 static ssize_t
2747 sync_completed_show(mddev_t *mddev, char *page)
2748 {
2749 	unsigned long max_blocks, resync;
2750 
2751 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2752 		max_blocks = mddev->resync_max_sectors;
2753 	else
2754 		max_blocks = mddev->size << 1;
2755 
2756 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2757 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2758 }
2759 
2760 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2761 
2762 static ssize_t
2763 suspend_lo_show(mddev_t *mddev, char *page)
2764 {
2765 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2766 }
2767 
2768 static ssize_t
2769 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2770 {
2771 	char *e;
2772 	unsigned long long new = simple_strtoull(buf, &e, 10);
2773 
2774 	if (mddev->pers->quiesce == NULL)
2775 		return -EINVAL;
2776 	if (buf == e || (*e && *e != '\n'))
2777 		return -EINVAL;
2778 	if (new >= mddev->suspend_hi ||
2779 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2780 		mddev->suspend_lo = new;
2781 		mddev->pers->quiesce(mddev, 2);
2782 		return len;
2783 	} else
2784 		return -EINVAL;
2785 }
2786 static struct md_sysfs_entry md_suspend_lo =
2787 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2788 
2789 
2790 static ssize_t
2791 suspend_hi_show(mddev_t *mddev, char *page)
2792 {
2793 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2794 }
2795 
2796 static ssize_t
2797 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2798 {
2799 	char *e;
2800 	unsigned long long new = simple_strtoull(buf, &e, 10);
2801 
2802 	if (mddev->pers->quiesce == NULL)
2803 		return -EINVAL;
2804 	if (buf == e || (*e && *e != '\n'))
2805 		return -EINVAL;
2806 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2807 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2808 		mddev->suspend_hi = new;
2809 		mddev->pers->quiesce(mddev, 1);
2810 		mddev->pers->quiesce(mddev, 0);
2811 		return len;
2812 	} else
2813 		return -EINVAL;
2814 }
2815 static struct md_sysfs_entry md_suspend_hi =
2816 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2817 
2818 
2819 static struct attribute *md_default_attrs[] = {
2820 	&md_level.attr,
2821 	&md_layout.attr,
2822 	&md_raid_disks.attr,
2823 	&md_chunk_size.attr,
2824 	&md_size.attr,
2825 	&md_resync_start.attr,
2826 	&md_metadata.attr,
2827 	&md_new_device.attr,
2828 	&md_safe_delay.attr,
2829 	&md_array_state.attr,
2830 	NULL,
2831 };
2832 
2833 static struct attribute *md_redundancy_attrs[] = {
2834 	&md_scan_mode.attr,
2835 	&md_mismatches.attr,
2836 	&md_sync_min.attr,
2837 	&md_sync_max.attr,
2838 	&md_sync_speed.attr,
2839 	&md_sync_completed.attr,
2840 	&md_suspend_lo.attr,
2841 	&md_suspend_hi.attr,
2842 	NULL,
2843 };
2844 static struct attribute_group md_redundancy_group = {
2845 	.name = NULL,
2846 	.attrs = md_redundancy_attrs,
2847 };
2848 
2849 
2850 static ssize_t
2851 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2852 {
2853 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2854 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2855 	ssize_t rv;
2856 
2857 	if (!entry->show)
2858 		return -EIO;
2859 	rv = mddev_lock(mddev);
2860 	if (!rv) {
2861 		rv = entry->show(mddev, page);
2862 		mddev_unlock(mddev);
2863 	}
2864 	return rv;
2865 }
2866 
2867 static ssize_t
2868 md_attr_store(struct kobject *kobj, struct attribute *attr,
2869 	      const char *page, size_t length)
2870 {
2871 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2872 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2873 	ssize_t rv;
2874 
2875 	if (!entry->store)
2876 		return -EIO;
2877 	if (!capable(CAP_SYS_ADMIN))
2878 		return -EACCES;
2879 	rv = mddev_lock(mddev);
2880 	if (!rv) {
2881 		rv = entry->store(mddev, page, length);
2882 		mddev_unlock(mddev);
2883 	}
2884 	return rv;
2885 }
2886 
2887 static void md_free(struct kobject *ko)
2888 {
2889 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2890 	kfree(mddev);
2891 }
2892 
2893 static struct sysfs_ops md_sysfs_ops = {
2894 	.show	= md_attr_show,
2895 	.store	= md_attr_store,
2896 };
2897 static struct kobj_type md_ktype = {
2898 	.release	= md_free,
2899 	.sysfs_ops	= &md_sysfs_ops,
2900 	.default_attrs	= md_default_attrs,
2901 };
2902 
2903 int mdp_major = 0;
2904 
2905 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2906 {
2907 	static DEFINE_MUTEX(disks_mutex);
2908 	mddev_t *mddev = mddev_find(dev);
2909 	struct gendisk *disk;
2910 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2911 	int shift = partitioned ? MdpMinorShift : 0;
2912 	int unit = MINOR(dev) >> shift;
2913 
2914 	if (!mddev)
2915 		return NULL;
2916 
2917 	mutex_lock(&disks_mutex);
2918 	if (mddev->gendisk) {
2919 		mutex_unlock(&disks_mutex);
2920 		mddev_put(mddev);
2921 		return NULL;
2922 	}
2923 	disk = alloc_disk(1 << shift);
2924 	if (!disk) {
2925 		mutex_unlock(&disks_mutex);
2926 		mddev_put(mddev);
2927 		return NULL;
2928 	}
2929 	disk->major = MAJOR(dev);
2930 	disk->first_minor = unit << shift;
2931 	if (partitioned)
2932 		sprintf(disk->disk_name, "md_d%d", unit);
2933 	else
2934 		sprintf(disk->disk_name, "md%d", unit);
2935 	disk->fops = &md_fops;
2936 	disk->private_data = mddev;
2937 	disk->queue = mddev->queue;
2938 	add_disk(disk);
2939 	mddev->gendisk = disk;
2940 	mutex_unlock(&disks_mutex);
2941 	mddev->kobj.parent = &disk->kobj;
2942 	mddev->kobj.k_name = NULL;
2943 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2944 	mddev->kobj.ktype = &md_ktype;
2945 	kobject_register(&mddev->kobj);
2946 	return NULL;
2947 }
2948 
2949 static void md_safemode_timeout(unsigned long data)
2950 {
2951 	mddev_t *mddev = (mddev_t *) data;
2952 
2953 	mddev->safemode = 1;
2954 	md_wakeup_thread(mddev->thread);
2955 }
2956 
2957 static int start_dirty_degraded;
2958 
2959 static int do_md_run(mddev_t * mddev)
2960 {
2961 	int err;
2962 	int chunk_size;
2963 	struct list_head *tmp;
2964 	mdk_rdev_t *rdev;
2965 	struct gendisk *disk;
2966 	struct mdk_personality *pers;
2967 	char b[BDEVNAME_SIZE];
2968 
2969 	if (list_empty(&mddev->disks))
2970 		/* cannot run an array with no devices.. */
2971 		return -EINVAL;
2972 
2973 	if (mddev->pers)
2974 		return -EBUSY;
2975 
2976 	/*
2977 	 * Analyze all RAID superblock(s)
2978 	 */
2979 	if (!mddev->raid_disks)
2980 		analyze_sbs(mddev);
2981 
2982 	chunk_size = mddev->chunk_size;
2983 
2984 	if (chunk_size) {
2985 		if (chunk_size > MAX_CHUNK_SIZE) {
2986 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2987 				chunk_size, MAX_CHUNK_SIZE);
2988 			return -EINVAL;
2989 		}
2990 		/*
2991 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2992 		 */
2993 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2994 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2995 			return -EINVAL;
2996 		}
2997 		if (chunk_size < PAGE_SIZE) {
2998 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2999 				chunk_size, PAGE_SIZE);
3000 			return -EINVAL;
3001 		}
3002 
3003 		/* devices must have minimum size of one chunk */
3004 		ITERATE_RDEV(mddev,rdev,tmp) {
3005 			if (test_bit(Faulty, &rdev->flags))
3006 				continue;
3007 			if (rdev->size < chunk_size / 1024) {
3008 				printk(KERN_WARNING
3009 					"md: Dev %s smaller than chunk_size:"
3010 					" %lluk < %dk\n",
3011 					bdevname(rdev->bdev,b),
3012 					(unsigned long long)rdev->size,
3013 					chunk_size / 1024);
3014 				return -EINVAL;
3015 			}
3016 		}
3017 	}
3018 
3019 #ifdef CONFIG_KMOD
3020 	if (mddev->level != LEVEL_NONE)
3021 		request_module("md-level-%d", mddev->level);
3022 	else if (mddev->clevel[0])
3023 		request_module("md-%s", mddev->clevel);
3024 #endif
3025 
3026 	/*
3027 	 * Drop all container device buffers, from now on
3028 	 * the only valid external interface is through the md
3029 	 * device.
3030 	 * Also find largest hardsector size
3031 	 */
3032 	ITERATE_RDEV(mddev,rdev,tmp) {
3033 		if (test_bit(Faulty, &rdev->flags))
3034 			continue;
3035 		sync_blockdev(rdev->bdev);
3036 		invalidate_bdev(rdev->bdev, 0);
3037 	}
3038 
3039 	md_probe(mddev->unit, NULL, NULL);
3040 	disk = mddev->gendisk;
3041 	if (!disk)
3042 		return -ENOMEM;
3043 
3044 	spin_lock(&pers_lock);
3045 	pers = find_pers(mddev->level, mddev->clevel);
3046 	if (!pers || !try_module_get(pers->owner)) {
3047 		spin_unlock(&pers_lock);
3048 		if (mddev->level != LEVEL_NONE)
3049 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3050 			       mddev->level);
3051 		else
3052 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3053 			       mddev->clevel);
3054 		return -EINVAL;
3055 	}
3056 	mddev->pers = pers;
3057 	spin_unlock(&pers_lock);
3058 	mddev->level = pers->level;
3059 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3060 
3061 	if (mddev->reshape_position != MaxSector &&
3062 	    pers->start_reshape == NULL) {
3063 		/* This personality cannot handle reshaping... */
3064 		mddev->pers = NULL;
3065 		module_put(pers->owner);
3066 		return -EINVAL;
3067 	}
3068 
3069 	mddev->recovery = 0;
3070 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3071 	mddev->barriers_work = 1;
3072 	mddev->ok_start_degraded = start_dirty_degraded;
3073 
3074 	if (start_readonly)
3075 		mddev->ro = 2; /* read-only, but switch on first write */
3076 
3077 	err = mddev->pers->run(mddev);
3078 	if (!err && mddev->pers->sync_request) {
3079 		err = bitmap_create(mddev);
3080 		if (err) {
3081 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3082 			       mdname(mddev), err);
3083 			mddev->pers->stop(mddev);
3084 		}
3085 	}
3086 	if (err) {
3087 		printk(KERN_ERR "md: pers->run() failed ...\n");
3088 		module_put(mddev->pers->owner);
3089 		mddev->pers = NULL;
3090 		bitmap_destroy(mddev);
3091 		return err;
3092 	}
3093 	if (mddev->pers->sync_request)
3094 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3095 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
3096 		mddev->ro = 0;
3097 
3098  	atomic_set(&mddev->writes_pending,0);
3099 	mddev->safemode = 0;
3100 	mddev->safemode_timer.function = md_safemode_timeout;
3101 	mddev->safemode_timer.data = (unsigned long) mddev;
3102 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3103 	mddev->in_sync = 1;
3104 
3105 	ITERATE_RDEV(mddev,rdev,tmp)
3106 		if (rdev->raid_disk >= 0) {
3107 			char nm[20];
3108 			sprintf(nm, "rd%d", rdev->raid_disk);
3109 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3110 		}
3111 
3112 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3113 
3114 	if (mddev->sb_dirty)
3115 		md_update_sb(mddev);
3116 
3117 	set_capacity(disk, mddev->array_size<<1);
3118 
3119 	/* If we call blk_queue_make_request here, it will
3120 	 * re-initialise max_sectors etc which may have been
3121 	 * refined inside -> run.  So just set the bits we need to set.
