1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 enum md_ro_state { 97 MD_RDWR, 98 MD_RDONLY, 99 MD_AUTO_READ, 100 MD_MAX_STATE 101 }; 102 103 static bool md_is_rdwr(struct mddev *mddev) 104 { 105 return (mddev->ro == MD_RDWR); 106 } 107 108 /* 109 * Default number of read corrections we'll attempt on an rdev 110 * before ejecting it from the array. We divide the read error 111 * count by 2 for every hour elapsed between read errors. 112 */ 113 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 114 /* Default safemode delay: 200 msec */ 115 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 116 /* 117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 118 * is 1000 KB/sec, so the extra system load does not show up that much. 119 * Increase it if you want to have more _guaranteed_ speed. Note that 120 * the RAID driver will use the maximum available bandwidth if the IO 121 * subsystem is idle. There is also an 'absolute maximum' reconstruction 122 * speed limit - in case reconstruction slows down your system despite 123 * idle IO detection. 124 * 125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 126 * or /sys/block/mdX/md/sync_speed_{min,max} 127 */ 128 129 static int sysctl_speed_limit_min = 1000; 130 static int sysctl_speed_limit_max = 200000; 131 static inline int speed_min(struct mddev *mddev) 132 { 133 return mddev->sync_speed_min ? 134 mddev->sync_speed_min : sysctl_speed_limit_min; 135 } 136 137 static inline int speed_max(struct mddev *mddev) 138 { 139 return mddev->sync_speed_max ? 140 mddev->sync_speed_max : sysctl_speed_limit_max; 141 } 142 143 static void rdev_uninit_serial(struct md_rdev *rdev) 144 { 145 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 146 return; 147 148 kvfree(rdev->serial); 149 rdev->serial = NULL; 150 } 151 152 static void rdevs_uninit_serial(struct mddev *mddev) 153 { 154 struct md_rdev *rdev; 155 156 rdev_for_each(rdev, mddev) 157 rdev_uninit_serial(rdev); 158 } 159 160 static int rdev_init_serial(struct md_rdev *rdev) 161 { 162 /* serial_nums equals with BARRIER_BUCKETS_NR */ 163 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 164 struct serial_in_rdev *serial = NULL; 165 166 if (test_bit(CollisionCheck, &rdev->flags)) 167 return 0; 168 169 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 170 GFP_KERNEL); 171 if (!serial) 172 return -ENOMEM; 173 174 for (i = 0; i < serial_nums; i++) { 175 struct serial_in_rdev *serial_tmp = &serial[i]; 176 177 spin_lock_init(&serial_tmp->serial_lock); 178 serial_tmp->serial_rb = RB_ROOT_CACHED; 179 init_waitqueue_head(&serial_tmp->serial_io_wait); 180 } 181 182 rdev->serial = serial; 183 set_bit(CollisionCheck, &rdev->flags); 184 185 return 0; 186 } 187 188 static int rdevs_init_serial(struct mddev *mddev) 189 { 190 struct md_rdev *rdev; 191 int ret = 0; 192 193 rdev_for_each(rdev, mddev) { 194 ret = rdev_init_serial(rdev); 195 if (ret) 196 break; 197 } 198 199 /* Free all resources if pool is not existed */ 200 if (ret && !mddev->serial_info_pool) 201 rdevs_uninit_serial(mddev); 202 203 return ret; 204 } 205 206 /* 207 * rdev needs to enable serial stuffs if it meets the conditions: 208 * 1. it is multi-queue device flaged with writemostly. 209 * 2. the write-behind mode is enabled. 210 */ 211 static int rdev_need_serial(struct md_rdev *rdev) 212 { 213 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 214 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 215 test_bit(WriteMostly, &rdev->flags)); 216 } 217 218 /* 219 * Init resource for rdev(s), then create serial_info_pool if: 220 * 1. rdev is the first device which return true from rdev_enable_serial. 221 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 222 */ 223 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 224 bool is_suspend) 225 { 226 int ret = 0; 227 228 if (rdev && !rdev_need_serial(rdev) && 229 !test_bit(CollisionCheck, &rdev->flags)) 230 return; 231 232 if (!is_suspend) 233 mddev_suspend(mddev); 234 235 if (!rdev) 236 ret = rdevs_init_serial(mddev); 237 else 238 ret = rdev_init_serial(rdev); 239 if (ret) 240 goto abort; 241 242 if (mddev->serial_info_pool == NULL) { 243 /* 244 * already in memalloc noio context by 245 * mddev_suspend() 246 */ 247 mddev->serial_info_pool = 248 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 249 sizeof(struct serial_info)); 250 if (!mddev->serial_info_pool) { 251 rdevs_uninit_serial(mddev); 252 pr_err("can't alloc memory pool for serialization\n"); 253 } 254 } 255 256 abort: 257 if (!is_suspend) 258 mddev_resume(mddev); 259 } 260 261 /* 262 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 263 * 1. rdev is the last device flaged with CollisionCheck. 264 * 2. when bitmap is destroyed while policy is not enabled. 265 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 266 */ 267 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 268 bool is_suspend) 269 { 270 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 271 return; 272 273 if (mddev->serial_info_pool) { 274 struct md_rdev *temp; 275 int num = 0; /* used to track if other rdevs need the pool */ 276 277 if (!is_suspend) 278 mddev_suspend(mddev); 279 rdev_for_each(temp, mddev) { 280 if (!rdev) { 281 if (!mddev->serialize_policy || 282 !rdev_need_serial(temp)) 283 rdev_uninit_serial(temp); 284 else 285 num++; 286 } else if (temp != rdev && 287 test_bit(CollisionCheck, &temp->flags)) 288 num++; 289 } 290 291 if (rdev) 292 rdev_uninit_serial(rdev); 293 294 if (num) 295 pr_info("The mempool could be used by other devices\n"); 296 else { 297 mempool_destroy(mddev->serial_info_pool); 298 mddev->serial_info_pool = NULL; 299 } 300 if (!is_suspend) 301 mddev_resume(mddev); 302 } 303 } 304 305 static struct ctl_table_header *raid_table_header; 306 307 static struct ctl_table raid_table[] = { 308 { 309 .procname = "speed_limit_min", 310 .data = &sysctl_speed_limit_min, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 { 316 .procname = "speed_limit_max", 317 .data = &sysctl_speed_limit_max, 318 .maxlen = sizeof(int), 319 .mode = S_IRUGO|S_IWUSR, 320 .proc_handler = proc_dointvec, 321 }, 322 { } 323 }; 324 325 static struct ctl_table raid_dir_table[] = { 326 { 327 .procname = "raid", 328 .maxlen = 0, 329 .mode = S_IRUGO|S_IXUGO, 330 .child = raid_table, 331 }, 332 { } 333 }; 334 335 static struct ctl_table raid_root_table[] = { 336 { 337 .procname = "dev", 338 .maxlen = 0, 339 .mode = 0555, 340 .child = raid_dir_table, 341 }, 342 { } 343 }; 344 345 static int start_readonly; 346 347 /* 348 * The original mechanism for creating an md device is to create 349 * a device node in /dev and to open it. This causes races with device-close. 350 * The preferred method is to write to the "new_array" module parameter. 351 * This can avoid races. 352 * Setting create_on_open to false disables the original mechanism 353 * so all the races disappear. 354 */ 355 static bool create_on_open = true; 356 357 /* 358 * We have a system wide 'event count' that is incremented 359 * on any 'interesting' event, and readers of /proc/mdstat 360 * can use 'poll' or 'select' to find out when the event 361 * count increases. 362 * 363 * Events are: 364 * start array, stop array, error, add device, remove device, 365 * start build, activate spare 366 */ 367 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 368 static atomic_t md_event_count; 369 void md_new_event(void) 370 { 371 atomic_inc(&md_event_count); 372 wake_up(&md_event_waiters); 373 } 374 EXPORT_SYMBOL_GPL(md_new_event); 375 376 /* 377 * Enables to iterate over all existing md arrays 378 * all_mddevs_lock protects this list. 379 */ 380 static LIST_HEAD(all_mddevs); 381 static DEFINE_SPINLOCK(all_mddevs_lock); 382 383 static bool is_md_suspended(struct mddev *mddev) 384 { 385 return percpu_ref_is_dying(&mddev->active_io); 386 } 387 /* Rather than calling directly into the personality make_request function, 388 * IO requests come here first so that we can check if the device is 389 * being suspended pending a reconfiguration. 390 * We hold a refcount over the call to ->make_request. By the time that 391 * call has finished, the bio has been linked into some internal structure 392 * and so is visible to ->quiesce(), so we don't need the refcount any more. 393 */ 394 static bool is_suspended(struct mddev *mddev, struct bio *bio) 395 { 396 if (is_md_suspended(mddev)) 397 return true; 398 if (bio_data_dir(bio) != WRITE) 399 return false; 400 if (mddev->suspend_lo >= mddev->suspend_hi) 401 return false; 402 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 403 return false; 404 if (bio_end_sector(bio) < mddev->suspend_lo) 405 return false; 406 return true; 407 } 408 409 void md_handle_request(struct mddev *mddev, struct bio *bio) 410 { 411 check_suspended: 412 if (is_suspended(mddev, bio)) { 413 DEFINE_WAIT(__wait); 414 /* Bail out if REQ_NOWAIT is set for the bio */ 415 if (bio->bi_opf & REQ_NOWAIT) { 416 bio_wouldblock_error(bio); 417 return; 418 } 419 for (;;) { 420 prepare_to_wait(&mddev->sb_wait, &__wait, 421 TASK_UNINTERRUPTIBLE); 422 if (!is_suspended(mddev, bio)) 423 break; 424 schedule(); 425 } 426 finish_wait(&mddev->sb_wait, &__wait); 427 } 428 if (!percpu_ref_tryget_live(&mddev->active_io)) 429 goto check_suspended; 430 431 if (!mddev->pers->make_request(mddev, bio)) { 432 percpu_ref_put(&mddev->active_io); 433 goto check_suspended; 434 } 435 436 percpu_ref_put(&mddev->active_io); 437 } 438 EXPORT_SYMBOL(md_handle_request); 439 440 static void md_submit_bio(struct bio *bio) 441 { 442 const int rw = bio_data_dir(bio); 443 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 444 445 if (mddev == NULL || mddev->pers == NULL) { 446 bio_io_error(bio); 447 return; 448 } 449 450 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 451 bio_io_error(bio); 452 return; 453 } 454 455 bio = bio_split_to_limits(bio); 456 if (!bio) 457 return; 458 459 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 460 if (bio_sectors(bio) != 0) 461 bio->bi_status = BLK_STS_IOERR; 462 bio_endio(bio); 463 return; 464 } 465 466 /* bio could be mergeable after passing to underlayer */ 467 bio->bi_opf &= ~REQ_NOMERGE; 468 469 md_handle_request(mddev, bio); 470 } 471 472 /* mddev_suspend makes sure no new requests are submitted 473 * to the device, and that any requests that have been submitted 474 * are completely handled. 475 * Once mddev_detach() is called and completes, the module will be 476 * completely unused. 477 */ 478 void mddev_suspend(struct mddev *mddev) 479 { 480 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 481 lockdep_assert_held(&mddev->reconfig_mutex); 482 if (mddev->suspended++) 483 return; 484 wake_up(&mddev->sb_wait); 485 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 486 percpu_ref_kill(&mddev->active_io); 487 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 488 mddev->pers->quiesce(mddev, 1); 489 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 490 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 491 492 del_timer_sync(&mddev->safemode_timer); 493 /* restrict memory reclaim I/O during raid array is suspend */ 494 mddev->noio_flag = memalloc_noio_save(); 495 } 496 EXPORT_SYMBOL_GPL(mddev_suspend); 497 498 void mddev_resume(struct mddev *mddev) 499 { 500 /* entred the memalloc scope from mddev_suspend() */ 501 memalloc_noio_restore(mddev->noio_flag); 502 lockdep_assert_held(&mddev->reconfig_mutex); 503 if (--mddev->suspended) 504 return; 505 percpu_ref_resurrect(&mddev->active_io); 506 wake_up(&mddev->sb_wait); 507 mddev->pers->quiesce(mddev, 0); 508 509 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 510 md_wakeup_thread(mddev->thread); 511 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 512 } 513 EXPORT_SYMBOL_GPL(mddev_resume); 514 515 /* 516 * Generic flush handling for md 517 */ 518 519 static void md_end_flush(struct bio *bio) 520 { 521 struct md_rdev *rdev = bio->bi_private; 522 struct mddev *mddev = rdev->mddev; 523 524 bio_put(bio); 525 526 rdev_dec_pending(rdev, mddev); 527 528 if (atomic_dec_and_test(&mddev->flush_pending)) { 529 /* The pre-request flush has finished */ 530 queue_work(md_wq, &mddev->flush_work); 531 } 532 } 533 534 static void md_submit_flush_data(struct work_struct *ws); 535 536 static void submit_flushes(struct work_struct *ws) 537 { 538 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 539 struct md_rdev *rdev; 540 541 mddev->start_flush = ktime_get_boottime(); 542 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 543 atomic_set(&mddev->flush_pending, 1); 544 rcu_read_lock(); 545 rdev_for_each_rcu(rdev, mddev) 546 if (rdev->raid_disk >= 0 && 547 !test_bit(Faulty, &rdev->flags)) { 548 /* Take two references, one is dropped 549 * when request finishes, one after 550 * we reclaim rcu_read_lock 551 */ 552 struct bio *bi; 553 atomic_inc(&rdev->nr_pending); 554 atomic_inc(&rdev->nr_pending); 555 rcu_read_unlock(); 556 bi = bio_alloc_bioset(rdev->bdev, 0, 557 REQ_OP_WRITE | REQ_PREFLUSH, 558 GFP_NOIO, &mddev->bio_set); 559 bi->bi_end_io = md_end_flush; 560 bi->bi_private = rdev; 561 atomic_inc(&mddev->flush_pending); 562 submit_bio(bi); 563 rcu_read_lock(); 564 rdev_dec_pending(rdev, mddev); 565 } 566 rcu_read_unlock(); 567 if (atomic_dec_and_test(&mddev->flush_pending)) 568 queue_work(md_wq, &mddev->flush_work); 569 } 570 571 static void md_submit_flush_data(struct work_struct *ws) 572 { 573 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 574 struct bio *bio = mddev->flush_bio; 575 576 /* 577 * must reset flush_bio before calling into md_handle_request to avoid a 578 * deadlock, because other bios passed md_handle_request suspend check 579 * could wait for this and below md_handle_request could wait for those 580 * bios because of suspend check 581 */ 582 spin_lock_irq(&mddev->lock); 583 mddev->prev_flush_start = mddev->start_flush; 584 mddev->flush_bio = NULL; 585 spin_unlock_irq(&mddev->lock); 586 wake_up(&mddev->sb_wait); 587 588 if (bio->bi_iter.bi_size == 0) { 589 /* an empty barrier - all done */ 590 bio_endio(bio); 591 } else { 592 bio->bi_opf &= ~REQ_PREFLUSH; 593 md_handle_request(mddev, bio); 594 } 595 } 596 597 /* 598 * Manages consolidation of flushes and submitting any flushes needed for 599 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 600 * being finished in another context. Returns false if the flushing is 601 * complete but still needs the I/O portion of the bio to be processed. 602 */ 603 bool md_flush_request(struct mddev *mddev, struct bio *bio) 604 { 605 ktime_t req_start = ktime_get_boottime(); 606 spin_lock_irq(&mddev->lock); 607 /* flush requests wait until ongoing flush completes, 608 * hence coalescing all the pending requests. 609 */ 610 wait_event_lock_irq(mddev->sb_wait, 611 !mddev->flush_bio || 612 ktime_before(req_start, mddev->prev_flush_start), 613 mddev->lock); 614 /* new request after previous flush is completed */ 615 if (ktime_after(req_start, mddev->prev_flush_start)) { 616 WARN_ON(mddev->flush_bio); 617 mddev->flush_bio = bio; 618 bio = NULL; 619 } 620 spin_unlock_irq(&mddev->lock); 621 622 if (!bio) { 623 INIT_WORK(&mddev->flush_work, submit_flushes); 624 queue_work(md_wq, &mddev->flush_work); 625 } else { 626 /* flush was performed for some other bio while we waited. */ 627 if (bio->bi_iter.bi_size == 0) 628 /* an empty barrier - all done */ 629 bio_endio(bio); 630 else { 631 bio->bi_opf &= ~REQ_PREFLUSH; 632 return false; 633 } 634 } 635 return true; 636 } 637 EXPORT_SYMBOL(md_flush_request); 638 639 static inline struct mddev *mddev_get(struct mddev *mddev) 640 { 641 lockdep_assert_held(&all_mddevs_lock); 642 643 if (test_bit(MD_DELETED, &mddev->flags)) 644 return NULL; 645 atomic_inc(&mddev->active); 646 return mddev; 647 } 648 649 static void mddev_delayed_delete(struct work_struct *ws); 650 651 void mddev_put(struct mddev *mddev) 652 { 653 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 654 return; 655 if (!mddev->raid_disks && list_empty(&mddev->disks) && 656 mddev->ctime == 0 && !mddev->hold_active) { 657 /* Array is not configured at all, and not held active, 658 * so destroy it */ 659 set_bit(MD_DELETED, &mddev->flags); 660 661 /* 662 * Call queue_work inside the spinlock so that 663 * flush_workqueue() after mddev_find will succeed in waiting 664 * for the work to be done. 665 */ 666 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 667 queue_work(md_misc_wq, &mddev->del_work); 668 } 669 spin_unlock(&all_mddevs_lock); 670 } 671 672 static void md_safemode_timeout(struct timer_list *t); 673 674 void mddev_init(struct mddev *mddev) 675 { 676 mutex_init(&mddev->open_mutex); 677 mutex_init(&mddev->reconfig_mutex); 678 mutex_init(&mddev->bitmap_info.mutex); 679 INIT_LIST_HEAD(&mddev->disks); 680 INIT_LIST_HEAD(&mddev->all_mddevs); 681 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 682 atomic_set(&mddev->active, 1); 683 atomic_set(&mddev->openers, 0); 684 spin_lock_init(&mddev->lock); 685 atomic_set(&mddev->flush_pending, 0); 686 init_waitqueue_head(&mddev->sb_wait); 687 init_waitqueue_head(&mddev->recovery_wait); 688 mddev->reshape_position = MaxSector; 689 mddev->reshape_backwards = 0; 690 mddev->last_sync_action = "none"; 691 mddev->resync_min = 0; 692 mddev->resync_max = MaxSector; 693 mddev->level = LEVEL_NONE; 694 } 695 EXPORT_SYMBOL_GPL(mddev_init); 696 697 static struct mddev *mddev_find_locked(dev_t unit) 698 { 699 struct mddev *mddev; 700 701 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 702 if (mddev->unit == unit) 703 return mddev; 704 705 return NULL; 706 } 707 708 /* find an unused unit number */ 709 static dev_t mddev_alloc_unit(void) 710 { 711 static int next_minor = 512; 712 int start = next_minor; 713 bool is_free = 0; 714 dev_t dev = 0; 715 716 while (!is_free) { 717 dev = MKDEV(MD_MAJOR, next_minor); 718 next_minor++; 719 if (next_minor > MINORMASK) 720 next_minor = 0; 721 if (next_minor == start) 722 return 0; /* Oh dear, all in use. */ 723 is_free = !mddev_find_locked(dev); 724 } 725 726 return dev; 727 } 728 729 static struct mddev *mddev_alloc(dev_t unit) 730 { 731 struct mddev *new; 732 int error; 733 734 if (unit && MAJOR(unit) != MD_MAJOR) 735 unit &= ~((1 << MdpMinorShift) - 1); 736 737 new = kzalloc(sizeof(*new), GFP_KERNEL); 738 if (!new) 739 return ERR_PTR(-ENOMEM); 740 mddev_init(new); 741 742 spin_lock(&all_mddevs_lock); 743 if (unit) { 744 error = -EEXIST; 745 if (mddev_find_locked(unit)) 746 goto out_free_new; 747 new->unit = unit; 748 if (MAJOR(unit) == MD_MAJOR) 749 new->md_minor = MINOR(unit); 750 else 751 new->md_minor = MINOR(unit) >> MdpMinorShift; 752 new->hold_active = UNTIL_IOCTL; 753 } else { 754 error = -ENODEV; 755 new->unit = mddev_alloc_unit(); 756 if (!new->unit) 757 goto out_free_new; 758 new->md_minor = MINOR(new->unit); 759 new->hold_active = UNTIL_STOP; 760 } 761 762 list_add(&new->all_mddevs, &all_mddevs); 763 spin_unlock(&all_mddevs_lock); 764 return new; 765 out_free_new: 766 spin_unlock(&all_mddevs_lock); 767 kfree(new); 768 return ERR_PTR(error); 769 } 770 771 static void mddev_free(struct mddev *mddev) 772 { 773 spin_lock(&all_mddevs_lock); 774 list_del(&mddev->all_mddevs); 775 spin_unlock(&all_mddevs_lock); 776 777 kfree(mddev); 778 } 779 780 static const struct attribute_group md_redundancy_group; 781 782 void mddev_unlock(struct mddev *mddev) 783 { 784 if (mddev->to_remove) { 785 /* These cannot be removed under reconfig_mutex as 786 * an access to the files will try to take reconfig_mutex 787 * while holding the file unremovable, which leads to 788 * a deadlock. 789 * So hold set sysfs_active while the remove in happeing, 790 * and anything else which might set ->to_remove or my 791 * otherwise change the sysfs namespace will fail with 792 * -EBUSY if sysfs_active is still set. 793 * We set sysfs_active under reconfig_mutex and elsewhere 794 * test it under the same mutex to ensure its correct value 795 * is seen. 796 */ 797 const struct attribute_group *to_remove = mddev->to_remove; 798 mddev->to_remove = NULL; 799 mddev->sysfs_active = 1; 800 mutex_unlock(&mddev->reconfig_mutex); 801 802 if (mddev->kobj.sd) { 803 if (to_remove != &md_redundancy_group) 804 sysfs_remove_group(&mddev->kobj, to_remove); 805 if (mddev->pers == NULL || 806 mddev->pers->sync_request == NULL) { 807 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 808 if (mddev->sysfs_action) 809 sysfs_put(mddev->sysfs_action); 810 if (mddev->sysfs_completed) 811 sysfs_put(mddev->sysfs_completed); 812 if (mddev->sysfs_degraded) 813 sysfs_put(mddev->sysfs_degraded); 814 mddev->sysfs_action = NULL; 815 mddev->sysfs_completed = NULL; 816 mddev->sysfs_degraded = NULL; 817 } 818 } 819 mddev->sysfs_active = 0; 820 } else 821 mutex_unlock(&mddev->reconfig_mutex); 822 823 /* As we've dropped the mutex we need a spinlock to 824 * make sure the thread doesn't disappear 825 */ 826 spin_lock(&pers_lock); 827 md_wakeup_thread(mddev->thread); 828 wake_up(&mddev->sb_wait); 829 spin_unlock(&pers_lock); 830 } 831 EXPORT_SYMBOL_GPL(mddev_unlock); 832 833 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 834 { 835 struct md_rdev *rdev; 836 837 rdev_for_each_rcu(rdev, mddev) 838 if (rdev->desc_nr == nr) 839 return rdev; 840 841 return NULL; 842 } 843 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 844 845 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 846 { 847 struct md_rdev *rdev; 848 849 rdev_for_each(rdev, mddev) 850 if (rdev->bdev->bd_dev == dev) 851 return rdev; 852 853 return NULL; 854 } 855 856 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 857 { 858 struct md_rdev *rdev; 859 860 rdev_for_each_rcu(rdev, mddev) 861 if (rdev->bdev->bd_dev == dev) 862 return rdev; 863 864 return NULL; 865 } 866 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 867 868 static struct md_personality *find_pers(int level, char *clevel) 869 { 870 struct md_personality *pers; 871 list_for_each_entry(pers, &pers_list, list) { 872 if (level != LEVEL_NONE && pers->level == level) 873 return pers; 874 if (strcmp(pers->name, clevel)==0) 875 return pers; 876 } 877 return NULL; 878 } 879 880 /* return the offset of the super block in 512byte sectors */ 881 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 882 { 883 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 884 } 885 886 static int alloc_disk_sb(struct md_rdev *rdev) 887 { 888 rdev->sb_page = alloc_page(GFP_KERNEL); 889 if (!rdev->sb_page) 890 return -ENOMEM; 891 return 0; 892 } 893 894 void md_rdev_clear(struct md_rdev *rdev) 895 { 896 if (rdev->sb_page) { 897 put_page(rdev->sb_page); 898 rdev->sb_loaded = 0; 899 rdev->sb_page = NULL; 900 rdev->sb_start = 0; 901 rdev->sectors = 0; 902 } 903 if (rdev->bb_page) { 904 put_page(rdev->bb_page); 905 rdev->bb_page = NULL; 906 } 907 badblocks_exit(&rdev->badblocks); 908 } 909 EXPORT_SYMBOL_GPL(md_rdev_clear); 910 911 static void super_written(struct bio *bio) 912 { 913 struct md_rdev *rdev = bio->bi_private; 914 struct mddev *mddev = rdev->mddev; 915 916 if (bio->bi_status) { 917 pr_err("md: %s gets error=%d\n", __func__, 918 blk_status_to_errno(bio->bi_status)); 919 md_error(mddev, rdev); 920 if (!test_bit(Faulty, &rdev->flags) 921 && (bio->bi_opf & MD_FAILFAST)) { 922 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 923 set_bit(LastDev, &rdev->flags); 924 } 925 } else 926 clear_bit(LastDev, &rdev->flags); 927 928 bio_put(bio); 929 930 rdev_dec_pending(rdev, mddev); 931 932 if (atomic_dec_and_test(&mddev->pending_writes)) 933 wake_up(&mddev->sb_wait); 934 } 935 936 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 937 sector_t sector, int size, struct page *page) 938 { 939 /* write first size bytes of page to sector of rdev 940 * Increment mddev->pending_writes before returning 941 * and decrement it on completion, waking up sb_wait 942 * if zero is reached. 943 * If an error occurred, call md_error 944 */ 945 struct bio *bio; 946 947 if (!page) 948 return; 949 950 if (test_bit(Faulty, &rdev->flags)) 951 return; 952 953 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 954 1, 955 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 956 GFP_NOIO, &mddev->sync_set); 957 958 atomic_inc(&rdev->nr_pending); 959 960 bio->bi_iter.bi_sector = sector; 961 bio_add_page(bio, page, size, 0); 962 bio->bi_private = rdev; 963 bio->bi_end_io = super_written; 964 965 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 966 test_bit(FailFast, &rdev->flags) && 967 !test_bit(LastDev, &rdev->flags)) 968 bio->bi_opf |= MD_FAILFAST; 969 970 atomic_inc(&mddev->pending_writes); 971 submit_bio(bio); 972 } 973 974 int md_super_wait(struct mddev *mddev) 975 { 976 /* wait for all superblock writes that were scheduled to complete */ 977 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 978 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 979 return -EAGAIN; 980 return 0; 981 } 982 983 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 984 struct page *page, blk_opf_t opf, bool metadata_op) 985 { 986 struct bio bio; 987 struct bio_vec bvec; 988 989 if (metadata_op && rdev->meta_bdev) 990 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 991 else 992 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 993 994 if (metadata_op) 995 bio.bi_iter.bi_sector = sector + rdev->sb_start; 996 else if (rdev->mddev->reshape_position != MaxSector && 997 (rdev->mddev->reshape_backwards == 998 (sector >= rdev->mddev->reshape_position))) 999 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1000 else 1001 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1002 bio_add_page(&bio, page, size, 0); 1003 1004 submit_bio_wait(&bio); 1005 1006 return !bio.bi_status; 1007 } 1008 EXPORT_SYMBOL_GPL(sync_page_io); 1009 1010 static int read_disk_sb(struct md_rdev *rdev, int size) 1011 { 1012 if (rdev->sb_loaded) 1013 return 0; 1014 1015 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1016 goto fail; 1017 rdev->sb_loaded = 1; 1018 return 0; 1019 1020 fail: 1021 pr_err("md: disabled device %pg, could not read superblock.\n", 1022 rdev->bdev); 1023 return -EINVAL; 1024 } 1025 1026 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1027 { 1028 return sb1->set_uuid0 == sb2->set_uuid0 && 1029 sb1->set_uuid1 == sb2->set_uuid1 && 1030 sb1->set_uuid2 == sb2->set_uuid2 && 1031 sb1->set_uuid3 == sb2->set_uuid3; 1032 } 1033 1034 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1035 { 1036 int ret; 1037 mdp_super_t *tmp1, *tmp2; 1038 1039 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1040 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1041 1042 if (!tmp1 || !tmp2) { 1043 ret = 0; 1044 goto abort; 1045 } 1046 1047 *tmp1 = *sb1; 1048 *tmp2 = *sb2; 1049 1050 /* 1051 * nr_disks is not constant 1052 */ 1053 tmp1->nr_disks = 0; 1054 tmp2->nr_disks = 0; 1055 1056 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1057 abort: 1058 kfree(tmp1); 1059 kfree(tmp2); 1060 return ret; 1061 } 1062 1063 static u32 md_csum_fold(u32 csum) 1064 { 1065 csum = (csum & 0xffff) + (csum >> 16); 1066 return (csum & 0xffff) + (csum >> 16); 1067 } 1068 1069 static unsigned int calc_sb_csum(mdp_super_t *sb) 1070 { 1071 u64 newcsum = 0; 1072 u32 *sb32 = (u32*)sb; 1073 int i; 1074 unsigned int disk_csum, csum; 1075 1076 disk_csum = sb->sb_csum; 1077 sb->sb_csum = 0; 1078 1079 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1080 newcsum += sb32[i]; 1081 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1082 1083 #ifdef CONFIG_ALPHA 1084 /* This used to use csum_partial, which was wrong for several 1085 * reasons including that different results are returned on 1086 * different architectures. It isn't critical that we get exactly 1087 * the same return value as before (we always csum_fold before 1088 * testing, and that removes any differences). However as we 1089 * know that csum_partial always returned a 16bit value on 1090 * alphas, do a fold to maximise conformity to previous behaviour. 1091 */ 1092 sb->sb_csum = md_csum_fold(disk_csum); 1093 #else 1094 sb->sb_csum = disk_csum; 1095 #endif 1096 return csum; 1097 } 1098 1099 /* 1100 * Handle superblock details. 1101 * We want to be able to handle multiple superblock formats 1102 * so we have a common interface to them all, and an array of 1103 * different handlers. 1104 * We rely on user-space to write the initial superblock, and support 1105 * reading and updating of superblocks. 1106 * Interface methods are: 1107 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1108 * loads and validates a superblock on dev. 1109 * if refdev != NULL, compare superblocks on both devices 1110 * Return: 1111 * 0 - dev has a superblock that is compatible with refdev 1112 * 1 - dev has a superblock that is compatible and newer than refdev 1113 * so dev should be used as the refdev in future 1114 * -EINVAL superblock incompatible or invalid 1115 * -othererror e.g. -EIO 1116 * 1117 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1118 * Verify that dev is acceptable into mddev. 1119 * The first time, mddev->raid_disks will be 0, and data from 1120 * dev should be merged in. Subsequent calls check that dev 1121 * is new enough. Return 0 or -EINVAL 1122 * 1123 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1124 * Update the superblock for rdev with data in mddev 1125 * This does not write to disc. 1126 * 1127 */ 1128 1129 struct super_type { 1130 char *name; 1131 struct module *owner; 1132 int (*load_super)(struct md_rdev *rdev, 1133 struct md_rdev *refdev, 1134 int minor_version); 1135 int (*validate_super)(struct mddev *mddev, 1136 struct md_rdev *rdev); 1137 void (*sync_super)(struct mddev *mddev, 1138 struct md_rdev *rdev); 1139 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1140 sector_t num_sectors); 1141 int (*allow_new_offset)(struct md_rdev *rdev, 1142 unsigned long long new_offset); 1143 }; 1144 1145 /* 1146 * Check that the given mddev has no bitmap. 1147 * 1148 * This function is called from the run method of all personalities that do not 1149 * support bitmaps. It prints an error message and returns non-zero if mddev 1150 * has a bitmap. Otherwise, it returns 0. 1151 * 1152 */ 1153 int md_check_no_bitmap(struct mddev *mddev) 1154 { 1155 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1156 return 0; 1157 pr_warn("%s: bitmaps are not supported for %s\n", 1158 mdname(mddev), mddev->pers->name); 1159 return 1; 1160 } 1161 EXPORT_SYMBOL(md_check_no_bitmap); 1162 1163 /* 1164 * load_super for 0.90.0 1165 */ 1166 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1167 { 1168 mdp_super_t *sb; 1169 int ret; 1170 bool spare_disk = true; 1171 1172 /* 1173 * Calculate the position of the superblock (512byte sectors), 1174 * it's at the end of the disk. 1175 * 1176 * It also happens to be a multiple of 4Kb. 1177 */ 1178 rdev->sb_start = calc_dev_sboffset(rdev); 1179 1180 ret = read_disk_sb(rdev, MD_SB_BYTES); 1181 if (ret) 1182 return ret; 1183 1184 ret = -EINVAL; 1185 1186 sb = page_address(rdev->sb_page); 1187 1188 if (sb->md_magic != MD_SB_MAGIC) { 1189 pr_warn("md: invalid raid superblock magic on %pg\n", 1190 rdev->bdev); 1191 goto abort; 1192 } 1193 1194 if (sb->major_version != 0 || 1195 sb->minor_version < 90 || 1196 sb->minor_version > 91) { 1197 pr_warn("Bad version number %d.