1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 344 struct mddev *mddev) 345 { 346 if (!mddev || !bioset_initialized(&mddev->bio_set)) 347 return bio_alloc(gfp_mask, nr_iovecs); 348 349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 350 } 351 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 352 353 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 354 { 355 if (!mddev || !bioset_initialized(&mddev->sync_set)) 356 return bio_alloc(GFP_NOIO, 1); 357 358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 359 } 360 361 /* 362 * We have a system wide 'event count' that is incremented 363 * on any 'interesting' event, and readers of /proc/mdstat 364 * can use 'poll' or 'select' to find out when the event 365 * count increases. 366 * 367 * Events are: 368 * start array, stop array, error, add device, remove device, 369 * start build, activate spare 370 */ 371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 372 static atomic_t md_event_count; 373 void md_new_event(struct mddev *mddev) 374 { 375 atomic_inc(&md_event_count); 376 wake_up(&md_event_waiters); 377 } 378 EXPORT_SYMBOL_GPL(md_new_event); 379 380 /* 381 * Enables to iterate over all existing md arrays 382 * all_mddevs_lock protects this list. 383 */ 384 static LIST_HEAD(all_mddevs); 385 static DEFINE_SPINLOCK(all_mddevs_lock); 386 387 /* 388 * iterates through all used mddevs in the system. 389 * We take care to grab the all_mddevs_lock whenever navigating 390 * the list, and to always hold a refcount when unlocked. 391 * Any code which breaks out of this loop while own 392 * a reference to the current mddev and must mddev_put it. 393 */ 394 #define for_each_mddev(_mddev,_tmp) \ 395 \ 396 for (({ spin_lock(&all_mddevs_lock); \ 397 _tmp = all_mddevs.next; \ 398 _mddev = NULL;}); \ 399 ({ if (_tmp != &all_mddevs) \ 400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 401 spin_unlock(&all_mddevs_lock); \ 402 if (_mddev) mddev_put(_mddev); \ 403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 404 _tmp != &all_mddevs;}); \ 405 ({ spin_lock(&all_mddevs_lock); \ 406 _tmp = _tmp->next;}) \ 407 ) 408 409 /* Rather than calling directly into the personality make_request function, 410 * IO requests come here first so that we can check if the device is 411 * being suspended pending a reconfiguration. 412 * We hold a refcount over the call to ->make_request. By the time that 413 * call has finished, the bio has been linked into some internal structure 414 * and so is visible to ->quiesce(), so we don't need the refcount any more. 415 */ 416 static bool is_suspended(struct mddev *mddev, struct bio *bio) 417 { 418 if (mddev->suspended) 419 return true; 420 if (bio_data_dir(bio) != WRITE) 421 return false; 422 if (mddev->suspend_lo >= mddev->suspend_hi) 423 return false; 424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 425 return false; 426 if (bio_end_sector(bio) < mddev->suspend_lo) 427 return false; 428 return true; 429 } 430 431 void md_handle_request(struct mddev *mddev, struct bio *bio) 432 { 433 check_suspended: 434 rcu_read_lock(); 435 if (is_suspended(mddev, bio)) { 436 DEFINE_WAIT(__wait); 437 for (;;) { 438 prepare_to_wait(&mddev->sb_wait, &__wait, 439 TASK_UNINTERRUPTIBLE); 440 if (!is_suspended(mddev, bio)) 441 break; 442 rcu_read_unlock(); 443 schedule(); 444 rcu_read_lock(); 445 } 446 finish_wait(&mddev->sb_wait, &__wait); 447 } 448 atomic_inc(&mddev->active_io); 449 rcu_read_unlock(); 450 451 if (!mddev->pers->make_request(mddev, bio)) { 452 atomic_dec(&mddev->active_io); 453 wake_up(&mddev->sb_wait); 454 goto check_suspended; 455 } 456 457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 458 wake_up(&mddev->sb_wait); 459 } 460 EXPORT_SYMBOL(md_handle_request); 461 462 struct md_io { 463 struct mddev *mddev; 464 bio_end_io_t *orig_bi_end_io; 465 void *orig_bi_private; 466 unsigned long start_time; 467 struct block_device *part; 468 }; 469 470 static void md_end_io(struct bio *bio) 471 { 472 struct md_io *md_io = bio->bi_private; 473 struct mddev *mddev = md_io->mddev; 474 475 part_end_io_acct(md_io->part, bio, md_io->start_time); 476 477 bio->bi_end_io = md_io->orig_bi_end_io; 478 bio->bi_private = md_io->orig_bi_private; 479 480 mempool_free(md_io, &mddev->md_io_pool); 481 482 if (bio->bi_end_io) 483 bio->bi_end_io(bio); 484 } 485 486 static blk_qc_t md_submit_bio(struct bio *bio) 487 { 488 const int rw = bio_data_dir(bio); 489 struct mddev *mddev = bio->bi_disk->private_data; 490 491 if (mddev == NULL || mddev->pers == NULL) { 492 bio_io_error(bio); 493 return BLK_QC_T_NONE; 494 } 495 496 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 497 bio_io_error(bio); 498 return BLK_QC_T_NONE; 499 } 500 501 blk_queue_split(&bio); 502 503 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 504 if (bio_sectors(bio) != 0) 505 bio->bi_status = BLK_STS_IOERR; 506 bio_endio(bio); 507 return BLK_QC_T_NONE; 508 } 509 510 if (bio->bi_end_io != md_end_io) { 511 struct md_io *md_io; 512 513 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 514 md_io->mddev = mddev; 515 md_io->orig_bi_end_io = bio->bi_end_io; 516 md_io->orig_bi_private = bio->bi_private; 517 518 bio->bi_end_io = md_end_io; 519 bio->bi_private = md_io; 520 521 md_io->start_time = part_start_io_acct(mddev->gendisk, 522 &md_io->part, bio); 523 } 524 525 /* bio could be mergeable after passing to underlayer */ 526 bio->bi_opf &= ~REQ_NOMERGE; 527 528 md_handle_request(mddev, bio); 529 530 return BLK_QC_T_NONE; 531 } 532 533 /* mddev_suspend makes sure no new requests are submitted 534 * to the device, and that any requests that have been submitted 535 * are completely handled. 536 * Once mddev_detach() is called and completes, the module will be 537 * completely unused. 538 */ 539 void mddev_suspend(struct mddev *mddev) 540 { 541 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 542 lockdep_assert_held(&mddev->reconfig_mutex); 543 if (mddev->suspended++) 544 return; 545 synchronize_rcu(); 546 wake_up(&mddev->sb_wait); 547 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 548 smp_mb__after_atomic(); 549 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 550 mddev->pers->quiesce(mddev, 1); 551 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 552 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 553 554 del_timer_sync(&mddev->safemode_timer); 555 /* restrict memory reclaim I/O during raid array is suspend */ 556 mddev->noio_flag = memalloc_noio_save(); 557 } 558 EXPORT_SYMBOL_GPL(mddev_suspend); 559 560 void mddev_resume(struct mddev *mddev) 561 { 562 /* entred the memalloc scope from mddev_suspend() */ 563 memalloc_noio_restore(mddev->noio_flag); 564 lockdep_assert_held(&mddev->reconfig_mutex); 565 if (--mddev->suspended) 566 return; 567 wake_up(&mddev->sb_wait); 568 mddev->pers->quiesce(mddev, 0); 569 570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 571 md_wakeup_thread(mddev->thread); 572 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 573 } 574 EXPORT_SYMBOL_GPL(mddev_resume); 575 576 /* 577 * Generic flush handling for md 578 */ 579 580 static void md_end_flush(struct bio *bio) 581 { 582 struct md_rdev *rdev = bio->bi_private; 583 struct mddev *mddev = rdev->mddev; 584 585 rdev_dec_pending(rdev, mddev); 586 587 if (atomic_dec_and_test(&mddev->flush_pending)) { 588 /* The pre-request flush has finished */ 589 queue_work(md_wq, &mddev->flush_work); 590 } 591 bio_put(bio); 592 } 593 594 static void md_submit_flush_data(struct work_struct *ws); 595 596 static void submit_flushes(struct work_struct *ws) 597 { 598 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 599 struct md_rdev *rdev; 600 601 mddev->start_flush = ktime_get_boottime(); 602 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 603 atomic_set(&mddev->flush_pending, 1); 604 rcu_read_lock(); 605 rdev_for_each_rcu(rdev, mddev) 606 if (rdev->raid_disk >= 0 && 607 !test_bit(Faulty, &rdev->flags)) { 608 /* Take two references, one is dropped 609 * when request finishes, one after 610 * we reclaim rcu_read_lock 611 */ 612 struct bio *bi; 613 atomic_inc(&rdev->nr_pending); 614 atomic_inc(&rdev->nr_pending); 615 rcu_read_unlock(); 616 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 617 bi->bi_end_io = md_end_flush; 618 bi->bi_private = rdev; 619 bio_set_dev(bi, rdev->bdev); 620 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 621 atomic_inc(&mddev->flush_pending); 622 submit_bio(bi); 623 rcu_read_lock(); 624 rdev_dec_pending(rdev, mddev); 625 } 626 rcu_read_unlock(); 627 if (atomic_dec_and_test(&mddev->flush_pending)) 628 queue_work(md_wq, &mddev->flush_work); 629 } 630 631 static void md_submit_flush_data(struct work_struct *ws) 632 { 633 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 634 struct bio *bio = mddev->flush_bio; 635 636 /* 637 * must reset flush_bio before calling into md_handle_request to avoid a 638 * deadlock, because other bios passed md_handle_request suspend check 639 * could wait for this and below md_handle_request could wait for those 640 * bios because of suspend check 641 */ 642 mddev->prev_flush_start = mddev->start_flush; 643 mddev->flush_bio = NULL; 644 wake_up(&mddev->sb_wait); 645 646 if (bio->bi_iter.bi_size == 0) { 647 /* an empty barrier - all done */ 648 bio_endio(bio); 649 } else { 650 bio->bi_opf &= ~REQ_PREFLUSH; 651 md_handle_request(mddev, bio); 652 } 653 } 654 655 /* 656 * Manages consolidation of flushes and submitting any flushes needed for 657 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 658 * being finished in another context. Returns false if the flushing is 659 * complete but still needs the I/O portion of the bio to be processed. 660 */ 661 bool md_flush_request(struct mddev *mddev, struct bio *bio) 662 { 663 ktime_t req_start = ktime_get_boottime(); 664 spin_lock_irq(&mddev->lock); 665 /* flush requests wait until ongoing flush completes, 666 * hence coalescing all the pending requests. 667 */ 668 wait_event_lock_irq(mddev->sb_wait, 669 !mddev->flush_bio || 670 ktime_before(req_start, mddev->prev_flush_start), 671 mddev->lock); 672 /* new request after previous flush is completed */ 673 if (ktime_after(req_start, mddev->prev_flush_start)) { 674 WARN_ON(mddev->flush_bio); 675 mddev->flush_bio = bio; 676 bio = NULL; 677 } 678 spin_unlock_irq(&mddev->lock); 679 680 if (!bio) { 681 INIT_WORK(&mddev->flush_work, submit_flushes); 682 queue_work(md_wq, &mddev->flush_work); 683 } else { 684 /* flush was performed for some other bio while we waited. */ 685 if (bio->bi_iter.bi_size == 0) 686 /* an empty barrier - all done */ 687 bio_endio(bio); 688 else { 689 bio->bi_opf &= ~REQ_PREFLUSH; 690 return false; 691 } 692 } 693 return true; 694 } 695 EXPORT_SYMBOL(md_flush_request); 696 697 static inline struct mddev *mddev_get(struct mddev *mddev) 698 { 699 atomic_inc(&mddev->active); 700 return mddev; 701 } 702 703 static void mddev_delayed_delete(struct work_struct *ws); 704 705 static void mddev_put(struct mddev *mddev) 706 { 707 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 708 return; 709 if (!mddev->raid_disks && list_empty(&mddev->disks) && 710 mddev->ctime == 0 && !mddev->hold_active) { 711 /* Array is not configured at all, and not held active, 712 * so destroy it */ 713 list_del_init(&mddev->all_mddevs); 714 715 /* 716 * Call queue_work inside the spinlock so that 717 * flush_workqueue() after mddev_find will succeed in waiting 718 * for the work to be done. 719 */ 720 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 721 queue_work(md_misc_wq, &mddev->del_work); 722 } 723 spin_unlock(&all_mddevs_lock); 724 } 725 726 static void md_safemode_timeout(struct timer_list *t); 727 728 void mddev_init(struct mddev *mddev) 729 { 730 kobject_init(&mddev->kobj, &md_ktype); 731 mutex_init(&mddev->open_mutex); 732 mutex_init(&mddev->reconfig_mutex); 733 mutex_init(&mddev->bitmap_info.mutex); 734 INIT_LIST_HEAD(&mddev->disks); 735 INIT_LIST_HEAD(&mddev->all_mddevs); 736 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 737 atomic_set(&mddev->active, 1); 738 atomic_set(&mddev->openers, 0); 739 atomic_set(&mddev->active_io, 0); 740 spin_lock_init(&mddev->lock); 741 atomic_set(&mddev->flush_pending, 0); 742 init_waitqueue_head(&mddev->sb_wait); 743 init_waitqueue_head(&mddev->recovery_wait); 744 mddev->reshape_position = MaxSector; 745 mddev->reshape_backwards = 0; 746 mddev->last_sync_action = "none"; 747 mddev->resync_min = 0; 748 mddev->resync_max = MaxSector; 749 mddev->level = LEVEL_NONE; 750 } 751 EXPORT_SYMBOL_GPL(mddev_init); 752 753 static struct mddev *mddev_find(dev_t unit) 754 { 755 struct mddev *mddev, *new = NULL; 756 757 if (unit && MAJOR(unit) != MD_MAJOR) 758 unit &= ~((1<<MdpMinorShift)-1); 759 760 retry: 761 spin_lock(&all_mddevs_lock); 762 763 if (unit) { 764 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 765 if (mddev->unit == unit) { 766 mddev_get(mddev); 767 spin_unlock(&all_mddevs_lock); 768 kfree(new); 769 return mddev; 770 } 771 772 if (new) { 773 list_add(&new->all_mddevs, &all_mddevs); 774 spin_unlock(&all_mddevs_lock); 775 new->hold_active = UNTIL_IOCTL; 776 return new; 777 } 778 } else if (new) { 779 /* find an unused unit number */ 780 static int next_minor = 512; 781 int start = next_minor; 782 int is_free = 0; 783 int dev = 0; 784 while (!is_free) { 785 dev = MKDEV(MD_MAJOR, next_minor); 786 next_minor++; 787 if (next_minor > MINORMASK) 788 next_minor = 0; 789 if (next_minor == start) { 790 /* Oh dear, all in use. */ 791 spin_unlock(&all_mddevs_lock); 792 kfree(new); 793 return NULL; 794 } 795 796 is_free = 1; 797 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 798 if (mddev->unit == dev) { 799 is_free = 0; 800 break; 801 } 802 } 803 new->unit = dev; 804 new->md_minor = MINOR(dev); 805 new->hold_active = UNTIL_STOP; 806 list_add(&new->all_mddevs, &all_mddevs); 807 spin_unlock(&all_mddevs_lock); 808 return new; 809 } 810 spin_unlock(&all_mddevs_lock); 811 812 new = kzalloc(sizeof(*new), GFP_KERNEL); 813 if (!new) 814 return NULL; 815 816 new->unit = unit; 817 if (MAJOR(unit) == MD_MAJOR) 818 new->md_minor = MINOR(unit); 819 else 820 new->md_minor = MINOR(unit) >> MdpMinorShift; 821 822 mddev_init(new); 823 824 goto retry; 825 } 826 827 static struct attribute_group md_redundancy_group; 828 829 void mddev_unlock(struct mddev *mddev) 830 { 831 if (mddev->to_remove) { 832 /* These cannot be removed under reconfig_mutex as 833 * an access to the files will try to take reconfig_mutex 834 * while holding the file unremovable, which leads to 835 * a deadlock. 836 * So hold set sysfs_active while the remove in happeing, 837 * and anything else which might set ->to_remove or my 838 * otherwise change the sysfs namespace will fail with 839 * -EBUSY if sysfs_active is still set. 840 * We set sysfs_active under reconfig_mutex and elsewhere 841 * test it under the same mutex to ensure its correct value 842 * is seen. 843 */ 844 struct attribute_group *to_remove = mddev->to_remove; 845 mddev->to_remove = NULL; 846 mddev->sysfs_active = 1; 847 mutex_unlock(&mddev->reconfig_mutex); 848 849 if (mddev->kobj.sd) { 850 if (to_remove != &md_redundancy_group) 851 sysfs_remove_group(&mddev->kobj, to_remove); 852 if (mddev->pers == NULL || 853 mddev->pers->sync_request == NULL) { 854 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 855 if (mddev->sysfs_action) 856 sysfs_put(mddev->sysfs_action); 857 if (mddev->sysfs_completed) 858 sysfs_put(mddev->sysfs_completed); 859 if (mddev->sysfs_degraded) 860 sysfs_put(mddev->sysfs_degraded); 861 mddev->sysfs_action = NULL; 862 mddev->sysfs_completed = NULL; 863 mddev->sysfs_degraded = NULL; 864 } 865 } 866 mddev->sysfs_active = 0; 867 } else 868 mutex_unlock(&mddev->reconfig_mutex); 869 870 /* As we've dropped the mutex we need a spinlock to 871 * make sure the thread doesn't disappear 872 */ 873 spin_lock(&pers_lock); 874 md_wakeup_thread(mddev->thread); 875 wake_up(&mddev->sb_wait); 876 spin_unlock(&pers_lock); 877 } 878 EXPORT_SYMBOL_GPL(mddev_unlock); 879 880 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 881 { 882 struct md_rdev *rdev; 883 884 rdev_for_each_rcu(rdev, mddev) 885 if (rdev->desc_nr == nr) 886 return rdev; 887 888 return NULL; 889 } 890 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 891 892 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 893 { 894 struct md_rdev *rdev; 895 896 rdev_for_each(rdev, mddev) 897 if (rdev->bdev->bd_dev == dev) 898 return rdev; 899 900 return NULL; 901 } 902 903 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 904 { 905 struct md_rdev *rdev; 906 907 rdev_for_each_rcu(rdev, mddev) 908 if (rdev->bdev->bd_dev == dev) 909 return rdev; 910 911 return NULL; 912 } 913 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 914 915 static struct md_personality *find_pers(int level, char *clevel) 916 { 917 struct md_personality *pers; 918 list_for_each_entry(pers, &pers_list, list) { 919 if (level != LEVEL_NONE && pers->level == level) 920 return pers; 921 if (strcmp(pers->name, clevel)==0) 922 return pers; 923 } 924 return NULL; 925 } 926 927 /* return the offset of the super block in 512byte sectors */ 928 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 929 { 930 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 931 return MD_NEW_SIZE_SECTORS(num_sectors); 932 } 933 934 static int alloc_disk_sb(struct md_rdev *rdev) 935 { 936 rdev->sb_page = alloc_page(GFP_KERNEL); 937 if (!rdev->sb_page) 938 return -ENOMEM; 939 return 0; 940 } 941 942 void md_rdev_clear(struct md_rdev *rdev) 943 { 944 if (rdev->sb_page) { 945 put_page(rdev->sb_page); 946 rdev->sb_loaded = 0; 947 rdev->sb_page = NULL; 948 rdev->sb_start = 0; 949 rdev->sectors = 0; 950 } 951 if (rdev->bb_page) { 952 put_page(rdev->bb_page); 953 rdev->bb_page = NULL; 954 } 955 badblocks_exit(&rdev->badblocks); 956 } 957 EXPORT_SYMBOL_GPL(md_rdev_clear); 958 959 static void super_written(struct bio *bio) 960 { 961 struct md_rdev *rdev = bio->bi_private; 962 struct mddev *mddev = rdev->mddev; 963 964 if (bio->bi_status) { 965 pr_err("md: %s gets error=%d\n", __func__, 966 blk_status_to_errno(bio->bi_status)); 967 md_error(mddev, rdev); 968 if (!test_bit(Faulty, &rdev->flags) 969 && (bio->bi_opf & MD_FAILFAST)) { 970 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 971 set_bit(LastDev, &rdev->flags); 972 } 973 } else 974 clear_bit(LastDev, &rdev->flags); 975 976 if (atomic_dec_and_test(&mddev->pending_writes)) 977 wake_up(&mddev->sb_wait); 978 rdev_dec_pending(rdev, mddev); 979 bio_put(bio); 980 } 981 982 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 983 sector_t sector, int size, struct page *page) 984 { 985 /* write first size bytes of page to sector of rdev 986 * Increment mddev->pending_writes before returning 987 * and decrement it on completion, waking up sb_wait 988 * if zero is reached. 989 * If an error occurred, call md_error 990 */ 991 struct bio *bio; 992 int ff = 0; 993 994 if (!page) 995 return; 996 997 if (test_bit(Faulty, &rdev->flags)) 998 return; 999 1000 bio = md_bio_alloc_sync(mddev); 1001 1002 atomic_inc(&rdev->nr_pending); 1003 1004 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 1005 bio->bi_iter.bi_sector = sector; 1006 bio_add_page(bio, page, size, 0); 1007 bio->bi_private = rdev; 1008 bio->bi_end_io = super_written; 1009 1010 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1011 test_bit(FailFast, &rdev->flags) && 1012 !test_bit(LastDev, &rdev->flags)) 1013 ff = MD_FAILFAST; 1014 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1015 1016 atomic_inc(&mddev->pending_writes); 1017 submit_bio(bio); 1018 } 1019 1020 int md_super_wait(struct mddev *mddev) 1021 { 1022 /* wait for all superblock writes that were scheduled to complete */ 1023 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1024 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1025 return -EAGAIN; 1026 return 0; 1027 } 1028 1029 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1030 struct page *page, int op, int op_flags, bool metadata_op) 1031 { 1032 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1033 int ret; 1034 1035 if (metadata_op && rdev->meta_bdev) 1036 bio_set_dev(bio, rdev->meta_bdev); 1037 else 1038 bio_set_dev(bio, rdev->bdev); 1039 bio_set_op_attrs(bio, op, op_flags); 1040 if (metadata_op) 1041 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1042 else if (rdev->mddev->reshape_position != MaxSector && 1043 (rdev->mddev->reshape_backwards == 1044 (sector >= rdev->mddev->reshape_position))) 1045 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1046 else 1047 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1048 bio_add_page(bio, page, size, 0); 1049 1050 submit_bio_wait(bio); 1051 1052 ret = !bio->bi_status; 1053 bio_put(bio); 1054 return ret; 1055 } 1056 EXPORT_SYMBOL_GPL(sync_page_io); 1057 1058 static int read_disk_sb(struct md_rdev *rdev, int size) 1059 { 1060 char b[BDEVNAME_SIZE]; 1061 1062 if (rdev->sb_loaded) 1063 return 0; 1064 1065 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1066 goto fail; 1067 rdev->sb_loaded = 1; 1068 return 0; 1069 1070 fail: 1071 pr_err("md: disabled device %s, could not read superblock.\n", 1072 bdevname(rdev->bdev,b)); 1073 return -EINVAL; 1074 } 1075 1076 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1077 { 1078 return sb1->set_uuid0 == sb2->set_uuid0 && 1079 sb1->set_uuid1 == sb2->set_uuid1 && 1080 sb1->set_uuid2 == sb2->set_uuid2 && 1081 sb1->set_uuid3 == sb2->set_uuid3; 1082 } 1083 1084 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1085 { 1086 int ret; 1087 mdp_super_t *tmp1, *tmp2; 1088 1089 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1090 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1091 1092 if (!tmp1 || !tmp2) { 1093 ret = 0; 1094 goto abort; 1095 } 1096 1097 *tmp1 = *sb1; 1098 *tmp2 = *sb2; 1099 1100 /* 1101 * nr_disks is not constant 1102 */ 1103 tmp1->nr_disks = 0; 1104 tmp2->nr_disks = 0; 1105 1106 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1107 abort: 1108 kfree(tmp1); 1109 kfree(tmp2); 1110 return ret; 1111 } 1112 1113 static u32 md_csum_fold(u32 csum) 1114 { 1115 csum = (csum & 0xffff) + (csum >> 16); 1116 return (csum & 0xffff) + (csum >> 16); 1117 } 1118 1119 static unsigned int calc_sb_csum(mdp_super_t *sb) 1120 { 1121 u64 newcsum = 0; 1122 u32 *sb32 = (u32*)sb; 1123 int i; 1124 unsigned int disk_csum, csum; 1125 1126 disk_csum = sb->sb_csum; 1127 sb->sb_csum = 0; 1128 1129 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1130 newcsum += sb32[i]; 1131 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1132 1133 #ifdef CONFIG_ALPHA 1134 /* This used to use csum_partial, which was wrong for several 1135 * reasons including that different results are returned on 1136 * different architectures. It isn't critical that we get exactly 1137 * the same return value as before (we always csum_fold before 1138 * testing, and that removes any differences). However as we 1139 * know that csum_partial always returned a 16bit value on 1140 * alphas, do a fold to maximise conformity to previous behaviour. 1141 */ 1142 sb->sb_csum = md_csum_fold(disk_csum); 1143 #else 1144 sb->sb_csum = disk_csum; 1145 #endif 1146 return csum; 1147 } 1148 1149 /* 1150 * Handle superblock details. 1151 * We want to be able to handle multiple superblock formats 1152 * so we have a common interface to them all, and an array of 1153 * different handlers. 1154 * We rely on user-space to write the initial superblock, and support 1155 * reading and updating of superblocks. 1156 * Interface methods are: 1157 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1158 * loads and validates a superblock on dev. 1159 * if refdev != NULL, compare superblocks on both devices 1160 * Return: 1161 * 0 - dev has a superblock that is compatible with refdev 1162 * 1 - dev has a superblock that is compatible and newer than refdev 1163 * so dev should be used as the refdev in future 1164 * -EINVAL superblock incompatible or invalid 1165 * -othererror e.g. -EIO 1166 * 1167 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1168 * Verify that dev is acceptable into mddev. 1169 * The first time, mddev->raid_disks will be 0, and data from 1170 * dev should be merged in. Subsequent calls check that dev 1171 * is new enough. Return 0 or -EINVAL 1172 * 1173 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1174 * Update the superblock for rdev with data in mddev 1175 * This does not write to disc. 1176 * 1177 */ 1178 1179 struct super_type { 1180 char *name; 1181 struct module *owner; 1182 int (*load_super)(struct md_rdev *rdev, 1183 struct md_rdev *refdev, 1184 int minor_version); 1185 int (*validate_super)(struct mddev *mddev, 1186 struct md_rdev *rdev); 1187 void (*sync_super)(struct mddev *mddev, 1188 struct md_rdev *rdev); 1189 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1190 sector_t num_sectors); 1191 int (*allow_new_offset)(struct md_rdev *rdev, 1192 unsigned long long new_offset); 1193 }; 1194 1195 /* 1196 * Check that the given mddev has no bitmap. 1197 * 1198 * This function is called from the run method of all personalities that do not 1199 * support bitmaps. It prints an error message and returns non-zero if mddev 1200 * has a bitmap. Otherwise, it returns 0. 1201 * 1202 */ 1203 int md_check_no_bitmap(struct mddev *mddev) 1204 { 1205 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1206 return 0; 1207 pr_warn("%s: bitmaps are not supported for %s\n", 1208 mdname(mddev), mddev->pers->name); 1209 return 1; 1210 } 1211 EXPORT_SYMBOL(md_check_no_bitmap); 1212 1213 /* 1214 * load_super for 0.90.0 1215 */ 1216 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1217 { 1218 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1219 mdp_super_t *sb; 1220 int ret; 1221 bool spare_disk = true; 1222 1223 /* 1224 * Calculate the position of the superblock (512byte sectors), 1225 * it's at the end of the disk. 1226 * 1227 * It also happens to be a multiple of 4Kb. 1228 */ 1229 rdev->sb_start = calc_dev_sboffset(rdev); 1230 1231 ret = read_disk_sb(rdev, MD_SB_BYTES); 1232 if (ret) 1233 return ret; 1234 1235 ret = -EINVAL; 1236 1237 bdevname(rdev->bdev, b); 1238 sb = page_address(rdev->sb_page); 1239 1240 if (sb->md_magic != MD_SB_MAGIC) { 1241 pr_warn("md: invalid raid superblock magic on %s\n", b); 1242 goto abort; 1243 } 1244 1245 if (sb->major_version != 0 || 1246 sb->minor_version < 90 || 1247 sb->minor_version > 91) { 1248 pr_warn("Bad version number %d.%d on %s\n", 1249 sb->major_version, sb->minor_version, b); 1250 goto abort; 1251 } 1252 1253 if (sb->raid_disks <= 0) 1254 goto abort; 1255 1256 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1257 pr_warn("md: invalid superblock checksum on %s\n", b); 1258 goto abort; 1259 } 1260 1261 rdev->preferred_minor = sb->md_minor; 1262 rdev->data_offset = 0; 1263 rdev->new_data_offset = 0; 1264 rdev->sb_size = MD_SB_BYTES; 1265 rdev->badblocks.shift = -1; 1266 1267 if (sb->level == LEVEL_MULTIPATH) 1268 rdev->desc_nr = -1; 1269 else 1270 rdev->desc_nr = sb->this_disk.number; 1271 1272 /* not spare disk, or LEVEL_MULTIPATH */ 1273 if (sb->level == LEVEL_MULTIPATH || 1274 (rdev->desc_nr >= 0 && 1275 rdev->desc_nr < MD_SB_DISKS && 1276 sb->disks[rdev->desc_nr].state & 1277 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1278 spare_disk = false; 1279 1280 if (!refdev) { 1281 if (!spare_disk) 1282 ret = 1; 1283 else 1284 ret = 0; 1285 } else { 1286 __u64 ev1, ev2; 1287 mdp_super_t *refsb = page_address(refdev->sb_page); 1288 if (!md_uuid_equal(refsb, sb)) { 1289 pr_warn("md: %s has different UUID to %s\n", 1290 b, bdevname(refdev->bdev,b2)); 1291 goto abort; 1292 } 1293 if (!md_sb_equal(refsb, sb)) { 1294 pr_warn("md: %s has same UUID but different superblock to %s\n", 1295 b, bdevname(refdev->bdev, b2)); 1296 goto abort; 1297 } 1298 ev1 = md_event(sb); 1299 ev2 = md_event(refsb); 1300 1301 if (!spare_disk && ev1 > ev2) 1302 ret = 1; 1303 else 1304 ret = 0; 1305 } 1306 rdev->sectors = rdev->sb_start; 1307 /* Limit to 4TB as metadata cannot record more than that. 1308 * (not needed for Linear and RAID0 as metadata doesn't 1309 * record this size) 1310 */ 1311 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1312 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1313 1314 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1315 /* "this cannot possibly happen" ... */ 1316 ret = -EINVAL; 1317 1318 abort: 1319 return ret; 1320 } 1321 1322 /* 1323 * validate_super for 0.90.0 1324 */ 1325 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1326 { 1327 mdp_disk_t *desc; 1328 mdp_super_t *sb = page_address(rdev->sb_page); 1329 __u64 ev1 = md_event(sb); 1330 1331 rdev->raid_disk = -1; 1332 clear_bit(Faulty, &rdev->flags); 1333 clear_bit(In_sync, &rdev->flags); 1334 clear_bit(Bitmap_sync, &rdev->flags); 1335 clear_bit(WriteMostly, &rdev->flags); 1336 1337 if (mddev->raid_disks == 0) { 1338 mddev->major_version = 0; 1339 mddev->minor_version = sb->minor_version; 1340 mddev->patch_version = sb->patch_version; 1341 mddev->external = 0; 1342 mddev->chunk_sectors = sb->chunk_size >> 9; 1343 mddev->ctime = sb->ctime; 1344 mddev->utime = sb->utime; 1345 mddev->level = sb->level; 1346 mddev->clevel[0] = 0; 1347 mddev->layout = sb->layout; 1348 mddev->raid_disks = sb->raid_disks; 1349 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1350 mddev->events = ev1; 1351 mddev->bitmap_info.offset = 0; 1352 mddev->bitmap_info.space = 0; 1353 /* bitmap can use 60 K after the 4K superblocks */ 1354 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1355 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1356 mddev->reshape_backwards = 0; 1357 1358 if (mddev->minor_version >= 91) { 1359 mddev->reshape_position = sb->reshape_position; 1360 mddev->delta_disks = sb->delta_disks; 1361 mddev->new_level = sb->new_level; 1362 mddev->new_layout = sb->new_layout; 1363 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1364 if (mddev->delta_disks < 0) 1365 mddev->reshape_backwards = 1; 1366 } else { 1367 mddev->reshape_position = MaxSector; 1368 mddev->delta_disks = 0; 1369 mddev->new_level = mddev->level; 1370 mddev->new_layout = mddev->layout; 1371 mddev->new_chunk_sectors = mddev->chunk_sectors; 1372 } 1373 if (mddev->level == 0) 1374 mddev->layout = -1; 1375 1376 if (sb->state & (1<<MD_SB_CLEAN)) 1377 mddev->recovery_cp = MaxSector; 1378 else { 1379 if (sb->events_hi == sb->cp_events_hi && 1380 sb->events_lo == sb->cp_events_lo) { 1381 mddev->recovery_cp = sb->recovery_cp; 1382 } else 1383 mddev->recovery_cp = 0; 1384 } 1385 1386 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1387 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1388 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1389 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1390 1391 mddev->max_disks = MD_SB_DISKS; 1392 1393 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1394 mddev->bitmap_info.file == NULL) { 1395 mddev->bitmap_info.offset = 1396 mddev->bitmap_info.default_offset; 1397 mddev->bitmap_info.space = 1398 mddev->bitmap_info.default_space; 1399 } 1400 1401 } else if (mddev->pers == NULL) { 1402 /* Insist on good event counter while assembling, except 1403 * for spares (which don't need an event count) */ 1404 ++ev1; 1405 if (sb->disks[rdev->desc_nr].state & ( 1406 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1407 if (ev1 < mddev->events) 1408 return -EINVAL; 1409 } else if (mddev->bitmap) { 1410 /* if adding to array with a bitmap, then we can accept an 1411 * older device ... but not too old. 1412 */ 1413 if (ev1 < mddev->bitmap->events_cleared) 1414 return 0; 1415 if (ev1 < mddev->events) 1416 set_bit(Bitmap_sync, &rdev->flags); 1417 } else { 1418 if (ev1 < mddev->events) 1419 /* just a hot-add of a new device, leave raid_disk at -1 */ 1420 return 0; 1421 } 1422 1423 if (mddev->level != LEVEL_MULTIPATH) { 1424 desc = sb->disks + rdev->desc_nr; 1425 1426 if (desc->state & (1<<MD_DISK_FAULTY)) 1427 set_bit(Faulty, &rdev->flags); 1428 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1429 desc->raid_disk < mddev->raid_disks */) { 1430 set_bit(In_sync, &rdev->flags); 1431 rdev->raid_disk = desc->raid_disk; 1432 rdev->saved_raid_disk = desc->raid_disk; 1433 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1434 /* active but not in sync implies recovery up to 1435 * reshape position. We don't know exactly where 1436 * that is, so set to zero for now */ 1437 if (mddev->minor_version >= 91) { 1438 rdev->recovery_offset = 0; 1439 rdev->raid_disk = desc->raid_disk; 1440 } 1441 } 1442 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1443 set_bit(WriteMostly, &rdev->flags); 1444 if (desc->state & (1<<MD_DISK_FAILFAST)) 1445 set_bit(FailFast, &rdev->flags); 1446 } else /* MULTIPATH are always insync */ 1447 set_bit(In_sync, &rdev->flags); 1448 return 0; 1449 } 1450 1451 /* 1452 * sync_super for 0.90.0 1453 */ 1454 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1455 { 1456 mdp_super_t *sb; 1457 struct md_rdev *rdev2; 1458 int next_spare = mddev->raid_disks; 1459 1460 /* make rdev->sb match mddev data.. 1461 * 1462 * 1/ zero out disks 1463 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1464 * 3/ any empty disks < next_spare become removed 1465 * 1466 * disks[0] gets initialised to REMOVED because 1467 * we cannot be sure from other fields if it has 1468 * been initialised or not. 1469 */ 1470 int i; 1471 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1472 1473 rdev->sb_size = MD_SB_BYTES; 1474 1475 sb = page_address(rdev->sb_page); 1476 1477 memset(sb, 0, sizeof(*sb)); 1478 1479 sb->md_magic = MD_SB_MAGIC; 1480 sb->major_version = mddev->major_version; 1481 sb->patch_version = mddev->patch_version; 1482 sb->gvalid_words = 0; /* ignored */ 1483 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1484 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1485 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1486 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1487 1488 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1489 sb->level = mddev->level; 1490 sb->size = mddev->dev_sectors / 2; 1491 sb->raid_disks = mddev->raid_disks; 1492 sb->md_minor = mddev->md_minor; 1493 sb->not_persistent = 0; 1494 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1495 sb->state = 0; 1496 sb->events_hi = (mddev->events>>32); 1497 sb->events_lo = (u32)mddev->events; 1498 1499 if (mddev->reshape_position == MaxSector) 1500 sb->minor_version = 90; 1501 else { 1502 sb->minor_version = 91; 1503 sb->reshape_position = mddev->reshape_position; 1504 sb->new_level = mddev->new_level; 1505 sb->delta_disks = mddev->delta_disks; 1506 sb->new_layout = mddev->new_layout; 1507 sb->new_chunk = mddev->new_chunk_sectors << 9; 1508 } 1509 mddev->minor_version = sb->minor_version; 1510 if (mddev->in_sync) 1511 { 1512 sb->recovery_cp = mddev->recovery_cp; 1513 sb->cp_events_hi = (mddev->events>>32); 1514 sb->cp_events_lo = (u32)mddev->events; 1515 if (mddev->recovery_cp == MaxSector) 1516 sb->state = (1<< MD_SB_CLEAN); 1517 } else 1518 sb->recovery_cp = 0; 1519 1520 sb->layout = mddev->layout; 1521 sb->chunk_size = mddev->chunk_sectors << 9; 1522 1523 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1524 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1525 1526 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1527 rdev_for_each(rdev2, mddev) { 1528 mdp_disk_t *d; 1529 int desc_nr; 1530 int is_active = test_bit(In_sync, &rdev2->flags); 1531 1532 if (rdev2->raid_disk >= 0 && 1533 sb->minor_version >= 91) 1534 /* we have nowhere to store the recovery_offset, 1535 * but if it is not below the reshape_position, 1536 * we can piggy-back on that. 1537 */ 1538 is_active = 1; 1539 if (rdev2->raid_disk < 0 || 1540 test_bit(Faulty, &rdev2->flags)) 1541 is_active = 0; 1542 if (is_active) 1543 desc_nr = rdev2->raid_disk; 1544 else 1545 desc_nr = next_spare++; 1546 rdev2->desc_nr = desc_nr; 1547 d = &sb->disks[rdev2->desc_nr]; 1548 nr_disks++; 1549 d->number = rdev2->desc_nr; 1550 d->major = MAJOR(rdev2->bdev->bd_dev); 1551 d->minor = MINOR(rdev2->bdev->bd_dev); 1552 if (is_active) 1553 d->raid_disk = rdev2->raid_disk; 1554 else 1555 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1556 if (test_bit(Faulty, &rdev2->flags)) 1557 d->state = (1<<MD_DISK_FAULTY); 1558 else if (is_active) { 1559 d->state = (1<<MD_DISK_ACTIVE); 1560 if (test_bit(In_sync, &rdev2->flags)) 1561 d->state |= (1<<MD_DISK_SYNC); 1562 active++; 1563 working++; 1564 } else { 1565 d->state = 0; 1566 spare++; 1567 working++; 1568 } 1569 if (test_bit(WriteMostly, &rdev2->flags)) 1570 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1571 if (test_bit(FailFast, &rdev2->flags)) 1572 d->state |= (1<<MD_DISK_FAILFAST); 1573 } 1574 /* now set the "removed" and "faulty" bits on any missing devices */ 1575 for (i=0 ; i < mddev->raid_disks ; i++) { 1576 mdp_disk_t *d = &sb->disks[i]; 1577 if (d->state == 0 && d->number == 0) { 1578 d->number = i; 1579 d->raid_disk = i; 1580 d->state = (1<<MD_DISK_REMOVED); 1581 d->state |= (1<<MD_DISK_FAULTY); 1582 failed++; 1583 } 1584 } 1585 sb->nr_disks = nr_disks; 1586 sb->active_disks = active; 1587 sb->working_disks = working; 1588 sb->failed_disks = failed; 1589 sb->spare_disks = spare; 1590 1591 sb->this_disk = sb->disks[rdev->desc_nr]; 1592 sb->sb_csum = calc_sb_csum(sb); 1593 } 1594 1595 /* 1596 * rdev_size_change for 0.90.0 1597 */ 1598 static unsigned long long 1599 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1600 { 1601 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1602 return 0; /* component must fit device */ 1603 if (rdev->mddev->bitmap_info.offset) 1604 return 0; /* can't move bitmap */ 1605 rdev->sb_start = calc_dev_sboffset(rdev); 1606 if (!num_sectors || num_sectors > rdev->sb_start) 1607 num_sectors = rdev->sb_start; 1608 /* Limit to 4TB as metadata cannot record more than that. 1609 * 4TB == 2^32 KB, or 2*2^32 sectors. 