3122 	 * Most initialisation happended when we called
3123 	 * blk_queue_make_request(..., md_fail_request)
3124 	 * earlier.
3125 	 */
3126 	mddev->queue->queuedata = mddev;
3127 	mddev->queue->make_request_fn = mddev->pers->make_request;
3128 
3129 	/* If there is a partially-recovered drive we need to
3130 	 * start recovery here.  If we leave it to md_check_recovery,
3131 	 * it will remove the drives and not do the right thing
3132 	 */
3133 	if (mddev->degraded && !mddev->sync_thread) {
3134 		struct list_head *rtmp;
3135 		int spares = 0;
3136 		ITERATE_RDEV(mddev,rdev,rtmp)
3137 			if (rdev->raid_disk >= 0 &&
3138 			    !test_bit(In_sync, &rdev->flags) &&
3139 			    !test_bit(Faulty, &rdev->flags))
3140 				/* complete an interrupted recovery */
3141 				spares++;
3142 		if (spares && mddev->pers->sync_request) {
3143 			mddev->recovery = 0;
3144 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3145 			mddev->sync_thread = md_register_thread(md_do_sync,
3146 								mddev,
3147 								"%s_resync");
3148 			if (!mddev->sync_thread) {
3149 				printk(KERN_ERR "%s: could not start resync"
3150 				       " thread...\n",
3151 				       mdname(mddev));
3152 				/* leave the spares where they are, it shouldn't hurt */
3153 				mddev->recovery = 0;
3154 			}
3155 		}
3156 	}
3157 	md_wakeup_thread(mddev->thread);
3158 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3159 
3160 	mddev->changed = 1;
3161 	md_new_event(mddev);
3162 	return 0;
3163 }
3164 
3165 static int restart_array(mddev_t *mddev)
3166 {
3167 	struct gendisk *disk = mddev->gendisk;
3168 	int err;
3169 
3170 	/*
3171 	 * Complain if it has no devices
3172 	 */
3173 	err = -ENXIO;
3174 	if (list_empty(&mddev->disks))
3175 		goto out;
3176 
3177 	if (mddev->pers) {
3178 		err = -EBUSY;
3179 		if (!mddev->ro)
3180 			goto out;
3181 
3182 		mddev->safemode = 0;
3183 		mddev->ro = 0;
3184 		set_disk_ro(disk, 0);
3185 
3186 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3187 			mdname(mddev));
3188 		/*
3189 		 * Kick recovery or resync if necessary
3190 		 */
3191 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3192 		md_wakeup_thread(mddev->thread);
3193 		md_wakeup_thread(mddev->sync_thread);
3194 		err = 0;
3195 	} else
3196 		err = -EINVAL;
3197 
3198 out:
3199 	return err;
3200 }
3201 
3202 /* similar to deny_write_access, but accounts for our holding a reference
3203  * to the file ourselves */
3204 static int deny_bitmap_write_access(struct file * file)
3205 {
3206 	struct inode *inode = file->f_mapping->host;
3207 
3208 	spin_lock(&inode->i_lock);
3209 	if (atomic_read(&inode->i_writecount) > 1) {
3210 		spin_unlock(&inode->i_lock);
3211 		return -ETXTBSY;
3212 	}
3213 	atomic_set(&inode->i_writecount, -1);
3214 	spin_unlock(&inode->i_lock);
3215 
3216 	return 0;
3217 }
3218 
3219 static void restore_bitmap_write_access(struct file *file)
3220 {
3221 	struct inode *inode = file->f_mapping->host;
3222 
3223 	spin_lock(&inode->i_lock);
3224 	atomic_set(&inode->i_writecount, 1);
3225 	spin_unlock(&inode->i_lock);
3226 }
3227 
3228 /* mode:
3229  *   0 - completely stop and dis-assemble array
3230  *   1 - switch to readonly
3231  *   2 - stop but do not disassemble array
3232  */
3233 static int do_md_stop(mddev_t * mddev, int mode)
3234 {
3235 	int err = 0;
3236 	struct gendisk *disk = mddev->gendisk;
3237 
3238 	if (mddev->pers) {
3239 		if (atomic_read(&mddev->active)>2) {
3240 			printk("md: %s still in use.\n",mdname(mddev));
3241 			return -EBUSY;
3242 		}
3243 
3244 		if (mddev->sync_thread) {
3245 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3246 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3247 			md_unregister_thread(mddev->sync_thread);
3248 			mddev->sync_thread = NULL;
3249 		}
3250 
3251 		del_timer_sync(&mddev->safemode_timer);
3252 
3253 		invalidate_partition(disk, 0);
3254 
3255 		switch(mode) {
3256 		case 1: /* readonly */
3257 			err  = -ENXIO;
3258 			if (mddev->ro==1)
3259 				goto out;
3260 			mddev->ro = 1;
3261 			break;
3262 		case 0: /* disassemble */
3263 		case 2: /* stop */
3264 			bitmap_flush(mddev);
3265 			md_super_wait(mddev);
3266 			if (mddev->ro)
3267 				set_disk_ro(disk, 0);
3268 			blk_queue_make_request(mddev->queue, md_fail_request);
3269 			mddev->pers->stop(mddev);
3270 			if (mddev->pers->sync_request)
3271 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3272 
3273 			module_put(mddev->pers->owner);
3274 			mddev->pers = NULL;
3275 			if (mddev->ro)
3276 				mddev->ro = 0;
3277 		}
3278 		if (!mddev->in_sync || mddev->sb_dirty) {
3279 			/* mark array as shutdown cleanly */
3280 			mddev->in_sync = 1;
3281 			md_update_sb(mddev);
3282 		}
3283 		if (mode == 1)
3284 			set_disk_ro(disk, 1);
3285 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3286 	}
3287 
3288 	/*
3289 	 * Free resources if final stop
3290 	 */
3291 	if (mode == 0) {
3292 		mdk_rdev_t *rdev;
3293 		struct list_head *tmp;
3294 		struct gendisk *disk;
3295 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3296 
3297 		bitmap_destroy(mddev);
3298 		if (mddev->bitmap_file) {
3299 			restore_bitmap_write_access(mddev->bitmap_file);
3300 			fput(mddev->bitmap_file);
3301 			mddev->bitmap_file = NULL;
3302 		}
3303 		mddev->bitmap_offset = 0;
3304 
3305 		ITERATE_RDEV(mddev,rdev,tmp)
3306 			if (rdev->raid_disk >= 0) {
3307 				char nm[20];
3308 				sprintf(nm, "rd%d", rdev->raid_disk);
3309 				sysfs_remove_link(&mddev->kobj, nm);
3310 			}
3311 
3312 		export_array(mddev);
3313 
3314 		mddev->array_size = 0;
3315 		mddev->size = 0;
3316 		mddev->raid_disks = 0;
3317 		mddev->recovery_cp = 0;
3318 
3319 		disk = mddev->gendisk;
3320 		if (disk)
3321 			set_capacity(disk, 0);
3322 		mddev->changed = 1;
3323 	} else if (mddev->pers)
3324 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3325 			mdname(mddev));
3326 	err = 0;
3327 	md_new_event(mddev);
3328 out:
3329 	return err;
3330 }
3331 
3332 static void autorun_array(mddev_t *mddev)
3333 {
3334 	mdk_rdev_t *rdev;
3335 	struct list_head *tmp;
3336 	int err;
3337 
3338 	if (list_empty(&mddev->disks))
3339 		return;
3340 
3341 	printk(KERN_INFO "md: running: ");
3342 
3343 	ITERATE_RDEV(mddev,rdev,tmp) {
3344 		char b[BDEVNAME_SIZE];
3345 		printk("<%s>", bdevname(rdev->bdev,b));
3346 	}
3347 	printk("\n");
3348 
3349 	err = do_md_run (mddev);
3350 	if (err) {
3351 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3352 		do_md_stop (mddev, 0);
3353 	}
3354 }
3355 
3356 /*
3357  * lets try to run arrays based on all disks that have arrived
3358  * until now. (those are in pending_raid_disks)
3359  *
3360  * the method: pick the first pending disk, collect all disks with
3361  * the same UUID, remove all from the pending list and put them into
3362  * the 'same_array' list. Then order this list based on superblock
3363  * update time (freshest comes first), kick out 'old' disks and
3364  * compare superblocks. If everything's fine then run it.
3365  *
3366  * If "unit" is allocated, then bump its reference count
3367  */
3368 static void autorun_devices(int part)
3369 {
3370 	struct list_head *tmp;
3371 	mdk_rdev_t *rdev0, *rdev;
3372 	mddev_t *mddev;
3373 	char b[BDEVNAME_SIZE];
3374 
3375 	printk(KERN_INFO "md: autorun ...\n");
3376 	while (!list_empty(&pending_raid_disks)) {
3377 		dev_t dev;
3378 		LIST_HEAD(candidates);
3379 		rdev0 = list_entry(pending_raid_disks.next,
3380 					 mdk_rdev_t, same_set);
3381 
3382 		printk(KERN_INFO "md: considering %s ...\n",
3383 			bdevname(rdev0->bdev,b));
3384 		INIT_LIST_HEAD(&candidates);
3385 		ITERATE_RDEV_PENDING(rdev,tmp)
3386 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3387 				printk(KERN_INFO "md:  adding %s ...\n",
3388 					bdevname(rdev->bdev,b));
3389 				list_move(&rdev->same_set, &candidates);
3390 			}
3391 		/*
3392 		 * now we have a set of devices, with all of them having
3393 		 * mostly sane superblocks. It's time to allocate the
3394 		 * mddev.
3395 		 */
3396 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
3397 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3398 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3399 			break;
3400 		}
3401 		if (part)
3402 			dev = MKDEV(mdp_major,
3403 				    rdev0->preferred_minor << MdpMinorShift);
3404 		else
3405 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3406 
3407 		md_probe(dev, NULL, NULL);
3408 		mddev = mddev_find(dev);
3409 		if (!mddev) {
3410 			printk(KERN_ERR
3411 				"md: cannot allocate memory for md drive.\n");
3412 			break;
3413 		}
3414 		if (mddev_lock(mddev))
3415 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3416 			       mdname(mddev));
3417 		else if (mddev->raid_disks || mddev->major_version
3418 			 || !list_empty(&mddev->disks)) {
3419 			printk(KERN_WARNING
3420 				"md: %s already running, cannot run %s\n",
3421 				mdname(mddev), bdevname(rdev0->bdev,b));
3422 			mddev_unlock(mddev);
3423 		} else {
3424 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3425 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3426 				list_del_init(&rdev->same_set);
3427 				if (bind_rdev_to_array(rdev, mddev))
3428 					export_rdev(rdev);
3429 			}
3430 			autorun_array(mddev);
3431 			mddev_unlock(mddev);
3432 		}
3433 		/* on success, candidates will be empty, on error
3434 		 * it won't...
3435 		 */
3436 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3437 			export_rdev(rdev);
3438 		mddev_put(mddev);
3439 	}
3440 	printk(KERN_INFO "md: ... autorun DONE.\n");
3441 }
3442 
3443 /*
3444  * import RAID devices based on one partition
3445  * if possible, the array gets run as well.