%d on %pg\n", 1198 sb->major_version, sb->minor_version, rdev->bdev); 1199 goto abort; 1200 } 1201 1202 if (sb->raid_disks <= 0) 1203 goto abort; 1204 1205 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1206 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1207 goto abort; 1208 } 1209 1210 rdev->preferred_minor = sb->md_minor; 1211 rdev->data_offset = 0; 1212 rdev->new_data_offset = 0; 1213 rdev->sb_size = MD_SB_BYTES; 1214 rdev->badblocks.shift = -1; 1215 1216 if (sb->level == LEVEL_MULTIPATH) 1217 rdev->desc_nr = -1; 1218 else 1219 rdev->desc_nr = sb->this_disk.number; 1220 1221 /* not spare disk, or LEVEL_MULTIPATH */ 1222 if (sb->level == LEVEL_MULTIPATH || 1223 (rdev->desc_nr >= 0 && 1224 rdev->desc_nr < MD_SB_DISKS && 1225 sb->disks[rdev->desc_nr].state & 1226 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1227 spare_disk = false; 1228 1229 if (!refdev) { 1230 if (!spare_disk) 1231 ret = 1; 1232 else 1233 ret = 0; 1234 } else { 1235 __u64 ev1, ev2; 1236 mdp_super_t *refsb = page_address(refdev->sb_page); 1237 if (!md_uuid_equal(refsb, sb)) { 1238 pr_warn("md: %pg has different UUID to %pg\n", 1239 rdev->bdev, refdev->bdev); 1240 goto abort; 1241 } 1242 if (!md_sb_equal(refsb, sb)) { 1243 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1244 rdev->bdev, refdev->bdev); 1245 goto abort; 1246 } 1247 ev1 = md_event(sb); 1248 ev2 = md_event(refsb); 1249 1250 if (!spare_disk && ev1 > ev2) 1251 ret = 1; 1252 else 1253 ret = 0; 1254 } 1255 rdev->sectors = rdev->sb_start; 1256 /* Limit to 4TB as metadata cannot record more than that. 1257 * (not needed for Linear and RAID0 as metadata doesn't 1258 * record this size) 1259 */ 1260 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1261 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1262 1263 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1264 /* "this cannot possibly happen" ... */ 1265 ret = -EINVAL; 1266 1267 abort: 1268 return ret; 1269 } 1270 1271 /* 1272 * validate_super for 0.90.0 1273 */ 1274 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1275 { 1276 mdp_disk_t *desc; 1277 mdp_super_t *sb = page_address(rdev->sb_page); 1278 __u64 ev1 = md_event(sb); 1279 1280 rdev->raid_disk = -1; 1281 clear_bit(Faulty, &rdev->flags); 1282 clear_bit(In_sync, &rdev->flags); 1283 clear_bit(Bitmap_sync, &rdev->flags); 1284 clear_bit(WriteMostly, &rdev->flags); 1285 1286 if (mddev->raid_disks == 0) { 1287 mddev->major_version = 0; 1288 mddev->minor_version = sb->minor_version; 1289 mddev->patch_version = sb->patch_version; 1290 mddev->external = 0; 1291 mddev->chunk_sectors = sb->chunk_size >> 9; 1292 mddev->ctime = sb->ctime; 1293 mddev->utime = sb->utime; 1294 mddev->level = sb->level; 1295 mddev->clevel[0] = 0; 1296 mddev->layout = sb->layout; 1297 mddev->raid_disks = sb->raid_disks; 1298 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1299 mddev->events = ev1; 1300 mddev->bitmap_info.offset = 0; 1301 mddev->bitmap_info.space = 0; 1302 /* bitmap can use 60 K after the 4K superblocks */ 1303 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1304 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1305 mddev->reshape_backwards = 0; 1306 1307 if (mddev->minor_version >= 91) { 1308 mddev->reshape_position = sb->reshape_position; 1309 mddev->delta_disks = sb->delta_disks; 1310 mddev->new_level = sb->new_level; 1311 mddev->new_layout = sb->new_layout; 1312 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1313 if (mddev->delta_disks < 0) 1314 mddev->reshape_backwards = 1; 1315 } else { 1316 mddev->reshape_position = MaxSector; 1317 mddev->delta_disks = 0; 1318 mddev->new_level = mddev->level; 1319 mddev->new_layout = mddev->layout; 1320 mddev->new_chunk_sectors = mddev->chunk_sectors; 1321 } 1322 if (mddev->level == 0) 1323 mddev->layout = -1; 1324 1325 if (sb->state & (1<<MD_SB_CLEAN)) 1326 mddev->recovery_cp = MaxSector; 1327 else { 1328 if (sb->events_hi == sb->cp_events_hi && 1329 sb->events_lo == sb->cp_events_lo) { 1330 mddev->recovery_cp = sb->recovery_cp; 1331 } else 1332 mddev->recovery_cp = 0; 1333 } 1334 1335 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1336 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1337 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1338 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1339 1340 mddev->max_disks = MD_SB_DISKS; 1341 1342 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1343 mddev->bitmap_info.file == NULL) { 1344 mddev->bitmap_info.offset = 1345 mddev->bitmap_info.default_offset; 1346 mddev->bitmap_info.space = 1347 mddev->bitmap_info.default_space; 1348 } 1349 1350 } else if (mddev->pers == NULL) { 1351 /* Insist on good event counter while assembling, except 1352 * for spares (which don't need an event count) */ 1353 ++ev1; 1354 if (sb->disks[rdev->desc_nr].state & ( 1355 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1356 if (ev1 < mddev->events) 1357 return -EINVAL; 1358 } else if (mddev->bitmap) { 1359 /* if adding to array with a bitmap, then we can accept an 1360 * older device ... but not too old. 1361 */ 1362 if (ev1 < mddev->bitmap->events_cleared) 1363 return 0; 1364 if (ev1 < mddev->events) 1365 set_bit(Bitmap_sync, &rdev->flags); 1366 } else { 1367 if (ev1 < mddev->events) 1368 /* just a hot-add of a new device, leave raid_disk at -1 */ 1369 return 0; 1370 } 1371 1372 if (mddev->level != LEVEL_MULTIPATH) { 1373 desc = sb->disks + rdev->desc_nr; 1374 1375 if (desc->state & (1<<MD_DISK_FAULTY)) 1376 set_bit(Faulty, &rdev->flags); 1377 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1378 desc->raid_disk < mddev->raid_disks */) { 1379 set_bit(In_sync, &rdev->flags); 1380 rdev->raid_disk = desc->raid_disk; 1381 rdev->saved_raid_disk = desc->raid_disk; 1382 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1383 /* active but not in sync implies recovery up to 1384 * reshape position. We don't know exactly where 1385 * that is, so set to zero for now */ 1386 if (mddev->minor_version >= 91) { 1387 rdev->recovery_offset = 0; 1388 rdev->raid_disk = desc->raid_disk; 1389 } 1390 } 1391 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1392 set_bit(WriteMostly, &rdev->flags); 1393 if (desc->state & (1<<MD_DISK_FAILFAST)) 1394 set_bit(FailFast, &rdev->flags); 1395 } else /* MULTIPATH are always insync */ 1396 set_bit(In_sync, &rdev->flags); 1397 return 0; 1398 } 1399 1400 /* 1401 * sync_super for 0.90.0 1402 */ 1403 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1404 { 1405 mdp_super_t *sb; 1406 struct md_rdev *rdev2; 1407 int next_spare = mddev->raid_disks; 1408 1409 /* make rdev->sb match mddev data.. 1410 * 1411 * 1/ zero out disks 1412 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1413 * 3/ any empty disks < next_spare become removed 1414 * 1415 * disks[0] gets initialised to REMOVED because 1416 * we cannot be sure from other fields if it has 1417 * been initialised or not. 1418 */ 1419 int i; 1420 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1421 1422 rdev->sb_size = MD_SB_BYTES; 1423 1424 sb = page_address(rdev->sb_page); 1425 1426 memset(sb, 0, sizeof(*sb)); 1427 1428 sb->md_magic = MD_SB_MAGIC; 1429 sb->major_version = mddev->major_version; 1430 sb->patch_version = mddev->patch_version; 1431 sb->gvalid_words = 0; /* ignored */ 1432 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1433 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1434 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1435 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1436 1437 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1438 sb->level = mddev->level; 1439 sb->size = mddev->dev_sectors / 2; 1440 sb->raid_disks = mddev->raid_disks; 1441 sb->md_minor = mddev->md_minor; 1442 sb->not_persistent = 0; 1443 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1444 sb->state = 0; 1445 sb->events_hi = (mddev->events>>32); 1446 sb->events_lo = (u32)mddev->events; 1447 1448 if (mddev->reshape_position == MaxSector) 1449 sb->minor_version = 90; 1450 else { 1451 sb->minor_version = 91; 1452 sb->reshape_position = mddev->reshape_position; 1453 sb->new_level = mddev->new_level; 1454 sb->delta_disks = mddev->delta_disks; 1455 sb->new_layout = mddev->new_layout; 1456 sb->new_chunk = mddev->new_chunk_sectors << 9; 1457 } 1458 mddev->minor_version = sb->minor_version; 1459 if (mddev->in_sync) 1460 { 1461 sb->recovery_cp = mddev->recovery_cp; 1462 sb->cp_events_hi = (mddev->events>>32); 1463 sb->cp_events_lo = (u32)mddev->events; 1464 if (mddev->recovery_cp == MaxSector) 1465 sb->state = (1<< MD_SB_CLEAN); 1466 } else 1467 sb->recovery_cp = 0; 1468 1469 sb->layout = mddev->layout; 1470 sb->chunk_size = mddev->chunk_sectors << 9; 1471 1472 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1473 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1474 1475 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1476 rdev_for_each(rdev2, mddev) { 1477 mdp_disk_t *d; 1478 int desc_nr; 1479 int is_active = test_bit(In_sync, &rdev2->flags); 1480 1481 if (rdev2->raid_disk >= 0 && 1482 sb->minor_version >= 91) 1483 /* we have nowhere to store the recovery_offset, 1484 * but if it is not below the reshape_position, 1485 * we can piggy-back on that. 1486 */ 1487 is_active = 1; 1488 if (rdev2->raid_disk < 0 || 1489 test_bit(Faulty, &rdev2->flags)) 1490 is_active = 0; 1491 if (is_active) 1492 desc_nr = rdev2->raid_disk; 1493 else 1494 desc_nr = next_spare++; 1495 rdev2->desc_nr = desc_nr; 1496 d = &sb->disks[rdev2->desc_nr]; 1497 nr_disks++; 1498 d->number = rdev2->desc_nr; 1499 d->major = MAJOR(rdev2->bdev->bd_dev); 1500 d->minor = MINOR(rdev2->bdev->bd_dev); 1501 if (is_active) 1502 d->raid_disk = rdev2->raid_disk; 1503 else 1504 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1505 if (test_bit(Faulty, &rdev2->flags)) 1506 d->state = (1<<MD_DISK_FAULTY); 1507 else if (is_active) { 1508 d->state = (1<<MD_DISK_ACTIVE); 1509 if (test_bit(In_sync, &rdev2->flags)) 1510 d->state |= (1<<MD_DISK_SYNC); 1511 active++; 1512 working++; 1513 } else { 1514 d->state = 0; 1515 spare++; 1516 working++; 1517 } 1518 if (test_bit(WriteMostly, &rdev2->flags)) 1519 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1520 if (test_bit(FailFast, &rdev2->flags)) 1521 d->state |= (1<<MD_DISK_FAILFAST); 1522 } 1523 /* now set the "removed" and "faulty" bits on any missing devices */ 1524 for (i=0 ; i < mddev->raid_disks ; i++) { 1525 mdp_disk_t *d = &sb->disks[i]; 1526 if (d->state == 0 && d->number == 0) { 1527 d->number = i; 1528 d->raid_disk = i; 1529 d->state = (1<<MD_DISK_REMOVED); 1530 d->state |= (1<<MD_DISK_FAULTY); 1531 failed++; 1532 } 1533 } 1534 sb->nr_disks = nr_disks; 1535 sb->active_disks = active; 1536 sb->working_disks = working; 1537 sb->failed_disks = failed; 1538 sb->spare_disks = spare; 1539 1540 sb->this_disk = sb->disks[rdev->desc_nr]; 1541 sb->sb_csum = calc_sb_csum(sb); 1542 } 1543 1544 /* 1545 * rdev_size_change for 0.90.0 1546 */ 1547 static unsigned long long 1548 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1549 { 1550 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1551 return 0; /* component must fit device */ 1552 if (rdev->mddev->bitmap_info.offset) 1553 return 0; /* can't move bitmap */ 1554 rdev->sb_start = calc_dev_sboffset(rdev); 1555 if (!num_sectors || num_sectors > rdev->sb_start) 1556 num_sectors = rdev->sb_start; 1557 /* Limit to 4TB as metadata cannot record more than that. 1558 * 4TB == 2^32 KB, or 2*2^32 sectors. 1559 */ 1560 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1561 num_sectors = (sector_t)(2ULL << 32) - 2; 1562 do { 1563 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1564 rdev->sb_page); 1565 } while (md_super_wait(rdev->mddev) < 0); 1566 return num_sectors; 1567 } 1568 1569 static int 1570 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1571 { 1572 /* non-zero offset changes not possible with v0.90 */ 1573 return new_offset == 0; 1574 } 1575 1576 /* 1577 * version 1 superblock 1578 */ 1579 1580 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1581 { 1582 __le32 disk_csum; 1583 u32 csum; 1584 unsigned long long newcsum; 1585 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1586 __le32 *isuper = (__le32*)sb; 1587 1588 disk_csum = sb->sb_csum; 1589 sb->sb_csum = 0; 1590 newcsum = 0; 1591 for (; size >= 4; size -= 4) 1592 newcsum += le32_to_cpu(*isuper++); 1593 1594 if (size == 2) 1595 newcsum += le16_to_cpu(*(__le16*) isuper); 1596 1597 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1598 sb->sb_csum = disk_csum; 1599 return cpu_to_le32(csum); 1600 } 1601 1602 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1603 { 1604 struct mdp_superblock_1 *sb; 1605 int ret; 1606 sector_t sb_start; 1607 sector_t sectors; 1608 int bmask; 1609 bool spare_disk = true; 1610 1611 /* 1612 * Calculate the position of the superblock in 512byte sectors. 1613 * It is always aligned to a 4K boundary and 1614 * depeding on minor_version, it can be: 1615 * 0: At least 8K, but less than 12K, from end of device 1616 * 1: At start of device 1617 * 2: 4K from start of device. 1618 */ 1619 switch(minor_version) { 1620 case 0: 1621 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1622 sb_start &= ~(sector_t)(4*2-1); 1623 break; 1624 case 1: 1625 sb_start = 0; 1626 break; 1627 case 2: 1628 sb_start = 8; 1629 break; 1630 default: 1631 return -EINVAL; 1632 } 1633 rdev->sb_start = sb_start; 1634 1635 /* superblock is rarely larger than 1K, but it can be larger, 1636 * and it is safe to read 4k, so we do that 1637 */ 1638 ret = read_disk_sb(rdev, 4096); 1639 if (ret) return ret; 1640 1641 sb = page_address(rdev->sb_page); 1642 1643 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1644 sb->major_version != cpu_to_le32(1) || 1645 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1646 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1647 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1648 return -EINVAL; 1649 1650 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1651 pr_warn("md: invalid superblock checksum on %pg\n", 1652 rdev->bdev); 1653 return -EINVAL; 1654 } 1655 if (le64_to_cpu(sb->data_size) < 10) { 1656 pr_warn("md: data_size too small on %pg\n", 1657 rdev->bdev); 1658 return -EINVAL; 1659 } 1660 if (sb->pad0 || 1661 sb->pad3[0] || 1662 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1663 /* Some padding is non-zero, might be a new feature */ 1664 return -EINVAL; 1665 1666 rdev->preferred_minor = 0xffff; 1667 rdev->data_offset = le64_to_cpu(sb->data_offset); 1668 rdev->new_data_offset = rdev->data_offset; 1669 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1670 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1671 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1672 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1673 1674 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1675 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1676 if (rdev->sb_size & bmask) 1677 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1678 1679 if (minor_version 1680 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1681 return -EINVAL; 1682 if (minor_version 1683 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1684 return -EINVAL; 1685 1686 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1687 rdev->desc_nr = -1; 1688 else 1689 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1690 1691 if (!rdev->bb_page) { 1692 rdev->bb_page = alloc_page(GFP_KERNEL); 1693 if (!rdev->bb_page) 1694 return -ENOMEM; 1695 } 1696 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1697 rdev->badblocks.count == 0) { 1698 /* need to load the bad block list. 1699 * Currently we limit it to one page. 1700 */ 1701 s32 offset; 1702 sector_t bb_sector; 1703 __le64 *bbp; 1704 int i; 1705 int sectors = le16_to_cpu(sb->bblog_size); 1706 if (sectors > (PAGE_SIZE / 512)) 1707 return -EINVAL; 1708 offset = le32_to_cpu(sb->bblog_offset); 1709 if (offset == 0) 1710 return -EINVAL; 1711 bb_sector = (long long)offset; 1712 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1713 rdev->bb_page, REQ_OP_READ, true)) 1714 return -EIO; 1715 bbp = (__le64 *)page_address(rdev->bb_page); 1716 rdev->badblocks.shift = sb->bblog_shift; 1717 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1718 u64 bb = le64_to_cpu(*bbp); 1719 int count = bb & (0x3ff); 1720 u64 sector = bb >> 10; 1721 sector <<= sb->bblog_shift; 1722 count <<= sb->bblog_shift; 1723 if (bb + 1 == 0) 1724 break; 1725 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1726 return -EINVAL; 1727 } 1728 } else if (sb->bblog_offset != 0) 1729 rdev->badblocks.shift = 0; 1730 1731 if ((le32_to_cpu(sb->feature_map) & 1732 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1733 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1734 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1735 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1736 } 1737 1738 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1739 sb->level != 0) 1740 return -EINVAL; 1741 1742 /* not spare disk, or LEVEL_MULTIPATH */ 1743 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1744 (rdev->desc_nr >= 0 && 1745 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1746 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1747 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1748 spare_disk = false; 1749 1750 if (!refdev) { 1751 if (!spare_disk) 1752 ret = 1; 1753 else 1754 ret = 0; 1755 } else { 1756 __u64 ev1, ev2; 1757 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1758 1759 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1760 sb->level != refsb->level || 1761 sb->layout != refsb->layout || 1762 sb->chunksize != refsb->chunksize) { 1763 pr_warn("md: %pg has strangely different superblock to %pg\n", 1764 rdev->bdev, 1765 refdev->bdev); 1766 return -EINVAL; 1767 } 1768 ev1 = le64_to_cpu(sb->events); 1769 ev2 = le64_to_cpu(refsb->events); 1770 1771 if (!spare_disk && ev1 > ev2) 1772 ret = 1; 1773 else 1774 ret = 0; 1775 } 1776 if (minor_version) 1777 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1778 else 1779 sectors = rdev->sb_start; 1780 if (sectors < le64_to_cpu(sb->data_size)) 1781 return -EINVAL; 1782 rdev->sectors = le64_to_cpu(sb->data_size); 1783 return ret; 1784 } 1785 1786 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1787 { 1788 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1789 __u64 ev1 = le64_to_cpu(sb->events); 1790 1791 rdev->raid_disk = -1; 1792 clear_bit(Faulty, &rdev->flags); 1793 clear_bit(In_sync, &rdev->flags); 1794 clear_bit(Bitmap_sync, &rdev->flags); 1795 clear_bit(WriteMostly, &rdev->flags); 1796 1797 if (mddev->raid_disks == 0) { 1798 mddev->major_version = 1; 1799 mddev->patch_version = 0; 1800 mddev->external = 0; 1801 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1802 mddev->ctime = le64_to_cpu(sb->ctime); 1803 mddev->utime = le64_to_cpu(sb->utime); 1804 mddev->level = le32_to_cpu(sb->level); 1805 mddev->clevel[0] = 0; 1806 mddev->layout = le32_to_cpu(sb->layout); 1807 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1808 mddev->dev_sectors = le64_to_cpu(sb->size); 1809 mddev->events = ev1; 1810 mddev->bitmap_info.offset = 0; 1811 mddev->bitmap_info.space = 0; 1812 /* Default location for bitmap is 1K after superblock 1813 * using 3K - total of 4K 1814 */ 1815 mddev->bitmap_info.default_offset = 1024 >> 9; 1816 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1817 mddev->reshape_backwards = 0; 1818 1819 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1820 memcpy(mddev->uuid, sb->set_uuid, 16); 1821 1822 mddev->max_disks = (4096-256)/2; 1823 1824 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1825 mddev->bitmap_info.file == NULL) { 1826 mddev->bitmap_info.offset = 1827 (__s32)le32_to_cpu(sb->bitmap_offset); 1828 /* Metadata doesn't record how much space is available. 1829 * For 1.0, we assume we can use up to the superblock 1830 * if before, else to 4K beyond superblock. 1831 * For others, assume no change is possible. 1832 */ 1833 if (mddev->minor_version > 0) 1834 mddev->bitmap_info.space = 0; 1835 else if (mddev->bitmap_info.offset > 0) 1836 mddev->bitmap_info.space = 1837 8 - mddev->bitmap_info.offset; 1838 else 1839 mddev->bitmap_info.space = 1840 -mddev->bitmap_info.offset; 1841 } 1842 1843 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1844 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1845 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1846 mddev->new_level = le32_to_cpu(sb->new_level); 1847 mddev->new_layout = le32_to_cpu(sb->new_layout); 1848 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1849 if (mddev->delta_disks < 0 || 1850 (mddev->delta_disks == 0 && 1851 (le32_to_cpu(sb->feature_map) 1852 & MD_FEATURE_RESHAPE_BACKWARDS))) 1853 mddev->reshape_backwards = 1; 1854 } else { 1855 mddev->reshape_position = MaxSector; 1856 mddev->delta_disks = 0; 1857 mddev->new_level = mddev->level; 1858 mddev->new_layout = mddev->layout; 1859 mddev->new_chunk_sectors = mddev->chunk_sectors; 1860 } 1861 1862 if (mddev->level == 0 && 1863 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1864 mddev->layout = -1; 1865 1866 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1867 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1868 1869 if (le32_to_cpu(sb->feature_map) & 1870 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1871 if (le32_to_cpu(sb->feature_map) & 1872 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1873 return -EINVAL; 1874 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1875 (le32_to_cpu(sb->feature_map) & 1876 MD_FEATURE_MULTIPLE_PPLS)) 1877 return -EINVAL; 1878 set_bit(MD_HAS_PPL, &mddev->flags); 1879 } 1880 } else if (mddev->pers == NULL) { 1881 /* Insist of good event counter while assembling, except for 1882 * spares (which don't need an event count) */ 1883 ++ev1; 1884 if (rdev->desc_nr >= 0 && 1885 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1886 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1887 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1888 if (ev1 < mddev->events) 1889 return -EINVAL; 1890 } else if (mddev->bitmap) { 1891 /* If adding to array with a bitmap, then we can accept an 1892 * older device, but not too old. 1893 */ 1894 if (ev1 < mddev->bitmap->events_cleared) 1895 return 0; 1896 if (ev1 < mddev->events) 1897 set_bit(Bitmap_sync, &rdev->flags); 1898 } else { 1899 if (ev1 < mddev->events) 1900 /* just a hot-add of a new device, leave raid_disk at -1 */ 1901 return 0; 1902 } 1903 if (mddev->level != LEVEL_MULTIPATH) { 1904 int role; 1905 if (rdev->desc_nr < 0 || 1906 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1907 role = MD_DISK_ROLE_SPARE; 1908 rdev->desc_nr = -1; 1909 } else 1910 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1911 switch(role) { 1912 case MD_DISK_ROLE_SPARE: /* spare */ 1913 break; 1914 case MD_DISK_ROLE_FAULTY: /* faulty */ 1915 set_bit(Faulty, &rdev->flags); 1916 break; 1917 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1918 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1919 /* journal device without journal feature */ 1920 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1921 return -EINVAL; 1922 } 1923 set_bit(Journal, &rdev->flags); 1924 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1925 rdev->raid_disk = 0; 1926 break; 1927 default: 1928 rdev->saved_raid_disk = role; 1929 if ((le32_to_cpu(sb->feature_map) & 1930 MD_FEATURE_RECOVERY_OFFSET)) { 1931 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1932 if (!(le32_to_cpu(sb->feature_map) & 1933 MD_FEATURE_RECOVERY_BITMAP)) 1934 rdev->saved_raid_disk = -1; 1935 } else { 1936 /* 1937 * If the array is FROZEN, then the device can't 1938 * be in_sync with rest of array. 1939 */ 1940 if (!test_bit(MD_RECOVERY_FROZEN, 1941 &mddev->recovery)) 1942 set_bit(In_sync, &rdev->flags); 1943 } 1944 rdev->raid_disk = role; 1945 break; 1946 } 1947 if (sb->devflags & WriteMostly1) 1948 set_bit(WriteMostly, &rdev->flags); 1949 if (sb->devflags & FailFast1) 1950 set_bit(FailFast, &rdev->flags); 1951 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1952 set_bit(Replacement, &rdev->flags); 1953 } else /* MULTIPATH are always insync */ 1954 set_bit(In_sync, &rdev->flags); 1955 1956 return 0; 1957 } 1958 1959 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1960 { 1961 struct mdp_superblock_1 *sb; 1962 struct md_rdev *rdev2; 1963 int max_dev, i; 1964 /* make rdev->sb match mddev and rdev data. */ 1965 1966 sb = page_address(rdev->sb_page); 1967 1968 sb->feature_map = 0; 1969 sb->pad0 = 0; 1970 sb->recovery_offset = cpu_to_le64(0); 1971 memset(sb->pad3, 0, sizeof(sb->pad3)); 1972 1973 sb->utime = cpu_to_le64((__u64)mddev->utime); 1974 sb->events = cpu_to_le64(mddev->events); 1975 if (mddev->in_sync) 1976 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1977 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1978 sb->resync_offset = cpu_to_le64(MaxSector); 1979 else 1980 sb->resync_offset = cpu_to_le64(0); 1981 1982 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1983 1984 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1985 sb->size = cpu_to_le64(mddev->dev_sectors); 1986 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1987 sb->level = cpu_to_le32(mddev->level); 1988 sb->layout = cpu_to_le32(mddev->layout); 1989 if (test_bit(FailFast, &rdev->flags)) 1990 sb->devflags |= FailFast1; 1991 else 1992 sb->devflags &= ~FailFast1; 1993 1994 if (test_bit(WriteMostly, &rdev->flags)) 1995 sb->devflags |= WriteMostly1; 1996 else 1997 sb->devflags &= ~WriteMostly1; 1998 sb->data_offset = cpu_to_le64(rdev->data_offset); 1999 sb->data_size = cpu_to_le64(rdev->sectors); 2000 2001 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2002 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2003 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2004 } 2005 2006 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2007 !test_bit(In_sync, &rdev->flags)) { 2008 sb->feature_map |= 2009 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2010 sb->recovery_offset = 2011 cpu_to_le64(rdev->recovery_offset); 2012 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2013 sb->feature_map |= 2014 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2015 } 2016 /* Note: recovery_offset and journal_tail share space */ 2017 if (test_bit(Journal, &rdev->flags)) 2018 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2019 if (test_bit(Replacement, &rdev->flags)) 2020 sb->feature_map |= 2021 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2022 2023 if (mddev->reshape_position != MaxSector) { 2024 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2025 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2026 sb->new_layout = cpu_to_le32(mddev->new_layout); 2027 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2028 sb->new_level = cpu_to_le32(mddev->new_level); 2029 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2030 if (mddev->delta_disks == 0 && 2031 mddev->reshape_backwards) 2032 sb->feature_map 2033 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2034 if (rdev->new_data_offset != rdev->data_offset) { 2035 sb->feature_map 2036 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2037 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2038 - rdev->data_offset)); 2039 } 2040 } 2041 2042 if (mddev_is_clustered(mddev)) 2043 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2044 2045 if (rdev->badblocks.count == 0) 2046 /* Nothing to do for bad blocks*/ ; 2047 else if (sb->bblog_offset == 0) 2048 /* Cannot record bad blocks on this device */ 2049 md_error(mddev, rdev); 2050 else { 2051 struct badblocks *bb = &rdev->badblocks; 2052 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2053 u64 *p = bb->page; 2054 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2055 if (bb->changed) { 2056 unsigned seq; 2057 2058 retry: 2059 seq = read_seqbegin(&bb->lock); 2060 2061 memset(bbp, 0xff, PAGE_SIZE); 2062 2063 for (i = 0 ; i < bb->count ; i++) { 2064 u64 internal_bb = p[i]; 2065 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2066 | BB_LEN(internal_bb)); 2067 bbp[i] = cpu_to_le64(store_bb); 2068 } 2069 bb->changed = 0; 2070 if (read_seqretry(&bb->lock, seq)) 2071 goto retry; 2072 2073 bb->sector = (rdev->sb_start + 2074 (int)le32_to_cpu(sb->bblog_offset)); 2075 bb->size = le16_to_cpu(sb->bblog_size); 2076 } 2077 } 2078 2079 max_dev = 0; 2080 rdev_for_each(rdev2, mddev) 2081 if (rdev2->desc_nr+1 > max_dev) 2082 max_dev = rdev2->desc_nr+1; 2083 2084 if (max_dev > le32_to_cpu(sb->max_dev)) { 2085 int bmask; 2086 sb->max_dev = cpu_to_le32(max_dev); 2087 rdev->sb_size = max_dev * 2 + 256; 2088 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2089 if (rdev->sb_size & bmask) 2090 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2091 } else 2092 max_dev = le32_to_cpu(sb->max_dev); 2093 2094 for (i=0; i<max_dev;i++) 2095 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2096 2097 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2098 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2099 2100 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2101 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2102 sb->feature_map |= 2103 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2104 else 2105 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2106 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2107 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2108 } 2109 2110 rdev_for_each(rdev2, mddev) { 2111 i = rdev2->desc_nr; 2112 if (test_bit(Faulty, &rdev2->flags)) 2113 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2114 else if (test_bit(In_sync, &rdev2->flags)) 2115 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2116 else if (test_bit(Journal, &rdev2->flags)) 2117 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2118 else if (rdev2->raid_disk >= 0) 2119 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2120 else 2121 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2122 } 2123 2124 sb->sb_csum = calc_sb_1_csum(sb); 2125 } 2126 2127 static sector_t super_1_choose_bm_space(sector_t dev_size) 2128 { 2129 sector_t bm_space; 2130 2131 /* if the device is bigger than 8Gig, save 64k for bitmap 2132 * usage, if bigger than 200Gig, save 128k 2133 */ 2134 if (dev_size < 64*2) 2135 bm_space = 0; 2136 else if (dev_size - 64*2 >= 200*1024*1024*2) 2137 bm_space = 128*2; 2138 else if (dev_size - 4*2 > 8*1024*1024*2) 2139 bm_space = 64*2; 2140 else 2141 bm_space = 4*2; 2142 return bm_space; 2143 } 2144 2145 static unsigned long long 2146 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2147 { 2148 struct mdp_superblock_1 *sb; 2149 sector_t max_sectors; 2150 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2151 return 0; /* component must fit device */ 2152 if (rdev->data_offset != rdev->new_data_offset) 2153 return 0; /* too confusing */ 2154 if (rdev->sb_start < rdev->data_offset) { 2155 /* minor versions 1 and 2; superblock before data */ 2156 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2157 if (!num_sectors || num_sectors > max_sectors) 2158 num_sectors = max_sectors; 2159 } else if (rdev->mddev->bitmap_info.offset) { 2160 /* minor version 0 with bitmap we can't move */ 2161 return 0; 2162 } else { 2163 /* minor version 0; superblock after data */ 2164 sector_t sb_start, bm_space; 2165 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2166 2167 /* 8K is for superblock */ 2168 sb_start = dev_size - 8*2; 2169 sb_start &= ~(sector_t)(4*2 - 1); 2170 2171 bm_space = super_1_choose_bm_space(dev_size); 2172 2173 /* Space that can be used to store date needs to decrease 2174 * superblock bitmap space and bad block space(4K) 2175 */ 2176 max_sectors = sb_start - bm_space - 4*2; 2177 2178 if (!num_sectors || num_sectors > max_sectors) 2179 num_sectors = max_sectors; 2180 rdev->sb_start = sb_start; 2181 } 2182 sb = page_address(rdev->sb_page); 2183 sb->data_size = cpu_to_le64(num_sectors); 2184 sb->super_offset = cpu_to_le64(rdev->sb_start); 2185 sb->sb_csum = calc_sb_1_csum(sb); 2186 do { 2187 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2188 rdev->sb_page); 2189 } while (md_super_wait(rdev->mddev) < 0); 2190 return num_sectors; 2191 2192 } 2193 2194 static int 2195 super_1_allow_new_offset(struct md_rdev *rdev, 2196 unsigned long long new_offset) 2197 { 2198 /* All necessary checks on new >= old have been done */ 2199 struct bitmap *bitmap; 2200 if (new_offset >= rdev->data_offset) 2201 return 1; 2202 2203 /* with 1.0 metadata, there is no metadata to tread on 2204 * so we can always move back */ 2205 if (rdev->mddev->minor_version == 0) 2206 return 1; 2207 2208 /* otherwise we must be sure not to step on 2209 * any metadata, so stay: 2210 * 36K beyond start of superblock 2211 * beyond end of badblocks 2212 * beyond write-intent bitmap 2213 */ 2214 if (rdev->sb_start + (32+4)*2 > new_offset) 2215 return 0; 2216 bitmap = rdev->mddev->bitmap; 2217 if (bitmap && !rdev->mddev->bitmap_info.file && 2218 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2219 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2220 return 0; 2221 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2222 return 0; 2223 2224 return 1; 2225 } 2226 2227 static struct super_type super_types[] = { 2228 [0] = { 2229 .name = "0.90.0", 2230 .owner = THIS_MODULE, 2231 .load_super = super_90_load, 2232 .validate_super = super_90_validate, 2233 .sync_super = super_90_sync, 2234 .rdev_size_change = super_90_rdev_size_change, 2235 .allow_new_offset = super_90_allow_new_offset, 2236 }, 2237 [1] = { 2238 .name = "md-1", 2239 .owner = THIS_MODULE, 2240 .load_super = super_1_load, 2241 .validate_super = super_1_validate, 2242 .sync_super = super_1_sync, 2243 .rdev_size_change = super_1_rdev_size_change, 2244 .allow_new_offset = super_1_allow_new_offset, 2245 }, 2246 }; 2247 2248 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2249 { 2250 if (mddev->sync_super) { 2251 mddev->sync_super(mddev, rdev); 2252 return; 2253 } 2254 2255 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2256 2257 super_types[mddev->major_version].sync_super(mddev, rdev); 2258 } 2259 2260 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2261 { 2262 struct md_rdev *rdev, *rdev2; 2263 2264 rcu_read_lock(); 2265 rdev_for_each_rcu(rdev, mddev1) { 2266 if (test_bit(Faulty, &rdev->flags) || 2267 test_bit(Journal, &rdev->flags) || 2268 rdev->raid_disk == -1) 2269 continue; 2270 rdev_for_each_rcu(rdev2, mddev2) { 2271 if (test_bit(Faulty, &rdev2->flags) || 2272 test_bit(Journal, &rdev2->flags) || 2273 rdev2->raid_disk == -1) 2274 continue; 2275 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2276 rcu_read_unlock(); 2277 return 1; 2278 } 2279 } 2280 } 2281 rcu_read_unlock(); 2282 return 0; 2283 } 2284 2285 static LIST_HEAD(pending_raid_disks); 2286 2287 /* 2288 * Try to register data integrity profile for an mddev 2289 * 2290 * This is called when an array is started and after a disk has been kicked 2291 * from the array. It only succeeds if all working and active component devices 2292 * are integrity capable with matching profiles. 2293 */ 2294 int md_integrity_register(struct mddev *mddev) 2295 { 2296 struct md_rdev *rdev, *reference = NULL; 2297 2298 if (list_empty(&mddev->disks)) 2299 return 0; /* nothing to do */ 2300 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2301 return 0; /* shouldn't register, or already is */ 2302 rdev_for_each(rdev, mddev) { 2303 /* skip spares and non-functional disks */ 2304 if (test_bit(Faulty, &rdev->flags)) 2305 continue; 2306 if (rdev->raid_disk < 0) 2307 continue; 2308 if (!reference) { 2309 /* Use the first rdev as the reference */ 2310 reference = rdev; 2311 continue; 2312 } 2313 /* does this rdev's profile match the reference profile? */ 2314 if (blk_integrity_compare(reference->bdev->bd_disk, 2315 rdev->bdev->bd_disk) < 0) 2316 return -EINVAL; 2317 } 2318 if (!reference || !bdev_get_integrity(reference->bdev)) 2319 return 0; 2320 /* 2321 * All component devices are integrity capable and have matching 2322 * profiles, register the common profile for the md device. 2323 */ 2324 blk_integrity_register(mddev->gendisk, 2325 bdev_get_integrity(reference->bdev)); 2326 2327 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2328 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2329 (mddev->level != 1 && mddev->level != 10 && 2330 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2331 /* 2332 * No need to handle the failure of bioset_integrity_create, 2333 * because the function is called by md_run() -> pers->run(), 2334 * md_run calls bioset_exit -> bioset_integrity_free in case 2335 * of failure case. 2336 */ 2337 pr_err("md: failed to create integrity pool for %s\n", 2338 mdname(mddev)); 2339 return -EINVAL; 2340 } 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(md_integrity_register); 2344 2345 /* 2346 * Attempt to add an rdev, but only if it is consistent with the current 2347 * integrity profile 2348 */ 2349 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2350 { 2351 struct blk_integrity *bi_mddev; 2352 2353 if (!mddev->gendisk) 2354 return 0; 2355 2356 bi_mddev = blk_get_integrity(mddev->gendisk); 2357 2358 if (!bi_mddev) /* nothing to do */ 2359 return 0; 2360 2361 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2362 pr_err("%s: incompatible integrity profile for %pg\n", 2363 mdname(mddev), rdev->bdev); 2364 return -ENXIO; 2365 } 2366 2367 return 0; 2368 } 2369 EXPORT_SYMBOL(md_integrity_add_rdev); 2370 2371 static bool rdev_read_only(struct md_rdev *rdev) 2372 { 2373 return bdev_read_only(rdev->bdev) || 2374 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2375 } 2376 2377 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2378 { 2379 char b[BDEVNAME_SIZE]; 2380 int err; 2381 2382 /* prevent duplicates */ 2383 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2384 return -EEXIST; 2385 2386 if (rdev_read_only(rdev) && mddev->pers) 2387 return -EROFS; 2388 2389 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2390 if (!test_bit(Journal, &rdev->flags) && 2391 rdev->sectors && 2392 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2393 if (mddev->pers) { 2394 /* Cannot change size, so fail 2395 * If mddev->level <= 0, then we don't care 2396 * about aligning sizes (e.g. linear) 2397 */ 2398 if (mddev->level > 0) 2399 return -ENOSPC; 2400 } else 2401 mddev->dev_sectors = rdev->sectors; 2402 } 2403 2404 /* Verify rdev->desc_nr is unique. 2405 * If it is -1, assign a free number, else 2406 * check number is not in use 2407 */ 2408 rcu_read_lock(); 2409 if (rdev->desc_nr < 0) { 2410 int choice = 0; 2411 if (mddev->pers) 2412 choice = mddev->raid_disks; 2413 while (md_find_rdev_nr_rcu(mddev, choice)) 2414 choice++; 2415 rdev->desc_nr = choice; 2416 } else { 2417 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2418 rcu_read_unlock(); 2419 return -EBUSY; 2420 } 2421 } 2422 rcu_read_unlock(); 2423 if (!test_bit(Journal, &rdev->flags) && 2424 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2425 pr_warn("md: %s: array is limited to %d devices\n", 2426 mdname(mddev), mddev->max_disks); 2427 return -EBUSY; 2428 } 2429 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2430 strreplace(b, '/', '!'); 2431 2432 rdev->mddev = mddev; 2433 pr_debug("md: bind<%s>\n", b); 2434 2435 if (mddev->raid_disks) 2436 mddev_create_serial_pool(mddev, rdev, false); 2437 2438 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2439 goto fail; 2440 2441 /* failure here is OK */ 2442 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2443 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2444 rdev->sysfs_unack_badblocks = 2445 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2446 rdev->sysfs_badblocks = 2447 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2448 2449 list_add_rcu(&rdev->same_set, &mddev->disks); 2450 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2451 2452 /* May as well allow recovery to be retried once */ 2453 mddev->recovery_disabled++; 2454 2455 return 0; 2456 2457 fail: 2458 pr_warn("md: failed to register dev-%s for %s\n", 2459 b, mdname(mddev)); 2460 return err; 2461 } 2462 2463 static void rdev_delayed_delete(struct work_struct *ws) 2464 { 2465 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2466 kobject_del(&rdev->kobj); 2467 kobject_put(&rdev->kobj); 2468 } 2469 2470 void md_autodetect_dev(dev_t dev); 2471 2472 static void export_rdev(struct md_rdev *rdev) 2473 { 2474 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2475 md_rdev_clear(rdev); 2476 #ifndef MODULE 2477 if (test_bit(AutoDetected, &rdev->flags)) 2478 md_autodetect_dev(rdev->bdev->bd_dev); 2479 #endif 2480 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2481 rdev->bdev = NULL; 2482 kobject_put(&rdev->kobj); 2483 } 2484 2485 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2486 { 2487 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2488 list_del_rcu(&rdev->same_set); 2489 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2490 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2491 rdev->mddev = NULL; 2492 sysfs_remove_link(&rdev->kobj, "block"); 2493 sysfs_put(rdev->sysfs_state); 2494 sysfs_put(rdev->sysfs_unack_badblocks); 2495 sysfs_put(rdev->sysfs_badblocks); 2496 rdev->sysfs_state = NULL; 2497 rdev->sysfs_unack_badblocks = NULL; 2498 rdev->sysfs_badblocks = NULL; 2499 rdev->badblocks.count = 0; 2500 /* We need to delay this, otherwise we can deadlock when 2501 * writing to 'remove' to "dev/state". We also need 2502 * to delay it due to rcu usage. 