1610 */ 1611 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1612 num_sectors = (sector_t)(2ULL << 32) - 2; 1613 do { 1614 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1615 rdev->sb_page); 1616 } while (md_super_wait(rdev->mddev) < 0); 1617 return num_sectors; 1618 } 1619 1620 static int 1621 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1622 { 1623 /* non-zero offset changes not possible with v0.90 */ 1624 return new_offset == 0; 1625 } 1626 1627 /* 1628 * version 1 superblock 1629 */ 1630 1631 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1632 { 1633 __le32 disk_csum; 1634 u32 csum; 1635 unsigned long long newcsum; 1636 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1637 __le32 *isuper = (__le32*)sb; 1638 1639 disk_csum = sb->sb_csum; 1640 sb->sb_csum = 0; 1641 newcsum = 0; 1642 for (; size >= 4; size -= 4) 1643 newcsum += le32_to_cpu(*isuper++); 1644 1645 if (size == 2) 1646 newcsum += le16_to_cpu(*(__le16*) isuper); 1647 1648 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1649 sb->sb_csum = disk_csum; 1650 return cpu_to_le32(csum); 1651 } 1652 1653 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1654 { 1655 struct mdp_superblock_1 *sb; 1656 int ret; 1657 sector_t sb_start; 1658 sector_t sectors; 1659 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1660 int bmask; 1661 bool spare_disk = true; 1662 1663 /* 1664 * Calculate the position of the superblock in 512byte sectors. 1665 * It is always aligned to a 4K boundary and 1666 * depeding on minor_version, it can be: 1667 * 0: At least 8K, but less than 12K, from end of device 1668 * 1: At start of device 1669 * 2: 4K from start of device. 1670 */ 1671 switch(minor_version) { 1672 case 0: 1673 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1674 sb_start -= 8*2; 1675 sb_start &= ~(sector_t)(4*2-1); 1676 break; 1677 case 1: 1678 sb_start = 0; 1679 break; 1680 case 2: 1681 sb_start = 8; 1682 break; 1683 default: 1684 return -EINVAL; 1685 } 1686 rdev->sb_start = sb_start; 1687 1688 /* superblock is rarely larger than 1K, but it can be larger, 1689 * and it is safe to read 4k, so we do that 1690 */ 1691 ret = read_disk_sb(rdev, 4096); 1692 if (ret) return ret; 1693 1694 sb = page_address(rdev->sb_page); 1695 1696 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1697 sb->major_version != cpu_to_le32(1) || 1698 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1699 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1700 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1701 return -EINVAL; 1702 1703 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1704 pr_warn("md: invalid superblock checksum on %s\n", 1705 bdevname(rdev->bdev,b)); 1706 return -EINVAL; 1707 } 1708 if (le64_to_cpu(sb->data_size) < 10) { 1709 pr_warn("md: data_size too small on %s\n", 1710 bdevname(rdev->bdev,b)); 1711 return -EINVAL; 1712 } 1713 if (sb->pad0 || 1714 sb->pad3[0] || 1715 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1716 /* Some padding is non-zero, might be a new feature */ 1717 return -EINVAL; 1718 1719 rdev->preferred_minor = 0xffff; 1720 rdev->data_offset = le64_to_cpu(sb->data_offset); 1721 rdev->new_data_offset = rdev->data_offset; 1722 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1723 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1724 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1725 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1726 1727 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1728 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1729 if (rdev->sb_size & bmask) 1730 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1731 1732 if (minor_version 1733 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1734 return -EINVAL; 1735 if (minor_version 1736 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1737 return -EINVAL; 1738 1739 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1740 rdev->desc_nr = -1; 1741 else 1742 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1743 1744 if (!rdev->bb_page) { 1745 rdev->bb_page = alloc_page(GFP_KERNEL); 1746 if (!rdev->bb_page) 1747 return -ENOMEM; 1748 } 1749 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1750 rdev->badblocks.count == 0) { 1751 /* need to load the bad block list. 1752 * Currently we limit it to one page. 1753 */ 1754 s32 offset; 1755 sector_t bb_sector; 1756 __le64 *bbp; 1757 int i; 1758 int sectors = le16_to_cpu(sb->bblog_size); 1759 if (sectors > (PAGE_SIZE / 512)) 1760 return -EINVAL; 1761 offset = le32_to_cpu(sb->bblog_offset); 1762 if (offset == 0) 1763 return -EINVAL; 1764 bb_sector = (long long)offset; 1765 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1766 rdev->bb_page, REQ_OP_READ, 0, true)) 1767 return -EIO; 1768 bbp = (__le64 *)page_address(rdev->bb_page); 1769 rdev->badblocks.shift = sb->bblog_shift; 1770 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1771 u64 bb = le64_to_cpu(*bbp); 1772 int count = bb & (0x3ff); 1773 u64 sector = bb >> 10; 1774 sector <<= sb->bblog_shift; 1775 count <<= sb->bblog_shift; 1776 if (bb + 1 == 0) 1777 break; 1778 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1779 return -EINVAL; 1780 } 1781 } else if (sb->bblog_offset != 0) 1782 rdev->badblocks.shift = 0; 1783 1784 if ((le32_to_cpu(sb->feature_map) & 1785 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1786 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1787 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1788 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1789 } 1790 1791 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1792 sb->level != 0) 1793 return -EINVAL; 1794 1795 /* not spare disk, or LEVEL_MULTIPATH */ 1796 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1797 (rdev->desc_nr >= 0 && 1798 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1799 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1800 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1801 spare_disk = false; 1802 1803 if (!refdev) { 1804 if (!spare_disk) 1805 ret = 1; 1806 else 1807 ret = 0; 1808 } else { 1809 __u64 ev1, ev2; 1810 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1811 1812 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1813 sb->level != refsb->level || 1814 sb->layout != refsb->layout || 1815 sb->chunksize != refsb->chunksize) { 1816 pr_warn("md: %s has strangely different superblock to %s\n", 1817 bdevname(rdev->bdev,b), 1818 bdevname(refdev->bdev,b2)); 1819 return -EINVAL; 1820 } 1821 ev1 = le64_to_cpu(sb->events); 1822 ev2 = le64_to_cpu(refsb->events); 1823 1824 if (!spare_disk && ev1 > ev2) 1825 ret = 1; 1826 else 1827 ret = 0; 1828 } 1829 if (minor_version) { 1830 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1831 sectors -= rdev->data_offset; 1832 } else 1833 sectors = rdev->sb_start; 1834 if (sectors < le64_to_cpu(sb->data_size)) 1835 return -EINVAL; 1836 rdev->sectors = le64_to_cpu(sb->data_size); 1837 return ret; 1838 } 1839 1840 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1841 { 1842 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1843 __u64 ev1 = le64_to_cpu(sb->events); 1844 1845 rdev->raid_disk = -1; 1846 clear_bit(Faulty, &rdev->flags); 1847 clear_bit(In_sync, &rdev->flags); 1848 clear_bit(Bitmap_sync, &rdev->flags); 1849 clear_bit(WriteMostly, &rdev->flags); 1850 1851 if (mddev->raid_disks == 0) { 1852 mddev->major_version = 1; 1853 mddev->patch_version = 0; 1854 mddev->external = 0; 1855 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1856 mddev->ctime = le64_to_cpu(sb->ctime); 1857 mddev->utime = le64_to_cpu(sb->utime); 1858 mddev->level = le32_to_cpu(sb->level); 1859 mddev->clevel[0] = 0; 1860 mddev->layout = le32_to_cpu(sb->layout); 1861 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1862 mddev->dev_sectors = le64_to_cpu(sb->size); 1863 mddev->events = ev1; 1864 mddev->bitmap_info.offset = 0; 1865 mddev->bitmap_info.space = 0; 1866 /* Default location for bitmap is 1K after superblock 1867 * using 3K - total of 4K 1868 */ 1869 mddev->bitmap_info.default_offset = 1024 >> 9; 1870 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1871 mddev->reshape_backwards = 0; 1872 1873 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1874 memcpy(mddev->uuid, sb->set_uuid, 16); 1875 1876 mddev->max_disks = (4096-256)/2; 1877 1878 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1879 mddev->bitmap_info.file == NULL) { 1880 mddev->bitmap_info.offset = 1881 (__s32)le32_to_cpu(sb->bitmap_offset); 1882 /* Metadata doesn't record how much space is available. 1883 * For 1.0, we assume we can use up to the superblock 1884 * if before, else to 4K beyond superblock. 1885 * For others, assume no change is possible. 1886 */ 1887 if (mddev->minor_version > 0) 1888 mddev->bitmap_info.space = 0; 1889 else if (mddev->bitmap_info.offset > 0) 1890 mddev->bitmap_info.space = 1891 8 - mddev->bitmap_info.offset; 1892 else 1893 mddev->bitmap_info.space = 1894 -mddev->bitmap_info.offset; 1895 } 1896 1897 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1898 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1899 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1900 mddev->new_level = le32_to_cpu(sb->new_level); 1901 mddev->new_layout = le32_to_cpu(sb->new_layout); 1902 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1903 if (mddev->delta_disks < 0 || 1904 (mddev->delta_disks == 0 && 1905 (le32_to_cpu(sb->feature_map) 1906 & MD_FEATURE_RESHAPE_BACKWARDS))) 1907 mddev->reshape_backwards = 1; 1908 } else { 1909 mddev->reshape_position = MaxSector; 1910 mddev->delta_disks = 0; 1911 mddev->new_level = mddev->level; 1912 mddev->new_layout = mddev->layout; 1913 mddev->new_chunk_sectors = mddev->chunk_sectors; 1914 } 1915 1916 if (mddev->level == 0 && 1917 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1918 mddev->layout = -1; 1919 1920 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1921 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1922 1923 if (le32_to_cpu(sb->feature_map) & 1924 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1925 if (le32_to_cpu(sb->feature_map) & 1926 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1927 return -EINVAL; 1928 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1929 (le32_to_cpu(sb->feature_map) & 1930 MD_FEATURE_MULTIPLE_PPLS)) 1931 return -EINVAL; 1932 set_bit(MD_HAS_PPL, &mddev->flags); 1933 } 1934 } else if (mddev->pers == NULL) { 1935 /* Insist of good event counter while assembling, except for 1936 * spares (which don't need an event count) */ 1937 ++ev1; 1938 if (rdev->desc_nr >= 0 && 1939 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1940 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1941 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1942 if (ev1 < mddev->events) 1943 return -EINVAL; 1944 } else if (mddev->bitmap) { 1945 /* If adding to array with a bitmap, then we can accept an 1946 * older device, but not too old. 1947 */ 1948 if (ev1 < mddev->bitmap->events_cleared) 1949 return 0; 1950 if (ev1 < mddev->events) 1951 set_bit(Bitmap_sync, &rdev->flags); 1952 } else { 1953 if (ev1 < mddev->events) 1954 /* just a hot-add of a new device, leave raid_disk at -1 */ 1955 return 0; 1956 } 1957 if (mddev->level != LEVEL_MULTIPATH) { 1958 int role; 1959 if (rdev->desc_nr < 0 || 1960 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1961 role = MD_DISK_ROLE_SPARE; 1962 rdev->desc_nr = -1; 1963 } else 1964 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1965 switch(role) { 1966 case MD_DISK_ROLE_SPARE: /* spare */ 1967 break; 1968 case MD_DISK_ROLE_FAULTY: /* faulty */ 1969 set_bit(Faulty, &rdev->flags); 1970 break; 1971 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1972 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1973 /* journal device without journal feature */ 1974 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1975 return -EINVAL; 1976 } 1977 set_bit(Journal, &rdev->flags); 1978 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1979 rdev->raid_disk = 0; 1980 break; 1981 default: 1982 rdev->saved_raid_disk = role; 1983 if ((le32_to_cpu(sb->feature_map) & 1984 MD_FEATURE_RECOVERY_OFFSET)) { 1985 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1986 if (!(le32_to_cpu(sb->feature_map) & 1987 MD_FEATURE_RECOVERY_BITMAP)) 1988 rdev->saved_raid_disk = -1; 1989 } else { 1990 /* 1991 * If the array is FROZEN, then the device can't 1992 * be in_sync with rest of array. 1993 */ 1994 if (!test_bit(MD_RECOVERY_FROZEN, 1995 &mddev->recovery)) 1996 set_bit(In_sync, &rdev->flags); 1997 } 1998 rdev->raid_disk = role; 1999 break; 2000 } 2001 if (sb->devflags & WriteMostly1) 2002 set_bit(WriteMostly, &rdev->flags); 2003 if (sb->devflags & FailFast1) 2004 set_bit(FailFast, &rdev->flags); 2005 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2006 set_bit(Replacement, &rdev->flags); 2007 } else /* MULTIPATH are always insync */ 2008 set_bit(In_sync, &rdev->flags); 2009 2010 return 0; 2011 } 2012 2013 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2014 { 2015 struct mdp_superblock_1 *sb; 2016 struct md_rdev *rdev2; 2017 int max_dev, i; 2018 /* make rdev->sb match mddev and rdev data. */ 2019 2020 sb = page_address(rdev->sb_page); 2021 2022 sb->feature_map = 0; 2023 sb->pad0 = 0; 2024 sb->recovery_offset = cpu_to_le64(0); 2025 memset(sb->pad3, 0, sizeof(sb->pad3)); 2026 2027 sb->utime = cpu_to_le64((__u64)mddev->utime); 2028 sb->events = cpu_to_le64(mddev->events); 2029 if (mddev->in_sync) 2030 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2031 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2032 sb->resync_offset = cpu_to_le64(MaxSector); 2033 else 2034 sb->resync_offset = cpu_to_le64(0); 2035 2036 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2037 2038 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2039 sb->size = cpu_to_le64(mddev->dev_sectors); 2040 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2041 sb->level = cpu_to_le32(mddev->level); 2042 sb->layout = cpu_to_le32(mddev->layout); 2043 if (test_bit(FailFast, &rdev->flags)) 2044 sb->devflags |= FailFast1; 2045 else 2046 sb->devflags &= ~FailFast1; 2047 2048 if (test_bit(WriteMostly, &rdev->flags)) 2049 sb->devflags |= WriteMostly1; 2050 else 2051 sb->devflags &= ~WriteMostly1; 2052 sb->data_offset = cpu_to_le64(rdev->data_offset); 2053 sb->data_size = cpu_to_le64(rdev->sectors); 2054 2055 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2056 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2057 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2058 } 2059 2060 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2061 !test_bit(In_sync, &rdev->flags)) { 2062 sb->feature_map |= 2063 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2064 sb->recovery_offset = 2065 cpu_to_le64(rdev->recovery_offset); 2066 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2067 sb->feature_map |= 2068 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2069 } 2070 /* Note: recovery_offset and journal_tail share space */ 2071 if (test_bit(Journal, &rdev->flags)) 2072 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2073 if (test_bit(Replacement, &rdev->flags)) 2074 sb->feature_map |= 2075 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2076 2077 if (mddev->reshape_position != MaxSector) { 2078 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2079 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2080 sb->new_layout = cpu_to_le32(mddev->new_layout); 2081 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2082 sb->new_level = cpu_to_le32(mddev->new_level); 2083 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2084 if (mddev->delta_disks == 0 && 2085 mddev->reshape_backwards) 2086 sb->feature_map 2087 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2088 if (rdev->new_data_offset != rdev->data_offset) { 2089 sb->feature_map 2090 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2091 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2092 - rdev->data_offset)); 2093 } 2094 } 2095 2096 if (mddev_is_clustered(mddev)) 2097 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2098 2099 if (rdev->badblocks.count == 0) 2100 /* Nothing to do for bad blocks*/ ; 2101 else if (sb->bblog_offset == 0) 2102 /* Cannot record bad blocks on this device */ 2103 md_error(mddev, rdev); 2104 else { 2105 struct badblocks *bb = &rdev->badblocks; 2106 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2107 u64 *p = bb->page; 2108 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2109 if (bb->changed) { 2110 unsigned seq; 2111 2112 retry: 2113 seq = read_seqbegin(&bb->lock); 2114 2115 memset(bbp, 0xff, PAGE_SIZE); 2116 2117 for (i = 0 ; i < bb->count ; i++) { 2118 u64 internal_bb = p[i]; 2119 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2120 | BB_LEN(internal_bb)); 2121 bbp[i] = cpu_to_le64(store_bb); 2122 } 2123 bb->changed = 0; 2124 if (read_seqretry(&bb->lock, seq)) 2125 goto retry; 2126 2127 bb->sector = (rdev->sb_start + 2128 (int)le32_to_cpu(sb->bblog_offset)); 2129 bb->size = le16_to_cpu(sb->bblog_size); 2130 } 2131 } 2132 2133 max_dev = 0; 2134 rdev_for_each(rdev2, mddev) 2135 if (rdev2->desc_nr+1 > max_dev) 2136 max_dev = rdev2->desc_nr+1; 2137 2138 if (max_dev > le32_to_cpu(sb->max_dev)) { 2139 int bmask; 2140 sb->max_dev = cpu_to_le32(max_dev); 2141 rdev->sb_size = max_dev * 2 + 256; 2142 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2143 if (rdev->sb_size & bmask) 2144 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2145 } else 2146 max_dev = le32_to_cpu(sb->max_dev); 2147 2148 for (i=0; i<max_dev;i++) 2149 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2150 2151 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2152 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2153 2154 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2155 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2156 sb->feature_map |= 2157 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2158 else 2159 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2160 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2161 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2162 } 2163 2164 rdev_for_each(rdev2, mddev) { 2165 i = rdev2->desc_nr; 2166 if (test_bit(Faulty, &rdev2->flags)) 2167 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2168 else if (test_bit(In_sync, &rdev2->flags)) 2169 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2170 else if (test_bit(Journal, &rdev2->flags)) 2171 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2172 else if (rdev2->raid_disk >= 0) 2173 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2174 else 2175 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2176 } 2177 2178 sb->sb_csum = calc_sb_1_csum(sb); 2179 } 2180 2181 static sector_t super_1_choose_bm_space(sector_t dev_size) 2182 { 2183 sector_t bm_space; 2184 2185 /* if the device is bigger than 8Gig, save 64k for bitmap 2186 * usage, if bigger than 200Gig, save 128k 2187 */ 2188 if (dev_size < 64*2) 2189 bm_space = 0; 2190 else if (dev_size - 64*2 >= 200*1024*1024*2) 2191 bm_space = 128*2; 2192 else if (dev_size - 4*2 > 8*1024*1024*2) 2193 bm_space = 64*2; 2194 else 2195 bm_space = 4*2; 2196 return bm_space; 2197 } 2198 2199 static unsigned long long 2200 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2201 { 2202 struct mdp_superblock_1 *sb; 2203 sector_t max_sectors; 2204 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2205 return 0; /* component must fit device */ 2206 if (rdev->data_offset != rdev->new_data_offset) 2207 return 0; /* too confusing */ 2208 if (rdev->sb_start < rdev->data_offset) { 2209 /* minor versions 1 and 2; superblock before data */ 2210 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2211 max_sectors -= rdev->data_offset; 2212 if (!num_sectors || num_sectors > max_sectors) 2213 num_sectors = max_sectors; 2214 } else if (rdev->mddev->bitmap_info.offset) { 2215 /* minor version 0 with bitmap we can't move */ 2216 return 0; 2217 } else { 2218 /* minor version 0; superblock after data */ 2219 sector_t sb_start, bm_space; 2220 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2221 2222 /* 8K is for superblock */ 2223 sb_start = dev_size - 8*2; 2224 sb_start &= ~(sector_t)(4*2 - 1); 2225 2226 bm_space = super_1_choose_bm_space(dev_size); 2227 2228 /* Space that can be used to store date needs to decrease 2229 * superblock bitmap space and bad block space(4K) 2230 */ 2231 max_sectors = sb_start - bm_space - 4*2; 2232 2233 if (!num_sectors || num_sectors > max_sectors) 2234 num_sectors = max_sectors; 2235 } 2236 sb = page_address(rdev->sb_page); 2237 sb->data_size = cpu_to_le64(num_sectors); 2238 sb->super_offset = cpu_to_le64(rdev->sb_start); 2239 sb->sb_csum = calc_sb_1_csum(sb); 2240 do { 2241 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2242 rdev->sb_page); 2243 } while (md_super_wait(rdev->mddev) < 0); 2244 return num_sectors; 2245 2246 } 2247 2248 static int 2249 super_1_allow_new_offset(struct md_rdev *rdev, 2250 unsigned long long new_offset) 2251 { 2252 /* All necessary checks on new >= old have been done */ 2253 struct bitmap *bitmap; 2254 if (new_offset >= rdev->data_offset) 2255 return 1; 2256 2257 /* with 1.0 metadata, there is no metadata to tread on 2258 * so we can always move back */ 2259 if (rdev->mddev->minor_version == 0) 2260 return 1; 2261 2262 /* otherwise we must be sure not to step on 2263 * any metadata, so stay: 2264 * 36K beyond start of superblock 2265 * beyond end of badblocks 2266 * beyond write-intent bitmap 2267 */ 2268 if (rdev->sb_start + (32+4)*2 > new_offset) 2269 return 0; 2270 bitmap = rdev->mddev->bitmap; 2271 if (bitmap && !rdev->mddev->bitmap_info.file && 2272 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2273 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2274 return 0; 2275 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2276 return 0; 2277 2278 return 1; 2279 } 2280 2281 static struct super_type super_types[] = { 2282 [0] = { 2283 .name = "0.90.0", 2284 .owner = THIS_MODULE, 2285 .load_super = super_90_load, 2286 .validate_super = super_90_validate, 2287 .sync_super = super_90_sync, 2288 .rdev_size_change = super_90_rdev_size_change, 2289 .allow_new_offset = super_90_allow_new_offset, 2290 }, 2291 [1] = { 2292 .name = "md-1", 2293 .owner = THIS_MODULE, 2294 .load_super = super_1_load, 2295 .validate_super = super_1_validate, 2296 .sync_super = super_1_sync, 2297 .rdev_size_change = super_1_rdev_size_change, 2298 .allow_new_offset = super_1_allow_new_offset, 2299 }, 2300 }; 2301 2302 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2303 { 2304 if (mddev->sync_super) { 2305 mddev->sync_super(mddev, rdev); 2306 return; 2307 } 2308 2309 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2310 2311 super_types[mddev->major_version].sync_super(mddev, rdev); 2312 } 2313 2314 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2315 { 2316 struct md_rdev *rdev, *rdev2; 2317 2318 rcu_read_lock(); 2319 rdev_for_each_rcu(rdev, mddev1) { 2320 if (test_bit(Faulty, &rdev->flags) || 2321 test_bit(Journal, &rdev->flags) || 2322 rdev->raid_disk == -1) 2323 continue; 2324 rdev_for_each_rcu(rdev2, mddev2) { 2325 if (test_bit(Faulty, &rdev2->flags) || 2326 test_bit(Journal, &rdev2->flags) || 2327 rdev2->raid_disk == -1) 2328 continue; 2329 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2330 rcu_read_unlock(); 2331 return 1; 2332 } 2333 } 2334 } 2335 rcu_read_unlock(); 2336 return 0; 2337 } 2338 2339 static LIST_HEAD(pending_raid_disks); 2340 2341 /* 2342 * Try to register data integrity profile for an mddev 2343 * 2344 * This is called when an array is started and after a disk has been kicked 2345 * from the array. It only succeeds if all working and active component devices 2346 * are integrity capable with matching profiles. 2347 */ 2348 int md_integrity_register(struct mddev *mddev) 2349 { 2350 struct md_rdev *rdev, *reference = NULL; 2351 2352 if (list_empty(&mddev->disks)) 2353 return 0; /* nothing to do */ 2354 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2355 return 0; /* shouldn't register, or already is */ 2356 rdev_for_each(rdev, mddev) { 2357 /* skip spares and non-functional disks */ 2358 if (test_bit(Faulty, &rdev->flags)) 2359 continue; 2360 if (rdev->raid_disk < 0) 2361 continue; 2362 if (!reference) { 2363 /* Use the first rdev as the reference */ 2364 reference = rdev; 2365 continue; 2366 } 2367 /* does this rdev's profile match the reference profile? */ 2368 if (blk_integrity_compare(reference->bdev->bd_disk, 2369 rdev->bdev->bd_disk) < 0) 2370 return -EINVAL; 2371 } 2372 if (!reference || !bdev_get_integrity(reference->bdev)) 2373 return 0; 2374 /* 2375 * All component devices are integrity capable and have matching 2376 * profiles, register the common profile for the md device. 2377 */ 2378 blk_integrity_register(mddev->gendisk, 2379 bdev_get_integrity(reference->bdev)); 2380 2381 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2382 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2383 pr_err("md: failed to create integrity pool for %s\n", 2384 mdname(mddev)); 2385 return -EINVAL; 2386 } 2387 return 0; 2388 } 2389 EXPORT_SYMBOL(md_integrity_register); 2390 2391 /* 2392 * Attempt to add an rdev, but only if it is consistent with the current 2393 * integrity profile 2394 */ 2395 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2396 { 2397 struct blk_integrity *bi_mddev; 2398 char name[BDEVNAME_SIZE]; 2399 2400 if (!mddev->gendisk) 2401 return 0; 2402 2403 bi_mddev = blk_get_integrity(mddev->gendisk); 2404 2405 if (!bi_mddev) /* nothing to do */ 2406 return 0; 2407 2408 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2409 pr_err("%s: incompatible integrity profile for %s\n", 2410 mdname(mddev), bdevname(rdev->bdev, name)); 2411 return -ENXIO; 2412 } 2413 2414 return 0; 2415 } 2416 EXPORT_SYMBOL(md_integrity_add_rdev); 2417 2418 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2419 { 2420 char b[BDEVNAME_SIZE]; 2421 int err; 2422 2423 /* prevent duplicates */ 2424 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2425 return -EEXIST; 2426 2427 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2428 mddev->pers) 2429 return -EROFS; 2430 2431 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2432 if (!test_bit(Journal, &rdev->flags) && 2433 rdev->sectors && 2434 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2435 if (mddev->pers) { 2436 /* Cannot change size, so fail 2437 * If mddev->level <= 0, then we don't care 2438 * about aligning sizes (e.g. linear) 2439 */ 2440 if (mddev->level > 0) 2441 return -ENOSPC; 2442 } else 2443 mddev->dev_sectors = rdev->sectors; 2444 } 2445 2446 /* Verify rdev->desc_nr is unique. 2447 * If it is -1, assign a free number, else 2448 * check number is not in use 2449 */ 2450 rcu_read_lock(); 2451 if (rdev->desc_nr < 0) { 2452 int choice = 0; 2453 if (mddev->pers) 2454 choice = mddev->raid_disks; 2455 while (md_find_rdev_nr_rcu(mddev, choice)) 2456 choice++; 2457 rdev->desc_nr = choice; 2458 } else { 2459 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2460 rcu_read_unlock(); 2461 return -EBUSY; 2462 } 2463 } 2464 rcu_read_unlock(); 2465 if (!test_bit(Journal, &rdev->flags) && 2466 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2467 pr_warn("md: %s: array is limited to %d devices\n", 2468 mdname(mddev), mddev->max_disks); 2469 return -EBUSY; 2470 } 2471 bdevname(rdev->bdev,b); 2472 strreplace(b, '/', '!'); 2473 2474 rdev->mddev = mddev; 2475 pr_debug("md: bind<%s>\n", b); 2476 2477 if (mddev->raid_disks) 2478 mddev_create_serial_pool(mddev, rdev, false); 2479 2480 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2481 goto fail; 2482 2483 /* failure here is OK */ 2484 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2485 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2486 rdev->sysfs_unack_badblocks = 2487 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2488 rdev->sysfs_badblocks = 2489 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2490 2491 list_add_rcu(&rdev->same_set, &mddev->disks); 2492 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2493 2494 /* May as well allow recovery to be retried once */ 2495 mddev->recovery_disabled++; 2496 2497 return 0; 2498 2499 fail: 2500 pr_warn("md: failed to register dev-%s for %s\n", 2501 b, mdname(mddev)); 2502 return err; 2503 } 2504 2505 static void rdev_delayed_delete(struct work_struct *ws) 2506 { 2507 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2508 kobject_del(&rdev->kobj); 2509 kobject_put(&rdev->kobj); 2510 } 2511 2512 static void unbind_rdev_from_array(struct md_rdev *rdev) 2513 { 2514 char b[BDEVNAME_SIZE]; 2515 2516 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2517 list_del_rcu(&rdev->same_set); 2518 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2519 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2520 rdev->mddev = NULL; 2521 sysfs_remove_link(&rdev->kobj, "block"); 2522 sysfs_put(rdev->sysfs_state); 2523 sysfs_put(rdev->sysfs_unack_badblocks); 2524 sysfs_put(rdev->sysfs_badblocks); 2525 rdev->sysfs_state = NULL; 2526 rdev->sysfs_unack_badblocks = NULL; 2527 rdev->sysfs_badblocks = NULL; 2528 rdev->badblocks.count = 0; 2529 /* We need to delay this, otherwise we can deadlock when 2530 * writing to 'remove' to "dev/state". We also need 2531 * to delay it due to rcu usage. 2532 */ 2533 synchronize_rcu(); 2534 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2535 kobject_get(&rdev->kobj); 2536 queue_work(md_rdev_misc_wq, &rdev->del_work); 2537 } 2538 2539 /* 2540 * prevent the device from being mounted, repartitioned or 2541 * otherwise reused by a RAID array (or any other kernel 2542 * subsystem), by bd_claiming the device. 2543 */ 2544 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2545 { 2546 int err = 0; 2547 struct block_device *bdev; 2548 2549 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2550 shared ? (struct md_rdev *)lock_rdev : rdev); 2551 if (IS_ERR(bdev)) { 2552 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2553 MAJOR(dev), MINOR(dev)); 2554 return PTR_ERR(bdev); 2555 } 2556 rdev->bdev = bdev; 2557 return err; 2558 } 2559 2560 static void unlock_rdev(struct md_rdev *rdev) 2561 { 2562 struct block_device *bdev = rdev->bdev; 2563 rdev->bdev = NULL; 2564 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2565 } 2566 2567 void md_autodetect_dev(dev_t dev); 2568 2569 static void export_rdev(struct md_rdev *rdev) 2570 { 2571 char b[BDEVNAME_SIZE]; 2572 2573 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2574 md_rdev_clear(rdev); 2575 #ifndef MODULE 2576 if (test_bit(AutoDetected, &rdev->flags)) 2577 md_autodetect_dev(rdev->bdev->bd_dev); 2578 #endif 2579 unlock_rdev(rdev); 2580 kobject_put(&rdev->kobj); 2581 } 2582 2583 void md_kick_rdev_from_array(struct md_rdev *rdev) 2584 { 2585 unbind_rdev_from_array(rdev); 2586 export_rdev(rdev); 2587 } 2588 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2589 2590 static void export_array(struct mddev *mddev) 2591 { 2592 struct md_rdev *rdev; 2593 2594 while (!list_empty(&mddev->disks)) { 2595 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2596 same_set); 2597 md_kick_rdev_from_array(rdev); 2598 } 2599 mddev->raid_disks = 0; 2600 mddev->major_version = 0; 2601 } 2602 2603 static bool set_in_sync(struct mddev *mddev) 2604 { 2605 lockdep_assert_held(&mddev->lock); 2606 if (!mddev->in_sync) { 2607 mddev->sync_checkers++; 2608 spin_unlock(&mddev->lock); 2609 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2610 spin_lock(&mddev->lock); 2611 if (!mddev->in_sync && 2612 percpu_ref_is_zero(&mddev->writes_pending)) { 2613 mddev->in_sync = 1; 2614 /* 2615 * Ensure ->in_sync is visible before we clear 2616 * ->sync_checkers. 