3446  */
3447 
3448 static int autostart_array(dev_t startdev)
3449 {
3450 	char b[BDEVNAME_SIZE];
3451 	int err = -EINVAL, i;
3452 	mdp_super_t *sb = NULL;
3453 	mdk_rdev_t *start_rdev = NULL, *rdev;
3454 
3455 	start_rdev = md_import_device(startdev, 0, 0);
3456 	if (IS_ERR(start_rdev))
3457 		return err;
3458 
3459 
3460 	/* NOTE: this can only work for 0.90.0 superblocks */
3461 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3462 	if (sb->major_version != 0 ||
3463 	    sb->minor_version != 90 ) {
3464 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3465 		export_rdev(start_rdev);
3466 		return err;
3467 	}
3468 
3469 	if (test_bit(Faulty, &start_rdev->flags)) {
3470 		printk(KERN_WARNING
3471 			"md: can not autostart based on faulty %s!\n",
3472 			bdevname(start_rdev->bdev,b));
3473 		export_rdev(start_rdev);
3474 		return err;
3475 	}
3476 	list_add(&start_rdev->same_set, &pending_raid_disks);
3477 
3478 	for (i = 0; i < MD_SB_DISKS; i++) {
3479 		mdp_disk_t *desc = sb->disks + i;
3480 		dev_t dev = MKDEV(desc->major, desc->minor);
3481 
3482 		if (!dev)
3483 			continue;
3484 		if (dev == startdev)
3485 			continue;
3486 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3487 			continue;
3488 		rdev = md_import_device(dev, 0, 0);
3489 		if (IS_ERR(rdev))
3490 			continue;
3491 
3492 		list_add(&rdev->same_set, &pending_raid_disks);
3493 	}
3494 
3495 	/*
3496 	 * possibly return codes
3497 	 */
3498 	autorun_devices(0);
3499 	return 0;
3500 
3501 }
3502 
3503 
3504 static int get_version(void __user * arg)
3505 {
3506 	mdu_version_t ver;
3507 
3508 	ver.major = MD_MAJOR_VERSION;
3509 	ver.minor = MD_MINOR_VERSION;
3510 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3511 
3512 	if (copy_to_user(arg, &ver, sizeof(ver)))
3513 		return -EFAULT;
3514 
3515 	return 0;
3516 }
3517 
3518 static int get_array_info(mddev_t * mddev, void __user * arg)
3519 {
3520 	mdu_array_info_t info;
3521 	int nr,working,active,failed,spare;
3522 	mdk_rdev_t *rdev;
3523 	struct list_head *tmp;
3524 
3525 	nr=working=active=failed=spare=0;
3526 	ITERATE_RDEV(mddev,rdev,tmp) {
3527 		nr++;
3528 		if (test_bit(Faulty, &rdev->flags))
3529 			failed++;
3530 		else {
3531 			working++;
3532 			if (test_bit(In_sync, &rdev->flags))
3533 				active++;
3534 			else
3535 				spare++;
3536 		}
3537 	}
3538 
3539 	info.major_version = mddev->major_version;
3540 	info.minor_version = mddev->minor_version;
3541 	info.patch_version = MD_PATCHLEVEL_VERSION;
3542 	info.ctime         = mddev->ctime;
3543 	info.level         = mddev->level;
3544 	info.size          = mddev->size;
3545 	if (info.size != mddev->size) /* overflow */
3546 		info.size = -1;
3547 	info.nr_disks      = nr;
3548 	info.raid_disks    = mddev->raid_disks;
3549 	info.md_minor      = mddev->md_minor;
3550 	info.not_persistent= !mddev->persistent;
3551 
3552 	info.utime         = mddev->utime;
3553 	info.state         = 0;
3554 	if (mddev->in_sync)
3555 		info.state = (1<<MD_SB_CLEAN);
3556 	if (mddev->bitmap && mddev->bitmap_offset)
3557 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3558 	info.active_disks  = active;
3559 	info.working_disks = working;
3560 	info.failed_disks  = failed;
3561 	info.spare_disks   = spare;
3562 
3563 	info.layout        = mddev->layout;
3564 	info.chunk_size    = mddev->chunk_size;
3565 
3566 	if (copy_to_user(arg, &info, sizeof(info)))
3567 		return -EFAULT;
3568 
3569 	return 0;
3570 }
3571 
3572 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3573 {
3574 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3575 	char *ptr, *buf = NULL;
3576 	int err = -ENOMEM;
3577 
3578 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3579 	if (!file)
3580 		goto out;
3581 
3582 	/* bitmap disabled, zero the first byte and copy out */
3583 	if (!mddev->bitmap || !mddev->bitmap->file) {
3584 		file->pathname[0] = '\0';
3585 		goto copy_out;
3586 	}
3587 
3588 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3589 	if (!buf)
3590 		goto out;
3591 
3592 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3593 	if (!ptr)
3594 		goto out;
3595 
3596 	strcpy(file->pathname, ptr);
3597 
3598 copy_out:
3599 	err = 0;
3600 	if (copy_to_user(arg, file, sizeof(*file)))
3601 		err = -EFAULT;
3602 out:
3603 	kfree(buf);
3604 	kfree(file);
3605 	return err;
3606 }
3607 
3608 static int get_disk_info(mddev_t * mddev, void __user * arg)
3609 {
3610 	mdu_disk_info_t info;
3611 	unsigned int nr;
3612 	mdk_rdev_t *rdev;
3613 
3614 	if (copy_from_user(&info, arg, sizeof(info)))
3615 		return -EFAULT;
3616 
3617 	nr = info.number;
3618 
3619 	rdev = find_rdev_nr(mddev, nr);
3620 	if (rdev) {
3621 		info.major = MAJOR(rdev->bdev->bd_dev);
3622 		info.minor = MINOR(rdev->bdev->bd_dev);
3623 		info.raid_disk = rdev->raid_disk;
3624 		info.state = 0;
3625 		if (test_bit(Faulty, &rdev->flags))
3626 			info.state |= (1<<MD_DISK_FAULTY);
3627 		else if (test_bit(In_sync, &rdev->flags)) {
3628 			info.state |= (1<<MD_DISK_ACTIVE);
3629 			info.state |= (1<<MD_DISK_SYNC);
3630 		}
3631 		if (test_bit(WriteMostly, &rdev->flags))
3632 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3633 	} else {
3634 		info.major = info.minor = 0;
3635 		info.raid_disk = -1;
3636 		info.state = (1<<MD_DISK_REMOVED);
3637 	}
3638 
3639 	if (copy_to_user(arg, &info, sizeof(info)))
3640 		return -EFAULT;
3641 
3642 	return 0;
3643 }
3644 
3645 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3646 {
3647 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3648 	mdk_rdev_t *rdev;
3649 	dev_t dev = MKDEV(info->major,info->minor);
3650 
3651 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3652 		return -EOVERFLOW;
3653 
3654 	if (!mddev->raid_disks) {
3655 		int err;
3656 		/* expecting a device which has a superblock */
3657 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3658 		if (IS_ERR(rdev)) {
3659 			printk(KERN_WARNING
3660 				"md: md_import_device returned %ld\n",
3661 				PTR_ERR(rdev));
3662 			return PTR_ERR(rdev);
3663 		}
3664 		if (!list_empty(&mddev->disks)) {
3665 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3666 							mdk_rdev_t, same_set);
3667 			int err = super_types[mddev->major_version]
3668 				.load_super(rdev, rdev0, mddev->minor_version);
3669 			if (err < 0) {
3670 				printk(KERN_WARNING
3671 					"md: %s has different UUID to %s\n",
3672 					bdevname(rdev->bdev,b),
3673 					bdevname(rdev0->bdev,b2));
3674 				export_rdev(rdev);
3675 				return -EINVAL;
3676 			}
3677 		}
3678 		err = bind_rdev_to_array(rdev, mddev);
3679 		if (err)
3680 			export_rdev(rdev);
3681 		return err;
3682 	}
3683 
3684 	/*
3685 	 * add_new_disk can be used once the array is assembled
3686 	 * to add "hot spares".  They must already have a superblock
3687 	 * written
3688 	 */
3689 	if (mddev->pers) {
3690 		int err;
3691 		if (!mddev->pers->hot_add_disk) {
3692 			printk(KERN_WARNING
3693 				"%s: personality does not support diskops!\n",
3694 			       mdname(mddev));
3695 			return -EINVAL;
3696 		}
3697 		if (mddev->persistent)
3698 			rdev = md_import_device(dev, mddev->major_version,
3699 						mddev->minor_version);
3700 		else
3701 			rdev = md_import_device(dev, -1, -1);
3702 		if (IS_ERR(rdev)) {
3703 			printk(KERN_WARNING
3704 				"md: md_import_device returned %ld\n",
3705 				PTR_ERR(rdev));
3706 			return PTR_ERR(rdev);
3707 		}
3708 		/* set save_raid_disk if appropriate */
3709 		if (!mddev->persistent) {
3710 			if (info->state & (1<<MD_DISK_SYNC)  &&
3711 			    info->raid_disk < mddev->raid_disks)
3712 				rdev->raid_disk = info->raid_disk;
3713 			else
3714 				rdev->raid_disk = -1;
3715 		} else
3716 			super_types[mddev->major_version].
3717 				validate_super(mddev, rdev);
3718 		rdev->saved_raid_disk = rdev->raid_disk;
3719 
3720 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3721 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3722 			set_bit(WriteMostly, &rdev->flags);
3723 
3724 		rdev->raid_disk = -1;
3725 		err = bind_rdev_to_array(rdev, mddev);
3726 		if (!err && !mddev->pers->hot_remove_disk) {
3727 			/* If there is hot_add_disk but no hot_remove_disk
3728 			 * then added disks for geometry changes,
3729 			 * and should be added immediately.
3730 			 */
3731 			super_types[mddev->major_version].
3732 				validate_super(mddev, rdev);
3733 			err = mddev->pers->hot_add_disk(mddev, rdev);
3734 			if (err)
3735 				unbind_rdev_from_array(rdev);
3736 		}
3737 		if (err)
3738 			export_rdev(rdev);
3739 
3740 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3741 		md_wakeup_thread(mddev->thread);
3742 		return err;
3743 	}
3744 
3745 	/* otherwise, add_new_disk is only allowed
3746 	 * for major_version==0 superblocks
3747 	 */
3748 	if (mddev->major_version != 0) {
3749 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3750 		       mdname(mddev));
3751 		return -EINVAL;
3752 	}
3753 
3754 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3755 		int err;
3756 		rdev = md_import_device (dev, -1, 0);
3757 		if (IS_ERR(rdev)) {
3758 			printk(KERN_WARNING
3759 				"md: error, md_import_device() returned %ld\n",
3760 				PTR_ERR(rdev));
3761 			return PTR_ERR(rdev);
3762 		}
3763 		rdev->desc_nr = info->number;
3764 		if (info->raid_disk < mddev->raid_disks)
3765 			rdev->raid_disk = info->raid_disk;
3766 		else
3767 			rdev->raid_disk = -1;
3768 
3769 		rdev->flags = 0;
3770 
3771 		if (rdev->raid_disk < mddev->raid_disks)
3772 			if (info->state & (1<<MD_DISK_SYNC))
3773 				set_bit(In_sync, &rdev->flags);
3774 
3775 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3776 			set_bit(WriteMostly, &rdev->flags);
3777 
3778 		if (!mddev->persistent) {
3779 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3780 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3781 		} else
3782 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3783 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3784 
3785 		err = bind_rdev_to_array(rdev, mddev);
3786 		if (err) {
3787 			export_rdev(rdev);
3788 			return err;
3789 		}
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3796 {
3797 	char b[BDEVNAME_SIZE];
3798 	mdk_rdev_t *rdev;
3799 
3800 	if (!mddev->pers)
3801 		return -ENODEV;
3802 
3803 	rdev = find_rdev(mddev, dev);
3804 	if (!rdev)
3805 		return -ENXIO;
3806 
3807 	if (rdev->raid_disk >= 0)
3808 		goto busy;
3809 
3810 	kick_rdev_from_array(rdev);
3811 	md_update_sb(mddev);
3812 	md_new_event(mddev);
3813 
3814 	return 0;
3815 busy:
3816 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3817 		bdevname(rdev->bdev,b), mdname(mddev));
3818 	return -EBUSY;
3819 }
3820 
3821 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3822 {
3823 	char b[BDEVNAME_SIZE];
3824 	int err;
3825 	unsigned int size;
3826 	mdk_rdev_t *rdev;
3827 
3828 	if (!mddev->pers)
3829 		return -ENODEV;
3830 
3831 	if (mddev->major_version != 0) {
3832 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3833 			" version-0 superblocks.\n",
3834 			mdname(mddev));
3835 		return -EINVAL;
3836 	}
3837 	if (!mddev->pers->hot_add_disk) {
3838 		printk(KERN_WARNING
3839 			"%s: personality does not support diskops!\n",
3840 			mdname(mddev));
3841 		return -EINVAL;
3842 	}
3843 
3844 	rdev = md_import_device (dev, -1, 0);
3845 	if (IS_ERR(rdev)) {
3846 		printk(KERN_WARNING
3847 			"md: error, md_import_device() returned %ld\n",
3848 			PTR_ERR(rdev));
3849 		return -EINVAL;
3850 	}
3851 
3852 	if (mddev->persistent)
3853 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3854 	else
3855 		rdev->sb_offset =
3856 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3857 
3858 	size = calc_dev_size(rdev, mddev->chunk_size);
3859 	rdev->size = size;
3860 
3861 	if (test_bit(Faulty, &rdev->flags)) {
3862 		printk(KERN_WARNING
3863 			"md: can not hot-add faulty %s disk to %s!\n",
3864 			bdevname(rdev->bdev,b), mdname(mddev));
3865 		err = -EINVAL;
3866 		goto abort_export;
3867 	}
3868 	clear_bit(In_sync, &rdev->flags);
3869 	rdev->desc_nr = -1;
3870 	err = bind_rdev_to_array(rdev, mddev);
3871 	if (err)
3872 		goto abort_export;
3873 
3874 	/*
3875 	 * The rest should better be atomic, we can have disk failures
3876 	 * noticed in interrupt contexts ...