2503 */ 2504 synchronize_rcu(); 2505 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2506 kobject_get(&rdev->kobj); 2507 queue_work(md_rdev_misc_wq, &rdev->del_work); 2508 export_rdev(rdev); 2509 } 2510 2511 static void export_array(struct mddev *mddev) 2512 { 2513 struct md_rdev *rdev; 2514 2515 while (!list_empty(&mddev->disks)) { 2516 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2517 same_set); 2518 md_kick_rdev_from_array(rdev); 2519 } 2520 mddev->raid_disks = 0; 2521 mddev->major_version = 0; 2522 } 2523 2524 static bool set_in_sync(struct mddev *mddev) 2525 { 2526 lockdep_assert_held(&mddev->lock); 2527 if (!mddev->in_sync) { 2528 mddev->sync_checkers++; 2529 spin_unlock(&mddev->lock); 2530 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2531 spin_lock(&mddev->lock); 2532 if (!mddev->in_sync && 2533 percpu_ref_is_zero(&mddev->writes_pending)) { 2534 mddev->in_sync = 1; 2535 /* 2536 * Ensure ->in_sync is visible before we clear 2537 * ->sync_checkers. 2538 */ 2539 smp_mb(); 2540 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2541 sysfs_notify_dirent_safe(mddev->sysfs_state); 2542 } 2543 if (--mddev->sync_checkers == 0) 2544 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2545 } 2546 if (mddev->safemode == 1) 2547 mddev->safemode = 0; 2548 return mddev->in_sync; 2549 } 2550 2551 static void sync_sbs(struct mddev *mddev, int nospares) 2552 { 2553 /* Update each superblock (in-memory image), but 2554 * if we are allowed to, skip spares which already 2555 * have the right event counter, or have one earlier 2556 * (which would mean they aren't being marked as dirty 2557 * with the rest of the array) 2558 */ 2559 struct md_rdev *rdev; 2560 rdev_for_each(rdev, mddev) { 2561 if (rdev->sb_events == mddev->events || 2562 (nospares && 2563 rdev->raid_disk < 0 && 2564 rdev->sb_events+1 == mddev->events)) { 2565 /* Don't update this superblock */ 2566 rdev->sb_loaded = 2; 2567 } else { 2568 sync_super(mddev, rdev); 2569 rdev->sb_loaded = 1; 2570 } 2571 } 2572 } 2573 2574 static bool does_sb_need_changing(struct mddev *mddev) 2575 { 2576 struct md_rdev *rdev = NULL, *iter; 2577 struct mdp_superblock_1 *sb; 2578 int role; 2579 2580 /* Find a good rdev */ 2581 rdev_for_each(iter, mddev) 2582 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2583 rdev = iter; 2584 break; 2585 } 2586 2587 /* No good device found. */ 2588 if (!rdev) 2589 return false; 2590 2591 sb = page_address(rdev->sb_page); 2592 /* Check if a device has become faulty or a spare become active */ 2593 rdev_for_each(rdev, mddev) { 2594 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2595 /* Device activated? */ 2596 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2597 !test_bit(Faulty, &rdev->flags)) 2598 return true; 2599 /* Device turned faulty? */ 2600 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2601 return true; 2602 } 2603 2604 /* Check if any mddev parameters have changed */ 2605 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2606 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2607 (mddev->layout != le32_to_cpu(sb->layout)) || 2608 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2609 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2610 return true; 2611 2612 return false; 2613 } 2614 2615 void md_update_sb(struct mddev *mddev, int force_change) 2616 { 2617 struct md_rdev *rdev; 2618 int sync_req; 2619 int nospares = 0; 2620 int any_badblocks_changed = 0; 2621 int ret = -1; 2622 2623 if (!md_is_rdwr(mddev)) { 2624 if (force_change) 2625 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2626 return; 2627 } 2628 2629 repeat: 2630 if (mddev_is_clustered(mddev)) { 2631 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2632 force_change = 1; 2633 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2634 nospares = 1; 2635 ret = md_cluster_ops->metadata_update_start(mddev); 2636 /* Has someone else has updated the sb */ 2637 if (!does_sb_need_changing(mddev)) { 2638 if (ret == 0) 2639 md_cluster_ops->metadata_update_cancel(mddev); 2640 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2641 BIT(MD_SB_CHANGE_DEVS) | 2642 BIT(MD_SB_CHANGE_CLEAN)); 2643 return; 2644 } 2645 } 2646 2647 /* 2648 * First make sure individual recovery_offsets are correct 2649 * curr_resync_completed can only be used during recovery. 2650 * During reshape/resync it might use array-addresses rather 2651 * that device addresses. 2652 */ 2653 rdev_for_each(rdev, mddev) { 2654 if (rdev->raid_disk >= 0 && 2655 mddev->delta_disks >= 0 && 2656 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2657 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2658 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2659 !test_bit(Journal, &rdev->flags) && 2660 !test_bit(In_sync, &rdev->flags) && 2661 mddev->curr_resync_completed > rdev->recovery_offset) 2662 rdev->recovery_offset = mddev->curr_resync_completed; 2663 2664 } 2665 if (!mddev->persistent) { 2666 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2667 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2668 if (!mddev->external) { 2669 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2670 rdev_for_each(rdev, mddev) { 2671 if (rdev->badblocks.changed) { 2672 rdev->badblocks.changed = 0; 2673 ack_all_badblocks(&rdev->badblocks); 2674 md_error(mddev, rdev); 2675 } 2676 clear_bit(Blocked, &rdev->flags); 2677 clear_bit(BlockedBadBlocks, &rdev->flags); 2678 wake_up(&rdev->blocked_wait); 2679 } 2680 } 2681 wake_up(&mddev->sb_wait); 2682 return; 2683 } 2684 2685 spin_lock(&mddev->lock); 2686 2687 mddev->utime = ktime_get_real_seconds(); 2688 2689 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2690 force_change = 1; 2691 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2692 /* just a clean<-> dirty transition, possibly leave spares alone, 2693 * though if events isn't the right even/odd, we will have to do 2694 * spares after all 2695 */ 2696 nospares = 1; 2697 if (force_change) 2698 nospares = 0; 2699 if (mddev->degraded) 2700 /* If the array is degraded, then skipping spares is both 2701 * dangerous and fairly pointless. 2702 * Dangerous because a device that was removed from the array 2703 * might have a event_count that still looks up-to-date, 2704 * so it can be re-added without a resync. 2705 * Pointless because if there are any spares to skip, 2706 * then a recovery will happen and soon that array won't 2707 * be degraded any more and the spare can go back to sleep then. 2708 */ 2709 nospares = 0; 2710 2711 sync_req = mddev->in_sync; 2712 2713 /* If this is just a dirty<->clean transition, and the array is clean 2714 * and 'events' is odd, we can roll back to the previous clean state */ 2715 if (nospares 2716 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2717 && mddev->can_decrease_events 2718 && mddev->events != 1) { 2719 mddev->events--; 2720 mddev->can_decrease_events = 0; 2721 } else { 2722 /* otherwise we have to go forward and ... */ 2723 mddev->events ++; 2724 mddev->can_decrease_events = nospares; 2725 } 2726 2727 /* 2728 * This 64-bit counter should never wrap. 2729 * Either we are in around ~1 trillion A.C., assuming 2730 * 1 reboot per second, or we have a bug... 2731 */ 2732 WARN_ON(mddev->events == 0); 2733 2734 rdev_for_each(rdev, mddev) { 2735 if (rdev->badblocks.changed) 2736 any_badblocks_changed++; 2737 if (test_bit(Faulty, &rdev->flags)) 2738 set_bit(FaultRecorded, &rdev->flags); 2739 } 2740 2741 sync_sbs(mddev, nospares); 2742 spin_unlock(&mddev->lock); 2743 2744 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2745 mdname(mddev), mddev->in_sync); 2746 2747 if (mddev->queue) 2748 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2749 rewrite: 2750 md_bitmap_update_sb(mddev->bitmap); 2751 rdev_for_each(rdev, mddev) { 2752 if (rdev->sb_loaded != 1) 2753 continue; /* no noise on spare devices */ 2754 2755 if (!test_bit(Faulty, &rdev->flags)) { 2756 md_super_write(mddev,rdev, 2757 rdev->sb_start, rdev->sb_size, 2758 rdev->sb_page); 2759 pr_debug("md: (write) %pg's sb offset: %llu\n", 2760 rdev->bdev, 2761 (unsigned long long)rdev->sb_start); 2762 rdev->sb_events = mddev->events; 2763 if (rdev->badblocks.size) { 2764 md_super_write(mddev, rdev, 2765 rdev->badblocks.sector, 2766 rdev->badblocks.size << 9, 2767 rdev->bb_page); 2768 rdev->badblocks.size = 0; 2769 } 2770 2771 } else 2772 pr_debug("md: %pg (skipping faulty)\n", 2773 rdev->bdev); 2774 2775 if (mddev->level == LEVEL_MULTIPATH) 2776 /* only need to write one superblock... */ 2777 break; 2778 } 2779 if (md_super_wait(mddev) < 0) 2780 goto rewrite; 2781 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2782 2783 if (mddev_is_clustered(mddev) && ret == 0) 2784 md_cluster_ops->metadata_update_finish(mddev); 2785 2786 if (mddev->in_sync != sync_req || 2787 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2788 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2789 /* have to write it out again */ 2790 goto repeat; 2791 wake_up(&mddev->sb_wait); 2792 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2793 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2794 2795 rdev_for_each(rdev, mddev) { 2796 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2797 clear_bit(Blocked, &rdev->flags); 2798 2799 if (any_badblocks_changed) 2800 ack_all_badblocks(&rdev->badblocks); 2801 clear_bit(BlockedBadBlocks, &rdev->flags); 2802 wake_up(&rdev->blocked_wait); 2803 } 2804 } 2805 EXPORT_SYMBOL(md_update_sb); 2806 2807 static int add_bound_rdev(struct md_rdev *rdev) 2808 { 2809 struct mddev *mddev = rdev->mddev; 2810 int err = 0; 2811 bool add_journal = test_bit(Journal, &rdev->flags); 2812 2813 if (!mddev->pers->hot_remove_disk || add_journal) { 2814 /* If there is hot_add_disk but no hot_remove_disk 2815 * then added disks for geometry changes, 2816 * and should be added immediately. 2817 */ 2818 super_types[mddev->major_version]. 2819 validate_super(mddev, rdev); 2820 if (add_journal) 2821 mddev_suspend(mddev); 2822 err = mddev->pers->hot_add_disk(mddev, rdev); 2823 if (add_journal) 2824 mddev_resume(mddev); 2825 if (err) { 2826 md_kick_rdev_from_array(rdev); 2827 return err; 2828 } 2829 } 2830 sysfs_notify_dirent_safe(rdev->sysfs_state); 2831 2832 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2833 if (mddev->degraded) 2834 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2836 md_new_event(); 2837 md_wakeup_thread(mddev->thread); 2838 return 0; 2839 } 2840 2841 /* words written to sysfs files may, or may not, be \n terminated. 2842 * We want to accept with case. For this we use cmd_match. 2843 */ 2844 static int cmd_match(const char *cmd, const char *str) 2845 { 2846 /* See if cmd, written into a sysfs file, matches 2847 * str. They must either be the same, or cmd can 2848 * have a trailing newline 2849 */ 2850 while (*cmd && *str && *cmd == *str) { 2851 cmd++; 2852 str++; 2853 } 2854 if (*cmd == '\n') 2855 cmd++; 2856 if (*str || *cmd) 2857 return 0; 2858 return 1; 2859 } 2860 2861 struct rdev_sysfs_entry { 2862 struct attribute attr; 2863 ssize_t (*show)(struct md_rdev *, char *); 2864 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2865 }; 2866 2867 static ssize_t 2868 state_show(struct md_rdev *rdev, char *page) 2869 { 2870 char *sep = ","; 2871 size_t len = 0; 2872 unsigned long flags = READ_ONCE(rdev->flags); 2873 2874 if (test_bit(Faulty, &flags) || 2875 (!test_bit(ExternalBbl, &flags) && 2876 rdev->badblocks.unacked_exist)) 2877 len += sprintf(page+len, "faulty%s", sep); 2878 if (test_bit(In_sync, &flags)) 2879 len += sprintf(page+len, "in_sync%s", sep); 2880 if (test_bit(Journal, &flags)) 2881 len += sprintf(page+len, "journal%s", sep); 2882 if (test_bit(WriteMostly, &flags)) 2883 len += sprintf(page+len, "write_mostly%s", sep); 2884 if (test_bit(Blocked, &flags) || 2885 (rdev->badblocks.unacked_exist 2886 && !test_bit(Faulty, &flags))) 2887 len += sprintf(page+len, "blocked%s", sep); 2888 if (!test_bit(Faulty, &flags) && 2889 !test_bit(Journal, &flags) && 2890 !test_bit(In_sync, &flags)) 2891 len += sprintf(page+len, "spare%s", sep); 2892 if (test_bit(WriteErrorSeen, &flags)) 2893 len += sprintf(page+len, "write_error%s", sep); 2894 if (test_bit(WantReplacement, &flags)) 2895 len += sprintf(page+len, "want_replacement%s", sep); 2896 if (test_bit(Replacement, &flags)) 2897 len += sprintf(page+len, "replacement%s", sep); 2898 if (test_bit(ExternalBbl, &flags)) 2899 len += sprintf(page+len, "external_bbl%s", sep); 2900 if (test_bit(FailFast, &flags)) 2901 len += sprintf(page+len, "failfast%s", sep); 2902 2903 if (len) 2904 len -= strlen(sep); 2905 2906 return len+sprintf(page+len, "\n"); 2907 } 2908 2909 static ssize_t 2910 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2911 { 2912 /* can write 2913 * faulty - simulates an error 2914 * remove - disconnects the device 2915 * writemostly - sets write_mostly 2916 * -writemostly - clears write_mostly 2917 * blocked - sets the Blocked flags 2918 * -blocked - clears the Blocked and possibly simulates an error 2919 * insync - sets Insync providing device isn't active 2920 * -insync - clear Insync for a device with a slot assigned, 2921 * so that it gets rebuilt based on bitmap 2922 * write_error - sets WriteErrorSeen 2923 * -write_error - clears WriteErrorSeen 2924 * {,-}failfast - set/clear FailFast 2925 */ 2926 2927 struct mddev *mddev = rdev->mddev; 2928 int err = -EINVAL; 2929 bool need_update_sb = false; 2930 2931 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2932 md_error(rdev->mddev, rdev); 2933 2934 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2935 err = -EBUSY; 2936 else 2937 err = 0; 2938 } else if (cmd_match(buf, "remove")) { 2939 if (rdev->mddev->pers) { 2940 clear_bit(Blocked, &rdev->flags); 2941 remove_and_add_spares(rdev->mddev, rdev); 2942 } 2943 if (rdev->raid_disk >= 0) 2944 err = -EBUSY; 2945 else { 2946 err = 0; 2947 if (mddev_is_clustered(mddev)) 2948 err = md_cluster_ops->remove_disk(mddev, rdev); 2949 2950 if (err == 0) { 2951 md_kick_rdev_from_array(rdev); 2952 if (mddev->pers) { 2953 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2954 md_wakeup_thread(mddev->thread); 2955 } 2956 md_new_event(); 2957 } 2958 } 2959 } else if (cmd_match(buf, "writemostly")) { 2960 set_bit(WriteMostly, &rdev->flags); 2961 mddev_create_serial_pool(rdev->mddev, rdev, false); 2962 need_update_sb = true; 2963 err = 0; 2964 } else if (cmd_match(buf, "-writemostly")) { 2965 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2966 clear_bit(WriteMostly, &rdev->flags); 2967 need_update_sb = true; 2968 err = 0; 2969 } else if (cmd_match(buf, "blocked")) { 2970 set_bit(Blocked, &rdev->flags); 2971 err = 0; 2972 } else if (cmd_match(buf, "-blocked")) { 2973 if (!test_bit(Faulty, &rdev->flags) && 2974 !test_bit(ExternalBbl, &rdev->flags) && 2975 rdev->badblocks.unacked_exist) { 2976 /* metadata handler doesn't understand badblocks, 2977 * so we need to fail the device 2978 */ 2979 md_error(rdev->mddev, rdev); 2980 } 2981 clear_bit(Blocked, &rdev->flags); 2982 clear_bit(BlockedBadBlocks, &rdev->flags); 2983 wake_up(&rdev->blocked_wait); 2984 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2985 md_wakeup_thread(rdev->mddev->thread); 2986 2987 err = 0; 2988 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2989 set_bit(In_sync, &rdev->flags); 2990 err = 0; 2991 } else if (cmd_match(buf, "failfast")) { 2992 set_bit(FailFast, &rdev->flags); 2993 need_update_sb = true; 2994 err = 0; 2995 } else if (cmd_match(buf, "-failfast")) { 2996 clear_bit(FailFast, &rdev->flags); 2997 need_update_sb = true; 2998 err = 0; 2999 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3000 !test_bit(Journal, &rdev->flags)) { 3001 if (rdev->mddev->pers == NULL) { 3002 clear_bit(In_sync, &rdev->flags); 3003 rdev->saved_raid_disk = rdev->raid_disk; 3004 rdev->raid_disk = -1; 3005 err = 0; 3006 } 3007 } else if (cmd_match(buf, "write_error")) { 3008 set_bit(WriteErrorSeen, &rdev->flags); 3009 err = 0; 3010 } else if (cmd_match(buf, "-write_error")) { 3011 clear_bit(WriteErrorSeen, &rdev->flags); 3012 err = 0; 3013 } else if (cmd_match(buf, "want_replacement")) { 3014 /* Any non-spare device that is not a replacement can 3015 * become want_replacement at any time, but we then need to 3016 * check if recovery is needed. 3017 */ 3018 if (rdev->raid_disk >= 0 && 3019 !test_bit(Journal, &rdev->flags) && 3020 !test_bit(Replacement, &rdev->flags)) 3021 set_bit(WantReplacement, &rdev->flags); 3022 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3023 md_wakeup_thread(rdev->mddev->thread); 3024 err = 0; 3025 } else if (cmd_match(buf, "-want_replacement")) { 3026 /* Clearing 'want_replacement' is always allowed. 3027 * Once replacements starts it is too late though. 3028 */ 3029 err = 0; 3030 clear_bit(WantReplacement, &rdev->flags); 3031 } else if (cmd_match(buf, "replacement")) { 3032 /* Can only set a device as a replacement when array has not 3033 * yet been started. Once running, replacement is automatic 3034 * from spares, or by assigning 'slot'. 3035 */ 3036 if (rdev->mddev->pers) 3037 err = -EBUSY; 3038 else { 3039 set_bit(Replacement, &rdev->flags); 3040 err = 0; 3041 } 3042 } else if (cmd_match(buf, "-replacement")) { 3043 /* Similarly, can only clear Replacement before start */ 3044 if (rdev->mddev->pers) 3045 err = -EBUSY; 3046 else { 3047 clear_bit(Replacement, &rdev->flags); 3048 err = 0; 3049 } 3050 } else if (cmd_match(buf, "re-add")) { 3051 if (!rdev->mddev->pers) 3052 err = -EINVAL; 3053 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3054 rdev->saved_raid_disk >= 0) { 3055 /* clear_bit is performed _after_ all the devices 3056 * have their local Faulty bit cleared. If any writes 3057 * happen in the meantime in the local node, they 3058 * will land in the local bitmap, which will be synced 3059 * by this node eventually 3060 */ 3061 if (!mddev_is_clustered(rdev->mddev) || 3062 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3063 clear_bit(Faulty, &rdev->flags); 3064 err = add_bound_rdev(rdev); 3065 } 3066 } else 3067 err = -EBUSY; 3068 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3069 set_bit(ExternalBbl, &rdev->flags); 3070 rdev->badblocks.shift = 0; 3071 err = 0; 3072 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3073 clear_bit(ExternalBbl, &rdev->flags); 3074 err = 0; 3075 } 3076 if (need_update_sb) 3077 md_update_sb(mddev, 1); 3078 if (!err) 3079 sysfs_notify_dirent_safe(rdev->sysfs_state); 3080 return err ? err : len; 3081 } 3082 static struct rdev_sysfs_entry rdev_state = 3083 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3084 3085 static ssize_t 3086 errors_show(struct md_rdev *rdev, char *page) 3087 { 3088 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3089 } 3090 3091 static ssize_t 3092 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3093 { 3094 unsigned int n; 3095 int rv; 3096 3097 rv = kstrtouint(buf, 10, &n); 3098 if (rv < 0) 3099 return rv; 3100 atomic_set(&rdev->corrected_errors, n); 3101 return len; 3102 } 3103 static struct rdev_sysfs_entry rdev_errors = 3104 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3105 3106 static ssize_t 3107 slot_show(struct md_rdev *rdev, char *page) 3108 { 3109 if (test_bit(Journal, &rdev->flags)) 3110 return sprintf(page, "journal\n"); 3111 else if (rdev->raid_disk < 0) 3112 return sprintf(page, "none\n"); 3113 else 3114 return sprintf(page, "%d\n", rdev->raid_disk); 3115 } 3116 3117 static ssize_t 3118 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3119 { 3120 int slot; 3121 int err; 3122 3123 if (test_bit(Journal, &rdev->flags)) 3124 return -EBUSY; 3125 if (strncmp(buf, "none", 4)==0) 3126 slot = -1; 3127 else { 3128 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3129 if (err < 0) 3130 return err; 3131 } 3132 if (rdev->mddev->pers && slot == -1) { 3133 /* Setting 'slot' on an active array requires also 3134 * updating the 'rd%d' link, and communicating 3135 * with the personality with ->hot_*_disk. 3136 * For now we only support removing 3137 * failed/spare devices. This normally happens automatically, 3138 * but not when the metadata is externally managed. 3139 */ 3140 if (rdev->raid_disk == -1) 3141 return -EEXIST; 3142 /* personality does all needed checks */ 3143 if (rdev->mddev->pers->hot_remove_disk == NULL) 3144 return -EINVAL; 3145 clear_bit(Blocked, &rdev->flags); 3146 remove_and_add_spares(rdev->mddev, rdev); 3147 if (rdev->raid_disk >= 0) 3148 return -EBUSY; 3149 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3150 md_wakeup_thread(rdev->mddev->thread); 3151 } else if (rdev->mddev->pers) { 3152 /* Activating a spare .. or possibly reactivating 3153 * if we ever get bitmaps working here. 3154 */ 3155 int err; 3156 3157 if (rdev->raid_disk != -1) 3158 return -EBUSY; 3159 3160 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3161 return -EBUSY; 3162 3163 if (rdev->mddev->pers->hot_add_disk == NULL) 3164 return -EINVAL; 3165 3166 if (slot >= rdev->mddev->raid_disks && 3167 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3168 return -ENOSPC; 3169 3170 rdev->raid_disk = slot; 3171 if (test_bit(In_sync, &rdev->flags)) 3172 rdev->saved_raid_disk = slot; 3173 else 3174 rdev->saved_raid_disk = -1; 3175 clear_bit(In_sync, &rdev->flags); 3176 clear_bit(Bitmap_sync, &rdev->flags); 3177 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3178 if (err) { 3179 rdev->raid_disk = -1; 3180 return err; 3181 } else 3182 sysfs_notify_dirent_safe(rdev->sysfs_state); 3183 /* failure here is OK */; 3184 sysfs_link_rdev(rdev->mddev, rdev); 3185 /* don't wakeup anyone, leave that to userspace. */ 3186 } else { 3187 if (slot >= rdev->mddev->raid_disks && 3188 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3189 return -ENOSPC; 3190 rdev->raid_disk = slot; 3191 /* assume it is working */ 3192 clear_bit(Faulty, &rdev->flags); 3193 clear_bit(WriteMostly, &rdev->flags); 3194 set_bit(In_sync, &rdev->flags); 3195 sysfs_notify_dirent_safe(rdev->sysfs_state); 3196 } 3197 return len; 3198 } 3199 3200 static struct rdev_sysfs_entry rdev_slot = 3201 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3202 3203 static ssize_t 3204 offset_show(struct md_rdev *rdev, char *page) 3205 { 3206 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3207 } 3208 3209 static ssize_t 3210 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3211 { 3212 unsigned long long offset; 3213 if (kstrtoull(buf, 10, &offset) < 0) 3214 return -EINVAL; 3215 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3216 return -EBUSY; 3217 if (rdev->sectors && rdev->mddev->external) 3218 /* Must set offset before size, so overlap checks 3219 * can be sane */ 3220 return -EBUSY; 3221 rdev->data_offset = offset; 3222 rdev->new_data_offset = offset; 3223 return len; 3224 } 3225 3226 static struct rdev_sysfs_entry rdev_offset = 3227 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3228 3229 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3230 { 3231 return sprintf(page, "%llu\n", 3232 (unsigned long long)rdev->new_data_offset); 3233 } 3234 3235 static ssize_t new_offset_store(struct md_rdev *rdev, 3236 const char *buf, size_t len) 3237 { 3238 unsigned long long new_offset; 3239 struct mddev *mddev = rdev->mddev; 3240 3241 if (kstrtoull(buf, 10, &new_offset) < 0) 3242 return -EINVAL; 3243 3244 if (mddev->sync_thread || 3245 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3246 return -EBUSY; 3247 if (new_offset == rdev->data_offset) 3248 /* reset is always permitted */ 3249 ; 3250 else if (new_offset > rdev->data_offset) { 3251 /* must not push array size beyond rdev_sectors */ 3252 if (new_offset - rdev->data_offset 3253 + mddev->dev_sectors > rdev->sectors) 3254 return -E2BIG; 3255 } 3256 /* Metadata worries about other space details. */ 3257 3258 /* decreasing the offset is inconsistent with a backwards 3259 * reshape. 3260 */ 3261 if (new_offset < rdev->data_offset && 3262 mddev->reshape_backwards) 3263 return -EINVAL; 3264 /* Increasing offset is inconsistent with forwards 3265 * reshape. reshape_direction should be set to 3266 * 'backwards' first. 3267 */ 3268 if (new_offset > rdev->data_offset && 3269 !mddev->reshape_backwards) 3270 return -EINVAL; 3271 3272 if (mddev->pers && mddev->persistent && 3273 !super_types[mddev->major_version] 3274 .allow_new_offset(rdev, new_offset)) 3275 return -E2BIG; 3276 rdev->new_data_offset = new_offset; 3277 if (new_offset > rdev->data_offset) 3278 mddev->reshape_backwards = 1; 3279 else if (new_offset < rdev->data_offset) 3280 mddev->reshape_backwards = 0; 3281 3282 return len; 3283 } 3284 static struct rdev_sysfs_entry rdev_new_offset = 3285 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3286 3287 static ssize_t 3288 rdev_size_show(struct md_rdev *rdev, char *page) 3289 { 3290 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3291 } 3292 3293 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3294 { 3295 /* check if two start/length pairs overlap */ 3296 if (a->data_offset + a->sectors <= b->data_offset) 3297 return false; 3298 if (b->data_offset + b->sectors <= a->data_offset) 3299 return false; 3300 return true; 3301 } 3302 3303 static bool md_rdev_overlaps(struct md_rdev *rdev) 3304 { 3305 struct mddev *mddev; 3306 struct md_rdev *rdev2; 3307 3308 spin_lock(&all_mddevs_lock); 3309 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3310 if (test_bit(MD_DELETED, &mddev->flags)) 3311 continue; 3312 rdev_for_each(rdev2, mddev) { 3313 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3314 md_rdevs_overlap(rdev, rdev2)) { 3315 spin_unlock(&all_mddevs_lock); 3316 return true; 3317 } 3318 } 3319 } 3320 spin_unlock(&all_mddevs_lock); 3321 return false; 3322 } 3323 3324 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3325 { 3326 unsigned long long blocks; 3327 sector_t new; 3328 3329 if (kstrtoull(buf, 10, &blocks) < 0) 3330 return -EINVAL; 3331 3332 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3333 return -EINVAL; /* sector conversion overflow */ 3334 3335 new = blocks * 2; 3336 if (new != blocks * 2) 3337 return -EINVAL; /* unsigned long long to sector_t overflow */ 3338 3339 *sectors = new; 3340 return 0; 3341 } 3342 3343 static ssize_t 3344 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3345 { 3346 struct mddev *my_mddev = rdev->mddev; 3347 sector_t oldsectors = rdev->sectors; 3348 sector_t sectors; 3349 3350 if (test_bit(Journal, &rdev->flags)) 3351 return -EBUSY; 3352 if (strict_blocks_to_sectors(buf, §ors) < 0) 3353 return -EINVAL; 3354 if (rdev->data_offset != rdev->new_data_offset) 3355 return -EINVAL; /* too confusing */ 3356 if (my_mddev->pers && rdev->raid_disk >= 0) { 3357 if (my_mddev->persistent) { 3358 sectors = super_types[my_mddev->major_version]. 3359 rdev_size_change(rdev, sectors); 3360 if (!sectors) 3361 return -EBUSY; 3362 } else if (!sectors) 3363 sectors = bdev_nr_sectors(rdev->bdev) - 3364 rdev->data_offset; 3365 if (!my_mddev->pers->resize) 3366 /* Cannot change size for RAID0 or Linear etc */ 3367 return -EINVAL; 3368 } 3369 if (sectors < my_mddev->dev_sectors) 3370 return -EINVAL; /* component must fit device */ 3371 3372 rdev->sectors = sectors; 3373 3374 /* 3375 * Check that all other rdevs with the same bdev do not overlap. This 3376 * check does not provide a hard guarantee, it just helps avoid 3377 * dangerous mistakes. 3378 */ 3379 if (sectors > oldsectors && my_mddev->external && 3380 md_rdev_overlaps(rdev)) { 3381 /* 3382 * Someone else could have slipped in a size change here, but 3383 * doing so is just silly. We put oldsectors back because we 3384 * know it is safe, and trust userspace not to race with itself. 3385 */ 3386 rdev->sectors = oldsectors; 3387 return -EBUSY; 3388 } 3389 return len; 3390 } 3391 3392 static struct rdev_sysfs_entry rdev_size = 3393 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3394 3395 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3396 { 3397 unsigned long long recovery_start = rdev->recovery_offset; 3398 3399 if (test_bit(In_sync, &rdev->flags) || 3400 recovery_start == MaxSector) 3401 return sprintf(page, "none\n"); 3402 3403 return sprintf(page, "%llu\n", recovery_start); 3404 } 3405 3406 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3407 { 3408 unsigned long long recovery_start; 3409 3410 if (cmd_match(buf, "none")) 3411 recovery_start = MaxSector; 3412 else if (kstrtoull(buf, 10, &recovery_start)) 3413 return -EINVAL; 3414 3415 if (rdev->mddev->pers && 3416 rdev->raid_disk >= 0) 3417 return -EBUSY; 3418 3419 rdev->recovery_offset = recovery_start; 3420 if (recovery_start == MaxSector) 3421 set_bit(In_sync, &rdev->flags); 3422 else 3423 clear_bit(In_sync, &rdev->flags); 3424 return len; 3425 } 3426 3427 static struct rdev_sysfs_entry rdev_recovery_start = 3428 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3429 3430 /* sysfs access to bad-blocks list. 3431 * We present two files. 3432 * 'bad-blocks' lists sector numbers and lengths of ranges that 3433 * are recorded as bad. The list is truncated to fit within 3434 * the one-page limit of sysfs. 3435 * Writing "sector length" to this file adds an acknowledged 3436 * bad block list. 3437 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3438 * been acknowledged. Writing to this file adds bad blocks 3439 * without acknowledging them. This is largely for testing. 3440 */ 3441 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3442 { 3443 return badblocks_show(&rdev->badblocks, page, 0); 3444 } 3445 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3446 { 3447 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3448 /* Maybe that ack was all we needed */ 3449 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3450 wake_up(&rdev->blocked_wait); 3451 return rv; 3452 } 3453 static struct rdev_sysfs_entry rdev_bad_blocks = 3454 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3455 3456 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3457 { 3458 return badblocks_show(&rdev->badblocks, page, 1); 3459 } 3460 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3461 { 3462 return badblocks_store(&rdev->badblocks, page, len, 1); 3463 } 3464 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3465 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3466 3467 static ssize_t 3468 ppl_sector_show(struct md_rdev *rdev, char *page) 3469 { 3470 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3471 } 3472 3473 static ssize_t 3474 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3475 { 3476 unsigned long long sector; 3477 3478 if (kstrtoull(buf, 10, §or) < 0) 3479 return -EINVAL; 3480 if (sector != (sector_t)sector) 3481 return -EINVAL; 3482 3483 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3484 rdev->raid_disk >= 0) 3485 return -EBUSY; 3486 3487 if (rdev->mddev->persistent) { 3488 if (rdev->mddev->major_version == 0) 3489 return -EINVAL; 3490 if ((sector > rdev->sb_start && 3491 sector - rdev->sb_start > S16_MAX) || 3492 (sector < rdev->sb_start && 3493 rdev->sb_start - sector > -S16_MIN)) 3494 return -EINVAL; 3495 rdev->ppl.offset = sector - rdev->sb_start; 3496 } else if (!rdev->mddev->external) { 3497 return -EBUSY; 3498 } 3499 rdev->ppl.sector = sector; 3500 return len; 3501 } 3502 3503 static struct rdev_sysfs_entry rdev_ppl_sector = 3504 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3505 3506 static ssize_t 3507 ppl_size_show(struct md_rdev *rdev, char *page) 3508 { 3509 return sprintf(page, "%u\n", rdev->ppl.size); 3510 } 3511 3512 static ssize_t 3513 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3514 { 3515 unsigned int size; 3516 3517 if (kstrtouint(buf, 10, &size) < 0) 3518 return -EINVAL; 3519 3520 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3521 rdev->raid_disk >= 0) 3522 return -EBUSY; 3523 3524 if (rdev->mddev->persistent) { 3525 if (rdev->mddev->major_version == 0) 3526 return -EINVAL; 3527 if (size > U16_MAX) 3528 return -EINVAL; 3529 } else if (!rdev->mddev->external) { 3530 return -EBUSY; 3531 } 3532 rdev->ppl.size = size; 3533 return len; 3534 } 3535 3536 static struct rdev_sysfs_entry rdev_ppl_size = 3537 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3538 3539 static struct attribute *rdev_default_attrs[] = { 3540 &rdev_state.attr, 3541 &rdev_errors.attr, 3542 &rdev_slot.attr, 3543 &rdev_offset.attr, 3544 &rdev_new_offset.attr, 3545 &rdev_size.attr, 3546 &rdev_recovery_start.attr, 3547 &rdev_bad_blocks.attr, 3548 &rdev_unack_bad_blocks.attr, 3549 &rdev_ppl_sector.attr, 3550 &rdev_ppl_size.attr, 3551 NULL, 3552 }; 3553 ATTRIBUTE_GROUPS(rdev_default); 3554 static ssize_t 3555 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3556 { 3557 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3558 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3559 3560 if (!entry->show) 3561 return -EIO; 3562 if (!rdev->mddev) 3563 return -ENODEV; 3564 return entry->show(rdev, page); 3565 } 3566 3567 static ssize_t 3568 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3569 const char *page, size_t length) 3570 { 3571 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3572 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3573 ssize_t rv; 3574 struct mddev *mddev = rdev->mddev; 3575 3576 if (!entry->store) 3577 return -EIO; 3578 if (!capable(CAP_SYS_ADMIN)) 3579 return -EACCES; 3580 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3581 if (!rv) { 3582 if (rdev->mddev == NULL) 3583 rv = -ENODEV; 3584 else 3585 rv = entry->store(rdev, page, length); 3586 mddev_unlock(mddev); 3587 } 3588 return rv; 3589 } 3590 3591 static void rdev_free(struct kobject *ko) 3592 { 3593 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3594 kfree(rdev); 3595 } 3596 static const struct sysfs_ops rdev_sysfs_ops = { 3597 .show = rdev_attr_show, 3598 .store = rdev_attr_store, 3599 }; 3600 static struct kobj_type rdev_ktype = { 3601 .release = rdev_free, 3602 .sysfs_ops = &rdev_sysfs_ops, 3603 .default_groups = rdev_default_groups, 3604 }; 3605 3606 int md_rdev_init(struct md_rdev *rdev) 3607 { 3608 rdev->desc_nr = -1; 3609 rdev->saved_raid_disk = -1; 3610 rdev->raid_disk = -1; 3611 rdev->flags = 0; 3612 rdev->data_offset = 0; 3613 rdev->new_data_offset = 0; 3614 rdev->sb_events = 0; 3615 rdev->last_read_error = 0; 3616 rdev->sb_loaded = 0; 3617 rdev->bb_page = NULL; 3618 atomic_set(&rdev->nr_pending, 0); 3619 atomic_set(&rdev->read_errors, 0); 3620 atomic_set(&rdev->corrected_errors, 0); 3621 3622 INIT_LIST_HEAD(&rdev->same_set); 3623 init_waitqueue_head(&rdev->blocked_wait); 3624 3625 /* Add space to store bad block list. 3626 * This reserves the space even on arrays where it cannot 3627 * be used - I wonder if that matters 3628 */ 3629 return badblocks_init(&rdev->badblocks, 0); 3630 } 3631 EXPORT_SYMBOL_GPL(md_rdev_init); 3632 /* 3633 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3634 * 3635 * mark the device faulty if: 3636 * 3637 * - the device is nonexistent (zero size) 3638 * - the device has no valid superblock 3639 * 3640 * a faulty rdev _never_ has rdev->sb set. 3641 */ 3642 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3643 { 3644 static struct md_rdev claim_rdev; /* just for claiming the bdev */ 3645 struct md_rdev *rdev; 3646 sector_t size; 3647 int err; 3648 3649 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3650 if (!rdev) 3651 return ERR_PTR(-ENOMEM); 3652 3653 err = md_rdev_init(rdev); 3654 if (err) 3655 goto out_free_rdev; 3656 err = alloc_disk_sb(rdev); 3657 if (err) 3658 goto out_clear_rdev; 3659 3660 rdev->bdev = blkdev_get_by_dev(newdev, 3661 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 3662 super_format == -2 ? &claim_rdev : rdev); 3663 if (IS_ERR(rdev->bdev)) { 3664 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3665 MAJOR(newdev), MINOR(newdev)); 3666 err = PTR_ERR(rdev->bdev); 3667 goto out_clear_rdev; 3668 } 3669 3670 kobject_init(&rdev->kobj, &rdev_ktype); 3671 3672 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3673 if (!size) { 3674 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3675 rdev->bdev); 3676 err = -EINVAL; 3677 goto out_blkdev_put; 3678 } 3679 3680 if (super_format >= 0) { 3681 err = super_types[super_format]. 3682 load_super(rdev, NULL, super_minor); 3683 if (err == -EINVAL) { 3684 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3685 rdev->bdev, 3686 super_format, super_minor); 3687 goto out_blkdev_put; 3688 } 3689 if (err < 0) { 3690 pr_warn("md: could not read %pg's sb, not importing!