2617 */ 2618 smp_mb(); 2619 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2620 sysfs_notify_dirent_safe(mddev->sysfs_state); 2621 } 2622 if (--mddev->sync_checkers == 0) 2623 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2624 } 2625 if (mddev->safemode == 1) 2626 mddev->safemode = 0; 2627 return mddev->in_sync; 2628 } 2629 2630 static void sync_sbs(struct mddev *mddev, int nospares) 2631 { 2632 /* Update each superblock (in-memory image), but 2633 * if we are allowed to, skip spares which already 2634 * have the right event counter, or have one earlier 2635 * (which would mean they aren't being marked as dirty 2636 * with the rest of the array) 2637 */ 2638 struct md_rdev *rdev; 2639 rdev_for_each(rdev, mddev) { 2640 if (rdev->sb_events == mddev->events || 2641 (nospares && 2642 rdev->raid_disk < 0 && 2643 rdev->sb_events+1 == mddev->events)) { 2644 /* Don't update this superblock */ 2645 rdev->sb_loaded = 2; 2646 } else { 2647 sync_super(mddev, rdev); 2648 rdev->sb_loaded = 1; 2649 } 2650 } 2651 } 2652 2653 static bool does_sb_need_changing(struct mddev *mddev) 2654 { 2655 struct md_rdev *rdev; 2656 struct mdp_superblock_1 *sb; 2657 int role; 2658 2659 /* Find a good rdev */ 2660 rdev_for_each(rdev, mddev) 2661 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2662 break; 2663 2664 /* No good device found. */ 2665 if (!rdev) 2666 return false; 2667 2668 sb = page_address(rdev->sb_page); 2669 /* Check if a device has become faulty or a spare become active */ 2670 rdev_for_each(rdev, mddev) { 2671 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2672 /* Device activated? */ 2673 if (role == 0xffff && rdev->raid_disk >=0 && 2674 !test_bit(Faulty, &rdev->flags)) 2675 return true; 2676 /* Device turned faulty? */ 2677 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2678 return true; 2679 } 2680 2681 /* Check if any mddev parameters have changed */ 2682 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2683 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2684 (mddev->layout != le32_to_cpu(sb->layout)) || 2685 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2686 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2687 return true; 2688 2689 return false; 2690 } 2691 2692 void md_update_sb(struct mddev *mddev, int force_change) 2693 { 2694 struct md_rdev *rdev; 2695 int sync_req; 2696 int nospares = 0; 2697 int any_badblocks_changed = 0; 2698 int ret = -1; 2699 2700 if (mddev->ro) { 2701 if (force_change) 2702 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2703 return; 2704 } 2705 2706 repeat: 2707 if (mddev_is_clustered(mddev)) { 2708 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2709 force_change = 1; 2710 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2711 nospares = 1; 2712 ret = md_cluster_ops->metadata_update_start(mddev); 2713 /* Has someone else has updated the sb */ 2714 if (!does_sb_need_changing(mddev)) { 2715 if (ret == 0) 2716 md_cluster_ops->metadata_update_cancel(mddev); 2717 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2718 BIT(MD_SB_CHANGE_DEVS) | 2719 BIT(MD_SB_CHANGE_CLEAN)); 2720 return; 2721 } 2722 } 2723 2724 /* 2725 * First make sure individual recovery_offsets are correct 2726 * curr_resync_completed can only be used during recovery. 2727 * During reshape/resync it might use array-addresses rather 2728 * that device addresses. 2729 */ 2730 rdev_for_each(rdev, mddev) { 2731 if (rdev->raid_disk >= 0 && 2732 mddev->delta_disks >= 0 && 2733 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2734 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2735 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2736 !test_bit(Journal, &rdev->flags) && 2737 !test_bit(In_sync, &rdev->flags) && 2738 mddev->curr_resync_completed > rdev->recovery_offset) 2739 rdev->recovery_offset = mddev->curr_resync_completed; 2740 2741 } 2742 if (!mddev->persistent) { 2743 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2744 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2745 if (!mddev->external) { 2746 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2747 rdev_for_each(rdev, mddev) { 2748 if (rdev->badblocks.changed) { 2749 rdev->badblocks.changed = 0; 2750 ack_all_badblocks(&rdev->badblocks); 2751 md_error(mddev, rdev); 2752 } 2753 clear_bit(Blocked, &rdev->flags); 2754 clear_bit(BlockedBadBlocks, &rdev->flags); 2755 wake_up(&rdev->blocked_wait); 2756 } 2757 } 2758 wake_up(&mddev->sb_wait); 2759 return; 2760 } 2761 2762 spin_lock(&mddev->lock); 2763 2764 mddev->utime = ktime_get_real_seconds(); 2765 2766 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2767 force_change = 1; 2768 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2769 /* just a clean<-> dirty transition, possibly leave spares alone, 2770 * though if events isn't the right even/odd, we will have to do 2771 * spares after all 2772 */ 2773 nospares = 1; 2774 if (force_change) 2775 nospares = 0; 2776 if (mddev->degraded) 2777 /* If the array is degraded, then skipping spares is both 2778 * dangerous and fairly pointless. 2779 * Dangerous because a device that was removed from the array 2780 * might have a event_count that still looks up-to-date, 2781 * so it can be re-added without a resync. 2782 * Pointless because if there are any spares to skip, 2783 * then a recovery will happen and soon that array won't 2784 * be degraded any more and the spare can go back to sleep then. 2785 */ 2786 nospares = 0; 2787 2788 sync_req = mddev->in_sync; 2789 2790 /* If this is just a dirty<->clean transition, and the array is clean 2791 * and 'events' is odd, we can roll back to the previous clean state */ 2792 if (nospares 2793 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2794 && mddev->can_decrease_events 2795 && mddev->events != 1) { 2796 mddev->events--; 2797 mddev->can_decrease_events = 0; 2798 } else { 2799 /* otherwise we have to go forward and ... */ 2800 mddev->events ++; 2801 mddev->can_decrease_events = nospares; 2802 } 2803 2804 /* 2805 * This 64-bit counter should never wrap. 2806 * Either we are in around ~1 trillion A.C., assuming 2807 * 1 reboot per second, or we have a bug... 2808 */ 2809 WARN_ON(mddev->events == 0); 2810 2811 rdev_for_each(rdev, mddev) { 2812 if (rdev->badblocks.changed) 2813 any_badblocks_changed++; 2814 if (test_bit(Faulty, &rdev->flags)) 2815 set_bit(FaultRecorded, &rdev->flags); 2816 } 2817 2818 sync_sbs(mddev, nospares); 2819 spin_unlock(&mddev->lock); 2820 2821 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2822 mdname(mddev), mddev->in_sync); 2823 2824 if (mddev->queue) 2825 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2826 rewrite: 2827 md_bitmap_update_sb(mddev->bitmap); 2828 rdev_for_each(rdev, mddev) { 2829 char b[BDEVNAME_SIZE]; 2830 2831 if (rdev->sb_loaded != 1) 2832 continue; /* no noise on spare devices */ 2833 2834 if (!test_bit(Faulty, &rdev->flags)) { 2835 md_super_write(mddev,rdev, 2836 rdev->sb_start, rdev->sb_size, 2837 rdev->sb_page); 2838 pr_debug("md: (write) %s's sb offset: %llu\n", 2839 bdevname(rdev->bdev, b), 2840 (unsigned long long)rdev->sb_start); 2841 rdev->sb_events = mddev->events; 2842 if (rdev->badblocks.size) { 2843 md_super_write(mddev, rdev, 2844 rdev->badblocks.sector, 2845 rdev->badblocks.size << 9, 2846 rdev->bb_page); 2847 rdev->badblocks.size = 0; 2848 } 2849 2850 } else 2851 pr_debug("md: %s (skipping faulty)\n", 2852 bdevname(rdev->bdev, b)); 2853 2854 if (mddev->level == LEVEL_MULTIPATH) 2855 /* only need to write one superblock... */ 2856 break; 2857 } 2858 if (md_super_wait(mddev) < 0) 2859 goto rewrite; 2860 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2861 2862 if (mddev_is_clustered(mddev) && ret == 0) 2863 md_cluster_ops->metadata_update_finish(mddev); 2864 2865 if (mddev->in_sync != sync_req || 2866 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2867 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2868 /* have to write it out again */ 2869 goto repeat; 2870 wake_up(&mddev->sb_wait); 2871 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2872 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2873 2874 rdev_for_each(rdev, mddev) { 2875 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2876 clear_bit(Blocked, &rdev->flags); 2877 2878 if (any_badblocks_changed) 2879 ack_all_badblocks(&rdev->badblocks); 2880 clear_bit(BlockedBadBlocks, &rdev->flags); 2881 wake_up(&rdev->blocked_wait); 2882 } 2883 } 2884 EXPORT_SYMBOL(md_update_sb); 2885 2886 static int add_bound_rdev(struct md_rdev *rdev) 2887 { 2888 struct mddev *mddev = rdev->mddev; 2889 int err = 0; 2890 bool add_journal = test_bit(Journal, &rdev->flags); 2891 2892 if (!mddev->pers->hot_remove_disk || add_journal) { 2893 /* If there is hot_add_disk but no hot_remove_disk 2894 * then added disks for geometry changes, 2895 * and should be added immediately. 2896 */ 2897 super_types[mddev->major_version]. 2898 validate_super(mddev, rdev); 2899 if (add_journal) 2900 mddev_suspend(mddev); 2901 err = mddev->pers->hot_add_disk(mddev, rdev); 2902 if (add_journal) 2903 mddev_resume(mddev); 2904 if (err) { 2905 md_kick_rdev_from_array(rdev); 2906 return err; 2907 } 2908 } 2909 sysfs_notify_dirent_safe(rdev->sysfs_state); 2910 2911 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2912 if (mddev->degraded) 2913 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2914 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2915 md_new_event(mddev); 2916 md_wakeup_thread(mddev->thread); 2917 return 0; 2918 } 2919 2920 /* words written to sysfs files may, or may not, be \n terminated. 2921 * We want to accept with case. For this we use cmd_match. 2922 */ 2923 static int cmd_match(const char *cmd, const char *str) 2924 { 2925 /* See if cmd, written into a sysfs file, matches 2926 * str. They must either be the same, or cmd can 2927 * have a trailing newline 2928 */ 2929 while (*cmd && *str && *cmd == *str) { 2930 cmd++; 2931 str++; 2932 } 2933 if (*cmd == '\n') 2934 cmd++; 2935 if (*str || *cmd) 2936 return 0; 2937 return 1; 2938 } 2939 2940 struct rdev_sysfs_entry { 2941 struct attribute attr; 2942 ssize_t (*show)(struct md_rdev *, char *); 2943 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2944 }; 2945 2946 static ssize_t 2947 state_show(struct md_rdev *rdev, char *page) 2948 { 2949 char *sep = ","; 2950 size_t len = 0; 2951 unsigned long flags = READ_ONCE(rdev->flags); 2952 2953 if (test_bit(Faulty, &flags) || 2954 (!test_bit(ExternalBbl, &flags) && 2955 rdev->badblocks.unacked_exist)) 2956 len += sprintf(page+len, "faulty%s", sep); 2957 if (test_bit(In_sync, &flags)) 2958 len += sprintf(page+len, "in_sync%s", sep); 2959 if (test_bit(Journal, &flags)) 2960 len += sprintf(page+len, "journal%s", sep); 2961 if (test_bit(WriteMostly, &flags)) 2962 len += sprintf(page+len, "write_mostly%s", sep); 2963 if (test_bit(Blocked, &flags) || 2964 (rdev->badblocks.unacked_exist 2965 && !test_bit(Faulty, &flags))) 2966 len += sprintf(page+len, "blocked%s", sep); 2967 if (!test_bit(Faulty, &flags) && 2968 !test_bit(Journal, &flags) && 2969 !test_bit(In_sync, &flags)) 2970 len += sprintf(page+len, "spare%s", sep); 2971 if (test_bit(WriteErrorSeen, &flags)) 2972 len += sprintf(page+len, "write_error%s", sep); 2973 if (test_bit(WantReplacement, &flags)) 2974 len += sprintf(page+len, "want_replacement%s", sep); 2975 if (test_bit(Replacement, &flags)) 2976 len += sprintf(page+len, "replacement%s", sep); 2977 if (test_bit(ExternalBbl, &flags)) 2978 len += sprintf(page+len, "external_bbl%s", sep); 2979 if (test_bit(FailFast, &flags)) 2980 len += sprintf(page+len, "failfast%s", sep); 2981 2982 if (len) 2983 len -= strlen(sep); 2984 2985 return len+sprintf(page+len, "\n"); 2986 } 2987 2988 static ssize_t 2989 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2990 { 2991 /* can write 2992 * faulty - simulates an error 2993 * remove - disconnects the device 2994 * writemostly - sets write_mostly 2995 * -writemostly - clears write_mostly 2996 * blocked - sets the Blocked flags 2997 * -blocked - clears the Blocked and possibly simulates an error 2998 * insync - sets Insync providing device isn't active 2999 * -insync - clear Insync for a device with a slot assigned, 3000 * so that it gets rebuilt based on bitmap 3001 * write_error - sets WriteErrorSeen 3002 * -write_error - clears WriteErrorSeen 3003 * {,-}failfast - set/clear FailFast 3004 */ 3005 int err = -EINVAL; 3006 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3007 md_error(rdev->mddev, rdev); 3008 if (test_bit(Faulty, &rdev->flags)) 3009 err = 0; 3010 else 3011 err = -EBUSY; 3012 } else if (cmd_match(buf, "remove")) { 3013 if (rdev->mddev->pers) { 3014 clear_bit(Blocked, &rdev->flags); 3015 remove_and_add_spares(rdev->mddev, rdev); 3016 } 3017 if (rdev->raid_disk >= 0) 3018 err = -EBUSY; 3019 else { 3020 struct mddev *mddev = rdev->mddev; 3021 err = 0; 3022 if (mddev_is_clustered(mddev)) 3023 err = md_cluster_ops->remove_disk(mddev, rdev); 3024 3025 if (err == 0) { 3026 md_kick_rdev_from_array(rdev); 3027 if (mddev->pers) { 3028 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3029 md_wakeup_thread(mddev->thread); 3030 } 3031 md_new_event(mddev); 3032 } 3033 } 3034 } else if (cmd_match(buf, "writemostly")) { 3035 set_bit(WriteMostly, &rdev->flags); 3036 mddev_create_serial_pool(rdev->mddev, rdev, false); 3037 err = 0; 3038 } else if (cmd_match(buf, "-writemostly")) { 3039 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3040 clear_bit(WriteMostly, &rdev->flags); 3041 err = 0; 3042 } else if (cmd_match(buf, "blocked")) { 3043 set_bit(Blocked, &rdev->flags); 3044 err = 0; 3045 } else if (cmd_match(buf, "-blocked")) { 3046 if (!test_bit(Faulty, &rdev->flags) && 3047 !test_bit(ExternalBbl, &rdev->flags) && 3048 rdev->badblocks.unacked_exist) { 3049 /* metadata handler doesn't understand badblocks, 3050 * so we need to fail the device 3051 */ 3052 md_error(rdev->mddev, rdev); 3053 } 3054 clear_bit(Blocked, &rdev->flags); 3055 clear_bit(BlockedBadBlocks, &rdev->flags); 3056 wake_up(&rdev->blocked_wait); 3057 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3058 md_wakeup_thread(rdev->mddev->thread); 3059 3060 err = 0; 3061 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3062 set_bit(In_sync, &rdev->flags); 3063 err = 0; 3064 } else if (cmd_match(buf, "failfast")) { 3065 set_bit(FailFast, &rdev->flags); 3066 err = 0; 3067 } else if (cmd_match(buf, "-failfast")) { 3068 clear_bit(FailFast, &rdev->flags); 3069 err = 0; 3070 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3071 !test_bit(Journal, &rdev->flags)) { 3072 if (rdev->mddev->pers == NULL) { 3073 clear_bit(In_sync, &rdev->flags); 3074 rdev->saved_raid_disk = rdev->raid_disk; 3075 rdev->raid_disk = -1; 3076 err = 0; 3077 } 3078 } else if (cmd_match(buf, "write_error")) { 3079 set_bit(WriteErrorSeen, &rdev->flags); 3080 err = 0; 3081 } else if (cmd_match(buf, "-write_error")) { 3082 clear_bit(WriteErrorSeen, &rdev->flags); 3083 err = 0; 3084 } else if (cmd_match(buf, "want_replacement")) { 3085 /* Any non-spare device that is not a replacement can 3086 * become want_replacement at any time, but we then need to 3087 * check if recovery is needed. 3088 */ 3089 if (rdev->raid_disk >= 0 && 3090 !test_bit(Journal, &rdev->flags) && 3091 !test_bit(Replacement, &rdev->flags)) 3092 set_bit(WantReplacement, &rdev->flags); 3093 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3094 md_wakeup_thread(rdev->mddev->thread); 3095 err = 0; 3096 } else if (cmd_match(buf, "-want_replacement")) { 3097 /* Clearing 'want_replacement' is always allowed. 3098 * Once replacements starts it is too late though. 3099 */ 3100 err = 0; 3101 clear_bit(WantReplacement, &rdev->flags); 3102 } else if (cmd_match(buf, "replacement")) { 3103 /* Can only set a device as a replacement when array has not 3104 * yet been started. Once running, replacement is automatic 3105 * from spares, or by assigning 'slot'. 3106 */ 3107 if (rdev->mddev->pers) 3108 err = -EBUSY; 3109 else { 3110 set_bit(Replacement, &rdev->flags); 3111 err = 0; 3112 } 3113 } else if (cmd_match(buf, "-replacement")) { 3114 /* Similarly, can only clear Replacement before start */ 3115 if (rdev->mddev->pers) 3116 err = -EBUSY; 3117 else { 3118 clear_bit(Replacement, &rdev->flags); 3119 err = 0; 3120 } 3121 } else if (cmd_match(buf, "re-add")) { 3122 if (!rdev->mddev->pers) 3123 err = -EINVAL; 3124 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3125 rdev->saved_raid_disk >= 0) { 3126 /* clear_bit is performed _after_ all the devices 3127 * have their local Faulty bit cleared. If any writes 3128 * happen in the meantime in the local node, they 3129 * will land in the local bitmap, which will be synced 3130 * by this node eventually 3131 */ 3132 if (!mddev_is_clustered(rdev->mddev) || 3133 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3134 clear_bit(Faulty, &rdev->flags); 3135 err = add_bound_rdev(rdev); 3136 } 3137 } else 3138 err = -EBUSY; 3139 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3140 set_bit(ExternalBbl, &rdev->flags); 3141 rdev->badblocks.shift = 0; 3142 err = 0; 3143 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3144 clear_bit(ExternalBbl, &rdev->flags); 3145 err = 0; 3146 } 3147 if (!err) 3148 sysfs_notify_dirent_safe(rdev->sysfs_state); 3149 return err ? err : len; 3150 } 3151 static struct rdev_sysfs_entry rdev_state = 3152 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3153 3154 static ssize_t 3155 errors_show(struct md_rdev *rdev, char *page) 3156 { 3157 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3158 } 3159 3160 static ssize_t 3161 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3162 { 3163 unsigned int n; 3164 int rv; 3165 3166 rv = kstrtouint(buf, 10, &n); 3167 if (rv < 0) 3168 return rv; 3169 atomic_set(&rdev->corrected_errors, n); 3170 return len; 3171 } 3172 static struct rdev_sysfs_entry rdev_errors = 3173 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3174 3175 static ssize_t 3176 slot_show(struct md_rdev *rdev, char *page) 3177 { 3178 if (test_bit(Journal, &rdev->flags)) 3179 return sprintf(page, "journal\n"); 3180 else if (rdev->raid_disk < 0) 3181 return sprintf(page, "none\n"); 3182 else 3183 return sprintf(page, "%d\n", rdev->raid_disk); 3184 } 3185 3186 static ssize_t 3187 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3188 { 3189 int slot; 3190 int err; 3191 3192 if (test_bit(Journal, &rdev->flags)) 3193 return -EBUSY; 3194 if (strncmp(buf, "none", 4)==0) 3195 slot = -1; 3196 else { 3197 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3198 if (err < 0) 3199 return err; 3200 } 3201 if (rdev->mddev->pers && slot == -1) { 3202 /* Setting 'slot' on an active array requires also 3203 * updating the 'rd%d' link, and communicating 3204 * with the personality with ->hot_*_disk. 3205 * For now we only support removing 3206 * failed/spare devices. This normally happens automatically, 3207 * but not when the metadata is externally managed. 3208 */ 3209 if (rdev->raid_disk == -1) 3210 return -EEXIST; 3211 /* personality does all needed checks */ 3212 if (rdev->mddev->pers->hot_remove_disk == NULL) 3213 return -EINVAL; 3214 clear_bit(Blocked, &rdev->flags); 3215 remove_and_add_spares(rdev->mddev, rdev); 3216 if (rdev->raid_disk >= 0) 3217 return -EBUSY; 3218 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3219 md_wakeup_thread(rdev->mddev->thread); 3220 } else if (rdev->mddev->pers) { 3221 /* Activating a spare .. or possibly reactivating 3222 * if we ever get bitmaps working here. 3223 */ 3224 int err; 3225 3226 if (rdev->raid_disk != -1) 3227 return -EBUSY; 3228 3229 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3230 return -EBUSY; 3231 3232 if (rdev->mddev->pers->hot_add_disk == NULL) 3233 return -EINVAL; 3234 3235 if (slot >= rdev->mddev->raid_disks && 3236 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3237 return -ENOSPC; 3238 3239 rdev->raid_disk = slot; 3240 if (test_bit(In_sync, &rdev->flags)) 3241 rdev->saved_raid_disk = slot; 3242 else 3243 rdev->saved_raid_disk = -1; 3244 clear_bit(In_sync, &rdev->flags); 3245 clear_bit(Bitmap_sync, &rdev->flags); 3246 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3247 if (err) { 3248 rdev->raid_disk = -1; 3249 return err; 3250 } else 3251 sysfs_notify_dirent_safe(rdev->sysfs_state); 3252 /* failure here is OK */; 3253 sysfs_link_rdev(rdev->mddev, rdev); 3254 /* don't wakeup anyone, leave that to userspace. */ 3255 } else { 3256 if (slot >= rdev->mddev->raid_disks && 3257 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3258 return -ENOSPC; 3259 rdev->raid_disk = slot; 3260 /* assume it is working */ 3261 clear_bit(Faulty, &rdev->flags); 3262 clear_bit(WriteMostly, &rdev->flags); 3263 set_bit(In_sync, &rdev->flags); 3264 sysfs_notify_dirent_safe(rdev->sysfs_state); 3265 } 3266 return len; 3267 } 3268 3269 static struct rdev_sysfs_entry rdev_slot = 3270 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3271 3272 static ssize_t 3273 offset_show(struct md_rdev *rdev, char *page) 3274 { 3275 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3276 } 3277 3278 static ssize_t 3279 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3280 { 3281 unsigned long long offset; 3282 if (kstrtoull(buf, 10, &offset) < 0) 3283 return -EINVAL; 3284 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3285 return -EBUSY; 3286 if (rdev->sectors && rdev->mddev->external) 3287 /* Must set offset before size, so overlap checks 3288 * can be sane */ 3289 return -EBUSY; 3290 rdev->data_offset = offset; 3291 rdev->new_data_offset = offset; 3292 return len; 3293 } 3294 3295 static struct rdev_sysfs_entry rdev_offset = 3296 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3297 3298 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3299 { 3300 return sprintf(page, "%llu\n", 3301 (unsigned long long)rdev->new_data_offset); 3302 } 3303 3304 static ssize_t new_offset_store(struct md_rdev *rdev, 3305 const char *buf, size_t len) 3306 { 3307 unsigned long long new_offset; 3308 struct mddev *mddev = rdev->mddev; 3309 3310 if (kstrtoull(buf, 10, &new_offset) < 0) 3311 return -EINVAL; 3312 3313 if (mddev->sync_thread || 3314 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3315 return -EBUSY; 3316 if (new_offset == rdev->data_offset) 3317 /* reset is always permitted */ 3318 ; 3319 else if (new_offset > rdev->data_offset) { 3320 /* must not push array size beyond rdev_sectors */ 3321 if (new_offset - rdev->data_offset 3322 + mddev->dev_sectors > rdev->sectors) 3323 return -E2BIG; 3324 } 3325 /* Metadata worries about other space details. */ 3326 3327 /* decreasing the offset is inconsistent with a backwards 3328 * reshape. 3329 */ 3330 if (new_offset < rdev->data_offset && 3331 mddev->reshape_backwards) 3332 return -EINVAL; 3333 /* Increasing offset is inconsistent with forwards 3334 * reshape. reshape_direction should be set to 3335 * 'backwards' first. 3336 */ 3337 if (new_offset > rdev->data_offset && 3338 !mddev->reshape_backwards) 3339 return -EINVAL; 3340 3341 if (mddev->pers && mddev->persistent && 3342 !super_types[mddev->major_version] 3343 .allow_new_offset(rdev, new_offset)) 3344 return -E2BIG; 3345 rdev->new_data_offset = new_offset; 3346 if (new_offset > rdev->data_offset) 3347 mddev->reshape_backwards = 1; 3348 else if (new_offset < rdev->data_offset) 3349 mddev->reshape_backwards = 0; 3350 3351 return len; 3352 } 3353 static struct rdev_sysfs_entry rdev_new_offset = 3354 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3355 3356 static ssize_t 3357 rdev_size_show(struct md_rdev *rdev, char *page) 3358 { 3359 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3360 } 3361 3362 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3363 { 3364 /* check if two start/length pairs overlap */ 3365 if (s1+l1 <= s2) 3366 return 0; 3367 if (s2+l2 <= s1) 3368 return 0; 3369 return 1; 3370 } 3371 3372 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3373 { 3374 unsigned long long blocks; 3375 sector_t new; 3376 3377 if (kstrtoull(buf, 10, &blocks) < 0) 3378 return -EINVAL; 3379 3380 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3381 return -EINVAL; /* sector conversion overflow */ 3382 3383 new = blocks * 2; 3384 if (new != blocks * 2) 3385 return -EINVAL; /* unsigned long long to sector_t overflow */ 3386 3387 *sectors = new; 3388 return 0; 3389 } 3390 3391 static ssize_t 3392 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3393 { 3394 struct mddev *my_mddev = rdev->mddev; 3395 sector_t oldsectors = rdev->sectors; 3396 sector_t sectors; 3397 3398 if (test_bit(Journal, &rdev->flags)) 3399 return -EBUSY; 3400 if (strict_blocks_to_sectors(buf, §ors) < 0) 3401 return -EINVAL; 3402 if (rdev->data_offset != rdev->new_data_offset) 3403 return -EINVAL; /* too confusing */ 3404 if (my_mddev->pers && rdev->raid_disk >= 0) { 3405 if (my_mddev->persistent) { 3406 sectors = super_types[my_mddev->major_version]. 3407 rdev_size_change(rdev, sectors); 3408 if (!sectors) 3409 return -EBUSY; 3410 } else if (!sectors) 3411 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3412 rdev->data_offset; 3413 if (!my_mddev->pers->resize) 3414 /* Cannot change size for RAID0 or Linear etc */ 3415 return -EINVAL; 3416 } 3417 if (sectors < my_mddev->dev_sectors) 3418 return -EINVAL; /* component must fit device */ 3419 3420 rdev->sectors = sectors; 3421 if (sectors > oldsectors && my_mddev->external) { 3422 /* Need to check that all other rdevs with the same 3423 * ->bdev do not overlap. 'rcu' is sufficient to walk 3424 * the rdev lists safely. 3425 * This check does not provide a hard guarantee, it 3426 * just helps avoid dangerous mistakes. 3427 */ 3428 struct mddev *mddev; 3429 int overlap = 0; 3430 struct list_head *tmp; 3431 3432 rcu_read_lock(); 3433 for_each_mddev(mddev, tmp) { 3434 struct md_rdev *rdev2; 3435 3436 rdev_for_each(rdev2, mddev) 3437 if (rdev->bdev == rdev2->bdev && 3438 rdev != rdev2 && 3439 overlaps(rdev->data_offset, rdev->sectors, 3440 rdev2->data_offset, 3441 rdev2->sectors)) { 3442 overlap = 1; 3443 break; 3444 } 3445 if (overlap) { 3446 mddev_put(mddev); 3447 break; 3448 } 3449 } 3450 rcu_read_unlock(); 3451 if (overlap) { 3452 /* Someone else could have slipped in a size 3453 * change here, but doing so is just silly. 3454 * We put oldsectors back because we *know* it is 3455 * safe, and trust userspace not to race with 3456 * itself 3457 */ 3458 rdev->sectors = oldsectors; 3459 return -EBUSY; 3460 } 3461 } 3462 return len; 3463 } 3464 3465 static struct rdev_sysfs_entry rdev_size = 3466 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3467 3468 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3469 { 3470 unsigned long long recovery_start = rdev->recovery_offset; 3471 3472 if (test_bit(In_sync, &rdev->flags) || 3473 recovery_start == MaxSector) 3474 return sprintf(page, "none\n"); 3475 3476 return sprintf(page, "%llu\n", recovery_start); 3477 } 3478 3479 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3480 { 3481 unsigned long long recovery_start; 3482 3483 if (cmd_match(buf, "none")) 3484 recovery_start = MaxSector; 3485 else if (kstrtoull(buf, 10, &recovery_start)) 3486 return -EINVAL; 3487 3488 if (rdev->mddev->pers && 3489 rdev->raid_disk >= 0) 3490 return -EBUSY; 3491 3492 rdev->recovery_offset = recovery_start; 3493 if (recovery_start == MaxSector) 3494 set_bit(In_sync, &rdev->flags); 3495 else 3496 clear_bit(In_sync, &rdev->flags); 3497 return len; 3498 } 3499 3500 static struct rdev_sysfs_entry rdev_recovery_start = 3501 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3502 3503 /* sysfs access to bad-blocks list. 3504 * We present two files. 3505 * 'bad-blocks' lists sector numbers and lengths of ranges that 3506 * are recorded as bad. The list is truncated to fit within 3507 * the one-page limit of sysfs. 3508 * Writing "sector length" to this file adds an acknowledged 3509 * bad block list. 3510 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3511 * been acknowledged. Writing to this file adds bad blocks 3512 * without acknowledging them. This is largely for testing. 3513 */ 3514 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3515 { 3516 return badblocks_show(&rdev->badblocks, page, 0); 3517 } 3518 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3519 { 3520 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3521 /* Maybe that ack was all we needed */ 3522 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3523 wake_up(&rdev->blocked_wait); 3524 return rv; 3525 } 3526 static struct rdev_sysfs_entry rdev_bad_blocks = 3527 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3528 3529 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3530 { 3531 return badblocks_show(&rdev->badblocks, page, 1); 3532 } 3533 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3534 { 3535 return badblocks_store(&rdev->badblocks, page, len, 1); 3536 } 3537 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3538 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3539 3540 static ssize_t 3541 ppl_sector_show(struct md_rdev *rdev, char *page) 3542 { 3543 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3544 } 3545 3546 static ssize_t 3547 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3548 { 3549 unsigned long long sector; 3550 3551 if (kstrtoull(buf, 10, §or) < 0) 3552 return -EINVAL; 3553 if (sector != (sector_t)sector) 3554 return -EINVAL; 3555 3556 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3557 rdev->raid_disk >= 0) 3558 return -EBUSY; 3559 3560 if (rdev->mddev->persistent) { 3561 if (rdev->mddev->major_version == 0) 3562 return -EINVAL; 3563 if ((sector > rdev->sb_start && 3564 sector - rdev->sb_start > S16_MAX) || 3565 (sector < rdev->sb_start && 3566 rdev->sb_start - sector > -S16_MIN)) 3567 return -EINVAL; 3568 rdev->ppl.offset = sector - rdev->sb_start; 3569 } else if (!rdev->mddev->external) { 3570 return -EBUSY; 3571 } 3572 rdev->ppl.sector = sector; 3573 return len; 3574 } 3575 3576 static struct rdev_sysfs_entry rdev_ppl_sector = 3577 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3578 3579 static ssize_t 3580 ppl_size_show(struct md_rdev *rdev, char *page) 3581 { 3582 return sprintf(page, "%u\n", rdev->ppl.size); 3583 } 3584 3585 static ssize_t 3586 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3587 { 3588 unsigned int size; 3589 3590 if (kstrtouint(buf, 10, &size) < 0) 3591 return -EINVAL; 3592 3593 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3594 rdev->raid_disk >= 0) 3595 return -EBUSY; 3596 3597 if (rdev->mddev->persistent) { 3598 if (rdev->mddev->major_version == 0) 3599 return -EINVAL; 3600 if (size > U16_MAX) 3601 return -EINVAL; 3602 } else if (!rdev->mddev->external) { 3603 return -EBUSY; 3604 } 3605 rdev->ppl.size = size; 3606 return len; 3607 } 3608 3609 static struct rdev_sysfs_entry rdev_ppl_size = 3610 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3611 3612 static struct attribute *rdev_default_attrs[] = { 3613 &rdev_state.attr, 3614 &rdev_errors.attr, 3615 &rdev_slot.attr, 3616 &rdev_offset.attr, 3617 &rdev_new_offset.attr, 3618 &rdev_size.attr, 3619 &rdev_recovery_start.attr, 3620 &rdev_bad_blocks.attr, 3621 &rdev_unack_bad_blocks.attr, 3622 &rdev_ppl_sector.attr, 3623 &rdev_ppl_size.attr, 3624 NULL, 3625 }; 3626 static ssize_t 3627 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3628 { 3629 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3630 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3631 3632 if (!entry->show) 3633 return -EIO; 3634 if (!rdev->mddev) 3635 return -ENODEV; 3636 return entry->show(rdev, page); 3637 } 3638 3639 static ssize_t 3640 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3641 const char *page, size_t length) 3642 { 3643 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3644 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3645 ssize_t rv; 3646 struct mddev *mddev = rdev->mddev; 3647 3648 if (!entry->store) 3649 return -EIO; 3650 if (!capable(CAP_SYS_ADMIN)) 3651 return -EACCES; 3652 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3653 if (!rv) { 3654 if (rdev->mddev == NULL) 3655 rv = -ENODEV; 3656 else 3657 rv = entry->store(rdev, page, length); 3658 mddev_unlock(mddev); 3659 } 3660 return rv; 3661 } 3662 3663 static void rdev_free(struct kobject *ko) 3664 { 3665 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3666 kfree(rdev); 3667 } 3668 static const struct sysfs_ops rdev_sysfs_ops = { 3669 .show = rdev_attr_show, 3670 .store = rdev_attr_store, 3671 }; 3672 static struct kobj_type rdev_ktype = { 3673 .release = rdev_free, 3674 .sysfs_ops = &rdev_sysfs_ops, 3675 .default_attrs = rdev_default_attrs, 3676 }; 3677 3678 int md_rdev_init(struct md_rdev *rdev) 3679 { 3680 rdev->desc_nr = -1; 3681 rdev->saved_raid_disk = -1; 3682 rdev->raid_disk = -1; 3683 rdev->flags = 0; 3684 rdev->data_offset = 0; 3685 rdev->new_data_offset = 0; 3686 rdev->sb_events = 0; 3687 rdev->last_read_error = 0; 3688 rdev->sb_loaded = 0; 3689 rdev->bb_page = NULL; 3690 atomic_set(&rdev->nr_pending, 0); 3691 atomic_set(&rdev->read_errors, 0); 3692 atomic_set(&rdev->corrected_errors, 0); 3693 3694 INIT_LIST_HEAD(&rdev->same_set); 3695 init_waitqueue_head(&rdev->blocked_wait); 3696 3697 /* Add space to store bad block list. 3698 * This reserves the space even on arrays where it cannot 3699 * be used - I wonder if that matters 3700 */ 3701 return badblocks_init(&rdev->badblocks, 0); 3702 } 3703 EXPORT_SYMBOL_GPL(md_rdev_init); 3704 /* 3705 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3706 * 3707 * mark the device faulty if: 3708 * 3709 * - the device is nonexistent (zero size) 3710 * - the device has no valid superblock 3711 * 3712 * a faulty rdev _never_ has rdev->sb set. 3713 */ 3714 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3715 { 3716 char b[BDEVNAME_SIZE]; 3717 int err; 3718 struct md_rdev *rdev; 3719 sector_t size; 3720 3721 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3722 if (!rdev) 3723 return ERR_PTR(-ENOMEM); 3724 3725 err = md_rdev_init(rdev); 3726 if (err) 3727 goto abort_free; 3728 err = alloc_disk_sb(rdev); 3729 if (err) 3730 goto abort_free; 3731 3732 err = lock_rdev(rdev, newdev, super_format == -2); 3733 if (err) 3734 goto abort_free; 3735 3736 kobject_init(&rdev->kobj, &rdev_ktype); 3737 3738 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3739 if (!size) { 3740 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3741 bdevname(rdev->bdev,b)); 3742 err = -EINVAL; 3743 goto abort_free; 3744 } 3745 3746 if (super_format >= 0) { 3747 err = super_types[super_format]. 3748 load_super(rdev, NULL, super_minor); 3749 if (err == -EINVAL) { 3750 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3751 bdevname(rdev->bdev,b), 3752 super_format, super_minor); 3753 goto abort_free; 3754 } 3755 if (err < 0) { 3756 pr_warn("md: could not read %s's sb, not importing!\n", 3757 bdevname(rdev->bdev,b)); 3758 goto abort_free; 3759 } 3760 } 3761 3762 return rdev; 3763 3764 abort_free: 3765 if (rdev->bdev) 3766 unlock_rdev(rdev); 3767 md_rdev_clear(rdev); 3768 kfree(rdev); 3769 return ERR_PTR(err); 3770 } 3771 3772 /* 3773 * Check a full RAID array for plausibility 3774 */ 3775 3776 static int analyze_sbs(struct mddev *mddev) 3777 { 3778 int i; 3779 struct md_rdev *rdev, *freshest, *tmp; 3780 char b[BDEVNAME_SIZE]; 3781 3782 freshest = NULL; 3783 rdev_for_each_safe(rdev, tmp, mddev) 3784 switch (super_types[mddev->major_version]. 3785 load_super(rdev, freshest, mddev->minor_version)) { 3786 case 1: 3787 freshest = rdev; 3788 break; 3789 case 0: 3790 break; 3791 default: 3792 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3793 bdevname(rdev->bdev,b)); 3794 md_kick_rdev_from_array(rdev); 3795 } 3796 3797 /* Cannot find a valid fresh disk */ 3798 if (!freshest) { 3799 pr_warn("md: cannot find a valid disk\n"); 3800 return -EINVAL; 3801 } 3802 3803 super_types[mddev->major_version]. 