3877 	 */
3878 
3879 	if (rdev->desc_nr == mddev->max_disks) {
3880 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3881 			mdname(mddev));
3882 		err = -EBUSY;
3883 		goto abort_unbind_export;
3884 	}
3885 
3886 	rdev->raid_disk = -1;
3887 
3888 	md_update_sb(mddev);
3889 
3890 	/*
3891 	 * Kick recovery, maybe this spare has to be added to the
3892 	 * array immediately.
3893 	 */
3894 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3895 	md_wakeup_thread(mddev->thread);
3896 	md_new_event(mddev);
3897 	return 0;
3898 
3899 abort_unbind_export:
3900 	unbind_rdev_from_array(rdev);
3901 
3902 abort_export:
3903 	export_rdev(rdev);
3904 	return err;
3905 }
3906 
3907 static int set_bitmap_file(mddev_t *mddev, int fd)
3908 {
3909 	int err;
3910 
3911 	if (mddev->pers) {
3912 		if (!mddev->pers->quiesce)
3913 			return -EBUSY;
3914 		if (mddev->recovery || mddev->sync_thread)
3915 			return -EBUSY;
3916 		/* we should be able to change the bitmap.. */
3917 	}
3918 
3919 
3920 	if (fd >= 0) {
3921 		if (mddev->bitmap)
3922 			return -EEXIST; /* cannot add when bitmap is present */
3923 		mddev->bitmap_file = fget(fd);
3924 
3925 		if (mddev->bitmap_file == NULL) {
3926 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3927 			       mdname(mddev));
3928 			return -EBADF;
3929 		}
3930 
3931 		err = deny_bitmap_write_access(mddev->bitmap_file);
3932 		if (err) {
3933 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3934 			       mdname(mddev));
3935 			fput(mddev->bitmap_file);
3936 			mddev->bitmap_file = NULL;
3937 			return err;
3938 		}
3939 		mddev->bitmap_offset = 0; /* file overrides offset */
3940 	} else if (mddev->bitmap == NULL)
3941 		return -ENOENT; /* cannot remove what isn't there */
3942 	err = 0;
3943 	if (mddev->pers) {
3944 		mddev->pers->quiesce(mddev, 1);
3945 		if (fd >= 0)
3946 			err = bitmap_create(mddev);
3947 		if (fd < 0 || err) {
3948 			bitmap_destroy(mddev);
3949 			fd = -1; /* make sure to put the file */
3950 		}
3951 		mddev->pers->quiesce(mddev, 0);
3952 	}
3953 	if (fd < 0) {
3954 		if (mddev->bitmap_file) {
3955 			restore_bitmap_write_access(mddev->bitmap_file);
3956 			fput(mddev->bitmap_file);
3957 		}
3958 		mddev->bitmap_file = NULL;
3959 	}
3960 
3961 	return err;
3962 }
3963 
3964 /*
3965  * set_array_info is used two different ways
3966  * The original usage is when creating a new array.
3967  * In this usage, raid_disks is > 0 and it together with
3968  *  level, size, not_persistent,layout,chunksize determine the
3969  *  shape of the array.
3970  *  This will always create an array with a type-0.90.0 superblock.
3971  * The newer usage is when assembling an array.
3972  *  In this case raid_disks will be 0, and the major_version field is
3973  *  use to determine which style super-blocks are to be found on the devices.
3974  *  The minor and patch _version numbers are also kept incase the
3975  *  super_block handler wishes to interpret them.
3976  */
3977 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3978 {
3979 
3980 	if (info->raid_disks == 0) {
3981 		/* just setting version number for superblock loading */
3982 		if (info->major_version < 0 ||
3983 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3984 		    super_types[info->major_version].name == NULL) {
3985 			/* maybe try to auto-load a module? */
3986 			printk(KERN_INFO
3987 				"md: superblock version %d not known\n",
3988 				info->major_version);
3989 			return -EINVAL;
3990 		}
3991 		mddev->major_version = info->major_version;
3992 		mddev->minor_version = info->minor_version;
3993 		mddev->patch_version = info->patch_version;
3994 		return 0;
3995 	}
3996 	mddev->major_version = MD_MAJOR_VERSION;
3997 	mddev->minor_version = MD_MINOR_VERSION;
3998 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3999 	mddev->ctime         = get_seconds();
4000 
4001 	mddev->level         = info->level;
4002 	mddev->clevel[0]     = 0;
4003 	mddev->size          = info->size;
4004 	mddev->raid_disks    = info->raid_disks;
4005 	/* don't set md_minor, it is determined by which /dev/md* was
4006 	 * openned
4007 	 */
4008 	if (info->state & (1<<MD_SB_CLEAN))
4009 		mddev->recovery_cp = MaxSector;
4010 	else
4011 		mddev->recovery_cp = 0;
4012 	mddev->persistent    = ! info->not_persistent;
4013 
4014 	mddev->layout        = info->layout;
4015 	mddev->chunk_size    = info->chunk_size;
4016 
4017 	mddev->max_disks     = MD_SB_DISKS;
4018 
4019 	mddev->sb_dirty      = 1;
4020 
4021 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4022 	mddev->bitmap_offset = 0;
4023 
4024 	mddev->reshape_position = MaxSector;
4025 
4026 	/*
4027 	 * Generate a 128 bit UUID
4028 	 */
4029 	get_random_bytes(mddev->uuid, 16);
4030 
4031 	mddev->new_level = mddev->level;
4032 	mddev->new_chunk = mddev->chunk_size;
4033 	mddev->new_layout = mddev->layout;
4034 	mddev->delta_disks = 0;
4035 
4036 	return 0;
4037 }
4038 
4039 static int update_size(mddev_t *mddev, unsigned long size)
4040 {
4041 	mdk_rdev_t * rdev;
4042 	int rv;
4043 	struct list_head *tmp;
4044 	int fit = (size == 0);
4045 
4046 	if (mddev->pers->resize == NULL)
4047 		return -EINVAL;
4048 	/* The "size" is the amount of each device that is used.
4049 	 * This can only make sense for arrays with redundancy.
4050 	 * linear and raid0 always use whatever space is available
4051 	 * We can only consider changing the size if no resync
4052 	 * or reconstruction is happening, and if the new size
4053 	 * is acceptable. It must fit before the sb_offset or,
4054 	 * if that is <data_offset, it must fit before the
4055 	 * size of each device.
4056 	 * If size is zero, we find the largest size that fits.
4057 	 */
4058 	if (mddev->sync_thread)
4059 		return -EBUSY;
4060 	ITERATE_RDEV(mddev,rdev,tmp) {
4061 		sector_t avail;
4062 		if (rdev->sb_offset > rdev->data_offset)
4063 			avail = (rdev->sb_offset*2) - rdev->data_offset;
4064 		else
4065 			avail = get_capacity(rdev->bdev->bd_disk)
4066 				- rdev->data_offset;
4067 		if (fit && (size == 0 || size > avail/2))
4068 			size = avail/2;
4069 		if (avail < ((sector_t)size << 1))
4070 			return -ENOSPC;
4071 	}
4072 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4073 	if (!rv) {
4074 		struct block_device *bdev;
4075 
4076 		bdev = bdget_disk(mddev->gendisk, 0);
4077 		if (bdev) {
4078 			mutex_lock(&bdev->bd_inode->i_mutex);
4079 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4080 			mutex_unlock(&bdev->bd_inode->i_mutex);
4081 			bdput(bdev);
4082 		}
4083 	}
4084 	return rv;
4085 }
4086 
4087 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4088 {
4089 	int rv;
4090 	/* change the number of raid disks */
4091 	if (mddev->pers->check_reshape == NULL)
4092 		return -EINVAL;
4093 	if (raid_disks <= 0 ||
4094 	    raid_disks >= mddev->max_disks)
4095 		return -EINVAL;
4096 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4097 		return -EBUSY;
4098 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4099 
4100 	rv = mddev->pers->check_reshape(mddev);
4101 	return rv;
4102 }
4103 
4104 
4105 /*
4106  * update_array_info is used to change the configuration of an
4107  * on-line array.
4108  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4109  * fields in the info are checked against the array.
4110  * Any differences that cannot be handled will cause an error.
4111  * Normally, only one change can be managed at a time.
4112  */
4113 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4114 {
4115 	int rv = 0;
4116 	int cnt = 0;
4117 	int state = 0;
4118 
4119 	/* calculate expected state,ignoring low bits */
4120 	if (mddev->bitmap && mddev->bitmap_offset)
4121 		state |= (1 << MD_SB_BITMAP_PRESENT);
4122 
4123 	if (mddev->major_version != info->major_version ||
4124 	    mddev->minor_version != info->minor_version ||
4125 /*	    mddev->patch_version != info->patch_version || */
4126 	    mddev->ctime         != info->ctime         ||
4127 	    mddev->level         != info->level         ||
4128 /*	    mddev->layout        != info->layout        || */
4129 	    !mddev->persistent	 != info->not_persistent||
4130 	    mddev->chunk_size    != info->chunk_size    ||
4131 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4132 	    ((state^info->state) & 0xfffffe00)
4133 		)
4134 		return -EINVAL;
4135 	/* Check there is only one change */
4136 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4137 	if (mddev->raid_disks != info->raid_disks) cnt++;
4138 	if (mddev->layout != info->layout) cnt++;
4139 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4140 	if (cnt == 0) return 0;
4141 	if (cnt > 1) return -EINVAL;
4142 
4143 	if (mddev->layout != info->layout) {
4144 		/* Change layout
4145 		 * we don't need to do anything at the md level, the
4146 		 * personality will take care of it all.