\n", 3691 rdev->bdev); 3692 goto out_blkdev_put; 3693 } 3694 } 3695 3696 return rdev; 3697 3698 out_blkdev_put: 3699 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3700 out_clear_rdev: 3701 md_rdev_clear(rdev); 3702 out_free_rdev: 3703 kfree(rdev); 3704 return ERR_PTR(err); 3705 } 3706 3707 /* 3708 * Check a full RAID array for plausibility 3709 */ 3710 3711 static int analyze_sbs(struct mddev *mddev) 3712 { 3713 int i; 3714 struct md_rdev *rdev, *freshest, *tmp; 3715 3716 freshest = NULL; 3717 rdev_for_each_safe(rdev, tmp, mddev) 3718 switch (super_types[mddev->major_version]. 3719 load_super(rdev, freshest, mddev->minor_version)) { 3720 case 1: 3721 freshest = rdev; 3722 break; 3723 case 0: 3724 break; 3725 default: 3726 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3727 rdev->bdev); 3728 md_kick_rdev_from_array(rdev); 3729 } 3730 3731 /* Cannot find a valid fresh disk */ 3732 if (!freshest) { 3733 pr_warn("md: cannot find a valid disk\n"); 3734 return -EINVAL; 3735 } 3736 3737 super_types[mddev->major_version]. 3738 validate_super(mddev, freshest); 3739 3740 i = 0; 3741 rdev_for_each_safe(rdev, tmp, mddev) { 3742 if (mddev->max_disks && 3743 (rdev->desc_nr >= mddev->max_disks || 3744 i > mddev->max_disks)) { 3745 pr_warn("md: %s: %pg: only %d devices permitted\n", 3746 mdname(mddev), rdev->bdev, 3747 mddev->max_disks); 3748 md_kick_rdev_from_array(rdev); 3749 continue; 3750 } 3751 if (rdev != freshest) { 3752 if (super_types[mddev->major_version]. 3753 validate_super(mddev, rdev)) { 3754 pr_warn("md: kicking non-fresh %pg from array!\n", 3755 rdev->bdev); 3756 md_kick_rdev_from_array(rdev); 3757 continue; 3758 } 3759 } 3760 if (mddev->level == LEVEL_MULTIPATH) { 3761 rdev->desc_nr = i++; 3762 rdev->raid_disk = rdev->desc_nr; 3763 set_bit(In_sync, &rdev->flags); 3764 } else if (rdev->raid_disk >= 3765 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3766 !test_bit(Journal, &rdev->flags)) { 3767 rdev->raid_disk = -1; 3768 clear_bit(In_sync, &rdev->flags); 3769 } 3770 } 3771 3772 return 0; 3773 } 3774 3775 /* Read a fixed-point number. 3776 * Numbers in sysfs attributes should be in "standard" units where 3777 * possible, so time should be in seconds. 3778 * However we internally use a a much smaller unit such as 3779 * milliseconds or jiffies. 3780 * This function takes a decimal number with a possible fractional 3781 * component, and produces an integer which is the result of 3782 * multiplying that number by 10^'scale'. 3783 * all without any floating-point arithmetic. 3784 */ 3785 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3786 { 3787 unsigned long result = 0; 3788 long decimals = -1; 3789 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3790 if (*cp == '.') 3791 decimals = 0; 3792 else if (decimals < scale) { 3793 unsigned int value; 3794 value = *cp - '0'; 3795 result = result * 10 + value; 3796 if (decimals >= 0) 3797 decimals++; 3798 } 3799 cp++; 3800 } 3801 if (*cp == '\n') 3802 cp++; 3803 if (*cp) 3804 return -EINVAL; 3805 if (decimals < 0) 3806 decimals = 0; 3807 *res = result * int_pow(10, scale - decimals); 3808 return 0; 3809 } 3810 3811 static ssize_t 3812 safe_delay_show(struct mddev *mddev, char *page) 3813 { 3814 int msec = (mddev->safemode_delay*1000)/HZ; 3815 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3816 } 3817 static ssize_t 3818 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3819 { 3820 unsigned long msec; 3821 3822 if (mddev_is_clustered(mddev)) { 3823 pr_warn("md: Safemode is disabled for clustered mode\n"); 3824 return -EINVAL; 3825 } 3826 3827 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3828 return -EINVAL; 3829 if (msec == 0) 3830 mddev->safemode_delay = 0; 3831 else { 3832 unsigned long old_delay = mddev->safemode_delay; 3833 unsigned long new_delay = (msec*HZ)/1000; 3834 3835 if (new_delay == 0) 3836 new_delay = 1; 3837 mddev->safemode_delay = new_delay; 3838 if (new_delay < old_delay || old_delay == 0) 3839 mod_timer(&mddev->safemode_timer, jiffies+1); 3840 } 3841 return len; 3842 } 3843 static struct md_sysfs_entry md_safe_delay = 3844 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3845 3846 static ssize_t 3847 level_show(struct mddev *mddev, char *page) 3848 { 3849 struct md_personality *p; 3850 int ret; 3851 spin_lock(&mddev->lock); 3852 p = mddev->pers; 3853 if (p) 3854 ret = sprintf(page, "%s\n", p->name); 3855 else if (mddev->clevel[0]) 3856 ret = sprintf(page, "%s\n", mddev->clevel); 3857 else if (mddev->level != LEVEL_NONE) 3858 ret = sprintf(page, "%d\n", mddev->level); 3859 else 3860 ret = 0; 3861 spin_unlock(&mddev->lock); 3862 return ret; 3863 } 3864 3865 static ssize_t 3866 level_store(struct mddev *mddev, const char *buf, size_t len) 3867 { 3868 char clevel[16]; 3869 ssize_t rv; 3870 size_t slen = len; 3871 struct md_personality *pers, *oldpers; 3872 long level; 3873 void *priv, *oldpriv; 3874 struct md_rdev *rdev; 3875 3876 if (slen == 0 || slen >= sizeof(clevel)) 3877 return -EINVAL; 3878 3879 rv = mddev_lock(mddev); 3880 if (rv) 3881 return rv; 3882 3883 if (mddev->pers == NULL) { 3884 strncpy(mddev->clevel, buf, slen); 3885 if (mddev->clevel[slen-1] == '\n') 3886 slen--; 3887 mddev->clevel[slen] = 0; 3888 mddev->level = LEVEL_NONE; 3889 rv = len; 3890 goto out_unlock; 3891 } 3892 rv = -EROFS; 3893 if (!md_is_rdwr(mddev)) 3894 goto out_unlock; 3895 3896 /* request to change the personality. Need to ensure: 3897 * - array is not engaged in resync/recovery/reshape 3898 * - old personality can be suspended 3899 * - new personality will access other array. 3900 */ 3901 3902 rv = -EBUSY; 3903 if (mddev->sync_thread || 3904 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3905 mddev->reshape_position != MaxSector || 3906 mddev->sysfs_active) 3907 goto out_unlock; 3908 3909 rv = -EINVAL; 3910 if (!mddev->pers->quiesce) { 3911 pr_warn("md: %s: %s does not support online personality change\n", 3912 mdname(mddev), mddev->pers->name); 3913 goto out_unlock; 3914 } 3915 3916 /* Now find the new personality */ 3917 strncpy(clevel, buf, slen); 3918 if (clevel[slen-1] == '\n') 3919 slen--; 3920 clevel[slen] = 0; 3921 if (kstrtol(clevel, 10, &level)) 3922 level = LEVEL_NONE; 3923 3924 if (request_module("md-%s", clevel) != 0) 3925 request_module("md-level-%s", clevel); 3926 spin_lock(&pers_lock); 3927 pers = find_pers(level, clevel); 3928 if (!pers || !try_module_get(pers->owner)) { 3929 spin_unlock(&pers_lock); 3930 pr_warn("md: personality %s not loaded\n", clevel); 3931 rv = -EINVAL; 3932 goto out_unlock; 3933 } 3934 spin_unlock(&pers_lock); 3935 3936 if (pers == mddev->pers) { 3937 /* Nothing to do! */ 3938 module_put(pers->owner); 3939 rv = len; 3940 goto out_unlock; 3941 } 3942 if (!pers->takeover) { 3943 module_put(pers->owner); 3944 pr_warn("md: %s: %s does not support personality takeover\n", 3945 mdname(mddev), clevel); 3946 rv = -EINVAL; 3947 goto out_unlock; 3948 } 3949 3950 rdev_for_each(rdev, mddev) 3951 rdev->new_raid_disk = rdev->raid_disk; 3952 3953 /* ->takeover must set new_* and/or delta_disks 3954 * if it succeeds, and may set them when it fails. 3955 */ 3956 priv = pers->takeover(mddev); 3957 if (IS_ERR(priv)) { 3958 mddev->new_level = mddev->level; 3959 mddev->new_layout = mddev->layout; 3960 mddev->new_chunk_sectors = mddev->chunk_sectors; 3961 mddev->raid_disks -= mddev->delta_disks; 3962 mddev->delta_disks = 0; 3963 mddev->reshape_backwards = 0; 3964 module_put(pers->owner); 3965 pr_warn("md: %s: %s would not accept array\n", 3966 mdname(mddev), clevel); 3967 rv = PTR_ERR(priv); 3968 goto out_unlock; 3969 } 3970 3971 /* Looks like we have a winner */ 3972 mddev_suspend(mddev); 3973 mddev_detach(mddev); 3974 3975 spin_lock(&mddev->lock); 3976 oldpers = mddev->pers; 3977 oldpriv = mddev->private; 3978 mddev->pers = pers; 3979 mddev->private = priv; 3980 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3981 mddev->level = mddev->new_level; 3982 mddev->layout = mddev->new_layout; 3983 mddev->chunk_sectors = mddev->new_chunk_sectors; 3984 mddev->delta_disks = 0; 3985 mddev->reshape_backwards = 0; 3986 mddev->degraded = 0; 3987 spin_unlock(&mddev->lock); 3988 3989 if (oldpers->sync_request == NULL && 3990 mddev->external) { 3991 /* We are converting from a no-redundancy array 3992 * to a redundancy array and metadata is managed 3993 * externally so we need to be sure that writes 3994 * won't block due to a need to transition 3995 * clean->dirty 3996 * until external management is started. 3997 */ 3998 mddev->in_sync = 0; 3999 mddev->safemode_delay = 0; 4000 mddev->safemode = 0; 4001 } 4002 4003 oldpers->free(mddev, oldpriv); 4004 4005 if (oldpers->sync_request == NULL && 4006 pers->sync_request != NULL) { 4007 /* need to add the md_redundancy_group */ 4008 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4009 pr_warn("md: cannot register extra attributes for %s\n", 4010 mdname(mddev)); 4011 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4012 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4013 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4014 } 4015 if (oldpers->sync_request != NULL && 4016 pers->sync_request == NULL) { 4017 /* need to remove the md_redundancy_group */ 4018 if (mddev->to_remove == NULL) 4019 mddev->to_remove = &md_redundancy_group; 4020 } 4021 4022 module_put(oldpers->owner); 4023 4024 rdev_for_each(rdev, mddev) { 4025 if (rdev->raid_disk < 0) 4026 continue; 4027 if (rdev->new_raid_disk >= mddev->raid_disks) 4028 rdev->new_raid_disk = -1; 4029 if (rdev->new_raid_disk == rdev->raid_disk) 4030 continue; 4031 sysfs_unlink_rdev(mddev, rdev); 4032 } 4033 rdev_for_each(rdev, mddev) { 4034 if (rdev->raid_disk < 0) 4035 continue; 4036 if (rdev->new_raid_disk == rdev->raid_disk) 4037 continue; 4038 rdev->raid_disk = rdev->new_raid_disk; 4039 if (rdev->raid_disk < 0) 4040 clear_bit(In_sync, &rdev->flags); 4041 else { 4042 if (sysfs_link_rdev(mddev, rdev)) 4043 pr_warn("md: cannot register rd%d for %s after level change\n", 4044 rdev->raid_disk, mdname(mddev)); 4045 } 4046 } 4047 4048 if (pers->sync_request == NULL) { 4049 /* this is now an array without redundancy, so 4050 * it must always be in_sync 4051 */ 4052 mddev->in_sync = 1; 4053 del_timer_sync(&mddev->safemode_timer); 4054 } 4055 blk_set_stacking_limits(&mddev->queue->limits); 4056 pers->run(mddev); 4057 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4058 mddev_resume(mddev); 4059 if (!mddev->thread) 4060 md_update_sb(mddev, 1); 4061 sysfs_notify_dirent_safe(mddev->sysfs_level); 4062 md_new_event(); 4063 rv = len; 4064 out_unlock: 4065 mddev_unlock(mddev); 4066 return rv; 4067 } 4068 4069 static struct md_sysfs_entry md_level = 4070 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4071 4072 static ssize_t 4073 layout_show(struct mddev *mddev, char *page) 4074 { 4075 /* just a number, not meaningful for all levels */ 4076 if (mddev->reshape_position != MaxSector && 4077 mddev->layout != mddev->new_layout) 4078 return sprintf(page, "%d (%d)\n", 4079 mddev->new_layout, mddev->layout); 4080 return sprintf(page, "%d\n", mddev->layout); 4081 } 4082 4083 static ssize_t 4084 layout_store(struct mddev *mddev, const char *buf, size_t len) 4085 { 4086 unsigned int n; 4087 int err; 4088 4089 err = kstrtouint(buf, 10, &n); 4090 if (err < 0) 4091 return err; 4092 err = mddev_lock(mddev); 4093 if (err) 4094 return err; 4095 4096 if (mddev->pers) { 4097 if (mddev->pers->check_reshape == NULL) 4098 err = -EBUSY; 4099 else if (!md_is_rdwr(mddev)) 4100 err = -EROFS; 4101 else { 4102 mddev->new_layout = n; 4103 err = mddev->pers->check_reshape(mddev); 4104 if (err) 4105 mddev->new_layout = mddev->layout; 4106 } 4107 } else { 4108 mddev->new_layout = n; 4109 if (mddev->reshape_position == MaxSector) 4110 mddev->layout = n; 4111 } 4112 mddev_unlock(mddev); 4113 return err ?: len; 4114 } 4115 static struct md_sysfs_entry md_layout = 4116 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4117 4118 static ssize_t 4119 raid_disks_show(struct mddev *mddev, char *page) 4120 { 4121 if (mddev->raid_disks == 0) 4122 return 0; 4123 if (mddev->reshape_position != MaxSector && 4124 mddev->delta_disks != 0) 4125 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4126 mddev->raid_disks - mddev->delta_disks); 4127 return sprintf(page, "%d\n", mddev->raid_disks); 4128 } 4129 4130 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4131 4132 static ssize_t 4133 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4134 { 4135 unsigned int n; 4136 int err; 4137 4138 err = kstrtouint(buf, 10, &n); 4139 if (err < 0) 4140 return err; 4141 4142 err = mddev_lock(mddev); 4143 if (err) 4144 return err; 4145 if (mddev->pers) 4146 err = update_raid_disks(mddev, n); 4147 else if (mddev->reshape_position != MaxSector) { 4148 struct md_rdev *rdev; 4149 int olddisks = mddev->raid_disks - mddev->delta_disks; 4150 4151 err = -EINVAL; 4152 rdev_for_each(rdev, mddev) { 4153 if (olddisks < n && 4154 rdev->data_offset < rdev->new_data_offset) 4155 goto out_unlock; 4156 if (olddisks > n && 4157 rdev->data_offset > rdev->new_data_offset) 4158 goto out_unlock; 4159 } 4160 err = 0; 4161 mddev->delta_disks = n - olddisks; 4162 mddev->raid_disks = n; 4163 mddev->reshape_backwards = (mddev->delta_disks < 0); 4164 } else 4165 mddev->raid_disks = n; 4166 out_unlock: 4167 mddev_unlock(mddev); 4168 return err ? err : len; 4169 } 4170 static struct md_sysfs_entry md_raid_disks = 4171 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4172 4173 static ssize_t 4174 uuid_show(struct mddev *mddev, char *page) 4175 { 4176 return sprintf(page, "%pU\n", mddev->uuid); 4177 } 4178 static struct md_sysfs_entry md_uuid = 4179 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4180 4181 static ssize_t 4182 chunk_size_show(struct mddev *mddev, char *page) 4183 { 4184 if (mddev->reshape_position != MaxSector && 4185 mddev->chunk_sectors != mddev->new_chunk_sectors) 4186 return sprintf(page, "%d (%d)\n", 4187 mddev->new_chunk_sectors << 9, 4188 mddev->chunk_sectors << 9); 4189 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4190 } 4191 4192 static ssize_t 4193 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4194 { 4195 unsigned long n; 4196 int err; 4197 4198 err = kstrtoul(buf, 10, &n); 4199 if (err < 0) 4200 return err; 4201 4202 err = mddev_lock(mddev); 4203 if (err) 4204 return err; 4205 if (mddev->pers) { 4206 if (mddev->pers->check_reshape == NULL) 4207 err = -EBUSY; 4208 else if (!md_is_rdwr(mddev)) 4209 err = -EROFS; 4210 else { 4211 mddev->new_chunk_sectors = n >> 9; 4212 err = mddev->pers->check_reshape(mddev); 4213 if (err) 4214 mddev->new_chunk_sectors = mddev->chunk_sectors; 4215 } 4216 } else { 4217 mddev->new_chunk_sectors = n >> 9; 4218 if (mddev->reshape_position == MaxSector) 4219 mddev->chunk_sectors = n >> 9; 4220 } 4221 mddev_unlock(mddev); 4222 return err ?: len; 4223 } 4224 static struct md_sysfs_entry md_chunk_size = 4225 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4226 4227 static ssize_t 4228 resync_start_show(struct mddev *mddev, char *page) 4229 { 4230 if (mddev->recovery_cp == MaxSector) 4231 return sprintf(page, "none\n"); 4232 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4233 } 4234 4235 static ssize_t 4236 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4237 { 4238 unsigned long long n; 4239 int err; 4240 4241 if (cmd_match(buf, "none")) 4242 n = MaxSector; 4243 else { 4244 err = kstrtoull(buf, 10, &n); 4245 if (err < 0) 4246 return err; 4247 if (n != (sector_t)n) 4248 return -EINVAL; 4249 } 4250 4251 err = mddev_lock(mddev); 4252 if (err) 4253 return err; 4254 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4255 err = -EBUSY; 4256 4257 if (!err) { 4258 mddev->recovery_cp = n; 4259 if (mddev->pers) 4260 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4261 } 4262 mddev_unlock(mddev); 4263 return err ?: len; 4264 } 4265 static struct md_sysfs_entry md_resync_start = 4266 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4267 resync_start_show, resync_start_store); 4268 4269 /* 4270 * The array state can be: 4271 * 4272 * clear 4273 * No devices, no size, no level 4274 * Equivalent to STOP_ARRAY ioctl 4275 * inactive 4276 * May have some settings, but array is not active 4277 * all IO results in error 4278 * When written, doesn't tear down array, but just stops it 4279 * suspended (not supported yet) 4280 * All IO requests will block. The array can be reconfigured. 4281 * Writing this, if accepted, will block until array is quiescent 4282 * readonly 4283 * no resync can happen. no superblocks get written. 4284 * write requests fail 4285 * read-auto 4286 * like readonly, but behaves like 'clean' on a write request. 4287 * 4288 * clean - no pending writes, but otherwise active. 4289 * When written to inactive array, starts without resync 4290 * If a write request arrives then 4291 * if metadata is known, mark 'dirty' and switch to 'active'. 4292 * if not known, block and switch to write-pending 4293 * If written to an active array that has pending writes, then fails. 4294 * active 4295 * fully active: IO and resync can be happening. 4296 * When written to inactive array, starts with resync 4297 * 4298 * write-pending 4299 * clean, but writes are blocked waiting for 'active' to be written. 4300 * 4301 * active-idle 4302 * like active, but no writes have been seen for a while (100msec). 4303 * 4304 * broken 4305 * Array is failed. It's useful because mounted-arrays aren't stopped 4306 * when array is failed, so this state will at least alert the user that 4307 * something is wrong. 4308 */ 4309 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4310 write_pending, active_idle, broken, bad_word}; 4311 static char *array_states[] = { 4312 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4313 "write-pending", "active-idle", "broken", NULL }; 4314 4315 static int match_word(const char *word, char **list) 4316 { 4317 int n; 4318 for (n=0; list[n]; n++) 4319 if (cmd_match(word, list[n])) 4320 break; 4321 return n; 4322 } 4323 4324 static ssize_t 4325 array_state_show(struct mddev *mddev, char *page) 4326 { 4327 enum array_state st = inactive; 4328 4329 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4330 switch(mddev->ro) { 4331 case MD_RDONLY: 4332 st = readonly; 4333 break; 4334 case MD_AUTO_READ: 4335 st = read_auto; 4336 break; 4337 case MD_RDWR: 4338 spin_lock(&mddev->lock); 4339 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4340 st = write_pending; 4341 else if (mddev->in_sync) 4342 st = clean; 4343 else if (mddev->safemode) 4344 st = active_idle; 4345 else 4346 st = active; 4347 spin_unlock(&mddev->lock); 4348 } 4349 4350 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4351 st = broken; 4352 } else { 4353 if (list_empty(&mddev->disks) && 4354 mddev->raid_disks == 0 && 4355 mddev->dev_sectors == 0) 4356 st = clear; 4357 else 4358 st = inactive; 4359 } 4360 return sprintf(page, "%s\n", array_states[st]); 4361 } 4362 4363 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4364 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4365 static int restart_array(struct mddev *mddev); 4366 4367 static ssize_t 4368 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4369 { 4370 int err = 0; 4371 enum array_state st = match_word(buf, array_states); 4372 4373 if (mddev->pers && (st == active || st == clean) && 4374 mddev->ro != MD_RDONLY) { 4375 /* don't take reconfig_mutex when toggling between 4376 * clean and active 4377 */ 4378 spin_lock(&mddev->lock); 4379 if (st == active) { 4380 restart_array(mddev); 4381 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4382 md_wakeup_thread(mddev->thread); 4383 wake_up(&mddev->sb_wait); 4384 } else /* st == clean */ { 4385 restart_array(mddev); 4386 if (!set_in_sync(mddev)) 4387 err = -EBUSY; 4388 } 4389 if (!err) 4390 sysfs_notify_dirent_safe(mddev->sysfs_state); 4391 spin_unlock(&mddev->lock); 4392 return err ?: len; 4393 } 4394 err = mddev_lock(mddev); 4395 if (err) 4396 return err; 4397 err = -EINVAL; 4398 switch(st) { 4399 case bad_word: 4400 break; 4401 case clear: 4402 /* stopping an active array */ 4403 err = do_md_stop(mddev, 0, NULL); 4404 break; 4405 case inactive: 4406 /* stopping an active array */ 4407 if (mddev->pers) 4408 err = do_md_stop(mddev, 2, NULL); 4409 else 4410 err = 0; /* already inactive */ 4411 break; 4412 case suspended: 4413 break; /* not supported yet */ 4414 case readonly: 4415 if (mddev->pers) 4416 err = md_set_readonly(mddev, NULL); 4417 else { 4418 mddev->ro = MD_RDONLY; 4419 set_disk_ro(mddev->gendisk, 1); 4420 err = do_md_run(mddev); 4421 } 4422 break; 4423 case read_auto: 4424 if (mddev->pers) { 4425 if (md_is_rdwr(mddev)) 4426 err = md_set_readonly(mddev, NULL); 4427 else if (mddev->ro == MD_RDONLY) 4428 err = restart_array(mddev); 4429 if (err == 0) { 4430 mddev->ro = MD_AUTO_READ; 4431 set_disk_ro(mddev->gendisk, 0); 4432 } 4433 } else { 4434 mddev->ro = MD_AUTO_READ; 4435 err = do_md_run(mddev); 4436 } 4437 break; 4438 case clean: 4439 if (mddev->pers) { 4440 err = restart_array(mddev); 4441 if (err) 4442 break; 4443 spin_lock(&mddev->lock); 4444 if (!set_in_sync(mddev)) 4445 err = -EBUSY; 4446 spin_unlock(&mddev->lock); 4447 } else 4448 err = -EINVAL; 4449 break; 4450 case active: 4451 if (mddev->pers) { 4452 err = restart_array(mddev); 4453 if (err) 4454 break; 4455 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4456 wake_up(&mddev->sb_wait); 4457 err = 0; 4458 } else { 4459 mddev->ro = MD_RDWR; 4460 set_disk_ro(mddev->gendisk, 0); 4461 err = do_md_run(mddev); 4462 } 4463 break; 4464 case write_pending: 4465 case active_idle: 4466 case broken: 4467 /* these cannot be set */ 4468 break; 4469 } 4470 4471 if (!err) { 4472 if (mddev->hold_active == UNTIL_IOCTL) 4473 mddev->hold_active = 0; 4474 sysfs_notify_dirent_safe(mddev->sysfs_state); 4475 } 4476 mddev_unlock(mddev); 4477 return err ?: len; 4478 } 4479 static struct md_sysfs_entry md_array_state = 4480 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4481 4482 static ssize_t 4483 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4484 return sprintf(page, "%d\n", 4485 atomic_read(&mddev->max_corr_read_errors)); 4486 } 4487 4488 static ssize_t 4489 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4490 { 4491 unsigned int n; 4492 int rv; 4493 4494 rv = kstrtouint(buf, 10, &n); 4495 if (rv < 0) 4496 return rv; 4497 atomic_set(&mddev->max_corr_read_errors, n); 4498 return len; 4499 } 4500 4501 static struct md_sysfs_entry max_corr_read_errors = 4502 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4503 max_corrected_read_errors_store); 4504 4505 static ssize_t 4506 null_show(struct mddev *mddev, char *page) 4507 { 4508 return -EINVAL; 4509 } 4510 4511 /* need to ensure rdev_delayed_delete() has completed */ 4512 static void flush_rdev_wq(struct mddev *mddev) 4513 { 4514 struct md_rdev *rdev; 4515 4516 rcu_read_lock(); 4517 rdev_for_each_rcu(rdev, mddev) 4518 if (work_pending(&rdev->del_work)) { 4519 flush_workqueue(md_rdev_misc_wq); 4520 break; 4521 } 4522 rcu_read_unlock(); 4523 } 4524 4525 static ssize_t 4526 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4527 { 4528 /* buf must be %d:%d\n? giving major and minor numbers */ 4529 /* The new device is added to the array. 4530 * If the array has a persistent superblock, we read the 4531 * superblock to initialise info and check validity. 4532 * Otherwise, only checking done is that in bind_rdev_to_array, 4533 * which mainly checks size. 4534 */ 4535 char *e; 4536 int major = simple_strtoul(buf, &e, 10); 4537 int minor; 4538 dev_t dev; 4539 struct md_rdev *rdev; 4540 int err; 4541 4542 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4543 return -EINVAL; 4544 minor = simple_strtoul(e+1, &e, 10); 4545 if (*e && *e != '\n') 4546 return -EINVAL; 4547 dev = MKDEV(major, minor); 4548 if (major != MAJOR(dev) || 4549 minor != MINOR(dev)) 4550 return -EOVERFLOW; 4551 4552 flush_rdev_wq(mddev); 4553 err = mddev_lock(mddev); 4554 if (err) 4555 return err; 4556 if (mddev->persistent) { 4557 rdev = md_import_device(dev, mddev->major_version, 4558 mddev->minor_version); 4559 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4560 struct md_rdev *rdev0 4561 = list_entry(mddev->disks.next, 4562 struct md_rdev, same_set); 4563 err = super_types[mddev->major_version] 4564 .load_super(rdev, rdev0, mddev->minor_version); 4565 if (err < 0) 4566 goto out; 4567 } 4568 } else if (mddev->external) 4569 rdev = md_import_device(dev, -2, -1); 4570 else 4571 rdev = md_import_device(dev, -1, -1); 4572 4573 if (IS_ERR(rdev)) { 4574 mddev_unlock(mddev); 4575 return PTR_ERR(rdev); 4576 } 4577 err = bind_rdev_to_array(rdev, mddev); 4578 out: 4579 if (err) 4580 export_rdev(rdev); 4581 mddev_unlock(mddev); 4582 if (!err) 4583 md_new_event(); 4584 return err ? err : len; 4585 } 4586 4587 static struct md_sysfs_entry md_new_device = 4588 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4589 4590 static ssize_t 4591 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4592 { 4593 char *end; 4594 unsigned long chunk, end_chunk; 4595 int err; 4596 4597 err = mddev_lock(mddev); 4598 if (err) 4599 return err; 4600 if (!mddev->bitmap) 4601 goto out; 4602 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4603 while (*buf) { 4604 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4605 if (buf == end) break; 4606 if (*end == '-') { /* range */ 4607 buf = end + 1; 4608 end_chunk = simple_strtoul(buf, &end, 0); 4609 if (buf == end) break; 4610 } 4611 if (*end && !isspace(*end)) break; 4612 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4613 buf = skip_spaces(end); 4614 } 4615 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4616 out: 4617 mddev_unlock(mddev); 4618 return len; 4619 } 4620 4621 static struct md_sysfs_entry md_bitmap = 4622 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4623 4624 static ssize_t 4625 size_show(struct mddev *mddev, char *page) 4626 { 4627 return sprintf(page, "%llu\n", 4628 (unsigned long long)mddev->dev_sectors / 2); 4629 } 4630 4631 static int update_size(struct mddev *mddev, sector_t num_sectors); 4632 4633 static ssize_t 4634 size_store(struct mddev *mddev, const char *buf, size_t len) 4635 { 4636 /* If array is inactive, we can reduce the component size, but 4637 * not increase it (except from 0). 4638 * If array is active, we can try an on-line resize 4639 */ 4640 sector_t sectors; 4641 int err = strict_blocks_to_sectors(buf, §ors); 4642 4643 if (err < 0) 4644 return err; 4645 err = mddev_lock(mddev); 4646 if (err) 4647 return err; 4648 if (mddev->pers) { 4649 err = update_size(mddev, sectors); 4650 if (err == 0) 4651 md_update_sb(mddev, 1); 4652 } else { 4653 if (mddev->dev_sectors == 0 || 4654 mddev->dev_sectors > sectors) 4655 mddev->dev_sectors = sectors; 4656 else 4657 err = -ENOSPC; 4658 } 4659 mddev_unlock(mddev); 4660 return err ? err : len; 4661 } 4662 4663 static struct md_sysfs_entry md_size = 4664 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4665 4666 /* Metadata version. 4667 * This is one of 4668 * 'none' for arrays with no metadata (good luck...) 4669 * 'external' for arrays with externally managed metadata, 4670 * or N.M for internally known formats 4671 */ 4672 static ssize_t 4673 metadata_show(struct mddev *mddev, char *page) 4674 { 4675 if (mddev->persistent) 4676 return sprintf(page, "%d.%d\n", 4677 mddev->major_version, mddev->minor_version); 4678 else if (mddev->external) 4679 return sprintf(page, "external:%s\n", mddev->metadata_type); 4680 else 4681 return sprintf(page, "none\n"); 4682 } 4683 4684 static ssize_t 4685 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4686 { 4687 int major, minor; 4688 char *e; 4689 int err; 4690 /* Changing the details of 'external' metadata is 4691 * always permitted. Otherwise there must be 4692 * no devices attached to the array. 4693 */ 4694 4695 err = mddev_lock(mddev); 4696 if (err) 4697 return err; 4698 err = -EBUSY; 4699 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4700 ; 4701 else if (!list_empty(&mddev->disks)) 4702 goto out_unlock; 4703 4704 err = 0; 4705 if (cmd_match(buf, "none")) { 4706 mddev->persistent = 0; 4707 mddev->external = 0; 4708 mddev->major_version = 0; 4709 mddev->minor_version = 90; 4710 goto out_unlock; 4711 } 4712 if (strncmp(buf, "external:", 9) == 0) { 4713 size_t namelen = len-9; 4714 if (namelen >= sizeof(mddev->metadata_type)) 4715 namelen = sizeof(mddev->metadata_type)-1; 4716 strncpy(mddev->metadata_type, buf+9, namelen); 4717 mddev->metadata_type[namelen] = 0; 4718 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4719 mddev->metadata_type[--namelen] = 0; 4720 mddev->persistent = 0; 4721 mddev->external = 1; 4722 mddev->major_version = 0; 4723 mddev->minor_version = 90; 4724 goto out_unlock; 4725 } 4726 major = simple_strtoul(buf, &e, 10); 4727 err = -EINVAL; 4728 if (e==buf || *e != '.') 4729 goto out_unlock; 4730 buf = e+1; 4731 minor = simple_strtoul(buf, &e, 10); 4732 if (e==buf || (*e && *e != '\n') ) 4733 goto out_unlock; 4734 err = -ENOENT; 4735 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4736 goto out_unlock; 4737 mddev->major_version = major; 4738 mddev->minor_version = minor; 4739 mddev->persistent = 1; 4740 mddev->external = 0; 4741 err = 0; 4742 out_unlock: 4743 mddev_unlock(mddev); 4744 return err ?: len; 4745 } 4746 4747 static struct md_sysfs_entry md_metadata = 4748 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4749 4750 static ssize_t 4751 action_show(struct mddev *mddev, char *page) 4752 { 4753 char *type = "idle"; 4754 unsigned long recovery = mddev->recovery; 4755 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4756 type = "frozen"; 4757 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4758 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4759 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4760 type = "reshape"; 4761 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4762 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4763 type = "resync"; 4764 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4765 type = "check"; 4766 else 4767 type = "repair"; 4768 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4769 type = "recover"; 4770 else if (mddev->reshape_position != MaxSector) 4771 type = "reshape"; 4772 } 4773 return sprintf(page, "%s\n", type); 4774 } 4775 4776 static ssize_t 4777 action_store(struct mddev *mddev, const char *page, size_t len) 4778 { 4779 if (!mddev->pers || !mddev->pers->sync_request) 4780 return -EINVAL; 4781 4782 4783 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4784 if (cmd_match(page, "frozen")) 4785 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4786 else 4787 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4788 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4789 mddev_lock(mddev) == 0) { 4790 if (work_pending(&mddev->del_work)) 4791 flush_workqueue(md_misc_wq); 4792 if (mddev->sync_thread) { 4793 sector_t save_rp = mddev->reshape_position; 4794 4795 mddev_unlock(mddev); 4796 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4797 md_unregister_thread(&mddev->sync_thread); 4798 mddev_lock_nointr(mddev); 4799 /* 4800 * set RECOVERY_INTR again and restore reshape 4801 * position in case others changed them after 4802 * got lock, eg, reshape_position_store and 4803 * md_check_recovery. 