3804 validate_super(mddev, freshest); 3805 3806 i = 0; 3807 rdev_for_each_safe(rdev, tmp, mddev) { 3808 if (mddev->max_disks && 3809 (rdev->desc_nr >= mddev->max_disks || 3810 i > mddev->max_disks)) { 3811 pr_warn("md: %s: %s: only %d devices permitted\n", 3812 mdname(mddev), bdevname(rdev->bdev, b), 3813 mddev->max_disks); 3814 md_kick_rdev_from_array(rdev); 3815 continue; 3816 } 3817 if (rdev != freshest) { 3818 if (super_types[mddev->major_version]. 3819 validate_super(mddev, rdev)) { 3820 pr_warn("md: kicking non-fresh %s from array!\n", 3821 bdevname(rdev->bdev,b)); 3822 md_kick_rdev_from_array(rdev); 3823 continue; 3824 } 3825 } 3826 if (mddev->level == LEVEL_MULTIPATH) { 3827 rdev->desc_nr = i++; 3828 rdev->raid_disk = rdev->desc_nr; 3829 set_bit(In_sync, &rdev->flags); 3830 } else if (rdev->raid_disk >= 3831 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3832 !test_bit(Journal, &rdev->flags)) { 3833 rdev->raid_disk = -1; 3834 clear_bit(In_sync, &rdev->flags); 3835 } 3836 } 3837 3838 return 0; 3839 } 3840 3841 /* Read a fixed-point number. 3842 * Numbers in sysfs attributes should be in "standard" units where 3843 * possible, so time should be in seconds. 3844 * However we internally use a a much smaller unit such as 3845 * milliseconds or jiffies. 3846 * This function takes a decimal number with a possible fractional 3847 * component, and produces an integer which is the result of 3848 * multiplying that number by 10^'scale'. 3849 * all without any floating-point arithmetic. 3850 */ 3851 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3852 { 3853 unsigned long result = 0; 3854 long decimals = -1; 3855 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3856 if (*cp == '.') 3857 decimals = 0; 3858 else if (decimals < scale) { 3859 unsigned int value; 3860 value = *cp - '0'; 3861 result = result * 10 + value; 3862 if (decimals >= 0) 3863 decimals++; 3864 } 3865 cp++; 3866 } 3867 if (*cp == '\n') 3868 cp++; 3869 if (*cp) 3870 return -EINVAL; 3871 if (decimals < 0) 3872 decimals = 0; 3873 *res = result * int_pow(10, scale - decimals); 3874 return 0; 3875 } 3876 3877 static ssize_t 3878 safe_delay_show(struct mddev *mddev, char *page) 3879 { 3880 int msec = (mddev->safemode_delay*1000)/HZ; 3881 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3882 } 3883 static ssize_t 3884 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3885 { 3886 unsigned long msec; 3887 3888 if (mddev_is_clustered(mddev)) { 3889 pr_warn("md: Safemode is disabled for clustered mode\n"); 3890 return -EINVAL; 3891 } 3892 3893 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3894 return -EINVAL; 3895 if (msec == 0) 3896 mddev->safemode_delay = 0; 3897 else { 3898 unsigned long old_delay = mddev->safemode_delay; 3899 unsigned long new_delay = (msec*HZ)/1000; 3900 3901 if (new_delay == 0) 3902 new_delay = 1; 3903 mddev->safemode_delay = new_delay; 3904 if (new_delay < old_delay || old_delay == 0) 3905 mod_timer(&mddev->safemode_timer, jiffies+1); 3906 } 3907 return len; 3908 } 3909 static struct md_sysfs_entry md_safe_delay = 3910 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3911 3912 static ssize_t 3913 level_show(struct mddev *mddev, char *page) 3914 { 3915 struct md_personality *p; 3916 int ret; 3917 spin_lock(&mddev->lock); 3918 p = mddev->pers; 3919 if (p) 3920 ret = sprintf(page, "%s\n", p->name); 3921 else if (mddev->clevel[0]) 3922 ret = sprintf(page, "%s\n", mddev->clevel); 3923 else if (mddev->level != LEVEL_NONE) 3924 ret = sprintf(page, "%d\n", mddev->level); 3925 else 3926 ret = 0; 3927 spin_unlock(&mddev->lock); 3928 return ret; 3929 } 3930 3931 static ssize_t 3932 level_store(struct mddev *mddev, const char *buf, size_t len) 3933 { 3934 char clevel[16]; 3935 ssize_t rv; 3936 size_t slen = len; 3937 struct md_personality *pers, *oldpers; 3938 long level; 3939 void *priv, *oldpriv; 3940 struct md_rdev *rdev; 3941 3942 if (slen == 0 || slen >= sizeof(clevel)) 3943 return -EINVAL; 3944 3945 rv = mddev_lock(mddev); 3946 if (rv) 3947 return rv; 3948 3949 if (mddev->pers == NULL) { 3950 strncpy(mddev->clevel, buf, slen); 3951 if (mddev->clevel[slen-1] == '\n') 3952 slen--; 3953 mddev->clevel[slen] = 0; 3954 mddev->level = LEVEL_NONE; 3955 rv = len; 3956 goto out_unlock; 3957 } 3958 rv = -EROFS; 3959 if (mddev->ro) 3960 goto out_unlock; 3961 3962 /* request to change the personality. Need to ensure: 3963 * - array is not engaged in resync/recovery/reshape 3964 * - old personality can be suspended 3965 * - new personality will access other array. 3966 */ 3967 3968 rv = -EBUSY; 3969 if (mddev->sync_thread || 3970 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3971 mddev->reshape_position != MaxSector || 3972 mddev->sysfs_active) 3973 goto out_unlock; 3974 3975 rv = -EINVAL; 3976 if (!mddev->pers->quiesce) { 3977 pr_warn("md: %s: %s does not support online personality change\n", 3978 mdname(mddev), mddev->pers->name); 3979 goto out_unlock; 3980 } 3981 3982 /* Now find the new personality */ 3983 strncpy(clevel, buf, slen); 3984 if (clevel[slen-1] == '\n') 3985 slen--; 3986 clevel[slen] = 0; 3987 if (kstrtol(clevel, 10, &level)) 3988 level = LEVEL_NONE; 3989 3990 if (request_module("md-%s", clevel) != 0) 3991 request_module("md-level-%s", clevel); 3992 spin_lock(&pers_lock); 3993 pers = find_pers(level, clevel); 3994 if (!pers || !try_module_get(pers->owner)) { 3995 spin_unlock(&pers_lock); 3996 pr_warn("md: personality %s not loaded\n", clevel); 3997 rv = -EINVAL; 3998 goto out_unlock; 3999 } 4000 spin_unlock(&pers_lock); 4001 4002 if (pers == mddev->pers) { 4003 /* Nothing to do! */ 4004 module_put(pers->owner); 4005 rv = len; 4006 goto out_unlock; 4007 } 4008 if (!pers->takeover) { 4009 module_put(pers->owner); 4010 pr_warn("md: %s: %s does not support personality takeover\n", 4011 mdname(mddev), clevel); 4012 rv = -EINVAL; 4013 goto out_unlock; 4014 } 4015 4016 rdev_for_each(rdev, mddev) 4017 rdev->new_raid_disk = rdev->raid_disk; 4018 4019 /* ->takeover must set new_* and/or delta_disks 4020 * if it succeeds, and may set them when it fails. 4021 */ 4022 priv = pers->takeover(mddev); 4023 if (IS_ERR(priv)) { 4024 mddev->new_level = mddev->level; 4025 mddev->new_layout = mddev->layout; 4026 mddev->new_chunk_sectors = mddev->chunk_sectors; 4027 mddev->raid_disks -= mddev->delta_disks; 4028 mddev->delta_disks = 0; 4029 mddev->reshape_backwards = 0; 4030 module_put(pers->owner); 4031 pr_warn("md: %s: %s would not accept array\n", 4032 mdname(mddev), clevel); 4033 rv = PTR_ERR(priv); 4034 goto out_unlock; 4035 } 4036 4037 /* Looks like we have a winner */ 4038 mddev_suspend(mddev); 4039 mddev_detach(mddev); 4040 4041 spin_lock(&mddev->lock); 4042 oldpers = mddev->pers; 4043 oldpriv = mddev->private; 4044 mddev->pers = pers; 4045 mddev->private = priv; 4046 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4047 mddev->level = mddev->new_level; 4048 mddev->layout = mddev->new_layout; 4049 mddev->chunk_sectors = mddev->new_chunk_sectors; 4050 mddev->delta_disks = 0; 4051 mddev->reshape_backwards = 0; 4052 mddev->degraded = 0; 4053 spin_unlock(&mddev->lock); 4054 4055 if (oldpers->sync_request == NULL && 4056 mddev->external) { 4057 /* We are converting from a no-redundancy array 4058 * to a redundancy array and metadata is managed 4059 * externally so we need to be sure that writes 4060 * won't block due to a need to transition 4061 * clean->dirty 4062 * until external management is started. 4063 */ 4064 mddev->in_sync = 0; 4065 mddev->safemode_delay = 0; 4066 mddev->safemode = 0; 4067 } 4068 4069 oldpers->free(mddev, oldpriv); 4070 4071 if (oldpers->sync_request == NULL && 4072 pers->sync_request != NULL) { 4073 /* need to add the md_redundancy_group */ 4074 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4075 pr_warn("md: cannot register extra attributes for %s\n", 4076 mdname(mddev)); 4077 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4078 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4079 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4080 } 4081 if (oldpers->sync_request != NULL && 4082 pers->sync_request == NULL) { 4083 /* need to remove the md_redundancy_group */ 4084 if (mddev->to_remove == NULL) 4085 mddev->to_remove = &md_redundancy_group; 4086 } 4087 4088 module_put(oldpers->owner); 4089 4090 rdev_for_each(rdev, mddev) { 4091 if (rdev->raid_disk < 0) 4092 continue; 4093 if (rdev->new_raid_disk >= mddev->raid_disks) 4094 rdev->new_raid_disk = -1; 4095 if (rdev->new_raid_disk == rdev->raid_disk) 4096 continue; 4097 sysfs_unlink_rdev(mddev, rdev); 4098 } 4099 rdev_for_each(rdev, mddev) { 4100 if (rdev->raid_disk < 0) 4101 continue; 4102 if (rdev->new_raid_disk == rdev->raid_disk) 4103 continue; 4104 rdev->raid_disk = rdev->new_raid_disk; 4105 if (rdev->raid_disk < 0) 4106 clear_bit(In_sync, &rdev->flags); 4107 else { 4108 if (sysfs_link_rdev(mddev, rdev)) 4109 pr_warn("md: cannot register rd%d for %s after level change\n", 4110 rdev->raid_disk, mdname(mddev)); 4111 } 4112 } 4113 4114 if (pers->sync_request == NULL) { 4115 /* this is now an array without redundancy, so 4116 * it must always be in_sync 4117 */ 4118 mddev->in_sync = 1; 4119 del_timer_sync(&mddev->safemode_timer); 4120 } 4121 blk_set_stacking_limits(&mddev->queue->limits); 4122 pers->run(mddev); 4123 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4124 mddev_resume(mddev); 4125 if (!mddev->thread) 4126 md_update_sb(mddev, 1); 4127 sysfs_notify_dirent_safe(mddev->sysfs_level); 4128 md_new_event(mddev); 4129 rv = len; 4130 out_unlock: 4131 mddev_unlock(mddev); 4132 return rv; 4133 } 4134 4135 static struct md_sysfs_entry md_level = 4136 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4137 4138 static ssize_t 4139 layout_show(struct mddev *mddev, char *page) 4140 { 4141 /* just a number, not meaningful for all levels */ 4142 if (mddev->reshape_position != MaxSector && 4143 mddev->layout != mddev->new_layout) 4144 return sprintf(page, "%d (%d)\n", 4145 mddev->new_layout, mddev->layout); 4146 return sprintf(page, "%d\n", mddev->layout); 4147 } 4148 4149 static ssize_t 4150 layout_store(struct mddev *mddev, const char *buf, size_t len) 4151 { 4152 unsigned int n; 4153 int err; 4154 4155 err = kstrtouint(buf, 10, &n); 4156 if (err < 0) 4157 return err; 4158 err = mddev_lock(mddev); 4159 if (err) 4160 return err; 4161 4162 if (mddev->pers) { 4163 if (mddev->pers->check_reshape == NULL) 4164 err = -EBUSY; 4165 else if (mddev->ro) 4166 err = -EROFS; 4167 else { 4168 mddev->new_layout = n; 4169 err = mddev->pers->check_reshape(mddev); 4170 if (err) 4171 mddev->new_layout = mddev->layout; 4172 } 4173 } else { 4174 mddev->new_layout = n; 4175 if (mddev->reshape_position == MaxSector) 4176 mddev->layout = n; 4177 } 4178 mddev_unlock(mddev); 4179 return err ?: len; 4180 } 4181 static struct md_sysfs_entry md_layout = 4182 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4183 4184 static ssize_t 4185 raid_disks_show(struct mddev *mddev, char *page) 4186 { 4187 if (mddev->raid_disks == 0) 4188 return 0; 4189 if (mddev->reshape_position != MaxSector && 4190 mddev->delta_disks != 0) 4191 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4192 mddev->raid_disks - mddev->delta_disks); 4193 return sprintf(page, "%d\n", mddev->raid_disks); 4194 } 4195 4196 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4197 4198 static ssize_t 4199 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4200 { 4201 unsigned int n; 4202 int err; 4203 4204 err = kstrtouint(buf, 10, &n); 4205 if (err < 0) 4206 return err; 4207 4208 err = mddev_lock(mddev); 4209 if (err) 4210 return err; 4211 if (mddev->pers) 4212 err = update_raid_disks(mddev, n); 4213 else if (mddev->reshape_position != MaxSector) { 4214 struct md_rdev *rdev; 4215 int olddisks = mddev->raid_disks - mddev->delta_disks; 4216 4217 err = -EINVAL; 4218 rdev_for_each(rdev, mddev) { 4219 if (olddisks < n && 4220 rdev->data_offset < rdev->new_data_offset) 4221 goto out_unlock; 4222 if (olddisks > n && 4223 rdev->data_offset > rdev->new_data_offset) 4224 goto out_unlock; 4225 } 4226 err = 0; 4227 mddev->delta_disks = n - olddisks; 4228 mddev->raid_disks = n; 4229 mddev->reshape_backwards = (mddev->delta_disks < 0); 4230 } else 4231 mddev->raid_disks = n; 4232 out_unlock: 4233 mddev_unlock(mddev); 4234 return err ? err : len; 4235 } 4236 static struct md_sysfs_entry md_raid_disks = 4237 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4238 4239 static ssize_t 4240 uuid_show(struct mddev *mddev, char *page) 4241 { 4242 return sprintf(page, "%pU\n", mddev->uuid); 4243 } 4244 static struct md_sysfs_entry md_uuid = 4245 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4246 4247 static ssize_t 4248 chunk_size_show(struct mddev *mddev, char *page) 4249 { 4250 if (mddev->reshape_position != MaxSector && 4251 mddev->chunk_sectors != mddev->new_chunk_sectors) 4252 return sprintf(page, "%d (%d)\n", 4253 mddev->new_chunk_sectors << 9, 4254 mddev->chunk_sectors << 9); 4255 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4256 } 4257 4258 static ssize_t 4259 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4260 { 4261 unsigned long n; 4262 int err; 4263 4264 err = kstrtoul(buf, 10, &n); 4265 if (err < 0) 4266 return err; 4267 4268 err = mddev_lock(mddev); 4269 if (err) 4270 return err; 4271 if (mddev->pers) { 4272 if (mddev->pers->check_reshape == NULL) 4273 err = -EBUSY; 4274 else if (mddev->ro) 4275 err = -EROFS; 4276 else { 4277 mddev->new_chunk_sectors = n >> 9; 4278 err = mddev->pers->check_reshape(mddev); 4279 if (err) 4280 mddev->new_chunk_sectors = mddev->chunk_sectors; 4281 } 4282 } else { 4283 mddev->new_chunk_sectors = n >> 9; 4284 if (mddev->reshape_position == MaxSector) 4285 mddev->chunk_sectors = n >> 9; 4286 } 4287 mddev_unlock(mddev); 4288 return err ?: len; 4289 } 4290 static struct md_sysfs_entry md_chunk_size = 4291 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4292 4293 static ssize_t 4294 resync_start_show(struct mddev *mddev, char *page) 4295 { 4296 if (mddev->recovery_cp == MaxSector) 4297 return sprintf(page, "none\n"); 4298 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4299 } 4300 4301 static ssize_t 4302 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4303 { 4304 unsigned long long n; 4305 int err; 4306 4307 if (cmd_match(buf, "none")) 4308 n = MaxSector; 4309 else { 4310 err = kstrtoull(buf, 10, &n); 4311 if (err < 0) 4312 return err; 4313 if (n != (sector_t)n) 4314 return -EINVAL; 4315 } 4316 4317 err = mddev_lock(mddev); 4318 if (err) 4319 return err; 4320 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4321 err = -EBUSY; 4322 4323 if (!err) { 4324 mddev->recovery_cp = n; 4325 if (mddev->pers) 4326 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4327 } 4328 mddev_unlock(mddev); 4329 return err ?: len; 4330 } 4331 static struct md_sysfs_entry md_resync_start = 4332 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4333 resync_start_show, resync_start_store); 4334 4335 /* 4336 * The array state can be: 4337 * 4338 * clear 4339 * No devices, no size, no level 4340 * Equivalent to STOP_ARRAY ioctl 4341 * inactive 4342 * May have some settings, but array is not active 4343 * all IO results in error 4344 * When written, doesn't tear down array, but just stops it 4345 * suspended (not supported yet) 4346 * All IO requests will block. The array can be reconfigured. 4347 * Writing this, if accepted, will block until array is quiescent 4348 * readonly 4349 * no resync can happen. no superblocks get written. 4350 * write requests fail 4351 * read-auto 4352 * like readonly, but behaves like 'clean' on a write request. 4353 * 4354 * clean - no pending writes, but otherwise active. 4355 * When written to inactive array, starts without resync 4356 * If a write request arrives then 4357 * if metadata is known, mark 'dirty' and switch to 'active'. 4358 * if not known, block and switch to write-pending 4359 * If written to an active array that has pending writes, then fails. 4360 * active 4361 * fully active: IO and resync can be happening. 4362 * When written to inactive array, starts with resync 4363 * 4364 * write-pending 4365 * clean, but writes are blocked waiting for 'active' to be written. 4366 * 4367 * active-idle 4368 * like active, but no writes have been seen for a while (100msec). 4369 * 4370 * broken 4371 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4372 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4373 * when a member is gone, so this state will at least alert the 4374 * user that something is wrong. 4375 */ 4376 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4377 write_pending, active_idle, broken, bad_word}; 4378 static char *array_states[] = { 4379 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4380 "write-pending", "active-idle", "broken", NULL }; 4381 4382 static int match_word(const char *word, char **list) 4383 { 4384 int n; 4385 for (n=0; list[n]; n++) 4386 if (cmd_match(word, list[n])) 4387 break; 4388 return n; 4389 } 4390 4391 static ssize_t 4392 array_state_show(struct mddev *mddev, char *page) 4393 { 4394 enum array_state st = inactive; 4395 4396 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4397 switch(mddev->ro) { 4398 case 1: 4399 st = readonly; 4400 break; 4401 case 2: 4402 st = read_auto; 4403 break; 4404 case 0: 4405 spin_lock(&mddev->lock); 4406 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4407 st = write_pending; 4408 else if (mddev->in_sync) 4409 st = clean; 4410 else if (mddev->safemode) 4411 st = active_idle; 4412 else 4413 st = active; 4414 spin_unlock(&mddev->lock); 4415 } 4416 4417 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4418 st = broken; 4419 } else { 4420 if (list_empty(&mddev->disks) && 4421 mddev->raid_disks == 0 && 4422 mddev->dev_sectors == 0) 4423 st = clear; 4424 else 4425 st = inactive; 4426 } 4427 return sprintf(page, "%s\n", array_states[st]); 4428 } 4429 4430 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4431 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4432 static int restart_array(struct mddev *mddev); 4433 4434 static ssize_t 4435 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4436 { 4437 int err = 0; 4438 enum array_state st = match_word(buf, array_states); 4439 4440 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4441 /* don't take reconfig_mutex when toggling between 4442 * clean and active 4443 */ 4444 spin_lock(&mddev->lock); 4445 if (st == active) { 4446 restart_array(mddev); 4447 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4448 md_wakeup_thread(mddev->thread); 4449 wake_up(&mddev->sb_wait); 4450 } else /* st == clean */ { 4451 restart_array(mddev); 4452 if (!set_in_sync(mddev)) 4453 err = -EBUSY; 4454 } 4455 if (!err) 4456 sysfs_notify_dirent_safe(mddev->sysfs_state); 4457 spin_unlock(&mddev->lock); 4458 return err ?: len; 4459 } 4460 err = mddev_lock(mddev); 4461 if (err) 4462 return err; 4463 err = -EINVAL; 4464 switch(st) { 4465 case bad_word: 4466 break; 4467 case clear: 4468 /* stopping an active array */ 4469 err = do_md_stop(mddev, 0, NULL); 4470 break; 4471 case inactive: 4472 /* stopping an active array */ 4473 if (mddev->pers) 4474 err = do_md_stop(mddev, 2, NULL); 4475 else 4476 err = 0; /* already inactive */ 4477 break; 4478 case suspended: 4479 break; /* not supported yet */ 4480 case readonly: 4481 if (mddev->pers) 4482 err = md_set_readonly(mddev, NULL); 4483 else { 4484 mddev->ro = 1; 4485 set_disk_ro(mddev->gendisk, 1); 4486 err = do_md_run(mddev); 4487 } 4488 break; 4489 case read_auto: 4490 if (mddev->pers) { 4491 if (mddev->ro == 0) 4492 err = md_set_readonly(mddev, NULL); 4493 else if (mddev->ro == 1) 4494 err = restart_array(mddev); 4495 if (err == 0) { 4496 mddev->ro = 2; 4497 set_disk_ro(mddev->gendisk, 0); 4498 } 4499 } else { 4500 mddev->ro = 2; 4501 err = do_md_run(mddev); 4502 } 4503 break; 4504 case clean: 4505 if (mddev->pers) { 4506 err = restart_array(mddev); 4507 if (err) 4508 break; 4509 spin_lock(&mddev->lock); 4510 if (!set_in_sync(mddev)) 4511 err = -EBUSY; 4512 spin_unlock(&mddev->lock); 4513 } else 4514 err = -EINVAL; 4515 break; 4516 case active: 4517 if (mddev->pers) { 4518 err = restart_array(mddev); 4519 if (err) 4520 break; 4521 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4522 wake_up(&mddev->sb_wait); 4523 err = 0; 4524 } else { 4525 mddev->ro = 0; 4526 set_disk_ro(mddev->gendisk, 0); 4527 err = do_md_run(mddev); 4528 } 4529 break; 4530 case write_pending: 4531 case active_idle: 4532 case broken: 4533 /* these cannot be set */ 4534 break; 4535 } 4536 4537 if (!err) { 4538 if (mddev->hold_active == UNTIL_IOCTL) 4539 mddev->hold_active = 0; 4540 sysfs_notify_dirent_safe(mddev->sysfs_state); 4541 } 4542 mddev_unlock(mddev); 4543 return err ?: len; 4544 } 4545 static struct md_sysfs_entry md_array_state = 4546 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4547 4548 static ssize_t 4549 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4550 return sprintf(page, "%d\n", 4551 atomic_read(&mddev->max_corr_read_errors)); 4552 } 4553 4554 static ssize_t 4555 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4556 { 4557 unsigned int n; 4558 int rv; 4559 4560 rv = kstrtouint(buf, 10, &n); 4561 if (rv < 0) 4562 return rv; 4563 atomic_set(&mddev->max_corr_read_errors, n); 4564 return len; 4565 } 4566 4567 static struct md_sysfs_entry max_corr_read_errors = 4568 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4569 max_corrected_read_errors_store); 4570 4571 static ssize_t 4572 null_show(struct mddev *mddev, char *page) 4573 { 4574 return -EINVAL; 4575 } 4576 4577 /* need to ensure rdev_delayed_delete() has completed */ 4578 static void flush_rdev_wq(struct mddev *mddev) 4579 { 4580 struct md_rdev *rdev; 4581 4582 rcu_read_lock(); 4583 rdev_for_each_rcu(rdev, mddev) 4584 if (work_pending(&rdev->del_work)) { 4585 flush_workqueue(md_rdev_misc_wq); 4586 break; 4587 } 4588 rcu_read_unlock(); 4589 } 4590 4591 static ssize_t 4592 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4593 { 4594 /* buf must be %d:%d\n? giving major and minor numbers */ 4595 /* The new device is added to the array. 4596 * If the array has a persistent superblock, we read the 4597 * superblock to initialise info and check validity. 4598 * Otherwise, only checking done is that in bind_rdev_to_array, 4599 * which mainly checks size. 4600 */ 4601 char *e; 4602 int major = simple_strtoul(buf, &e, 10); 4603 int minor; 4604 dev_t dev; 4605 struct md_rdev *rdev; 4606 int err; 4607 4608 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4609 return -EINVAL; 4610 minor = simple_strtoul(e+1, &e, 10); 4611 if (*e && *e != '\n') 4612 return -EINVAL; 4613 dev = MKDEV(major, minor); 4614 if (major != MAJOR(dev) || 4615 minor != MINOR(dev)) 4616 return -EOVERFLOW; 4617 4618 flush_rdev_wq(mddev); 4619 err = mddev_lock(mddev); 4620 if (err) 4621 return err; 4622 if (mddev->persistent) { 4623 rdev = md_import_device(dev, mddev->major_version, 4624 mddev->minor_version); 4625 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4626 struct md_rdev *rdev0 4627 = list_entry(mddev->disks.next, 4628 struct md_rdev, same_set); 4629 err = super_types[mddev->major_version] 4630 .load_super(rdev, rdev0, mddev->minor_version); 4631 if (err < 0) 4632 goto out; 4633 } 4634 } else if (mddev->external) 4635 rdev = md_import_device(dev, -2, -1); 4636 else 4637 rdev = md_import_device(dev, -1, -1); 4638 4639 if (IS_ERR(rdev)) { 4640 mddev_unlock(mddev); 4641 return PTR_ERR(rdev); 4642 } 4643 err = bind_rdev_to_array(rdev, mddev); 4644 out: 4645 if (err) 4646 export_rdev(rdev); 4647 mddev_unlock(mddev); 4648 if (!err) 4649 md_new_event(mddev); 4650 return err ? err : len; 4651 } 4652 4653 static struct md_sysfs_entry md_new_device = 4654 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4655 4656 static ssize_t 4657 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4658 { 4659 char *end; 4660 unsigned long chunk, end_chunk; 4661 int err; 4662 4663 err = mddev_lock(mddev); 4664 if (err) 4665 return err; 4666 if (!mddev->bitmap) 4667 goto out; 4668 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4669 while (*buf) { 4670 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4671 if (buf == end) break; 4672 if (*end == '-') { /* range */ 4673 buf = end + 1; 4674 end_chunk = simple_strtoul(buf, &end, 0); 4675 if (buf == end) break; 4676 } 4677 if (*end && !isspace(*end)) break; 4678 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4679 buf = skip_spaces(end); 4680 } 4681 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4682 out: 4683 mddev_unlock(mddev); 4684 return len; 4685 } 4686 4687 static struct md_sysfs_entry md_bitmap = 4688 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4689 4690 static ssize_t 4691 size_show(struct mddev *mddev, char *page) 4692 { 4693 return sprintf(page, "%llu\n", 4694 (unsigned long long)mddev->dev_sectors / 2); 4695 } 4696 4697 static int update_size(struct mddev *mddev, sector_t num_sectors); 4698 4699 static ssize_t 4700 size_store(struct mddev *mddev, const char *buf, size_t len) 4701 { 4702 /* If array is inactive, we can reduce the component size, but 4703 * not increase it (except from 0). 4704 * If array is active, we can try an on-line resize 4705 */ 4706 sector_t sectors; 4707 int err = strict_blocks_to_sectors(buf, §ors); 4708 4709 if (err < 0) 4710 return err; 4711 err = mddev_lock(mddev); 4712 if (err) 4713 return err; 4714 if (mddev->pers) { 4715 err = update_size(mddev, sectors); 4716 if (err == 0) 4717 md_update_sb(mddev, 1); 4718 } else { 4719 if (mddev->dev_sectors == 0 || 4720 mddev->dev_sectors > sectors) 4721 mddev->dev_sectors = sectors; 4722 else 4723 err = -ENOSPC; 4724 } 4725 mddev_unlock(mddev); 4726 return err ? err : len; 4727 } 4728 4729 static struct md_sysfs_entry md_size = 4730 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4731 4732 /* Metadata version. 4733 * This is one of 4734 * 'none' for arrays with no metadata (good luck...) 4735 * 'external' for arrays with externally managed metadata, 4736 * or N.M for internally known formats 4737 */ 4738 static ssize_t 4739 metadata_show(struct mddev *mddev, char *page) 4740 { 4741 if (mddev->persistent) 4742 return sprintf(page, "%d.%d\n", 4743 mddev->major_version, mddev->minor_version); 4744 else if (mddev->external) 4745 return sprintf(page, "external:%s\n", mddev->metadata_type); 4746 else 4747 return sprintf(page, "none\n"); 4748 } 4749 4750 static ssize_t 4751 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4752 { 4753 int major, minor; 4754 char *e; 4755 int err; 4756 /* Changing the details of 'external' metadata is 4757 * always permitted. Otherwise there must be 4758 * no devices attached to the array. 4759 */ 4760 4761 err = mddev_lock(mddev); 4762 if (err) 4763 return err; 4764 err = -EBUSY; 4765 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4766 ; 4767 else if (!list_empty(&mddev->disks)) 4768 goto out_unlock; 4769 4770 err = 0; 4771 if (cmd_match(buf, "none")) { 4772 mddev->persistent = 0; 4773 mddev->external = 0; 4774 mddev->major_version = 0; 4775 mddev->minor_version = 90; 4776 goto out_unlock; 4777 } 4778 if (strncmp(buf, "external:", 9) == 0) { 4779 size_t namelen = len-9; 4780 if (namelen >= sizeof(mddev->metadata_type)) 4781 namelen = sizeof(mddev->metadata_type)-1; 4782 strncpy(mddev->metadata_type, buf+9, namelen); 4783 mddev->metadata_type[namelen] = 0; 4784 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4785 mddev->metadata_type[--namelen] = 0; 4786 mddev->persistent = 0; 4787 mddev->external = 1; 4788 mddev->major_version = 0; 4789 mddev->minor_version = 90; 4790 goto out_unlock; 4791 } 4792 major = simple_strtoul(buf, &e, 10); 4793 err = -EINVAL; 4794 if (e==buf || *e != '.') 4795 goto out_unlock; 4796 buf = e+1; 4797 minor = simple_strtoul(buf, &e, 10); 4798 if (e==buf || (*e && *e != '\n') ) 4799 goto out_unlock; 4800 err = -ENOENT; 4801 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4802 goto out_unlock; 4803 mddev->major_version = major; 4804 mddev->minor_version = minor; 4805 mddev->persistent = 1; 4806 mddev->external = 0; 4807 err = 0; 4808 out_unlock: 4809 mddev_unlock(mddev); 4810 return err ?: len; 4811 } 4812 4813 static struct md_sysfs_entry md_metadata = 4814 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4815 4816 static ssize_t 4817 action_show(struct mddev *mddev, char *page) 4818 { 4819 char *type = "idle"; 4820 unsigned long recovery = mddev->recovery; 4821 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4822 type = "frozen"; 4823 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4824 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4825 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4826 type = "reshape"; 4827 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4828 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4829 type = "resync"; 4830 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4831 type = "check"; 4832 else 4833 type = "repair"; 4834 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4835 type = "recover"; 4836 else if (mddev->reshape_position != MaxSector) 4837 type = "reshape"; 4838 } 4839 return sprintf(page, "%s\n", type); 4840 } 4841 4842 static ssize_t 4843 action_store(struct mddev *mddev, const char *page, size_t len) 4844 { 4845 if (!mddev->pers || !mddev->pers->sync_request) 4846 return -EINVAL; 4847 4848 4849 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4850 if (cmd_match(page, "frozen")) 4851 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4852 else 4853 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4854 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4855 mddev_lock(mddev) == 0) { 4856 if (work_pending(&mddev->del_work)) 4857 flush_workqueue(md_misc_wq); 4858 if (mddev->sync_thread) { 4859 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4860 md_reap_sync_thread(mddev); 4861 } 4862 mddev_unlock(mddev); 4863 } 4864 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4865 return -EBUSY; 4866 else if (cmd_match(page, "resync")) 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 else if (cmd_match(page, "recover")) { 4869 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4870 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4871 } else if (cmd_match(page, "reshape")) { 4872 int err; 4873 if (mddev->pers->start_reshape == NULL) 4874 return -EINVAL; 4875 err = mddev_lock(mddev); 4876 if (!err) { 4877 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4878 err = -EBUSY; 4879 else { 4880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4881 err = mddev->pers->start_reshape(mddev); 4882 } 4883 mddev_unlock(mddev); 4884 } 4885 if (err) 4886 return err; 4887 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4888 } else { 4889 if (cmd_match(page, "check")) 4890 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4891 else if (!cmd_match(page, "repair")) 4892 return -EINVAL; 4893 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4894 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4895 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4896 } 4897 if (mddev->ro == 2) { 4898 /* A write to sync_action is enough to justify 4899 * canceling read-auto mode 4900 */ 4901 mddev->ro = 0; 4902 md_wakeup_thread(mddev->sync_thread); 4903 } 4904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4905 md_wakeup_thread(mddev->thread); 4906 sysfs_notify_dirent_safe(mddev->sysfs_action); 4907 return len; 4908 } 4909 4910 static struct md_sysfs_entry md_scan_mode = 4911 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4912 4913 static ssize_t 4914 last_sync_action_show(struct mddev *mddev, char *page) 4915 { 4916 return sprintf(page, "%s\n", mddev->last_sync_action); 4917 } 4918 4919 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4920 4921 static ssize_t 4922 mismatch_cnt_show(struct mddev *mddev, char *page) 4923 { 4924 return sprintf(page, "%llu\n", 4925 (unsigned long long) 4926 atomic64_read(&mddev->resync_mismatches)); 4927 } 4928 4929 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4930 4931 static ssize_t 4932 sync_min_show(struct mddev *mddev, char *page) 4933 { 4934 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4935 mddev->sync_speed_min ? "local": "system"); 4936 } 4937 4938 static ssize_t 4939 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4940 { 4941 unsigned int min; 4942 int rv; 4943 4944 if (strncmp(buf, "system", 6)==0) { 4945 min = 0; 4946 } else { 4947 rv = kstrtouint(buf, 10, &min); 4948 if (rv < 0) 4949 return rv; 4950 if (min == 0) 4951 return -EINVAL; 4952 } 4953 mddev->sync_speed_min = min; 4954 return len; 4955 } 4956 4957 static struct md_sysfs_entry md_sync_min = 4958 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4959 4960 static ssize_t 4961 sync_max_show(struct mddev *mddev, char *page) 4962 { 4963 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4964 mddev->sync_speed_max ? "local": "system"); 4965 } 4966 4967 static ssize_t 4968 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4969 { 4970 unsigned int max; 4971 int rv; 4972 4973 if (strncmp(buf, "system", 6)==0) { 4974 max = 0; 4975 } else { 4976 rv = kstrtouint(buf, 10, &max); 4977 if (rv < 0) 4978 return rv; 4979 if (max == 0) 4980 return -EINVAL; 4981 } 4982 mddev->sync_speed_max = max; 4983 return len; 4984 } 4985 4986 static struct md_sysfs_entry md_sync_max = 4987 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4988 4989 static ssize_t 4990 degraded_show(struct mddev *mddev, char *page) 4991 { 4992 return sprintf(page, "%d\n", mddev->degraded); 4993 } 4994 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4995 4996 static ssize_t 4997 sync_force_parallel_show(struct mddev *mddev, char *page) 4998 { 4999 return sprintf(page, "%d\n", mddev->parallel_resync); 5000 } 5001 5002 static ssize_t 5003 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5004 { 5005 long n; 5006 5007 if (kstrtol(buf, 10, &n)) 5008 return -EINVAL; 5009 5010 if (n != 0 && n != 1) 5011 return -EINVAL; 5012 5013 mddev->parallel_resync = n; 5014 5015 if (mddev->sync_thread) 5016 wake_up(&resync_wait); 5017 5018 return len; 5019 } 5020 5021 /* force parallel resync, even with shared block devices */ 5022 static struct md_sysfs_entry md_sync_force_parallel = 5023 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5024 sync_force_parallel_show, sync_force_parallel_store); 5025 5026 static ssize_t 5027 sync_speed_show(struct mddev *mddev, char *page) 5028 { 5029 unsigned long resync, dt, db; 5030 if (mddev->curr_resync == 0) 5031 return sprintf(page, "none\n"); 5032 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5033 dt = (jiffies - mddev->resync_mark) / HZ; 5034 if (!dt) dt++; 5035 db = resync - mddev->resync_mark_cnt; 5036 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5037 } 5038 5039 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5040 5041 static ssize_t 5042 sync_completed_show(struct mddev *mddev, char *page) 5043 { 5044 unsigned long long