4147 		 */
4148 		if (mddev->pers->reconfig == NULL)
4149 			return -EINVAL;
4150 		else
4151 			return mddev->pers->reconfig(mddev, info->layout, -1);
4152 	}
4153 	if (info->size >= 0 && mddev->size != info->size)
4154 		rv = update_size(mddev, info->size);
4155 
4156 	if (mddev->raid_disks    != info->raid_disks)
4157 		rv = update_raid_disks(mddev, info->raid_disks);
4158 
4159 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4160 		if (mddev->pers->quiesce == NULL)
4161 			return -EINVAL;
4162 		if (mddev->recovery || mddev->sync_thread)
4163 			return -EBUSY;
4164 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4165 			/* add the bitmap */
4166 			if (mddev->bitmap)
4167 				return -EEXIST;
4168 			if (mddev->default_bitmap_offset == 0)
4169 				return -EINVAL;
4170 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4171 			mddev->pers->quiesce(mddev, 1);
4172 			rv = bitmap_create(mddev);
4173 			if (rv)
4174 				bitmap_destroy(mddev);
4175 			mddev->pers->quiesce(mddev, 0);
4176 		} else {
4177 			/* remove the bitmap */
4178 			if (!mddev->bitmap)
4179 				return -ENOENT;
4180 			if (mddev->bitmap->file)
4181 				return -EINVAL;
4182 			mddev->pers->quiesce(mddev, 1);
4183 			bitmap_destroy(mddev);
4184 			mddev->pers->quiesce(mddev, 0);
4185 			mddev->bitmap_offset = 0;
4186 		}
4187 	}
4188 	md_update_sb(mddev);
4189 	return rv;
4190 }
4191 
4192 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4193 {
4194 	mdk_rdev_t *rdev;
4195 
4196 	if (mddev->pers == NULL)
4197 		return -ENODEV;
4198 
4199 	rdev = find_rdev(mddev, dev);
4200 	if (!rdev)
4201 		return -ENODEV;
4202 
4203 	md_error(mddev, rdev);
4204 	return 0;
4205 }
4206 
4207 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4208 {
4209 	mddev_t *mddev = bdev->bd_disk->private_data;
4210 
4211 	geo->heads = 2;
4212 	geo->sectors = 4;
4213 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4214 	return 0;
4215 }
4216 
4217 static int md_ioctl(struct inode *inode, struct file *file,
4218 			unsigned int cmd, unsigned long arg)
4219 {
4220 	int err = 0;
4221 	void __user *argp = (void __user *)arg;
4222 	mddev_t *mddev = NULL;
4223 
4224 	if (!capable(CAP_SYS_ADMIN))
4225 		return -EACCES;
4226 
4227 	/*
4228 	 * Commands dealing with the RAID driver but not any
4229 	 * particular array:
4230 	 */
4231 	switch (cmd)
4232 	{
4233 		case RAID_VERSION:
4234 			err = get_version(argp);
4235 			goto done;
4236 
4237 		case PRINT_RAID_DEBUG:
4238 			err = 0;
4239 			md_print_devices();
4240 			goto done;
4241 
4242 #ifndef MODULE
4243 		case RAID_AUTORUN:
4244 			err = 0;
4245 			autostart_arrays(arg);
4246 			goto done;
4247 #endif
4248 		default:;
4249 	}
4250 
4251 	/*
4252 	 * Commands creating/starting a new array:
4253 	 */
4254 
4255 	mddev = inode->i_bdev->bd_disk->private_data;
4256 
4257 	if (!mddev) {
4258 		BUG();
4259 		goto abort;
4260 	}
4261 
4262 
4263 	if (cmd == START_ARRAY) {
4264 		/* START_ARRAY doesn't need to lock the array as autostart_array
4265 		 * does the locking, and it could even be a different array
4266 		 */
4267 		static int cnt = 3;
4268 		if (cnt > 0 ) {
4269 			printk(KERN_WARNING
4270 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
4271 			       "This will not be supported beyond July 2006\n",
4272 			       current->comm, current->pid);
4273 			cnt--;
4274 		}
4275 		err = autostart_array(new_decode_dev(arg));
4276 		if (err) {
4277 			printk(KERN_WARNING "md: autostart failed!\n");
4278 			goto abort;
4279 		}
4280 		goto done;
4281 	}
4282 
4283 	err = mddev_lock(mddev);
4284 	if (err) {
4285 		printk(KERN_INFO
4286 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4287 			err, cmd);
4288 		goto abort;
4289 	}
4290 
4291 	switch (cmd)
4292 	{
4293 		case SET_ARRAY_INFO:
4294 			{
4295 				mdu_array_info_t info;
4296 				if (!arg)
4297 					memset(&info, 0, sizeof(info));
4298 				else if (copy_from_user(&info, argp, sizeof(info))) {
4299 					err = -EFAULT;
4300 					goto abort_unlock;
4301 				}
4302 				if (mddev->pers) {
4303 					err = update_array_info(mddev, &info);
4304 					if (err) {
4305 						printk(KERN_WARNING "md: couldn't update"
4306 						       " array info. %d\n", err);
4307 						goto abort_unlock;
4308 					}
4309 					goto done_unlock;
4310 				}
4311 				if (!list_empty(&mddev->disks)) {
4312 					printk(KERN_WARNING
4313 					       "md: array %s already has disks!\n",
4314 					       mdname(mddev));
4315 					err = -EBUSY;
4316 					goto abort_unlock;
4317 				}
4318 				if (mddev->raid_disks) {
4319 					printk(KERN_WARNING
4320 					       "md: array %s already initialised!\n",
4321 					       mdname(mddev));
4322 					err = -EBUSY;
4323 					goto abort_unlock;
4324 				}
4325 				err = set_array_info(mddev, &info);
4326 				if (err) {
4327 					printk(KERN_WARNING "md: couldn't set"
4328 					       " array info. %d\n", err);
4329 					goto abort_unlock;
4330 				}
4331 			}
4332 			goto done_unlock;
4333 
4334 		default:;
4335 	}
4336 
4337 	/*
4338 	 * Commands querying/configuring an existing array:
4339 	 */
4340 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4341 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4342 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4343 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4344 		err = -ENODEV;
4345 		goto abort_unlock;
4346 	}
4347 
4348 	/*
4349 	 * Commands even a read-only array can execute:
4350 	 */
4351 	switch (cmd)
4352 	{
4353 		case GET_ARRAY_INFO:
4354 			err = get_array_info(mddev, argp);
4355 			goto done_unlock;
4356 
4357 		case GET_BITMAP_FILE:
4358 			err = get_bitmap_file(mddev, argp);
4359 			goto done_unlock;
4360 
4361 		case GET_DISK_INFO:
4362 			err = get_disk_info(mddev, argp);
4363 			goto done_unlock;
4364 
4365 		case RESTART_ARRAY_RW:
4366 			err = restart_array(mddev);
4367 			goto done_unlock;
4368 
4369 		case STOP_ARRAY:
4370 			err = do_md_stop (mddev, 0);
4371 			goto done_unlock;
4372 
4373 		case STOP_ARRAY_RO:
4374 			err = do_md_stop (mddev, 1);
4375 			goto done_unlock;
4376 
4377 	/*
4378 	 * We have a problem here : there is no easy way to give a CHS
4379 	 * virtual geometry. We currently pretend that we have a 2 heads
4380 	 * 4 sectors (with a BIG number of cylinders...). This drives
4381 	 * dosfs just mad... ;-)
4382 	 */
4383 	}
4384 
4385 	/*
4386 	 * The remaining ioctls are changing the state of the
4387 	 * superblock, so we do not allow them on read-only arrays.
4388 	 * However non-MD ioctls (e.g. get-size) will still come through
4389 	 * here and hit the 'default' below, so only disallow
4390 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4391 	 */
4392 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4393 	    mddev->ro && mddev->pers) {
4394 		if (mddev->ro == 2) {
4395 			mddev->ro = 0;
4396 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4397 		md_wakeup_thread(mddev->thread);
4398 
4399 		} else {
4400 			err = -EROFS;
4401 			goto abort_unlock;
4402 		}
4403 	}
4404 
4405 	switch (cmd)
4406 	{
4407 		case ADD_NEW_DISK:
4408 		{
4409 			mdu_disk_info_t info;
4410 			if (copy_from_user(&info, argp, sizeof(info)))
4411 				err = -EFAULT;
4412 			else
4413 				err = add_new_disk(mddev, &info);
4414 			goto done_unlock;
4415 		}
4416 
4417 		case HOT_REMOVE_DISK:
4418 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4419 			goto done_unlock;
4420 
4421 		case HOT_ADD_DISK:
4422 			err = hot_add_disk(mddev, new_decode_dev(arg));
4423 			goto done_unlock;
4424 
4425 		case SET_DISK_FAULTY:
4426 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4427 			goto done_unlock;
4428 
4429 		case RUN_ARRAY:
4430 			err = do_md_run (mddev);
4431 			goto done_unlock;
4432 
4433 		case SET_BITMAP_FILE:
4434 			err = set_bitmap_file(mddev, (int)arg);
4435 			goto done_unlock;
4436 
4437 		default:
4438 			err = -EINVAL;
4439 			goto abort_unlock;
4440 	}
4441 
4442 done_unlock:
4443 abort_unlock:
4444 	mddev_unlock(mddev);
4445 
4446 	return err;
4447 done:
4448 	if (err)
4449 		MD_BUG();
4450 abort:
4451 	return err;
4452 }
4453 
4454 static int md_open(struct inode *inode, struct file *file)
4455 {
4456 	/*
4457 	 * Succeed if we can lock the mddev, which confirms that
4458 	 * it isn't being stopped right now.
4459 	 */
4460 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4461 	int err;
4462 
4463 	if ((err = mddev_lock(mddev)))
4464 		goto out;
4465 
4466 	err = 0;
4467 	mddev_get(mddev);
4468 	mddev_unlock(mddev);
4469 
4470 	check_disk_change(inode->i_bdev);
4471  out:
4472 	return err;
4473 }
4474 
4475 static int md_release(struct inode *inode, struct file * file)
4476 {
4477  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4478 
4479 	if (!mddev)
4480 		BUG();
4481 	mddev_put(mddev);
4482 
4483 	return 0;
4484 }
4485 
4486 static int md_media_changed(struct gendisk *disk)
4487 {
4488 	mddev_t *mddev = disk->private_data;
4489 
4490 	return mddev->changed;
4491 }
4492 
4493 static int md_revalidate(struct gendisk *disk)
4494 {
4495 	mddev_t *mddev = disk->private_data;
4496 
4497 	mddev->changed = 0;
4498 	return 0;
4499 }
4500 static struct block_device_operations md_fops =
4501 {
4502 	.owner		= THIS_MODULE,
4503 	.open		= md_open,
4504 	.release	= md_release,
4505 	.ioctl		= md_ioctl,
4506 	.getgeo		= md_getgeo,
4507 	.media_changed	= md_media_changed,
4508 	.revalidate_disk= md_revalidate,
4509 };
4510 
4511 static int md_thread(void * arg)
4512 {
4513 	mdk_thread_t *thread = arg;
4514 
4515 	/*
4516 	 * md_thread is a 'system-thread', it's priority should be very
4517 	 * high. We avoid resource deadlocks individually in each
4518 	 * raid personality. (RAID5 does preallocation) We also use RR and
4519 	 * the very same RT priority as kswapd, thus we will never get
4520 	 * into a priority inversion deadlock.
4521 	 *
4522 	 * we definitely have to have equal or higher priority than
4523 	 * bdflush, otherwise bdflush will deadlock if there are too
4524 	 * many dirty RAID5 blocks.
4525 	 */
4526 
4527 	allow_signal(SIGKILL);
4528 	while (!kthread_should_stop()) {
4529 
4530 		/* We need to wait INTERRUPTIBLE so that
4531 		 * we don't add to the load-average.