4804 */ 4805 mddev->reshape_position = save_rp; 4806 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4807 md_reap_sync_thread(mddev); 4808 } 4809 mddev_unlock(mddev); 4810 } 4811 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4812 return -EBUSY; 4813 else if (cmd_match(page, "resync")) 4814 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4815 else if (cmd_match(page, "recover")) { 4816 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4817 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4818 } else if (cmd_match(page, "reshape")) { 4819 int err; 4820 if (mddev->pers->start_reshape == NULL) 4821 return -EINVAL; 4822 err = mddev_lock(mddev); 4823 if (!err) { 4824 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4825 err = -EBUSY; 4826 else { 4827 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4828 err = mddev->pers->start_reshape(mddev); 4829 } 4830 mddev_unlock(mddev); 4831 } 4832 if (err) 4833 return err; 4834 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4835 } else { 4836 if (cmd_match(page, "check")) 4837 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4838 else if (!cmd_match(page, "repair")) 4839 return -EINVAL; 4840 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4841 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4842 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4843 } 4844 if (mddev->ro == MD_AUTO_READ) { 4845 /* A write to sync_action is enough to justify 4846 * canceling read-auto mode 4847 */ 4848 mddev->ro = MD_RDWR; 4849 md_wakeup_thread(mddev->sync_thread); 4850 } 4851 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4852 md_wakeup_thread(mddev->thread); 4853 sysfs_notify_dirent_safe(mddev->sysfs_action); 4854 return len; 4855 } 4856 4857 static struct md_sysfs_entry md_scan_mode = 4858 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4859 4860 static ssize_t 4861 last_sync_action_show(struct mddev *mddev, char *page) 4862 { 4863 return sprintf(page, "%s\n", mddev->last_sync_action); 4864 } 4865 4866 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4867 4868 static ssize_t 4869 mismatch_cnt_show(struct mddev *mddev, char *page) 4870 { 4871 return sprintf(page, "%llu\n", 4872 (unsigned long long) 4873 atomic64_read(&mddev->resync_mismatches)); 4874 } 4875 4876 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4877 4878 static ssize_t 4879 sync_min_show(struct mddev *mddev, char *page) 4880 { 4881 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4882 mddev->sync_speed_min ? "local": "system"); 4883 } 4884 4885 static ssize_t 4886 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4887 { 4888 unsigned int min; 4889 int rv; 4890 4891 if (strncmp(buf, "system", 6)==0) { 4892 min = 0; 4893 } else { 4894 rv = kstrtouint(buf, 10, &min); 4895 if (rv < 0) 4896 return rv; 4897 if (min == 0) 4898 return -EINVAL; 4899 } 4900 mddev->sync_speed_min = min; 4901 return len; 4902 } 4903 4904 static struct md_sysfs_entry md_sync_min = 4905 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4906 4907 static ssize_t 4908 sync_max_show(struct mddev *mddev, char *page) 4909 { 4910 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4911 mddev->sync_speed_max ? "local": "system"); 4912 } 4913 4914 static ssize_t 4915 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4916 { 4917 unsigned int max; 4918 int rv; 4919 4920 if (strncmp(buf, "system", 6)==0) { 4921 max = 0; 4922 } else { 4923 rv = kstrtouint(buf, 10, &max); 4924 if (rv < 0) 4925 return rv; 4926 if (max == 0) 4927 return -EINVAL; 4928 } 4929 mddev->sync_speed_max = max; 4930 return len; 4931 } 4932 4933 static struct md_sysfs_entry md_sync_max = 4934 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4935 4936 static ssize_t 4937 degraded_show(struct mddev *mddev, char *page) 4938 { 4939 return sprintf(page, "%d\n", mddev->degraded); 4940 } 4941 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4942 4943 static ssize_t 4944 sync_force_parallel_show(struct mddev *mddev, char *page) 4945 { 4946 return sprintf(page, "%d\n", mddev->parallel_resync); 4947 } 4948 4949 static ssize_t 4950 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4951 { 4952 long n; 4953 4954 if (kstrtol(buf, 10, &n)) 4955 return -EINVAL; 4956 4957 if (n != 0 && n != 1) 4958 return -EINVAL; 4959 4960 mddev->parallel_resync = n; 4961 4962 if (mddev->sync_thread) 4963 wake_up(&resync_wait); 4964 4965 return len; 4966 } 4967 4968 /* force parallel resync, even with shared block devices */ 4969 static struct md_sysfs_entry md_sync_force_parallel = 4970 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4971 sync_force_parallel_show, sync_force_parallel_store); 4972 4973 static ssize_t 4974 sync_speed_show(struct mddev *mddev, char *page) 4975 { 4976 unsigned long resync, dt, db; 4977 if (mddev->curr_resync == MD_RESYNC_NONE) 4978 return sprintf(page, "none\n"); 4979 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4980 dt = (jiffies - mddev->resync_mark) / HZ; 4981 if (!dt) dt++; 4982 db = resync - mddev->resync_mark_cnt; 4983 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4984 } 4985 4986 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4987 4988 static ssize_t 4989 sync_completed_show(struct mddev *mddev, char *page) 4990 { 4991 unsigned long long max_sectors, resync; 4992 4993 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4994 return sprintf(page, "none\n"); 4995 4996 if (mddev->curr_resync == MD_RESYNC_YIELDED || 4997 mddev->curr_resync == MD_RESYNC_DELAYED) 4998 return sprintf(page, "delayed\n"); 4999 5000 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5001 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5002 max_sectors = mddev->resync_max_sectors; 5003 else 5004 max_sectors = mddev->dev_sectors; 5005 5006 resync = mddev->curr_resync_completed; 5007 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5008 } 5009 5010 static struct md_sysfs_entry md_sync_completed = 5011 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5012 5013 static ssize_t 5014 min_sync_show(struct mddev *mddev, char *page) 5015 { 5016 return sprintf(page, "%llu\n", 5017 (unsigned long long)mddev->resync_min); 5018 } 5019 static ssize_t 5020 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5021 { 5022 unsigned long long min; 5023 int err; 5024 5025 if (kstrtoull(buf, 10, &min)) 5026 return -EINVAL; 5027 5028 spin_lock(&mddev->lock); 5029 err = -EINVAL; 5030 if (min > mddev->resync_max) 5031 goto out_unlock; 5032 5033 err = -EBUSY; 5034 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5035 goto out_unlock; 5036 5037 /* Round down to multiple of 4K for safety */ 5038 mddev->resync_min = round_down(min, 8); 5039 err = 0; 5040 5041 out_unlock: 5042 spin_unlock(&mddev->lock); 5043 return err ?: len; 5044 } 5045 5046 static struct md_sysfs_entry md_min_sync = 5047 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5048 5049 static ssize_t 5050 max_sync_show(struct mddev *mddev, char *page) 5051 { 5052 if (mddev->resync_max == MaxSector) 5053 return sprintf(page, "max\n"); 5054 else 5055 return sprintf(page, "%llu\n", 5056 (unsigned long long)mddev->resync_max); 5057 } 5058 static ssize_t 5059 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5060 { 5061 int err; 5062 spin_lock(&mddev->lock); 5063 if (strncmp(buf, "max", 3) == 0) 5064 mddev->resync_max = MaxSector; 5065 else { 5066 unsigned long long max; 5067 int chunk; 5068 5069 err = -EINVAL; 5070 if (kstrtoull(buf, 10, &max)) 5071 goto out_unlock; 5072 if (max < mddev->resync_min) 5073 goto out_unlock; 5074 5075 err = -EBUSY; 5076 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5077 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5078 goto out_unlock; 5079 5080 /* Must be a multiple of chunk_size */ 5081 chunk = mddev->chunk_sectors; 5082 if (chunk) { 5083 sector_t temp = max; 5084 5085 err = -EINVAL; 5086 if (sector_div(temp, chunk)) 5087 goto out_unlock; 5088 } 5089 mddev->resync_max = max; 5090 } 5091 wake_up(&mddev->recovery_wait); 5092 err = 0; 5093 out_unlock: 5094 spin_unlock(&mddev->lock); 5095 return err ?: len; 5096 } 5097 5098 static struct md_sysfs_entry md_max_sync = 5099 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5100 5101 static ssize_t 5102 suspend_lo_show(struct mddev *mddev, char *page) 5103 { 5104 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5105 } 5106 5107 static ssize_t 5108 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5109 { 5110 unsigned long long new; 5111 int err; 5112 5113 err = kstrtoull(buf, 10, &new); 5114 if (err < 0) 5115 return err; 5116 if (new != (sector_t)new) 5117 return -EINVAL; 5118 5119 err = mddev_lock(mddev); 5120 if (err) 5121 return err; 5122 err = -EINVAL; 5123 if (mddev->pers == NULL || 5124 mddev->pers->quiesce == NULL) 5125 goto unlock; 5126 mddev_suspend(mddev); 5127 mddev->suspend_lo = new; 5128 mddev_resume(mddev); 5129 5130 err = 0; 5131 unlock: 5132 mddev_unlock(mddev); 5133 return err ?: len; 5134 } 5135 static struct md_sysfs_entry md_suspend_lo = 5136 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5137 5138 static ssize_t 5139 suspend_hi_show(struct mddev *mddev, char *page) 5140 { 5141 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5142 } 5143 5144 static ssize_t 5145 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5146 { 5147 unsigned long long new; 5148 int err; 5149 5150 err = kstrtoull(buf, 10, &new); 5151 if (err < 0) 5152 return err; 5153 if (new != (sector_t)new) 5154 return -EINVAL; 5155 5156 err = mddev_lock(mddev); 5157 if (err) 5158 return err; 5159 err = -EINVAL; 5160 if (mddev->pers == NULL) 5161 goto unlock; 5162 5163 mddev_suspend(mddev); 5164 mddev->suspend_hi = new; 5165 mddev_resume(mddev); 5166 5167 err = 0; 5168 unlock: 5169 mddev_unlock(mddev); 5170 return err ?: len; 5171 } 5172 static struct md_sysfs_entry md_suspend_hi = 5173 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5174 5175 static ssize_t 5176 reshape_position_show(struct mddev *mddev, char *page) 5177 { 5178 if (mddev->reshape_position != MaxSector) 5179 return sprintf(page, "%llu\n", 5180 (unsigned long long)mddev->reshape_position); 5181 strcpy(page, "none\n"); 5182 return 5; 5183 } 5184 5185 static ssize_t 5186 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5187 { 5188 struct md_rdev *rdev; 5189 unsigned long long new; 5190 int err; 5191 5192 err = kstrtoull(buf, 10, &new); 5193 if (err < 0) 5194 return err; 5195 if (new != (sector_t)new) 5196 return -EINVAL; 5197 err = mddev_lock(mddev); 5198 if (err) 5199 return err; 5200 err = -EBUSY; 5201 if (mddev->pers) 5202 goto unlock; 5203 mddev->reshape_position = new; 5204 mddev->delta_disks = 0; 5205 mddev->reshape_backwards = 0; 5206 mddev->new_level = mddev->level; 5207 mddev->new_layout = mddev->layout; 5208 mddev->new_chunk_sectors = mddev->chunk_sectors; 5209 rdev_for_each(rdev, mddev) 5210 rdev->new_data_offset = rdev->data_offset; 5211 err = 0; 5212 unlock: 5213 mddev_unlock(mddev); 5214 return err ?: len; 5215 } 5216 5217 static struct md_sysfs_entry md_reshape_position = 5218 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5219 reshape_position_store); 5220 5221 static ssize_t 5222 reshape_direction_show(struct mddev *mddev, char *page) 5223 { 5224 return sprintf(page, "%s\n", 5225 mddev->reshape_backwards ? "backwards" : "forwards"); 5226 } 5227 5228 static ssize_t 5229 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5230 { 5231 int backwards = 0; 5232 int err; 5233 5234 if (cmd_match(buf, "forwards")) 5235 backwards = 0; 5236 else if (cmd_match(buf, "backwards")) 5237 backwards = 1; 5238 else 5239 return -EINVAL; 5240 if (mddev->reshape_backwards == backwards) 5241 return len; 5242 5243 err = mddev_lock(mddev); 5244 if (err) 5245 return err; 5246 /* check if we are allowed to change */ 5247 if (mddev->delta_disks) 5248 err = -EBUSY; 5249 else if (mddev->persistent && 5250 mddev->major_version == 0) 5251 err = -EINVAL; 5252 else 5253 mddev->reshape_backwards = backwards; 5254 mddev_unlock(mddev); 5255 return err ?: len; 5256 } 5257 5258 static struct md_sysfs_entry md_reshape_direction = 5259 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5260 reshape_direction_store); 5261 5262 static ssize_t 5263 array_size_show(struct mddev *mddev, char *page) 5264 { 5265 if (mddev->external_size) 5266 return sprintf(page, "%llu\n", 5267 (unsigned long long)mddev->array_sectors/2); 5268 else 5269 return sprintf(page, "default\n"); 5270 } 5271 5272 static ssize_t 5273 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5274 { 5275 sector_t sectors; 5276 int err; 5277 5278 err = mddev_lock(mddev); 5279 if (err) 5280 return err; 5281 5282 /* cluster raid doesn't support change array_sectors */ 5283 if (mddev_is_clustered(mddev)) { 5284 mddev_unlock(mddev); 5285 return -EINVAL; 5286 } 5287 5288 if (strncmp(buf, "default", 7) == 0) { 5289 if (mddev->pers) 5290 sectors = mddev->pers->size(mddev, 0, 0); 5291 else 5292 sectors = mddev->array_sectors; 5293 5294 mddev->external_size = 0; 5295 } else { 5296 if (strict_blocks_to_sectors(buf, §ors) < 0) 5297 err = -EINVAL; 5298 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5299 err = -E2BIG; 5300 else 5301 mddev->external_size = 1; 5302 } 5303 5304 if (!err) { 5305 mddev->array_sectors = sectors; 5306 if (mddev->pers) 5307 set_capacity_and_notify(mddev->gendisk, 5308 mddev->array_sectors); 5309 } 5310 mddev_unlock(mddev); 5311 return err ?: len; 5312 } 5313 5314 static struct md_sysfs_entry md_array_size = 5315 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5316 array_size_store); 5317 5318 static ssize_t 5319 consistency_policy_show(struct mddev *mddev, char *page) 5320 { 5321 int ret; 5322 5323 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5324 ret = sprintf(page, "journal\n"); 5325 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5326 ret = sprintf(page, "ppl\n"); 5327 } else if (mddev->bitmap) { 5328 ret = sprintf(page, "bitmap\n"); 5329 } else if (mddev->pers) { 5330 if (mddev->pers->sync_request) 5331 ret = sprintf(page, "resync\n"); 5332 else 5333 ret = sprintf(page, "none\n"); 5334 } else { 5335 ret = sprintf(page, "unknown\n"); 5336 } 5337 5338 return ret; 5339 } 5340 5341 static ssize_t 5342 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5343 { 5344 int err = 0; 5345 5346 if (mddev->pers) { 5347 if (mddev->pers->change_consistency_policy) 5348 err = mddev->pers->change_consistency_policy(mddev, buf); 5349 else 5350 err = -EBUSY; 5351 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5352 set_bit(MD_HAS_PPL, &mddev->flags); 5353 } else { 5354 err = -EINVAL; 5355 } 5356 5357 return err ? err : len; 5358 } 5359 5360 static struct md_sysfs_entry md_consistency_policy = 5361 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5362 consistency_policy_store); 5363 5364 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5365 { 5366 return sprintf(page, "%d\n", mddev->fail_last_dev); 5367 } 5368 5369 /* 5370 * Setting fail_last_dev to true to allow last device to be forcibly removed 5371 * from RAID1/RAID10. 5372 */ 5373 static ssize_t 5374 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5375 { 5376 int ret; 5377 bool value; 5378 5379 ret = kstrtobool(buf, &value); 5380 if (ret) 5381 return ret; 5382 5383 if (value != mddev->fail_last_dev) 5384 mddev->fail_last_dev = value; 5385 5386 return len; 5387 } 5388 static struct md_sysfs_entry md_fail_last_dev = 5389 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5390 fail_last_dev_store); 5391 5392 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5393 { 5394 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5395 return sprintf(page, "n/a\n"); 5396 else 5397 return sprintf(page, "%d\n", mddev->serialize_policy); 5398 } 5399 5400 /* 5401 * Setting serialize_policy to true to enforce write IO is not reordered 5402 * for raid1. 5403 */ 5404 static ssize_t 5405 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5406 { 5407 int err; 5408 bool value; 5409 5410 err = kstrtobool(buf, &value); 5411 if (err) 5412 return err; 5413 5414 if (value == mddev->serialize_policy) 5415 return len; 5416 5417 err = mddev_lock(mddev); 5418 if (err) 5419 return err; 5420 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5421 pr_err("md: serialize_policy is only effective for raid1\n"); 5422 err = -EINVAL; 5423 goto unlock; 5424 } 5425 5426 mddev_suspend(mddev); 5427 if (value) 5428 mddev_create_serial_pool(mddev, NULL, true); 5429 else 5430 mddev_destroy_serial_pool(mddev, NULL, true); 5431 mddev->serialize_policy = value; 5432 mddev_resume(mddev); 5433 unlock: 5434 mddev_unlock(mddev); 5435 return err ?: len; 5436 } 5437 5438 static struct md_sysfs_entry md_serialize_policy = 5439 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5440 serialize_policy_store); 5441 5442 5443 static struct attribute *md_default_attrs[] = { 5444 &md_level.attr, 5445 &md_layout.attr, 5446 &md_raid_disks.attr, 5447 &md_uuid.attr, 5448 &md_chunk_size.attr, 5449 &md_size.attr, 5450 &md_resync_start.attr, 5451 &md_metadata.attr, 5452 &md_new_device.attr, 5453 &md_safe_delay.attr, 5454 &md_array_state.attr, 5455 &md_reshape_position.attr, 5456 &md_reshape_direction.attr, 5457 &md_array_size.attr, 5458 &max_corr_read_errors.attr, 5459 &md_consistency_policy.attr, 5460 &md_fail_last_dev.attr, 5461 &md_serialize_policy.attr, 5462 NULL, 5463 }; 5464 5465 static const struct attribute_group md_default_group = { 5466 .attrs = md_default_attrs, 5467 }; 5468 5469 static struct attribute *md_redundancy_attrs[] = { 5470 &md_scan_mode.attr, 5471 &md_last_scan_mode.attr, 5472 &md_mismatches.attr, 5473 &md_sync_min.attr, 5474 &md_sync_max.attr, 5475 &md_sync_speed.attr, 5476 &md_sync_force_parallel.attr, 5477 &md_sync_completed.attr, 5478 &md_min_sync.attr, 5479 &md_max_sync.attr, 5480 &md_suspend_lo.attr, 5481 &md_suspend_hi.attr, 5482 &md_bitmap.attr, 5483 &md_degraded.attr, 5484 NULL, 5485 }; 5486 static const struct attribute_group md_redundancy_group = { 5487 .name = NULL, 5488 .attrs = md_redundancy_attrs, 5489 }; 5490 5491 static const struct attribute_group *md_attr_groups[] = { 5492 &md_default_group, 5493 &md_bitmap_group, 5494 NULL, 5495 }; 5496 5497 static ssize_t 5498 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5499 { 5500 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5501 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5502 ssize_t rv; 5503 5504 if (!entry->show) 5505 return -EIO; 5506 spin_lock(&all_mddevs_lock); 5507 if (!mddev_get(mddev)) { 5508 spin_unlock(&all_mddevs_lock); 5509 return -EBUSY; 5510 } 5511 spin_unlock(&all_mddevs_lock); 5512 5513 rv = entry->show(mddev, page); 5514 mddev_put(mddev); 5515 return rv; 5516 } 5517 5518 static ssize_t 5519 md_attr_store(struct kobject *kobj, struct attribute *attr, 5520 const char *page, size_t length) 5521 { 5522 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5523 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5524 ssize_t rv; 5525 5526 if (!entry->store) 5527 return -EIO; 5528 if (!capable(CAP_SYS_ADMIN)) 5529 return -EACCES; 5530 spin_lock(&all_mddevs_lock); 5531 if (!mddev_get(mddev)) { 5532 spin_unlock(&all_mddevs_lock); 5533 return -EBUSY; 5534 } 5535 spin_unlock(&all_mddevs_lock); 5536 rv = entry->store(mddev, page, length); 5537 mddev_put(mddev); 5538 return rv; 5539 } 5540 5541 static void md_kobj_release(struct kobject *ko) 5542 { 5543 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5544 5545 if (mddev->sysfs_state) 5546 sysfs_put(mddev->sysfs_state); 5547 if (mddev->sysfs_level) 5548 sysfs_put(mddev->sysfs_level); 5549 5550 del_gendisk(mddev->gendisk); 5551 put_disk(mddev->gendisk); 5552 } 5553 5554 static const struct sysfs_ops md_sysfs_ops = { 5555 .show = md_attr_show, 5556 .store = md_attr_store, 5557 }; 5558 static struct kobj_type md_ktype = { 5559 .release = md_kobj_release, 5560 .sysfs_ops = &md_sysfs_ops, 5561 .default_groups = md_attr_groups, 5562 }; 5563 5564 int mdp_major = 0; 5565 5566 static void mddev_delayed_delete(struct work_struct *ws) 5567 { 5568 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5569 5570 kobject_put(&mddev->kobj); 5571 } 5572 5573 static void no_op(struct percpu_ref *r) {} 5574 5575 int mddev_init_writes_pending(struct mddev *mddev) 5576 { 5577 if (mddev->writes_pending.percpu_count_ptr) 5578 return 0; 5579 if (percpu_ref_init(&mddev->writes_pending, no_op, 5580 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5581 return -ENOMEM; 5582 /* We want to start with the refcount at zero */ 5583 percpu_ref_put(&mddev->writes_pending); 5584 return 0; 5585 } 5586 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5587 5588 struct mddev *md_alloc(dev_t dev, char *name) 5589 { 5590 /* 5591 * If dev is zero, name is the name of a device to allocate with 5592 * an arbitrary minor number. It will be "md_???" 5593 * If dev is non-zero it must be a device number with a MAJOR of 5594 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5595 * the device is being created by opening a node in /dev. 5596 * If "name" is not NULL, the device is being created by 5597 * writing to /sys/module/md_mod/parameters/new_array. 5598 */ 5599 static DEFINE_MUTEX(disks_mutex); 5600 struct mddev *mddev; 5601 struct gendisk *disk; 5602 int partitioned; 5603 int shift; 5604 int unit; 5605 int error ; 5606 5607 /* 5608 * Wait for any previous instance of this device to be completely 5609 * removed (mddev_delayed_delete). 5610 */ 5611 flush_workqueue(md_misc_wq); 5612 flush_workqueue(md_rdev_misc_wq); 5613 5614 mutex_lock(&disks_mutex); 5615 mddev = mddev_alloc(dev); 5616 if (IS_ERR(mddev)) { 5617 error = PTR_ERR(mddev); 5618 goto out_unlock; 5619 } 5620 5621 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5622 shift = partitioned ? MdpMinorShift : 0; 5623 unit = MINOR(mddev->unit) >> shift; 5624 5625 if (name && !dev) { 5626 /* Need to ensure that 'name' is not a duplicate. 5627 */ 5628 struct mddev *mddev2; 5629 spin_lock(&all_mddevs_lock); 5630 5631 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5632 if (mddev2->gendisk && 5633 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5634 spin_unlock(&all_mddevs_lock); 5635 error = -EEXIST; 5636 goto out_free_mddev; 5637 } 5638 spin_unlock(&all_mddevs_lock); 5639 } 5640 if (name && dev) 5641 /* 5642 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5643 */ 5644 mddev->hold_active = UNTIL_STOP; 5645 5646 error = -ENOMEM; 5647 disk = blk_alloc_disk(NUMA_NO_NODE); 5648 if (!disk) 5649 goto out_free_mddev; 5650 5651 disk->major = MAJOR(mddev->unit); 5652 disk->first_minor = unit << shift; 5653 disk->minors = 1 << shift; 5654 if (name) 5655 strcpy(disk->disk_name, name); 5656 else if (partitioned) 5657 sprintf(disk->disk_name, "md_d%d", unit); 5658 else 5659 sprintf(disk->disk_name, "md%d", unit); 5660 disk->fops = &md_fops; 5661 disk->private_data = mddev; 5662 5663 mddev->queue = disk->queue; 5664 blk_set_stacking_limits(&mddev->queue->limits); 5665 blk_queue_write_cache(mddev->queue, true, true); 5666 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5667 mddev->gendisk = disk; 5668 error = add_disk(disk); 5669 if (error) 5670 goto out_put_disk; 5671 5672 kobject_init(&mddev->kobj, &md_ktype); 5673 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5674 if (error) { 5675 /* 5676 * The disk is already live at this point. Clear the hold flag 5677 * and let mddev_put take care of the deletion, as it isn't any 5678 * different from a normal close on last release now. 5679 */ 5680 mddev->hold_active = 0; 5681 mutex_unlock(&disks_mutex); 5682 mddev_put(mddev); 5683 return ERR_PTR(error); 5684 } 5685 5686 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5687 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5688 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5689 mutex_unlock(&disks_mutex); 5690 return mddev; 5691 5692 out_put_disk: 5693 put_disk(disk); 5694 out_free_mddev: 5695 mddev_free(mddev); 5696 out_unlock: 5697 mutex_unlock(&disks_mutex); 5698 return ERR_PTR(error); 5699 } 5700 5701 static int md_alloc_and_put(dev_t dev, char *name) 5702 { 5703 struct mddev *mddev = md_alloc(dev, name); 5704 5705 if (IS_ERR(mddev)) 5706 return PTR_ERR(mddev); 5707 mddev_put(mddev); 5708 return 0; 5709 } 5710 5711 static void md_probe(dev_t dev) 5712 { 5713 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5714 return; 5715 if (create_on_open) 5716 md_alloc_and_put(dev, NULL); 5717 } 5718 5719 static int add_named_array(const char *val, const struct kernel_param *kp) 5720 { 5721 /* 5722 * val must be "md_*" or "mdNNN". 5723 * For "md_*" we allocate an array with a large free minor number, and 5724 * set the name to val. val must not already be an active name. 5725 * For "mdNNN" we allocate an array with the minor number NNN 5726 * which must not already be in use. 5727 */ 5728 int len = strlen(val); 5729 char buf[DISK_NAME_LEN]; 5730 unsigned long devnum; 5731 5732 while (len && val[len-1] == '\n') 5733 len--; 5734 if (len >= DISK_NAME_LEN) 5735 return -E2BIG; 5736 strscpy(buf, val, len+1); 5737 if (strncmp(buf, "md_", 3) == 0) 5738 return md_alloc_and_put(0, buf); 5739 if (strncmp(buf, "md", 2) == 0 && 5740 isdigit(buf[2]) && 5741 kstrtoul(buf+2, 10, &devnum) == 0 && 5742 devnum <= MINORMASK) 5743 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5744 5745 return -EINVAL; 5746 } 5747 5748 static void md_safemode_timeout(struct timer_list *t) 5749 { 5750 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5751 5752 mddev->safemode = 1; 5753 if (mddev->external) 5754 sysfs_notify_dirent_safe(mddev->sysfs_state); 5755 5756 md_wakeup_thread(mddev->thread); 5757 } 5758 5759 static int start_dirty_degraded; 5760 static void active_io_release(struct percpu_ref *ref) 5761 { 5762 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5763 5764 wake_up(&mddev->sb_wait); 5765 } 5766 5767 int md_run(struct mddev *mddev) 5768 { 5769 int err; 5770 struct md_rdev *rdev; 5771 struct md_personality *pers; 5772 bool nowait = true; 5773 5774 if (list_empty(&mddev->disks)) 5775 /* cannot run an array with no devices.. */ 5776 return -EINVAL; 5777 5778 if (mddev->pers) 5779 return -EBUSY; 5780 /* Cannot run until previous stop completes properly */ 5781 if (mddev->sysfs_active) 5782 return -EBUSY; 5783 5784 /* 5785 * Analyze all RAID superblock(s) 5786 */ 5787 if (!mddev->raid_disks) { 5788 if (!mddev->persistent) 5789 return -EINVAL; 5790 err = analyze_sbs(mddev); 5791 if (err) 5792 return -EINVAL; 5793 } 5794 5795 if (mddev->level != LEVEL_NONE) 5796 request_module("md-level-%d", mddev->level); 5797 else if (mddev->clevel[0]) 5798 request_module("md-%s", mddev->clevel); 5799 5800 /* 5801 * Drop all container device buffers, from now on 5802 * the only valid external interface is through the md 5803 * device. 5804 */ 5805 mddev->has_superblocks = false; 5806 rdev_for_each(rdev, mddev) { 5807 if (test_bit(Faulty, &rdev->flags)) 5808 continue; 5809 sync_blockdev(rdev->bdev); 5810 invalidate_bdev(rdev->bdev); 5811 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5812 mddev->ro = MD_RDONLY; 5813 if (mddev->gendisk) 5814 set_disk_ro(mddev->gendisk, 1); 5815 } 5816 5817 if (rdev->sb_page) 5818 mddev->has_superblocks = true; 5819 5820 /* perform some consistency tests on the device. 5821 * We don't want the data to overlap the metadata, 5822 * Internal Bitmap issues have been handled elsewhere. 5823 */ 5824 if (rdev->meta_bdev) { 5825 /* Nothing to check */; 5826 } else if (rdev->data_offset < rdev->sb_start) { 5827 if (mddev->dev_sectors && 5828 rdev->data_offset + mddev->dev_sectors 5829 > rdev->sb_start) { 5830 pr_warn("md: %s: data overlaps metadata\n", 5831 mdname(mddev)); 5832 return -EINVAL; 5833 } 5834 } else { 5835 if (rdev->sb_start + rdev->sb_size/512 5836 > rdev->data_offset) { 5837 pr_warn("md: %s: metadata overlaps data\n", 5838 mdname(mddev)); 5839 return -EINVAL; 5840 } 5841 } 5842 sysfs_notify_dirent_safe(rdev->sysfs_state); 5843 nowait = nowait && bdev_nowait(rdev->bdev); 5844 } 5845 5846 err = percpu_ref_init(&mddev->active_io, active_io_release, 5847 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5848 if (err) 5849 return err; 5850 5851 if (!bioset_initialized(&mddev->bio_set)) { 5852 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5853 if (err) 5854 goto exit_active_io; 5855 } 5856 if (!bioset_initialized(&mddev->sync_set)) { 5857 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5858 if (err) 5859 goto exit_bio_set; 5860 } 5861 5862 spin_lock(&pers_lock); 5863 pers = find_pers(mddev->level, mddev->clevel); 5864 if (!pers || !try_module_get(pers->owner)) { 5865 spin_unlock(&pers_lock); 5866 if (mddev->level != LEVEL_NONE) 5867 pr_warn("md: personality for level %d is not loaded!\n", 5868 mddev->level); 5869 else 5870 pr_warn("md: personality for level %s is not loaded!\n", 5871 mddev->clevel); 5872 err = -EINVAL; 5873 goto abort; 5874 } 5875 spin_unlock(&pers_lock); 5876 if (mddev->level != pers->level) { 5877 mddev->level = pers->level; 5878 mddev->new_level = pers->level; 5879 } 5880 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5881 5882 if (mddev->reshape_position != MaxSector && 5883 pers->start_reshape == NULL) { 5884 /* This personality cannot handle reshaping... */ 5885 module_put(pers->owner); 5886 err = -EINVAL; 5887 goto abort; 5888 } 5889 5890 if (pers->sync_request) { 5891 /* Warn if this is a potentially silly 5892 * configuration. 5893 */ 5894 struct md_rdev *rdev2; 5895 int warned = 0; 5896 5897 rdev_for_each(rdev, mddev) 5898 rdev_for_each(rdev2, mddev) { 5899 if (rdev < rdev2 && 5900 rdev->bdev->bd_disk == 5901 rdev2->bdev->bd_disk) { 5902 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5903 mdname(mddev), 5904 rdev->bdev, 5905 rdev2->bdev); 5906 warned = 1; 5907 } 5908 } 5909 5910 if (warned) 5911 pr_warn("True protection against single-disk failure might be compromised.\n"); 5912 } 5913 5914 mddev->recovery = 0; 5915 /* may be over-ridden by personality */ 5916 mddev->resync_max_sectors = mddev->dev_sectors; 5917 5918 mddev->ok_start_degraded = start_dirty_degraded; 5919 5920 if (start_readonly && md_is_rdwr(mddev)) 5921 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5922 5923 err = pers->run(mddev); 5924 if (err) 5925 pr_warn("md: pers->run() failed ...\n"); 5926 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5927 WARN_ONCE(!mddev->external_size, 5928 "%s: default size too small, but 'external_size' not in effect?\n", 5929 __func__); 5930 pr_warn("md: invalid array_size %llu > default size %llu\n", 5931 (unsigned long long)mddev->array_sectors / 2, 5932 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5933 err = -EINVAL; 5934 } 5935 if (err == 0 && pers->sync_request && 5936 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5937 struct bitmap *bitmap; 5938 5939 bitmap = md_bitmap_create(mddev, -1); 5940 if (IS_ERR(bitmap)) { 5941 err = PTR_ERR(bitmap); 5942 pr_warn("%s: failed to create bitmap (%d)\n", 5943 mdname(mddev), err); 5944 } else 5945 mddev->bitmap = bitmap; 5946 5947 } 5948 if (err) 5949 goto bitmap_abort; 5950 5951 if (mddev->bitmap_info.max_write_behind > 0) { 5952 bool create_pool = false; 5953 5954 rdev_for_each(rdev, mddev) { 5955 if (test_bit(WriteMostly, &rdev->flags) && 5956 rdev_init_serial(rdev)) 5957 create_pool = true; 5958 } 5959 if (create_pool && mddev->serial_info_pool == NULL) { 5960 mddev->serial_info_pool = 5961 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5962 sizeof(struct serial_info)); 5963 if (!mddev->serial_info_pool) { 5964 err = -ENOMEM; 5965 goto bitmap_abort; 5966 } 5967 } 5968 } 5969 5970 if (mddev->queue) { 5971 bool nonrot = true; 5972 5973 rdev_for_each(rdev, mddev) { 5974 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5975 nonrot = false; 5976 break; 5977 } 5978 } 5979 if (mddev->degraded) 5980 nonrot = false; 5981 if (nonrot) 5982 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5983 else 5984 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5985 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5986 5987 /* Set the NOWAIT flags if all underlying devices support it */ 5988 if (nowait) 5989 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5990 } 5991 if (pers->sync_request) { 5992 if (mddev->kobj.sd && 5993 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5994 pr_warn("md: cannot register extra attributes for %s\n", 5995 mdname(mddev)); 5996 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5997 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5998 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5999 } else if (mddev->ro == MD_AUTO_READ) 6000 mddev->ro = MD_RDWR; 6001 6002 atomic_set(&mddev->max_corr_read_errors, 6003 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6004 mddev->safemode = 0; 6005 if (mddev_is_clustered(mddev)) 6006 mddev->safemode_delay = 0; 6007 else 6008 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6009 mddev->in_sync = 1; 6010 smp_wmb(); 6011 spin_lock(&mddev->lock); 6012 mddev->pers = pers; 6013 spin_unlock(&mddev->lock); 6014 rdev_for_each(rdev, mddev) 6015 if (rdev->raid_disk >= 0) 6016 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6017 6018 if (mddev->degraded && md_is_rdwr(mddev)) 6019 /* This ensures that recovering status is reported immediately 6020 * via sysfs - until a lack of spares is confirmed. 6021 */ 6022 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6023 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6024 6025 if (mddev->sb_flags) 6026 md_update_sb(mddev, 0); 6027 6028 md_new_event(); 6029 return 0; 6030 6031 bitmap_abort: 6032 mddev_detach(mddev); 6033 if (mddev->private) 6034 pers->free(mddev, mddev->private); 6035 mddev->private = NULL; 6036 module_put(pers->owner); 6037 md_bitmap_destroy(mddev); 6038 abort: 6039 bioset_exit(&mddev->sync_set); 6040 exit_bio_set: 6041 bioset_exit(&mddev->bio_set); 6042 exit_active_io: 6043 percpu_ref_exit(&mddev->active_io); 6044 return err; 6045 } 6046 EXPORT_SYMBOL_GPL(md_run); 6047 6048 int do_md_run(struct mddev *mddev) 6049 { 6050 int err; 6051 6052 set_bit(MD_NOT_READY, &mddev->flags); 6053 err = md_run(mddev); 6054 if (err) 6055 goto out; 6056 err = md_bitmap_load(mddev); 6057 if (err) { 6058 md_bitmap_destroy(mddev); 6059 goto out; 6060 } 6061 6062 if (mddev_is_clustered(mddev)) 6063 md_allow_write(mddev); 6064 6065 /* run start up tasks that require md_thread */ 6066 md_start(mddev); 6067 6068 md_wakeup_thread(mddev->thread); 6069 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6070 6071 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6072 clear_bit(MD_NOT_READY, &mddev->flags); 6073 mddev->changed = 1; 6074 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6075 sysfs_notify_dirent_safe(mddev->sysfs_state); 6076 sysfs_notify_dirent_safe(mddev->sysfs_action); 6077 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6078 out: 6079 clear_bit(MD_NOT_READY, &mddev->flags); 6080 return err; 6081 } 6082 6083 int md_start(struct mddev *mddev) 6084 { 6085 int ret = 0; 6086 6087 if (mddev->pers->start) { 6088 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6089 md_wakeup_thread(mddev->thread); 6090 ret = mddev->pers->start(mddev); 6091 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6092 md_wakeup_thread(mddev->sync_thread); 6093 } 6094 return ret; 6095 } 6096 EXPORT_SYMBOL_GPL(md_start); 6097 6098 static int restart_array(struct mddev *mddev) 6099 { 6100 struct gendisk *disk = mddev->gendisk; 6101 struct md_rdev *rdev; 6102 bool has_journal = false; 6103 bool has_readonly = false; 6104 6105 /* Complain if it has no devices */ 6106 if (list_empty(&mddev->disks)) 6107 return -ENXIO; 6108 if (!mddev->pers) 6109 return -EINVAL; 6110 if (md_is_rdwr(mddev)) 6111 return -EBUSY; 6112 6113 rcu_read_lock(); 6114 rdev_for_each_rcu(rdev, mddev) { 6115 if (test_bit(Journal, &rdev->flags) && 6116 !test_bit(Faulty, &rdev->flags)) 6117 has_journal = true; 6118 if (rdev_read_only(rdev)) 6119 has_readonly = true; 6120 } 6121 rcu_read_unlock(); 6122 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6123 /* Don't restart rw with journal missing/faulty */ 6124 return -EINVAL; 6125 if (has_readonly) 6126 return -EROFS; 6127 6128 mddev->safemode = 0; 6129 mddev->ro = MD_RDWR; 6130 set_disk_ro(disk, 0); 6131 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6132 /* Kick recovery or resync if necessary */ 6133 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6134 md_wakeup_thread(mddev->thread); 6135 md_wakeup_thread(mddev->sync_thread); 6136 sysfs_notify_dirent_safe(mddev->sysfs_state); 6137 return 0; 6138 } 6139 6140 static void md_clean(struct mddev *mddev) 6141 { 6142 mddev->array_sectors = 0; 6143 mddev->external_size = 0; 6144 mddev->dev_sectors = 0; 6145 mddev->raid_disks = 0; 6146 mddev->recovery_cp = 0; 6147 mddev->resync_min = 0; 6148 mddev->resync_max = MaxSector; 6149 mddev->reshape_position = MaxSector; 6150 mddev->external = 0; 6151 mddev->persistent = 0; 6152 mddev->level = LEVEL_NONE; 6153 mddev->clevel[0] = 0; 6154 mddev->flags = 0; 6155 mddev->sb_flags = 0; 6156 mddev->ro = MD_RDWR; 6157 mddev->metadata_type[0] = 0; 6158 mddev->chunk_sectors = 0; 6159 mddev->ctime = mddev->utime = 0; 6160 mddev->layout = 0; 6161 mddev->max_disks = 0; 6162 mddev->events = 0; 6163 mddev->can_decrease_events = 0; 6164 mddev->delta_disks = 0; 6165 mddev->reshape_backwards = 0; 6166 mddev->new_level = LEVEL_NONE; 6167 mddev->new_layout = 0; 6168 mddev->new_chunk_sectors = 0; 6169 mddev->curr_resync = MD_RESYNC_NONE; 6170 atomic64_set(&mddev->resync_mismatches, 0); 6171 mddev->suspend_lo = mddev->suspend_hi = 0; 6172 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6173 mddev->recovery = 0; 6174 mddev->in_sync = 0; 6175 mddev->changed = 0; 6176 mddev->degraded = 0; 6177 mddev->safemode = 0; 6178 mddev->private = NULL; 6179 mddev->cluster_info = NULL; 6180 mddev->bitmap_info.offset = 0; 6181 mddev->bitmap_info.default_offset = 0; 6182 mddev->bitmap_info.default_space = 0; 6183 mddev->bitmap_info.chunksize = 0; 6184 mddev->bitmap_info.daemon_sleep = 0; 6185 mddev->bitmap_info.max_write_behind = 0; 6186 mddev->bitmap_info.nodes = 0; 6187 } 6188 6189 static void __md_stop_writes(struct mddev *mddev) 6190 { 6191 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6192 if (work_pending(&mddev->del_work)) 6193 flush_workqueue(md_misc_wq); 6194 if (mddev->sync_thread) { 6195 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6196 md_unregister_thread(&mddev->sync_thread); 6197 md_reap_sync_thread(mddev); 6198 } 6199 6200 del_timer_sync(&mddev->safemode_timer); 6201 6202 if (mddev->pers && mddev->pers->quiesce) { 6203 mddev->pers->quiesce(mddev, 1); 6204 mddev->pers->quiesce(mddev, 0); 6205 } 6206 md_bitmap_flush(mddev); 6207 6208 if (md_is_rdwr(mddev) && 6209 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6210 mddev->sb_flags)) { 6211 /* mark array as shutdown cleanly */ 6212 if (!mddev_is_clustered(mddev)) 6213 mddev->in_sync = 1; 6214 md_update_sb(mddev, 1); 6215 } 6216 /* disable policy to guarantee rdevs free resources for serialization */ 6217 mddev->serialize_policy = 0; 6218 mddev_destroy_serial_pool(mddev, NULL, true); 6219 } 6220 6221 void md_stop_writes(struct mddev *mddev) 6222 { 6223 mddev_lock_nointr(mddev); 6224 __md_stop_writes(mddev); 6225 mddev_unlock(mddev); 6226 } 6227 EXPORT_SYMBOL_GPL(md_stop_writes); 6228 6229 static void mddev_detach(struct mddev *mddev) 6230 { 6231 md_bitmap_wait_behind_writes(mddev); 6232 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6233 mddev->pers->quiesce(mddev, 1); 6234 mddev->pers->quiesce(mddev, 0); 6235 } 6236 md_unregister_thread(&mddev->thread); 6237 if (mddev->queue) 6238 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6239 } 6240 6241 static void __md_stop(struct mddev *mddev) 6242 { 6243 struct md_personality *pers = mddev->pers; 6244 md_bitmap_destroy(mddev); 6245 mddev_detach(mddev); 6246 /* Ensure ->event_work is done */ 6247 if (mddev->event_work.func) 6248 flush_workqueue(md_misc_wq); 6249 spin_lock(&mddev->lock); 6250 mddev->pers = NULL; 6251 spin_unlock(&mddev->lock); 6252 if (mddev->private) 6253 pers->free(mddev, mddev->private); 6254 mddev->private = NULL; 6255 if (pers->sync_request && mddev->to_remove == NULL) 6256 mddev->to_remove = &md_redundancy_group; 6257 module_put(pers->owner); 6258 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6259 } 6260 6261 void md_stop(struct mddev *mddev) 6262 { 6263 /* stop the array and free an attached data structures. 6264 * This is called from dm-raid 6265 */ 6266 __md_stop_writes(mddev); 6267 __md_stop(mddev); 6268 percpu_ref_exit(&mddev->writes_pending); 6269 percpu_ref_exit(&mddev->active_io); 6270 bioset_exit(&mddev->bio_set); 6271 bioset_exit(&mddev->sync_set); 6272 } 6273 6274 EXPORT_SYMBOL_GPL(md_stop); 6275 6276 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6277 { 6278 int err = 0; 6279 int did_freeze = 0; 6280 6281 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6282 did_freeze = 1; 6283 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6284 md_wakeup_thread(mddev->thread); 6285 } 6286 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6287 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6288 if (mddev->sync_thread) 6289 /* Thread might be blocked waiting for metadata update 6290 * which will now never happen */ 6291 wake_up_process(mddev->sync_thread->tsk); 6292 6293 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6294 return -EBUSY; 6295 mddev_unlock(mddev); 6296 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6297 &mddev->recovery)); 6298 wait_event(mddev->sb_wait, 6299 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6300 mddev_lock_nointr(mddev); 6301 6302 mutex_lock(&mddev->open_mutex); 6303 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6304 mddev->sync_thread || 6305 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6306 pr_warn("md: %s still in use.