max_sectors, resync; 5045 5046 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5047 return sprintf(page, "none\n"); 5048 5049 if (mddev->curr_resync == 1 || 5050 mddev->curr_resync == 2) 5051 return sprintf(page, "delayed\n"); 5052 5053 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5054 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5055 max_sectors = mddev->resync_max_sectors; 5056 else 5057 max_sectors = mddev->dev_sectors; 5058 5059 resync = mddev->curr_resync_completed; 5060 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5061 } 5062 5063 static struct md_sysfs_entry md_sync_completed = 5064 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5065 5066 static ssize_t 5067 min_sync_show(struct mddev *mddev, char *page) 5068 { 5069 return sprintf(page, "%llu\n", 5070 (unsigned long long)mddev->resync_min); 5071 } 5072 static ssize_t 5073 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5074 { 5075 unsigned long long min; 5076 int err; 5077 5078 if (kstrtoull(buf, 10, &min)) 5079 return -EINVAL; 5080 5081 spin_lock(&mddev->lock); 5082 err = -EINVAL; 5083 if (min > mddev->resync_max) 5084 goto out_unlock; 5085 5086 err = -EBUSY; 5087 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5088 goto out_unlock; 5089 5090 /* Round down to multiple of 4K for safety */ 5091 mddev->resync_min = round_down(min, 8); 5092 err = 0; 5093 5094 out_unlock: 5095 spin_unlock(&mddev->lock); 5096 return err ?: len; 5097 } 5098 5099 static struct md_sysfs_entry md_min_sync = 5100 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5101 5102 static ssize_t 5103 max_sync_show(struct mddev *mddev, char *page) 5104 { 5105 if (mddev->resync_max == MaxSector) 5106 return sprintf(page, "max\n"); 5107 else 5108 return sprintf(page, "%llu\n", 5109 (unsigned long long)mddev->resync_max); 5110 } 5111 static ssize_t 5112 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5113 { 5114 int err; 5115 spin_lock(&mddev->lock); 5116 if (strncmp(buf, "max", 3) == 0) 5117 mddev->resync_max = MaxSector; 5118 else { 5119 unsigned long long max; 5120 int chunk; 5121 5122 err = -EINVAL; 5123 if (kstrtoull(buf, 10, &max)) 5124 goto out_unlock; 5125 if (max < mddev->resync_min) 5126 goto out_unlock; 5127 5128 err = -EBUSY; 5129 if (max < mddev->resync_max && 5130 mddev->ro == 0 && 5131 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5132 goto out_unlock; 5133 5134 /* Must be a multiple of chunk_size */ 5135 chunk = mddev->chunk_sectors; 5136 if (chunk) { 5137 sector_t temp = max; 5138 5139 err = -EINVAL; 5140 if (sector_div(temp, chunk)) 5141 goto out_unlock; 5142 } 5143 mddev->resync_max = max; 5144 } 5145 wake_up(&mddev->recovery_wait); 5146 err = 0; 5147 out_unlock: 5148 spin_unlock(&mddev->lock); 5149 return err ?: len; 5150 } 5151 5152 static struct md_sysfs_entry md_max_sync = 5153 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5154 5155 static ssize_t 5156 suspend_lo_show(struct mddev *mddev, char *page) 5157 { 5158 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5159 } 5160 5161 static ssize_t 5162 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5163 { 5164 unsigned long long new; 5165 int err; 5166 5167 err = kstrtoull(buf, 10, &new); 5168 if (err < 0) 5169 return err; 5170 if (new != (sector_t)new) 5171 return -EINVAL; 5172 5173 err = mddev_lock(mddev); 5174 if (err) 5175 return err; 5176 err = -EINVAL; 5177 if (mddev->pers == NULL || 5178 mddev->pers->quiesce == NULL) 5179 goto unlock; 5180 mddev_suspend(mddev); 5181 mddev->suspend_lo = new; 5182 mddev_resume(mddev); 5183 5184 err = 0; 5185 unlock: 5186 mddev_unlock(mddev); 5187 return err ?: len; 5188 } 5189 static struct md_sysfs_entry md_suspend_lo = 5190 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5191 5192 static ssize_t 5193 suspend_hi_show(struct mddev *mddev, char *page) 5194 { 5195 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5196 } 5197 5198 static ssize_t 5199 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5200 { 5201 unsigned long long new; 5202 int err; 5203 5204 err = kstrtoull(buf, 10, &new); 5205 if (err < 0) 5206 return err; 5207 if (new != (sector_t)new) 5208 return -EINVAL; 5209 5210 err = mddev_lock(mddev); 5211 if (err) 5212 return err; 5213 err = -EINVAL; 5214 if (mddev->pers == NULL) 5215 goto unlock; 5216 5217 mddev_suspend(mddev); 5218 mddev->suspend_hi = new; 5219 mddev_resume(mddev); 5220 5221 err = 0; 5222 unlock: 5223 mddev_unlock(mddev); 5224 return err ?: len; 5225 } 5226 static struct md_sysfs_entry md_suspend_hi = 5227 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5228 5229 static ssize_t 5230 reshape_position_show(struct mddev *mddev, char *page) 5231 { 5232 if (mddev->reshape_position != MaxSector) 5233 return sprintf(page, "%llu\n", 5234 (unsigned long long)mddev->reshape_position); 5235 strcpy(page, "none\n"); 5236 return 5; 5237 } 5238 5239 static ssize_t 5240 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5241 { 5242 struct md_rdev *rdev; 5243 unsigned long long new; 5244 int err; 5245 5246 err = kstrtoull(buf, 10, &new); 5247 if (err < 0) 5248 return err; 5249 if (new != (sector_t)new) 5250 return -EINVAL; 5251 err = mddev_lock(mddev); 5252 if (err) 5253 return err; 5254 err = -EBUSY; 5255 if (mddev->pers) 5256 goto unlock; 5257 mddev->reshape_position = new; 5258 mddev->delta_disks = 0; 5259 mddev->reshape_backwards = 0; 5260 mddev->new_level = mddev->level; 5261 mddev->new_layout = mddev->layout; 5262 mddev->new_chunk_sectors = mddev->chunk_sectors; 5263 rdev_for_each(rdev, mddev) 5264 rdev->new_data_offset = rdev->data_offset; 5265 err = 0; 5266 unlock: 5267 mddev_unlock(mddev); 5268 return err ?: len; 5269 } 5270 5271 static struct md_sysfs_entry md_reshape_position = 5272 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5273 reshape_position_store); 5274 5275 static ssize_t 5276 reshape_direction_show(struct mddev *mddev, char *page) 5277 { 5278 return sprintf(page, "%s\n", 5279 mddev->reshape_backwards ? "backwards" : "forwards"); 5280 } 5281 5282 static ssize_t 5283 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5284 { 5285 int backwards = 0; 5286 int err; 5287 5288 if (cmd_match(buf, "forwards")) 5289 backwards = 0; 5290 else if (cmd_match(buf, "backwards")) 5291 backwards = 1; 5292 else 5293 return -EINVAL; 5294 if (mddev->reshape_backwards == backwards) 5295 return len; 5296 5297 err = mddev_lock(mddev); 5298 if (err) 5299 return err; 5300 /* check if we are allowed to change */ 5301 if (mddev->delta_disks) 5302 err = -EBUSY; 5303 else if (mddev->persistent && 5304 mddev->major_version == 0) 5305 err = -EINVAL; 5306 else 5307 mddev->reshape_backwards = backwards; 5308 mddev_unlock(mddev); 5309 return err ?: len; 5310 } 5311 5312 static struct md_sysfs_entry md_reshape_direction = 5313 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5314 reshape_direction_store); 5315 5316 static ssize_t 5317 array_size_show(struct mddev *mddev, char *page) 5318 { 5319 if (mddev->external_size) 5320 return sprintf(page, "%llu\n", 5321 (unsigned long long)mddev->array_sectors/2); 5322 else 5323 return sprintf(page, "default\n"); 5324 } 5325 5326 static ssize_t 5327 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5328 { 5329 sector_t sectors; 5330 int err; 5331 5332 err = mddev_lock(mddev); 5333 if (err) 5334 return err; 5335 5336 /* cluster raid doesn't support change array_sectors */ 5337 if (mddev_is_clustered(mddev)) { 5338 mddev_unlock(mddev); 5339 return -EINVAL; 5340 } 5341 5342 if (strncmp(buf, "default", 7) == 0) { 5343 if (mddev->pers) 5344 sectors = mddev->pers->size(mddev, 0, 0); 5345 else 5346 sectors = mddev->array_sectors; 5347 5348 mddev->external_size = 0; 5349 } else { 5350 if (strict_blocks_to_sectors(buf, §ors) < 0) 5351 err = -EINVAL; 5352 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5353 err = -E2BIG; 5354 else 5355 mddev->external_size = 1; 5356 } 5357 5358 if (!err) { 5359 mddev->array_sectors = sectors; 5360 if (mddev->pers) 5361 set_capacity_and_notify(mddev->gendisk, 5362 mddev->array_sectors); 5363 } 5364 mddev_unlock(mddev); 5365 return err ?: len; 5366 } 5367 5368 static struct md_sysfs_entry md_array_size = 5369 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5370 array_size_store); 5371 5372 static ssize_t 5373 consistency_policy_show(struct mddev *mddev, char *page) 5374 { 5375 int ret; 5376 5377 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5378 ret = sprintf(page, "journal\n"); 5379 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5380 ret = sprintf(page, "ppl\n"); 5381 } else if (mddev->bitmap) { 5382 ret = sprintf(page, "bitmap\n"); 5383 } else if (mddev->pers) { 5384 if (mddev->pers->sync_request) 5385 ret = sprintf(page, "resync\n"); 5386 else 5387 ret = sprintf(page, "none\n"); 5388 } else { 5389 ret = sprintf(page, "unknown\n"); 5390 } 5391 5392 return ret; 5393 } 5394 5395 static ssize_t 5396 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5397 { 5398 int err = 0; 5399 5400 if (mddev->pers) { 5401 if (mddev->pers->change_consistency_policy) 5402 err = mddev->pers->change_consistency_policy(mddev, buf); 5403 else 5404 err = -EBUSY; 5405 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5406 set_bit(MD_HAS_PPL, &mddev->flags); 5407 } else { 5408 err = -EINVAL; 5409 } 5410 5411 return err ? err : len; 5412 } 5413 5414 static struct md_sysfs_entry md_consistency_policy = 5415 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5416 consistency_policy_store); 5417 5418 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5419 { 5420 return sprintf(page, "%d\n", mddev->fail_last_dev); 5421 } 5422 5423 /* 5424 * Setting fail_last_dev to true to allow last device to be forcibly removed 5425 * from RAID1/RAID10. 5426 */ 5427 static ssize_t 5428 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5429 { 5430 int ret; 5431 bool value; 5432 5433 ret = kstrtobool(buf, &value); 5434 if (ret) 5435 return ret; 5436 5437 if (value != mddev->fail_last_dev) 5438 mddev->fail_last_dev = value; 5439 5440 return len; 5441 } 5442 static struct md_sysfs_entry md_fail_last_dev = 5443 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5444 fail_last_dev_store); 5445 5446 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5447 { 5448 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5449 return sprintf(page, "n/a\n"); 5450 else 5451 return sprintf(page, "%d\n", mddev->serialize_policy); 5452 } 5453 5454 /* 5455 * Setting serialize_policy to true to enforce write IO is not reordered 5456 * for raid1. 5457 */ 5458 static ssize_t 5459 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5460 { 5461 int err; 5462 bool value; 5463 5464 err = kstrtobool(buf, &value); 5465 if (err) 5466 return err; 5467 5468 if (value == mddev->serialize_policy) 5469 return len; 5470 5471 err = mddev_lock(mddev); 5472 if (err) 5473 return err; 5474 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5475 pr_err("md: serialize_policy is only effective for raid1\n"); 5476 err = -EINVAL; 5477 goto unlock; 5478 } 5479 5480 mddev_suspend(mddev); 5481 if (value) 5482 mddev_create_serial_pool(mddev, NULL, true); 5483 else 5484 mddev_destroy_serial_pool(mddev, NULL, true); 5485 mddev->serialize_policy = value; 5486 mddev_resume(mddev); 5487 unlock: 5488 mddev_unlock(mddev); 5489 return err ?: len; 5490 } 5491 5492 static struct md_sysfs_entry md_serialize_policy = 5493 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5494 serialize_policy_store); 5495 5496 5497 static struct attribute *md_default_attrs[] = { 5498 &md_level.attr, 5499 &md_layout.attr, 5500 &md_raid_disks.attr, 5501 &md_uuid.attr, 5502 &md_chunk_size.attr, 5503 &md_size.attr, 5504 &md_resync_start.attr, 5505 &md_metadata.attr, 5506 &md_new_device.attr, 5507 &md_safe_delay.attr, 5508 &md_array_state.attr, 5509 &md_reshape_position.attr, 5510 &md_reshape_direction.attr, 5511 &md_array_size.attr, 5512 &max_corr_read_errors.attr, 5513 &md_consistency_policy.attr, 5514 &md_fail_last_dev.attr, 5515 &md_serialize_policy.attr, 5516 NULL, 5517 }; 5518 5519 static struct attribute *md_redundancy_attrs[] = { 5520 &md_scan_mode.attr, 5521 &md_last_scan_mode.attr, 5522 &md_mismatches.attr, 5523 &md_sync_min.attr, 5524 &md_sync_max.attr, 5525 &md_sync_speed.attr, 5526 &md_sync_force_parallel.attr, 5527 &md_sync_completed.attr, 5528 &md_min_sync.attr, 5529 &md_max_sync.attr, 5530 &md_suspend_lo.attr, 5531 &md_suspend_hi.attr, 5532 &md_bitmap.attr, 5533 &md_degraded.attr, 5534 NULL, 5535 }; 5536 static struct attribute_group md_redundancy_group = { 5537 .name = NULL, 5538 .attrs = md_redundancy_attrs, 5539 }; 5540 5541 static ssize_t 5542 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5543 { 5544 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5545 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5546 ssize_t rv; 5547 5548 if (!entry->show) 5549 return -EIO; 5550 spin_lock(&all_mddevs_lock); 5551 if (list_empty(&mddev->all_mddevs)) { 5552 spin_unlock(&all_mddevs_lock); 5553 return -EBUSY; 5554 } 5555 mddev_get(mddev); 5556 spin_unlock(&all_mddevs_lock); 5557 5558 rv = entry->show(mddev, page); 5559 mddev_put(mddev); 5560 return rv; 5561 } 5562 5563 static ssize_t 5564 md_attr_store(struct kobject *kobj, struct attribute *attr, 5565 const char *page, size_t length) 5566 { 5567 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5568 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5569 ssize_t rv; 5570 5571 if (!entry->store) 5572 return -EIO; 5573 if (!capable(CAP_SYS_ADMIN)) 5574 return -EACCES; 5575 spin_lock(&all_mddevs_lock); 5576 if (list_empty(&mddev->all_mddevs)) { 5577 spin_unlock(&all_mddevs_lock); 5578 return -EBUSY; 5579 } 5580 mddev_get(mddev); 5581 spin_unlock(&all_mddevs_lock); 5582 rv = entry->store(mddev, page, length); 5583 mddev_put(mddev); 5584 return rv; 5585 } 5586 5587 static void md_free(struct kobject *ko) 5588 { 5589 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5590 5591 if (mddev->sysfs_state) 5592 sysfs_put(mddev->sysfs_state); 5593 if (mddev->sysfs_level) 5594 sysfs_put(mddev->sysfs_level); 5595 5596 if (mddev->gendisk) 5597 del_gendisk(mddev->gendisk); 5598 if (mddev->queue) 5599 blk_cleanup_queue(mddev->queue); 5600 if (mddev->gendisk) 5601 put_disk(mddev->gendisk); 5602 percpu_ref_exit(&mddev->writes_pending); 5603 5604 bioset_exit(&mddev->bio_set); 5605 bioset_exit(&mddev->sync_set); 5606 mempool_exit(&mddev->md_io_pool); 5607 kfree(mddev); 5608 } 5609 5610 static const struct sysfs_ops md_sysfs_ops = { 5611 .show = md_attr_show, 5612 .store = md_attr_store, 5613 }; 5614 static struct kobj_type md_ktype = { 5615 .release = md_free, 5616 .sysfs_ops = &md_sysfs_ops, 5617 .default_attrs = md_default_attrs, 5618 }; 5619 5620 int mdp_major = 0; 5621 5622 static void mddev_delayed_delete(struct work_struct *ws) 5623 { 5624 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5625 5626 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5627 kobject_del(&mddev->kobj); 5628 kobject_put(&mddev->kobj); 5629 } 5630 5631 static void no_op(struct percpu_ref *r) {} 5632 5633 int mddev_init_writes_pending(struct mddev *mddev) 5634 { 5635 if (mddev->writes_pending.percpu_count_ptr) 5636 return 0; 5637 if (percpu_ref_init(&mddev->writes_pending, no_op, 5638 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5639 return -ENOMEM; 5640 /* We want to start with the refcount at zero */ 5641 percpu_ref_put(&mddev->writes_pending); 5642 return 0; 5643 } 5644 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5645 5646 static int md_alloc(dev_t dev, char *name) 5647 { 5648 /* 5649 * If dev is zero, name is the name of a device to allocate with 5650 * an arbitrary minor number. It will be "md_???" 5651 * If dev is non-zero it must be a device number with a MAJOR of 5652 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5653 * the device is being created by opening a node in /dev. 5654 * If "name" is not NULL, the device is being created by 5655 * writing to /sys/module/md_mod/parameters/new_array. 5656 */ 5657 static DEFINE_MUTEX(disks_mutex); 5658 struct mddev *mddev = mddev_find(dev); 5659 struct gendisk *disk; 5660 int partitioned; 5661 int shift; 5662 int unit; 5663 int error; 5664 5665 if (!mddev) 5666 return -ENODEV; 5667 5668 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5669 shift = partitioned ? MdpMinorShift : 0; 5670 unit = MINOR(mddev->unit) >> shift; 5671 5672 /* wait for any previous instance of this device to be 5673 * completely removed (mddev_delayed_delete). 5674 */ 5675 flush_workqueue(md_misc_wq); 5676 5677 mutex_lock(&disks_mutex); 5678 error = -EEXIST; 5679 if (mddev->gendisk) 5680 goto abort; 5681 5682 if (name && !dev) { 5683 /* Need to ensure that 'name' is not a duplicate. 5684 */ 5685 struct mddev *mddev2; 5686 spin_lock(&all_mddevs_lock); 5687 5688 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5689 if (mddev2->gendisk && 5690 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5691 spin_unlock(&all_mddevs_lock); 5692 goto abort; 5693 } 5694 spin_unlock(&all_mddevs_lock); 5695 } 5696 if (name && dev) 5697 /* 5698 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5699 */ 5700 mddev->hold_active = UNTIL_STOP; 5701 5702 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5703 sizeof(struct md_io)); 5704 if (error) 5705 goto abort; 5706 5707 error = -ENOMEM; 5708 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5709 if (!mddev->queue) 5710 goto abort; 5711 5712 blk_set_stacking_limits(&mddev->queue->limits); 5713 5714 disk = alloc_disk(1 << shift); 5715 if (!disk) { 5716 blk_cleanup_queue(mddev->queue); 5717 mddev->queue = NULL; 5718 goto abort; 5719 } 5720 disk->major = MAJOR(mddev->unit); 5721 disk->first_minor = unit << shift; 5722 if (name) 5723 strcpy(disk->disk_name, name); 5724 else if (partitioned) 5725 sprintf(disk->disk_name, "md_d%d", unit); 5726 else 5727 sprintf(disk->disk_name, "md%d", unit); 5728 disk->fops = &md_fops; 5729 disk->private_data = mddev; 5730 disk->queue = mddev->queue; 5731 blk_queue_write_cache(mddev->queue, true, true); 5732 /* Allow extended partitions. This makes the 5733 * 'mdp' device redundant, but we can't really 5734 * remove it now. 5735 */ 5736 disk->flags |= GENHD_FL_EXT_DEVT; 5737 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5738 mddev->gendisk = disk; 5739 /* As soon as we call add_disk(), another thread could get 5740 * through to md_open, so make sure it doesn't get too far 5741 */ 5742 mutex_lock(&mddev->open_mutex); 5743 add_disk(disk); 5744 5745 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5746 if (error) { 5747 /* This isn't possible, but as kobject_init_and_add is marked 5748 * __must_check, we must do something with the result 5749 */ 5750 pr_debug("md: cannot register %s/md - name in use\n", 5751 disk->disk_name); 5752 error = 0; 5753 } 5754 if (mddev->kobj.sd && 5755 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5756 pr_debug("pointless warning\n"); 5757 mutex_unlock(&mddev->open_mutex); 5758 abort: 5759 mutex_unlock(&disks_mutex); 5760 if (!error && mddev->kobj.sd) { 5761 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5762 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5763 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5764 } 5765 mddev_put(mddev); 5766 return error; 5767 } 5768 5769 static void md_probe(dev_t dev) 5770 { 5771 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5772 return; 5773 if (create_on_open) 5774 md_alloc(dev, NULL); 5775 } 5776 5777 static int add_named_array(const char *val, const struct kernel_param *kp) 5778 { 5779 /* 5780 * val must be "md_*" or "mdNNN". 5781 * For "md_*" we allocate an array with a large free minor number, and 5782 * set the name to val. val must not already be an active name. 5783 * For "mdNNN" we allocate an array with the minor number NNN 5784 * which must not already be in use. 5785 */ 5786 int len = strlen(val); 5787 char buf[DISK_NAME_LEN]; 5788 unsigned long devnum; 5789 5790 while (len && val[len-1] == '\n') 5791 len--; 5792 if (len >= DISK_NAME_LEN) 5793 return -E2BIG; 5794 strlcpy(buf, val, len+1); 5795 if (strncmp(buf, "md_", 3) == 0) 5796 return md_alloc(0, buf); 5797 if (strncmp(buf, "md", 2) == 0 && 5798 isdigit(buf[2]) && 5799 kstrtoul(buf+2, 10, &devnum) == 0 && 5800 devnum <= MINORMASK) 5801 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5802 5803 return -EINVAL; 5804 } 5805 5806 static void md_safemode_timeout(struct timer_list *t) 5807 { 5808 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5809 5810 mddev->safemode = 1; 5811 if (mddev->external) 5812 sysfs_notify_dirent_safe(mddev->sysfs_state); 5813 5814 md_wakeup_thread(mddev->thread); 5815 } 5816 5817 static int start_dirty_degraded; 5818 5819 int md_run(struct mddev *mddev) 5820 { 5821 int err; 5822 struct md_rdev *rdev; 5823 struct md_personality *pers; 5824 5825 if (list_empty(&mddev->disks)) 5826 /* cannot run an array with no devices.. */ 5827 return -EINVAL; 5828 5829 if (mddev->pers) 5830 return -EBUSY; 5831 /* Cannot run until previous stop completes properly */ 5832 if (mddev->sysfs_active) 5833 return -EBUSY; 5834 5835 /* 5836 * Analyze all RAID superblock(s) 5837 */ 5838 if (!mddev->raid_disks) { 5839 if (!mddev->persistent) 5840 return -EINVAL; 5841 err = analyze_sbs(mddev); 5842 if (err) 5843 return -EINVAL; 5844 } 5845 5846 if (mddev->level != LEVEL_NONE) 5847 request_module("md-level-%d", mddev->level); 5848 else if (mddev->clevel[0]) 5849 request_module("md-%s", mddev->clevel); 5850 5851 /* 5852 * Drop all container device buffers, from now on 5853 * the only valid external interface is through the md 5854 * device. 5855 */ 5856 mddev->has_superblocks = false; 5857 rdev_for_each(rdev, mddev) { 5858 if (test_bit(Faulty, &rdev->flags)) 5859 continue; 5860 sync_blockdev(rdev->bdev); 5861 invalidate_bdev(rdev->bdev); 5862 if (mddev->ro != 1 && 5863 (bdev_read_only(rdev->bdev) || 5864 bdev_read_only(rdev->meta_bdev))) { 5865 mddev->ro = 1; 5866 if (mddev->gendisk) 5867 set_disk_ro(mddev->gendisk, 1); 5868 } 5869 5870 if (rdev->sb_page) 5871 mddev->has_superblocks = true; 5872 5873 /* perform some consistency tests on the device. 5874 * We don't want the data to overlap the metadata, 5875 * Internal Bitmap issues have been handled elsewhere. 5876 */ 5877 if (rdev->meta_bdev) { 5878 /* Nothing to check */; 5879 } else if (rdev->data_offset < rdev->sb_start) { 5880 if (mddev->dev_sectors && 5881 rdev->data_offset + mddev->dev_sectors 5882 > rdev->sb_start) { 5883 pr_warn("md: %s: data overlaps metadata\n", 5884 mdname(mddev)); 5885 return -EINVAL; 5886 } 5887 } else { 5888 if (rdev->sb_start + rdev->sb_size/512 5889 > rdev->data_offset) { 5890 pr_warn("md: %s: metadata overlaps data\n", 5891 mdname(mddev)); 5892 return -EINVAL; 5893 } 5894 } 5895 sysfs_notify_dirent_safe(rdev->sysfs_state); 5896 } 5897 5898 if (!bioset_initialized(&mddev->bio_set)) { 5899 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5900 if (err) 5901 return err; 5902 } 5903 if (!bioset_initialized(&mddev->sync_set)) { 5904 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5905 if (err) 5906 return err; 5907 } 5908 5909 spin_lock(&pers_lock); 5910 pers = find_pers(mddev->level, mddev->clevel); 5911 if (!pers || !try_module_get(pers->owner)) { 5912 spin_unlock(&pers_lock); 5913 if (mddev->level != LEVEL_NONE) 5914 pr_warn("md: personality for level %d is not loaded!\n", 5915 mddev->level); 5916 else 5917 pr_warn("md: personality for level %s is not loaded!\n", 5918 mddev->clevel); 5919 err = -EINVAL; 5920 goto abort; 5921 } 5922 spin_unlock(&pers_lock); 5923 if (mddev->level != pers->level) { 5924 mddev->level = pers->level; 5925 mddev->new_level = pers->level; 5926 } 5927 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5928 5929 if (mddev->reshape_position != MaxSector && 5930 pers->start_reshape == NULL) { 5931 /* This personality cannot handle reshaping... */ 5932 module_put(pers->owner); 5933 err = -EINVAL; 5934 goto abort; 5935 } 5936 5937 if (pers->sync_request) { 5938 /* Warn if this is a potentially silly 5939 * configuration. 5940 */ 5941 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5942 struct md_rdev *rdev2; 5943 int warned = 0; 5944 5945 rdev_for_each(rdev, mddev) 5946 rdev_for_each(rdev2, mddev) { 5947 if (rdev < rdev2 && 5948 rdev->bdev->bd_disk == 5949 rdev2->bdev->bd_disk) { 5950 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5951 mdname(mddev), 5952 bdevname(rdev->bdev,b), 5953 bdevname(rdev2->bdev,b2)); 5954 warned = 1; 5955 } 5956 } 5957 5958 if (warned) 5959 pr_warn("True protection against single-disk failure might be compromised.\n"); 5960 } 5961 5962 mddev->recovery = 0; 5963 /* may be over-ridden by personality */ 5964 mddev->resync_max_sectors = mddev->dev_sectors; 5965 5966 mddev->ok_start_degraded = start_dirty_degraded; 5967 5968 if (start_readonly && mddev->ro == 0) 5969 mddev->ro = 2; /* read-only, but switch on first write */ 5970 5971 err = pers->run(mddev); 5972 if (err) 5973 pr_warn("md: pers->run() failed ...\n"); 5974 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5975 WARN_ONCE(!mddev->external_size, 5976 "%s: default size too small, but 'external_size' not in effect?\n", 5977 __func__); 5978 pr_warn("md: invalid array_size %llu > default size %llu\n", 5979 (unsigned long long)mddev->array_sectors / 2, 5980 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5981 err = -EINVAL; 5982 } 5983 if (err == 0 && pers->sync_request && 5984 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5985 struct bitmap *bitmap; 5986 5987 bitmap = md_bitmap_create(mddev, -1); 5988 if (IS_ERR(bitmap)) { 5989 err = PTR_ERR(bitmap); 5990 pr_warn("%s: failed to create bitmap (%d)\n", 5991 mdname(mddev), err); 5992 } else 5993 mddev->bitmap = bitmap; 5994 5995 } 5996 if (err) 5997 goto bitmap_abort; 5998 5999 if (mddev->bitmap_info.max_write_behind > 0) { 6000 bool create_pool = false; 6001 6002 rdev_for_each(rdev, mddev) { 6003 if (test_bit(WriteMostly, &rdev->flags) && 6004 rdev_init_serial(rdev)) 6005 create_pool = true; 6006 } 6007 if (create_pool && mddev->serial_info_pool == NULL) { 6008 mddev->serial_info_pool = 6009 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6010 sizeof(struct serial_info)); 6011 if (!mddev->serial_info_pool) { 6012 err = -ENOMEM; 6013 goto bitmap_abort; 6014 } 6015 } 6016 } 6017 6018 if (mddev->queue) { 6019 bool nonrot = true; 6020 6021 rdev_for_each(rdev, mddev) { 6022 if (rdev->raid_disk >= 0 && 6023 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6024 nonrot = false; 6025 break; 6026 } 6027 } 6028 if (mddev->degraded) 6029 nonrot = false; 6030 if (nonrot) 6031 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6032 else 6033 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6034 } 6035 if (pers->sync_request) { 6036 if (mddev->kobj.sd && 6037 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6038 pr_warn("md: cannot register extra attributes for %s\n", 6039 mdname(mddev)); 6040 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6041 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6042 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6043 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6044 mddev->ro = 0; 6045 6046 atomic_set(&mddev->max_corr_read_errors, 6047 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6048 mddev->safemode = 0; 6049 if (mddev_is_clustered(mddev)) 6050 mddev->safemode_delay = 0; 6051 else 6052 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6053 mddev->in_sync = 1; 6054 smp_wmb(); 6055 spin_lock(&mddev->lock); 6056 mddev->pers = pers; 6057 spin_unlock(&mddev->lock); 6058 rdev_for_each(rdev, mddev) 6059 if (rdev->raid_disk >= 0) 6060 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6061 6062 if (mddev->degraded && !mddev->ro) 6063 /* This ensures that recovering status is reported immediately 6064 * via sysfs - until a lack of spares is confirmed. 6065 */ 6066 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6067 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6068 6069 if (mddev->sb_flags) 6070 md_update_sb(mddev, 0); 6071 6072 md_new_event(mddev); 6073 return 0; 6074 6075 bitmap_abort: 6076 mddev_detach(mddev); 6077 if (mddev->private) 6078 pers->free(mddev, mddev->private); 6079 mddev->private = NULL; 6080 module_put(pers->owner); 6081 md_bitmap_destroy(mddev); 6082 abort: 6083 bioset_exit(&mddev->bio_set); 6084 bioset_exit(&mddev->sync_set); 6085 return err; 6086 } 6087 EXPORT_SYMBOL_GPL(md_run); 6088 6089 int do_md_run(struct mddev *mddev) 6090 { 6091 int err; 6092 6093 set_bit(MD_NOT_READY, &mddev->flags); 6094 err = md_run(mddev); 6095 if (err) 6096 goto out; 6097 err = md_bitmap_load(mddev); 6098 if (err) { 6099 md_bitmap_destroy(mddev); 6100 goto out; 6101 } 6102 6103 if (mddev_is_clustered(mddev)) 6104 md_allow_write(mddev); 6105 6106 /* run start up tasks that require md_thread */ 6107 md_start(mddev); 6108 6109 md_wakeup_thread(mddev->thread); 6110 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6111 6112 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6113 clear_bit(MD_NOT_READY, &mddev->flags); 6114 mddev->changed = 1; 6115 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6116 sysfs_notify_dirent_safe(mddev->sysfs_state); 6117 sysfs_notify_dirent_safe(mddev->sysfs_action); 6118 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6119 out: 6120 clear_bit(MD_NOT_READY, &mddev->flags); 6121 return err; 6122 } 6123 6124 int md_start(struct mddev *mddev) 6125 { 6126 int ret = 0; 6127 6128 if (mddev->pers->start) { 6129 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6130 md_wakeup_thread(mddev->thread); 6131 ret = mddev->pers->start(mddev); 6132 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6133 md_wakeup_thread(mddev->sync_thread); 6134 } 6135 return ret; 6136 } 6137 EXPORT_SYMBOL_GPL(md_start); 6138 6139 static int restart_array(struct mddev *mddev) 6140 { 6141 struct gendisk *disk = mddev->gendisk; 6142 struct md_rdev *rdev; 6143 bool has_journal = false; 6144 bool has_readonly = false; 6145 6146 /* Complain if it has no devices */ 6147 if (list_empty(&mddev->disks)) 6148 return -ENXIO; 6149 if (!mddev->pers) 6150 return -EINVAL; 6151 if (!mddev->ro) 6152 return -EBUSY; 6153 6154 rcu_read_lock(); 6155 rdev_for_each_rcu(rdev, mddev) { 6156 if (test_bit(Journal, &rdev->flags) && 6157 !test_bit(Faulty, &rdev->flags)) 6158 has_journal = true; 6159 if (bdev_read_only(rdev->bdev)) 6160 has_readonly = true; 6161 } 6162 rcu_read_unlock(); 6163 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6164 /* Don't restart rw with journal missing/faulty */ 6165 return -EINVAL; 6166 if (has_readonly) 6167 return -EROFS; 6168 6169 mddev->safemode = 0; 6170 mddev->ro = 0; 6171 set_disk_ro(disk, 0); 6172 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6173 /* Kick recovery or resync if necessary */ 6174 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6175 md_wakeup_thread(mddev->thread); 6176 md_wakeup_thread(mddev->sync_thread); 6177 sysfs_notify_dirent_safe(mddev->sysfs_state); 6178 return 0; 6179 } 6180 6181 static void md_clean(struct mddev *mddev) 6182 { 6183 mddev->array_sectors = 0; 6184 mddev->external_size = 0; 6185 mddev->dev_sectors = 0; 6186 mddev->raid_disks = 0; 6187 mddev->recovery_cp = 0; 6188 mddev->resync_min = 0; 6189 mddev->resync_max = MaxSector; 6190 mddev->reshape_position = MaxSector; 6191 mddev->external = 0; 6192 mddev->persistent = 0; 6193 mddev->level = LEVEL_NONE; 6194 mddev->clevel[0] = 0; 6195 mddev->flags = 0; 6196 mddev->sb_flags = 0; 6197 mddev->ro = 0; 6198 mddev->metadata_type[0] = 0; 6199 mddev->chunk_sectors = 0; 6200 mddev->ctime = mddev->utime = 0; 6201 mddev->layout = 0; 6202 mddev->max_disks = 0; 6203 mddev->events = 0; 6204 mddev->can_decrease_events = 0; 6205 mddev->delta_disks = 0; 6206 mddev->reshape_backwards = 0; 6207 mddev->new_level = LEVEL_NONE; 6208 mddev->new_layout = 0; 6209 mddev->new_chunk_sectors = 0; 6210 mddev->curr_resync = 0; 6211 atomic64_set(&mddev->resync_mismatches, 0); 6212 mddev->suspend_lo = mddev->suspend_hi = 0; 6213 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6214 mddev->recovery = 0; 6215 mddev->in_sync = 0; 6216 mddev->changed = 0; 6217 mddev->degraded = 0; 6218 mddev->safemode = 0; 6219 mddev->private = NULL; 6220 mddev->cluster_info = NULL; 6221 mddev->bitmap_info.offset = 0; 6222 mddev->bitmap_info.default_offset = 0; 6223 mddev->bitmap_info.default_space = 0; 6224 mddev->bitmap_info.chunksize = 0; 6225 mddev->bitmap_info.daemon_sleep = 0; 6226 mddev->bitmap_info.max_write_behind = 0; 6227 mddev->bitmap_info.nodes = 0; 6228 } 6229 6230 static void __md_stop_writes(struct mddev *mddev) 6231 { 6232 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6233 if (work_pending(&mddev->del_work)) 6234 flush_workqueue(md_misc_wq); 6235 if (mddev->sync_thread) { 6236 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6237 md_reap_sync_thread(mddev); 6238 } 6239 6240 del_timer_sync(&mddev->safemode_timer); 6241 6242 if (mddev->pers && mddev->pers->quiesce) { 6243 mddev->pers->quiesce(mddev, 1); 6244 mddev->pers->quiesce(mddev, 0); 6245 } 6246 md_bitmap_flush(mddev); 6247 6248 if (mddev->ro == 0 && 6249 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6250 mddev->sb_flags)) { 6251 /* mark array as shutdown cleanly */ 6252 if (!mddev_is_clustered(mddev)) 6253 mddev->in_sync = 1; 6254 md_update_sb(mddev, 1); 6255 } 6256 /* disable policy to guarantee rdevs free resources for serialization */ 6257 mddev->serialize_policy = 0; 6258 mddev_destroy_serial_pool(mddev, NULL, true); 6259 } 6260 6261 void md_stop_writes(struct mddev *mddev) 6262 { 6263 mddev_lock_nointr(mddev); 6264 __md_stop_writes(mddev); 6265 mddev_unlock(mddev); 6266 } 6267 EXPORT_SYMBOL_GPL(md_stop_writes); 6268 6269 static void mddev_detach(struct mddev *mddev) 6270 { 6271 md_bitmap_wait_behind_writes(mddev); 6272 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6273 mddev->pers->quiesce(mddev, 1); 6274 mddev->pers->quiesce(mddev, 0); 6275 } 6276 md_unregister_thread(&mddev->thread); 6277 if (mddev->queue) 6278 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6279 } 6280 6281 static void __md_stop(struct mddev *mddev) 6282 { 6283 struct md_personality *pers = mddev->pers; 6284 md_bitmap_destroy(mddev); 6285 mddev_detach(mddev); 6286 /* Ensure ->event_work is done */ 6287 if (mddev->event_work.func) 6288 flush_workqueue(md_misc_wq); 6289 spin_lock(&mddev->lock); 6290 mddev->pers = NULL; 6291 spin_unlock(&mddev->lock); 6292 pers->free(mddev, mddev->private); 6293 mddev->private = NULL; 6294 if (pers->sync_request && mddev->to_remove == NULL) 6295 mddev->to_remove = &md_redundancy_group; 6296 module_put(pers->owner); 6297 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6298 } 6299 6300 void md_stop(struct mddev *mddev) 6301 { 6302 /* stop the array and free an attached data structures. 