4532 		 * That means we need to be sure no signals are
4533 		 * pending
4534 		 */
4535 		if (signal_pending(current))
4536 			flush_signals(current);
4537 
4538 		wait_event_interruptible_timeout
4539 			(thread->wqueue,
4540 			 test_bit(THREAD_WAKEUP, &thread->flags)
4541 			 || kthread_should_stop(),
4542 			 thread->timeout);
4543 		try_to_freeze();
4544 
4545 		clear_bit(THREAD_WAKEUP, &thread->flags);
4546 
4547 		thread->run(thread->mddev);
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 void md_wakeup_thread(mdk_thread_t *thread)
4554 {
4555 	if (thread) {
4556 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4557 		set_bit(THREAD_WAKEUP, &thread->flags);
4558 		wake_up(&thread->wqueue);
4559 	}
4560 }
4561 
4562 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4563 				 const char *name)
4564 {
4565 	mdk_thread_t *thread;
4566 
4567 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4568 	if (!thread)
4569 		return NULL;
4570 
4571 	init_waitqueue_head(&thread->wqueue);
4572 
4573 	thread->run = run;
4574 	thread->mddev = mddev;
4575 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4576 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4577 	if (IS_ERR(thread->tsk)) {
4578 		kfree(thread);
4579 		return NULL;
4580 	}
4581 	return thread;
4582 }
4583 
4584 void md_unregister_thread(mdk_thread_t *thread)
4585 {
4586 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4587 
4588 	kthread_stop(thread->tsk);
4589 	kfree(thread);
4590 }
4591 
4592 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4593 {
4594 	if (!mddev) {
4595 		MD_BUG();
4596 		return;
4597 	}
4598 
4599 	if (!rdev || test_bit(Faulty, &rdev->flags))
4600 		return;
4601 /*
4602 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4603 		mdname(mddev),
4604 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4605 		__builtin_return_address(0),__builtin_return_address(1),
4606 		__builtin_return_address(2),__builtin_return_address(3));
4607 */
4608 	if (!mddev->pers)
4609 		return;
4610 	if (!mddev->pers->error_handler)
4611 		return;
4612 	mddev->pers->error_handler(mddev,rdev);
4613 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4614 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4615 	md_wakeup_thread(mddev->thread);
4616 	md_new_event_inintr(mddev);
4617 }
4618 
4619 /* seq_file implementation /proc/mdstat */
4620 
4621 static void status_unused(struct seq_file *seq)
4622 {
4623 	int i = 0;
4624 	mdk_rdev_t *rdev;
4625 	struct list_head *tmp;
4626 
4627 	seq_printf(seq, "unused devices: ");
4628 
4629 	ITERATE_RDEV_PENDING(rdev,tmp) {
4630 		char b[BDEVNAME_SIZE];
4631 		i++;
4632 		seq_printf(seq, "%s ",
4633 			      bdevname(rdev->bdev,b));
4634 	}
4635 	if (!i)
4636 		seq_printf(seq, "<none>");
4637 
4638 	seq_printf(seq, "\n");
4639 }
4640 
4641 
4642 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4643 {
4644 	sector_t max_blocks, resync, res;
4645 	unsigned long dt, db, rt;
4646 	int scale;
4647 	unsigned int per_milli;
4648 
4649 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4650 
4651 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4652 		max_blocks = mddev->resync_max_sectors >> 1;
4653 	else
4654 		max_blocks = mddev->size;
4655 
4656 	/*
4657 	 * Should not happen.
4658 	 */
4659 	if (!max_blocks) {
4660 		MD_BUG();
4661 		return;
4662 	}
4663 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4664 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4665 	 * u32, as those are the requirements for sector_div.
4666 	 * Thus 'scale' must be at least 10
4667 	 */
4668 	scale = 10;
4669 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4670 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4671 			scale++;
4672 	}
4673 	res = (resync>>scale)*1000;
4674 	sector_div(res, (u32)((max_blocks>>scale)+1));
4675 
4676 	per_milli = res;
4677 	{
4678 		int i, x = per_milli/50, y = 20-x;
4679 		seq_printf(seq, "[");
4680 		for (i = 0; i < x; i++)
4681 			seq_printf(seq, "=");
4682 		seq_printf(seq, ">");
4683 		for (i = 0; i < y; i++)
4684 			seq_printf(seq, ".");
4685 		seq_printf(seq, "] ");
4686 	}
4687 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4688 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4689 		    "reshape" :
4690 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4691 		       "resync" : "recovery")),
4692 		      per_milli/10, per_milli % 10,
4693 		   (unsigned long long) resync,
4694 		   (unsigned long long) max_blocks);
4695 
4696 	/*
4697 	 * We do not want to overflow, so the order of operands and
4698 	 * the * 100 / 100 trick are important. We do a +1 to be
4699 	 * safe against division by zero. We only estimate anyway.
4700 	 *
4701 	 * dt: time from mark until now
4702 	 * db: blocks written from mark until now
4703 	 * rt: remaining time
4704 	 */
4705 	dt = ((jiffies - mddev->resync_mark) / HZ);
4706 	if (!dt) dt++;
4707 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4708 		- mddev->resync_mark_cnt;
4709 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4710 
4711 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4712 
4713 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4714 }
4715 
4716 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4717 {
4718 	struct list_head *tmp;
4719 	loff_t l = *pos;
4720 	mddev_t *mddev;
4721 
4722 	if (l >= 0x10000)
4723 		return NULL;
4724 	if (!l--)
4725 		/* header */
4726 		return (void*)1;
4727 
4728 	spin_lock(&all_mddevs_lock);
4729 	list_for_each(tmp,&all_mddevs)
4730 		if (!l--) {
4731 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4732 			mddev_get(mddev);
4733 			spin_unlock(&all_mddevs_lock);
4734 			return mddev;
4735 		}
4736 	spin_unlock(&all_mddevs_lock);
4737 	if (!l--)
4738 		return (void*)2;/* tail */
4739 	return NULL;
4740 }
4741 
4742 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4743 {
4744 	struct list_head *tmp;
4745 	mddev_t *next_mddev, *mddev = v;
4746 
4747 	++*pos;
4748 	if (v == (void*)2)
4749 		return NULL;
4750 
4751 	spin_lock(&all_mddevs_lock);
4752 	if (v == (void*)1)
4753 		tmp = all_mddevs.next;
4754 	else
4755 		tmp = mddev->all_mddevs.next;
4756 	if (tmp != &all_mddevs)
4757 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4758 	else {
4759 		next_mddev = (void*)2;
4760 		*pos = 0x10000;
4761 	}
4762 	spin_unlock(&all_mddevs_lock);
4763 
4764 	if (v != (void*)1)
4765 		mddev_put(mddev);
4766 	return next_mddev;
4767 
4768 }
4769 
4770 static void md_seq_stop(struct seq_file *seq, void *v)
4771 {
4772 	mddev_t *mddev = v;
4773 
4774 	if (mddev && v != (void*)1 && v != (void*)2)
4775 		mddev_put(mddev);
4776 }
4777 
4778 struct mdstat_info {
4779 	int event;
4780 };
4781 
4782 static int md_seq_show(struct seq_file *seq, void *v)
4783 {
4784 	mddev_t *mddev = v;
4785 	sector_t size;
4786 	struct list_head *tmp2;
4787 	mdk_rdev_t *rdev;
4788 	struct mdstat_info *mi = seq->private;
4789 	struct bitmap *bitmap;
4790 
4791 	if (v == (void*)1) {
4792 		struct mdk_personality *pers;
4793 		seq_printf(seq, "Personalities : ");
4794 		spin_lock(&pers_lock);
4795 		list_for_each_entry(pers, &pers_list, list)
4796 			seq_printf(seq, "[%s] ", pers->name);
4797 
4798 		spin_unlock(&pers_lock);
4799 		seq_printf(seq, "\n");
4800 		mi->event = atomic_read(&md_event_count);
4801 		return 0;
4802 	}
4803 	if (v == (void*)2) {
4804 		status_unused(seq);
4805 		return 0;
4806 	}
4807 
4808 	if (mddev_lock(mddev) < 0)
4809 		return -EINTR;
4810 
4811 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4812 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4813 						mddev->pers ? "" : "in");
4814 		if (mddev->pers) {
4815 			if (mddev->ro==1)
4816 				seq_printf(seq, " (read-only)");
4817 			if (mddev->ro==2)
4818 				seq_printf(seq, "(auto-read-only)");
4819 			seq_printf(seq, " %s", mddev->pers->name);
4820 		}
4821 
4822 		size = 0;
4823 		ITERATE_RDEV(mddev,rdev,tmp2) {
4824 			char b[BDEVNAME_SIZE];
4825 			seq_printf(seq, " %s[%d]",
4826 				bdevname(rdev->bdev,b), rdev->desc_nr);
4827 			if (test_bit(WriteMostly, &rdev->flags))
4828 				seq_printf(seq, "(W)");
4829 			if (test_bit(Faulty, &rdev->flags)) {
4830 				seq_printf(seq, "(F)");
4831 				continue;
4832 			} else if (rdev->raid_disk < 0)
4833 				seq_printf(seq, "(S)"); /* spare */
4834 			size += rdev->size;
4835 		}
4836 
4837 		if (!list_empty(&mddev->disks)) {
4838 			if (mddev->pers)
4839 				seq_printf(seq, "\n      %llu blocks",
4840 					(unsigned long long)mddev->array_size);
4841 			else
4842 				seq_printf(seq, "\n      %llu blocks",
4843 					(unsigned long long)size);
4844 		}
4845 		if (mddev->persistent) {
4846 			if (mddev->major_version != 0 ||
4847 			    mddev->minor_version != 90) {
4848 				seq_printf(seq," super %d.%d",
4849 					   mddev->major_version,
4850 					   mddev->minor_version);
4851 			}
4852 		} else
4853 			seq_printf(seq, " super non-persistent");
4854 
4855 		if (mddev->pers) {
4856 			mddev->pers->status (seq, mddev);
4857 	 		seq_printf(seq, "\n      ");
4858 			if (mddev->pers->sync_request) {
4859 				if (mddev->curr_resync > 2) {
4860 					status_resync (seq, mddev);
4861 					seq_printf(seq, "\n      ");
4862 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4863 					seq_printf(seq, "\tresync=DELAYED\n      ");
4864 				else if (mddev->recovery_cp < MaxSector)
4865 					seq_printf(seq, "\tresync=PENDING\n      ");
4866 			}
4867 		} else
4868 			seq_printf(seq, "\n       ");
4869 
4870 		if ((bitmap = mddev->bitmap)) {
4871 			unsigned long chunk_kb;
4872 			unsigned long flags;
4873 			spin_lock_irqsave(&bitmap->lock, flags);
4874 			chunk_kb = bitmap->chunksize >> 10;
4875 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4876 				"%lu%s chunk",
4877 				bitmap->pages - bitmap->missing_pages,
4878 				bitmap->pages,
4879 				(bitmap->pages - bitmap->missing_pages)
4880 					<< (PAGE_SHIFT - 10),
4881 				chunk_kb ? chunk_kb : bitmap->chunksize,
4882 				chunk_kb ? "KB" : "B");
4883 			if (bitmap->file) {
4884 				seq_printf(seq, ", file: ");
4885 				seq_path(seq, bitmap->file->f_vfsmnt,
4886 					 bitmap->file->f_dentry," \t\n");
4887 			}
4888 
4889 			seq_printf(seq, "\n");
4890 			spin_unlock_irqrestore(&bitmap->lock, flags);
4891 		}
4892 
4893 		seq_printf(seq, "\n");
4894 	}
4895 	mddev_unlock(mddev);
4896 
4897 	return 0;
4898 }
4899 
4900 static struct seq_operations md_seq_ops = {
4901 	.start  = md_seq_start,
4902 	.next   = md_seq_next,
4903 	.stop   = md_seq_stop,
4904 	.show   = md_seq_show,
4905 };
4906 
4907 static int md_seq_open(struct inode *inode, struct file *file)
4908 {
4909 	int error;
4910 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4911 	if (mi == NULL)
4912 		return -ENOMEM;
4913 
4914 	error = seq_open(file, &md_seq_ops);
4915 	if (error)
4916 		kfree(mi);
4917 	else {
4918 		struct seq_file *p = file->private_data;
4919 		p->private = mi;
4920 		mi->event = atomic_read(&md_event_count);
4921 	}
4922 	return error;
4923 }
4924 
4925 static int md_seq_release(struct inode *inode, struct file *file)
4926 {
4927 	struct seq_file *m = file->private_data;
4928 	struct mdstat_info *mi = m->private;
4929 	m->private = NULL;
4930 	kfree(mi);
4931 	return seq_release(inode, file);
4932 }
4933 
4934 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4935 {
4936 	struct seq_file *m = filp->private_data;
4937 	struct mdstat_info *mi = m->private;
4938 	int mask;
4939 
4940 	poll_wait(filp, &md_event_waiters, wait);
4941 
4942 	/* always allow read */
4943 	mask = POLLIN | POLLRDNORM;
4944 
4945 	if (mi->event != atomic_read(&md_event_count))
4946 		mask |= POLLERR | POLLPRI;
4947 	return mask;
4948 }
4949 
4950 static struct file_operations md_seq_fops = {
4951 	.open           = md_seq_open,
4952 	.read           = seq_read,
4953 	.llseek         = seq_lseek,
4954 	.release	= md_seq_release,
4955 	.poll		= mdstat_poll,
4956 };
4957 
4958 int register_md_personality(struct mdk_personality *p)
4959 {
4960 	spin_lock(&pers_lock);
4961 	list_add_tail(&p->list, &pers_list);
4962 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4963 	spin_unlock(&pers_lock);
4964 	return 0;
4965 }
4966 
4967 int unregister_md_personality(struct mdk_personality *p)
4968 {
4969 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4970 	spin_lock(&pers_lock);
4971 	list_del_init(&p->list);
4972 	spin_unlock(&pers_lock);
4973 	return 0;
4974 }
4975 
4976 static int is_mddev_idle(mddev_t *mddev)
4977 {
4978 	mdk_rdev_t * rdev;
4979 	struct list_head *tmp;
4980 	int idle;
4981 	unsigned long curr_events;
4982 
4983 	idle = 1;
4984 	ITERATE_RDEV(mddev,rdev,tmp) {
4985 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4986 		curr_events = disk_stat_read(disk, sectors[0]) +
4987 				disk_stat_read(disk, sectors[1]) -
4988 				atomic_read(&disk->sync_io);
4989 		/* The difference between curr_events and last_events
4990 		 * will be affected by any new non-sync IO (making
4991 		 * curr_events bigger) and any difference in the amount of
4992 		 * in-flight syncio (making current_events bigger or smaller)
4993 		 * The amount in-flight is currently limited to
4994 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4995 		 * which is at most 4096 sectors.