\n",mdname(mddev)); 6307 if (did_freeze) { 6308 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6309 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6310 md_wakeup_thread(mddev->thread); 6311 } 6312 err = -EBUSY; 6313 goto out; 6314 } 6315 if (mddev->pers) { 6316 __md_stop_writes(mddev); 6317 6318 err = -ENXIO; 6319 if (mddev->ro == MD_RDONLY) 6320 goto out; 6321 mddev->ro = MD_RDONLY; 6322 set_disk_ro(mddev->gendisk, 1); 6323 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6324 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6325 md_wakeup_thread(mddev->thread); 6326 sysfs_notify_dirent_safe(mddev->sysfs_state); 6327 err = 0; 6328 } 6329 out: 6330 mutex_unlock(&mddev->open_mutex); 6331 return err; 6332 } 6333 6334 /* mode: 6335 * 0 - completely stop and dis-assemble array 6336 * 2 - stop but do not disassemble array 6337 */ 6338 static int do_md_stop(struct mddev *mddev, int mode, 6339 struct block_device *bdev) 6340 { 6341 struct gendisk *disk = mddev->gendisk; 6342 struct md_rdev *rdev; 6343 int did_freeze = 0; 6344 6345 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6346 did_freeze = 1; 6347 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6348 md_wakeup_thread(mddev->thread); 6349 } 6350 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6351 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6352 if (mddev->sync_thread) 6353 /* Thread might be blocked waiting for metadata update 6354 * which will now never happen */ 6355 wake_up_process(mddev->sync_thread->tsk); 6356 6357 mddev_unlock(mddev); 6358 wait_event(resync_wait, (mddev->sync_thread == NULL && 6359 !test_bit(MD_RECOVERY_RUNNING, 6360 &mddev->recovery))); 6361 mddev_lock_nointr(mddev); 6362 6363 mutex_lock(&mddev->open_mutex); 6364 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6365 mddev->sysfs_active || 6366 mddev->sync_thread || 6367 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6368 pr_warn("md: %s still in use.\n",mdname(mddev)); 6369 mutex_unlock(&mddev->open_mutex); 6370 if (did_freeze) { 6371 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6372 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6373 md_wakeup_thread(mddev->thread); 6374 } 6375 return -EBUSY; 6376 } 6377 if (mddev->pers) { 6378 if (!md_is_rdwr(mddev)) 6379 set_disk_ro(disk, 0); 6380 6381 __md_stop_writes(mddev); 6382 __md_stop(mddev); 6383 6384 /* tell userspace to handle 'inactive' */ 6385 sysfs_notify_dirent_safe(mddev->sysfs_state); 6386 6387 rdev_for_each(rdev, mddev) 6388 if (rdev->raid_disk >= 0) 6389 sysfs_unlink_rdev(mddev, rdev); 6390 6391 set_capacity_and_notify(disk, 0); 6392 mutex_unlock(&mddev->open_mutex); 6393 mddev->changed = 1; 6394 6395 if (!md_is_rdwr(mddev)) 6396 mddev->ro = MD_RDWR; 6397 } else 6398 mutex_unlock(&mddev->open_mutex); 6399 /* 6400 * Free resources if final stop 6401 */ 6402 if (mode == 0) { 6403 pr_info("md: %s stopped.\n", mdname(mddev)); 6404 6405 if (mddev->bitmap_info.file) { 6406 struct file *f = mddev->bitmap_info.file; 6407 spin_lock(&mddev->lock); 6408 mddev->bitmap_info.file = NULL; 6409 spin_unlock(&mddev->lock); 6410 fput(f); 6411 } 6412 mddev->bitmap_info.offset = 0; 6413 6414 export_array(mddev); 6415 6416 md_clean(mddev); 6417 if (mddev->hold_active == UNTIL_STOP) 6418 mddev->hold_active = 0; 6419 } 6420 md_new_event(); 6421 sysfs_notify_dirent_safe(mddev->sysfs_state); 6422 return 0; 6423 } 6424 6425 #ifndef MODULE 6426 static void autorun_array(struct mddev *mddev) 6427 { 6428 struct md_rdev *rdev; 6429 int err; 6430 6431 if (list_empty(&mddev->disks)) 6432 return; 6433 6434 pr_info("md: running: "); 6435 6436 rdev_for_each(rdev, mddev) { 6437 pr_cont("<%pg>", rdev->bdev); 6438 } 6439 pr_cont("\n"); 6440 6441 err = do_md_run(mddev); 6442 if (err) { 6443 pr_warn("md: do_md_run() returned %d\n", err); 6444 do_md_stop(mddev, 0, NULL); 6445 } 6446 } 6447 6448 /* 6449 * lets try to run arrays based on all disks that have arrived 6450 * until now. (those are in pending_raid_disks) 6451 * 6452 * the method: pick the first pending disk, collect all disks with 6453 * the same UUID, remove all from the pending list and put them into 6454 * the 'same_array' list. Then order this list based on superblock 6455 * update time (freshest comes first), kick out 'old' disks and 6456 * compare superblocks. If everything's fine then run it. 6457 * 6458 * If "unit" is allocated, then bump its reference count 6459 */ 6460 static void autorun_devices(int part) 6461 { 6462 struct md_rdev *rdev0, *rdev, *tmp; 6463 struct mddev *mddev; 6464 6465 pr_info("md: autorun ...\n"); 6466 while (!list_empty(&pending_raid_disks)) { 6467 int unit; 6468 dev_t dev; 6469 LIST_HEAD(candidates); 6470 rdev0 = list_entry(pending_raid_disks.next, 6471 struct md_rdev, same_set); 6472 6473 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6474 INIT_LIST_HEAD(&candidates); 6475 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6476 if (super_90_load(rdev, rdev0, 0) >= 0) { 6477 pr_debug("md: adding %pg ...\n", 6478 rdev->bdev); 6479 list_move(&rdev->same_set, &candidates); 6480 } 6481 /* 6482 * now we have a set of devices, with all of them having 6483 * mostly sane superblocks. It's time to allocate the 6484 * mddev. 6485 */ 6486 if (part) { 6487 dev = MKDEV(mdp_major, 6488 rdev0->preferred_minor << MdpMinorShift); 6489 unit = MINOR(dev) >> MdpMinorShift; 6490 } else { 6491 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6492 unit = MINOR(dev); 6493 } 6494 if (rdev0->preferred_minor != unit) { 6495 pr_warn("md: unit number in %pg is bad: %d\n", 6496 rdev0->bdev, rdev0->preferred_minor); 6497 break; 6498 } 6499 6500 mddev = md_alloc(dev, NULL); 6501 if (IS_ERR(mddev)) 6502 break; 6503 6504 if (mddev_lock(mddev)) 6505 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6506 else if (mddev->raid_disks || mddev->major_version 6507 || !list_empty(&mddev->disks)) { 6508 pr_warn("md: %s already running, cannot run %pg\n", 6509 mdname(mddev), rdev0->bdev); 6510 mddev_unlock(mddev); 6511 } else { 6512 pr_debug("md: created %s\n", mdname(mddev)); 6513 mddev->persistent = 1; 6514 rdev_for_each_list(rdev, tmp, &candidates) { 6515 list_del_init(&rdev->same_set); 6516 if (bind_rdev_to_array(rdev, mddev)) 6517 export_rdev(rdev); 6518 } 6519 autorun_array(mddev); 6520 mddev_unlock(mddev); 6521 } 6522 /* on success, candidates will be empty, on error 6523 * it won't... 6524 */ 6525 rdev_for_each_list(rdev, tmp, &candidates) { 6526 list_del_init(&rdev->same_set); 6527 export_rdev(rdev); 6528 } 6529 mddev_put(mddev); 6530 } 6531 pr_info("md: ... autorun DONE.\n"); 6532 } 6533 #endif /* !MODULE */ 6534 6535 static int get_version(void __user *arg) 6536 { 6537 mdu_version_t ver; 6538 6539 ver.major = MD_MAJOR_VERSION; 6540 ver.minor = MD_MINOR_VERSION; 6541 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6542 6543 if (copy_to_user(arg, &ver, sizeof(ver))) 6544 return -EFAULT; 6545 6546 return 0; 6547 } 6548 6549 static int get_array_info(struct mddev *mddev, void __user *arg) 6550 { 6551 mdu_array_info_t info; 6552 int nr,working,insync,failed,spare; 6553 struct md_rdev *rdev; 6554 6555 nr = working = insync = failed = spare = 0; 6556 rcu_read_lock(); 6557 rdev_for_each_rcu(rdev, mddev) { 6558 nr++; 6559 if (test_bit(Faulty, &rdev->flags)) 6560 failed++; 6561 else { 6562 working++; 6563 if (test_bit(In_sync, &rdev->flags)) 6564 insync++; 6565 else if (test_bit(Journal, &rdev->flags)) 6566 /* TODO: add journal count to md_u.h */ 6567 ; 6568 else 6569 spare++; 6570 } 6571 } 6572 rcu_read_unlock(); 6573 6574 info.major_version = mddev->major_version; 6575 info.minor_version = mddev->minor_version; 6576 info.patch_version = MD_PATCHLEVEL_VERSION; 6577 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6578 info.level = mddev->level; 6579 info.size = mddev->dev_sectors / 2; 6580 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6581 info.size = -1; 6582 info.nr_disks = nr; 6583 info.raid_disks = mddev->raid_disks; 6584 info.md_minor = mddev->md_minor; 6585 info.not_persistent= !mddev->persistent; 6586 6587 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6588 info.state = 0; 6589 if (mddev->in_sync) 6590 info.state = (1<<MD_SB_CLEAN); 6591 if (mddev->bitmap && mddev->bitmap_info.offset) 6592 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6593 if (mddev_is_clustered(mddev)) 6594 info.state |= (1<<MD_SB_CLUSTERED); 6595 info.active_disks = insync; 6596 info.working_disks = working; 6597 info.failed_disks = failed; 6598 info.spare_disks = spare; 6599 6600 info.layout = mddev->layout; 6601 info.chunk_size = mddev->chunk_sectors << 9; 6602 6603 if (copy_to_user(arg, &info, sizeof(info))) 6604 return -EFAULT; 6605 6606 return 0; 6607 } 6608 6609 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6610 { 6611 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6612 char *ptr; 6613 int err; 6614 6615 file = kzalloc(sizeof(*file), GFP_NOIO); 6616 if (!file) 6617 return -ENOMEM; 6618 6619 err = 0; 6620 spin_lock(&mddev->lock); 6621 /* bitmap enabled */ 6622 if (mddev->bitmap_info.file) { 6623 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6624 sizeof(file->pathname)); 6625 if (IS_ERR(ptr)) 6626 err = PTR_ERR(ptr); 6627 else 6628 memmove(file->pathname, ptr, 6629 sizeof(file->pathname)-(ptr-file->pathname)); 6630 } 6631 spin_unlock(&mddev->lock); 6632 6633 if (err == 0 && 6634 copy_to_user(arg, file, sizeof(*file))) 6635 err = -EFAULT; 6636 6637 kfree(file); 6638 return err; 6639 } 6640 6641 static int get_disk_info(struct mddev *mddev, void __user * arg) 6642 { 6643 mdu_disk_info_t info; 6644 struct md_rdev *rdev; 6645 6646 if (copy_from_user(&info, arg, sizeof(info))) 6647 return -EFAULT; 6648 6649 rcu_read_lock(); 6650 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6651 if (rdev) { 6652 info.major = MAJOR(rdev->bdev->bd_dev); 6653 info.minor = MINOR(rdev->bdev->bd_dev); 6654 info.raid_disk = rdev->raid_disk; 6655 info.state = 0; 6656 if (test_bit(Faulty, &rdev->flags)) 6657 info.state |= (1<<MD_DISK_FAULTY); 6658 else if (test_bit(In_sync, &rdev->flags)) { 6659 info.state |= (1<<MD_DISK_ACTIVE); 6660 info.state |= (1<<MD_DISK_SYNC); 6661 } 6662 if (test_bit(Journal, &rdev->flags)) 6663 info.state |= (1<<MD_DISK_JOURNAL); 6664 if (test_bit(WriteMostly, &rdev->flags)) 6665 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6666 if (test_bit(FailFast, &rdev->flags)) 6667 info.state |= (1<<MD_DISK_FAILFAST); 6668 } else { 6669 info.major = info.minor = 0; 6670 info.raid_disk = -1; 6671 info.state = (1<<MD_DISK_REMOVED); 6672 } 6673 rcu_read_unlock(); 6674 6675 if (copy_to_user(arg, &info, sizeof(info))) 6676 return -EFAULT; 6677 6678 return 0; 6679 } 6680 6681 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6682 { 6683 struct md_rdev *rdev; 6684 dev_t dev = MKDEV(info->major,info->minor); 6685 6686 if (mddev_is_clustered(mddev) && 6687 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6688 pr_warn("%s: Cannot add to clustered mddev.\n", 6689 mdname(mddev)); 6690 return -EINVAL; 6691 } 6692 6693 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6694 return -EOVERFLOW; 6695 6696 if (!mddev->raid_disks) { 6697 int err; 6698 /* expecting a device which has a superblock */ 6699 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6700 if (IS_ERR(rdev)) { 6701 pr_warn("md: md_import_device returned %ld\n", 6702 PTR_ERR(rdev)); 6703 return PTR_ERR(rdev); 6704 } 6705 if (!list_empty(&mddev->disks)) { 6706 struct md_rdev *rdev0 6707 = list_entry(mddev->disks.next, 6708 struct md_rdev, same_set); 6709 err = super_types[mddev->major_version] 6710 .load_super(rdev, rdev0, mddev->minor_version); 6711 if (err < 0) { 6712 pr_warn("md: %pg has different UUID to %pg\n", 6713 rdev->bdev, 6714 rdev0->bdev); 6715 export_rdev(rdev); 6716 return -EINVAL; 6717 } 6718 } 6719 err = bind_rdev_to_array(rdev, mddev); 6720 if (err) 6721 export_rdev(rdev); 6722 return err; 6723 } 6724 6725 /* 6726 * md_add_new_disk can be used once the array is assembled 6727 * to add "hot spares". They must already have a superblock 6728 * written 6729 */ 6730 if (mddev->pers) { 6731 int err; 6732 if (!mddev->pers->hot_add_disk) { 6733 pr_warn("%s: personality does not support diskops!\n", 6734 mdname(mddev)); 6735 return -EINVAL; 6736 } 6737 if (mddev->persistent) 6738 rdev = md_import_device(dev, mddev->major_version, 6739 mddev->minor_version); 6740 else 6741 rdev = md_import_device(dev, -1, -1); 6742 if (IS_ERR(rdev)) { 6743 pr_warn("md: md_import_device returned %ld\n", 6744 PTR_ERR(rdev)); 6745 return PTR_ERR(rdev); 6746 } 6747 /* set saved_raid_disk if appropriate */ 6748 if (!mddev->persistent) { 6749 if (info->state & (1<<MD_DISK_SYNC) && 6750 info->raid_disk < mddev->raid_disks) { 6751 rdev->raid_disk = info->raid_disk; 6752 set_bit(In_sync, &rdev->flags); 6753 clear_bit(Bitmap_sync, &rdev->flags); 6754 } else 6755 rdev->raid_disk = -1; 6756 rdev->saved_raid_disk = rdev->raid_disk; 6757 } else 6758 super_types[mddev->major_version]. 6759 validate_super(mddev, rdev); 6760 if ((info->state & (1<<MD_DISK_SYNC)) && 6761 rdev->raid_disk != info->raid_disk) { 6762 /* This was a hot-add request, but events doesn't 6763 * match, so reject it. 6764 */ 6765 export_rdev(rdev); 6766 return -EINVAL; 6767 } 6768 6769 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6770 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6771 set_bit(WriteMostly, &rdev->flags); 6772 else 6773 clear_bit(WriteMostly, &rdev->flags); 6774 if (info->state & (1<<MD_DISK_FAILFAST)) 6775 set_bit(FailFast, &rdev->flags); 6776 else 6777 clear_bit(FailFast, &rdev->flags); 6778 6779 if (info->state & (1<<MD_DISK_JOURNAL)) { 6780 struct md_rdev *rdev2; 6781 bool has_journal = false; 6782 6783 /* make sure no existing journal disk */ 6784 rdev_for_each(rdev2, mddev) { 6785 if (test_bit(Journal, &rdev2->flags)) { 6786 has_journal = true; 6787 break; 6788 } 6789 } 6790 if (has_journal || mddev->bitmap) { 6791 export_rdev(rdev); 6792 return -EBUSY; 6793 } 6794 set_bit(Journal, &rdev->flags); 6795 } 6796 /* 6797 * check whether the device shows up in other nodes 6798 */ 6799 if (mddev_is_clustered(mddev)) { 6800 if (info->state & (1 << MD_DISK_CANDIDATE)) 6801 set_bit(Candidate, &rdev->flags); 6802 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6803 /* --add initiated by this node */ 6804 err = md_cluster_ops->add_new_disk(mddev, rdev); 6805 if (err) { 6806 export_rdev(rdev); 6807 return err; 6808 } 6809 } 6810 } 6811 6812 rdev->raid_disk = -1; 6813 err = bind_rdev_to_array(rdev, mddev); 6814 6815 if (err) 6816 export_rdev(rdev); 6817 6818 if (mddev_is_clustered(mddev)) { 6819 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6820 if (!err) { 6821 err = md_cluster_ops->new_disk_ack(mddev, 6822 err == 0); 6823 if (err) 6824 md_kick_rdev_from_array(rdev); 6825 } 6826 } else { 6827 if (err) 6828 md_cluster_ops->add_new_disk_cancel(mddev); 6829 else 6830 err = add_bound_rdev(rdev); 6831 } 6832 6833 } else if (!err) 6834 err = add_bound_rdev(rdev); 6835 6836 return err; 6837 } 6838 6839 /* otherwise, md_add_new_disk is only allowed 6840 * for major_version==0 superblocks 6841 */ 6842 if (mddev->major_version != 0) { 6843 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6844 return -EINVAL; 6845 } 6846 6847 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6848 int err; 6849 rdev = md_import_device(dev, -1, 0); 6850 if (IS_ERR(rdev)) { 6851 pr_warn("md: error, md_import_device() returned %ld\n", 6852 PTR_ERR(rdev)); 6853 return PTR_ERR(rdev); 6854 } 6855 rdev->desc_nr = info->number; 6856 if (info->raid_disk < mddev->raid_disks) 6857 rdev->raid_disk = info->raid_disk; 6858 else 6859 rdev->raid_disk = -1; 6860 6861 if (rdev->raid_disk < mddev->raid_disks) 6862 if (info->state & (1<<MD_DISK_SYNC)) 6863 set_bit(In_sync, &rdev->flags); 6864 6865 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6866 set_bit(WriteMostly, &rdev->flags); 6867 if (info->state & (1<<MD_DISK_FAILFAST)) 6868 set_bit(FailFast, &rdev->flags); 6869 6870 if (!mddev->persistent) { 6871 pr_debug("md: nonpersistent superblock ...\n"); 6872 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6873 } else 6874 rdev->sb_start = calc_dev_sboffset(rdev); 6875 rdev->sectors = rdev->sb_start; 6876 6877 err = bind_rdev_to_array(rdev, mddev); 6878 if (err) { 6879 export_rdev(rdev); 6880 return err; 6881 } 6882 } 6883 6884 return 0; 6885 } 6886 6887 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6888 { 6889 struct md_rdev *rdev; 6890 6891 if (!mddev->pers) 6892 return -ENODEV; 6893 6894 rdev = find_rdev(mddev, dev); 6895 if (!rdev) 6896 return -ENXIO; 6897 6898 if (rdev->raid_disk < 0) 6899 goto kick_rdev; 6900 6901 clear_bit(Blocked, &rdev->flags); 6902 remove_and_add_spares(mddev, rdev); 6903 6904 if (rdev->raid_disk >= 0) 6905 goto busy; 6906 6907 kick_rdev: 6908 if (mddev_is_clustered(mddev)) { 6909 if (md_cluster_ops->remove_disk(mddev, rdev)) 6910 goto busy; 6911 } 6912 6913 md_kick_rdev_from_array(rdev); 6914 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6915 if (mddev->thread) 6916 md_wakeup_thread(mddev->thread); 6917 else 6918 md_update_sb(mddev, 1); 6919 md_new_event(); 6920 6921 return 0; 6922 busy: 6923 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6924 rdev->bdev, mdname(mddev)); 6925 return -EBUSY; 6926 } 6927 6928 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6929 { 6930 int err; 6931 struct md_rdev *rdev; 6932 6933 if (!mddev->pers) 6934 return -ENODEV; 6935 6936 if (mddev->major_version != 0) { 6937 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6938 mdname(mddev)); 6939 return -EINVAL; 6940 } 6941 if (!mddev->pers->hot_add_disk) { 6942 pr_warn("%s: personality does not support diskops!\n", 6943 mdname(mddev)); 6944 return -EINVAL; 6945 } 6946 6947 rdev = md_import_device(dev, -1, 0); 6948 if (IS_ERR(rdev)) { 6949 pr_warn("md: error, md_import_device() returned %ld\n", 6950 PTR_ERR(rdev)); 6951 return -EINVAL; 6952 } 6953 6954 if (mddev->persistent) 6955 rdev->sb_start = calc_dev_sboffset(rdev); 6956 else 6957 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6958 6959 rdev->sectors = rdev->sb_start; 6960 6961 if (test_bit(Faulty, &rdev->flags)) { 6962 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6963 rdev->bdev, mdname(mddev)); 6964 err = -EINVAL; 6965 goto abort_export; 6966 } 6967 6968 clear_bit(In_sync, &rdev->flags); 6969 rdev->desc_nr = -1; 6970 rdev->saved_raid_disk = -1; 6971 err = bind_rdev_to_array(rdev, mddev); 6972 if (err) 6973 goto abort_export; 6974 6975 /* 6976 * The rest should better be atomic, we can have disk failures 6977 * noticed in interrupt contexts ... 6978 */ 6979 6980 rdev->raid_disk = -1; 6981 6982 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6983 if (!mddev->thread) 6984 md_update_sb(mddev, 1); 6985 /* 6986 * If the new disk does not support REQ_NOWAIT, 6987 * disable on the whole MD. 6988 */ 6989 if (!bdev_nowait(rdev->bdev)) { 6990 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6991 mdname(mddev), rdev->bdev); 6992 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6993 } 6994 /* 6995 * Kick recovery, maybe this spare has to be added to the 6996 * array immediately. 6997 */ 6998 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6999 md_wakeup_thread(mddev->thread); 7000 md_new_event(); 7001 return 0; 7002 7003 abort_export: 7004 export_rdev(rdev); 7005 return err; 7006 } 7007 7008 static int set_bitmap_file(struct mddev *mddev, int fd) 7009 { 7010 int err = 0; 7011 7012 if (mddev->pers) { 7013 if (!mddev->pers->quiesce || !mddev->thread) 7014 return -EBUSY; 7015 if (mddev->recovery || mddev->sync_thread) 7016 return -EBUSY; 7017 /* we should be able to change the bitmap.. */ 7018 } 7019 7020 if (fd >= 0) { 7021 struct inode *inode; 7022 struct file *f; 7023 7024 if (mddev->bitmap || mddev->bitmap_info.file) 7025 return -EEXIST; /* cannot add when bitmap is present */ 7026 f = fget(fd); 7027 7028 if (f == NULL) { 7029 pr_warn("%s: error: failed to get bitmap file\n", 7030 mdname(mddev)); 7031 return -EBADF; 7032 } 7033 7034 inode = f->f_mapping->host; 7035 if (!S_ISREG(inode->i_mode)) { 7036 pr_warn("%s: error: bitmap file must be a regular file\n", 7037 mdname(mddev)); 7038 err = -EBADF; 7039 } else if (!(f->f_mode & FMODE_WRITE)) { 7040 pr_warn("%s: error: bitmap file must open for write\n", 7041 mdname(mddev)); 7042 err = -EBADF; 7043 } else if (atomic_read(&inode->i_writecount) != 1) { 7044 pr_warn("%s: error: bitmap file is already in use\n", 7045 mdname(mddev)); 7046 err = -EBUSY; 7047 } 7048 if (err) { 7049 fput(f); 7050 return err; 7051 } 7052 mddev->bitmap_info.file = f; 7053 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7054 } else if (mddev->bitmap == NULL) 7055 return -ENOENT; /* cannot remove what isn't there */ 7056 err = 0; 7057 if (mddev->pers) { 7058 if (fd >= 0) { 7059 struct bitmap *bitmap; 7060 7061 bitmap = md_bitmap_create(mddev, -1); 7062 mddev_suspend(mddev); 7063 if (!IS_ERR(bitmap)) { 7064 mddev->bitmap = bitmap; 7065 err = md_bitmap_load(mddev); 7066 } else 7067 err = PTR_ERR(bitmap); 7068 if (err) { 7069 md_bitmap_destroy(mddev); 7070 fd = -1; 7071 } 7072 mddev_resume(mddev); 7073 } else if (fd < 0) { 7074 mddev_suspend(mddev); 7075 md_bitmap_destroy(mddev); 7076 mddev_resume(mddev); 7077 } 7078 } 7079 if (fd < 0) { 7080 struct file *f = mddev->bitmap_info.file; 7081 if (f) { 7082 spin_lock(&mddev->lock); 7083 mddev->bitmap_info.file = NULL; 7084 spin_unlock(&mddev->lock); 7085 fput(f); 7086 } 7087 } 7088 7089 return err; 7090 } 7091 7092 /* 7093 * md_set_array_info is used two different ways 7094 * The original usage is when creating a new array. 7095 * In this usage, raid_disks is > 0 and it together with 7096 * level, size, not_persistent,layout,chunksize determine the 7097 * shape of the array. 7098 * This will always create an array with a type-0.90.0 superblock. 7099 * The newer usage is when assembling an array. 7100 * In this case raid_disks will be 0, and the major_version field is 7101 * use to determine which style super-blocks are to be found on the devices. 7102 * The minor and patch _version numbers are also kept incase the 7103 * super_block handler wishes to interpret them. 7104 */ 7105 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7106 { 7107 if (info->raid_disks == 0) { 7108 /* just setting version number for superblock loading */ 7109 if (info->major_version < 0 || 7110 info->major_version >= ARRAY_SIZE(super_types) || 7111 super_types[info->major_version].name == NULL) { 7112 /* maybe try to auto-load a module? */ 7113 pr_warn("md: superblock version %d not known\n", 7114 info->major_version); 7115 return -EINVAL; 7116 } 7117 mddev->major_version = info->major_version; 7118 mddev->minor_version = info->minor_version; 7119 mddev->patch_version = info->patch_version; 7120 mddev->persistent = !info->not_persistent; 7121 /* ensure mddev_put doesn't delete this now that there 7122 * is some minimal configuration. 7123 */ 7124 mddev->ctime = ktime_get_real_seconds(); 7125 return 0; 7126 } 7127 mddev->major_version = MD_MAJOR_VERSION; 7128 mddev->minor_version = MD_MINOR_VERSION; 7129 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7130 mddev->ctime = ktime_get_real_seconds(); 7131 7132 mddev->level = info->level; 7133 mddev->clevel[0] = 0; 7134 mddev->dev_sectors = 2 * (sector_t)info->size; 7135 mddev->raid_disks = info->raid_disks; 7136 /* don't set md_minor, it is determined by which /dev/md* was 7137 * openned 7138 */ 7139 if (info->state & (1<<MD_SB_CLEAN)) 7140 mddev->recovery_cp = MaxSector; 7141 else 7142 mddev->recovery_cp = 0; 7143 mddev->persistent = ! info->not_persistent; 7144 mddev->external = 0; 7145 7146 mddev->layout = info->layout; 7147 if (mddev->level == 0) 7148 /* Cannot trust RAID0 layout info here */ 7149 mddev->layout = -1; 7150 mddev->chunk_sectors = info->chunk_size >> 9; 7151 7152 if (mddev->persistent) { 7153 mddev->max_disks = MD_SB_DISKS; 7154 mddev->flags = 0; 7155 mddev->sb_flags = 0; 7156 } 7157 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7158 7159 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7160 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7161 mddev->bitmap_info.offset = 0; 7162 7163 mddev->reshape_position = MaxSector; 7164 7165 /* 7166 * Generate a 128 bit UUID 7167 */ 7168 get_random_bytes(mddev->uuid, 16); 7169 7170 mddev->new_level = mddev->level; 7171 mddev->new_chunk_sectors = mddev->chunk_sectors; 7172 mddev->new_layout = mddev->layout; 7173 mddev->delta_disks = 0; 7174 mddev->reshape_backwards = 0; 7175 7176 return 0; 7177 } 7178 7179 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7180 { 7181 lockdep_assert_held(&mddev->reconfig_mutex); 7182 7183 if (mddev->external_size) 7184 return; 7185 7186 mddev->array_sectors = array_sectors; 7187 } 7188 EXPORT_SYMBOL(md_set_array_sectors); 7189 7190 static int update_size(struct mddev *mddev, sector_t num_sectors) 7191 { 7192 struct md_rdev *rdev; 7193 int rv; 7194 int fit = (num_sectors == 0); 7195 sector_t old_dev_sectors = mddev->dev_sectors; 7196 7197 if (mddev->pers->resize == NULL) 7198 return -EINVAL; 7199 /* The "num_sectors" is the number of sectors of each device that 7200 * is used. This can only make sense for arrays with redundancy. 7201 * linear and raid0 always use whatever space is available. We can only 7202 * consider changing this number if no resync or reconstruction is 7203 * happening, and if the new size is acceptable. It must fit before the 7204 * sb_start or, if that is <data_offset, it must fit before the size 7205 * of each device. If num_sectors is zero, we find the largest size 7206 * that fits. 7207 */ 7208 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7209 mddev->sync_thread) 7210 return -EBUSY; 7211 if (!md_is_rdwr(mddev)) 7212 return -EROFS; 7213 7214 rdev_for_each(rdev, mddev) { 7215 sector_t avail = rdev->sectors; 7216 7217 if (fit && (num_sectors == 0 || num_sectors > avail)) 7218 num_sectors = avail; 7219 if (avail < num_sectors) 7220 return -ENOSPC; 7221 } 7222 rv = mddev->pers->resize(mddev, num_sectors); 7223 if (!rv) { 7224 if (mddev_is_clustered(mddev)) 7225 md_cluster_ops->update_size(mddev, old_dev_sectors); 7226 else if (mddev->queue) { 7227 set_capacity_and_notify(mddev->gendisk, 7228 mddev->array_sectors); 7229 } 7230 } 7231 return rv; 7232 } 7233 7234 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7235 { 7236 int rv; 7237 struct md_rdev *rdev; 7238 /* change the number of raid disks */ 7239 if (mddev->pers->check_reshape == NULL) 7240 return -EINVAL; 7241 if (!md_is_rdwr(mddev)) 7242 return -EROFS; 7243 if (raid_disks <= 0 || 7244 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7245 return -EINVAL; 7246 if (mddev->sync_thread || 7247 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7248 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7249 mddev->reshape_position != MaxSector) 7250 return -EBUSY; 7251 7252 rdev_for_each(rdev, mddev) { 7253 if (mddev->raid_disks < raid_disks && 7254 rdev->data_offset < rdev->new_data_offset) 7255 return -EINVAL; 7256 if (mddev->raid_disks > raid_disks && 7257 rdev->data_offset > rdev->new_data_offset) 7258 return -EINVAL; 7259 } 7260 7261 mddev->delta_disks = raid_disks - mddev->raid_disks; 7262 if (mddev->delta_disks < 0) 7263 mddev->reshape_backwards = 1; 7264 else if (mddev->delta_disks > 0) 7265 mddev->reshape_backwards = 0; 7266 7267 rv = mddev->pers->check_reshape(mddev); 7268 if (rv < 0) { 7269 mddev->delta_disks = 0; 7270 mddev->reshape_backwards = 0; 7271 } 7272 return rv; 7273 } 7274 7275 /* 7276 * update_array_info is used to change the configuration of an 7277 * on-line array. 7278 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7279 * fields in the info are checked against the array. 7280 * Any differences that cannot be handled will cause an error. 7281 * Normally, only one change can be managed at a time. 7282 */ 7283 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7284 { 7285 int rv = 0; 7286 int cnt = 0; 7287 int state = 0; 7288 7289 /* calculate expected state,ignoring low bits */ 7290 if (mddev->bitmap && mddev->bitmap_info.offset) 7291 state |= (1 << MD_SB_BITMAP_PRESENT); 7292 7293 if (mddev->major_version != info->major_version || 7294 mddev->minor_version != info->minor_version || 7295 /* mddev->patch_version != info->patch_version || */ 7296 mddev->ctime != info->ctime || 7297 mddev->level != info->level || 7298 /* mddev->layout != info->layout || */ 7299 mddev->persistent != !info->not_persistent || 7300 mddev->chunk_sectors != info->chunk_size >> 9 || 7301 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7302 ((state^info->state) & 0xfffffe00) 7303 ) 7304 return -EINVAL; 7305 /* Check there is only one change */ 7306 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7307 cnt++; 7308 if (mddev->raid_disks != info->raid_disks) 7309 cnt++; 7310 if (mddev->layout != info->layout) 7311 cnt++; 7312 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7313 cnt++; 7314 if (cnt == 0) 7315 return 0; 7316 if (cnt > 1) 7317 return -EINVAL; 7318 7319 if (mddev->layout != info->layout) { 7320 /* Change layout 7321 * we don't need to do anything at the md level, the 7322 * personality will take care of it all. 7323 */ 7324 if (mddev->pers->check_reshape == NULL) 7325 return -EINVAL; 7326 else { 7327 mddev->new_layout = info->layout; 7328 rv = mddev->pers->check_reshape(mddev); 7329 if (rv) 7330 mddev->new_layout = mddev->layout; 7331 return rv; 7332 } 7333 } 7334 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7335 rv = update_size(mddev, (sector_t)info->size * 2); 7336 7337 if (mddev->raid_disks != info->raid_disks) 7338 rv = update_raid_disks(mddev, info->raid_disks); 7339 7340 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7341 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7342 rv = -EINVAL; 7343 goto err; 7344 } 7345 if (mddev->recovery || mddev->sync_thread) { 7346 rv = -EBUSY; 7347 goto err; 7348 } 7349 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7350 struct bitmap *bitmap; 7351 /* add the bitmap */ 7352 if (mddev->bitmap) { 7353 rv = -EEXIST; 7354 goto err; 7355 } 7356 if (mddev->bitmap_info.default_offset == 0) { 7357 rv = -EINVAL; 7358 goto err; 7359 } 7360 mddev->bitmap_info.offset = 7361 mddev->bitmap_info.default_offset; 7362 mddev->bitmap_info.space = 7363 mddev->bitmap_info.default_space; 7364 bitmap = md_bitmap_create(mddev, -1); 7365 mddev_suspend(mddev); 7366 if (!IS_ERR(bitmap)) { 7367 mddev->bitmap = bitmap; 7368 rv = md_bitmap_load(mddev); 7369 } else 7370 rv = PTR_ERR(bitmap); 7371 if (rv) 7372 md_bitmap_destroy(mddev); 7373 mddev_resume(mddev); 7374 } else { 7375 /* remove the bitmap */ 7376 if (!mddev->bitmap) { 7377 rv = -ENOENT; 7378 goto err; 7379 } 7380 if (mddev->bitmap->storage.file) { 7381 rv = -EINVAL; 7382 goto err; 7383 } 7384 if (mddev->bitmap_info.nodes) { 7385 /* hold PW on all the bitmap lock */ 7386 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7387 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7388 rv = -EPERM; 7389 md_cluster_ops->unlock_all_bitmaps(mddev); 7390 goto err; 7391 } 7392 7393 mddev->bitmap_info.nodes = 0; 7394 md_cluster_ops->leave(mddev); 7395 module_put(md_cluster_mod); 7396 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7397 } 7398 mddev_suspend(mddev); 7399 md_bitmap_destroy(mddev); 7400 mddev_resume(mddev); 7401 mddev->bitmap_info.offset = 0; 7402 } 7403 } 7404 md_update_sb(mddev, 1); 7405 return rv; 7406 err: 7407 return rv; 7408 } 7409 7410 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7411 { 7412 struct md_rdev *rdev; 7413 int err = 0; 7414 7415 if (mddev->pers == NULL) 7416 return -ENODEV; 7417 7418 rcu_read_lock(); 7419 rdev = md_find_rdev_rcu(mddev, dev); 7420 if (!rdev) 7421 err = -ENODEV; 7422 else { 7423 md_error(mddev, rdev); 7424 if (test_bit(MD_BROKEN, &mddev->flags)) 7425 err = -EBUSY; 7426 } 7427 rcu_read_unlock(); 7428 return err; 7429 } 7430 7431 /* 7432 * We have a problem here : there is no easy way to give a CHS 7433 * virtual geometry. We currently pretend that we have a 2 heads 7434 * 4 sectors (with a BIG number of cylinders...). This drives 7435 * dosfs just mad... ;-) 7436 */ 7437 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7438 { 7439 struct mddev *mddev = bdev->bd_disk->private_data; 7440 7441 geo->heads = 2; 7442 geo->sectors = 4; 7443 geo->cylinders = mddev->array_sectors / 8; 7444 return 0; 7445 } 7446 7447 static inline bool md_ioctl_valid(unsigned int cmd) 7448 { 7449 switch (cmd) { 7450 case ADD_NEW_DISK: 7451 case GET_ARRAY_INFO: 7452 case GET_BITMAP_FILE: 7453 case GET_DISK_INFO: 7454 case HOT_ADD_DISK: 7455 case HOT_REMOVE_DISK: 7456 case RAID_VERSION: 7457 case RESTART_ARRAY_RW: 7458 case RUN_ARRAY: 7459 case SET_ARRAY_INFO: 7460 case SET_BITMAP_FILE: 7461 case SET_DISK_FAULTY: 7462 case STOP_ARRAY: 7463 case STOP_ARRAY_RO: 7464 case CLUSTERED_DISK_NACK: 7465 return true; 7466 default: 7467 return false; 7468 } 7469 } 7470 7471 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7472 { 7473 mdu_array_info_t info; 7474 int err; 7475 7476 if (!argp) 7477 memset(&info, 0, sizeof(info)); 7478 else if (copy_from_user(&info, argp, sizeof(info))) 7479 return -EFAULT; 7480 7481 if (mddev->pers) { 7482 err = update_array_info(mddev, &info); 7483 if (err) 7484 pr_warn("md: couldn't update array info. %d\n", err); 7485 return err; 7486 } 7487 7488 if (!list_empty(&mddev->disks)) { 7489 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7490 return -EBUSY; 7491 } 7492 7493 if (mddev->raid_disks) { 7494 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7495 return -EBUSY; 7496 } 7497 7498 err = md_set_array_info(mddev, &info); 7499 if (err) 7500 pr_warn("md: couldn't set array info. %d\n", err); 7501 7502 return err; 7503 } 7504 7505 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7506 unsigned int cmd, unsigned long arg) 7507 { 7508 int err = 0; 7509 void __user *argp = (void __user *)arg; 7510 struct mddev *mddev = NULL; 7511 bool did_set_md_closing = false; 7512 7513 if (!md_ioctl_valid(cmd)) 7514 return -ENOTTY; 7515 7516 switch (cmd) { 7517 case RAID_VERSION: 7518 case GET_ARRAY_INFO: 7519 case GET_DISK_INFO: 7520 break; 7521 default: 7522 if (!capable(CAP_SYS_ADMIN)) 7523 return -EACCES; 7524 } 7525 7526 /* 7527 * Commands dealing with the RAID driver but not any 7528 * particular array: 7529 */ 7530 switch (cmd) { 7531 case RAID_VERSION: 7532 err = get_version(argp); 7533 goto out; 7534 default:; 7535 } 7536 7537 /* 7538 * Commands creating/starting a new array: 7539 */ 7540 7541 mddev = bdev->bd_disk->private_data; 7542 7543 if (!mddev) { 7544 BUG(); 7545 goto out; 7546 } 7547 7548 /* Some actions do not requires the mutex */ 7549 switch (cmd) { 7550 case GET_ARRAY_INFO: 7551 if (!mddev->raid_disks && !mddev->external) 7552 err = -ENODEV; 7553 else 7554 err = get_array_info(mddev, argp); 7555 goto out; 7556 7557 case GET_DISK_INFO: 7558 if (!mddev->raid_disks && !mddev->external) 7559 err = -ENODEV; 7560 else 7561 err = get_disk_info(mddev, argp); 7562 goto out; 7563 7564 case SET_DISK_FAULTY: 7565 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7566 goto out; 7567 7568 case GET_BITMAP_FILE: 7569 err = get_bitmap_file(mddev, argp); 7570 goto out; 7571 7572 } 7573 7574 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7575 flush_rdev_wq(mddev); 7576 7577 if (cmd == HOT_REMOVE_DISK) 7578 /* need to ensure recovery thread has run */ 7579 wait_event_interruptible_timeout(mddev->sb_wait, 7580 !test_bit(MD_RECOVERY_NEEDED, 7581 &mddev->recovery), 7582 msecs_to_jiffies(5000)); 7583 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7584 /* Need to flush page cache, and ensure no-one else opens 7585 * and writes 7586 */ 7587 mutex_lock(&mddev->open_mutex); 7588 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7589 mutex_unlock(&mddev->open_mutex); 7590 err = -EBUSY; 7591 goto out; 7592 } 7593 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7594 mutex_unlock(&mddev->open_mutex); 7595 err = -EBUSY; 7596 goto out; 7597 } 7598 did_set_md_closing = true; 7599 mutex_unlock(&mddev->open_mutex); 7600 sync_blockdev(bdev); 7601 } 7602 err = mddev_lock(mddev); 7603 if (err) { 7604 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7605 err, cmd); 7606 goto out; 7607 } 7608 7609 if (cmd == SET_ARRAY_INFO) { 7610 err = __md_set_array_info(mddev, argp); 7611 goto unlock; 7612 } 7613 7614 /* 7615 * Commands querying/configuring an existing array: 7616 */ 7617 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7618 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7619 if ((!mddev->raid_disks && !mddev->external) 7620 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7621 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7622 && cmd != GET_BITMAP_FILE) { 7623 err = -ENODEV; 7624 goto unlock; 7625 } 7626 7627 /* 7628 * Commands even a read-only array can execute: 7629 */ 7630 switch (cmd) { 7631 case RESTART_ARRAY_RW: 7632 err = restart_array(mddev); 7633 goto unlock; 7634 7635 case STOP_ARRAY: 7636 err = do_md_stop(mddev, 0, bdev); 7637 goto unlock; 7638 7639 case STOP_ARRAY_RO: 7640 err = md_set_readonly(mddev, bdev); 7641 goto unlock; 7642 7643 case HOT_REMOVE_DISK: 7644 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7645 goto unlock; 7646 7647 case ADD_NEW_DISK: 7648 /* We can support ADD_NEW_DISK on read-only arrays 7649 * only if we are re-adding a preexisting device. 