6303 * This is called from dm-raid 6304 */ 6305 __md_stop(mddev); 6306 bioset_exit(&mddev->bio_set); 6307 bioset_exit(&mddev->sync_set); 6308 } 6309 6310 EXPORT_SYMBOL_GPL(md_stop); 6311 6312 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6313 { 6314 int err = 0; 6315 int did_freeze = 0; 6316 6317 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6318 did_freeze = 1; 6319 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6320 md_wakeup_thread(mddev->thread); 6321 } 6322 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6323 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6324 if (mddev->sync_thread) 6325 /* Thread might be blocked waiting for metadata update 6326 * which will now never happen */ 6327 wake_up_process(mddev->sync_thread->tsk); 6328 6329 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6330 return -EBUSY; 6331 mddev_unlock(mddev); 6332 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6333 &mddev->recovery)); 6334 wait_event(mddev->sb_wait, 6335 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6336 mddev_lock_nointr(mddev); 6337 6338 mutex_lock(&mddev->open_mutex); 6339 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6340 mddev->sync_thread || 6341 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6342 pr_warn("md: %s still in use.\n",mdname(mddev)); 6343 if (did_freeze) { 6344 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6346 md_wakeup_thread(mddev->thread); 6347 } 6348 err = -EBUSY; 6349 goto out; 6350 } 6351 if (mddev->pers) { 6352 __md_stop_writes(mddev); 6353 6354 err = -ENXIO; 6355 if (mddev->ro==1) 6356 goto out; 6357 mddev->ro = 1; 6358 set_disk_ro(mddev->gendisk, 1); 6359 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6360 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6361 md_wakeup_thread(mddev->thread); 6362 sysfs_notify_dirent_safe(mddev->sysfs_state); 6363 err = 0; 6364 } 6365 out: 6366 mutex_unlock(&mddev->open_mutex); 6367 return err; 6368 } 6369 6370 /* mode: 6371 * 0 - completely stop and dis-assemble array 6372 * 2 - stop but do not disassemble array 6373 */ 6374 static int do_md_stop(struct mddev *mddev, int mode, 6375 struct block_device *bdev) 6376 { 6377 struct gendisk *disk = mddev->gendisk; 6378 struct md_rdev *rdev; 6379 int did_freeze = 0; 6380 6381 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6382 did_freeze = 1; 6383 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6384 md_wakeup_thread(mddev->thread); 6385 } 6386 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6387 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6388 if (mddev->sync_thread) 6389 /* Thread might be blocked waiting for metadata update 6390 * which will now never happen */ 6391 wake_up_process(mddev->sync_thread->tsk); 6392 6393 mddev_unlock(mddev); 6394 wait_event(resync_wait, (mddev->sync_thread == NULL && 6395 !test_bit(MD_RECOVERY_RUNNING, 6396 &mddev->recovery))); 6397 mddev_lock_nointr(mddev); 6398 6399 mutex_lock(&mddev->open_mutex); 6400 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6401 mddev->sysfs_active || 6402 mddev->sync_thread || 6403 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6404 pr_warn("md: %s still in use.\n",mdname(mddev)); 6405 mutex_unlock(&mddev->open_mutex); 6406 if (did_freeze) { 6407 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6409 md_wakeup_thread(mddev->thread); 6410 } 6411 return -EBUSY; 6412 } 6413 if (mddev->pers) { 6414 if (mddev->ro) 6415 set_disk_ro(disk, 0); 6416 6417 __md_stop_writes(mddev); 6418 __md_stop(mddev); 6419 6420 /* tell userspace to handle 'inactive' */ 6421 sysfs_notify_dirent_safe(mddev->sysfs_state); 6422 6423 rdev_for_each(rdev, mddev) 6424 if (rdev->raid_disk >= 0) 6425 sysfs_unlink_rdev(mddev, rdev); 6426 6427 set_capacity_and_notify(disk, 0); 6428 mutex_unlock(&mddev->open_mutex); 6429 mddev->changed = 1; 6430 6431 if (mddev->ro) 6432 mddev->ro = 0; 6433 } else 6434 mutex_unlock(&mddev->open_mutex); 6435 /* 6436 * Free resources if final stop 6437 */ 6438 if (mode == 0) { 6439 pr_info("md: %s stopped.\n", mdname(mddev)); 6440 6441 if (mddev->bitmap_info.file) { 6442 struct file *f = mddev->bitmap_info.file; 6443 spin_lock(&mddev->lock); 6444 mddev->bitmap_info.file = NULL; 6445 spin_unlock(&mddev->lock); 6446 fput(f); 6447 } 6448 mddev->bitmap_info.offset = 0; 6449 6450 export_array(mddev); 6451 6452 md_clean(mddev); 6453 if (mddev->hold_active == UNTIL_STOP) 6454 mddev->hold_active = 0; 6455 } 6456 md_new_event(mddev); 6457 sysfs_notify_dirent_safe(mddev->sysfs_state); 6458 return 0; 6459 } 6460 6461 #ifndef MODULE 6462 static void autorun_array(struct mddev *mddev) 6463 { 6464 struct md_rdev *rdev; 6465 int err; 6466 6467 if (list_empty(&mddev->disks)) 6468 return; 6469 6470 pr_info("md: running: "); 6471 6472 rdev_for_each(rdev, mddev) { 6473 char b[BDEVNAME_SIZE]; 6474 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6475 } 6476 pr_cont("\n"); 6477 6478 err = do_md_run(mddev); 6479 if (err) { 6480 pr_warn("md: do_md_run() returned %d\n", err); 6481 do_md_stop(mddev, 0, NULL); 6482 } 6483 } 6484 6485 /* 6486 * lets try to run arrays based on all disks that have arrived 6487 * until now. (those are in pending_raid_disks) 6488 * 6489 * the method: pick the first pending disk, collect all disks with 6490 * the same UUID, remove all from the pending list and put them into 6491 * the 'same_array' list. Then order this list based on superblock 6492 * update time (freshest comes first), kick out 'old' disks and 6493 * compare superblocks. If everything's fine then run it. 6494 * 6495 * If "unit" is allocated, then bump its reference count 6496 */ 6497 static void autorun_devices(int part) 6498 { 6499 struct md_rdev *rdev0, *rdev, *tmp; 6500 struct mddev *mddev; 6501 char b[BDEVNAME_SIZE]; 6502 6503 pr_info("md: autorun ...\n"); 6504 while (!list_empty(&pending_raid_disks)) { 6505 int unit; 6506 dev_t dev; 6507 LIST_HEAD(candidates); 6508 rdev0 = list_entry(pending_raid_disks.next, 6509 struct md_rdev, same_set); 6510 6511 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6512 INIT_LIST_HEAD(&candidates); 6513 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6514 if (super_90_load(rdev, rdev0, 0) >= 0) { 6515 pr_debug("md: adding %s ...\n", 6516 bdevname(rdev->bdev,b)); 6517 list_move(&rdev->same_set, &candidates); 6518 } 6519 /* 6520 * now we have a set of devices, with all of them having 6521 * mostly sane superblocks. It's time to allocate the 6522 * mddev. 6523 */ 6524 if (part) { 6525 dev = MKDEV(mdp_major, 6526 rdev0->preferred_minor << MdpMinorShift); 6527 unit = MINOR(dev) >> MdpMinorShift; 6528 } else { 6529 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6530 unit = MINOR(dev); 6531 } 6532 if (rdev0->preferred_minor != unit) { 6533 pr_warn("md: unit number in %s is bad: %d\n", 6534 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6535 break; 6536 } 6537 6538 md_probe(dev); 6539 mddev = mddev_find(dev); 6540 if (!mddev || !mddev->gendisk) { 6541 if (mddev) 6542 mddev_put(mddev); 6543 break; 6544 } 6545 if (mddev_lock(mddev)) 6546 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6547 else if (mddev->raid_disks || mddev->major_version 6548 || !list_empty(&mddev->disks)) { 6549 pr_warn("md: %s already running, cannot run %s\n", 6550 mdname(mddev), bdevname(rdev0->bdev,b)); 6551 mddev_unlock(mddev); 6552 } else { 6553 pr_debug("md: created %s\n", mdname(mddev)); 6554 mddev->persistent = 1; 6555 rdev_for_each_list(rdev, tmp, &candidates) { 6556 list_del_init(&rdev->same_set); 6557 if (bind_rdev_to_array(rdev, mddev)) 6558 export_rdev(rdev); 6559 } 6560 autorun_array(mddev); 6561 mddev_unlock(mddev); 6562 } 6563 /* on success, candidates will be empty, on error 6564 * it won't... 6565 */ 6566 rdev_for_each_list(rdev, tmp, &candidates) { 6567 list_del_init(&rdev->same_set); 6568 export_rdev(rdev); 6569 } 6570 mddev_put(mddev); 6571 } 6572 pr_info("md: ... autorun DONE.\n"); 6573 } 6574 #endif /* !MODULE */ 6575 6576 static int get_version(void __user *arg) 6577 { 6578 mdu_version_t ver; 6579 6580 ver.major = MD_MAJOR_VERSION; 6581 ver.minor = MD_MINOR_VERSION; 6582 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6583 6584 if (copy_to_user(arg, &ver, sizeof(ver))) 6585 return -EFAULT; 6586 6587 return 0; 6588 } 6589 6590 static int get_array_info(struct mddev *mddev, void __user *arg) 6591 { 6592 mdu_array_info_t info; 6593 int nr,working,insync,failed,spare; 6594 struct md_rdev *rdev; 6595 6596 nr = working = insync = failed = spare = 0; 6597 rcu_read_lock(); 6598 rdev_for_each_rcu(rdev, mddev) { 6599 nr++; 6600 if (test_bit(Faulty, &rdev->flags)) 6601 failed++; 6602 else { 6603 working++; 6604 if (test_bit(In_sync, &rdev->flags)) 6605 insync++; 6606 else if (test_bit(Journal, &rdev->flags)) 6607 /* TODO: add journal count to md_u.h */ 6608 ; 6609 else 6610 spare++; 6611 } 6612 } 6613 rcu_read_unlock(); 6614 6615 info.major_version = mddev->major_version; 6616 info.minor_version = mddev->minor_version; 6617 info.patch_version = MD_PATCHLEVEL_VERSION; 6618 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6619 info.level = mddev->level; 6620 info.size = mddev->dev_sectors / 2; 6621 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6622 info.size = -1; 6623 info.nr_disks = nr; 6624 info.raid_disks = mddev->raid_disks; 6625 info.md_minor = mddev->md_minor; 6626 info.not_persistent= !mddev->persistent; 6627 6628 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6629 info.state = 0; 6630 if (mddev->in_sync) 6631 info.state = (1<<MD_SB_CLEAN); 6632 if (mddev->bitmap && mddev->bitmap_info.offset) 6633 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6634 if (mddev_is_clustered(mddev)) 6635 info.state |= (1<<MD_SB_CLUSTERED); 6636 info.active_disks = insync; 6637 info.working_disks = working; 6638 info.failed_disks = failed; 6639 info.spare_disks = spare; 6640 6641 info.layout = mddev->layout; 6642 info.chunk_size = mddev->chunk_sectors << 9; 6643 6644 if (copy_to_user(arg, &info, sizeof(info))) 6645 return -EFAULT; 6646 6647 return 0; 6648 } 6649 6650 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6651 { 6652 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6653 char *ptr; 6654 int err; 6655 6656 file = kzalloc(sizeof(*file), GFP_NOIO); 6657 if (!file) 6658 return -ENOMEM; 6659 6660 err = 0; 6661 spin_lock(&mddev->lock); 6662 /* bitmap enabled */ 6663 if (mddev->bitmap_info.file) { 6664 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6665 sizeof(file->pathname)); 6666 if (IS_ERR(ptr)) 6667 err = PTR_ERR(ptr); 6668 else 6669 memmove(file->pathname, ptr, 6670 sizeof(file->pathname)-(ptr-file->pathname)); 6671 } 6672 spin_unlock(&mddev->lock); 6673 6674 if (err == 0 && 6675 copy_to_user(arg, file, sizeof(*file))) 6676 err = -EFAULT; 6677 6678 kfree(file); 6679 return err; 6680 } 6681 6682 static int get_disk_info(struct mddev *mddev, void __user * arg) 6683 { 6684 mdu_disk_info_t info; 6685 struct md_rdev *rdev; 6686 6687 if (copy_from_user(&info, arg, sizeof(info))) 6688 return -EFAULT; 6689 6690 rcu_read_lock(); 6691 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6692 if (rdev) { 6693 info.major = MAJOR(rdev->bdev->bd_dev); 6694 info.minor = MINOR(rdev->bdev->bd_dev); 6695 info.raid_disk = rdev->raid_disk; 6696 info.state = 0; 6697 if (test_bit(Faulty, &rdev->flags)) 6698 info.state |= (1<<MD_DISK_FAULTY); 6699 else if (test_bit(In_sync, &rdev->flags)) { 6700 info.state |= (1<<MD_DISK_ACTIVE); 6701 info.state |= (1<<MD_DISK_SYNC); 6702 } 6703 if (test_bit(Journal, &rdev->flags)) 6704 info.state |= (1<<MD_DISK_JOURNAL); 6705 if (test_bit(WriteMostly, &rdev->flags)) 6706 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6707 if (test_bit(FailFast, &rdev->flags)) 6708 info.state |= (1<<MD_DISK_FAILFAST); 6709 } else { 6710 info.major = info.minor = 0; 6711 info.raid_disk = -1; 6712 info.state = (1<<MD_DISK_REMOVED); 6713 } 6714 rcu_read_unlock(); 6715 6716 if (copy_to_user(arg, &info, sizeof(info))) 6717 return -EFAULT; 6718 6719 return 0; 6720 } 6721 6722 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6723 { 6724 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6725 struct md_rdev *rdev; 6726 dev_t dev = MKDEV(info->major,info->minor); 6727 6728 if (mddev_is_clustered(mddev) && 6729 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6730 pr_warn("%s: Cannot add to clustered mddev.\n", 6731 mdname(mddev)); 6732 return -EINVAL; 6733 } 6734 6735 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6736 return -EOVERFLOW; 6737 6738 if (!mddev->raid_disks) { 6739 int err; 6740 /* expecting a device which has a superblock */ 6741 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6742 if (IS_ERR(rdev)) { 6743 pr_warn("md: md_import_device returned %ld\n", 6744 PTR_ERR(rdev)); 6745 return PTR_ERR(rdev); 6746 } 6747 if (!list_empty(&mddev->disks)) { 6748 struct md_rdev *rdev0 6749 = list_entry(mddev->disks.next, 6750 struct md_rdev, same_set); 6751 err = super_types[mddev->major_version] 6752 .load_super(rdev, rdev0, mddev->minor_version); 6753 if (err < 0) { 6754 pr_warn("md: %s has different UUID to %s\n", 6755 bdevname(rdev->bdev,b), 6756 bdevname(rdev0->bdev,b2)); 6757 export_rdev(rdev); 6758 return -EINVAL; 6759 } 6760 } 6761 err = bind_rdev_to_array(rdev, mddev); 6762 if (err) 6763 export_rdev(rdev); 6764 return err; 6765 } 6766 6767 /* 6768 * md_add_new_disk can be used once the array is assembled 6769 * to add "hot spares". They must already have a superblock 6770 * written 6771 */ 6772 if (mddev->pers) { 6773 int err; 6774 if (!mddev->pers->hot_add_disk) { 6775 pr_warn("%s: personality does not support diskops!\n", 6776 mdname(mddev)); 6777 return -EINVAL; 6778 } 6779 if (mddev->persistent) 6780 rdev = md_import_device(dev, mddev->major_version, 6781 mddev->minor_version); 6782 else 6783 rdev = md_import_device(dev, -1, -1); 6784 if (IS_ERR(rdev)) { 6785 pr_warn("md: md_import_device returned %ld\n", 6786 PTR_ERR(rdev)); 6787 return PTR_ERR(rdev); 6788 } 6789 /* set saved_raid_disk if appropriate */ 6790 if (!mddev->persistent) { 6791 if (info->state & (1<<MD_DISK_SYNC) && 6792 info->raid_disk < mddev->raid_disks) { 6793 rdev->raid_disk = info->raid_disk; 6794 set_bit(In_sync, &rdev->flags); 6795 clear_bit(Bitmap_sync, &rdev->flags); 6796 } else 6797 rdev->raid_disk = -1; 6798 rdev->saved_raid_disk = rdev->raid_disk; 6799 } else 6800 super_types[mddev->major_version]. 6801 validate_super(mddev, rdev); 6802 if ((info->state & (1<<MD_DISK_SYNC)) && 6803 rdev->raid_disk != info->raid_disk) { 6804 /* This was a hot-add request, but events doesn't 6805 * match, so reject it. 6806 */ 6807 export_rdev(rdev); 6808 return -EINVAL; 6809 } 6810 6811 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6812 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6813 set_bit(WriteMostly, &rdev->flags); 6814 else 6815 clear_bit(WriteMostly, &rdev->flags); 6816 if (info->state & (1<<MD_DISK_FAILFAST)) 6817 set_bit(FailFast, &rdev->flags); 6818 else 6819 clear_bit(FailFast, &rdev->flags); 6820 6821 if (info->state & (1<<MD_DISK_JOURNAL)) { 6822 struct md_rdev *rdev2; 6823 bool has_journal = false; 6824 6825 /* make sure no existing journal disk */ 6826 rdev_for_each(rdev2, mddev) { 6827 if (test_bit(Journal, &rdev2->flags)) { 6828 has_journal = true; 6829 break; 6830 } 6831 } 6832 if (has_journal || mddev->bitmap) { 6833 export_rdev(rdev); 6834 return -EBUSY; 6835 } 6836 set_bit(Journal, &rdev->flags); 6837 } 6838 /* 6839 * check whether the device shows up in other nodes 6840 */ 6841 if (mddev_is_clustered(mddev)) { 6842 if (info->state & (1 << MD_DISK_CANDIDATE)) 6843 set_bit(Candidate, &rdev->flags); 6844 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6845 /* --add initiated by this node */ 6846 err = md_cluster_ops->add_new_disk(mddev, rdev); 6847 if (err) { 6848 export_rdev(rdev); 6849 return err; 6850 } 6851 } 6852 } 6853 6854 rdev->raid_disk = -1; 6855 err = bind_rdev_to_array(rdev, mddev); 6856 6857 if (err) 6858 export_rdev(rdev); 6859 6860 if (mddev_is_clustered(mddev)) { 6861 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6862 if (!err) { 6863 err = md_cluster_ops->new_disk_ack(mddev, 6864 err == 0); 6865 if (err) 6866 md_kick_rdev_from_array(rdev); 6867 } 6868 } else { 6869 if (err) 6870 md_cluster_ops->add_new_disk_cancel(mddev); 6871 else 6872 err = add_bound_rdev(rdev); 6873 } 6874 6875 } else if (!err) 6876 err = add_bound_rdev(rdev); 6877 6878 return err; 6879 } 6880 6881 /* otherwise, md_add_new_disk is only allowed 6882 * for major_version==0 superblocks 6883 */ 6884 if (mddev->major_version != 0) { 6885 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6886 return -EINVAL; 6887 } 6888 6889 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6890 int err; 6891 rdev = md_import_device(dev, -1, 0); 6892 if (IS_ERR(rdev)) { 6893 pr_warn("md: error, md_import_device() returned %ld\n", 6894 PTR_ERR(rdev)); 6895 return PTR_ERR(rdev); 6896 } 6897 rdev->desc_nr = info->number; 6898 if (info->raid_disk < mddev->raid_disks) 6899 rdev->raid_disk = info->raid_disk; 6900 else 6901 rdev->raid_disk = -1; 6902 6903 if (rdev->raid_disk < mddev->raid_disks) 6904 if (info->state & (1<<MD_DISK_SYNC)) 6905 set_bit(In_sync, &rdev->flags); 6906 6907 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6908 set_bit(WriteMostly, &rdev->flags); 6909 if (info->state & (1<<MD_DISK_FAILFAST)) 6910 set_bit(FailFast, &rdev->flags); 6911 6912 if (!mddev->persistent) { 6913 pr_debug("md: nonpersistent superblock ...\n"); 6914 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6915 } else 6916 rdev->sb_start = calc_dev_sboffset(rdev); 6917 rdev->sectors = rdev->sb_start; 6918 6919 err = bind_rdev_to_array(rdev, mddev); 6920 if (err) { 6921 export_rdev(rdev); 6922 return err; 6923 } 6924 } 6925 6926 return 0; 6927 } 6928 6929 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6930 { 6931 char b[BDEVNAME_SIZE]; 6932 struct md_rdev *rdev; 6933 6934 if (!mddev->pers) 6935 return -ENODEV; 6936 6937 rdev = find_rdev(mddev, dev); 6938 if (!rdev) 6939 return -ENXIO; 6940 6941 if (rdev->raid_disk < 0) 6942 goto kick_rdev; 6943 6944 clear_bit(Blocked, &rdev->flags); 6945 remove_and_add_spares(mddev, rdev); 6946 6947 if (rdev->raid_disk >= 0) 6948 goto busy; 6949 6950 kick_rdev: 6951 if (mddev_is_clustered(mddev)) { 6952 if (md_cluster_ops->remove_disk(mddev, rdev)) 6953 goto busy; 6954 } 6955 6956 md_kick_rdev_from_array(rdev); 6957 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6958 if (mddev->thread) 6959 md_wakeup_thread(mddev->thread); 6960 else 6961 md_update_sb(mddev, 1); 6962 md_new_event(mddev); 6963 6964 return 0; 6965 busy: 6966 pr_debug("md: cannot remove active disk %s from %s ...\n", 6967 bdevname(rdev->bdev,b), mdname(mddev)); 6968 return -EBUSY; 6969 } 6970 6971 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6972 { 6973 char b[BDEVNAME_SIZE]; 6974 int err; 6975 struct md_rdev *rdev; 6976 6977 if (!mddev->pers) 6978 return -ENODEV; 6979 6980 if (mddev->major_version != 0) { 6981 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6982 mdname(mddev)); 6983 return -EINVAL; 6984 } 6985 if (!mddev->pers->hot_add_disk) { 6986 pr_warn("%s: personality does not support diskops!\n", 6987 mdname(mddev)); 6988 return -EINVAL; 6989 } 6990 6991 rdev = md_import_device(dev, -1, 0); 6992 if (IS_ERR(rdev)) { 6993 pr_warn("md: error, md_import_device() returned %ld\n", 6994 PTR_ERR(rdev)); 6995 return -EINVAL; 6996 } 6997 6998 if (mddev->persistent) 6999 rdev->sb_start = calc_dev_sboffset(rdev); 7000 else 7001 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 7002 7003 rdev->sectors = rdev->sb_start; 7004 7005 if (test_bit(Faulty, &rdev->flags)) { 7006 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 7007 bdevname(rdev->bdev,b), mdname(mddev)); 7008 err = -EINVAL; 7009 goto abort_export; 7010 } 7011 7012 clear_bit(In_sync, &rdev->flags); 7013 rdev->desc_nr = -1; 7014 rdev->saved_raid_disk = -1; 7015 err = bind_rdev_to_array(rdev, mddev); 7016 if (err) 7017 goto abort_export; 7018 7019 /* 7020 * The rest should better be atomic, we can have disk failures 7021 * noticed in interrupt contexts ... 7022 */ 7023 7024 rdev->raid_disk = -1; 7025 7026 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7027 if (!mddev->thread) 7028 md_update_sb(mddev, 1); 7029 /* 7030 * Kick recovery, maybe this spare has to be added to the 7031 * array immediately. 7032 */ 7033 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7034 md_wakeup_thread(mddev->thread); 7035 md_new_event(mddev); 7036 return 0; 7037 7038 abort_export: 7039 export_rdev(rdev); 7040 return err; 7041 } 7042 7043 static int set_bitmap_file(struct mddev *mddev, int fd) 7044 { 7045 int err = 0; 7046 7047 if (mddev->pers) { 7048 if (!mddev->pers->quiesce || !mddev->thread) 7049 return -EBUSY; 7050 if (mddev->recovery || mddev->sync_thread) 7051 return -EBUSY; 7052 /* we should be able to change the bitmap.. */ 7053 } 7054 7055 if (fd >= 0) { 7056 struct inode *inode; 7057 struct file *f; 7058 7059 if (mddev->bitmap || mddev->bitmap_info.file) 7060 return -EEXIST; /* cannot add when bitmap is present */ 7061 f = fget(fd); 7062 7063 if (f == NULL) { 7064 pr_warn("%s: error: failed to get bitmap file\n", 7065 mdname(mddev)); 7066 return -EBADF; 7067 } 7068 7069 inode = f->f_mapping->host; 7070 if (!S_ISREG(inode->i_mode)) { 7071 pr_warn("%s: error: bitmap file must be a regular file\n", 7072 mdname(mddev)); 7073 err = -EBADF; 7074 } else if (!(f->f_mode & FMODE_WRITE)) { 7075 pr_warn("%s: error: bitmap file must open for write\n", 7076 mdname(mddev)); 7077 err = -EBADF; 7078 } else if (atomic_read(&inode->i_writecount) != 1) { 7079 pr_warn("%s: error: bitmap file is already in use\n", 7080 mdname(mddev)); 7081 err = -EBUSY; 7082 } 7083 if (err) { 7084 fput(f); 7085 return err; 7086 } 7087 mddev->bitmap_info.file = f; 7088 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7089 } else if (mddev->bitmap == NULL) 7090 return -ENOENT; /* cannot remove what isn't there */ 7091 err = 0; 7092 if (mddev->pers) { 7093 if (fd >= 0) { 7094 struct bitmap *bitmap; 7095 7096 bitmap = md_bitmap_create(mddev, -1); 7097 mddev_suspend(mddev); 7098 if (!IS_ERR(bitmap)) { 7099 mddev->bitmap = bitmap; 7100 err = md_bitmap_load(mddev); 7101 } else 7102 err = PTR_ERR(bitmap); 7103 if (err) { 7104 md_bitmap_destroy(mddev); 7105 fd = -1; 7106 } 7107 mddev_resume(mddev); 7108 } else if (fd < 0) { 7109 mddev_suspend(mddev); 7110 md_bitmap_destroy(mddev); 7111 mddev_resume(mddev); 7112 } 7113 } 7114 if (fd < 0) { 7115 struct file *f = mddev->bitmap_info.file; 7116 if (f) { 7117 spin_lock(&mddev->lock); 7118 mddev->bitmap_info.file = NULL; 7119 spin_unlock(&mddev->lock); 7120 fput(f); 7121 } 7122 } 7123 7124 return err; 7125 } 7126 7127 /* 7128 * md_set_array_info is used two different ways 7129 * The original usage is when creating a new array. 7130 * In this usage, raid_disks is > 0 and it together with 7131 * level, size, not_persistent,layout,chunksize determine the 7132 * shape of the array. 7133 * This will always create an array with a type-0.90.0 superblock. 7134 * The newer usage is when assembling an array. 7135 * In this case raid_disks will be 0, and the major_version field is 7136 * use to determine which style super-blocks are to be found on the devices. 7137 * The minor and patch _version numbers are also kept incase the 7138 * super_block handler wishes to interpret them. 7139 */ 7140 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7141 { 7142 if (info->raid_disks == 0) { 7143 /* just setting version number for superblock loading */ 7144 if (info->major_version < 0 || 7145 info->major_version >= ARRAY_SIZE(super_types) || 7146 super_types[info->major_version].name == NULL) { 7147 /* maybe try to auto-load a module? */ 7148 pr_warn("md: superblock version %d not known\n", 7149 info->major_version); 7150 return -EINVAL; 7151 } 7152 mddev->major_version = info->major_version; 7153 mddev->minor_version = info->minor_version; 7154 mddev->patch_version = info->patch_version; 7155 mddev->persistent = !info->not_persistent; 7156 /* ensure mddev_put doesn't delete this now that there 7157 * is some minimal configuration. 7158 */ 7159 mddev->ctime = ktime_get_real_seconds(); 7160 return 0; 7161 } 7162 mddev->major_version = MD_MAJOR_VERSION; 7163 mddev->minor_version = MD_MINOR_VERSION; 7164 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7165 mddev->ctime = ktime_get_real_seconds(); 7166 7167 mddev->level = info->level; 7168 mddev->clevel[0] = 0; 7169 mddev->dev_sectors = 2 * (sector_t)info->size; 7170 mddev->raid_disks = info->raid_disks; 7171 /* don't set md_minor, it is determined by which /dev/md* was 7172 * openned 7173 */ 7174 if (info->state & (1<<MD_SB_CLEAN)) 7175 mddev->recovery_cp = MaxSector; 7176 else 7177 mddev->recovery_cp = 0; 7178 mddev->persistent = ! info->not_persistent; 7179 mddev->external = 0; 7180 7181 mddev->layout = info->layout; 7182 if (mddev->level == 0) 7183 /* Cannot trust RAID0 layout info here */ 7184 mddev->layout = -1; 7185 mddev->chunk_sectors = info->chunk_size >> 9; 7186 7187 if (mddev->persistent) { 7188 mddev->max_disks = MD_SB_DISKS; 7189 mddev->flags = 0; 7190 mddev->sb_flags = 0; 7191 } 7192 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7193 7194 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7195 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7196 mddev->bitmap_info.offset = 0; 7197 7198 mddev->reshape_position = MaxSector; 7199 7200 /* 7201 * Generate a 128 bit UUID 7202 */ 7203 get_random_bytes(mddev->uuid, 16); 7204 7205 mddev->new_level = mddev->level; 7206 mddev->new_chunk_sectors = mddev->chunk_sectors; 7207 mddev->new_layout = mddev->layout; 7208 mddev->delta_disks = 0; 7209 mddev->reshape_backwards = 0; 7210 7211 return 0; 7212 } 7213 7214 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7215 { 7216 lockdep_assert_held(&mddev->reconfig_mutex); 7217 7218 if (mddev->external_size) 7219 return; 7220 7221 mddev->array_sectors = array_sectors; 7222 } 7223 EXPORT_SYMBOL(md_set_array_sectors); 7224 7225 static int update_size(struct mddev *mddev, sector_t num_sectors) 7226 { 7227 struct md_rdev *rdev; 7228 int rv; 7229 int fit = (num_sectors == 0); 7230 sector_t old_dev_sectors = mddev->dev_sectors; 7231 7232 if (mddev->pers->resize == NULL) 7233 return -EINVAL; 7234 /* The "num_sectors" is the number of sectors of each device that 7235 * is used. This can only make sense for arrays with redundancy. 7236 * linear and raid0 always use whatever space is available. We can only 7237 * consider changing this number if no resync or reconstruction is 7238 * happening, and if the new size is acceptable. It must fit before the 7239 * sb_start or, if that is <data_offset, it must fit before the size 7240 * of each device. If num_sectors is zero, we find the largest size 7241 * that fits. 7242 */ 7243 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7244 mddev->sync_thread) 7245 return -EBUSY; 7246 if (mddev->ro) 7247 return -EROFS; 7248 7249 rdev_for_each(rdev, mddev) { 7250 sector_t avail = rdev->sectors; 7251 7252 if (fit && (num_sectors == 0 || num_sectors > avail)) 7253 num_sectors = avail; 7254 if (avail < num_sectors) 7255 return -ENOSPC; 7256 } 7257 rv = mddev->pers->resize(mddev, num_sectors); 7258 if (!rv) { 7259 if (mddev_is_clustered(mddev)) 7260 md_cluster_ops->update_size(mddev, old_dev_sectors); 7261 else if (mddev->queue) { 7262 set_capacity_and_notify(mddev->gendisk, 7263 mddev->array_sectors); 7264 } 7265 } 7266 return rv; 7267 } 7268 7269 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7270 { 7271 int rv; 7272 struct md_rdev *rdev; 7273 /* change the number of raid disks */ 7274 if (mddev->pers->check_reshape == NULL) 7275 return -EINVAL; 7276 if (mddev->ro) 7277 return -EROFS; 7278 if (raid_disks <= 0 || 7279 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7280 return -EINVAL; 7281 if (mddev->sync_thread || 7282 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7283 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7284 mddev->reshape_position != MaxSector) 7285 return -EBUSY; 7286 7287 rdev_for_each(rdev, mddev) { 7288 if (mddev->raid_disks < raid_disks && 7289 rdev->data_offset < rdev->new_data_offset) 7290 return -EINVAL; 7291 if (mddev->raid_disks > raid_disks && 7292 rdev->data_offset > rdev->new_data_offset) 7293 return -EINVAL; 7294 } 7295 7296 mddev->delta_disks = raid_disks - mddev->raid_disks; 7297 if (mddev->delta_disks < 0) 7298 mddev->reshape_backwards = 1; 7299 else if (mddev->delta_disks > 0) 7300 mddev->reshape_backwards = 0; 7301 7302 rv = mddev->pers->check_reshape(mddev); 7303 if (rv < 0) { 7304 mddev->delta_disks = 0; 7305 mddev->reshape_backwards = 0; 7306 } 7307 return rv; 7308 } 7309 7310 /* 7311 * update_array_info is used to change the configuration of an 7312 * on-line array. 7313 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7314 * fields in the info are checked against the array. 7315 * Any differences that cannot be handled will cause an error. 7316 * Normally, only one change can be managed at a time. 7317 */ 7318 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7319 { 7320 int rv = 0; 7321 int cnt = 0; 7322 int state = 0; 7323 7324 /* calculate expected state,ignoring low bits */ 7325 if (mddev->bitmap && mddev->bitmap_info.offset) 7326 state |= (1 << MD_SB_BITMAP_PRESENT); 7327 7328 if (mddev->major_version != info->major_version || 7329 mddev->minor_version != info->minor_version || 7330 /* mddev->patch_version != info->patch_version || */ 7331 mddev->ctime != info->ctime || 7332 mddev->level != info->level || 7333 /* mddev->layout != info->layout || */ 7334 mddev->persistent != !info->not_persistent || 7335 mddev->chunk_sectors != info->chunk_size >> 9 || 7336 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7337 ((state^info->state) & 0xfffffe00) 7338 ) 7339 return -EINVAL; 7340 /* Check there is only one change */ 7341 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7342 cnt++; 7343 if (mddev->raid_disks != info->raid_disks) 7344 cnt++; 7345 if (mddev->layout != info->layout) 7346 cnt++; 7347 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7348 cnt++; 7349 if (cnt == 0) 7350 return 0; 7351 if (cnt > 1) 7352 return -EINVAL; 7353 7354 if (mddev->layout != info->layout) { 7355 /* Change layout 7356 * we don't need to do anything at the md level, the 7357 * personality will take care of it all. 7358 */ 7359 if (mddev->pers->check_reshape == NULL) 7360 return -EINVAL; 7361 else { 7362 mddev->new_layout = info->layout; 7363 rv = mddev->pers->check_reshape(mddev); 7364 if (rv) 7365 mddev->new_layout = mddev->layout; 7366 return rv; 7367 } 7368 } 7369 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7370 rv = update_size(mddev, (sector_t)info->size * 2); 7371 7372 if (mddev->raid_disks != info->raid_disks) 7373 rv = update_raid_disks(mddev, info->raid_disks); 7374 7375 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7376 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7377 rv = -EINVAL; 7378 goto err; 7379 } 7380 if (mddev->recovery || mddev->sync_thread) { 7381 rv = -EBUSY; 7382 goto err; 7383 } 7384 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7385 struct bitmap *bitmap; 7386 /* add the bitmap */ 7387 if (mddev->bitmap) { 7388 rv = -EEXIST; 7389 goto err; 7390 } 7391 if (mddev->bitmap_info.default_offset == 0) { 7392 rv = -EINVAL; 7393 goto err; 7394 } 7395 mddev->bitmap_info.offset = 7396 mddev->bitmap_info.default_offset; 7397 mddev->bitmap_info.space = 7398 mddev->bitmap_info.default_space; 7399 bitmap = md_bitmap_create(mddev, -1); 7400 mddev_suspend(mddev); 7401 if (!IS_ERR(bitmap)) { 7402 mddev->bitmap = bitmap; 7403 rv = md_bitmap_load(mddev); 7404 } else 7405 rv = PTR_ERR(bitmap); 7406 if (rv) 7407 md_bitmap_destroy(mddev); 7408 mddev_resume(mddev); 7409 } else { 7410 /* remove the bitmap */ 7411 if (!mddev->bitmap) { 7412 rv = -ENOENT; 7413 goto err; 7414 } 7415 if (mddev->bitmap->storage.file) { 7416 rv = -EINVAL; 7417 goto err; 7418 } 7419 if (mddev->bitmap_info.nodes) { 7420 /* hold PW on all the bitmap lock */ 7421 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7422 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7423 rv = -EPERM; 7424 md_cluster_ops->unlock_all_bitmaps(mddev); 7425 goto err; 7426 } 7427 7428 mddev->bitmap_info.nodes = 0; 7429 md_cluster_ops->leave(mddev); 7430 module_put(md_cluster_mod); 7431 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7432 } 7433 mddev_suspend(mddev); 7434 md_bitmap_destroy(mddev); 7435 mddev_resume(mddev); 7436 mddev->bitmap_info.offset = 0; 7437 } 7438 } 7439 md_update_sb(mddev, 1); 7440 return rv; 7441 err: 7442 return rv; 7443 } 7444 7445 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7446 { 7447 struct md_rdev *rdev; 7448 int err = 0; 7449 7450 if (mddev->pers == NULL) 7451 return -ENODEV; 7452 7453 rcu_read_lock(); 7454 rdev = md_find_rdev_rcu(mddev, dev); 7455 if (!rdev) 7456 err = -ENODEV; 7457 else { 7458 md_error(mddev, rdev); 7459 if (!test_bit(Faulty, &rdev->flags)) 7460 err = -EBUSY; 7461 } 7462 rcu_read_unlock(); 7463 return err; 7464 } 7465 7466 /* 7467 * We have a problem here : there is no easy way to give a CHS 7468 * virtual geometry. We currently pretend that we have a 2 heads 7469 * 4 sectors (with a BIG number of cylinders...). This drives 7470 * dosfs just mad... ;-) 7471 */ 7472 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7473 { 7474 struct mddev *mddev = bdev->bd_disk->private_data; 7475 7476 geo->heads = 2; 7477 geo->sectors = 4; 7478 geo->cylinders = mddev->array_sectors / 8; 7479 return 0; 7480 } 7481 7482 static inline bool md_ioctl_valid(unsigned int cmd) 7483 { 7484 switch (cmd) { 7485 case ADD_NEW_DISK: 7486 case GET_ARRAY_INFO: 7487 case GET_BITMAP_FILE: 7488 case GET_DISK_INFO: 7489 case HOT_ADD_DISK: 7490 case HOT_REMOVE_DISK: 7491 case RAID_VERSION: 7492 case RESTART_ARRAY_RW: 7493 case RUN_ARRAY: 7494 case SET_ARRAY_INFO: 7495 case SET_BITMAP_FILE: 7496 case SET_DISK_FAULTY: 7497 case STOP_ARRAY: 7498 case STOP_ARRAY_RO: 7499 case CLUSTERED_DISK_NACK: 7500 return true; 7501 default: 7502 return false; 7503 } 7504 } 7505 7506 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7507 unsigned int cmd, unsigned long arg) 7508 { 7509 int err = 0; 7510 void __user *argp = (void __user *)arg; 7511 struct mddev *mddev = NULL; 7512 bool did_set_md_closing = false; 7513 7514 if (!md_ioctl_valid(cmd)) 7515 return -ENOTTY; 7516 7517 switch (cmd) { 7518 case RAID_VERSION: 7519 case GET_ARRAY_INFO: 7520 case GET_DISK_INFO: 7521 break; 7522 default: 7523 if (!capable(CAP_SYS_ADMIN)) 7524 return -EACCES; 7525 } 7526 7527 /* 7528 * Commands dealing with the RAID driver but not any 7529 * particular array: 7530 */ 7531 switch (cmd) { 7532 case RAID_VERSION: 7533 err = get_version(argp); 7534 goto out; 7535 default:; 7536 } 7537 7538 /* 7539 * Commands creating/starting a new array: 7540 */ 7541 7542 mddev = bdev->bd_disk->private_data; 7543 7544 if (!mddev) { 7545 BUG(); 7546 goto out; 7547 } 7548 7549 /* Some actions do not requires the mutex */ 7550 switch (cmd) { 7551 case GET_ARRAY_INFO: 7552 if (!mddev->raid_disks && !mddev->external) 7553 err = -ENODEV; 7554 else 7555 err = get_array_info(mddev, argp); 7556 goto out; 7557 7558 case GET_DISK_INFO: 7559 if (!mddev->raid_disks && !mddev->external) 7560 err = -ENODEV; 7561 else 7562 err = get_disk_info(mddev, argp); 7563 goto out; 7564 7565 case SET_DISK_FAULTY: 7566 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7567 goto out; 7568 7569 case GET_BITMAP_FILE: 7570 err = get_bitmap_file(mddev, argp); 7571 goto out; 7572 7573 } 7574 7575 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7576 flush_rdev_wq(mddev); 7577 7578 if (cmd == HOT_REMOVE_DISK) 7579 /* need to ensure recovery thread has run */ 7580 wait_event_interruptible_timeout(mddev->sb_wait, 7581 !test_bit(MD_RECOVERY_NEEDED, 7582 &mddev->recovery), 7583 msecs_to_jiffies(5000)); 7584 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7585 /* Need to flush page cache, and ensure no-one else opens 7586 * and writes 7587 */ 7588 mutex_lock(&mddev->open_mutex); 7589 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7590 mutex_unlock(&mddev->open_mutex); 7591 err = -EBUSY; 7592 goto out; 7593 } 7594 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7595 mutex_unlock(&mddev->open_mutex); 7596 err = -EBUSY; 7597 goto out; 7598 } 7599 did_set_md_closing = true; 7600 mutex_unlock(&mddev->open_mutex); 7601 sync_blockdev(bdev); 7602 } 7603 err = mddev_lock(mddev); 7604 if (err) { 7605 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7606 err, cmd); 7607 goto out; 7608 } 7609 7610 if (cmd == SET_ARRAY_INFO) { 7611 mdu_array_info_t info; 7612 if (!arg) 7613 memset(&info, 0, sizeof(info)); 7614 else if (copy_from_user(&info, argp, sizeof(info))) { 7615 err = -EFAULT; 7616 goto unlock; 7617 } 7618 if (mddev->pers) { 7619 err = update_array_info(mddev, &info); 7620 if (err) { 7621 pr_warn("md: couldn't update array info. %d\n", err); 7622 goto unlock; 7623 } 7624 goto unlock; 7625 } 7626 if (!list_empty(&mddev->disks)) { 7627 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7628 err = -EBUSY; 7629 goto unlock; 7630 } 7631 if (mddev->raid_disks) { 7632 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7633 err = -EBUSY; 7634 goto unlock; 7635 } 7636 err = md_set_array_info(mddev, &info); 7637 if (err) { 7638 pr_warn("md: couldn't set array info. %d\n", err); 7639 goto unlock; 7640 } 7641 goto unlock; 7642 } 7643 7644 /* 7645 * Commands querying/configuring an existing array: 7646 */ 7647 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7648 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7649 if ((!mddev->raid_disks && !mddev->external) 7650 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7651 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7652 && cmd != GET_BITMAP_FILE) { 7653 err = -ENODEV; 7654 goto unlock; 7655 } 7656 7657 /* 7658 * Commands even a read-only array can execute: 7659 */ 7660 switch (cmd) { 7661 case RESTART_ARRAY_RW: 7662 err = restart_array(mddev); 7663 goto unlock; 7664 7665 case STOP_ARRAY: 7666 err = do_md_stop(mddev, 0, bdev); 7667 goto unlock; 7668 7669 case STOP_ARRAY_RO: 7670 err = md_set_readonly(mddev, bdev); 7671 goto unlock; 7672 7673 case HOT_REMOVE_DISK: 7674 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7675 goto unlock; 7676 7677 case ADD_NEW_DISK: 7678 /* We can support ADD_NEW_DISK on read-only arrays 7679 * only if we are re-adding a preexisting device. 