4996 		 * These numbers are fairly fragile and should be made
4997 		 * more robust, probably by enforcing the
4998 		 * 'window size' that md_do_sync sort-of uses.
4999 		 *
5000 		 * Note: the following is an unsigned comparison.
5001 		 */
5002 		if ((curr_events - rdev->last_events + 4096) > 8192) {
5003 			rdev->last_events = curr_events;
5004 			idle = 0;
5005 		}
5006 	}
5007 	return idle;
5008 }
5009 
5010 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5011 {
5012 	/* another "blocks" (512byte) blocks have been synced */
5013 	atomic_sub(blocks, &mddev->recovery_active);
5014 	wake_up(&mddev->recovery_wait);
5015 	if (!ok) {
5016 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5017 		md_wakeup_thread(mddev->thread);
5018 		// stop recovery, signal do_sync ....
5019 	}
5020 }
5021 
5022 
5023 /* md_write_start(mddev, bi)
5024  * If we need to update some array metadata (e.g. 'active' flag
5025  * in superblock) before writing, schedule a superblock update
5026  * and wait for it to complete.
5027  */
5028 void md_write_start(mddev_t *mddev, struct bio *bi)
5029 {
5030 	if (bio_data_dir(bi) != WRITE)
5031 		return;
5032 
5033 	BUG_ON(mddev->ro == 1);
5034 	if (mddev->ro == 2) {
5035 		/* need to switch to read/write */
5036 		mddev->ro = 0;
5037 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5038 		md_wakeup_thread(mddev->thread);
5039 	}
5040 	atomic_inc(&mddev->writes_pending);
5041 	if (mddev->in_sync) {
5042 		spin_lock_irq(&mddev->write_lock);
5043 		if (mddev->in_sync) {
5044 			mddev->in_sync = 0;
5045 			mddev->sb_dirty = 3;
5046 			md_wakeup_thread(mddev->thread);
5047 		}
5048 		spin_unlock_irq(&mddev->write_lock);
5049 	}
5050 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
5051 }
5052 
5053 void md_write_end(mddev_t *mddev)
5054 {
5055 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5056 		if (mddev->safemode == 2)
5057 			md_wakeup_thread(mddev->thread);
5058 		else if (mddev->safemode_delay)
5059 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5060 	}
5061 }
5062 
5063 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5064 
5065 #define SYNC_MARKS	10
5066 #define	SYNC_MARK_STEP	(3*HZ)
5067 void md_do_sync(mddev_t *mddev)
5068 {
5069 	mddev_t *mddev2;
5070 	unsigned int currspeed = 0,
5071 		 window;
5072 	sector_t max_sectors,j, io_sectors;
5073 	unsigned long mark[SYNC_MARKS];
5074 	sector_t mark_cnt[SYNC_MARKS];
5075 	int last_mark,m;
5076 	struct list_head *tmp;
5077 	sector_t last_check;
5078 	int skipped = 0;
5079 	struct list_head *rtmp;
5080 	mdk_rdev_t *rdev;
5081 
5082 	/* just incase thread restarts... */
5083 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5084 		return;
5085 	if (mddev->ro) /* never try to sync a read-only array */
5086 		return;
5087 
5088 	/* we overload curr_resync somewhat here.
5089 	 * 0 == not engaged in resync at all
5090 	 * 2 == checking that there is no conflict with another sync
5091 	 * 1 == like 2, but have yielded to allow conflicting resync to
5092 	 *		commense
5093 	 * other == active in resync - this many blocks
5094 	 *
5095 	 * Before starting a resync we must have set curr_resync to
5096 	 * 2, and then checked that every "conflicting" array has curr_resync
5097 	 * less than ours.  When we find one that is the same or higher
5098 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5099 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5100 	 * This will mean we have to start checking from the beginning again.
5101 	 *
5102 	 */
5103 
5104 	do {
5105 		mddev->curr_resync = 2;
5106 
5107 	try_again:
5108 		if (kthread_should_stop()) {
5109 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5110 			goto skip;
5111 		}
5112 		ITERATE_MDDEV(mddev2,tmp) {
5113 			if (mddev2 == mddev)
5114 				continue;
5115 			if (mddev2->curr_resync &&
5116 			    match_mddev_units(mddev,mddev2)) {
5117 				DEFINE_WAIT(wq);
5118 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5119 					/* arbitrarily yield */
5120 					mddev->curr_resync = 1;
5121 					wake_up(&resync_wait);
5122 				}
5123 				if (mddev > mddev2 && mddev->curr_resync == 1)
5124 					/* no need to wait here, we can wait the next
5125 					 * time 'round when curr_resync == 2
5126 					 */
5127 					continue;
5128 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5129 				if (!kthread_should_stop() &&
5130 				    mddev2->curr_resync >= mddev->curr_resync) {
5131 					printk(KERN_INFO "md: delaying resync of %s"
5132 					       " until %s has finished resync (they"
5133 					       " share one or more physical units)\n",
5134 					       mdname(mddev), mdname(mddev2));
5135 					mddev_put(mddev2);
5136 					schedule();
5137 					finish_wait(&resync_wait, &wq);
5138 					goto try_again;
5139 				}
5140 				finish_wait(&resync_wait, &wq);
5141 			}
5142 		}
5143 	} while (mddev->curr_resync < 2);
5144 
5145 	j = 0;
5146 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5147 		/* resync follows the size requested by the personality,
5148 		 * which defaults to physical size, but can be virtual size
5149 		 */
5150 		max_sectors = mddev->resync_max_sectors;
5151 		mddev->resync_mismatches = 0;
5152 		/* we don't use the checkpoint if there's a bitmap */
5153 		if (!mddev->bitmap &&
5154 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5155 			j = mddev->recovery_cp;
5156 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5157 		max_sectors = mddev->size << 1;
5158 	else {
5159 		/* recovery follows the physical size of devices */
5160 		max_sectors = mddev->size << 1;
5161 		j = MaxSector;
5162 		ITERATE_RDEV(mddev,rdev,rtmp)
5163 			if (rdev->raid_disk >= 0 &&
5164 			    !test_bit(Faulty, &rdev->flags) &&
5165 			    !test_bit(In_sync, &rdev->flags) &&
5166 			    rdev->recovery_offset < j)
5167 				j = rdev->recovery_offset;
5168 	}
5169 
5170 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
5171 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
5172 		" %d KB/sec/disc.\n", speed_min(mddev));
5173 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5174 	       "(but not more than %d KB/sec) for reconstruction.\n",
5175 	       speed_max(mddev));
5176 
5177 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5178 
5179 	io_sectors = 0;
5180 	for (m = 0; m < SYNC_MARKS; m++) {
5181 		mark[m] = jiffies;
5182 		mark_cnt[m] = io_sectors;
5183 	}
5184 	last_mark = 0;
5185 	mddev->resync_mark = mark[last_mark];
5186 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5187 
5188 	/*
5189 	 * Tune reconstruction:
5190 	 */
5191 	window = 32*(PAGE_SIZE/512);
5192 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5193 		window/2,(unsigned long long) max_sectors/2);
5194 
5195 	atomic_set(&mddev->recovery_active, 0);
5196 	init_waitqueue_head(&mddev->recovery_wait);
5197 	last_check = 0;
5198 
5199 	if (j>2) {
5200 		printk(KERN_INFO
5201 			"md: resuming recovery of %s from checkpoint.\n",
5202 			mdname(mddev));
5203 		mddev->curr_resync = j;
5204 	}
5205 
5206 	while (j < max_sectors) {
5207 		sector_t sectors;
5208 
5209 		skipped = 0;
5210 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5211 					    currspeed < speed_min(mddev));
5212 		if (sectors == 0) {
5213 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5214 			goto out;
5215 		}
5216 
5217 		if (!skipped) { /* actual IO requested */
5218 			io_sectors += sectors;
5219 			atomic_add(sectors, &mddev->recovery_active);
5220 		}
5221 
5222 		j += sectors;
5223 		if (j>1) mddev->curr_resync = j;
5224 		mddev->curr_mark_cnt = io_sectors;
5225 		if (last_check == 0)
5226 			/* this is the earliers that rebuilt will be
5227 			 * visible in /proc/mdstat
5228 			 */
5229 			md_new_event(mddev);
5230 
5231 		if (last_check + window > io_sectors || j == max_sectors)
5232 			continue;
5233 
5234 		last_check = io_sectors;
5235 
5236 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5237 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5238 			break;
5239 
5240 	repeat:
5241 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5242 			/* step marks */
5243 			int next = (last_mark+1) % SYNC_MARKS;
5244 
5245 			mddev->resync_mark = mark[next];
5246 			mddev->resync_mark_cnt = mark_cnt[next];
5247 			mark[next] = jiffies;
5248 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5249 			last_mark = next;
5250 		}
5251 
5252 
5253 		if (kthread_should_stop()) {
5254 			/*
5255 			 * got a signal, exit.
5256 			 */
5257 			printk(KERN_INFO
5258 				"md: md_do_sync() got signal ... exiting\n");
5259 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5260 			goto out;
5261 		}
5262 
5263 		/*
5264 		 * this loop exits only if either when we are slower than
5265 		 * the 'hard' speed limit, or the system was IO-idle for
5266 		 * a jiffy.
5267 		 * the system might be non-idle CPU-wise, but we only care
5268 		 * about not overloading the IO subsystem. (things like an
5269 		 * e2fsck being done on the RAID array should execute fast)
5270 		 */
5271 		mddev->queue->unplug_fn(mddev->queue);
5272 		cond_resched();
5273 
5274 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5275 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5276 
5277 		if (currspeed > speed_min(mddev)) {
5278 			if ((currspeed > speed_max(mddev)) ||
5279 					!is_mddev_idle(mddev)) {
5280 				msleep(500);
5281 				goto repeat;
5282 			}
5283 		}
5284 	}
5285 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
5286 	/*
5287 	 * this also signals 'finished resyncing' to md_stop
5288 	 */
5289  out:
5290 	mddev->queue->unplug_fn(mddev->queue);
5291 
5292 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5293 
5294 	/* tell personality that we are finished */
5295 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5296 
5297 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5298 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5299 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5300 	    mddev->curr_resync > 2) {
5301 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5302 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5303 				if (mddev->curr_resync >= mddev->recovery_cp) {
5304 					printk(KERN_INFO
5305 					       "md: checkpointing recovery of %s.\n",
5306 					       mdname(mddev));
5307 					mddev->recovery_cp = mddev->curr_resync;
5308 				}
5309 			} else
5310 				mddev->recovery_cp = MaxSector;
5311 		} else {
5312 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5313 				mddev->curr_resync = MaxSector;
5314 			ITERATE_RDEV(mddev,rdev,rtmp)
5315 				if (rdev->raid_disk >= 0 &&
5316 				    !test_bit(Faulty, &rdev->flags) &&
5317 				    !test_bit(In_sync, &rdev->flags) &&
5318 				    rdev->recovery_offset < mddev->curr_resync)
5319 					rdev->recovery_offset = mddev->curr_resync;
5320 			mddev->sb_dirty = 1;
5321 		}
5322 	}
5323 
5324  skip:
5325 	mddev->curr_resync = 0;
5326 	wake_up(&resync_wait);
5327 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5328 	md_wakeup_thread(mddev->thread);
5329 }
5330 EXPORT_SYMBOL_GPL(md_do_sync);
5331 
5332 
5333 /*
5334  * This routine is regularly called by all per-raid-array threads to
5335  * deal with generic issues like resync and super-block update.