7650 * So require mddev->pers and MD_DISK_SYNC. 7651 */ 7652 if (mddev->pers) { 7653 mdu_disk_info_t info; 7654 if (copy_from_user(&info, argp, sizeof(info))) 7655 err = -EFAULT; 7656 else if (!(info.state & (1<<MD_DISK_SYNC))) 7657 /* Need to clear read-only for this */ 7658 break; 7659 else 7660 err = md_add_new_disk(mddev, &info); 7661 goto unlock; 7662 } 7663 break; 7664 } 7665 7666 /* 7667 * The remaining ioctls are changing the state of the 7668 * superblock, so we do not allow them on read-only arrays. 7669 */ 7670 if (!md_is_rdwr(mddev) && mddev->pers) { 7671 if (mddev->ro != MD_AUTO_READ) { 7672 err = -EROFS; 7673 goto unlock; 7674 } 7675 mddev->ro = MD_RDWR; 7676 sysfs_notify_dirent_safe(mddev->sysfs_state); 7677 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7678 /* mddev_unlock will wake thread */ 7679 /* If a device failed while we were read-only, we 7680 * need to make sure the metadata is updated now. 7681 */ 7682 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7683 mddev_unlock(mddev); 7684 wait_event(mddev->sb_wait, 7685 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7686 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7687 mddev_lock_nointr(mddev); 7688 } 7689 } 7690 7691 switch (cmd) { 7692 case ADD_NEW_DISK: 7693 { 7694 mdu_disk_info_t info; 7695 if (copy_from_user(&info, argp, sizeof(info))) 7696 err = -EFAULT; 7697 else 7698 err = md_add_new_disk(mddev, &info); 7699 goto unlock; 7700 } 7701 7702 case CLUSTERED_DISK_NACK: 7703 if (mddev_is_clustered(mddev)) 7704 md_cluster_ops->new_disk_ack(mddev, false); 7705 else 7706 err = -EINVAL; 7707 goto unlock; 7708 7709 case HOT_ADD_DISK: 7710 err = hot_add_disk(mddev, new_decode_dev(arg)); 7711 goto unlock; 7712 7713 case RUN_ARRAY: 7714 err = do_md_run(mddev); 7715 goto unlock; 7716 7717 case SET_BITMAP_FILE: 7718 err = set_bitmap_file(mddev, (int)arg); 7719 goto unlock; 7720 7721 default: 7722 err = -EINVAL; 7723 goto unlock; 7724 } 7725 7726 unlock: 7727 if (mddev->hold_active == UNTIL_IOCTL && 7728 err != -EINVAL) 7729 mddev->hold_active = 0; 7730 mddev_unlock(mddev); 7731 out: 7732 if(did_set_md_closing) 7733 clear_bit(MD_CLOSING, &mddev->flags); 7734 return err; 7735 } 7736 #ifdef CONFIG_COMPAT 7737 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7738 unsigned int cmd, unsigned long arg) 7739 { 7740 switch (cmd) { 7741 case HOT_REMOVE_DISK: 7742 case HOT_ADD_DISK: 7743 case SET_DISK_FAULTY: 7744 case SET_BITMAP_FILE: 7745 /* These take in integer arg, do not convert */ 7746 break; 7747 default: 7748 arg = (unsigned long)compat_ptr(arg); 7749 break; 7750 } 7751 7752 return md_ioctl(bdev, mode, cmd, arg); 7753 } 7754 #endif /* CONFIG_COMPAT */ 7755 7756 static int md_set_read_only(struct block_device *bdev, bool ro) 7757 { 7758 struct mddev *mddev = bdev->bd_disk->private_data; 7759 int err; 7760 7761 err = mddev_lock(mddev); 7762 if (err) 7763 return err; 7764 7765 if (!mddev->raid_disks && !mddev->external) { 7766 err = -ENODEV; 7767 goto out_unlock; 7768 } 7769 7770 /* 7771 * Transitioning to read-auto need only happen for arrays that call 7772 * md_write_start and which are not ready for writes yet. 7773 */ 7774 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7775 err = restart_array(mddev); 7776 if (err) 7777 goto out_unlock; 7778 mddev->ro = MD_AUTO_READ; 7779 } 7780 7781 out_unlock: 7782 mddev_unlock(mddev); 7783 return err; 7784 } 7785 7786 static int md_open(struct block_device *bdev, fmode_t mode) 7787 { 7788 struct mddev *mddev; 7789 int err; 7790 7791 spin_lock(&all_mddevs_lock); 7792 mddev = mddev_get(bdev->bd_disk->private_data); 7793 spin_unlock(&all_mddevs_lock); 7794 if (!mddev) 7795 return -ENODEV; 7796 7797 err = mutex_lock_interruptible(&mddev->open_mutex); 7798 if (err) 7799 goto out; 7800 7801 err = -ENODEV; 7802 if (test_bit(MD_CLOSING, &mddev->flags)) 7803 goto out_unlock; 7804 7805 atomic_inc(&mddev->openers); 7806 mutex_unlock(&mddev->open_mutex); 7807 7808 bdev_check_media_change(bdev); 7809 return 0; 7810 7811 out_unlock: 7812 mutex_unlock(&mddev->open_mutex); 7813 out: 7814 mddev_put(mddev); 7815 return err; 7816 } 7817 7818 static void md_release(struct gendisk *disk, fmode_t mode) 7819 { 7820 struct mddev *mddev = disk->private_data; 7821 7822 BUG_ON(!mddev); 7823 atomic_dec(&mddev->openers); 7824 mddev_put(mddev); 7825 } 7826 7827 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7828 { 7829 struct mddev *mddev = disk->private_data; 7830 unsigned int ret = 0; 7831 7832 if (mddev->changed) 7833 ret = DISK_EVENT_MEDIA_CHANGE; 7834 mddev->changed = 0; 7835 return ret; 7836 } 7837 7838 static void md_free_disk(struct gendisk *disk) 7839 { 7840 struct mddev *mddev = disk->private_data; 7841 7842 percpu_ref_exit(&mddev->writes_pending); 7843 percpu_ref_exit(&mddev->active_io); 7844 bioset_exit(&mddev->bio_set); 7845 bioset_exit(&mddev->sync_set); 7846 7847 mddev_free(mddev); 7848 } 7849 7850 const struct block_device_operations md_fops = 7851 { 7852 .owner = THIS_MODULE, 7853 .submit_bio = md_submit_bio, 7854 .open = md_open, 7855 .release = md_release, 7856 .ioctl = md_ioctl, 7857 #ifdef CONFIG_COMPAT 7858 .compat_ioctl = md_compat_ioctl, 7859 #endif 7860 .getgeo = md_getgeo, 7861 .check_events = md_check_events, 7862 .set_read_only = md_set_read_only, 7863 .free_disk = md_free_disk, 7864 }; 7865 7866 static int md_thread(void *arg) 7867 { 7868 struct md_thread *thread = arg; 7869 7870 /* 7871 * md_thread is a 'system-thread', it's priority should be very 7872 * high. We avoid resource deadlocks individually in each 7873 * raid personality. (RAID5 does preallocation) We also use RR and 7874 * the very same RT priority as kswapd, thus we will never get 7875 * into a priority inversion deadlock. 7876 * 7877 * we definitely have to have equal or higher priority than 7878 * bdflush, otherwise bdflush will deadlock if there are too 7879 * many dirty RAID5 blocks. 7880 */ 7881 7882 allow_signal(SIGKILL); 7883 while (!kthread_should_stop()) { 7884 7885 /* We need to wait INTERRUPTIBLE so that 7886 * we don't add to the load-average. 7887 * That means we need to be sure no signals are 7888 * pending 7889 */ 7890 if (signal_pending(current)) 7891 flush_signals(current); 7892 7893 wait_event_interruptible_timeout 7894 (thread->wqueue, 7895 test_bit(THREAD_WAKEUP, &thread->flags) 7896 || kthread_should_stop() || kthread_should_park(), 7897 thread->timeout); 7898 7899 clear_bit(THREAD_WAKEUP, &thread->flags); 7900 if (kthread_should_park()) 7901 kthread_parkme(); 7902 if (!kthread_should_stop()) 7903 thread->run(thread); 7904 } 7905 7906 return 0; 7907 } 7908 7909 void md_wakeup_thread(struct md_thread *thread) 7910 { 7911 if (thread) { 7912 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7913 set_bit(THREAD_WAKEUP, &thread->flags); 7914 wake_up(&thread->wqueue); 7915 } 7916 } 7917 EXPORT_SYMBOL(md_wakeup_thread); 7918 7919 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7920 struct mddev *mddev, const char *name) 7921 { 7922 struct md_thread *thread; 7923 7924 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7925 if (!thread) 7926 return NULL; 7927 7928 init_waitqueue_head(&thread->wqueue); 7929 7930 thread->run = run; 7931 thread->mddev = mddev; 7932 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7933 thread->tsk = kthread_run(md_thread, thread, 7934 "%s_%s", 7935 mdname(thread->mddev), 7936 name); 7937 if (IS_ERR(thread->tsk)) { 7938 kfree(thread); 7939 return NULL; 7940 } 7941 return thread; 7942 } 7943 EXPORT_SYMBOL(md_register_thread); 7944 7945 void md_unregister_thread(struct md_thread **threadp) 7946 { 7947 struct md_thread *thread; 7948 7949 /* 7950 * Locking ensures that mddev_unlock does not wake_up a 7951 * non-existent thread 7952 */ 7953 spin_lock(&pers_lock); 7954 thread = *threadp; 7955 if (!thread) { 7956 spin_unlock(&pers_lock); 7957 return; 7958 } 7959 *threadp = NULL; 7960 spin_unlock(&pers_lock); 7961 7962 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7963 kthread_stop(thread->tsk); 7964 kfree(thread); 7965 } 7966 EXPORT_SYMBOL(md_unregister_thread); 7967 7968 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7969 { 7970 if (!rdev || test_bit(Faulty, &rdev->flags)) 7971 return; 7972 7973 if (!mddev->pers || !mddev->pers->error_handler) 7974 return; 7975 mddev->pers->error_handler(mddev, rdev); 7976 7977 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7978 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7979 sysfs_notify_dirent_safe(rdev->sysfs_state); 7980 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7981 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7982 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7983 md_wakeup_thread(mddev->thread); 7984 } 7985 if (mddev->event_work.func) 7986 queue_work(md_misc_wq, &mddev->event_work); 7987 md_new_event(); 7988 } 7989 EXPORT_SYMBOL(md_error); 7990 7991 /* seq_file implementation /proc/mdstat */ 7992 7993 static void status_unused(struct seq_file *seq) 7994 { 7995 int i = 0; 7996 struct md_rdev *rdev; 7997 7998 seq_printf(seq, "unused devices: "); 7999 8000 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8001 i++; 8002 seq_printf(seq, "%pg ", rdev->bdev); 8003 } 8004 if (!i) 8005 seq_printf(seq, "<none>"); 8006 8007 seq_printf(seq, "\n"); 8008 } 8009 8010 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8011 { 8012 sector_t max_sectors, resync, res; 8013 unsigned long dt, db = 0; 8014 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8015 int scale, recovery_active; 8016 unsigned int per_milli; 8017 8018 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8019 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8020 max_sectors = mddev->resync_max_sectors; 8021 else 8022 max_sectors = mddev->dev_sectors; 8023 8024 resync = mddev->curr_resync; 8025 if (resync < MD_RESYNC_ACTIVE) { 8026 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8027 /* Still cleaning up */ 8028 resync = max_sectors; 8029 } else if (resync > max_sectors) { 8030 resync = max_sectors; 8031 } else { 8032 resync -= atomic_read(&mddev->recovery_active); 8033 if (resync < MD_RESYNC_ACTIVE) { 8034 /* 8035 * Resync has started, but the subtraction has 8036 * yielded one of the special values. Force it 8037 * to active to ensure the status reports an 8038 * active resync. 8039 */ 8040 resync = MD_RESYNC_ACTIVE; 8041 } 8042 } 8043 8044 if (resync == MD_RESYNC_NONE) { 8045 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8046 struct md_rdev *rdev; 8047 8048 rdev_for_each(rdev, mddev) 8049 if (rdev->raid_disk >= 0 && 8050 !test_bit(Faulty, &rdev->flags) && 8051 rdev->recovery_offset != MaxSector && 8052 rdev->recovery_offset) { 8053 seq_printf(seq, "\trecover=REMOTE"); 8054 return 1; 8055 } 8056 if (mddev->reshape_position != MaxSector) 8057 seq_printf(seq, "\treshape=REMOTE"); 8058 else 8059 seq_printf(seq, "\tresync=REMOTE"); 8060 return 1; 8061 } 8062 if (mddev->recovery_cp < MaxSector) { 8063 seq_printf(seq, "\tresync=PENDING"); 8064 return 1; 8065 } 8066 return 0; 8067 } 8068 if (resync < MD_RESYNC_ACTIVE) { 8069 seq_printf(seq, "\tresync=DELAYED"); 8070 return 1; 8071 } 8072 8073 WARN_ON(max_sectors == 0); 8074 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8075 * in a sector_t, and (max_sectors>>scale) will fit in a 8076 * u32, as those are the requirements for sector_div. 8077 * Thus 'scale' must be at least 10 8078 */ 8079 scale = 10; 8080 if (sizeof(sector_t) > sizeof(unsigned long)) { 8081 while ( max_sectors/2 > (1ULL<<(scale+32))) 8082 scale++; 8083 } 8084 res = (resync>>scale)*1000; 8085 sector_div(res, (u32)((max_sectors>>scale)+1)); 8086 8087 per_milli = res; 8088 { 8089 int i, x = per_milli/50, y = 20-x; 8090 seq_printf(seq, "["); 8091 for (i = 0; i < x; i++) 8092 seq_printf(seq, "="); 8093 seq_printf(seq, ">"); 8094 for (i = 0; i < y; i++) 8095 seq_printf(seq, "."); 8096 seq_printf(seq, "] "); 8097 } 8098 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8099 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8100 "reshape" : 8101 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8102 "check" : 8103 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8104 "resync" : "recovery"))), 8105 per_milli/10, per_milli % 10, 8106 (unsigned long long) resync/2, 8107 (unsigned long long) max_sectors/2); 8108 8109 /* 8110 * dt: time from mark until now 8111 * db: blocks written from mark until now 8112 * rt: remaining time 8113 * 8114 * rt is a sector_t, which is always 64bit now. We are keeping 8115 * the original algorithm, but it is not really necessary. 8116 * 8117 * Original algorithm: 8118 * So we divide before multiply in case it is 32bit and close 8119 * to the limit. 8120 * We scale the divisor (db) by 32 to avoid losing precision 8121 * near the end of resync when the number of remaining sectors 8122 * is close to 'db'. 8123 * We then divide rt by 32 after multiplying by db to compensate. 8124 * The '+1' avoids division by zero if db is very small. 8125 */ 8126 dt = ((jiffies - mddev->resync_mark) / HZ); 8127 if (!dt) dt++; 8128 8129 curr_mark_cnt = mddev->curr_mark_cnt; 8130 recovery_active = atomic_read(&mddev->recovery_active); 8131 resync_mark_cnt = mddev->resync_mark_cnt; 8132 8133 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8134 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8135 8136 rt = max_sectors - resync; /* number of remaining sectors */ 8137 rt = div64_u64(rt, db/32+1); 8138 rt *= dt; 8139 rt >>= 5; 8140 8141 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8142 ((unsigned long)rt % 60)/6); 8143 8144 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8145 return 1; 8146 } 8147 8148 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8149 { 8150 struct list_head *tmp; 8151 loff_t l = *pos; 8152 struct mddev *mddev; 8153 8154 if (l == 0x10000) { 8155 ++*pos; 8156 return (void *)2; 8157 } 8158 if (l > 0x10000) 8159 return NULL; 8160 if (!l--) 8161 /* header */ 8162 return (void*)1; 8163 8164 spin_lock(&all_mddevs_lock); 8165 list_for_each(tmp,&all_mddevs) 8166 if (!l--) { 8167 mddev = list_entry(tmp, struct mddev, all_mddevs); 8168 if (!mddev_get(mddev)) 8169 continue; 8170 spin_unlock(&all_mddevs_lock); 8171 return mddev; 8172 } 8173 spin_unlock(&all_mddevs_lock); 8174 if (!l--) 8175 return (void*)2;/* tail */ 8176 return NULL; 8177 } 8178 8179 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8180 { 8181 struct list_head *tmp; 8182 struct mddev *next_mddev, *mddev = v; 8183 struct mddev *to_put = NULL; 8184 8185 ++*pos; 8186 if (v == (void*)2) 8187 return NULL; 8188 8189 spin_lock(&all_mddevs_lock); 8190 if (v == (void*)1) { 8191 tmp = all_mddevs.next; 8192 } else { 8193 to_put = mddev; 8194 tmp = mddev->all_mddevs.next; 8195 } 8196 8197 for (;;) { 8198 if (tmp == &all_mddevs) { 8199 next_mddev = (void*)2; 8200 *pos = 0x10000; 8201 break; 8202 } 8203 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8204 if (mddev_get(next_mddev)) 8205 break; 8206 mddev = next_mddev; 8207 tmp = mddev->all_mddevs.next; 8208 } 8209 spin_unlock(&all_mddevs_lock); 8210 8211 if (to_put) 8212 mddev_put(mddev); 8213 return next_mddev; 8214 8215 } 8216 8217 static void md_seq_stop(struct seq_file *seq, void *v) 8218 { 8219 struct mddev *mddev = v; 8220 8221 if (mddev && v != (void*)1 && v != (void*)2) 8222 mddev_put(mddev); 8223 } 8224 8225 static int md_seq_show(struct seq_file *seq, void *v) 8226 { 8227 struct mddev *mddev = v; 8228 sector_t sectors; 8229 struct md_rdev *rdev; 8230 8231 if (v == (void*)1) { 8232 struct md_personality *pers; 8233 seq_printf(seq, "Personalities : "); 8234 spin_lock(&pers_lock); 8235 list_for_each_entry(pers, &pers_list, list) 8236 seq_printf(seq, "[%s] ", pers->name); 8237 8238 spin_unlock(&pers_lock); 8239 seq_printf(seq, "\n"); 8240 seq->poll_event = atomic_read(&md_event_count); 8241 return 0; 8242 } 8243 if (v == (void*)2) { 8244 status_unused(seq); 8245 return 0; 8246 } 8247 8248 spin_lock(&mddev->lock); 8249 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8250 seq_printf(seq, "%s : %sactive", mdname(mddev), 8251 mddev->pers ? "" : "in"); 8252 if (mddev->pers) { 8253 if (mddev->ro == MD_RDONLY) 8254 seq_printf(seq, " (read-only)"); 8255 if (mddev->ro == MD_AUTO_READ) 8256 seq_printf(seq, " (auto-read-only)"); 8257 seq_printf(seq, " %s", mddev->pers->name); 8258 } 8259 8260 sectors = 0; 8261 rcu_read_lock(); 8262 rdev_for_each_rcu(rdev, mddev) { 8263 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8264 8265 if (test_bit(WriteMostly, &rdev->flags)) 8266 seq_printf(seq, "(W)"); 8267 if (test_bit(Journal, &rdev->flags)) 8268 seq_printf(seq, "(J)"); 8269 if (test_bit(Faulty, &rdev->flags)) { 8270 seq_printf(seq, "(F)"); 8271 continue; 8272 } 8273 if (rdev->raid_disk < 0) 8274 seq_printf(seq, "(S)"); /* spare */ 8275 if (test_bit(Replacement, &rdev->flags)) 8276 seq_printf(seq, "(R)"); 8277 sectors += rdev->sectors; 8278 } 8279 rcu_read_unlock(); 8280 8281 if (!list_empty(&mddev->disks)) { 8282 if (mddev->pers) 8283 seq_printf(seq, "\n %llu blocks", 8284 (unsigned long long) 8285 mddev->array_sectors / 2); 8286 else 8287 seq_printf(seq, "\n %llu blocks", 8288 (unsigned long long)sectors / 2); 8289 } 8290 if (mddev->persistent) { 8291 if (mddev->major_version != 0 || 8292 mddev->minor_version != 90) { 8293 seq_printf(seq," super %d.%d", 8294 mddev->major_version, 8295 mddev->minor_version); 8296 } 8297 } else if (mddev->external) 8298 seq_printf(seq, " super external:%s", 8299 mddev->metadata_type); 8300 else 8301 seq_printf(seq, " super non-persistent"); 8302 8303 if (mddev->pers) { 8304 mddev->pers->status(seq, mddev); 8305 seq_printf(seq, "\n "); 8306 if (mddev->pers->sync_request) { 8307 if (status_resync(seq, mddev)) 8308 seq_printf(seq, "\n "); 8309 } 8310 } else 8311 seq_printf(seq, "\n "); 8312 8313 md_bitmap_status(seq, mddev->bitmap); 8314 8315 seq_printf(seq, "\n"); 8316 } 8317 spin_unlock(&mddev->lock); 8318 8319 return 0; 8320 } 8321 8322 static const struct seq_operations md_seq_ops = { 8323 .start = md_seq_start, 8324 .next = md_seq_next, 8325 .stop = md_seq_stop, 8326 .show = md_seq_show, 8327 }; 8328 8329 static int md_seq_open(struct inode *inode, struct file *file) 8330 { 8331 struct seq_file *seq; 8332 int error; 8333 8334 error = seq_open(file, &md_seq_ops); 8335 if (error) 8336 return error; 8337 8338 seq = file->private_data; 8339 seq->poll_event = atomic_read(&md_event_count); 8340 return error; 8341 } 8342 8343 static int md_unloading; 8344 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8345 { 8346 struct seq_file *seq = filp->private_data; 8347 __poll_t mask; 8348 8349 if (md_unloading) 8350 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8351 poll_wait(filp, &md_event_waiters, wait); 8352 8353 /* always allow read */ 8354 mask = EPOLLIN | EPOLLRDNORM; 8355 8356 if (seq->poll_event != atomic_read(&md_event_count)) 8357 mask |= EPOLLERR | EPOLLPRI; 8358 return mask; 8359 } 8360 8361 static const struct proc_ops mdstat_proc_ops = { 8362 .proc_open = md_seq_open, 8363 .proc_read = seq_read, 8364 .proc_lseek = seq_lseek, 8365 .proc_release = seq_release, 8366 .proc_poll = mdstat_poll, 8367 }; 8368 8369 int register_md_personality(struct md_personality *p) 8370 { 8371 pr_debug("md: %s personality registered for level %d\n", 8372 p->name, p->level); 8373 spin_lock(&pers_lock); 8374 list_add_tail(&p->list, &pers_list); 8375 spin_unlock(&pers_lock); 8376 return 0; 8377 } 8378 EXPORT_SYMBOL(register_md_personality); 8379 8380 int unregister_md_personality(struct md_personality *p) 8381 { 8382 pr_debug("md: %s personality unregistered\n", p->name); 8383 spin_lock(&pers_lock); 8384 list_del_init(&p->list); 8385 spin_unlock(&pers_lock); 8386 return 0; 8387 } 8388 EXPORT_SYMBOL(unregister_md_personality); 8389 8390 int register_md_cluster_operations(struct md_cluster_operations *ops, 8391 struct module *module) 8392 { 8393 int ret = 0; 8394 spin_lock(&pers_lock); 8395 if (md_cluster_ops != NULL) 8396 ret = -EALREADY; 8397 else { 8398 md_cluster_ops = ops; 8399 md_cluster_mod = module; 8400 } 8401 spin_unlock(&pers_lock); 8402 return ret; 8403 } 8404 EXPORT_SYMBOL(register_md_cluster_operations); 8405 8406 int unregister_md_cluster_operations(void) 8407 { 8408 spin_lock(&pers_lock); 8409 md_cluster_ops = NULL; 8410 spin_unlock(&pers_lock); 8411 return 0; 8412 } 8413 EXPORT_SYMBOL(unregister_md_cluster_operations); 8414 8415 int md_setup_cluster(struct mddev *mddev, int nodes) 8416 { 8417 int ret; 8418 if (!md_cluster_ops) 8419 request_module("md-cluster"); 8420 spin_lock(&pers_lock); 8421 /* ensure module won't be unloaded */ 8422 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8423 pr_warn("can't find md-cluster module or get its reference.\n"); 8424 spin_unlock(&pers_lock); 8425 return -ENOENT; 8426 } 8427 spin_unlock(&pers_lock); 8428 8429 ret = md_cluster_ops->join(mddev, nodes); 8430 if (!ret) 8431 mddev->safemode_delay = 0; 8432 return ret; 8433 } 8434 8435 void md_cluster_stop(struct mddev *mddev) 8436 { 8437 if (!md_cluster_ops) 8438 return; 8439 md_cluster_ops->leave(mddev); 8440 module_put(md_cluster_mod); 8441 } 8442 8443 static int is_mddev_idle(struct mddev *mddev, int init) 8444 { 8445 struct md_rdev *rdev; 8446 int idle; 8447 int curr_events; 8448 8449 idle = 1; 8450 rcu_read_lock(); 8451 rdev_for_each_rcu(rdev, mddev) { 8452 struct gendisk *disk = rdev->bdev->bd_disk; 8453 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8454 atomic_read(&disk->sync_io); 8455 /* sync IO will cause sync_io to increase before the disk_stats 8456 * as sync_io is counted when a request starts, and 8457 * disk_stats is counted when it completes. 8458 * So resync activity will cause curr_events to be smaller than 8459 * when there was no such activity. 8460 * non-sync IO will cause disk_stat to increase without 8461 * increasing sync_io so curr_events will (eventually) 8462 * be larger than it was before. Once it becomes 8463 * substantially larger, the test below will cause 8464 * the array to appear non-idle, and resync will slow 8465 * down. 8466 * If there is a lot of outstanding resync activity when 8467 * we set last_event to curr_events, then all that activity 8468 * completing might cause the array to appear non-idle 8469 * and resync will be slowed down even though there might 8470 * not have been non-resync activity. This will only 8471 * happen once though. 'last_events' will soon reflect 8472 * the state where there is little or no outstanding 8473 * resync requests, and further resync activity will 8474 * always make curr_events less than last_events. 8475 * 8476 */ 8477 if (init || curr_events - rdev->last_events > 64) { 8478 rdev->last_events = curr_events; 8479 idle = 0; 8480 } 8481 } 8482 rcu_read_unlock(); 8483 return idle; 8484 } 8485 8486 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8487 { 8488 /* another "blocks" (512byte) blocks have been synced */ 8489 atomic_sub(blocks, &mddev->recovery_active); 8490 wake_up(&mddev->recovery_wait); 8491 if (!ok) { 8492 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8493 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8494 md_wakeup_thread(mddev->thread); 8495 // stop recovery, signal do_sync .... 8496 } 8497 } 8498 EXPORT_SYMBOL(md_done_sync); 8499 8500 /* md_write_start(mddev, bi) 8501 * If we need to update some array metadata (e.g. 'active' flag 8502 * in superblock) before writing, schedule a superblock update 8503 * and wait for it to complete. 8504 * A return value of 'false' means that the write wasn't recorded 8505 * and cannot proceed as the array is being suspend. 8506 */ 8507 bool md_write_start(struct mddev *mddev, struct bio *bi) 8508 { 8509 int did_change = 0; 8510 8511 if (bio_data_dir(bi) != WRITE) 8512 return true; 8513 8514 BUG_ON(mddev->ro == MD_RDONLY); 8515 if (mddev->ro == MD_AUTO_READ) { 8516 /* need to switch to read/write */ 8517 mddev->ro = MD_RDWR; 8518 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8519 md_wakeup_thread(mddev->thread); 8520 md_wakeup_thread(mddev->sync_thread); 8521 did_change = 1; 8522 } 8523 rcu_read_lock(); 8524 percpu_ref_get(&mddev->writes_pending); 8525 smp_mb(); /* Match smp_mb in set_in_sync() */ 8526 if (mddev->safemode == 1) 8527 mddev->safemode = 0; 8528 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8529 if (mddev->in_sync || mddev->sync_checkers) { 8530 spin_lock(&mddev->lock); 8531 if (mddev->in_sync) { 8532 mddev->in_sync = 0; 8533 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8534 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8535 md_wakeup_thread(mddev->thread); 8536 did_change = 1; 8537 } 8538 spin_unlock(&mddev->lock); 8539 } 8540 rcu_read_unlock(); 8541 if (did_change) 8542 sysfs_notify_dirent_safe(mddev->sysfs_state); 8543 if (!mddev->has_superblocks) 8544 return true; 8545 wait_event(mddev->sb_wait, 8546 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8547 is_md_suspended(mddev)); 8548 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8549 percpu_ref_put(&mddev->writes_pending); 8550 return false; 8551 } 8552 return true; 8553 } 8554 EXPORT_SYMBOL(md_write_start); 8555 8556 /* md_write_inc can only be called when md_write_start() has 8557 * already been called at least once of the current request. 8558 * It increments the counter and is useful when a single request 8559 * is split into several parts. Each part causes an increment and 8560 * so needs a matching md_write_end(). 8561 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8562 * a spinlocked region. 8563 */ 8564 void md_write_inc(struct mddev *mddev, struct bio *bi) 8565 { 8566 if (bio_data_dir(bi) != WRITE) 8567 return; 8568 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8569 percpu_ref_get(&mddev->writes_pending); 8570 } 8571 EXPORT_SYMBOL(md_write_inc); 8572 8573 void md_write_end(struct mddev *mddev) 8574 { 8575 percpu_ref_put(&mddev->writes_pending); 8576 8577 if (mddev->safemode == 2) 8578 md_wakeup_thread(mddev->thread); 8579 else if (mddev->safemode_delay) 8580 /* The roundup() ensures this only performs locking once 8581 * every ->safemode_delay jiffies 8582 */ 8583 mod_timer(&mddev->safemode_timer, 8584 roundup(jiffies, mddev->safemode_delay) + 8585 mddev->safemode_delay); 8586 } 8587 8588 EXPORT_SYMBOL(md_write_end); 8589 8590 /* This is used by raid0 and raid10 */ 8591 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8592 struct bio *bio, sector_t start, sector_t size) 8593 { 8594 struct bio *discard_bio = NULL; 8595 8596 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8597 &discard_bio) || !discard_bio) 8598 return; 8599 8600 bio_chain(discard_bio, bio); 8601 bio_clone_blkg_association(discard_bio, bio); 8602 if (mddev->gendisk) 8603 trace_block_bio_remap(discard_bio, 8604 disk_devt(mddev->gendisk), 8605 bio->bi_iter.bi_sector); 8606 submit_bio_noacct(discard_bio); 8607 } 8608 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8609 8610 int acct_bioset_init(struct mddev *mddev) 8611 { 8612 int err = 0; 8613 8614 if (!bioset_initialized(&mddev->io_acct_set)) 8615 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8616 offsetof(struct md_io_acct, bio_clone), 0); 8617 return err; 8618 } 8619 EXPORT_SYMBOL_GPL(acct_bioset_init); 8620 8621 void acct_bioset_exit(struct mddev *mddev) 8622 { 8623 bioset_exit(&mddev->io_acct_set); 8624 } 8625 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8626 8627 static void md_end_io_acct(struct bio *bio) 8628 { 8629 struct md_io_acct *md_io_acct = bio->bi_private; 8630 struct bio *orig_bio = md_io_acct->orig_bio; 8631 struct mddev *mddev = md_io_acct->mddev; 8632 8633 orig_bio->bi_status = bio->bi_status; 8634 8635 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8636 bio_put(bio); 8637 bio_endio(orig_bio); 8638 8639 percpu_ref_put(&mddev->active_io); 8640 } 8641 8642 /* 8643 * Used by personalities that don't already clone the bio and thus can't 8644 * easily add the timestamp to their extended bio structure. 8645 */ 8646 void md_account_bio(struct mddev *mddev, struct bio **bio) 8647 { 8648 struct block_device *bdev = (*bio)->bi_bdev; 8649 struct md_io_acct *md_io_acct; 8650 struct bio *clone; 8651 8652 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8653 return; 8654 8655 percpu_ref_get(&mddev->active_io); 8656 8657 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8658 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8659 md_io_acct->orig_bio = *bio; 8660 md_io_acct->start_time = bio_start_io_acct(*bio); 8661 md_io_acct->mddev = mddev; 8662 8663 clone->bi_end_io = md_end_io_acct; 8664 clone->bi_private = md_io_acct; 8665 *bio = clone; 8666 } 8667 EXPORT_SYMBOL_GPL(md_account_bio); 8668 8669 /* md_allow_write(mddev) 8670 * Calling this ensures that the array is marked 'active' so that writes 8671 * may proceed without blocking. It is important to call this before 8672 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8673 * Must be called with mddev_lock held. 8674 */ 8675 void md_allow_write(struct mddev *mddev) 8676 { 8677 if (!mddev->pers) 8678 return; 8679 if (!md_is_rdwr(mddev)) 8680 return; 8681 if (!mddev->pers->sync_request) 8682 return; 8683 8684 spin_lock(&mddev->lock); 8685 if (mddev->in_sync) { 8686 mddev->in_sync = 0; 8687 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8688 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8689 if (mddev->safemode_delay && 8690 mddev->safemode == 0) 8691 mddev->safemode = 1; 8692 spin_unlock(&mddev->lock); 8693 md_update_sb(mddev, 0); 8694 sysfs_notify_dirent_safe(mddev->sysfs_state); 8695 /* wait for the dirty state to be recorded in the metadata */ 8696 wait_event(mddev->sb_wait, 8697 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8698 } else 8699 spin_unlock(&mddev->lock); 8700 } 8701 EXPORT_SYMBOL_GPL(md_allow_write); 8702 8703 #define SYNC_MARKS 10 8704 #define SYNC_MARK_STEP (3*HZ) 8705 #define UPDATE_FREQUENCY (5*60*HZ) 8706 void md_do_sync(struct md_thread *thread) 8707 { 8708 struct mddev *mddev = thread->mddev; 8709 struct mddev *mddev2; 8710 unsigned int currspeed = 0, window; 8711 sector_t max_sectors,j, io_sectors, recovery_done; 8712 unsigned long mark[SYNC_MARKS]; 8713 unsigned long update_time; 8714 sector_t mark_cnt[SYNC_MARKS]; 8715 int last_mark,m; 8716 sector_t last_check; 8717 int skipped = 0; 8718 struct md_rdev *rdev; 8719 char *desc, *action = NULL; 8720 struct blk_plug plug; 8721 int ret; 8722 8723 /* just incase thread restarts... */ 8724 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8725 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8726 return; 8727 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8728 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8729 return; 8730 } 8731 8732 if (mddev_is_clustered(mddev)) { 8733 ret = md_cluster_ops->resync_start(mddev); 8734 if (ret) 8735 goto skip; 8736 8737 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8738 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8739 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8740 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8741 && ((unsigned long long)mddev->curr_resync_completed 8742 < (unsigned long long)mddev->resync_max_sectors)) 8743 goto skip; 8744 } 8745 8746 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8747 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8748 desc = "data-check"; 8749 action = "check"; 8750 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8751 desc = "requested-resync"; 8752 action = "repair"; 8753 } else 8754 desc = "resync"; 8755 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8756 desc = "reshape"; 8757 else 8758 desc = "recovery"; 8759 8760 mddev->last_sync_action = action ?: desc; 8761 8762 /* 8763 * Before starting a resync we must have set curr_resync to 8764 * 2, and then checked that every "conflicting" array has curr_resync 8765 * less than ours. When we find one that is the same or higher 8766 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8767 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8768 * This will mean we have to start checking from the beginning again. 8769 * 8770 */ 8771 8772 do { 8773 int mddev2_minor = -1; 8774 mddev->curr_resync = MD_RESYNC_DELAYED; 8775 8776 try_again: 8777 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8778 goto skip; 8779 spin_lock(&all_mddevs_lock); 8780 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8781 if (test_bit(MD_DELETED, &mddev2->flags)) 8782 continue; 8783 if (mddev2 == mddev) 8784 continue; 8785 if (!mddev->parallel_resync 8786 && mddev2->curr_resync 8787 && match_mddev_units(mddev, mddev2)) { 8788 DEFINE_WAIT(wq); 8789 if (mddev < mddev2 && 8790 mddev->curr_resync == MD_RESYNC_DELAYED) { 8791 /* arbitrarily yield */ 8792 mddev->curr_resync = MD_RESYNC_YIELDED; 8793 wake_up(&resync_wait); 8794 } 8795 if (mddev > mddev2 && 8796 mddev->curr_resync == MD_RESYNC_YIELDED) 8797 /* no need to wait here, we can wait the next 8798 * time 'round when curr_resync == 2 8799 */ 8800 continue; 8801 /* We need to wait 'interruptible' so as not to 8802 * contribute to the load average, and not to 8803 * be caught by 'softlockup' 8804 */ 8805 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8806 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8807 mddev2->curr_resync >= mddev->curr_resync) { 8808 if (mddev2_minor != mddev2->md_minor) { 8809 mddev2_minor = mddev2->md_minor; 8810 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8811 desc, mdname(mddev), 8812 mdname(mddev2)); 8813 } 8814 spin_unlock(&all_mddevs_lock); 8815 8816 if (signal_pending(current)) 8817 flush_signals(current); 8818 schedule(); 8819 finish_wait(&resync_wait, &wq); 8820 goto try_again; 8821 } 8822 finish_wait(&resync_wait, &wq); 8823 } 8824 } 8825 spin_unlock(&all_mddevs_lock); 8826 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8827 8828 j = 0; 8829 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8830 /* resync follows the size requested by the personality, 8831 * which defaults to physical size, but can be virtual size 8832 */ 8833 max_sectors = mddev->resync_max_sectors; 8834 atomic64_set(&mddev->resync_mismatches, 0); 8835 /* we don't use the checkpoint if there's a bitmap */ 8836 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8837 j = mddev->resync_min; 8838 else if (!mddev->bitmap) 8839 j = mddev->recovery_cp; 8840 8841 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8842 max_sectors = mddev->resync_max_sectors; 8843 /* 8844 * If the original node aborts reshaping then we continue the 8845 * reshaping, so set j again to avoid restart reshape from the 8846 * first beginning 8847 */ 8848 if (mddev_is_clustered(mddev) && 8849 mddev->reshape_position != MaxSector) 8850 j = mddev->reshape_position; 8851 } else { 8852 /* recovery follows the physical size of devices */ 8853 max_sectors = mddev->dev_sectors; 8854 j = MaxSector; 8855 rcu_read_lock(); 8856 rdev_for_each_rcu(rdev, mddev) 8857 if (rdev->raid_disk >= 0 && 8858 !test_bit(Journal, &rdev->flags) && 8859 !test_bit(Faulty, &rdev->flags) && 8860 !test_bit(In_sync, &rdev->flags) && 8861 rdev->recovery_offset < j) 8862 j = rdev->recovery_offset; 8863 rcu_read_unlock(); 8864 8865 /* If there is a bitmap, we need to make sure all 8866 * writes that started before we added a spare 8867 * complete before we start doing a recovery. 