7680 * So require mddev->pers and MD_DISK_SYNC. 7681 */ 7682 if (mddev->pers) { 7683 mdu_disk_info_t info; 7684 if (copy_from_user(&info, argp, sizeof(info))) 7685 err = -EFAULT; 7686 else if (!(info.state & (1<<MD_DISK_SYNC))) 7687 /* Need to clear read-only for this */ 7688 break; 7689 else 7690 err = md_add_new_disk(mddev, &info); 7691 goto unlock; 7692 } 7693 break; 7694 } 7695 7696 /* 7697 * The remaining ioctls are changing the state of the 7698 * superblock, so we do not allow them on read-only arrays. 7699 */ 7700 if (mddev->ro && mddev->pers) { 7701 if (mddev->ro == 2) { 7702 mddev->ro = 0; 7703 sysfs_notify_dirent_safe(mddev->sysfs_state); 7704 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7705 /* mddev_unlock will wake thread */ 7706 /* If a device failed while we were read-only, we 7707 * need to make sure the metadata is updated now. 7708 */ 7709 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7710 mddev_unlock(mddev); 7711 wait_event(mddev->sb_wait, 7712 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7713 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7714 mddev_lock_nointr(mddev); 7715 } 7716 } else { 7717 err = -EROFS; 7718 goto unlock; 7719 } 7720 } 7721 7722 switch (cmd) { 7723 case ADD_NEW_DISK: 7724 { 7725 mdu_disk_info_t info; 7726 if (copy_from_user(&info, argp, sizeof(info))) 7727 err = -EFAULT; 7728 else 7729 err = md_add_new_disk(mddev, &info); 7730 goto unlock; 7731 } 7732 7733 case CLUSTERED_DISK_NACK: 7734 if (mddev_is_clustered(mddev)) 7735 md_cluster_ops->new_disk_ack(mddev, false); 7736 else 7737 err = -EINVAL; 7738 goto unlock; 7739 7740 case HOT_ADD_DISK: 7741 err = hot_add_disk(mddev, new_decode_dev(arg)); 7742 goto unlock; 7743 7744 case RUN_ARRAY: 7745 err = do_md_run(mddev); 7746 goto unlock; 7747 7748 case SET_BITMAP_FILE: 7749 err = set_bitmap_file(mddev, (int)arg); 7750 goto unlock; 7751 7752 default: 7753 err = -EINVAL; 7754 goto unlock; 7755 } 7756 7757 unlock: 7758 if (mddev->hold_active == UNTIL_IOCTL && 7759 err != -EINVAL) 7760 mddev->hold_active = 0; 7761 mddev_unlock(mddev); 7762 out: 7763 if(did_set_md_closing) 7764 clear_bit(MD_CLOSING, &mddev->flags); 7765 return err; 7766 } 7767 #ifdef CONFIG_COMPAT 7768 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7769 unsigned int cmd, unsigned long arg) 7770 { 7771 switch (cmd) { 7772 case HOT_REMOVE_DISK: 7773 case HOT_ADD_DISK: 7774 case SET_DISK_FAULTY: 7775 case SET_BITMAP_FILE: 7776 /* These take in integer arg, do not convert */ 7777 break; 7778 default: 7779 arg = (unsigned long)compat_ptr(arg); 7780 break; 7781 } 7782 7783 return md_ioctl(bdev, mode, cmd, arg); 7784 } 7785 #endif /* CONFIG_COMPAT */ 7786 7787 static int md_set_read_only(struct block_device *bdev, bool ro) 7788 { 7789 struct mddev *mddev = bdev->bd_disk->private_data; 7790 int err; 7791 7792 err = mddev_lock(mddev); 7793 if (err) 7794 return err; 7795 7796 if (!mddev->raid_disks && !mddev->external) { 7797 err = -ENODEV; 7798 goto out_unlock; 7799 } 7800 7801 /* 7802 * Transitioning to read-auto need only happen for arrays that call 7803 * md_write_start and which are not ready for writes yet. 7804 */ 7805 if (!ro && mddev->ro == 1 && mddev->pers) { 7806 err = restart_array(mddev); 7807 if (err) 7808 goto out_unlock; 7809 mddev->ro = 2; 7810 } 7811 7812 out_unlock: 7813 mddev_unlock(mddev); 7814 return err; 7815 } 7816 7817 static int md_open(struct block_device *bdev, fmode_t mode) 7818 { 7819 /* 7820 * Succeed if we can lock the mddev, which confirms that 7821 * it isn't being stopped right now. 7822 */ 7823 struct mddev *mddev = mddev_find(bdev->bd_dev); 7824 int err; 7825 7826 if (!mddev) 7827 return -ENODEV; 7828 7829 if (mddev->gendisk != bdev->bd_disk) { 7830 /* we are racing with mddev_put which is discarding this 7831 * bd_disk. 7832 */ 7833 mddev_put(mddev); 7834 /* Wait until bdev->bd_disk is definitely gone */ 7835 if (work_pending(&mddev->del_work)) 7836 flush_workqueue(md_misc_wq); 7837 /* Then retry the open from the top */ 7838 return -ERESTARTSYS; 7839 } 7840 BUG_ON(mddev != bdev->bd_disk->private_data); 7841 7842 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7843 goto out; 7844 7845 if (test_bit(MD_CLOSING, &mddev->flags)) { 7846 mutex_unlock(&mddev->open_mutex); 7847 err = -ENODEV; 7848 goto out; 7849 } 7850 7851 err = 0; 7852 atomic_inc(&mddev->openers); 7853 mutex_unlock(&mddev->open_mutex); 7854 7855 bdev_check_media_change(bdev); 7856 out: 7857 if (err) 7858 mddev_put(mddev); 7859 return err; 7860 } 7861 7862 static void md_release(struct gendisk *disk, fmode_t mode) 7863 { 7864 struct mddev *mddev = disk->private_data; 7865 7866 BUG_ON(!mddev); 7867 atomic_dec(&mddev->openers); 7868 mddev_put(mddev); 7869 } 7870 7871 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7872 { 7873 struct mddev *mddev = disk->private_data; 7874 unsigned int ret = 0; 7875 7876 if (mddev->changed) 7877 ret = DISK_EVENT_MEDIA_CHANGE; 7878 mddev->changed = 0; 7879 return ret; 7880 } 7881 7882 const struct block_device_operations md_fops = 7883 { 7884 .owner = THIS_MODULE, 7885 .submit_bio = md_submit_bio, 7886 .open = md_open, 7887 .release = md_release, 7888 .ioctl = md_ioctl, 7889 #ifdef CONFIG_COMPAT 7890 .compat_ioctl = md_compat_ioctl, 7891 #endif 7892 .getgeo = md_getgeo, 7893 .check_events = md_check_events, 7894 .set_read_only = md_set_read_only, 7895 }; 7896 7897 static int md_thread(void *arg) 7898 { 7899 struct md_thread *thread = arg; 7900 7901 /* 7902 * md_thread is a 'system-thread', it's priority should be very 7903 * high. We avoid resource deadlocks individually in each 7904 * raid personality. (RAID5 does preallocation) We also use RR and 7905 * the very same RT priority as kswapd, thus we will never get 7906 * into a priority inversion deadlock. 7907 * 7908 * we definitely have to have equal or higher priority than 7909 * bdflush, otherwise bdflush will deadlock if there are too 7910 * many dirty RAID5 blocks. 7911 */ 7912 7913 allow_signal(SIGKILL); 7914 while (!kthread_should_stop()) { 7915 7916 /* We need to wait INTERRUPTIBLE so that 7917 * we don't add to the load-average. 7918 * That means we need to be sure no signals are 7919 * pending 7920 */ 7921 if (signal_pending(current)) 7922 flush_signals(current); 7923 7924 wait_event_interruptible_timeout 7925 (thread->wqueue, 7926 test_bit(THREAD_WAKEUP, &thread->flags) 7927 || kthread_should_stop() || kthread_should_park(), 7928 thread->timeout); 7929 7930 clear_bit(THREAD_WAKEUP, &thread->flags); 7931 if (kthread_should_park()) 7932 kthread_parkme(); 7933 if (!kthread_should_stop()) 7934 thread->run(thread); 7935 } 7936 7937 return 0; 7938 } 7939 7940 void md_wakeup_thread(struct md_thread *thread) 7941 { 7942 if (thread) { 7943 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7944 set_bit(THREAD_WAKEUP, &thread->flags); 7945 wake_up(&thread->wqueue); 7946 } 7947 } 7948 EXPORT_SYMBOL(md_wakeup_thread); 7949 7950 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7951 struct mddev *mddev, const char *name) 7952 { 7953 struct md_thread *thread; 7954 7955 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7956 if (!thread) 7957 return NULL; 7958 7959 init_waitqueue_head(&thread->wqueue); 7960 7961 thread->run = run; 7962 thread->mddev = mddev; 7963 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7964 thread->tsk = kthread_run(md_thread, thread, 7965 "%s_%s", 7966 mdname(thread->mddev), 7967 name); 7968 if (IS_ERR(thread->tsk)) { 7969 kfree(thread); 7970 return NULL; 7971 } 7972 return thread; 7973 } 7974 EXPORT_SYMBOL(md_register_thread); 7975 7976 void md_unregister_thread(struct md_thread **threadp) 7977 { 7978 struct md_thread *thread = *threadp; 7979 if (!thread) 7980 return; 7981 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7982 /* Locking ensures that mddev_unlock does not wake_up a 7983 * non-existent thread 7984 */ 7985 spin_lock(&pers_lock); 7986 *threadp = NULL; 7987 spin_unlock(&pers_lock); 7988 7989 kthread_stop(thread->tsk); 7990 kfree(thread); 7991 } 7992 EXPORT_SYMBOL(md_unregister_thread); 7993 7994 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7995 { 7996 if (!rdev || test_bit(Faulty, &rdev->flags)) 7997 return; 7998 7999 if (!mddev->pers || !mddev->pers->error_handler) 8000 return; 8001 mddev->pers->error_handler(mddev,rdev); 8002 if (mddev->degraded) 8003 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8004 sysfs_notify_dirent_safe(rdev->sysfs_state); 8005 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8006 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8007 md_wakeup_thread(mddev->thread); 8008 if (mddev->event_work.func) 8009 queue_work(md_misc_wq, &mddev->event_work); 8010 md_new_event(mddev); 8011 } 8012 EXPORT_SYMBOL(md_error); 8013 8014 /* seq_file implementation /proc/mdstat */ 8015 8016 static void status_unused(struct seq_file *seq) 8017 { 8018 int i = 0; 8019 struct md_rdev *rdev; 8020 8021 seq_printf(seq, "unused devices: "); 8022 8023 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8024 char b[BDEVNAME_SIZE]; 8025 i++; 8026 seq_printf(seq, "%s ", 8027 bdevname(rdev->bdev,b)); 8028 } 8029 if (!i) 8030 seq_printf(seq, "<none>"); 8031 8032 seq_printf(seq, "\n"); 8033 } 8034 8035 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8036 { 8037 sector_t max_sectors, resync, res; 8038 unsigned long dt, db = 0; 8039 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8040 int scale, recovery_active; 8041 unsigned int per_milli; 8042 8043 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8044 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8045 max_sectors = mddev->resync_max_sectors; 8046 else 8047 max_sectors = mddev->dev_sectors; 8048 8049 resync = mddev->curr_resync; 8050 if (resync <= 3) { 8051 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8052 /* Still cleaning up */ 8053 resync = max_sectors; 8054 } else if (resync > max_sectors) 8055 resync = max_sectors; 8056 else 8057 resync -= atomic_read(&mddev->recovery_active); 8058 8059 if (resync == 0) { 8060 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8061 struct md_rdev *rdev; 8062 8063 rdev_for_each(rdev, mddev) 8064 if (rdev->raid_disk >= 0 && 8065 !test_bit(Faulty, &rdev->flags) && 8066 rdev->recovery_offset != MaxSector && 8067 rdev->recovery_offset) { 8068 seq_printf(seq, "\trecover=REMOTE"); 8069 return 1; 8070 } 8071 if (mddev->reshape_position != MaxSector) 8072 seq_printf(seq, "\treshape=REMOTE"); 8073 else 8074 seq_printf(seq, "\tresync=REMOTE"); 8075 return 1; 8076 } 8077 if (mddev->recovery_cp < MaxSector) { 8078 seq_printf(seq, "\tresync=PENDING"); 8079 return 1; 8080 } 8081 return 0; 8082 } 8083 if (resync < 3) { 8084 seq_printf(seq, "\tresync=DELAYED"); 8085 return 1; 8086 } 8087 8088 WARN_ON(max_sectors == 0); 8089 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8090 * in a sector_t, and (max_sectors>>scale) will fit in a 8091 * u32, as those are the requirements for sector_div. 8092 * Thus 'scale' must be at least 10 8093 */ 8094 scale = 10; 8095 if (sizeof(sector_t) > sizeof(unsigned long)) { 8096 while ( max_sectors/2 > (1ULL<<(scale+32))) 8097 scale++; 8098 } 8099 res = (resync>>scale)*1000; 8100 sector_div(res, (u32)((max_sectors>>scale)+1)); 8101 8102 per_milli = res; 8103 { 8104 int i, x = per_milli/50, y = 20-x; 8105 seq_printf(seq, "["); 8106 for (i = 0; i < x; i++) 8107 seq_printf(seq, "="); 8108 seq_printf(seq, ">"); 8109 for (i = 0; i < y; i++) 8110 seq_printf(seq, "."); 8111 seq_printf(seq, "] "); 8112 } 8113 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8114 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8115 "reshape" : 8116 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8117 "check" : 8118 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8119 "resync" : "recovery"))), 8120 per_milli/10, per_milli % 10, 8121 (unsigned long long) resync/2, 8122 (unsigned long long) max_sectors/2); 8123 8124 /* 8125 * dt: time from mark until now 8126 * db: blocks written from mark until now 8127 * rt: remaining time 8128 * 8129 * rt is a sector_t, which is always 64bit now. We are keeping 8130 * the original algorithm, but it is not really necessary. 8131 * 8132 * Original algorithm: 8133 * So we divide before multiply in case it is 32bit and close 8134 * to the limit. 8135 * We scale the divisor (db) by 32 to avoid losing precision 8136 * near the end of resync when the number of remaining sectors 8137 * is close to 'db'. 8138 * We then divide rt by 32 after multiplying by db to compensate. 8139 * The '+1' avoids division by zero if db is very small. 8140 */ 8141 dt = ((jiffies - mddev->resync_mark) / HZ); 8142 if (!dt) dt++; 8143 8144 curr_mark_cnt = mddev->curr_mark_cnt; 8145 recovery_active = atomic_read(&mddev->recovery_active); 8146 resync_mark_cnt = mddev->resync_mark_cnt; 8147 8148 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8149 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8150 8151 rt = max_sectors - resync; /* number of remaining sectors */ 8152 rt = div64_u64(rt, db/32+1); 8153 rt *= dt; 8154 rt >>= 5; 8155 8156 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8157 ((unsigned long)rt % 60)/6); 8158 8159 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8160 return 1; 8161 } 8162 8163 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8164 { 8165 struct list_head *tmp; 8166 loff_t l = *pos; 8167 struct mddev *mddev; 8168 8169 if (l >= 0x10000) 8170 return NULL; 8171 if (!l--) 8172 /* header */ 8173 return (void*)1; 8174 8175 spin_lock(&all_mddevs_lock); 8176 list_for_each(tmp,&all_mddevs) 8177 if (!l--) { 8178 mddev = list_entry(tmp, struct mddev, all_mddevs); 8179 mddev_get(mddev); 8180 spin_unlock(&all_mddevs_lock); 8181 return mddev; 8182 } 8183 spin_unlock(&all_mddevs_lock); 8184 if (!l--) 8185 return (void*)2;/* tail */ 8186 return NULL; 8187 } 8188 8189 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8190 { 8191 struct list_head *tmp; 8192 struct mddev *next_mddev, *mddev = v; 8193 8194 ++*pos; 8195 if (v == (void*)2) 8196 return NULL; 8197 8198 spin_lock(&all_mddevs_lock); 8199 if (v == (void*)1) 8200 tmp = all_mddevs.next; 8201 else 8202 tmp = mddev->all_mddevs.next; 8203 if (tmp != &all_mddevs) 8204 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8205 else { 8206 next_mddev = (void*)2; 8207 *pos = 0x10000; 8208 } 8209 spin_unlock(&all_mddevs_lock); 8210 8211 if (v != (void*)1) 8212 mddev_put(mddev); 8213 return next_mddev; 8214 8215 } 8216 8217 static void md_seq_stop(struct seq_file *seq, void *v) 8218 { 8219 struct mddev *mddev = v; 8220 8221 if (mddev && v != (void*)1 && v != (void*)2) 8222 mddev_put(mddev); 8223 } 8224 8225 static int md_seq_show(struct seq_file *seq, void *v) 8226 { 8227 struct mddev *mddev = v; 8228 sector_t sectors; 8229 struct md_rdev *rdev; 8230 8231 if (v == (void*)1) { 8232 struct md_personality *pers; 8233 seq_printf(seq, "Personalities : "); 8234 spin_lock(&pers_lock); 8235 list_for_each_entry(pers, &pers_list, list) 8236 seq_printf(seq, "[%s] ", pers->name); 8237 8238 spin_unlock(&pers_lock); 8239 seq_printf(seq, "\n"); 8240 seq->poll_event = atomic_read(&md_event_count); 8241 return 0; 8242 } 8243 if (v == (void*)2) { 8244 status_unused(seq); 8245 return 0; 8246 } 8247 8248 spin_lock(&mddev->lock); 8249 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8250 seq_printf(seq, "%s : %sactive", mdname(mddev), 8251 mddev->pers ? "" : "in"); 8252 if (mddev->pers) { 8253 if (mddev->ro==1) 8254 seq_printf(seq, " (read-only)"); 8255 if (mddev->ro==2) 8256 seq_printf(seq, " (auto-read-only)"); 8257 seq_printf(seq, " %s", mddev->pers->name); 8258 } 8259 8260 sectors = 0; 8261 rcu_read_lock(); 8262 rdev_for_each_rcu(rdev, mddev) { 8263 char b[BDEVNAME_SIZE]; 8264 seq_printf(seq, " %s[%d]", 8265 bdevname(rdev->bdev,b), rdev->desc_nr); 8266 if (test_bit(WriteMostly, &rdev->flags)) 8267 seq_printf(seq, "(W)"); 8268 if (test_bit(Journal, &rdev->flags)) 8269 seq_printf(seq, "(J)"); 8270 if (test_bit(Faulty, &rdev->flags)) { 8271 seq_printf(seq, "(F)"); 8272 continue; 8273 } 8274 if (rdev->raid_disk < 0) 8275 seq_printf(seq, "(S)"); /* spare */ 8276 if (test_bit(Replacement, &rdev->flags)) 8277 seq_printf(seq, "(R)"); 8278 sectors += rdev->sectors; 8279 } 8280 rcu_read_unlock(); 8281 8282 if (!list_empty(&mddev->disks)) { 8283 if (mddev->pers) 8284 seq_printf(seq, "\n %llu blocks", 8285 (unsigned long long) 8286 mddev->array_sectors / 2); 8287 else 8288 seq_printf(seq, "\n %llu blocks", 8289 (unsigned long long)sectors / 2); 8290 } 8291 if (mddev->persistent) { 8292 if (mddev->major_version != 0 || 8293 mddev->minor_version != 90) { 8294 seq_printf(seq," super %d.%d", 8295 mddev->major_version, 8296 mddev->minor_version); 8297 } 8298 } else if (mddev->external) 8299 seq_printf(seq, " super external:%s", 8300 mddev->metadata_type); 8301 else 8302 seq_printf(seq, " super non-persistent"); 8303 8304 if (mddev->pers) { 8305 mddev->pers->status(seq, mddev); 8306 seq_printf(seq, "\n "); 8307 if (mddev->pers->sync_request) { 8308 if (status_resync(seq, mddev)) 8309 seq_printf(seq, "\n "); 8310 } 8311 } else 8312 seq_printf(seq, "\n "); 8313 8314 md_bitmap_status(seq, mddev->bitmap); 8315 8316 seq_printf(seq, "\n"); 8317 } 8318 spin_unlock(&mddev->lock); 8319 8320 return 0; 8321 } 8322 8323 static const struct seq_operations md_seq_ops = { 8324 .start = md_seq_start, 8325 .next = md_seq_next, 8326 .stop = md_seq_stop, 8327 .show = md_seq_show, 8328 }; 8329 8330 static int md_seq_open(struct inode *inode, struct file *file) 8331 { 8332 struct seq_file *seq; 8333 int error; 8334 8335 error = seq_open(file, &md_seq_ops); 8336 if (error) 8337 return error; 8338 8339 seq = file->private_data; 8340 seq->poll_event = atomic_read(&md_event_count); 8341 return error; 8342 } 8343 8344 static int md_unloading; 8345 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8346 { 8347 struct seq_file *seq = filp->private_data; 8348 __poll_t mask; 8349 8350 if (md_unloading) 8351 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8352 poll_wait(filp, &md_event_waiters, wait); 8353 8354 /* always allow read */ 8355 mask = EPOLLIN | EPOLLRDNORM; 8356 8357 if (seq->poll_event != atomic_read(&md_event_count)) 8358 mask |= EPOLLERR | EPOLLPRI; 8359 return mask; 8360 } 8361 8362 static const struct proc_ops mdstat_proc_ops = { 8363 .proc_open = md_seq_open, 8364 .proc_read = seq_read, 8365 .proc_lseek = seq_lseek, 8366 .proc_release = seq_release, 8367 .proc_poll = mdstat_poll, 8368 }; 8369 8370 int register_md_personality(struct md_personality *p) 8371 { 8372 pr_debug("md: %s personality registered for level %d\n", 8373 p->name, p->level); 8374 spin_lock(&pers_lock); 8375 list_add_tail(&p->list, &pers_list); 8376 spin_unlock(&pers_lock); 8377 return 0; 8378 } 8379 EXPORT_SYMBOL(register_md_personality); 8380 8381 int unregister_md_personality(struct md_personality *p) 8382 { 8383 pr_debug("md: %s personality unregistered\n", p->name); 8384 spin_lock(&pers_lock); 8385 list_del_init(&p->list); 8386 spin_unlock(&pers_lock); 8387 return 0; 8388 } 8389 EXPORT_SYMBOL(unregister_md_personality); 8390 8391 int register_md_cluster_operations(struct md_cluster_operations *ops, 8392 struct module *module) 8393 { 8394 int ret = 0; 8395 spin_lock(&pers_lock); 8396 if (md_cluster_ops != NULL) 8397 ret = -EALREADY; 8398 else { 8399 md_cluster_ops = ops; 8400 md_cluster_mod = module; 8401 } 8402 spin_unlock(&pers_lock); 8403 return ret; 8404 } 8405 EXPORT_SYMBOL(register_md_cluster_operations); 8406 8407 int unregister_md_cluster_operations(void) 8408 { 8409 spin_lock(&pers_lock); 8410 md_cluster_ops = NULL; 8411 spin_unlock(&pers_lock); 8412 return 0; 8413 } 8414 EXPORT_SYMBOL(unregister_md_cluster_operations); 8415 8416 int md_setup_cluster(struct mddev *mddev, int nodes) 8417 { 8418 int ret; 8419 if (!md_cluster_ops) 8420 request_module("md-cluster"); 8421 spin_lock(&pers_lock); 8422 /* ensure module won't be unloaded */ 8423 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8424 pr_warn("can't find md-cluster module or get it's reference.\n"); 8425 spin_unlock(&pers_lock); 8426 return -ENOENT; 8427 } 8428 spin_unlock(&pers_lock); 8429 8430 ret = md_cluster_ops->join(mddev, nodes); 8431 if (!ret) 8432 mddev->safemode_delay = 0; 8433 return ret; 8434 } 8435 8436 void md_cluster_stop(struct mddev *mddev) 8437 { 8438 if (!md_cluster_ops) 8439 return; 8440 md_cluster_ops->leave(mddev); 8441 module_put(md_cluster_mod); 8442 } 8443 8444 static int is_mddev_idle(struct mddev *mddev, int init) 8445 { 8446 struct md_rdev *rdev; 8447 int idle; 8448 int curr_events; 8449 8450 idle = 1; 8451 rcu_read_lock(); 8452 rdev_for_each_rcu(rdev, mddev) { 8453 struct gendisk *disk = rdev->bdev->bd_disk; 8454 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8455 atomic_read(&disk->sync_io); 8456 /* sync IO will cause sync_io to increase before the disk_stats 8457 * as sync_io is counted when a request starts, and 8458 * disk_stats is counted when it completes. 8459 * So resync activity will cause curr_events to be smaller than 8460 * when there was no such activity. 8461 * non-sync IO will cause disk_stat to increase without 8462 * increasing sync_io so curr_events will (eventually) 8463 * be larger than it was before. Once it becomes 8464 * substantially larger, the test below will cause 8465 * the array to appear non-idle, and resync will slow 8466 * down. 8467 * If there is a lot of outstanding resync activity when 8468 * we set last_event to curr_events, then all that activity 8469 * completing might cause the array to appear non-idle 8470 * and resync will be slowed down even though there might 8471 * not have been non-resync activity. This will only 8472 * happen once though. 'last_events' will soon reflect 8473 * the state where there is little or no outstanding 8474 * resync requests, and further resync activity will 8475 * always make curr_events less than last_events. 8476 * 8477 */ 8478 if (init || curr_events - rdev->last_events > 64) { 8479 rdev->last_events = curr_events; 8480 idle = 0; 8481 } 8482 } 8483 rcu_read_unlock(); 8484 return idle; 8485 } 8486 8487 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8488 { 8489 /* another "blocks" (512byte) blocks have been synced */ 8490 atomic_sub(blocks, &mddev->recovery_active); 8491 wake_up(&mddev->recovery_wait); 8492 if (!ok) { 8493 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8494 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8495 md_wakeup_thread(mddev->thread); 8496 // stop recovery, signal do_sync .... 8497 } 8498 } 8499 EXPORT_SYMBOL(md_done_sync); 8500 8501 /* md_write_start(mddev, bi) 8502 * If we need to update some array metadata (e.g. 'active' flag 8503 * in superblock) before writing, schedule a superblock update 8504 * and wait for it to complete. 8505 * A return value of 'false' means that the write wasn't recorded 8506 * and cannot proceed as the array is being suspend. 8507 */ 8508 bool md_write_start(struct mddev *mddev, struct bio *bi) 8509 { 8510 int did_change = 0; 8511 8512 if (bio_data_dir(bi) != WRITE) 8513 return true; 8514 8515 BUG_ON(mddev->ro == 1); 8516 if (mddev->ro == 2) { 8517 /* need to switch to read/write */ 8518 mddev->ro = 0; 8519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8520 md_wakeup_thread(mddev->thread); 8521 md_wakeup_thread(mddev->sync_thread); 8522 did_change = 1; 8523 } 8524 rcu_read_lock(); 8525 percpu_ref_get(&mddev->writes_pending); 8526 smp_mb(); /* Match smp_mb in set_in_sync() */ 8527 if (mddev->safemode == 1) 8528 mddev->safemode = 0; 8529 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8530 if (mddev->in_sync || mddev->sync_checkers) { 8531 spin_lock(&mddev->lock); 8532 if (mddev->in_sync) { 8533 mddev->in_sync = 0; 8534 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8535 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8536 md_wakeup_thread(mddev->thread); 8537 did_change = 1; 8538 } 8539 spin_unlock(&mddev->lock); 8540 } 8541 rcu_read_unlock(); 8542 if (did_change) 8543 sysfs_notify_dirent_safe(mddev->sysfs_state); 8544 if (!mddev->has_superblocks) 8545 return true; 8546 wait_event(mddev->sb_wait, 8547 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8548 mddev->suspended); 8549 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8550 percpu_ref_put(&mddev->writes_pending); 8551 return false; 8552 } 8553 return true; 8554 } 8555 EXPORT_SYMBOL(md_write_start); 8556 8557 /* md_write_inc can only be called when md_write_start() has 8558 * already been called at least once of the current request. 8559 * It increments the counter and is useful when a single request 8560 * is split into several parts. Each part causes an increment and 8561 * so needs a matching md_write_end(). 8562 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8563 * a spinlocked region. 8564 */ 8565 void md_write_inc(struct mddev *mddev, struct bio *bi) 8566 { 8567 if (bio_data_dir(bi) != WRITE) 8568 return; 8569 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8570 percpu_ref_get(&mddev->writes_pending); 8571 } 8572 EXPORT_SYMBOL(md_write_inc); 8573 8574 void md_write_end(struct mddev *mddev) 8575 { 8576 percpu_ref_put(&mddev->writes_pending); 8577 8578 if (mddev->safemode == 2) 8579 md_wakeup_thread(mddev->thread); 8580 else if (mddev->safemode_delay) 8581 /* The roundup() ensures this only performs locking once 8582 * every ->safemode_delay jiffies 8583 */ 8584 mod_timer(&mddev->safemode_timer, 8585 roundup(jiffies, mddev->safemode_delay) + 8586 mddev->safemode_delay); 8587 } 8588 8589 EXPORT_SYMBOL(md_write_end); 8590 8591 /* md_allow_write(mddev) 8592 * Calling this ensures that the array is marked 'active' so that writes 8593 * may proceed without blocking. It is important to call this before 8594 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8595 * Must be called with mddev_lock held. 8596 */ 8597 void md_allow_write(struct mddev *mddev) 8598 { 8599 if (!mddev->pers) 8600 return; 8601 if (mddev->ro) 8602 return; 8603 if (!mddev->pers->sync_request) 8604 return; 8605 8606 spin_lock(&mddev->lock); 8607 if (mddev->in_sync) { 8608 mddev->in_sync = 0; 8609 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8610 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8611 if (mddev->safemode_delay && 8612 mddev->safemode == 0) 8613 mddev->safemode = 1; 8614 spin_unlock(&mddev->lock); 8615 md_update_sb(mddev, 0); 8616 sysfs_notify_dirent_safe(mddev->sysfs_state); 8617 /* wait for the dirty state to be recorded in the metadata */ 8618 wait_event(mddev->sb_wait, 8619 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8620 } else 8621 spin_unlock(&mddev->lock); 8622 } 8623 EXPORT_SYMBOL_GPL(md_allow_write); 8624 8625 #define SYNC_MARKS 10 8626 #define SYNC_MARK_STEP (3*HZ) 8627 #define UPDATE_FREQUENCY (5*60*HZ) 8628 void md_do_sync(struct md_thread *thread) 8629 { 8630 struct mddev *mddev = thread->mddev; 8631 struct mddev *mddev2; 8632 unsigned int currspeed = 0, window; 8633 sector_t max_sectors,j, io_sectors, recovery_done; 8634 unsigned long mark[SYNC_MARKS]; 8635 unsigned long update_time; 8636 sector_t mark_cnt[SYNC_MARKS]; 8637 int last_mark,m; 8638 struct list_head *tmp; 8639 sector_t last_check; 8640 int skipped = 0; 8641 struct md_rdev *rdev; 8642 char *desc, *action = NULL; 8643 struct blk_plug plug; 8644 int ret; 8645 8646 /* just incase thread restarts... */ 8647 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8648 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8649 return; 8650 if (mddev->ro) {/* never try to sync a read-only array */ 8651 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8652 return; 8653 } 8654 8655 if (mddev_is_clustered(mddev)) { 8656 ret = md_cluster_ops->resync_start(mddev); 8657 if (ret) 8658 goto skip; 8659 8660 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8661 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8662 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8663 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8664 && ((unsigned long long)mddev->curr_resync_completed 8665 < (unsigned long long)mddev->resync_max_sectors)) 8666 goto skip; 8667 } 8668 8669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8670 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8671 desc = "data-check"; 8672 action = "check"; 8673 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8674 desc = "requested-resync"; 8675 action = "repair"; 8676 } else 8677 desc = "resync"; 8678 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8679 desc = "reshape"; 8680 else 8681 desc = "recovery"; 8682 8683 mddev->last_sync_action = action ?: desc; 8684 8685 /* we overload curr_resync somewhat here. 8686 * 0 == not engaged in resync at all 8687 * 2 == checking that there is no conflict with another sync 8688 * 1 == like 2, but have yielded to allow conflicting resync to 8689 * commence 8690 * other == active in resync - this many blocks 8691 * 8692 * Before starting a resync we must have set curr_resync to 8693 * 2, and then checked that every "conflicting" array has curr_resync 8694 * less than ours. When we find one that is the same or higher 8695 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8696 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8697 * This will mean we have to start checking from the beginning again. 8698 * 8699 */ 8700 8701 do { 8702 int mddev2_minor = -1; 8703 mddev->curr_resync = 2; 8704 8705 try_again: 8706 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8707 goto skip; 8708 for_each_mddev(mddev2, tmp) { 8709 if (mddev2 == mddev) 8710 continue; 8711 if (!mddev->parallel_resync 8712 && mddev2->curr_resync 8713 && match_mddev_units(mddev, mddev2)) { 8714 DEFINE_WAIT(wq); 8715 if (mddev < mddev2 && mddev->curr_resync == 2) { 8716 /* arbitrarily yield */ 8717 mddev->curr_resync = 1; 8718 wake_up(&resync_wait); 8719 } 8720 if (mddev > mddev2 && mddev->curr_resync == 1) 8721 /* no need to wait here, we can wait the next 8722 * time 'round when curr_resync == 2 8723 */ 8724 continue; 8725 /* We need to wait 'interruptible' so as not to 8726 * contribute to the load average, and not to 8727 * be caught by 'softlockup' 8728 */ 8729 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8730 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8731 mddev2->curr_resync >= mddev->curr_resync) { 8732 if (mddev2_minor != mddev2->md_minor) { 8733 mddev2_minor = mddev2->md_minor; 8734 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8735 desc, mdname(mddev), 8736 mdname(mddev2)); 8737 } 8738 mddev_put(mddev2); 8739 if (signal_pending(current)) 8740 flush_signals(current); 8741 schedule(); 8742 finish_wait(&resync_wait, &wq); 8743 goto try_again; 8744 } 8745 finish_wait(&resync_wait, &wq); 8746 } 8747 } 8748 } while (mddev->curr_resync < 2); 8749 8750 j = 0; 8751 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8752 /* resync follows the size requested by the personality, 8753 * which defaults to physical size, but can be virtual size 8754 */ 8755 max_sectors = mddev->resync_max_sectors; 8756 atomic64_set(&mddev->resync_mismatches, 0); 8757 /* we don't use the checkpoint if there's a bitmap */ 8758 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8759 j = mddev->resync_min; 8760 else if (!mddev->bitmap) 8761 j = mddev->recovery_cp; 8762 8763 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8764 max_sectors = mddev->resync_max_sectors; 8765 /* 8766 * If the original node aborts reshaping then we continue the 8767 * reshaping, so set j again to avoid restart reshape from the 8768 * first beginning 8769 */ 8770 if (mddev_is_clustered(mddev) && 8771 mddev->reshape_position != MaxSector) 8772 j = mddev->reshape_position; 8773 } else { 8774 /* recovery follows the physical size of devices */ 8775 max_sectors = mddev->dev_sectors; 8776 j = MaxSector; 8777 rcu_read_lock(); 8778 rdev_for_each_rcu(rdev, mddev) 8779 if (rdev->raid_disk >= 0 && 8780 !test_bit(Journal, &rdev->flags) && 8781 !test_bit(Faulty, &rdev->flags) && 8782 !test_bit(In_sync, &rdev->flags) && 8783 rdev->recovery_offset < j) 8784 j = rdev->recovery_offset; 8785 rcu_read_unlock(); 8786 8787 /* If there is a bitmap, we need to make sure all 8788 * writes that started before we added a spare 8789 * complete before we start doing a recovery. 