5336  * Raid personalities that don't have a thread (linear/raid0) do not
5337  * need this as they never do any recovery or update the superblock.
5338  *
5339  * It does not do any resync itself, but rather "forks" off other threads
5340  * to do that as needed.
5341  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5342  * "->recovery" and create a thread at ->sync_thread.
5343  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5344  * and wakeups up this thread which will reap the thread and finish up.
5345  * This thread also removes any faulty devices (with nr_pending == 0).
5346  *
5347  * The overall approach is:
5348  *  1/ if the superblock needs updating, update it.
5349  *  2/ If a recovery thread is running, don't do anything else.
5350  *  3/ If recovery has finished, clean up, possibly marking spares active.
5351  *  4/ If there are any faulty devices, remove them.
5352  *  5/ If array is degraded, try to add spares devices
5353  *  6/ If array has spares or is not in-sync, start a resync thread.
5354  */
5355 void md_check_recovery(mddev_t *mddev)
5356 {
5357 	mdk_rdev_t *rdev;
5358 	struct list_head *rtmp;
5359 
5360 
5361 	if (mddev->bitmap)
5362 		bitmap_daemon_work(mddev->bitmap);
5363 
5364 	if (mddev->ro)
5365 		return;
5366 
5367 	if (signal_pending(current)) {
5368 		if (mddev->pers->sync_request) {
5369 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5370 			       mdname(mddev));
5371 			mddev->safemode = 2;
5372 		}
5373 		flush_signals(current);
5374 	}
5375 
5376 	if ( ! (
5377 		mddev->sb_dirty ||
5378 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5379 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5380 		(mddev->safemode == 1) ||
5381 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5382 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5383 		))
5384 		return;
5385 
5386 	if (mddev_trylock(mddev)) {
5387 		int spares =0;
5388 
5389 		spin_lock_irq(&mddev->write_lock);
5390 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5391 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5392 			mddev->in_sync = 1;
5393 			mddev->sb_dirty = 3;
5394 		}
5395 		if (mddev->safemode == 1)
5396 			mddev->safemode = 0;
5397 		spin_unlock_irq(&mddev->write_lock);
5398 
5399 		if (mddev->sb_dirty)
5400 			md_update_sb(mddev);
5401 
5402 
5403 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5404 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5405 			/* resync/recovery still happening */
5406 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5407 			goto unlock;
5408 		}
5409 		if (mddev->sync_thread) {
5410 			/* resync has finished, collect result */
5411 			md_unregister_thread(mddev->sync_thread);
5412 			mddev->sync_thread = NULL;
5413 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5414 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5415 				/* success...*/
5416 				/* activate any spares */
5417 				mddev->pers->spare_active(mddev);
5418 			}
5419 			md_update_sb(mddev);
5420 
5421 			/* if array is no-longer degraded, then any saved_raid_disk
5422 			 * information must be scrapped
5423 			 */
5424 			if (!mddev->degraded)
5425 				ITERATE_RDEV(mddev,rdev,rtmp)
5426 					rdev->saved_raid_disk = -1;
5427 
5428 			mddev->recovery = 0;
5429 			/* flag recovery needed just to double check */
5430 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5431 			md_new_event(mddev);
5432 			goto unlock;
5433 		}
5434 		/* Clear some bits that don't mean anything, but
5435 		 * might be left set
5436 		 */
5437 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5438 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5439 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5440 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5441 
5442 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5443 			goto unlock;
5444 		/* no recovery is running.
5445 		 * remove any failed drives, then
5446 		 * add spares if possible.
5447 		 * Spare are also removed and re-added, to allow
5448 		 * the personality to fail the re-add.
5449 		 */
5450 		ITERATE_RDEV(mddev,rdev,rtmp)
5451 			if (rdev->raid_disk >= 0 &&
5452 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5453 			    atomic_read(&rdev->nr_pending)==0) {
5454 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5455 					char nm[20];
5456 					sprintf(nm,"rd%d", rdev->raid_disk);
5457 					sysfs_remove_link(&mddev->kobj, nm);
5458 					rdev->raid_disk = -1;
5459 				}
5460 			}
5461 
5462 		if (mddev->degraded) {
5463 			ITERATE_RDEV(mddev,rdev,rtmp)
5464 				if (rdev->raid_disk < 0
5465 				    && !test_bit(Faulty, &rdev->flags)) {
5466 					rdev->recovery_offset = 0;
5467 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
5468 						char nm[20];
5469 						sprintf(nm, "rd%d", rdev->raid_disk);
5470 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5471 						spares++;
5472 						md_new_event(mddev);
5473 					} else
5474 						break;
5475 				}
5476 		}
5477 
5478 		if (spares) {
5479 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5480 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5481 		} else if (mddev->recovery_cp < MaxSector) {
5482 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5483 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5484 			/* nothing to be done ... */
5485 			goto unlock;
5486 
5487 		if (mddev->pers->sync_request) {
5488 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5489 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5490 				/* We are adding a device or devices to an array
5491 				 * which has the bitmap stored on all devices.
5492 				 * So make sure all bitmap pages get written
5493 				 */
5494 				bitmap_write_all(mddev->bitmap);
5495 			}
5496 			mddev->sync_thread = md_register_thread(md_do_sync,
5497 								mddev,
5498 								"%s_resync");
5499 			if (!mddev->sync_thread) {
5500 				printk(KERN_ERR "%s: could not start resync"
5501 					" thread...\n",
5502 					mdname(mddev));
5503 				/* leave the spares where they are, it shouldn't hurt */
5504 				mddev->recovery = 0;
5505 			} else
5506 				md_wakeup_thread(mddev->sync_thread);
5507 			md_new_event(mddev);
5508 		}
5509 	unlock:
5510 		mddev_unlock(mddev);
5511 	}
5512 }
5513 
5514 static int md_notify_reboot(struct notifier_block *this,
5515 			    unsigned long code, void *x)
5516 {
5517 	struct list_head *tmp;
5518 	mddev_t *mddev;
5519 
5520 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5521 
5522 		printk(KERN_INFO "md: stopping all md devices.\n");
5523 
5524 		ITERATE_MDDEV(mddev,tmp)
5525 			if (mddev_trylock(mddev)) {
5526 				do_md_stop (mddev, 1);
5527 				mddev_unlock(mddev);
5528 			}
5529 		/*
5530 		 * certain more exotic SCSI devices are known to be
5531 		 * volatile wrt too early system reboots. While the
5532 		 * right place to handle this issue is the given
5533 		 * driver, we do want to have a safe RAID driver ...
5534 		 */
5535 		mdelay(1000*1);
5536 	}
5537 	return NOTIFY_DONE;
5538 }
5539 
5540 static struct notifier_block md_notifier = {
5541 	.notifier_call	= md_notify_reboot,
5542 	.next		= NULL,
5543 	.priority	= INT_MAX, /* before any real devices */
5544 };
5545 
5546 static void md_geninit(void)
5547 {
5548 	struct proc_dir_entry *p;
5549 
5550 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5551 
5552 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5553 	if (p)
5554 		p->proc_fops = &md_seq_fops;
5555 }
5556 
5557 static int __init md_init(void)
5558 {
5559 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5560 			" MD_SB_DISKS=%d\n",
5561 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
5562 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5563 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5564 			BITMAP_MINOR);
5565 
5566 	if (register_blkdev(MAJOR_NR, "md"))
5567 		return -1;
5568 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5569 		unregister_blkdev(MAJOR_NR, "md");
5570 		return -1;
5571 	}
5572 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5573 				md_probe, NULL, NULL);
5574 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5575 			    md_probe, NULL, NULL);
5576 
5577 	register_reboot_notifier(&md_notifier);
5578 	raid_table_header = register_sysctl_table(raid_root_table, 1);
5579 
5580 	md_geninit();
5581 	return (0);
5582 }
5583 
5584 
5585 #ifndef MODULE
5586 
5587 /*
5588  * Searches all registered partitions for autorun RAID arrays
5589  * at boot time.
5590  */
5591 static dev_t detected_devices[128];
5592 static int dev_cnt;
5593 
5594 void md_autodetect_dev(dev_t dev)
5595 {
5596 	if (dev_cnt >= 0 && dev_cnt < 127)
5597 		detected_devices[dev_cnt++] = dev;
5598 }
5599 
5600 
5601 static void autostart_arrays(int part)
5602 {
5603 	mdk_rdev_t *rdev;
5604 	int i;
5605 
5606 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5607 
5608 	for (i = 0; i < dev_cnt; i++) {
5609 		dev_t dev = detected_devices[i];
5610 
5611 		rdev = md_import_device(dev,0, 0);
5612 		if (IS_ERR(rdev))
5613 			continue;
5614 
5615 		if (test_bit(Faulty, &rdev->flags)) {
5616 			MD_BUG();
5617 			continue;
5618 		}
5619 		list_add(&rdev->same_set, &pending_raid_disks);
5620 	}
5621 	dev_cnt = 0;
5622 
5623 	autorun_devices(part);
5624 }
5625 
5626 #endif
5627 
5628 static __exit void md_exit(void)
5629 {
5630 	mddev_t *mddev;
5631 	struct list_head *tmp;
5632 
5633 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5634 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5635 
5636 	unregister_blkdev(MAJOR_NR,"md");
5637 	unregister_blkdev(mdp_major, "mdp");
5638 	unregister_reboot_notifier(&md_notifier);
5639 	unregister_sysctl_table(raid_table_header);
5640 	remove_proc_entry("mdstat", NULL);
5641 	ITERATE_MDDEV(mddev,tmp) {
5642 		struct gendisk *disk = mddev->gendisk;
5643 		if (!disk)
5644 			continue;
5645 		export_array(mddev);
5646 		del_gendisk(disk);
5647 		put_disk(disk);
5648 		mddev->gendisk = NULL;
5649 		mddev_put(mddev);
5650 	}
5651 }
5652 
5653 module_init(md_init)
5654 module_exit(md_exit)
5655 
5656 static int get_ro(char *buffer, struct kernel_param *kp)
5657 {
5658 	return sprintf(buffer, "%d", start_readonly);
5659 }
5660 static int set_ro(const char *val, struct kernel_param *kp)
5661 {
5662 	char *e;
5663 	int num = simple_strtoul(val, &e, 10);
5664 	if (*val && (*e == '\0' || *e == '\n')) {
5665 		start_readonly = num;
5666 		return 0;
5667 	}
5668 	return -EINVAL;
5669 }
5670 
5671 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5672 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5673 
5674 
5675 EXPORT_SYMBOL(register_md_personality);
5676 EXPORT_SYMBOL(unregister_md_personality);
5677 EXPORT_SYMBOL(md_error);
5678 EXPORT_SYMBOL(md_done_sync);
5679 EXPORT_SYMBOL(md_write_start);
5680 EXPORT_SYMBOL(md_write_end);
5681 EXPORT_SYMBOL(md_register_thread);
5682 EXPORT_SYMBOL(md_unregister_thread);
5683 EXPORT_SYMBOL(md_wakeup_thread);
5684 EXPORT_SYMBOL(md_check_recovery);
5685 MODULE_LICENSE("GPL");
5686 MODULE_ALIAS("md");
5687 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5688