8868 * Otherwise the write might complete and (via 8869 * bitmap_endwrite) set a bit in the bitmap after the 8870 * recovery has checked that bit and skipped that 8871 * region. 8872 */ 8873 if (mddev->bitmap) { 8874 mddev->pers->quiesce(mddev, 1); 8875 mddev->pers->quiesce(mddev, 0); 8876 } 8877 } 8878 8879 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8880 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8881 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8882 speed_max(mddev), desc); 8883 8884 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8885 8886 io_sectors = 0; 8887 for (m = 0; m < SYNC_MARKS; m++) { 8888 mark[m] = jiffies; 8889 mark_cnt[m] = io_sectors; 8890 } 8891 last_mark = 0; 8892 mddev->resync_mark = mark[last_mark]; 8893 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8894 8895 /* 8896 * Tune reconstruction: 8897 */ 8898 window = 32 * (PAGE_SIZE / 512); 8899 pr_debug("md: using %dk window, over a total of %lluk.\n", 8900 window/2, (unsigned long long)max_sectors/2); 8901 8902 atomic_set(&mddev->recovery_active, 0); 8903 last_check = 0; 8904 8905 if (j >= MD_RESYNC_ACTIVE) { 8906 pr_debug("md: resuming %s of %s from checkpoint.\n", 8907 desc, mdname(mddev)); 8908 mddev->curr_resync = j; 8909 } else 8910 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8911 mddev->curr_resync_completed = j; 8912 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8913 md_new_event(); 8914 update_time = jiffies; 8915 8916 blk_start_plug(&plug); 8917 while (j < max_sectors) { 8918 sector_t sectors; 8919 8920 skipped = 0; 8921 8922 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8923 ((mddev->curr_resync > mddev->curr_resync_completed && 8924 (mddev->curr_resync - mddev->curr_resync_completed) 8925 > (max_sectors >> 4)) || 8926 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8927 (j - mddev->curr_resync_completed)*2 8928 >= mddev->resync_max - mddev->curr_resync_completed || 8929 mddev->curr_resync_completed > mddev->resync_max 8930 )) { 8931 /* time to update curr_resync_completed */ 8932 wait_event(mddev->recovery_wait, 8933 atomic_read(&mddev->recovery_active) == 0); 8934 mddev->curr_resync_completed = j; 8935 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8936 j > mddev->recovery_cp) 8937 mddev->recovery_cp = j; 8938 update_time = jiffies; 8939 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8940 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8941 } 8942 8943 while (j >= mddev->resync_max && 8944 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8945 /* As this condition is controlled by user-space, 8946 * we can block indefinitely, so use '_interruptible' 8947 * to avoid triggering warnings. 8948 */ 8949 flush_signals(current); /* just in case */ 8950 wait_event_interruptible(mddev->recovery_wait, 8951 mddev->resync_max > j 8952 || test_bit(MD_RECOVERY_INTR, 8953 &mddev->recovery)); 8954 } 8955 8956 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8957 break; 8958 8959 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8960 if (sectors == 0) { 8961 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8962 break; 8963 } 8964 8965 if (!skipped) { /* actual IO requested */ 8966 io_sectors += sectors; 8967 atomic_add(sectors, &mddev->recovery_active); 8968 } 8969 8970 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8971 break; 8972 8973 j += sectors; 8974 if (j > max_sectors) 8975 /* when skipping, extra large numbers can be returned. */ 8976 j = max_sectors; 8977 if (j >= MD_RESYNC_ACTIVE) 8978 mddev->curr_resync = j; 8979 mddev->curr_mark_cnt = io_sectors; 8980 if (last_check == 0) 8981 /* this is the earliest that rebuild will be 8982 * visible in /proc/mdstat 8983 */ 8984 md_new_event(); 8985 8986 if (last_check + window > io_sectors || j == max_sectors) 8987 continue; 8988 8989 last_check = io_sectors; 8990 repeat: 8991 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8992 /* step marks */ 8993 int next = (last_mark+1) % SYNC_MARKS; 8994 8995 mddev->resync_mark = mark[next]; 8996 mddev->resync_mark_cnt = mark_cnt[next]; 8997 mark[next] = jiffies; 8998 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8999 last_mark = next; 9000 } 9001 9002 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9003 break; 9004 9005 /* 9006 * this loop exits only if either when we are slower than 9007 * the 'hard' speed limit, or the system was IO-idle for 9008 * a jiffy. 9009 * the system might be non-idle CPU-wise, but we only care 9010 * about not overloading the IO subsystem. (things like an 9011 * e2fsck being done on the RAID array should execute fast) 9012 */ 9013 cond_resched(); 9014 9015 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9016 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9017 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9018 9019 if (currspeed > speed_min(mddev)) { 9020 if (currspeed > speed_max(mddev)) { 9021 msleep(500); 9022 goto repeat; 9023 } 9024 if (!is_mddev_idle(mddev, 0)) { 9025 /* 9026 * Give other IO more of a chance. 9027 * The faster the devices, the less we wait. 9028 */ 9029 wait_event(mddev->recovery_wait, 9030 !atomic_read(&mddev->recovery_active)); 9031 } 9032 } 9033 } 9034 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9035 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9036 ? "interrupted" : "done"); 9037 /* 9038 * this also signals 'finished resyncing' to md_stop 9039 */ 9040 blk_finish_plug(&plug); 9041 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9042 9043 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9044 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9045 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9046 mddev->curr_resync_completed = mddev->curr_resync; 9047 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9048 } 9049 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9050 9051 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9052 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9053 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9054 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9055 if (mddev->curr_resync >= mddev->recovery_cp) { 9056 pr_debug("md: checkpointing %s of %s.\n", 9057 desc, mdname(mddev)); 9058 if (test_bit(MD_RECOVERY_ERROR, 9059 &mddev->recovery)) 9060 mddev->recovery_cp = 9061 mddev->curr_resync_completed; 9062 else 9063 mddev->recovery_cp = 9064 mddev->curr_resync; 9065 } 9066 } else 9067 mddev->recovery_cp = MaxSector; 9068 } else { 9069 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9070 mddev->curr_resync = MaxSector; 9071 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9072 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9073 rcu_read_lock(); 9074 rdev_for_each_rcu(rdev, mddev) 9075 if (rdev->raid_disk >= 0 && 9076 mddev->delta_disks >= 0 && 9077 !test_bit(Journal, &rdev->flags) && 9078 !test_bit(Faulty, &rdev->flags) && 9079 !test_bit(In_sync, &rdev->flags) && 9080 rdev->recovery_offset < mddev->curr_resync) 9081 rdev->recovery_offset = mddev->curr_resync; 9082 rcu_read_unlock(); 9083 } 9084 } 9085 } 9086 skip: 9087 /* set CHANGE_PENDING here since maybe another update is needed, 9088 * so other nodes are informed. It should be harmless for normal 9089 * raid */ 9090 set_mask_bits(&mddev->sb_flags, 0, 9091 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9092 9093 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9094 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9095 mddev->delta_disks > 0 && 9096 mddev->pers->finish_reshape && 9097 mddev->pers->size && 9098 mddev->queue) { 9099 mddev_lock_nointr(mddev); 9100 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9101 mddev_unlock(mddev); 9102 if (!mddev_is_clustered(mddev)) 9103 set_capacity_and_notify(mddev->gendisk, 9104 mddev->array_sectors); 9105 } 9106 9107 spin_lock(&mddev->lock); 9108 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9109 /* We completed so min/max setting can be forgotten if used. */ 9110 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9111 mddev->resync_min = 0; 9112 mddev->resync_max = MaxSector; 9113 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9114 mddev->resync_min = mddev->curr_resync_completed; 9115 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9116 mddev->curr_resync = MD_RESYNC_NONE; 9117 spin_unlock(&mddev->lock); 9118 9119 wake_up(&resync_wait); 9120 md_wakeup_thread(mddev->thread); 9121 return; 9122 } 9123 EXPORT_SYMBOL_GPL(md_do_sync); 9124 9125 static int remove_and_add_spares(struct mddev *mddev, 9126 struct md_rdev *this) 9127 { 9128 struct md_rdev *rdev; 9129 int spares = 0; 9130 int removed = 0; 9131 bool remove_some = false; 9132 9133 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9134 /* Mustn't remove devices when resync thread is running */ 9135 return 0; 9136 9137 rdev_for_each(rdev, mddev) { 9138 if ((this == NULL || rdev == this) && 9139 rdev->raid_disk >= 0 && 9140 !test_bit(Blocked, &rdev->flags) && 9141 test_bit(Faulty, &rdev->flags) && 9142 atomic_read(&rdev->nr_pending)==0) { 9143 /* Faulty non-Blocked devices with nr_pending == 0 9144 * never get nr_pending incremented, 9145 * never get Faulty cleared, and never get Blocked set. 9146 * So we can synchronize_rcu now rather than once per device 9147 */ 9148 remove_some = true; 9149 set_bit(RemoveSynchronized, &rdev->flags); 9150 } 9151 } 9152 9153 if (remove_some) 9154 synchronize_rcu(); 9155 rdev_for_each(rdev, mddev) { 9156 if ((this == NULL || rdev == this) && 9157 rdev->raid_disk >= 0 && 9158 !test_bit(Blocked, &rdev->flags) && 9159 ((test_bit(RemoveSynchronized, &rdev->flags) || 9160 (!test_bit(In_sync, &rdev->flags) && 9161 !test_bit(Journal, &rdev->flags))) && 9162 atomic_read(&rdev->nr_pending)==0)) { 9163 if (mddev->pers->hot_remove_disk( 9164 mddev, rdev) == 0) { 9165 sysfs_unlink_rdev(mddev, rdev); 9166 rdev->saved_raid_disk = rdev->raid_disk; 9167 rdev->raid_disk = -1; 9168 removed++; 9169 } 9170 } 9171 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9172 clear_bit(RemoveSynchronized, &rdev->flags); 9173 } 9174 9175 if (removed && mddev->kobj.sd) 9176 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9177 9178 if (this && removed) 9179 goto no_add; 9180 9181 rdev_for_each(rdev, mddev) { 9182 if (this && this != rdev) 9183 continue; 9184 if (test_bit(Candidate, &rdev->flags)) 9185 continue; 9186 if (rdev->raid_disk >= 0 && 9187 !test_bit(In_sync, &rdev->flags) && 9188 !test_bit(Journal, &rdev->flags) && 9189 !test_bit(Faulty, &rdev->flags)) 9190 spares++; 9191 if (rdev->raid_disk >= 0) 9192 continue; 9193 if (test_bit(Faulty, &rdev->flags)) 9194 continue; 9195 if (!test_bit(Journal, &rdev->flags)) { 9196 if (!md_is_rdwr(mddev) && 9197 !(rdev->saved_raid_disk >= 0 && 9198 !test_bit(Bitmap_sync, &rdev->flags))) 9199 continue; 9200 9201 rdev->recovery_offset = 0; 9202 } 9203 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9204 /* failure here is OK */ 9205 sysfs_link_rdev(mddev, rdev); 9206 if (!test_bit(Journal, &rdev->flags)) 9207 spares++; 9208 md_new_event(); 9209 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9210 } 9211 } 9212 no_add: 9213 if (removed) 9214 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9215 return spares; 9216 } 9217 9218 static void md_start_sync(struct work_struct *ws) 9219 { 9220 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9221 9222 mddev->sync_thread = md_register_thread(md_do_sync, 9223 mddev, 9224 "resync"); 9225 if (!mddev->sync_thread) { 9226 pr_warn("%s: could not start resync thread...\n", 9227 mdname(mddev)); 9228 /* leave the spares where they are, it shouldn't hurt */ 9229 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9230 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9231 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9232 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9233 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9234 wake_up(&resync_wait); 9235 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9236 &mddev->recovery)) 9237 if (mddev->sysfs_action) 9238 sysfs_notify_dirent_safe(mddev->sysfs_action); 9239 } else 9240 md_wakeup_thread(mddev->sync_thread); 9241 sysfs_notify_dirent_safe(mddev->sysfs_action); 9242 md_new_event(); 9243 } 9244 9245 /* 9246 * This routine is regularly called by all per-raid-array threads to 9247 * deal with generic issues like resync and super-block update. 9248 * Raid personalities that don't have a thread (linear/raid0) do not 9249 * need this as they never do any recovery or update the superblock. 9250 * 9251 * It does not do any resync itself, but rather "forks" off other threads 9252 * to do that as needed. 9253 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9254 * "->recovery" and create a thread at ->sync_thread. 9255 * When the thread finishes it sets MD_RECOVERY_DONE 9256 * and wakeups up this thread which will reap the thread and finish up. 9257 * This thread also removes any faulty devices (with nr_pending == 0). 9258 * 9259 * The overall approach is: 9260 * 1/ if the superblock needs updating, update it. 9261 * 2/ If a recovery thread is running, don't do anything else. 9262 * 3/ If recovery has finished, clean up, possibly marking spares active. 9263 * 4/ If there are any faulty devices, remove them. 9264 * 5/ If array is degraded, try to add spares devices 9265 * 6/ If array has spares or is not in-sync, start a resync thread. 9266 */ 9267 void md_check_recovery(struct mddev *mddev) 9268 { 9269 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9270 /* Write superblock - thread that called mddev_suspend() 9271 * holds reconfig_mutex for us. 9272 */ 9273 set_bit(MD_UPDATING_SB, &mddev->flags); 9274 smp_mb__after_atomic(); 9275 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9276 md_update_sb(mddev, 0); 9277 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9278 wake_up(&mddev->sb_wait); 9279 } 9280 9281 if (is_md_suspended(mddev)) 9282 return; 9283 9284 if (mddev->bitmap) 9285 md_bitmap_daemon_work(mddev); 9286 9287 if (signal_pending(current)) { 9288 if (mddev->pers->sync_request && !mddev->external) { 9289 pr_debug("md: %s in immediate safe mode\n", 9290 mdname(mddev)); 9291 mddev->safemode = 2; 9292 } 9293 flush_signals(current); 9294 } 9295 9296 if (!md_is_rdwr(mddev) && 9297 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9298 return; 9299 if ( ! ( 9300 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9301 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9302 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9303 (mddev->external == 0 && mddev->safemode == 1) || 9304 (mddev->safemode == 2 9305 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9306 )) 9307 return; 9308 9309 if (mddev_trylock(mddev)) { 9310 int spares = 0; 9311 bool try_set_sync = mddev->safemode != 0; 9312 9313 if (!mddev->external && mddev->safemode == 1) 9314 mddev->safemode = 0; 9315 9316 if (!md_is_rdwr(mddev)) { 9317 struct md_rdev *rdev; 9318 if (!mddev->external && mddev->in_sync) 9319 /* 'Blocked' flag not needed as failed devices 9320 * will be recorded if array switched to read/write. 9321 * Leaving it set will prevent the device 9322 * from being removed. 9323 */ 9324 rdev_for_each(rdev, mddev) 9325 clear_bit(Blocked, &rdev->flags); 9326 /* On a read-only array we can: 9327 * - remove failed devices 9328 * - add already-in_sync devices if the array itself 9329 * is in-sync. 9330 * As we only add devices that are already in-sync, 9331 * we can activate the spares immediately. 9332 */ 9333 remove_and_add_spares(mddev, NULL); 9334 /* There is no thread, but we need to call 9335 * ->spare_active and clear saved_raid_disk 9336 */ 9337 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9338 md_unregister_thread(&mddev->sync_thread); 9339 md_reap_sync_thread(mddev); 9340 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9341 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9342 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9343 goto unlock; 9344 } 9345 9346 if (mddev_is_clustered(mddev)) { 9347 struct md_rdev *rdev, *tmp; 9348 /* kick the device if another node issued a 9349 * remove disk. 9350 */ 9351 rdev_for_each_safe(rdev, tmp, mddev) { 9352 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9353 rdev->raid_disk < 0) 9354 md_kick_rdev_from_array(rdev); 9355 } 9356 } 9357 9358 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9359 spin_lock(&mddev->lock); 9360 set_in_sync(mddev); 9361 spin_unlock(&mddev->lock); 9362 } 9363 9364 if (mddev->sb_flags) 9365 md_update_sb(mddev, 0); 9366 9367 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9368 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9369 /* resync/recovery still happening */ 9370 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9371 goto unlock; 9372 } 9373 if (mddev->sync_thread) { 9374 md_unregister_thread(&mddev->sync_thread); 9375 md_reap_sync_thread(mddev); 9376 goto unlock; 9377 } 9378 /* Set RUNNING before clearing NEEDED to avoid 9379 * any transients in the value of "sync_action". 9380 */ 9381 mddev->curr_resync_completed = 0; 9382 spin_lock(&mddev->lock); 9383 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9384 spin_unlock(&mddev->lock); 9385 /* Clear some bits that don't mean anything, but 9386 * might be left set 9387 */ 9388 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9389 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9390 9391 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9392 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9393 goto not_running; 9394 /* no recovery is running. 9395 * remove any failed drives, then 9396 * add spares if possible. 9397 * Spares are also removed and re-added, to allow 9398 * the personality to fail the re-add. 9399 */ 9400 9401 if (mddev->reshape_position != MaxSector) { 9402 if (mddev->pers->check_reshape == NULL || 9403 mddev->pers->check_reshape(mddev) != 0) 9404 /* Cannot proceed */ 9405 goto not_running; 9406 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9407 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9408 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9409 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9410 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9411 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9412 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9413 } else if (mddev->recovery_cp < MaxSector) { 9414 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9415 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9416 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9417 /* nothing to be done ... */ 9418 goto not_running; 9419 9420 if (mddev->pers->sync_request) { 9421 if (spares) { 9422 /* We are adding a device or devices to an array 9423 * which has the bitmap stored on all devices. 9424 * So make sure all bitmap pages get written 9425 */ 9426 md_bitmap_write_all(mddev->bitmap); 9427 } 9428 INIT_WORK(&mddev->del_work, md_start_sync); 9429 queue_work(md_misc_wq, &mddev->del_work); 9430 goto unlock; 9431 } 9432 not_running: 9433 if (!mddev->sync_thread) { 9434 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9435 wake_up(&resync_wait); 9436 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9437 &mddev->recovery)) 9438 if (mddev->sysfs_action) 9439 sysfs_notify_dirent_safe(mddev->sysfs_action); 9440 } 9441 unlock: 9442 wake_up(&mddev->sb_wait); 9443 mddev_unlock(mddev); 9444 } 9445 } 9446 EXPORT_SYMBOL(md_check_recovery); 9447 9448 void md_reap_sync_thread(struct mddev *mddev) 9449 { 9450 struct md_rdev *rdev; 9451 sector_t old_dev_sectors = mddev->dev_sectors; 9452 bool is_reshaped = false; 9453 9454 /* sync_thread should be unregistered, collect result */ 9455 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9456 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9457 mddev->degraded != mddev->raid_disks) { 9458 /* success...*/ 9459 /* activate any spares */ 9460 if (mddev->pers->spare_active(mddev)) { 9461 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9462 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9463 } 9464 } 9465 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9466 mddev->pers->finish_reshape) { 9467 mddev->pers->finish_reshape(mddev); 9468 if (mddev_is_clustered(mddev)) 9469 is_reshaped = true; 9470 } 9471 9472 /* If array is no-longer degraded, then any saved_raid_disk 9473 * information must be scrapped. 9474 */ 9475 if (!mddev->degraded) 9476 rdev_for_each(rdev, mddev) 9477 rdev->saved_raid_disk = -1; 9478 9479 md_update_sb(mddev, 1); 9480 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9481 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9482 * clustered raid */ 9483 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9484 md_cluster_ops->resync_finish(mddev); 9485 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9486 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9487 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9488 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9489 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9490 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9491 /* 9492 * We call md_cluster_ops->update_size here because sync_size could 9493 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9494 * so it is time to update size across cluster. 9495 */ 9496 if (mddev_is_clustered(mddev) && is_reshaped 9497 && !test_bit(MD_CLOSING, &mddev->flags)) 9498 md_cluster_ops->update_size(mddev, old_dev_sectors); 9499 wake_up(&resync_wait); 9500 /* flag recovery needed just to double check */ 9501 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9502 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9503 sysfs_notify_dirent_safe(mddev->sysfs_action); 9504 md_new_event(); 9505 if (mddev->event_work.func) 9506 queue_work(md_misc_wq, &mddev->event_work); 9507 } 9508 EXPORT_SYMBOL(md_reap_sync_thread); 9509 9510 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9511 { 9512 sysfs_notify_dirent_safe(rdev->sysfs_state); 9513 wait_event_timeout(rdev->blocked_wait, 9514 !test_bit(Blocked, &rdev->flags) && 9515 !test_bit(BlockedBadBlocks, &rdev->flags), 9516 msecs_to_jiffies(5000)); 9517 rdev_dec_pending(rdev, mddev); 9518 } 9519 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9520 9521 void md_finish_reshape(struct mddev *mddev) 9522 { 9523 /* called be personality module when reshape completes. */ 9524 struct md_rdev *rdev; 9525 9526 rdev_for_each(rdev, mddev) { 9527 if (rdev->data_offset > rdev->new_data_offset) 9528 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9529 else 9530 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9531 rdev->data_offset = rdev->new_data_offset; 9532 } 9533 } 9534 EXPORT_SYMBOL(md_finish_reshape); 9535 9536 /* Bad block management */ 9537 9538 /* Returns 1 on success, 0 on failure */ 9539 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9540 int is_new) 9541 { 9542 struct mddev *mddev = rdev->mddev; 9543 int rv; 9544 if (is_new) 9545 s += rdev->new_data_offset; 9546 else 9547 s += rdev->data_offset; 9548 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9549 if (rv == 0) { 9550 /* Make sure they get written out promptly */ 9551 if (test_bit(ExternalBbl, &rdev->flags)) 9552 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9553 sysfs_notify_dirent_safe(rdev->sysfs_state); 9554 set_mask_bits(&mddev->sb_flags, 0, 9555 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9556 md_wakeup_thread(rdev->mddev->thread); 9557 return 1; 9558 } else 9559 return 0; 9560 } 9561 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9562 9563 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9564 int is_new) 9565 { 9566 int rv; 9567 if (is_new) 9568 s += rdev->new_data_offset; 9569 else 9570 s += rdev->data_offset; 9571 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9572 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9573 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9574 return rv; 9575 } 9576 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9577 9578 static int md_notify_reboot(struct notifier_block *this, 9579 unsigned long code, void *x) 9580 { 9581 struct mddev *mddev, *n; 9582 int need_delay = 0; 9583 9584 spin_lock(&all_mddevs_lock); 9585 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9586 if (!mddev_get(mddev)) 9587 continue; 9588 spin_unlock(&all_mddevs_lock); 9589 if (mddev_trylock(mddev)) { 9590 if (mddev->pers) 9591 __md_stop_writes(mddev); 9592 if (mddev->persistent) 9593 mddev->safemode = 2; 9594 mddev_unlock(mddev); 9595 } 9596 need_delay = 1; 9597 mddev_put(mddev); 9598 spin_lock(&all_mddevs_lock); 9599 } 9600 spin_unlock(&all_mddevs_lock); 9601 9602 /* 9603 * certain more exotic SCSI devices are known to be 9604 * volatile wrt too early system reboots. While the 9605 * right place to handle this issue is the given 9606 * driver, we do want to have a safe RAID driver ... 9607 */ 9608 if (need_delay) 9609 msleep(1000); 9610 9611 return NOTIFY_DONE; 9612 } 9613 9614 static struct notifier_block md_notifier = { 9615 .notifier_call = md_notify_reboot, 9616 .next = NULL, 9617 .priority = INT_MAX, /* before any real devices */ 9618 }; 9619 9620 static void md_geninit(void) 9621 { 9622 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9623 9624 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9625 } 9626 9627 static int __init md_init(void) 9628 { 9629 int ret = -ENOMEM; 9630 9631 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9632 if (!md_wq) 9633 goto err_wq; 9634 9635 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9636 if (!md_misc_wq) 9637 goto err_misc_wq; 9638 9639 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9640 if (!md_rdev_misc_wq) 9641 goto err_rdev_misc_wq; 9642 9643 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9644 if (ret < 0) 9645 goto err_md; 9646 9647 ret = __register_blkdev(0, "mdp", md_probe); 9648 if (ret < 0) 9649 goto err_mdp; 9650 mdp_major = ret; 9651 9652 register_reboot_notifier(&md_notifier); 9653 raid_table_header = register_sysctl_table(raid_root_table); 9654 9655 md_geninit(); 9656 return 0; 9657 9658 err_mdp: 9659 unregister_blkdev(MD_MAJOR, "md"); 9660 err_md: 9661 destroy_workqueue(md_rdev_misc_wq); 9662 err_rdev_misc_wq: 9663 destroy_workqueue(md_misc_wq); 9664 err_misc_wq: 9665 destroy_workqueue(md_wq); 9666 err_wq: 9667 return ret; 9668 } 9669 9670 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9671 { 9672 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9673 struct md_rdev *rdev2, *tmp; 9674 int role, ret; 9675 9676 /* 9677 * If size is changed in another node then we need to 9678 * do resize as well. 9679 */ 9680 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9681 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9682 if (ret) 9683 pr_info("md-cluster: resize failed\n"); 9684 else 9685 md_bitmap_update_sb(mddev->bitmap); 9686 } 9687 9688 /* Check for change of roles in the active devices */ 9689 rdev_for_each_safe(rdev2, tmp, mddev) { 9690 if (test_bit(Faulty, &rdev2->flags)) 9691 continue; 9692 9693 /* Check if the roles changed */ 9694 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9695 9696 if (test_bit(Candidate, &rdev2->flags)) { 9697 if (role == MD_DISK_ROLE_FAULTY) { 9698 pr_info("md: Removing Candidate device %pg because add failed\n", 9699 rdev2->bdev); 9700 md_kick_rdev_from_array(rdev2); 9701 continue; 9702 } 9703 else 9704 clear_bit(Candidate, &rdev2->flags); 9705 } 9706 9707 if (role != rdev2->raid_disk) { 9708 /* 9709 * got activated except reshape is happening. 9710 */ 9711 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9712 !(le32_to_cpu(sb->feature_map) & 9713 MD_FEATURE_RESHAPE_ACTIVE)) { 9714 rdev2->saved_raid_disk = role; 9715 ret = remove_and_add_spares(mddev, rdev2); 9716 pr_info("Activated spare: %pg\n", 9717 rdev2->bdev); 9718 /* wakeup mddev->thread here, so array could 9719 * perform resync with the new activated disk */ 9720 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9721 md_wakeup_thread(mddev->thread); 9722 } 9723 /* device faulty 9724 * We just want to do the minimum to mark the disk 9725 * as faulty. The recovery is performed by the 9726 * one who initiated the error. 9727 */ 9728 if (role == MD_DISK_ROLE_FAULTY || 9729 role == MD_DISK_ROLE_JOURNAL) { 9730 md_error(mddev, rdev2); 9731 clear_bit(Blocked, &rdev2->flags); 9732 } 9733 } 9734 } 9735 9736 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9737 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9738 if (ret) 9739 pr_warn("md: updating array disks failed. %d\n", ret); 9740 } 9741 9742 /* 9743 * Since mddev->delta_disks has already updated in update_raid_disks, 9744 * so it is time to check reshape. 9745 */ 9746 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9747 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9748 /* 9749 * reshape is happening in the remote node, we need to 9750 * update reshape_position and call start_reshape. 9751 */ 9752 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9753 if (mddev->pers->update_reshape_pos) 9754 mddev->pers->update_reshape_pos(mddev); 9755 if (mddev->pers->start_reshape) 9756 mddev->pers->start_reshape(mddev); 9757 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9758 mddev->reshape_position != MaxSector && 9759 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9760 /* reshape is just done in another node. */ 9761 mddev->reshape_position = MaxSector; 9762 if (mddev->pers->update_reshape_pos) 9763 mddev->pers->update_reshape_pos(mddev); 9764 } 9765 9766 /* Finally set the event to be up to date */ 9767 mddev->events = le64_to_cpu(sb->events); 9768 } 9769 9770 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9771 { 9772 int err; 9773 struct page *swapout = rdev->sb_page; 9774 struct mdp_superblock_1 *sb; 9775 9776 /* Store the sb page of the rdev in the swapout temporary 9777 * variable in case we err in the future 9778 */ 9779 rdev->sb_page = NULL; 9780 err = alloc_disk_sb(rdev); 9781 if (err == 0) { 9782 ClearPageUptodate(rdev->sb_page); 9783 rdev->sb_loaded = 0; 9784 err = super_types[mddev->major_version]. 9785 load_super(rdev, NULL, mddev->minor_version); 9786 } 9787 if (err < 0) { 9788 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9789 __func__, __LINE__, rdev->desc_nr, err); 9790 if (rdev->sb_page) 9791 put_page(rdev->sb_page); 9792 rdev->sb_page = swapout; 9793 rdev->sb_loaded = 1; 9794 return err; 9795 } 9796 9797 sb = page_address(rdev->sb_page); 9798 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9799 * is not set 9800 */ 9801 9802 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9803 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9804 9805 /* The other node finished recovery, call spare_active to set 9806 * device In_sync and mddev->degraded 9807 */ 9808 if (rdev->recovery_offset == MaxSector && 9809 !test_bit(In_sync, &rdev->flags) && 9810 mddev->pers->spare_active(mddev)) 9811 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9812 9813 put_page(swapout); 9814 return 0; 9815 } 9816 9817 void md_reload_sb(struct mddev *mddev, int nr) 9818 { 9819 struct md_rdev *rdev = NULL, *iter; 9820 int err; 9821 9822 /* Find the rdev */ 9823 rdev_for_each_rcu(iter, mddev) { 9824 if (iter->desc_nr == nr) { 9825 rdev = iter; 9826 break; 9827 } 9828 } 9829 9830 if (!rdev) { 9831 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9832 return; 9833 } 9834 9835 err = read_rdev(mddev, rdev); 9836 if (err < 0) 9837 return; 9838 9839 check_sb_changes(mddev, rdev); 9840 9841 /* Read all rdev's to update recovery_offset */ 9842 rdev_for_each_rcu(rdev, mddev) { 9843 if (!test_bit(Faulty, &rdev->flags)) 9844 read_rdev(mddev, rdev); 9845 } 9846 } 9847 EXPORT_SYMBOL(md_reload_sb); 9848 9849 #ifndef MODULE 9850 9851 /* 9852 * Searches all registered partitions for autorun RAID arrays 9853 * at boot time. 9854 */ 9855 9856 static DEFINE_MUTEX(detected_devices_mutex); 9857 static LIST_HEAD(all_detected_devices); 9858 struct detected_devices_node { 9859 struct list_head list; 9860 dev_t dev; 9861 }; 9862 9863 void md_autodetect_dev(dev_t dev) 9864 { 9865 struct detected_devices_node *node_detected_dev; 9866 9867 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9868 if (node_detected_dev) { 9869 node_detected_dev->dev = dev; 9870 mutex_lock(&detected_devices_mutex); 9871 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9872 mutex_unlock(&detected_devices_mutex); 9873 } 9874 } 9875 9876 void md_autostart_arrays(int part) 9877 { 9878 struct md_rdev *rdev; 9879 struct detected_devices_node *node_detected_dev; 9880 dev_t dev; 9881 int i_scanned, i_passed; 9882 9883 i_scanned = 0; 9884 i_passed = 0; 9885 9886 pr_info("md: Autodetecting RAID arrays.\n"); 9887 9888 mutex_lock(&detected_devices_mutex); 9889 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9890 i_scanned++; 9891 node_detected_dev = list_entry(all_detected_devices.next, 9892 struct detected_devices_node, list); 9893 list_del(&node_detected_dev->list); 9894 dev = node_detected_dev->dev; 9895 kfree(node_detected_dev); 9896 mutex_unlock(&detected_devices_mutex); 9897 rdev = md_import_device(dev,0, 90); 9898 mutex_lock(&detected_devices_mutex); 9899 if (IS_ERR(rdev)) 9900 continue; 9901 9902 if (test_bit(Faulty, &rdev->flags)) 9903 continue; 9904 9905 set_bit(AutoDetected, &rdev->flags); 9906 list_add(&rdev->same_set, &pending_raid_disks); 9907 i_passed++; 9908 } 9909 mutex_unlock(&detected_devices_mutex); 9910 9911 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9912 9913 autorun_devices(part); 9914 } 9915 9916 #endif /* !MODULE */ 9917 9918 static __exit void md_exit(void) 9919 { 9920 struct mddev *mddev, *n; 9921 int delay = 1; 9922 9923 unregister_blkdev(MD_MAJOR,"md"); 9924 unregister_blkdev(mdp_major, "mdp"); 9925 unregister_reboot_notifier(&md_notifier); 9926 unregister_sysctl_table(raid_table_header); 9927 9928 /* We cannot unload the modules while some process is 9929 * waiting for us in select() or poll() - wake them up 9930 */ 9931 md_unloading = 1; 9932 while (waitqueue_active(&md_event_waiters)) { 9933 /* not safe to leave yet */ 9934 wake_up(&md_event_waiters); 9935 msleep(delay); 9936 delay += delay; 9937 } 9938 remove_proc_entry("mdstat", NULL); 9939 9940 spin_lock(&all_mddevs_lock); 9941 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9942 if (!mddev_get(mddev)) 9943 continue; 9944 spin_unlock(&all_mddevs_lock); 9945 export_array(mddev); 9946 mddev->ctime = 0; 9947 mddev->hold_active = 0; 9948 /* 9949 * As the mddev is now fully clear, mddev_put will schedule 9950 * the mddev for destruction by a workqueue, and the 9951 * destroy_workqueue() below will wait for that to complete. 9952 */ 9953 mddev_put(mddev); 9954 spin_lock(&all_mddevs_lock); 9955 } 9956 spin_unlock(&all_mddevs_lock); 9957 9958 destroy_workqueue(md_rdev_misc_wq); 9959 destroy_workqueue(md_misc_wq); 9960 destroy_workqueue(md_wq); 9961 } 9962 9963 subsys_initcall(md_init); 9964 module_exit(md_exit) 9965 9966 static int get_ro(char *buffer, const struct kernel_param *kp) 9967 { 9968 return sprintf(buffer, "%d\n", start_readonly); 9969 } 9970 static int set_ro(const char *val, const struct kernel_param *kp) 9971 { 9972 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9973 } 9974 9975 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9976 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9977 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9978 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9979 9980 MODULE_LICENSE("GPL"); 9981 MODULE_DESCRIPTION("MD RAID framework"); 9982 MODULE_ALIAS("md"); 9983 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9984