8790 * Otherwise the write might complete and (via 8791 * bitmap_endwrite) set a bit in the bitmap after the 8792 * recovery has checked that bit and skipped that 8793 * region. 8794 */ 8795 if (mddev->bitmap) { 8796 mddev->pers->quiesce(mddev, 1); 8797 mddev->pers->quiesce(mddev, 0); 8798 } 8799 } 8800 8801 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8802 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8803 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8804 speed_max(mddev), desc); 8805 8806 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8807 8808 io_sectors = 0; 8809 for (m = 0; m < SYNC_MARKS; m++) { 8810 mark[m] = jiffies; 8811 mark_cnt[m] = io_sectors; 8812 } 8813 last_mark = 0; 8814 mddev->resync_mark = mark[last_mark]; 8815 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8816 8817 /* 8818 * Tune reconstruction: 8819 */ 8820 window = 32 * (PAGE_SIZE / 512); 8821 pr_debug("md: using %dk window, over a total of %lluk.\n", 8822 window/2, (unsigned long long)max_sectors/2); 8823 8824 atomic_set(&mddev->recovery_active, 0); 8825 last_check = 0; 8826 8827 if (j>2) { 8828 pr_debug("md: resuming %s of %s from checkpoint.\n", 8829 desc, mdname(mddev)); 8830 mddev->curr_resync = j; 8831 } else 8832 mddev->curr_resync = 3; /* no longer delayed */ 8833 mddev->curr_resync_completed = j; 8834 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8835 md_new_event(mddev); 8836 update_time = jiffies; 8837 8838 blk_start_plug(&plug); 8839 while (j < max_sectors) { 8840 sector_t sectors; 8841 8842 skipped = 0; 8843 8844 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8845 ((mddev->curr_resync > mddev->curr_resync_completed && 8846 (mddev->curr_resync - mddev->curr_resync_completed) 8847 > (max_sectors >> 4)) || 8848 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8849 (j - mddev->curr_resync_completed)*2 8850 >= mddev->resync_max - mddev->curr_resync_completed || 8851 mddev->curr_resync_completed > mddev->resync_max 8852 )) { 8853 /* time to update curr_resync_completed */ 8854 wait_event(mddev->recovery_wait, 8855 atomic_read(&mddev->recovery_active) == 0); 8856 mddev->curr_resync_completed = j; 8857 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8858 j > mddev->recovery_cp) 8859 mddev->recovery_cp = j; 8860 update_time = jiffies; 8861 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8862 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8863 } 8864 8865 while (j >= mddev->resync_max && 8866 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8867 /* As this condition is controlled by user-space, 8868 * we can block indefinitely, so use '_interruptible' 8869 * to avoid triggering warnings. 8870 */ 8871 flush_signals(current); /* just in case */ 8872 wait_event_interruptible(mddev->recovery_wait, 8873 mddev->resync_max > j 8874 || test_bit(MD_RECOVERY_INTR, 8875 &mddev->recovery)); 8876 } 8877 8878 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8879 break; 8880 8881 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8882 if (sectors == 0) { 8883 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8884 break; 8885 } 8886 8887 if (!skipped) { /* actual IO requested */ 8888 io_sectors += sectors; 8889 atomic_add(sectors, &mddev->recovery_active); 8890 } 8891 8892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8893 break; 8894 8895 j += sectors; 8896 if (j > max_sectors) 8897 /* when skipping, extra large numbers can be returned. */ 8898 j = max_sectors; 8899 if (j > 2) 8900 mddev->curr_resync = j; 8901 mddev->curr_mark_cnt = io_sectors; 8902 if (last_check == 0) 8903 /* this is the earliest that rebuild will be 8904 * visible in /proc/mdstat 8905 */ 8906 md_new_event(mddev); 8907 8908 if (last_check + window > io_sectors || j == max_sectors) 8909 continue; 8910 8911 last_check = io_sectors; 8912 repeat: 8913 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8914 /* step marks */ 8915 int next = (last_mark+1) % SYNC_MARKS; 8916 8917 mddev->resync_mark = mark[next]; 8918 mddev->resync_mark_cnt = mark_cnt[next]; 8919 mark[next] = jiffies; 8920 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8921 last_mark = next; 8922 } 8923 8924 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8925 break; 8926 8927 /* 8928 * this loop exits only if either when we are slower than 8929 * the 'hard' speed limit, or the system was IO-idle for 8930 * a jiffy. 8931 * the system might be non-idle CPU-wise, but we only care 8932 * about not overloading the IO subsystem. (things like an 8933 * e2fsck being done on the RAID array should execute fast) 8934 */ 8935 cond_resched(); 8936 8937 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8938 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8939 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8940 8941 if (currspeed > speed_min(mddev)) { 8942 if (currspeed > speed_max(mddev)) { 8943 msleep(500); 8944 goto repeat; 8945 } 8946 if (!is_mddev_idle(mddev, 0)) { 8947 /* 8948 * Give other IO more of a chance. 8949 * The faster the devices, the less we wait. 8950 */ 8951 wait_event(mddev->recovery_wait, 8952 !atomic_read(&mddev->recovery_active)); 8953 } 8954 } 8955 } 8956 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8957 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8958 ? "interrupted" : "done"); 8959 /* 8960 * this also signals 'finished resyncing' to md_stop 8961 */ 8962 blk_finish_plug(&plug); 8963 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8964 8965 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8966 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8967 mddev->curr_resync > 3) { 8968 mddev->curr_resync_completed = mddev->curr_resync; 8969 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8970 } 8971 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8972 8973 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8974 mddev->curr_resync > 3) { 8975 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8976 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8977 if (mddev->curr_resync >= mddev->recovery_cp) { 8978 pr_debug("md: checkpointing %s of %s.\n", 8979 desc, mdname(mddev)); 8980 if (test_bit(MD_RECOVERY_ERROR, 8981 &mddev->recovery)) 8982 mddev->recovery_cp = 8983 mddev->curr_resync_completed; 8984 else 8985 mddev->recovery_cp = 8986 mddev->curr_resync; 8987 } 8988 } else 8989 mddev->recovery_cp = MaxSector; 8990 } else { 8991 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8992 mddev->curr_resync = MaxSector; 8993 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8994 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8995 rcu_read_lock(); 8996 rdev_for_each_rcu(rdev, mddev) 8997 if (rdev->raid_disk >= 0 && 8998 mddev->delta_disks >= 0 && 8999 !test_bit(Journal, &rdev->flags) && 9000 !test_bit(Faulty, &rdev->flags) && 9001 !test_bit(In_sync, &rdev->flags) && 9002 rdev->recovery_offset < mddev->curr_resync) 9003 rdev->recovery_offset = mddev->curr_resync; 9004 rcu_read_unlock(); 9005 } 9006 } 9007 } 9008 skip: 9009 /* set CHANGE_PENDING here since maybe another update is needed, 9010 * so other nodes are informed. It should be harmless for normal 9011 * raid */ 9012 set_mask_bits(&mddev->sb_flags, 0, 9013 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9014 9015 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9016 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9017 mddev->delta_disks > 0 && 9018 mddev->pers->finish_reshape && 9019 mddev->pers->size && 9020 mddev->queue) { 9021 mddev_lock_nointr(mddev); 9022 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9023 mddev_unlock(mddev); 9024 if (!mddev_is_clustered(mddev)) 9025 set_capacity_and_notify(mddev->gendisk, 9026 mddev->array_sectors); 9027 } 9028 9029 spin_lock(&mddev->lock); 9030 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9031 /* We completed so min/max setting can be forgotten if used. */ 9032 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9033 mddev->resync_min = 0; 9034 mddev->resync_max = MaxSector; 9035 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9036 mddev->resync_min = mddev->curr_resync_completed; 9037 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9038 mddev->curr_resync = 0; 9039 spin_unlock(&mddev->lock); 9040 9041 wake_up(&resync_wait); 9042 md_wakeup_thread(mddev->thread); 9043 return; 9044 } 9045 EXPORT_SYMBOL_GPL(md_do_sync); 9046 9047 static int remove_and_add_spares(struct mddev *mddev, 9048 struct md_rdev *this) 9049 { 9050 struct md_rdev *rdev; 9051 int spares = 0; 9052 int removed = 0; 9053 bool remove_some = false; 9054 9055 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9056 /* Mustn't remove devices when resync thread is running */ 9057 return 0; 9058 9059 rdev_for_each(rdev, mddev) { 9060 if ((this == NULL || rdev == this) && 9061 rdev->raid_disk >= 0 && 9062 !test_bit(Blocked, &rdev->flags) && 9063 test_bit(Faulty, &rdev->flags) && 9064 atomic_read(&rdev->nr_pending)==0) { 9065 /* Faulty non-Blocked devices with nr_pending == 0 9066 * never get nr_pending incremented, 9067 * never get Faulty cleared, and never get Blocked set. 9068 * So we can synchronize_rcu now rather than once per device 9069 */ 9070 remove_some = true; 9071 set_bit(RemoveSynchronized, &rdev->flags); 9072 } 9073 } 9074 9075 if (remove_some) 9076 synchronize_rcu(); 9077 rdev_for_each(rdev, mddev) { 9078 if ((this == NULL || rdev == this) && 9079 rdev->raid_disk >= 0 && 9080 !test_bit(Blocked, &rdev->flags) && 9081 ((test_bit(RemoveSynchronized, &rdev->flags) || 9082 (!test_bit(In_sync, &rdev->flags) && 9083 !test_bit(Journal, &rdev->flags))) && 9084 atomic_read(&rdev->nr_pending)==0)) { 9085 if (mddev->pers->hot_remove_disk( 9086 mddev, rdev) == 0) { 9087 sysfs_unlink_rdev(mddev, rdev); 9088 rdev->saved_raid_disk = rdev->raid_disk; 9089 rdev->raid_disk = -1; 9090 removed++; 9091 } 9092 } 9093 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9094 clear_bit(RemoveSynchronized, &rdev->flags); 9095 } 9096 9097 if (removed && mddev->kobj.sd) 9098 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9099 9100 if (this && removed) 9101 goto no_add; 9102 9103 rdev_for_each(rdev, mddev) { 9104 if (this && this != rdev) 9105 continue; 9106 if (test_bit(Candidate, &rdev->flags)) 9107 continue; 9108 if (rdev->raid_disk >= 0 && 9109 !test_bit(In_sync, &rdev->flags) && 9110 !test_bit(Journal, &rdev->flags) && 9111 !test_bit(Faulty, &rdev->flags)) 9112 spares++; 9113 if (rdev->raid_disk >= 0) 9114 continue; 9115 if (test_bit(Faulty, &rdev->flags)) 9116 continue; 9117 if (!test_bit(Journal, &rdev->flags)) { 9118 if (mddev->ro && 9119 ! (rdev->saved_raid_disk >= 0 && 9120 !test_bit(Bitmap_sync, &rdev->flags))) 9121 continue; 9122 9123 rdev->recovery_offset = 0; 9124 } 9125 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9126 /* failure here is OK */ 9127 sysfs_link_rdev(mddev, rdev); 9128 if (!test_bit(Journal, &rdev->flags)) 9129 spares++; 9130 md_new_event(mddev); 9131 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9132 } 9133 } 9134 no_add: 9135 if (removed) 9136 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9137 return spares; 9138 } 9139 9140 static void md_start_sync(struct work_struct *ws) 9141 { 9142 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9143 9144 mddev->sync_thread = md_register_thread(md_do_sync, 9145 mddev, 9146 "resync"); 9147 if (!mddev->sync_thread) { 9148 pr_warn("%s: could not start resync thread...\n", 9149 mdname(mddev)); 9150 /* leave the spares where they are, it shouldn't hurt */ 9151 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9152 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9153 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9154 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9155 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9156 wake_up(&resync_wait); 9157 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9158 &mddev->recovery)) 9159 if (mddev->sysfs_action) 9160 sysfs_notify_dirent_safe(mddev->sysfs_action); 9161 } else 9162 md_wakeup_thread(mddev->sync_thread); 9163 sysfs_notify_dirent_safe(mddev->sysfs_action); 9164 md_new_event(mddev); 9165 } 9166 9167 /* 9168 * This routine is regularly called by all per-raid-array threads to 9169 * deal with generic issues like resync and super-block update. 9170 * Raid personalities that don't have a thread (linear/raid0) do not 9171 * need this as they never do any recovery or update the superblock. 9172 * 9173 * It does not do any resync itself, but rather "forks" off other threads 9174 * to do that as needed. 9175 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9176 * "->recovery" and create a thread at ->sync_thread. 9177 * When the thread finishes it sets MD_RECOVERY_DONE 9178 * and wakeups up this thread which will reap the thread and finish up. 9179 * This thread also removes any faulty devices (with nr_pending == 0). 9180 * 9181 * The overall approach is: 9182 * 1/ if the superblock needs updating, update it. 9183 * 2/ If a recovery thread is running, don't do anything else. 9184 * 3/ If recovery has finished, clean up, possibly marking spares active. 9185 * 4/ If there are any faulty devices, remove them. 9186 * 5/ If array is degraded, try to add spares devices 9187 * 6/ If array has spares or is not in-sync, start a resync thread. 9188 */ 9189 void md_check_recovery(struct mddev *mddev) 9190 { 9191 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9192 /* Write superblock - thread that called mddev_suspend() 9193 * holds reconfig_mutex for us. 9194 */ 9195 set_bit(MD_UPDATING_SB, &mddev->flags); 9196 smp_mb__after_atomic(); 9197 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9198 md_update_sb(mddev, 0); 9199 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9200 wake_up(&mddev->sb_wait); 9201 } 9202 9203 if (mddev->suspended) 9204 return; 9205 9206 if (mddev->bitmap) 9207 md_bitmap_daemon_work(mddev); 9208 9209 if (signal_pending(current)) { 9210 if (mddev->pers->sync_request && !mddev->external) { 9211 pr_debug("md: %s in immediate safe mode\n", 9212 mdname(mddev)); 9213 mddev->safemode = 2; 9214 } 9215 flush_signals(current); 9216 } 9217 9218 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9219 return; 9220 if ( ! ( 9221 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9222 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9223 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9224 (mddev->external == 0 && mddev->safemode == 1) || 9225 (mddev->safemode == 2 9226 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9227 )) 9228 return; 9229 9230 if (mddev_trylock(mddev)) { 9231 int spares = 0; 9232 bool try_set_sync = mddev->safemode != 0; 9233 9234 if (!mddev->external && mddev->safemode == 1) 9235 mddev->safemode = 0; 9236 9237 if (mddev->ro) { 9238 struct md_rdev *rdev; 9239 if (!mddev->external && mddev->in_sync) 9240 /* 'Blocked' flag not needed as failed devices 9241 * will be recorded if array switched to read/write. 9242 * Leaving it set will prevent the device 9243 * from being removed. 9244 */ 9245 rdev_for_each(rdev, mddev) 9246 clear_bit(Blocked, &rdev->flags); 9247 /* On a read-only array we can: 9248 * - remove failed devices 9249 * - add already-in_sync devices if the array itself 9250 * is in-sync. 9251 * As we only add devices that are already in-sync, 9252 * we can activate the spares immediately. 9253 */ 9254 remove_and_add_spares(mddev, NULL); 9255 /* There is no thread, but we need to call 9256 * ->spare_active and clear saved_raid_disk 9257 */ 9258 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9259 md_reap_sync_thread(mddev); 9260 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9261 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9262 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9263 goto unlock; 9264 } 9265 9266 if (mddev_is_clustered(mddev)) { 9267 struct md_rdev *rdev; 9268 /* kick the device if another node issued a 9269 * remove disk. 9270 */ 9271 rdev_for_each(rdev, mddev) { 9272 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9273 rdev->raid_disk < 0) 9274 md_kick_rdev_from_array(rdev); 9275 } 9276 } 9277 9278 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9279 spin_lock(&mddev->lock); 9280 set_in_sync(mddev); 9281 spin_unlock(&mddev->lock); 9282 } 9283 9284 if (mddev->sb_flags) 9285 md_update_sb(mddev, 0); 9286 9287 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9288 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9289 /* resync/recovery still happening */ 9290 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9291 goto unlock; 9292 } 9293 if (mddev->sync_thread) { 9294 md_reap_sync_thread(mddev); 9295 goto unlock; 9296 } 9297 /* Set RUNNING before clearing NEEDED to avoid 9298 * any transients in the value of "sync_action". 9299 */ 9300 mddev->curr_resync_completed = 0; 9301 spin_lock(&mddev->lock); 9302 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9303 spin_unlock(&mddev->lock); 9304 /* Clear some bits that don't mean anything, but 9305 * might be left set 9306 */ 9307 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9308 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9309 9310 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9311 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9312 goto not_running; 9313 /* no recovery is running. 9314 * remove any failed drives, then 9315 * add spares if possible. 9316 * Spares are also removed and re-added, to allow 9317 * the personality to fail the re-add. 9318 */ 9319 9320 if (mddev->reshape_position != MaxSector) { 9321 if (mddev->pers->check_reshape == NULL || 9322 mddev->pers->check_reshape(mddev) != 0) 9323 /* Cannot proceed */ 9324 goto not_running; 9325 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9327 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9328 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9329 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9330 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9331 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9332 } else if (mddev->recovery_cp < MaxSector) { 9333 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9334 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9335 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9336 /* nothing to be done ... */ 9337 goto not_running; 9338 9339 if (mddev->pers->sync_request) { 9340 if (spares) { 9341 /* We are adding a device or devices to an array 9342 * which has the bitmap stored on all devices. 9343 * So make sure all bitmap pages get written 9344 */ 9345 md_bitmap_write_all(mddev->bitmap); 9346 } 9347 INIT_WORK(&mddev->del_work, md_start_sync); 9348 queue_work(md_misc_wq, &mddev->del_work); 9349 goto unlock; 9350 } 9351 not_running: 9352 if (!mddev->sync_thread) { 9353 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9354 wake_up(&resync_wait); 9355 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9356 &mddev->recovery)) 9357 if (mddev->sysfs_action) 9358 sysfs_notify_dirent_safe(mddev->sysfs_action); 9359 } 9360 unlock: 9361 wake_up(&mddev->sb_wait); 9362 mddev_unlock(mddev); 9363 } 9364 } 9365 EXPORT_SYMBOL(md_check_recovery); 9366 9367 void md_reap_sync_thread(struct mddev *mddev) 9368 { 9369 struct md_rdev *rdev; 9370 sector_t old_dev_sectors = mddev->dev_sectors; 9371 bool is_reshaped = false; 9372 9373 /* resync has finished, collect result */ 9374 md_unregister_thread(&mddev->sync_thread); 9375 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9376 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9377 mddev->degraded != mddev->raid_disks) { 9378 /* success...*/ 9379 /* activate any spares */ 9380 if (mddev->pers->spare_active(mddev)) { 9381 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9382 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9383 } 9384 } 9385 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9386 mddev->pers->finish_reshape) { 9387 mddev->pers->finish_reshape(mddev); 9388 if (mddev_is_clustered(mddev)) 9389 is_reshaped = true; 9390 } 9391 9392 /* If array is no-longer degraded, then any saved_raid_disk 9393 * information must be scrapped. 9394 */ 9395 if (!mddev->degraded) 9396 rdev_for_each(rdev, mddev) 9397 rdev->saved_raid_disk = -1; 9398 9399 md_update_sb(mddev, 1); 9400 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9401 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9402 * clustered raid */ 9403 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9404 md_cluster_ops->resync_finish(mddev); 9405 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9406 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9407 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9408 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9409 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9410 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9411 /* 9412 * We call md_cluster_ops->update_size here because sync_size could 9413 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9414 * so it is time to update size across cluster. 9415 */ 9416 if (mddev_is_clustered(mddev) && is_reshaped 9417 && !test_bit(MD_CLOSING, &mddev->flags)) 9418 md_cluster_ops->update_size(mddev, old_dev_sectors); 9419 wake_up(&resync_wait); 9420 /* flag recovery needed just to double check */ 9421 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9422 sysfs_notify_dirent_safe(mddev->sysfs_action); 9423 md_new_event(mddev); 9424 if (mddev->event_work.func) 9425 queue_work(md_misc_wq, &mddev->event_work); 9426 } 9427 EXPORT_SYMBOL(md_reap_sync_thread); 9428 9429 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9430 { 9431 sysfs_notify_dirent_safe(rdev->sysfs_state); 9432 wait_event_timeout(rdev->blocked_wait, 9433 !test_bit(Blocked, &rdev->flags) && 9434 !test_bit(BlockedBadBlocks, &rdev->flags), 9435 msecs_to_jiffies(5000)); 9436 rdev_dec_pending(rdev, mddev); 9437 } 9438 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9439 9440 void md_finish_reshape(struct mddev *mddev) 9441 { 9442 /* called be personality module when reshape completes. */ 9443 struct md_rdev *rdev; 9444 9445 rdev_for_each(rdev, mddev) { 9446 if (rdev->data_offset > rdev->new_data_offset) 9447 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9448 else 9449 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9450 rdev->data_offset = rdev->new_data_offset; 9451 } 9452 } 9453 EXPORT_SYMBOL(md_finish_reshape); 9454 9455 /* Bad block management */ 9456 9457 /* Returns 1 on success, 0 on failure */ 9458 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9459 int is_new) 9460 { 9461 struct mddev *mddev = rdev->mddev; 9462 int rv; 9463 if (is_new) 9464 s += rdev->new_data_offset; 9465 else 9466 s += rdev->data_offset; 9467 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9468 if (rv == 0) { 9469 /* Make sure they get written out promptly */ 9470 if (test_bit(ExternalBbl, &rdev->flags)) 9471 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9472 sysfs_notify_dirent_safe(rdev->sysfs_state); 9473 set_mask_bits(&mddev->sb_flags, 0, 9474 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9475 md_wakeup_thread(rdev->mddev->thread); 9476 return 1; 9477 } else 9478 return 0; 9479 } 9480 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9481 9482 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9483 int is_new) 9484 { 9485 int rv; 9486 if (is_new) 9487 s += rdev->new_data_offset; 9488 else 9489 s += rdev->data_offset; 9490 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9491 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9492 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9493 return rv; 9494 } 9495 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9496 9497 static int md_notify_reboot(struct notifier_block *this, 9498 unsigned long code, void *x) 9499 { 9500 struct list_head *tmp; 9501 struct mddev *mddev; 9502 int need_delay = 0; 9503 9504 for_each_mddev(mddev, tmp) { 9505 if (mddev_trylock(mddev)) { 9506 if (mddev->pers) 9507 __md_stop_writes(mddev); 9508 if (mddev->persistent) 9509 mddev->safemode = 2; 9510 mddev_unlock(mddev); 9511 } 9512 need_delay = 1; 9513 } 9514 /* 9515 * certain more exotic SCSI devices are known to be 9516 * volatile wrt too early system reboots. While the 9517 * right place to handle this issue is the given 9518 * driver, we do want to have a safe RAID driver ... 9519 */ 9520 if (need_delay) 9521 mdelay(1000*1); 9522 9523 return NOTIFY_DONE; 9524 } 9525 9526 static struct notifier_block md_notifier = { 9527 .notifier_call = md_notify_reboot, 9528 .next = NULL, 9529 .priority = INT_MAX, /* before any real devices */ 9530 }; 9531 9532 static void md_geninit(void) 9533 { 9534 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9535 9536 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9537 } 9538 9539 static int __init md_init(void) 9540 { 9541 int ret = -ENOMEM; 9542 9543 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9544 if (!md_wq) 9545 goto err_wq; 9546 9547 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9548 if (!md_misc_wq) 9549 goto err_misc_wq; 9550 9551 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9552 if (!md_rdev_misc_wq) 9553 goto err_rdev_misc_wq; 9554 9555 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9556 if (ret < 0) 9557 goto err_md; 9558 9559 ret = __register_blkdev(0, "mdp", md_probe); 9560 if (ret < 0) 9561 goto err_mdp; 9562 mdp_major = ret; 9563 9564 register_reboot_notifier(&md_notifier); 9565 raid_table_header = register_sysctl_table(raid_root_table); 9566 9567 md_geninit(); 9568 return 0; 9569 9570 err_mdp: 9571 unregister_blkdev(MD_MAJOR, "md"); 9572 err_md: 9573 destroy_workqueue(md_rdev_misc_wq); 9574 err_rdev_misc_wq: 9575 destroy_workqueue(md_misc_wq); 9576 err_misc_wq: 9577 destroy_workqueue(md_wq); 9578 err_wq: 9579 return ret; 9580 } 9581 9582 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9583 { 9584 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9585 struct md_rdev *rdev2; 9586 int role, ret; 9587 char b[BDEVNAME_SIZE]; 9588 9589 /* 9590 * If size is changed in another node then we need to 9591 * do resize as well. 9592 */ 9593 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9594 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9595 if (ret) 9596 pr_info("md-cluster: resize failed\n"); 9597 else 9598 md_bitmap_update_sb(mddev->bitmap); 9599 } 9600 9601 /* Check for change of roles in the active devices */ 9602 rdev_for_each(rdev2, mddev) { 9603 if (test_bit(Faulty, &rdev2->flags)) 9604 continue; 9605 9606 /* Check if the roles changed */ 9607 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9608 9609 if (test_bit(Candidate, &rdev2->flags)) { 9610 if (role == 0xfffe) { 9611 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9612 md_kick_rdev_from_array(rdev2); 9613 continue; 9614 } 9615 else 9616 clear_bit(Candidate, &rdev2->flags); 9617 } 9618 9619 if (role != rdev2->raid_disk) { 9620 /* 9621 * got activated except reshape is happening. 9622 */ 9623 if (rdev2->raid_disk == -1 && role != 0xffff && 9624 !(le32_to_cpu(sb->feature_map) & 9625 MD_FEATURE_RESHAPE_ACTIVE)) { 9626 rdev2->saved_raid_disk = role; 9627 ret = remove_and_add_spares(mddev, rdev2); 9628 pr_info("Activated spare: %s\n", 9629 bdevname(rdev2->bdev,b)); 9630 /* wakeup mddev->thread here, so array could 9631 * perform resync with the new activated disk */ 9632 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9633 md_wakeup_thread(mddev->thread); 9634 } 9635 /* device faulty 9636 * We just want to do the minimum to mark the disk 9637 * as faulty. The recovery is performed by the 9638 * one who initiated the error. 9639 */ 9640 if ((role == 0xfffe) || (role == 0xfffd)) { 9641 md_error(mddev, rdev2); 9642 clear_bit(Blocked, &rdev2->flags); 9643 } 9644 } 9645 } 9646 9647 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9648 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9649 if (ret) 9650 pr_warn("md: updating array disks failed. %d\n", ret); 9651 } 9652 9653 /* 9654 * Since mddev->delta_disks has already updated in update_raid_disks, 9655 * so it is time to check reshape. 9656 */ 9657 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9658 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9659 /* 9660 * reshape is happening in the remote node, we need to 9661 * update reshape_position and call start_reshape. 9662 */ 9663 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9664 if (mddev->pers->update_reshape_pos) 9665 mddev->pers->update_reshape_pos(mddev); 9666 if (mddev->pers->start_reshape) 9667 mddev->pers->start_reshape(mddev); 9668 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9669 mddev->reshape_position != MaxSector && 9670 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9671 /* reshape is just done in another node. */ 9672 mddev->reshape_position = MaxSector; 9673 if (mddev->pers->update_reshape_pos) 9674 mddev->pers->update_reshape_pos(mddev); 9675 } 9676 9677 /* Finally set the event to be up to date */ 9678 mddev->events = le64_to_cpu(sb->events); 9679 } 9680 9681 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9682 { 9683 int err; 9684 struct page *swapout = rdev->sb_page; 9685 struct mdp_superblock_1 *sb; 9686 9687 /* Store the sb page of the rdev in the swapout temporary 9688 * variable in case we err in the future 9689 */ 9690 rdev->sb_page = NULL; 9691 err = alloc_disk_sb(rdev); 9692 if (err == 0) { 9693 ClearPageUptodate(rdev->sb_page); 9694 rdev->sb_loaded = 0; 9695 err = super_types[mddev->major_version]. 9696 load_super(rdev, NULL, mddev->minor_version); 9697 } 9698 if (err < 0) { 9699 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9700 __func__, __LINE__, rdev->desc_nr, err); 9701 if (rdev->sb_page) 9702 put_page(rdev->sb_page); 9703 rdev->sb_page = swapout; 9704 rdev->sb_loaded = 1; 9705 return err; 9706 } 9707 9708 sb = page_address(rdev->sb_page); 9709 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9710 * is not set 9711 */ 9712 9713 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9714 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9715 9716 /* The other node finished recovery, call spare_active to set 9717 * device In_sync and mddev->degraded 9718 */ 9719 if (rdev->recovery_offset == MaxSector && 9720 !test_bit(In_sync, &rdev->flags) && 9721 mddev->pers->spare_active(mddev)) 9722 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9723 9724 put_page(swapout); 9725 return 0; 9726 } 9727 9728 void md_reload_sb(struct mddev *mddev, int nr) 9729 { 9730 struct md_rdev *rdev; 9731 int err; 9732 9733 /* Find the rdev */ 9734 rdev_for_each_rcu(rdev, mddev) { 9735 if (rdev->desc_nr == nr) 9736 break; 9737 } 9738 9739 if (!rdev || rdev->desc_nr != nr) { 9740 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9741 return; 9742 } 9743 9744 err = read_rdev(mddev, rdev); 9745 if (err < 0) 9746 return; 9747 9748 check_sb_changes(mddev, rdev); 9749 9750 /* Read all rdev's to update recovery_offset */ 9751 rdev_for_each_rcu(rdev, mddev) { 9752 if (!test_bit(Faulty, &rdev->flags)) 9753 read_rdev(mddev, rdev); 9754 } 9755 } 9756 EXPORT_SYMBOL(md_reload_sb); 9757 9758 #ifndef MODULE 9759 9760 /* 9761 * Searches all registered partitions for autorun RAID arrays 9762 * at boot time. 9763 */ 9764 9765 static DEFINE_MUTEX(detected_devices_mutex); 9766 static LIST_HEAD(all_detected_devices); 9767 struct detected_devices_node { 9768 struct list_head list; 9769 dev_t dev; 9770 }; 9771 9772 void md_autodetect_dev(dev_t dev) 9773 { 9774 struct detected_devices_node *node_detected_dev; 9775 9776 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9777 if (node_detected_dev) { 9778 node_detected_dev->dev = dev; 9779 mutex_lock(&detected_devices_mutex); 9780 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9781 mutex_unlock(&detected_devices_mutex); 9782 } 9783 } 9784 9785 void md_autostart_arrays(int part) 9786 { 9787 struct md_rdev *rdev; 9788 struct detected_devices_node *node_detected_dev; 9789 dev_t dev; 9790 int i_scanned, i_passed; 9791 9792 i_scanned = 0; 9793 i_passed = 0; 9794 9795 pr_info("md: Autodetecting RAID arrays.\n"); 9796 9797 mutex_lock(&detected_devices_mutex); 9798 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9799 i_scanned++; 9800 node_detected_dev = list_entry(all_detected_devices.next, 9801 struct detected_devices_node, list); 9802 list_del(&node_detected_dev->list); 9803 dev = node_detected_dev->dev; 9804 kfree(node_detected_dev); 9805 mutex_unlock(&detected_devices_mutex); 9806 rdev = md_import_device(dev,0, 90); 9807 mutex_lock(&detected_devices_mutex); 9808 if (IS_ERR(rdev)) 9809 continue; 9810 9811 if (test_bit(Faulty, &rdev->flags)) 9812 continue; 9813 9814 set_bit(AutoDetected, &rdev->flags); 9815 list_add(&rdev->same_set, &pending_raid_disks); 9816 i_passed++; 9817 } 9818 mutex_unlock(&detected_devices_mutex); 9819 9820 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9821 9822 autorun_devices(part); 9823 } 9824 9825 #endif /* !MODULE */ 9826 9827 static __exit void md_exit(void) 9828 { 9829 struct mddev *mddev; 9830 struct list_head *tmp; 9831 int delay = 1; 9832 9833 unregister_blkdev(MD_MAJOR,"md"); 9834 unregister_blkdev(mdp_major, "mdp"); 9835 unregister_reboot_notifier(&md_notifier); 9836 unregister_sysctl_table(raid_table_header); 9837 9838 /* We cannot unload the modules while some process is 9839 * waiting for us in select() or poll() - wake them up 9840 */ 9841 md_unloading = 1; 9842 while (waitqueue_active(&md_event_waiters)) { 9843 /* not safe to leave yet */ 9844 wake_up(&md_event_waiters); 9845 msleep(delay); 9846 delay += delay; 9847 } 9848 remove_proc_entry("mdstat", NULL); 9849 9850 for_each_mddev(mddev, tmp) { 9851 export_array(mddev); 9852 mddev->ctime = 0; 9853 mddev->hold_active = 0; 9854 /* 9855 * for_each_mddev() will call mddev_put() at the end of each 9856 * iteration. As the mddev is now fully clear, this will 9857 * schedule the mddev for destruction by a workqueue, and the 9858 * destroy_workqueue() below will wait for that to complete. 9859 */ 9860 } 9861 destroy_workqueue(md_rdev_misc_wq); 9862 destroy_workqueue(md_misc_wq); 9863 destroy_workqueue(md_wq); 9864 } 9865 9866 subsys_initcall(md_init); 9867 module_exit(md_exit) 9868 9869 static int get_ro(char *buffer, const struct kernel_param *kp) 9870 { 9871 return sprintf(buffer, "%d\n", start_readonly); 9872 } 9873 static int set_ro(const char *val, const struct kernel_param *kp) 9874 { 9875 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9876 } 9877 9878 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9879 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9880 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9881 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9882 9883 MODULE_LICENSE("GPL"); 9884 MODULE_DESCRIPTION("MD RAID framework"); 9885 MODULE_ALIAS("md"); 9886 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9887